
A New Solver for the Minimum Weighted
Vertex Cover Problem

Hong Xu, T. K. Satish Kumar, and Sven Koenig

University of Southern California, Los Angeles CA 90089, USA
hongx@usc.edu, tkskwork@gmail.com, skoenig@usc.edu

Abstract. Given a vertex-weighted graph G = 〈V,E〉, the minimum
weighted vertex cover (MWVC) problem is to choose a subset of vertices
with minimum total weight such that every edge in the graph has at
least one of its endpoints chosen. While there are good solvers for the
unweighted version of this NP-hard problem, the weighted version—i.e.,
the MWVC problem—remains understudied despite its common occur-
rence in many areas of AI—like combinatorial auctions, weighted con-
straint satisfaction, and probabilistic reasoning. In this paper, we present
a new solver for the MWVC problem based on a novel reformulation to
a series of SAT instances using a primal-dual approximation algorithm
as a starting point. We show that our SAT-based MWVC solver (SBMS)
significantly outperforms other methods.

1 Introduction

Given a directed or undirected graph G = 〈V,E〉, a vertex cover of G is defined
as a collection of vertices S ⊆ V such that every edge in E has at least one of its
endpoint vertices in S. A minimum vertex cover (MVC) of G is a vertex cover
of minimum cardinality. When G is vertex-weighted—i.e., each vertex vi ∈ V
has a non-negative weight wi associated with it—the minimum weighted vertex
cover (MWVC) for it is defined as a vertex cover of minimum total weight.

Two important combinatorial problems equivalent to the MVC problem are
the maximum independent set (MIS) problem and the maximum clique (MC)
problem [8]. The MVC problem and its equivalent MIS and MC problems have
numerous real-world applications such as in AI scheduling, logistics and oper-
ations management, and VLSI design. More recent applications have also been
discovered in information retrieval, signal processing, and sequence alignment in
computational genomics [14].

Since the MVC problem is a special case of the MWVC problem, the latter
not only captures all of the real-world combinatorial problems that the MVC
problem can model but also captures a wide range of other combinatorial prob-
lems central to AI. For example, consider a simple combinatorial auction prob-
lem. We are given a set of items with bids placed on subsets of the items. Each
bid has a valuation. The goal is to pick a set of winning bids that maximizes
the total valuation—i.e., revenue of the auctioneer—and allocates each item to

at most one winning bid. This can be modeled as a maximum weighted inde-
pendent set (MWIS) problem—equivalent to the MWVC problem—as follows.
We create a vertex for each bid such that the weight of the vertex is equal to
the valuation of that bid. Two vertices are connected by an edge if and only if
their corresponding bids have a non-empty intersection. It is easy to see that the
winning bids correspond to the vertices in the MWIS for the graph.

In [19,20], the MWVC problem has also been identified as being fundamental
to solving weighted constraint satisfaction problems (WCSPs). Any combinatorial
problem posed as a WCSP is equivalent to the MWVC problem for its associated
constraint composite graph [19, 20]. An efficient solver for the MWVC problem,
therefore, has important implications on how well we can solve the plethora of
real-world problems that can be modeled as WCSPs. Examples include—but
are not limited to—representing and reasoning about user preferences [3], over-
subscription planning with goal preferences [10], and various resource allocation
problems. Quite importantly, WCSPs also arise as energy minimization problems
(EMPs) in probabilistic settings. In computer vision applications, for example,
tasks such as image restoration, total variation minimization, and panoramic
image stitching can be formulated as EMPs derived in the context of markov
random fields [17, 18].

The MVC problem has received a lot of recent attention in response to the
DIMACS Implementation Challenge [14]. There are both exact and heuristic
algorithms for solving the MVC problem. Exact algorithms mainly use branch-
and-bound techniques [21, 28]. While they guarantee optimality, they may not
scale efficiently to be able to solve large problem instances. Heuristic and local
search methods, on the other hand, can provide near-optimal solutions to larger
and harder problem instances [6,26]. As a matter of fact, the NuMVC solver [5]
integrates many interesting local search techniques for the MVC problem and
performs very well in practice.

While there are reasonably good solvers for the MVC problem, the MWVC
problem remains understudied. Clearly, the MWVC problem is a generalization
of the MVC problem and is harder to solve efficiently. Exact algorithms based on
the branch-and-bound technique are not expected to do well for large instances
of the MWVC problem simply because they do not scale well even for large
instances of the MVC problem. Moreover, the local search techniques used in the
best solvers for the MVC problem are also not expected to generalize well to the
MWVC problem. This is because the MVC problem is fixed-parameter tractable
while the MWVC problem is not [7]. The local search solvers for the MVC
problem [5, 26] heavily rely on this property as they solve the fixed-parameter
vertex cover problem in their inner loops.

In this paper, we present a new solver for the MWVC problem based on a
novel reformulation to a series of SAT instances using a primal-dual approx-
imation algorithm as a starting point. Our SAT-based MWVC solver (SBMS)
implements an anytime algorithm that trades off running time with the quality of
the produced solution. Moreover, SBMS also reports on how good the produced
solution is guaranteed to be with respect to the optimal solution. In many cases,

SBMS converges to the optimal solution in a few iterations and reports it within
the allocated amount of time. Empirical results show that SBMS significantly
outperforms other methods.

2 Background

The MVC problem is a well known NP-hard problem [8]. There exists a sim-
ple factor-2 approximation algorithm for it that runs in polynomial time [29].1

There are also polynomial-time algorithms that yield slightly better approxi-
mation factors but are more involved [15]. However, the MVC problem is also
known to be APX-complete. It cannot be approximated arbitrarily well unless
P = NP [29]. Furthermore, PCP theorems yield inapproximability results for
designing polynomial-time algorithms with approximation factors better than
1.36 [9].2

The MWVC problem is harder than the MVC problem since it is a gener-
alization of the latter. The negative results associated with the MVC problem
therefore carry over to the MWVC problem. Fortunately, the MWVC problem
is still amenable to a fairly simple polynomial-time factor-2 approximation algo-
rithm based on the idea of linear programming duality [29]. However, unlike the
MVC problem, the MWVC problem is not fixed-parameter tractable [7]. The
MVC problem is in fact studied as a central problem in parameterized complex-
ity theory and can be formulated as a half-integral linear programming problem
whose dual yields a maximum matching in the corresponding graph [29].

The good solvers for the MVC problem are based on local search [5, 6, 26].
They implicitly exploit the fixed-parameter tractability of the MVC problem in
their inner loops. In order to solve the k-vertex cover problem—i.e., find a vertex
cover of size k—in their inner loops, they maintain a current set of vertices of
size k and iteratively exchange two vertices—one inside and one outside of this
set—until it becomes a valid vertex cover. The state-of-the-art solver for the
MVC problem, NuMVC [5], also exploits the fixed-parameter tractability of the
MVC problem but with added optimizations.

The NuMVC solver mainly introduces two new techniques not present in its
predecessors [5]. The first optimization decomposes the exchange process into
two stages—one stage for removing a vertex from the set and the other for
adding a vertex to the set. This decomposition leads to linear-time subroutines
for each stage instead of the original quadratic-time subroutine that deliberates
all pairs of vertices for a possible exchange. The second optimization involves
weighting the edges across different iterations while simultaneously employing a
mechanism to forget weighting decisions made too far in the past [5].

1 While the MVC is approximable within a constant factor, this has no implications
on the MIS problem. In fact, the MIS problem is one of the hardest combinato-
rial problems and has no polynomial-time constant-factor approximation algorithm
unless P = NP [29].

2 This inapproximability result is tighter under the unique games conjecture [16].

3 Reformulations of the MWVC Problem

Given that there are no standard solvers for the understudied MWVC problem,
we develop a solver based on reformulating it to a series of SAT instances. We
study the usefulness of this reformulation in comparison to modeling the MWVC
problem as an Integer Linear Program (ILP), a Pseudo-Boolean Optimization
(PBO) problem, a MAX-SAT problem, or an Answer Set Program (ASP).

3.1 Reformulation as an ILP or a PBO Problem

For a given vertex-weighted undirected (or directed) graph G = 〈V,E〉, the
MWVC problem can be formulated as an ILP as follows. We simply associate a
0/1 variable Xi with each vertex vi ∈ V . Xi indicates the presence of vi in the
MWVC. Here, wi is the non-negative weight associated with vertex vi.

Minimize

|V |∑
i=1

wiXi

∀ vi ∈ V : Xi ∈ {0, 1}
∀ (vi, vj) ∈ E : Xi +Xj ≥ 1

(1)

To reformulate the MWVC problem as a PBO problem, we simply change
the “type” of each variable Xi in the ILP formulation from a 0/1 integer to a
Boolean variable.

3.2 Reformulation as a MAX-SAT Problem

The MWVC problem can also be formulated as a weighted MAX-SAT problem—
simply referred to as the “MAX-SAT problem” here. In a MAX-SAT problem,
we are given a set of clauses on Boolean variables. Each clause has a reward
associated with satisfying it. The goal is to find a complete assignment of Boolean
values to all variables so as to maximize the sum of the rewards associated
with the satisfied clauses. The MAX-SAT problem is a well known NP-hard
problem [8].

The reformulation of the MWVC problem to the MAX-SAT problem is
easy to understand by first modeling the complement of the MWVC problem—
i.e., the MWIS problem—as a MAX-SAT problem. Once again, we associate
a Boolean variable Xi with each vertex vi ∈ V of weight wi. For each edge
(vi, vj) ∈ E, we create the clause (Xi ∨ Xj) with a very high reward so that
there is no incentive to violate it.3 These clauses represent an independent set
in the graph. For each vertex vi ∈ V , we also add the singleton clause Xi with
an associated reward of wi. It is easy to see that solving the MAX-SAT problem
over all these clauses with their associated rewards solves the MWIS problem on
the given graph.

3 It suffices for this reward to be greater than the sum of the weights of all vertices in
the graph.

3.3 Reformulation as an ASP

To formulate the MWVC problem as an ASP, we use a constant to represent
each vertex. We define a predicate “edge” to represent the edges in the graph. We
also define a predicate “picked” to represent whether a vertex is in the MWVC.
We define a function “cost” to denote the cost of picking a vertex. Equation 2
captures the nature of undirected edges and vertex cover constraints. The goal
is to minimize the sum of the costs of all picked vertices.

edge(X,Y)← edge(Y,X)

picked(X) ∨ picked(Y)← edge(X,Y)
(2)

3.4 Reformulation as a Series of SAT Instances

An instance of the MWVC problem can be reformulated as a series of SAT in-
stances with each SAT instance answering the question: “Is there a vertex cover
of weight less than a given test weight wtest?” Solving these SAT instances itera-
tively converges to a solution of the MWVC problem since we can conduct binary

search for the cost of the optimal solution within the interval [0,
∑|V |

i=1 wi].
4

Formulating Each SAT Instance: Consider associating a Boolean variable
Xi with each vertex vi ∈ V of weight wi. Xi indicates the presence of vi in the
MWVC. Each SAT instance is intended to search for a vertex cover of weight
less than a test weight wtest. The clauses in the SAT instance should therefore
encode two properties: (a) the validity of the vertex cover; and (b) the weight of
the vertex cover being less than wtest.

The validity of the vertex cover is enforced simply by having a clause (Xi∨Xj)
for each (vi, vj) ∈ E. The weight of the vertex cover being less than wtest is en-
forced by converting the arithmetic operations involved into Boolean operations
just like in a digital circuit.

Figure 1 illustrates how to make use of a digital circuit to enforce that the
weight of a vertex cover is less than a test weight. In other words, it enforces

the condition
∑|V |

i=1 wiXi − wtest < 0. For simplicity of exposition, assume that
all weights are non-negative integers. Each given weight wi is first converted to
its 2’s complement representation. For example, w1 is converted to ‘0101’ in the
figure. Replacing the ‘1’s in this binary representation by Xi represents the term
wiXi. To represent −wtest on the left side of the condition, we simply use its
2’s complement. For example, −wt = −3 in the figure is represented as ‘1101’.
A hierarchy of adder circuits adds all these terms—two numbers at a time as
shown in Figure 1—and produces a final output that represents the quantity∑|V |

i=1 wiXi − wtest. Since we require it to be negative, we simply enforce that
the final sign-bit s is ‘1’.

4 We can compute much more informed lower and upper bounds as explained later.

Fig. 1. Shows how to use a digital circuit to enforce the weight of a vertex cover to
be less than a given test weight. Assume that there are 3 vertices, v1, v2, and v3, with
associated Boolean variables X1, X2, and X3, respectively. The corresponding weights
are w1 = 5, w2 = 1, and w3 = 3. The test weight is wt = 3. w1 is converted to its binary
representation ‘0101’ and the ‘1’s are replaced by X1 to represent the term w1X1. w2

and w3 are converted in a similar way. For wt, however, the binary representation
‘0011’ is converted to its negative ‘1101’ in 2’s complement representation to represent
−wt (Xt is set to ‘1’). The final output of the adder circuits represents the quantity
w1X1 + w2X2 + w3X3 − wt. The internal variables of the hierarchy of adder circuits
are added to the SAT encoding. The constraints dictated by the gates of the digital
circuit are added as clauses to the SAT encoding. The final sign-bit s is set to ‘1’ in
the SAT encoding to enforce that the result is negative as required.

Once we have a digital circuit, we can convert it into a CNF Boolean formula—
i.e., a SAT instance—with Tseitin transformation. The internal variables of the
hierarchy of adder circuits are added to the SAT encoding. The constraints dic-
tated by the gates of the digital circuit are also added as clauses to the SAT
encoding.5 Each integer is represented using a non-redundant number of bits.
When we add two integers with the longer of the two having k bits, the re-
sult is allocated k + 1 bits. All operations are done consistently with the 2’s
complement representation of integers. This reformulation is similar to [30] in
the context of translating CSPs into SAT, to [11] in the context of translating
pseudo-Boolean constraints into SAT, to [24] in the context of solving disjunctive
temporal reasoning problems efficiently, and to [4, 27] in the context of solving
planning problems.

Several issues need to be addressed in this reformulation of the MWVC prob-
lem. Some of them are: (a) the number of auxiliary variables in the SAT in-
stances; (b) the number of clauses in the SAT instances; and (c) the precision of
the numbers used to specify the weights. However, these issues have already been
addressed in [4, 11, 24, 27] for SAT encodings of other combinatorial problems.

5 We skip a detailed discussion of this transformation since it is similar to the works
of various authors mentioned later.

The arithmetic operations that we encode using the digital circuit are very sim-
ple: addition (‘+’), negation (‘-’), and comparison (‘<’). This makes the circuit
representation compact with only logarithmic depth. If each weight has an L-bit
representation, then there are about |V | numbers with L bits each in the bottom
level, |V |/2 numbers with L+ 1 bits each in the next level, and so on. This leads
to O(L|V |) variables in the SAT encoding. The number of internal gates is thus
of the same order. This makes the SAT encoding small enough to be solvable
by powerful SAT solvers.6 When the weights are not integral, scaling techniques
similar to those in [24] can be used.

Optimizations: Once we have the ability to answer the question of whether
there is a vertex cover with a weight less than a given test weight wtest, we

can employ binary search in the interval [0,
∑|V |

i=1 wi] to converge to the MWVC.
However, this naive strategy is not very effective without the following optimiza-
tions that significantly reduce the number of iterations—i.e., the number of SAT
instances to be solved.

The first optimization, quasi binary search, is based on the following obser-
vation. Suppose, in some iteration, the binary search is in the interval [L,U], the
test weight is wtest = (L+U)/2, and the SAT solver determines that there exists
a vertex cover with a weight less than the given test weight wtest. Then, the SAT
solver is also able to produce a candidate solution with weight w′ < wtest. In
the next iteration, therefore, the interval for the binary search can be reduced to
[L,w′] instead of [L,wtest]. This can reduce the number of iterations significantly
whenever we find a “good” solution, i.e., a small w′.

The second optimization is to make use of an approximation algorithm to
produce tighter lower and upper bounds for use in the very first iteration instead

of the conservative interval [0,
∑|V |

i=1 wi]. Clarkson’s primal-dual factor-2 approx-
imation algorithm can be used to do so [29]. This algorithm is motivated by a
linear programming perspective on the MWVC problem. Using a simple greedy
strategy, it constructs integral primal and integral dual solutions simultaneously
with the cost of the primal solution being at most twice the cost of the dual
solution. The cost of the optimal solution should be in between; and, therefore,
the greedily constructed primal solution serves as a factor-2 approximation. If
the cost of such an approximate solution is S, then we can set [S/2, S] as the
binary search interval in the very first iteration. It is unlikely that we can do
better since finding a 2 − ε approximation for the MVC or MWVC problem is
UG-hard [16].7

The third optimization is to run an MVC solver by ignoring all the weights
before the first iteration. The cost of the MVC solution produced can then be
evaluated to serve as an upper bound for the first iteration of the binary search.
However, this method is not guaranteed to be effective since it is completely
oblivious to the weights. Nonetheless, it could often produce something useful.

6 In fact, this approach is employed by CircuitTSAT, a state-of-the-art solver for
disjunctive temporal reasoning problems [24].

7 UG-hard means “Unique Games-hard”, i.e., hard under the unique games conjecture.

4 Empirical Evaluation

Graph SBMS Gurobi cliquer

Instance Vertices MVC Running Iteration Bounds Initial Running Bounds Running Bounds
Time Bounds Time Time

frb30-15-1 450 420 49.83 8 - [218, 437] 22.80 - 15.29 -
frb30-15-2 450 420 40.84 8 - [219, 438] 11.76 - 30.26 -
frb30-15-3 450 420 36.22 8 - [218, 437] 34.05 - 120.33 -
frb30-15-4 450 420 40.38 8 - [219, 439] 29.10 - 0.99 -
frb30-15-5 450 420 34.84 8 - [219, 438] 10.38 - 0.15 -
frb35-17-1 595 560 65.73 8 - [292, 584] 84.87 - 14.20 -
frb35-17-2 595 560 84.39 8 - [292, 584] >7200 [560, 561] 53.66 -
frb35-17-3 595 560 66.97 8 - [291, 582] >7200 [560, 561] >7200 [-, 582]
frb35-17-4 595 560 55.37 8 - [292, 584] >7200 [560, 561] 5189.27 -
frb35-17-5 595 560 54.70 8 - [290, 581] >7200 [560, 561] 98.84 -
frb40-19-1 760 720 90.76 8 - [371, 743] >7200 [720, 722] >7200 [-, 736]
frb40-19-2 760 720 131.52 9 - [372, 745] >7200 [720, 722] >7200 [-, 733]
frb40-19-3 760 720 127.73 9 - [372, 744] >7200 [720, 721] 273.22 -
frb40-19-4 760 720 243.98 9 - [372, 744] >7200 [720, 722] 1555.14 -
frb40-19-5 760 720 198.27 9 - [372, 745] >7200 [720, 722] 42.77 -
frb45-21-1 945 900 2955.26 9 - [465, 930] >7200 [900, 904] >7200 [-, 917]
frb45-21-2 945 900 235.59 9 - [465, 930] >7200 [900, 903] >7200 [-, 917]
frb45-21-3 945 900 2036.46 9 - [465, 930] >7200 [900, 902] >7200 [-, 913]
frb45-21-4 945 900 884.90 9 - [465, 931] >7200 [900, 902] >7200 [-, 914]
frb45-21-5 945 900 1958.17 9 - [465, 931] >7200 [900, 903] >7200 [-, 922]
frb50-23-1 1150 1100 3208.50 10 - [556, 1133] >7200 [1100, 1104] >7200 [-, 1102]
frb50-23-2 1150 1100 >7200 9 [1100, 1101] [567, 1135] >7200 [1100, 1103] >7200 [-, 1113]
frb50-23-3 1150 1100 111.09 10 - [567, 1135] >7200 [1100, 1105] >7200 [-, 1112]
frb50-23-4 1150 1100 113.10 10 - [567, 1135] >7200 [1100, 1104] 1868.10 -
frb50-23-5 1150 1100 113.68 10 - [568, 1137] >7200 [1100, 1104] >7200 [-, 1129]
frb53-24-1 1272 1219 >7200 8 [1219, 1221] [625, 1250] >7200 [1219, 1225] >7200 [-, 1232]
frb53-24-2 1272 1219 114.87 10 - [625, 1251] >7200 [1219, 1224] >7200 [-, 1239]
frb53-24-3 1272 1219 >7200 9 [1219, 1220] [628, 1256] >7200 [1219, 1224] >7200 [-, 1237]
frb53-24-4 1272 1219 >7200 9 [1219, 1220] [628, 1257] >7200 [1219, 1224] >7200 [-, 1228]
frb53-24-5 1272 1219 120.37 10 - [627, 1255] >7200 [1219, 1226] >7200 [-, 1247]
frb56-25-1 1400 1344 >7200 9 [1344, 1345] [692, 1384] >7200 [1344, 1350] >7200 [-, 1365]
frb56-25-2 1400 1344 >7200 9 [1344, 1345] [691, 1383] >7200 [1344, 1352] >7200 [-, 1371]
frb56-25-3 1400 1344 6717.57 10 - [692, 1384] >7200 [1344, 1348] >7200 [-, 1377]
frb56-25-4 1400 1344 >7200 9 [1344, 1345] [692, 1385] >7200 [1344, 1350] >7200 [-, 1348]
frb56-25-5 1400 1344 120.31 10 - [690, 1381] >7200 [1344, 1350] >7200 [-, 1379]
frb59-26-1 1534 1475 >7200 9 [1475, 1476] [757, 1514] >7200 [1475, 1482] >7200 [-, 1493]
frb59-26-2 1534 1475 >7200 9 [1475, 1476] [757, 1515] >7200 [1475, 1481] >7200 [-, 1513]
frb59-26-3 1534 1475 >7200 9 [1475, 1476] [757, 1514] >7200 [1475, 1482] >7200 [-, 1509]
frb59-26-4 1534 1475 >7200 8 [1475, 1477] [756, 1513] >7200 [1475, 1481] >7200 [-, 1516]
frb59-26-5 1534 1475 131.04 10 - [759, 1519] >7200 [1475, 1481] >7200 [-, 1496]

Table 1. Shows the performances of SBMS, Gurobi and cliquer on unweighted
BHOSLIB benchmark problem instances. The column “Iteration” indicates the number
of iterations needed to produce the optimal solution or reach the running time limit of
2 hours. The column “Initial Bounds” indicates the bounds generated by Clarkson’s
algorithm. The column “Running Time” indicates the running time in seconds. When
the running time exceeds the running time limit, the upper bound in column “Bounds”
indicates the cost of the current candidate solution and the lower bound indicates that
there cannot be a solution of lower cost. If either the lower bound or upper bound is not
specified, it is marked with a ‘-’. When a problem instance is solved within the running
time limit, the cost of the produced solution matches the entry in column “MVC” and
the column “Bounds” is marked with a ‘-’ in such a case.

We now compare the ILP, MAX-SAT, PBO, ASP and SAT-based approaches
on a variety of MWVC problem instances. We also make important observations
about the behaviors of these solvers. For the ILP-based solver, we use Gurobi [13],
a state-of-the-art solver for mathematical programming, and lp solve [1], a pop-
ular open source mixed integer linear programming solver. For the MAX-SAT-
based solver, we use EvaSolver [23], a state-of-the-art MAX-SAT solver. For
the PBO-based solver, we use WBO [22]. For the ASP-based solver, we use

Graph Running Time of SBMS (mins)
Instance Vertices MWVC Q+C+N C+N Q+C Q+N Q C N None

frb30-15-1 450 825 38.33 38.32 37.68 60.00 35.10 37.49 29.99 35.23
frb30-15-2 450 825 59.97 59.98 58.98 75.12 74.87 59.00 75.00 74.80
frb30-15-3 450 790 0.84 0.84 36.43 0.87 36.84 36.32 0.86 36.73
frb30-15-4 450 825 16.92 16.84 14.47 18.79 18.33 14.39 18.80 18.71
frb30-15-5 450 827 28.28 28.34 47.80 27.73 43.13 47.77 27.75 44.35

Table 2. Shows the performance of SBMS on a subset of the weighted BHOSLIB
benchmark problem instances. “Q” refers to enabling quasi binary search. “C” refers
to enabling Clarkson’s algorithm. “N” refers to enabling the use of an initial upper
bound derived from running NuMVC for 30 seconds. “None” refers to disabling all
optimizations. All running times include the time to perform optimizations as well as
the time to perform the actual search. The running times in the “Q+C+N” column
and the “C+N” column are almost identical because the evolution of the bounds for
these benchmark instances is not affected much by quasi binary search.

clingo from Potassco—the Potsdam Answer Set Solving Collection [12]. Because
the MWVC problem is equivalent to the MWIS problem, we can also use a
clique-based solver that searches for the maximum weighted clique in the edge-
complement graph. We therefore additionally use one such state-of-the-art solver
in our experiments. In particular, we use cliquer [25] for this purpose. For the
SAT-based solver, we use SBMS, which makes use of Lingeling [2], a state-of-the-
art complete SAT solver. For SBMS, we also use Clarkson’s primal-dual factor-2
approximation algorithm for the MWVC problem [29] to generate the initial
lower and upper bounds for the quasi binary search. For the BHOSLIB and DI-
MACS benchmark problems described below, SBMS also runs NuMVC [5] for
30 seconds in order to yield a possibly tighter upper bound. Except for Gurobi
and EvaSolver for which we used prebuilt binaries, all solvers were implemented
in C++, were compiled by gcc 4.9.2 with the -O3 option, and were run on a
GNU/Linux workstation with Intel Xeon Processor E3-1240 v3 (8MB Cache,
3.4GHz) and 16GB RAM.

Since the MWVC problem has not received much attention, there do not ex-
ist any benchmark instances for it. However, benchmark instances for the MVC
problem do exist, such as the BHOSLIB and DIMACS suites used in [5]. We
created MWVC versions of these instances by arbitrarily assigning a weight of
i mod 3 + 1 to a vertex with index i to achieve repeatability of the experi-
ments. As argued before, the number of variables in the SAT encoding increases
linearly with the size of the bit representations of the weights and thus only
logarithmically with their values (scaled to be non-negative integers).

Clearly, any good MWVC solver should also perform well on regular MVC
problem instances. Our first experiment, therefore, used the unweighted version
of the BHOSLIB instances. In essence, we solved hard benchmark instances of
the MVC problem using a complete solver. Table 1 shows our performance re-
sults. We solved more than 50% of these benchmark instances quite comfortably.
Even in the cases that were not solved within the running time limit, SBMS re-
turned solutions with the guarantee that they were no more than a cost of 1

Graph Running Times (secs)

Instance Vertices Edges Gurobi lp solve EvaSolver WBO clingo cliquer SBMS

brock200 2 200 10024 32.41 168.44 83.86 >3600 23.28 <0.01 212.34

brock200 4 200 6811 52.64 1078.76 491.10 >3600 558.61 0.08 1438.92

brock400 2 400 20014 >3600 >3600 >3600 >3600 >3600 226.74 >3600

brock400 4 400 20035 >3600 >3600 >3600 >3600 >3600 208.74 >3600

brock800 2 800 111434 >3600 >3600 >3600 >3600 >3600 3220.27 >3600

brock800 4 800 111957 >3600 >3600 >3600 >3600 >3600 2826.08 >3600

C1000.9 1000 49421 >3600 >3600 >3600 >3600 >3600 >3600 >3600

C125.9 125 787 0.72 28.64 1649.65 >3600 >3600 3.37 >3600

C2000.5 2000 999164 >3600 >3600 >3600 >3600 >3600 >3600 >3600

C2000.9 2000 199468 >3600 >3600 >3600 >3600 >3600 >3600 >3600

C250.9 250 3141 2058.10 >3600 >3600 >3600 >3600 >3600 >3600

C4000.5 4000 3997732 >3600 >3600 >3600 >3600 >3600 >3600 >3600

C500.9 500 12418 >3600 >3600 >3600 >3600 >3600 >3600 >3600

DSJC1000.5 1000 249674 >3600 >3600 >3600 >3600 >3600 43.42 >3600

DSJC500.5 500 62126 >3600 >3600 >3600 >3600 >3600 0.46 >3600

gen200 p0.9 44 200 1990 3.38 >3600 >3600 >3600 >3600 1722.84 >3600

gen200 p0.9 55 200 1990 0.10 2921.30 872.60 >3600 >3600 43.05 >3600

gen400 p0.9 55 400 7980 >3600 >3600 >3600 >3600 >3600 >3600 >3600

gen400 p0.9 65 400 7980 >3600 >3600 >3600 >3600 >3600 >3600 >3600

gen400 p0.9 75 400 7980 381.13 >3600 >3600 >3600 >3600 >3600 >3600

hamming10-4 1024 89600 >3600 >3600 >3600 >3600 >3600 >3600 >3600

hamming8-4 256 11776 1.34 >3600 800.69 >3600 >3600 0.97 71.42

keller4 171 5100 0.63 475.42 55.65 >3600 132.62 0.03 69.69

keller5 776 74710 1510.35 >3600 >3600 >3600 >3600 >3600 >3600

keller6 3361 1026582 >3600 >3600 >3600 >3600 >3600 >3600 >3600

MANN a27 378 702 <0.01 0.11 0.12 0.16 >3600 >3600 43.66

MANN a45 1035 1980 0.01 1.30 0.82 1.26 >3600 >3600 242.38

MANN a81 3321 6480 0.03 19.54 10.12 18.85 >3600 >3600 1783.03

p hat1500-1 1500 839327 >3600 >3600 >3600 >3600 >3600 0.98 >3600

p hat1500-2 1500 555290 >3600 >3600 >3600 >3600 >3600 >3600 >3600

p hat1500-3 1500 277006 >3600 >3600 >3600 >3600 >3600 >3600 >3600

p hat300-1 300 33917 56.33 309.62 17.88 >3600 3.01 <0.01 131.43

p hat300-2 300 22922 94.83 >3600 >3600 >3600 1512.84 0.13 >3600

p hat300-3 300 11460 1764.59 >3600 >3600 >3600 >3600 47.11 >3600

p hat700-1 700 183651 >3600 >3600 2887.61 >3600 1548.55 0.04 3532.76

p hat700-2 700 122922 >3600 >3600 >3600 >3600 >3600 1247.51 >3600

p hat700-3 700 61640 >3600 >3600 >3600 >3600 >3600 >3600 >3600

Table 3. Shows the performances of Gurobi, lp solve, EvaSolver, WBO, clingo, cliquer
and SBMS on weighted DIMACS benchmark problem instances. When the running
time exceeds the running time limit of 1 hour, the corresponding entry is marked with
“>3600”.

away from the optimal ones.8 The running times of lp solve, EvaSolver, WBO
and clingo are not listed in Table 1 since none of them could solve any of the
benchmark instances within 2 hours. It is also easy to see that SBMS signif-
icantly outperforms even Gurobi and cliquer both in terms of the number of
problem instances solved as well as the quality of the bounds produced.

As expected, the running times of NuMVC are smaller on these benchmark
instances compared to the running times of SBMS [5]. However, NuMVC also
fails to find an optimal solution on a few of these benchmark instances. In ad-
dition, NuMVC solves only MVC problem instances and, furthermore, is an
incomplete solver that cannot prove the optimality of the produced solution nor
provide optimality bounds. Some other state-of-the-art complete solvers, like
MaxCLQdyn+EFL+SCR [21], were not included in the evaluation of NuMVC
in [5] since their performance was poor.9 SBMS, therefore, is a state-of-the-art
complete solver for MVC instances.

8 frb53-24-1 and frb59-26-4 are the only two exceptions with a gap of 2.
9 See the second paragraph on page 18 of [5] that states “... MaxCLQdyn+EFL+SCR

is not evaluated on BHOSLIB benchmark which is much harder and requires more
effective technologies for exact algorithms ...”.

10-2 10-1 100 101 102 103 104

Running time (secs)
400

500

600

700

800

900

B
o
u
n
d
s

Testing weight

Lower bound

Upper bound

Fig. 2. Shows the evolution of the lower and upper bounds with the running time of
SBMS on the weighted BHOSLIB instance frb30-15-1. The mid-point of the bounds is
used as the testing weight for the SAT instance posed at that time.

Our second experiment used the weighted BHOSLIB instances. None of
lp solve, EvaSolver, WBO, clingo or cliquer could solve any of these instances
in less than 2 hours. Table 2 shows the performance of SBMS—and its variants
with various optimization features enabled or disabled—on the first five weighted
benchmark instances that it could solve.10 For the instances that it could not
solve, SBMS still produced useful bounds. For generality, our third experiment
used a different set of benchmark instances—the weighted DIMACS instances.
Table 3 shows the performances of Gurobi, lp solve, EvaSolver, WBO, clingo,
cliquer and SBMS on these instances. Once again, SBMS produces useful bounds
when it cannot solve a problem instance.

To understand the anytime property of SBMS, we also ran experiments to
observe patterns in its behavior. Figures 2 and 3 show the typical behavior of
SBMS on a fixed benchmark instance. Figure 2 illustrates that the intervals
between the optimality bounds typically decrease very quickly, and the solver
thus finds a good solution fast. SBMS spends most of the time in trying to
improve a good solution to the optimal solution. This “diminishing returns”
property which is so pronounced that it is apparent despite a log scale used in
the figure is very desirable for an anytime algorithm. Figure 3 reinforces this
observation by showing that the SAT instances in the early iterations are much
easier to solve than in later iterations (which have smaller intervals between
optimality bounds). Thus, by the time the SAT instances get hard to solve, the
solver has already found a good solution and is only trying to improve it further.

10 Gurobi was competitive with SBMS on these five instances.

0 500 1000 1500 2000 2500 3000
Running time (secs)

0

1

2

3

4

5

6

7

8

9

It
e
ra

ti
o
n
s

Fig. 3. Shows the iteration number as a function of the running time of SBMS on the
weighted BHOSLIB instance frb30-15-1.

5 Conclusions and Future Work

In this paper, we presented a SAT-based solver for the MWVC problem. We first
argued that, because the MWVC problem is not fixed-parameter tractable, none
of the state-of-the-art methods for the MVC problem can be easily modified to
tackle the MWVC problem. We compared several solvers based on ILP, MAX-
SAT, PBO, ASP and SAT reformulations. Our reformulation of the MWVC
problem as a series of SAT instances yields an anytime algorithm that exhibits
the “diminishing returns” property and quickly converges to a good solution.
In most cases, SBMS significantly outperforms the other methods. SBMS uses
quasi binary search in the inner loop and a primal-dual approximation for the
MWVC to provide a good starting point.

While SBMS appears to provide an alternative to the few competitive solvers
that currently exist for the MWVC problem, we presented it here mostly as a
strawman solver for the purpose of gaining interest among AI researchers to
study this combinatorial problem more closely. Recent results—like in [19,20]—
have demonstrated the importance of the MWVC problem for a wide range of
other combinatorial problems in AI applications. Future work will not only be
directed toward developing a better solver for the MWVC problem but also
toward exploring the full implications of having good solvers available.

6 Acknowledgments

The research at USC was supported by NSF under grant numbers 1409987 and
1319966 and a MURI under grant number N00014-09-1-1031. The views and
conclusions contained in this document are those of the authors and should not

be interpreted as representing the official policies, either expressed or implied,
of the sponsoring organizations, agencies or the U.S. government.

References

1. Berkelaar, M., Eikland, K., Notebaert, P.: lp solve 5.5 open source (mixed integer)
linear programming software. In: http://lpsolve.sourceforge.net/5.5/ (2004)

2. Biere, A.: Lingeling, Plingeling and Treengeling Entering the SAT competition
2013. In: Proceedings of the SAT Competition 2013. Department of Computer
Science Series of Publications B, vol. B-2013-1, pp. 51–52 (2013)

3. Boutilier, C., Brafman, R.I., Domshlak, C., Hoos, H.H., Poole, D.: CP-nets: A tool
for representing and reasoning with conditional ceteris paribus preference state-
ments. Journal of Artifical Intelligence Research 21, 135–191 (2004)

4. Büttner, M., Rintanen, J.: Satisfiability planning with constraints on the num-
ber of actions. In: the Proceedings of the International Conference on Automated
Planning and Scheduling. pp. 292–299 (2005)

5. Cai, S., Su, K., Luo, C., Sattar, A.: NuMVC: An efficient local search algorithm for
minimum vertex cover. Journal of Artificial Intelligence Research 46(1), 687–716
(2013)

6. Cai, S., Su, K., Sattar, A.: Local search with edge weighting and configuration
checking heuristics for minimum vertex cover. Artificial Intelligence 175(9-10),
1672–1696 (2011)

7. Chen, J., Kanj, I.A., Xia, G.: Improved parameterized upper bounds for vertex
cover. In: International Symposium on Mathematical Foundations of Computer
Science, pp. 238–249. Springer (2006)

8. Cormen, T.H., Leiserson, C.E., Rivest, R.L., Stein, C.: Introduction to Algorithms
(3rd Edition). MIT Press (2009)

9. Dinur, I., Safra, S.: On the hardness of approximating minimum vertex cover.
Annals of Mathematics 162(1), 439–485 (2005)

10. Do, M.B., Benton, J., Briel, M.V.D., Kambhampati, S.: Planning with goal utility
dependencies. In: Proceedings of the International Joint Conference on Artificial
Intelligence. pp. 1872–1878 (2007)

11. Eén, N., Sörensson, N.: Translating pseudo-boolean constraints into SAT. Journal
on Satisfiability, Boolean Modeling and Computation 2, 1–26 (2006)

12. Gebser, M., Kaufmann, B., Kaminski, R., Ostrowski, M., Schaub, T., Schneider,
M.: Potassco: The Potsdam answer set solving collection. AI Communications
24(2), 107–124 (2011)

13. Gurobi Optimization, I.: Gurobi optimizer reference manual (2015), http://www.
gurobi.com

14. Johnson, D.J., Trick, M.A. (eds.): Cliques, Coloring, and Satisfiability: Second
DIMACS Implementation Challenge. American Mathematical Society (1996)

15. Karakostas, G.: A better approximation ratio for the vertex cover problem. ACM
Transactions on Algorithms 5(4), 1–8 (2009)

16. Khot, S., Regev, O.: Vertex cover might be hard to approximate to within 2-ε.
Journal of Computer and System Sciences 74(3), 335–349 (2008)

17. Kolmogorov, V., Zabih, R.: What energy functions can be minimized via graph
cuts? IEEE Transactions on Pattern Analysis and Machine Intelligence 26(2), 147–
159 (2004)

18. Kolmogorov, V.: Primal-dual algorithm for convex Markov random fields. Tech.
Rep. MSR-TR-2005-117, Microsoft Research (2005)

19. Kumar, T.K.S.: A framework for hybrid tractability results in boolean weighted
constraint satisfaction problems. In: the Proceedings of the International Confer-
ence on Principles and Practice of Constraint Programming. pp. 282–297 (2008)

20. Kumar, T.K.S.: Lifting techniques for weighted constraint satisfaction problems.
In: Proceedings of the International Symposium on Artificial Intelligence and
Mathematics (2008)

21. Li, C.M., Quan, Z.: Combining graph structure exploitation and propositional rea-
soning for the maximum clique problem. In: Proceedings of the IEEE International
Conference on Tools with Artificial Intelligence. pp. 344–351 (2010)

22. Manquinho, V., Marques-Silva, J., Planes, J.: Algorithms for weighted boolean
optimization. In: Proceedings of the International Conference on Theory and Ap-
plications of Satisfiability Testing. pp. 495–508 (2009)

23. Narodytska, N., Bacchus, F.: Maximum satisfiability using core-guided MaxSAT
resolution. In: Proceedings of the AAAI Conference on Artificial Intelligence. pp.
2717–2723 (2014)

24. Nelson, B., Kumar, T.K.S.: CircuitTSAT: A solver for large instances of the dis-
junctive temporal problem. In: Proceedings of the International Conference on
Automated Planning and Scheduling. pp. 232–239 (2008)

25. Niskanen, S., Österg̊ard, P.R.J.: Cliquer user’s guide, version 1.0. Tech. Rep. T48,
Communications Laboratory, Helsinki University of Technology, Espoo, Finland
(2003)

26. Richter, S., Helmert, M., Gretton, C.: A stochastic local search approach to vertex
cover. In: Proceedings of the Annual German Conference on Artificial Intelligence
(Künstliche Intelligenz). pp. 412–426 (2007)

27. Rosa, E.D., Giunchiglia, E., Maratea, M.: Solving satisfiability problems with pref-
erences. Constraints 15(4), 485–515 (2010)

28. Tomita, E., Kameda, T.: An efficient branch-and-bound algorithm for finding a
maximum clique with computational experiments. Journal of Global Optimization
37(1), 95–111 (2007)

29. Vazirani, V.V.: Approximation algorithms. Springer (2003)
30. Walsh, T.: SAT v CSP. In: Proceedings of the International Conference on Princi-

ples and Practice of Constraint Programming. pp. 441–456 (2000)

