
Graph Learning with a Nearest Neighbor Approach∗

Sven Koenig and Yury Smirnov
School of Computer Science, Carnegie Mellon University

Pittsburgh, PA 15213-3891, USA
skoenig@cs.cmu.edu, smir@cs.cmu.edu

Abstract

In this paper, we study how to traverse all edges
of an unknown graph G = (V, E) that is bi-
directed and strongly connected. This problem can
be solved with a simple algorithm that traverses
all edges at most twice, and no algorithm can do
better in the worst case. Artificial Intelligence re-
searchers, however, often use the following on-
line nearest neighbor algorithm: “repeatedly take
a shortest path to the closest unexplored edge and
traverse it.” We prove bounds on the worst-case
complexity of this algorithm. We show, for exam-
ple, that its worst-case complexity is close to op-
timal for some classes of graphs, such as graphs
with linear or star topology and dense graphs with
edge lengths one. In general, however, its com-
plexity can grow faster than linear in the sum of
all edge lengths, although not faster than log(V)
times the sum of all edge lengths.

1 Introduction

In this paper, we study how to explore unknown environ-
ments that can be modeled as bi-directed graphs. Bi-directed
graphs are directed graphs with symmetrical edge lengths

∗This research is sponsored in part by the Wright Labora-
tory, Aeronautical Systems Center, Air Force Materiel Command,
USAF, the Advanced Research Projects Agency (ARPA) under
grant number F33615-93-1-1330, and the National Science Foun-
dation under grant number IRI-9502548. The views and conclu-
sions contained in this document are those of the authors and should
not be interpreted as representing the official policies, either ex-
pressed or implied, of the sponsoring organizations or the U.S.
government.

that can be obtained from undirected graphs by replacing
each undirected edge with a pair of directed edges (“twin
edges”), one for each direction. The exploration of bi-
directed graphs differs from the exploration of undirected
graphs in that one does not learn the twin edge when travers-
ing an edge. We study the following problem:

Definition 1 On-Line Bi-Directed Chi-
nese Postman Problem Explore all edges of an unknown
graph that is bi-directed and strongly connected and return
to the starting vertex. One always has a map of all vertices
that one has visited and edges that one has explored so far,
can recognize them if one sees them again, and knows how
many unexplored edges leave each visited vertex, but does
not know which vertices they lead to until one has traversed
them at least once.

On-Line Bi-Directed Chinese Postman Problems can be used
to model a variety of robot exploration problems, such as
mobile robots that have to learn a topological map of an
unknown corridor environment. The resulting graph is bi-
directed, since corridors can be traversed in both directions.
We assume that the robots are not able to recognize a corri-
dor from the opposite direction when they have traversed it
in one direction, unless they have already traversed it in the
opposite direction as well. Different from piecemeal learn-
ing [2], we do not require the robots to return periodically
to their starting position for recharging. Similar exploration
problems arise in distributed computing when exploring uni-
directed networks [6] and in task learning, for example when
a skill acquired by a newborn does not imply the opposite
skill. Examples are opening and closing a jar or switching a
TV set on and off.

To measure the complexity of graph learning algorithms, we
use the lengths of their exploration tours (closed walks). This
is reasonable, because the time that robots need to explore
their environment is completely dominated by the time it
takes them to move around.

We use the following terminology: Unless stated otherwise,
“graph” refers to a graph G = (V, E) that is strongly con-
nected, weighted, and bi-directed. A bi-directed graph

start

a b

c d e f g

h

i j k

l m n

Figure 1: A Simple Bi-Directed Tree

has twice the number of edges that the corresponding undi-
rected graph has. Bi-directed graphs are special cases of
Eulerian graphs (graphs for which the number of incoming
edges equals the number of outgoing edges for each vertex.)
“Edge” refers to a directed edge e ∈ E. In figures, we of-
ten do not label an edge with its length if it has length one.
weight(G) denotes the weight of G (the sum of all edge
lengths), and lengthG(v, v′) denotes the smallest length of
any path from v ∈ V to v′ ∈ V on G.

The rest of the introduction provides the motivation behind
our research. Various graph learning strategies for On-Line
Bi-Directed Chinese Postman Problems have been described
in the literature. We highlight the advantages of the algo-
rithm that we study in this paper and explain why it has been
used by researchers from Artificial Intelligence, although its
worst-case complexity has been unknown so far [4]. (The
remainder of this section can be skipped by readers who are
only interested in the results.)

Consider the following two graph learning strategies:

Definition 2 Depth-First Search (DFS) “Take unexplored
edges whenever possible (ties can be broken arbitrarily).
If you are stuck (i.e. cannot take an unexplored edge any
longer), backtrack the last unbacktracked edge traversal and
repeat the procedure recursively until you are stuck at the
starting vertex.”

Definition 3 The “Building a Eulerian Tour” Algorithm
(BETA)1 “Take unexplored edges whenever possible (ties
can be broken arbitrarily). If you are stuck, retrace the tour
of unexplored edges just completed, stop at all vertices with
outgoing unexplored edges, and apply the algorithm recur-
sively from each such vertex.”

BETA is similar to DFS, but retraces its earlier moves in-
stead of backtracking its later moves when it gets stuck. This
has the advantage that BETA can explore arbitrary Eule-
rian graphs – backtracking is not always possible in Eule-
rian graphs that are not bi-directed. DFS is able to explore

1The exact origin of the algorithm is unclear. [4] and [6] stated it
explicitly as a graph learning algorithm, but it has been used earlier
as part of proofs about Eulerian tours, for example in [5].

1w

w

w

w
ww

w

w

w

w

1

1

1
11

1

1

1

1 ab

c

d
e

start

... etc.

Figure 2: A Simple Bi-Directed Star

bi-directed graphs, because backtracking is possible on bi-
directed graphs and DFS knows how to backtrack when it is
stuck, since – at that point in time – it knows all edges that
enter and leave its current vertex.

We illustrate BETA and DFS using the graph shown in Fig-
ure 1. If both graph learning algorithms start at vertex m,
then they can traverse the following sequence of vertices m,
l, c, d, c, l, m, j, m, n, g, f, g, n, m, and then get stuck at m.
BETA can now continue with l, c, d, a, d, e, d, a, d, e, d, c, l,
m, j, i, j, h, j, k, j, i, j, h, j, k, j, m, n, g, f, b, f, b, f, g, n, m,
while DFS can explore the rest of the graph as follows: n, g,
f, b, f, b, f, g, n, m, j, i, j, h, j, k, j, k, j, h, j, i, j, m, l, c, d, a,
d, e, d, e, d, a, d, c, l, m.

Both algorithms traverse every edge of a graph exactly twice
and thus the length of their exploration tour is 2 weight(G).
The star shown in Figure 2 shows that every graph learn-
ing strategy has (asymptotically) at least this complexity in
the worst case. Any graph learning strategy can traverse the
following sequence of vertices a, b, a, c, a, d, a, . . . and even-
tually get stuck at a. To explore all edges of length one and
return to its starting vertex, it is then forced to traverse all
edges of length w again. If there are k rays, the length of the
exploration tour is at least 4kw +2k, the weight of the graph
is 2kw + 2k, and the ratio of the two quantities approaches
two for large w.

Thus, it appears that the On-Line Bi-Directed Chinese Post-
man Problem has been solved already. Researchers in Arti-
ficial Intelligence, however, often use the following heuristic
(common-sense) graph learning strategy:

Definition 4 The On-Line Nearest Neighbor Algorithm
(OnNNA) “Repeatedly take a shortest path to the closest un-
traversed edge and traverse it (distances are measured with
respect to the explored portion of the graph, ties can be bro-
ken arbitrarily), and return on a shortest path to the starting
vertex once you have explored all edges.”

A possible sequence of vertices that OnNNA can traverse on
the graph from Figure 1 is given in the proof of Theorem 2.

Both Incremental Best-First Search (IBFS) [9] and the Dy-
namic A* (D*) algorithm [12] are versions of OnNNA.
The Learning Real-Time A* (LRTA*) algorithm [7], Pri-

3000

3500

4000

4500

5000

5500

6000

6500

7000

7500

8000

0 20 40 60 80 100

A
ve

ra
ge

 P
er

fo
rm

an
ce

 (
C

os
t)

Density

OnNNA
BETA with short-cuts

Original BETA

Figure 3: Average-Case Performances

oritized Sweeping [8], and the navigation method by Ben-
son and Prieditis [1] are fast approximations of the behavior
of OnNNA. We explain this interest in OnNNA as follows:
OnNNA is intuitive, as easy to implement as BETA and DFS,
and has three advantages over them: it is able to operate on
both non-Eulerian graphs and dynamic graphs that change
slowly, and can easily be extended to a goal-directed explo-
ration algorithm that utilizes heuristic knowledge to guide
the search towards a goal state (in fact, most of the applica-
tions of OnNNA fall into this category).2

To the best of our knowledge, the performance of OnNNA
has never been empirically compared to that of other graph
learning algorithms. Our experience is that (uninformed)
OnNNA (on static graphs) usually outperforms BETA by
far and has a similar performance as “BETA with shortcuts.”
BETA with shortcuts traverses all edges for the first time in
the same order as BETA, but always takes shortest known
paths between two consecutive first time edge traversals. To
continue our example with the graph shown in Figure 1, once
BETA with shortcuts is stuck in m for the first time (after it
has traversed the sequence of vertices given earlier), it con-
tinues with l, c, d, a, d, e, d, c, l, m, j, i, j, h, j, k, j, m, n, g, f,
b, f, g, n, m (if ties are broken in the same way as for BETA)
and is 12 edge traversals faster than (the original) BETA.

Figure 3 shows the performance (measured in edge traver-
sals) of OnNNA, BETA, and BETA with shortcuts for learn-
ing planar mazes of size 32 × 32 with different density (the
start state was always in the lower right corner). They were

2This is done by associating a heuristic value with each unex-
plored edge that estimates the cost of getting to a goal state after
OnNNA has traversed the edge. OnNNA then decides which unex-
plored edge to traverse next by minimizing the sum of the length of
a shortest path from its current vertex to an unexplored edge plus
the value of this edge. In this paper, we are basically studying the
uninformed case, where all edge values are zero. However, we are
able to reduce the complexity analysis of OnNNA with edge values
to this case [11].

constructed by first generating an acyclic maze (tree) and
then adding edges. The x axis shows the fraction of edges
added (0: the maze is a tree; 100: the maze became a com-
plete grid). For each data point, 50 runs were averaged
(10 runs each on 5 different mazes). The figure shows that
OnNNA consistently outperformed BETA on mazes, even if
BETA was allowed to use shortcuts. However, we also found
that the advantage of OnNNA diminishes for simpler topolo-
gies. On stars, for example, its performance is very close
to that of BETA and almost indistinguishable from that of
BETA with shortcuts.

2 Overview of the Results

We are interested in comparing the worst-case complexity
of OnNNA to that of other approaches to the On-Line Bi-
Directed Chinese Postman Problem. This graph learning
problem can be solved with a worst-case complexity of two
times the weight of the graph, and no algorithm can do better
in the worst case. We therefore pursue the question whether
the worst-case complexity of OnNNA is linear in the weight
of the graph. More formally,

Definition 5 The On-Line Problem: Let G = (V, E) be
an arbitrary (strongly connected, weighted, and bi-directed)
graph and s be any vertex in V . The On-Line Nearest
Neighbor Algorithm (OnNNA) starts at s; it repeatedly
takes a shortest path to the closest unexplored edge and
traverses it (distances are measured with respect to the ex-
plored portion of the graph, ties can be broken arbitrarily);
and it returns on a shortest path to its starting vertex once
it has explored all edges.3 The resulting tour is called an
On-Line Nearest Neighbor Algorithm (s, G)-Exploration
Tour (OnNNA (s, G)-Exploration Tour). The length of the
longest such tour is denoted by LOnNNA(s, G) and deter-
mines the complexity of OnNNA. What is the worst-case com-
plexity of OnNNA?

We show that the worst-case complexity of OnNNA is in-
deed linear in the weight of the graph for special classes
for graphs, such as graphs with linear or star topology and
dense graphs with edge lengths one. For graphs with lin-
ear or star topology, for example, its worst-case complexity
is bounded by 5/2 times the weight of the graph, although
OnNNA does not necessarily traverse every edge only a con-
stant number of times. In general, however, its worst-case
complexity is not linear in the weight of the graph: it is
Ω(log |V |

log log |V | weight(G)) even for simple graphs with tree
topology. Since it is also O(log |V | weight(G)), it cannot
grow more than logarithmically faster than the worst-case
complexity of any other graph learning algorithm.

3If we dropped the requirement that OnNNA return to its start-
ing vertex, its complexity could decrease by at most the weight of
the graph, which would not change the nature of our results.

This paper is structured as follows: We first show how to
reduce the complexity analysis of OnNNA to that of an off-
line TSP algorithm. This has two advantages: First, it is
easier to think about the off-line problem. Second, it allows
us to utilize results from the literature. We then analyze the
off-line problem in depth, and finally use our reduction to
obtain results about the worst-case complexity of OnNNA.

In particular, we reduce the on-line problem to the following
off-line problem:

Definition 6 The Off-Line Problem: Let G = (V, E) be
an arbitrary graph, W ⊆ V be an arbitrary set of vertices,
and s be any vertex in W . The Off-Line Nearest Neigh-
bor Algorithm (OffNNA) starts at s; it repeatedly takes
a shortest path to the closest unvisited vertex in W (dis-
tances are measured with respect to the whole graph, ties
can be broken arbitrarily); and it returns on a shortest path
to its starting vertex once it has visited all vertices in W .
The resulting tour is called an Off-Line Nearest Neighbor
Algorithm (s, W, G)-Exploration Tour (OffNNA (s, G)-
Exploration Tour). The length of the longest such tour is de-
noted by LOffNNA(s, W, G) and determines the complexity
of OffNNA. What is the worst-case complexity of OffNNA?

The off-line problem assumes that the graph is known, the
on-line problem assumes that it is unknown. Thus, bi-
directed graphs are indistinguishable from undirected graphs
for the off-line problem, but not for the on-line problem.

3 Reducing OnNNA to OffNNA

In this section, we show that LOnNNA(s, G) ≤
weight(G) + maxW⊆V :s∈W LOffNNA(s, W, G) for arbi-
trary Eulerian graphs G = (V, E) and any s ∈ V . The
key idea behind the proof is the following: Any exploration
strategy has to traverse every edge at least once before it has
explored the unknown graph completely. Every additional
traversal constitutes overhead. We call the sequence of edge
traversals with the first time traversal of every edge removed
the overhead of the exploration tour. We show that the over-
head of an OnNNA (s, G)-exploration tour on a Eulerian
graph G = (V, E) corresponds to an OffNNA (s, W, G)-
TSP tour for some W ⊆ V with s ∈ W . The bound fol-
lows immediately. We also give an example that shows that
there are cases where one has indeed to maximize over al-
most all W ⊆ V with s ∈ W to compute the bound on
LOnNNA(s, G).

In later sections, we use this relationship between OnNNA
and OffNNA as follows: We first study special classes of
graphs on which the worst-case complexity of OffNNA is
O(weight(G)) for all W ⊆ V . Thus, there exists a con-
stant c > 0 such that LOffNNA(s, W, G) ≤ c weight(G)
for all W ⊆ V . It then follows that, in these cases,
LOnNNA(s, G) ≤ (c + 1) weight(G) and the worst-case
complexity of OnNNA is O(weight(G)) as well.

Theorem 1 Let G = (V, E) be an arbitrary (not necessarily
bi-directed) Eulerian graph and s be an any vertex in V .
Then, the overhead of an OnNNA (s, G)-exploration tour is
an OffNNA (s, W, G)-TSP tour for some W ⊆ V with s ∈
W .

Proof Sketch: We say that OnNNA is stuck at its current
vertex when it cannot take an unexplored edge to leave the
vertex. Consider an arbitrary OnNNA (s, G)-exploration
tour on a Eulerian graph. Since OnNNA always takes an
unexplored edge when one is available at its current vertex,
it gets first stuck at its starting vertex s = v0. Until then, it
has not produced any overhead. OnNNA then moves from v0

to some vertex v1 with an unexplored edge. This constitutes
overhead, since the edges along the path from v0 to v1 have
already been explored. When OnNNA has moved to v1, the
unexplored subgraph is Eulerian and the procedure repeats:
OnNNA takes only unexplored edges until it gets stuck at v1.
It then moves to some v2 with an outgoing unexplored edge,
and so on until it has explored all edges. Finally, it returns
to its starting vertex. Let W = {v0, v1, . . . , vn} be the set of
vertices that OnNNA was stuck at. The subsequence of edge
traversals that constitute overhead is an OffNNA (v0, W, G)-
TSP tour that visits the vertices vi in sequence, as is shown
in the following:

When OnNNA is stuck at vi, all vertices vj with j > i
still have at least one incoming unexplored edge (otherwise
OnNNA could not get stuck at them later). The unexplored
part of G is Eulerian, and thus all of these vertices also have
at least one outgoing unexplored edge. Since OnNNA moves
from vi to vi+1, vi+1 is the vertex closest to vi that has an
outgoing unexplored edge (this statement holds no matter
whether distances are measured with respect to the known
part of the graph or the whole graph). Thus, vi+1 is the ver-
tex that is closest to vi among all vertices in W that have not
yet been visited by the overhead even if distances are mea-
sured with respect to the whole graph.

An upper bound on the worst-case complexity of OnNNA
follows immediately:

Corollary 1 Let G = (V, E) be an arbitrary (not nec-
essarily bi-directed) Eulerian graph and s be any ver-
tex in V . Then, LOnNNA(s, G) ≤ weight(G) +
maxW⊆V :s∈W LOffNNA(s, W, G).

Note that one does not need to maximize over all sets W ⊆
V with s ∈ W to calculate the bound on LOnNNA(s, G). It
is sufficient to maximize over all sets W of vertices at which
OnNNA can get stuck during a single run (s is necessarily an
element of this set). The following theorem, however, shows
that OnNNA can get stuck at almost every subset W ⊆ V
with s ∈ W .

Theorem 2 Let G = (V, E) be an arbitrary (bi-directed)
graph that corresponds to an undirected tree, W ⊆ V be

an arbitrary set of non-leaf vertices, and s be any vertex
in W . Consider an arbitrary OffNNA (s, W, G)-TSP tour.
Then, there exists an OnNNA (s, G)-exploration tour with
the following properties: its overhead is the given OffNNA
(s, W, G)-TSP tour and the set of vertices that OnNNA got
stuck at is W .

Proof Sketch: We say that an edge (a, b) with a, b ∈ V
is reachable from v iff it is unexplored and both the unique
shortest path from v to a and the shortest path from v to
b (distances are measured with respect to G) do not pass
through any vertices in W (although they can have vertices in
W as endpoints). Consider an arbitrary OffNNA (s, W, G)-
TSP tour. The following algorithm imitates a possible be-
havior of OnNNA:

1. Set v := s.

2. If W = ∅, then return on a shortest path to s (distances
are measured with respect to G) and stop.

3. Perform a Eulerian walk that traverses all edges that are
reachable from v exactly once and returns to v.

4. Go to the vertex v′ ∈ W \ {v} that the OffNNA
(s, W, G)-TSP tour visits after v.

5. Delete v from W , set v := v′, and go to Step 2.

The overhead of this OnNNA (s, G)-exploration tour is the
given OffNNA (s, W, G)-TSP tour, and the set of vertices
that OnNNA gets stuck at is W .

As an example, consider the graph shown in Figure 1 and
assume that OnNNA should get stuck at the hollow vertices.
The proof constructs the following behavior of OnNNA: m,
l, c, d, c, l, m, j, m, n, g, f, g, n, m (now OnNNA is stuck at m
and has to go to j next), j, i, j, h, j, k, j (now OnNNA is stuck
at j and has to go to d (or f) next), m, l, c, d, a, d, e, d (now
OnNNA is stuck at d and has to go to f next), c, l, m, n, g,
f, b, f (now OnNNA is stuck at f but has traversed all edges
and can return to m), g, n, m.

4 The Complexity of OffNNA

We first obtain general upper and lower bounds on the worst-
case complexity of OffNNA and then study some special
classes of graphs on which its worst-case complexity is
lower.

4.1 The General Case

In the next two sections, we show that the worst-case com-
plexity of OffNNA is Ω(log |V |

log log |V |weight(G)) in general and
O(log |V |weight(G)). Thus, it is not O(weight(G)) in gen-
eral.

4.1.1 An Upper Bound

In this section, we show that the worst-case complexity of
OffNNA is O(log |V | weight(G)) for arbitrary graphs G =
(V, E), arbitrary W ⊆ V , and any s ∈ W . The key idea be-
hind the proof is the application of a result by Rosenkrantz,
Stearns, and Lewis for undirected cliques G = (V, E) whose
distances satisfy the triangle inequality. They showed that
the length of any OffNNA (s, V, G)-TSP tour on such cliques
is at most 1

2
dlog2 |V |e+ 1

2
times the length of a shortest (stan-

dard) TSP tour on G, and that this bound is tight [10].

Theorem 3 Let G = (V, E) be an arbitrary graph, W ⊆ V
be an arbitrary set of vertices, and s be any vertex in W .
Then, LOffNNA(s, W, G) is at most 1

2
dlog2 |W |e+ 1

2
times

the length of a shortest tour on G that visits all vertices in
W .

Proof: Construct an undirected clique G′ = (W, E′). The
length of an edge e ∈ E ′ equals the length of a shortest
path between both of its vertices on G. These lengths are
symmetrical and satisfy the triangle inequality. The result
by Rosenkrantz, Stearns, and Lewis [10] applies to G′: the
length of any OffNNA (s, W, G′)-TSP tour on G′ is at most
1
2
dlog2 |W |e+ 1

2
times the length of a shortest (standard) TSP

tour on G′. The theorem then follows immediately, since
every OffNNA (s, W, G)-TSP tour on G corresponds to an
OffNNA (s, W, G′)-TSP tour on G′ of the same length that
visits the vertices in W for the first time in the same order.

The length of a shortest tour that visits all vertices in W is
bounded by weight(G), since a Eulerian walk on G vis-
its all vertices in V and traverses every edge exactly once.
The following upper bound on the worst-case complexity of
OffNNA follows immediately:

Corollary 2 Let G = (V, E) be an arbitrary graph, W ⊆
V be an arbitrary set of vertices, and s be any vertex
in W . Then, the worst-case complexity of OffNNA is
O(log |V | weight(G)).

For the worst-case example presented by Rosenkrantz,
Stearns, and Lewis [10], OffNNA traverses every edge at
most once and thus it holds that LOffNNA(s, W, G) ≤
weight(G). Consequently, their results do not show whether
the worst-case complexity of OffNNA is O(weight(G)).

4.1.2 A Lower Bound

In this section, we show that the worst-case complexity of
OffNNA is Ω(log |V |

log log |V | weight(G)). The proof is by exam-
ple and uses a simple graph with tree topology.

Theorem 4 The worst-case complexity of OffNNA is
Ω(log |V |

log log |V | weight(G)).

number of branches length of each branch vertices at which the branches attach to the stem
nn−1 1 vn = v1n, v2n, v3n, . . . , vnn−1n = vnn

nn−2 n + 1 vnn
−n2 = v(nn−2

−1)n2 , . . . , v2n2 , v1n2 , v0n2 = v0

nn−3 n2 + n + 1 vn3 = v1n3 , v2n3 , v3n3 , . . . , vnn−3n3 = vnn

nn−4 n3 + n2 + n + 1 vnn
−n4 = v(nn−4

−1)n4 , . . . , v2n4 , v1n4 , v0n4 = v0

.

Table 1: Branches of Graph G1

start s

v4v3v2v1v0 v8v7v6v5 v10v9 v22v20v18v16v15v14v13v12v11 v26v24 v27=vnnv25v23v21v19v17

branches

the vertex at which the branch attaches to the stem

the terminating vertex of the branch

the length of the stem

stem
etc.

Figure 4: Graph G1 for n = 3 (hollow vertices belong to W)

Proof (by example): Consider the graph G1 = (V1, E1)
with edge lengths one that corresponds to the following undi-
rected graph: The graph is a tree that consists of a “stem”
with several “branches,” see Figure 4. The stem has length
nn for some integer n > 1 and consists of the vertices
v0, v1, . . . , vnn . Table 1 enumerates all branches.

In general, for each integer i with 1 ≤ i ≤ n there are nn−i

branches of length
∑i−1

j=0 nj each. These branches attach to
the stem at the vertices vj ni for integers j; if i is even, then
0 ≤ j ≤ nn−i − 1, otherwise 1 ≤ j ≤ nn−i. Thus, there are
a total of

∑n
i=1 nn−i = nn−1

n−1
branches. The weight of G1

is

weight(G1) = |E1|

= 2n
n + 2

n
∑

i=1

[

n
n−i

i−1
∑

j=0

n
j

]

= 2n
n + 2

n
∑

i=1

i−1
∑

j=0

n
n+j−i

= 2n
n + 2

n
∑

i=1

i n
i−1

=
(2nn + 2

∑n

i=1
i ni−1)(n − 1)2

(n − 1)2

=
4nn+2 − 6nn+1 + 2

(n − 1)2

Now consider the following OffNNA (vnn , W, G1)-TSP tour
on G1, where W contains the vertices vi for the integers
0 ≤ i ≤ nn and the terminating vertices of all branches
(|W | = (nn + 1) + nn−1

n−1
= nn+1+n−2

n−1
): OffNNA starts at

s = vnn and visits the vertices from vnn to v0 in decreasing
order while traveling along the whole stem. It then travels
along the whole stem in the opposite direction and visits the
terminating vertices of all branches of length one for the first
time (in the order in which they are listed in the table above).
Next, it switches directions again, travels along the whole
stem in the original direction, and visits the terminating ver-
tices of all branches of length n + 1 for the first time (again,
in the order in which they are listed in the table above), and
so forth. Once OffNNA has traversed all edges, it returns to
vnn . Thus, it traverses each branch twice, once in each di-
rection. When all of the edges have been traversed, the stem
has been traversed n + 1 times. Then, OffNNA is either at
vertex vnn (and done) or at vertex v0. In the latter case, it
has to traverse the stem once more to get back to its starting
vertex vnn . We do not take this distance into account when
calculating a lower bound for LOffNNA(vnn , W, G1):

LOffNNA(vnn , W, G1)

≥ (n + 1) n
n + 2

n
∑

i=1

[

n
n−i

i−1
∑

j=0

n
j

]

= (n + 1) n
n + 2

n
∑

i=1

i n
i−1

=
((n + 1) nn + 2

∑n

i=1
i ni−1)(n − 1)2

(n − 1)2

=
nn+3 + nn+2 − 3nn+1 − nn + 2

(n − 1)2
(1)

It follows that

LOffNNA(vnn , W, G1)

weight(G1)

≥
nn+3 + nn+2 − 3nn+1 − nn + 2

4nn+2 − 6nn+1 + 2

=
1

4
n +

5

8
+

3nn+1 − 4nn − 2n + 3

16nn+2 − 24nn+1 + 8

v0=1v1=-3 v2=9v3=-27

etc.
...

start

...

v2N-1=(-3)2N-1 v2N=(-3)2N-18 -17 -16

Figure 5: Graph G2 (hollow vertices belong to W)

d d≥

t s wi wj

start

etc.

Figure 6: A Ray of a Star

Since n is Ω(log |V |/ log log |V |), the worst-case complex-
ity of OffNNA is Ω(log |V |

log log |V | weight(G)) even for simple
graphs with tree topology.

4.2 Special Cases

In the previous section, we have shown that the worst-case
complexity of OffNNA is not O(weight(G)) in general. The
next two sections present two special cases for which it is
Θ(weight(G)), namely graphs with linear or star topology
and dense graphs with edge lengths one.

4.2.1 Graphs with Linear or Star Topology

Graphs have star topology iff they correspond to undirected
graphs that contain at most one vertex (their center) with a
degree that is larger than two. In this section, we first give a
simple example that shows that OffNNA does not necessarily
traverse every edge of a star only a constant number of times
– even if the graph is linear, a special case of a star topology.
Then we show that, nevertheless, LOffNNA(s, W, G) ≤
3
2

weight(G) for arbitrary stars G = (V, E) with center
s ∈ V and arbitrary W ⊆ V with s ∈ W .

To see that OffNNA does not necessarily traverse every edge
of a star only a constant number of times, define the points
vi = (−3)i for i = 0, 1, . . . , 2N where N ≥ 1 is an integer,
and consider the linear graph G2 (with edge lengths one)
between the integer points from v2N−1 to v2N on the real
line, see Figure 5. If OffNNA is started at v0 and has to visit
the vertices W := {vi : i = 0, 1, . . . , 2N}, then it visits the
vertices vi for the first time in the order s = v0, v1, . . . , v2N

and finally returns to v0. Thus, the directed edge from 0 to
−1 has been traversed 2N times, which is not a constant [3].

Theorem 5 Let G = (V, E) be an arbitrary star with center
s ∈ V and edge lengths one and W ⊆ V be an arbitrary
set of vertices with s ∈ W . Then, LOffNNA(s, W, G) ≤
3
2

weight(G) and the worst-case complexity of OffNNA is
Θ(weight(G)).

We defer the proof of the theorem to the appendix be-
cause it contains quite a few technicalities. Here, we show
the idea behind the proof by proving the less tight bound
2 weight(G):

Proof Sketch: Let G = (V, E) be a star with center s ∈ W
for a given W ⊆ V and consider each ray of the star sep-
arately. Assume that OffNNA enters the ray from s, moves
as far as vertex wi, and then moves towards s again, see Fig-
ure 6. Assume that there is still at least one unvisited vertex
in W on the ray and call the one closest to the center wj .
Since all vertices between s and wi have already been vis-
ited and OffNNA does not visit wj next, we know that the
closest unvisited vertex in W , call it t, is on another ray.
In particular, d := lengthG(wi, s) ≤ lengthG(wi, t) ≤
lengthG(wi, wj). The length of the continuous path that
OffNNA traveled along this ray, from entering the ray to
leaving the ray, was 2 lengthG(s, wi). When OffNNA en-
ters the ray next time, it moves at least as far as wj and, thus,
travels at least a distance of 2 lengthG(s, wj) until it leaves
the ray again. Since 2lengthG(s, wj) = 2(lengthG(s, wi)+
lengthG(wi, wj)) ≥
2 (lengthG(s, wi) + lengthG(s, wi)) = 4 lengthG(s, wi),
the length of a continuous path along any ray is at least
twice as long as the length of the previous continuous path
along the same ray. The total distance traveled along the ray
is, therefore, at most twice the length of the last continu-
ous path along the ray, which – in turn – is not larger than
the number of edges of the ray. Thus, we have shown that
LOffNNA(s, W, G) ≤ 2 |E| = 2 weight(G) for arbitrary
W ⊆ V .

The theorem generalizes to stars with arbitrary (positive) in-
teger or rational edge lengths:

Corollary 3 Let G = (V, E) be an arbitrary star with cen-
ter s ∈ V and W ⊆ V be an arbitrary set of vertices with
s ∈ W . Then, LOffNNA(s, W, G) ≤ 3

2
weight(G) and the

worst-case complexity of OffNNA is Θ(weight(G)).

Proof: A graph with (positive) integer edge lengths can be
transformed into a graph with edge lengths one by split-
ting all edges into several edges of length one. This does
not change the graph weight, and every path on the origi-
nal graph has the same length as the corresponding path on
the transformed graph. Any OffNNA (s, W, G)-TSP tour on
the original graph remains a valid OffNNA (s, W, G)-TSP
tour on the transformed graph with the same length and vice
versa, for arbitrary W ⊆ V . Similarly, a graph with (posi-
tive) rational edge lengths can be transformed into one with
integer edge lengths by scaling all edge lengths equally. Any
OffNNA (s, W, G)-TSP tour on the original graph remains a
valid OffNNA (s, W, G)-TSP tour on the transformed graph
and vice versa. The transformation changes the graph weight
and the length of any path by the same factor. Thus, any lin-
ear relationship between the two quantities remains intact,
and the theorem follows immediately from Theorem 5.

Notice that the corollary also directly applies to linear
graphs, no matter at which vertex OffNNA is started, since
they are special cases of stars whose center is the starting
vertex of OffNNA.

4.2.2 Dense Graphs with Edge Lengths One

We call a graph dense iff |E| = Ω(|V | log |V |). In this sec-
tion, we show that the worst-case complexity of OffNNA
is Θ(weight(G)) for arbitrary graphs G = (V, E) that are
dense and have edge lengths one, arbitrary W ⊆ V , and any
s ∈ W . This result follows from Theorem 3.

Theorem 6 Let G = (V, E) be an arbitrary graph that is
dense (|E| = Ω(|V | log |V |)) and has edge lengths one,
W ⊆ V be an arbitrary set of vertices, and s be any ver-
tex in W . Then, the worst-case complexity of OffNNA is
Θ(weight(G)).

Proof: Pick an arbitrary bi-directed minimum spanning tree
T of G. Use a Eulerian tour on T to visit all vertices in V
and return to s. It traverses every edge of T exactly once,
for a total of 2|V | − 2 edge traversals. Hence, the length of
a shortest tour on G that visits all vertices in W is at most
2|V | − 2. Thus, LOffNNA(s, W, G) ≤ (1

2
dlog2 |W |e +

1
2
)(2|V |−2) ≤ O(|V | log |V |) = O(|E|) = O(weight(G))

according to Theorem 3.

5 The Complexity of OnNNA

In this section, we first obtain general upper and lower
bounds on the worst-case complexity of OnNNA and then
study some special classes of graphs on which its worst-case
complexity is lower. The key idea behind the proofs is the ap-
plication of Corollary 1 to transfer our results from OffNNA
to OnNNA.

Theorem 7 Let G = (V, E) be an arbitrary graph and s
be any vertex in V . Then, the worst-case complexity of
OnNNA over all such problems is Ω(log |V |

log log |V | weight(G))

and O(log |V | weight(G)).

Proof: The upper bound follows immediately from Corol-
lary 2 in conjunction with Corollary 1.

The lower bound can be proved by adapting Graph G1, the
example that we used to prove a lower bound on the worst-
case complexity of OffNNA, see Figure 4. Consider the tree
G3 = (V3, E3) with edge lengths one that can be obtained
from G1 by increasing the length of every branch by one,
see Figure 7. The weight of G3 can be calculated from the
weight of G1, since each branch is extended by two edges
(one in each direction):

weight(G3) = |E3|

v4v3v2v1v0 v8v7v6v5 v10v9 v22v20v18v16v15v14v13v12v11 v24v25v23v21v19v17

etc.

start s

v26 v27=vnn

Figure 7: Graph G3 for n = 3 (OnNNA gets stuck at the
hollow vertices)

= weight(G1) + 2
nn − 1

n − 1

=
4nn+2 − 6nn+1 + 2

(n − 1)2
+ 2

nn − 1

n − 1

=
4nn+2 − 4nn+1 − 2nn − 2n + 4

(n − 1)2

Now consider the set W of non-leaf vertices that contains
all vertices of the stem of G3 plus the vertices that con-
nect to the terminating vertices of all branches. W is the
same set of vertices that we used to show that there exists an
OffNNA (vnn , W, G1)-TSP tour on G1 whose length is not
O(weight(G1)). This tour is also an OffNNA (vnn , W, G3)-
TSP tour on G3. Consequently, Theorem 2 applies and there
exists an OnNNA (vnn , G3)-exploration tour whose over-
head is the OffNNA (vnn , W, G3)-TSP tour. The proof of
Theorem 2 shows how this behavior of OnNNA can be ob-
tained. In this case, OnNNA traverses every edge of G3 once
and incurs as additional overhead the length of the OffNNA
(vnn , W, G)-TSP tour that we calculated earlier in Inequal-
ity 1:

LOnNNA(vnn , G3)

≥ |E3| +
nn+3 + nn+2 − 3nn+1 − nn + 2

(n − 1)2

=
nn+3 + 5nn+2 − 7nn+1 − 3nn − 2n + 6

(n − 1)2

It follows that

LOnNNA(vnn , W, G3)

weight(G3)

≥
nn+3 + 5nn+2 − 7nn+1 − 3nn − 2n + 6

4nn+2 − 4nn+1 − 2nn − 2n + 4

=
1

4
n +

3

2
−

nn+1 − n2

8nn+2 − 8nn+1 − 4nn − 4n + 8

Since n is Ω(log |V |/ log log |V |), the worst-case complex-
ity of OnNNA is Ω(log |V |

log log |V | weight(G)) even for simple
graphs with tree topology.

The theorem implies that the worst-case complexity of
OnNNA is not O(weight(G)) in general. The next theorems
present two special cases for which it is Θ(weight(G)),
namely graphs with linear or star topology and dense graphs
with edge lengths one.

Theorem 8 Let G = (V, E) be an arbitrary star with cen-
ter s ∈ V . Then, LOnNNA(s, G) ≤ 5

2
weight(G) and the

worst-case complexity of OnNNA is Θ(weight(G)).

Proof: The theorem follows immediately from Corollary 3
in conjunction with Corollary 1.

The theorem also applies to linear graphs, no matter at which
vertex OnNNA is started. The example from Figure 5 can be
used in conjunction with Theorem 2 to show that OnNNA
does not necessarily traverse every edge only a constant
number of times (even for linear graphs).

The theorem implies that the worst-case complexity of
OnNNA is close to optimal on stars, since – in the worst
case – no graph learning algorithm can asymptotically do
better than 2 weight(G) on stars (see Section 1).

Theorem 9 Let G = (V, E) be an arbitrary graph that is
dense (|E| = Ω(|V | log |V |) and has edge lengths one and
s be any vertex in V . Then, the worst-case complexity of
OnNNA is Θ(weight(G)).

Proof: The theorem follows immediately from Theorem 6
in conjunction with Corollary 1.

6 Conclusion

In this paper, we have analyzed the following simple graph
learning algorithm, called the on-line nearest neighbor algo-
rithm: “Repeatedly take a shortest path to the closest unex-
plored edge and traverse it.” We have argued that the flex-
ibility of this algorithm provides a good basis for its use in
practical applications that require capabilities to learn graphs
or find goal states in unknown graphs (“treasure hunting”).

We have shown that the worst-case complexity of the near-
est neighbor algorithm is Ω(log |V |

log log |V | weight(G)) on bi-
directed graphs G = (V, E) even for simple graphs with tree
topology. Since the graph learning problem can be solved
with a worst-case complexity of only Θ(weight(G)), the
flexibility of the on-line nearest neighbor algorithm comes
at the cost of a loss of performance in the worst case. How-
ever, the worst-case complexity of the on-line nearest neigh-
bor algorithm is O(log |V |weight(G)), which implies that it

cannot grow more than logarithmically faster than the worst-
case complexity of any other graph learning algorithm. We
also described special classes of graphs on which its worst-
case complexity is only Θ(weight(G)).

To summarize, we have shown that the worst-case
complexity of OnNNA is Ω(log |V |

log log |V | weight(G)) and
O(log |V | weight(G)). It is currently an open problem
whether one of these bounds is tight.

In our current work, we are pursuing two directions: First,
we are extending our complexity analysis of the nearest
neighbor algorithm to other learning capabilities of the al-
gorithm (such as being able to learn all edges in the vicinity
of a traversed edge), other tasks (such as partially informed
treasure hunting), and more realistic special classes of graphs
(such as mazes). Second, we are developing algorithms that
maintain the flexibility of the on-line nearest neighbor algo-
rithm, but are able to make performance guarantees that are
linear in the weight of the graph [11].

Acknowledgements

Thanks to Avrim Blum and Lonnie Chrisman for stimulating
discussions and to Peter Stone for helpful comments.

References

[1] G.D. Benson and A. Prieditis. Learning continuous-space
navigation heuristics in real time. In Proceedings of the Con-
ference on Simulation of Adaptive Behavior: From Animals to
Animats, 1992.

[2] M. Betke, R. Rivest, and M. Singh. Piecemeal learning of an
unknown environment. Machine Learning, 18(2/3), 1995.

[3] A. Blum, P. Chalasani, D. Coppersmith, B. Pulleyblank,
P. Raghavan, and M. Sudan. The minimum latency problem.
In Proceedings of the Symposium on Theory of Computing,
pages 163–171, 1994.

[4] X. Deng and C.H. Papadimitriou. Exploring an unknown
graph. In Proceedings of the Symposium on Foundations of
Computer Science, pages 355–361, 1990.

[5] C. Hierholzer. Über die Möglichkeit, einen Linienzug ohne
Wiederholung und ohne Unterbrechung zu umfahren. Mathe-
matische Annalen, 6:30–32, 1873 (sic!).

[6] E. Korach, S. Kutten, and S. Moran. A modular technique for
the design of efficient distributed leader finding algorithms.
ACM Transactions on Programming Languages and Systems,
12(1):84–101, 1990.

[7] R.E. Korf. Real-time heuristic search. Artificial Intelligence,
42(2-3):189–211, 3 1990.

[8] A.W. Moore and C.G. Atkeson. Prioritized sweeping: Re-
inforcement learning with less data and less time. Machine
Learning, 13:103–130, 1993.

[9] J.C. Pemberton and R.E. Korf. Incremental path planning on
graphs with cycles. In Proceedings of the AI Planning Systems
Conference, pages 179–188, 1992.

[10] D.J. Rosenkrantz, R.E. Stearns, and P.M. Lewis II. An anal-
ysis of several heuristics for the traveling salesman problem.
SIAM Journal of Computing, 6(3):563–581, 1977.

[11] Y. Smirnov, S. Koenig, M. Veloso, and R. Simmons. Effi-
cient goal-directed exploration. In Proceedings of the Na-
tional Conference on AI, 1996. (to appear).

[12] A. Stentz. The focussed D* algorithm for real-time replan-
ning. In Proceedings of the IJCAI, pages 1652–1659, 1995.

Appendix: Proof of Theorem 5

Theorem 5 Let G = (V, E) be an arbitrary star with center
s ∈ V and edge lengths one and W ⊆ V be an arbitrary
set of vertices with s ∈ W . Then, LOffNNA(s, W, G) ≤
3
2

weight(G) and the worst-case complexity of OffNNA is
Θ(weight(G)).

Proof: Let G = (V, E) be a star with center s ∈ W for a
given W ⊆ V and consider each ray of the star separately.
Assume that OffNNA enters the ray for the ith time (i =
1, 2, . . . , n for an n ≥ 0). When OffNNA enters a ray, it
always moves along the ray up to some previously unvisited
vertex wi ∈ W , and then returns to s and leaves the ray. On
its way from s to wi (including the endpoint) it visits at least
one previously unvisited vertex in W (and potentially more
than one). Call the first such vertex that OffNNA encounters
on this trip vi ∈ W .

Assume that there are still at least two unvisited vertices in
W when OffNNA leaves the ray, one on the ray and an-
other on some other ray. The one on the ray that is closest
to s is vi+1. It holds lengthG(s, vi) ≤ lengthG(s, wi) <
lengthG(s, vi+1). We denote the one on some other ray that
is closest to s by ti. Since OffNNA was at s and decided to
visit vi next instead of ti, we know that lengthG(s, vi) ≤
lengthG(s, ti). When OffNNA is at wi and decides to visit
ti next instead of vi+1, we know that lengthG(wi, ti) ≤
lengthG(wi, vi+1). Put together, it follows that

3 (lengthG(s, wi+1) − lengthG(s, wi))

= 2 lengthG(s, wi+1) + lengthG(s, wi+1) − 3 lengthG(s, wi)

= 2 lengthG(s, wi+1) + lengthG(s, wi) + lengthG(wi, vi+1)

+lengthG(vi+1, wi+1) − 3 lengthG(s, wi)

≥ 2 lengthG(s, wi+1) + lengthG(s, wi) + lengthG(wi, ti)

+lengthG(vi+1, wi+1) − 3 lengthG(s, wi)

= 2 lengthG(s, wi+1) + lengthG(s, wi) + lengthG(wi, s)

+lengthG(s, ti) + lengthG(vi+1, wi+1) − 3 lengthG(s,wi)

≥ 2 lengthG(s, wi+1) + lengthG(s, wi) + lengthG(wi, s)

+lengthG(s, vi) + lengthG(vi+1, wi+1) − 3 lengthG(s, wi)

= 2 lengthG(s, wi+1) + lengthG(vi+1, wi+1) + lengthG(s, vi)

−lengthG(s,wi)

= 2 lengthG(s, wi+1) + lengthG(vi+1, wi+1)

−lengthG(vi, wi) (2)

Now we can calculate an upper bound on the total length
2

∑n

i=1 lengthG(s, wi) of the OffNN (s, W, G)-TSP tour
that OffNNA travels along the ray. It holds that

2

n
∑

i=1

lengthG(s,wi)

≤ 2 lengthG(s, w1) + 2

n
∑

i=2

lengthG(s, wi)

+lengthG(s, w1) + lengthG(vn, wn) − lengthG(v1, w1)

(because lengthG(s, w1) ≥ lengthG(v1, w1))

= 3 lengthG(s, w1) +

n
∑

i=2

[2 lengthG(s, wi)

+lengthG(vi, wi) − lengthG(vi−1, wi−1)]

see (2)
≤ 3 lengthG(s, w1)

+3

n
∑

i=2

[lengthG(s, wi) − lengthG(s, wi−1)]

= 3 lengthG(s, wn) (3)

which is less than or equal to 3
2

times the number of
edges of the ray. If we sum over all rays, we obtain
LOffNNA(s, W, G) ≤ 3

2
|E| = 3

2
weight(G).

