
A FastMap-Based Algorithm for Block
Modeling?

Ang Li1, Peter Stuckey2, Sven Koenig1, and T. K. Satish Kumar1

1 University of Southern California, Los Angeles, CA 90007, USA
{ali355,skoenig}@usc.edu, tkskwork@gmail.com

2 Monash University, Wellington Rd, Clayton VIC 3800, Australia
peter.stuckey@monash.edu

Abstract. Block modeling algorithms are used to discover important
latent structures in graphs. They are the graph equivalent of clustering
algorithms. However, existing block modeling algorithms work directly
on the given graphs, making them computationally expensive and less
effective on large complex graphs. In this paper, we propose a FastMap-
based algorithm for block modeling on single-view undirected graphs.
FastMap embeds a given undirected graph into a Euclidean space in near-
linear time such that the pairwise Euclidean distances between vertices
approximate a desired graph-based distance function between them. In
the first phase, our FastMap-based block modeling (FMBM) algorithm
uses FastMap with a probabilistically-amplified shortest-path distance
function between vertices. In the second phase, it uses Gaussian Mix-
ture Models (GMMs) for identifying clusters (blocks) in the resulting
Euclidean space. FMBM outperforms other state-of-the-art methods on
many benchmark and synthetic instances, both in efficiency and solution
quality. It also enables a perspicuous visualization of clusters (blocks) in
the graphs, not provided by other methods.

Keywords: Community Detection and Block Modeling · Graph Em-
beddings · FastMap.

1 Introduction

Finding inherent groups in graphs, i.e., the “graph” clustering problem, has
important applications in many real-world domains, such as identifying com-
munities in social networks [8], analyzing the diffusion of ideas in them [13],
identifying functional modules in protein-protein interactions [11], and under-
standing the modular design of brain networks [2]. In general, identifying the

? This work at the University of Southern California is supported by DARPA under
grant number HR001120C0157 and by NSF under grant numbers 1409987, 1724392,
1817189, 1837779, 1935712, and 2112533. The views, opinions, and/or findings ex-
pressed are those of the author(s) and should not be interpreted as representing the
official views or policies of the sponsoring organizations, agencies, or the U.S. Govern-
ment. This research was partially supported by the OPTIMA ARC training centre
IC200100009.

2 A. Li et al.

(a) a core-periphery graph in the air-
port domain

(b) a FastMap embedding of the
graph on the left

Fig. 1: The left side shows a core-periphery graph in the airport domain with edges
representing flight connections, red vertices representing “hub” airports at the core,
and blue vertices representing “local” airports at the periphery. The right side shows a
FastMap embedding of the graph in Euclidean space, in which the red and blue vertices
correctly appear in the core and periphery, respectively.

groups involves mapping each vertex in the graph to a group (cluster), where
vertices in the same group share important properties in the underlying graph.

The conditions under which two vertices are deemed to be similar and there-
fore belonging to the same group are popularly studied in community detection
and block modeling [1]. In community detection, a group (community) implicitly
requires its vertices to be more connected to each other than to vertices of other
groups. Although this is justified in many real-world domains, such as social
networks, it is not always justified in general.

Block modeling uses more general criteria for identifying groups (blocks)
where community detection fails. For example, block modeling can be used to
correctly identify groups in core-periphery graphs characterized by a core of ver-
tices tightly connected to each other and a peripheral set of vertices loosely con-
nected to each other but well connected to the core.3 Core-periphery graphs are
common in many real-world domains, such as financial networks and flight net-
works [1,19]. Figure 1a shows a core-periphery graph in an air flight domain [5].

Existing block modeling algorithms work directly on the given graphs and are
inefficient. They typically use matrix operations that incur cubic time complex-
ities even within their inner loops. For example, FactorBlock [3], a state-of-the-
art block modeling algorithm, uses matrix multiplications in its inner loop and
an expectation-maximization-style outer loop. Due to their inefficiency, existing
block modeling algorithms are not scalable and result in poor solution qualities
on large complex graphs.

In this paper, we propose a FastMap-based algorithm for block modeling on
single-view4 undirected graphs. FastMap embeds a given undirected graph into

3 The conditions used in community detection prevent the proper identification of
peripheral groups.

4 In a single-view graph, there is at most one edge between any two vertices.

A FastMap-Based Algorithm for Block Modeling 3

a Euclidean space in near-linear time such that the pairwise Euclidean distances
between vertices approximate a desired graph-based distance function between
them. In general, graph embeddings have been used in many different contexts,
such as for shortest-path computations [4], multi-agent meeting problems [12],
and social network analysis [18]. They are useful because they facilitate geometric
interpretations and algebraic manipulations in vector spaces.

FastMap [4,12] is a recently developed graph embedding algorithm that runs
in near-linear time5. While it has thus far been used to create Euclidean em-
beddings that approximate pairwise shortest-path distances between vertices, it
can also be extended to creating Euclidean embeddings that approximate more
general pairwise graph-based distances between vertices. In particular, for the
purpose of block modeling in this paper, we propose a novel distance function
that probabilistically amplifies the shortest-path distances between vertices.

Our FastMap-based block modeling algorithm (FMBM) works in two phases.
In the first phase, FMBM uses FastMap to efficiently embed the vertices of
a given graph in a Euclidean space, preserving the probabilistically-amplified
shortest-path distances between them. In the second phase, FMBM identifies
clusters (blocks) in the resulting Euclidean space using standard methods from
unsupervised learning. Therefore, the first phase of FMBM efficiently reformu-
lates the block modeling problem from a graphical space to a Euclidean space,
as illustrated in Figure 1b; and the second phase of FMBM leverages any tech-
nique that is already known or can be developed for clustering in Euclidean
space. In our current implementation of FMBM, we use Gaussian Mixture Mod-
els (GMMs) for identifying clusters in the Euclidean space.

We empirically show that, in addition to the theoretical advantages of FMBM,
it outperforms other state-of-the-art methods on many benchmark and synthetic
test cases. We report on the superior performance of FMBM both in terms of
efficiency and solution quality. We also show that it enables a perspicuous visu-
alization of clusters in the graphs, beyond the capabilities of other methods.

2 Preliminaries and Background

In this section, we review some preliminaries of block modeling and provide a
background description of FastMap.

2.1 Block Modeling

Let G = (V,E) be an undirected graph with vertices V = {v1, v2 . . . vn} and
edges E = {e1, e2 . . . em} ⊆ V × V . Let A ∈ {0, 1}n×n be the adjacency matrix
representation of G, where Aij = 1 iff (vi, vj) ∈ E.

A block model decomposes G into a set of k vertex partitions representing
the blocks (groups), for a given value of k. The partitions are represented by
the membership matrix C ∈ {0, 1}n×k, where Cij = 0 and Cij = 1 represent ver-
tex vi being absent from and being present in partition j, respectively. Therefore,

5 i.e., linear time after ignoring logarithmic factors

4 A. Li et al.

𝑂!𝑂" 𝑑"!𝑥#

𝑑"# 𝑑#!

𝑂#

(a) the “cosine law” projection in a
triangle

𝐷𝑛𝑒𝑤(·,·)

𝑂!

𝑂"

𝑂#

𝑂$

𝑥" − 𝑥!

𝑥"

𝑥!

𝑂"%

𝑂!%

(b) projection onto a hyperplane
that is perpendicular to OaOb

Fig. 2: The figure, borrowed from [4], illustrates how coordinates are computed and
recursion is carried out in FastMap.

∑k
j=1 Cij = 1 for all 1 ≤ i ≤ n. An image matrix is a matrix M ∈ [0, 1]k×k,

where Mij represents the likelihood of an edge between a vertex in partition i
and a vertex in partition j. The block model decomposition of G, as discussed
in [3], tries to approximate A by CMC> with the best choice for C and M . In
other words, the objective is

min
C,M

‖A− CMC>‖2F , (1)

where ‖ · ‖F is the Frobenius norm. An improved objective function is also
considered in [3] to account for the imbalance of edges to non-edges6 in A, since
real-world graphs are typically sparse with significantly more non-edges than
edges. The revised objective is

min
C,M

‖(A− CMC>) ◦ (A−R)‖2F , (2)

where R ∈ [0, 1]n×n, Rij = m
n2 , and ◦ represents element-wise multiplication.

The above formalization can be generalized to directed graphs and multi-
view graphs [19]. It can also be generalized to soft partitioning, where each

vertex partially belongs to each partition, i.e., C ∈ [0, 1]n×k with
∑k

j=1 Cij = 1
for all 1 ≤ i ≤ n.

2.2 FastMap

FastMap [6] was introduced in the Data Mining community for automatically
generating Euclidean embeddings of abstract objects. For many complex objects
(such as long DNA strings), multi-media datasets (like voice excerpts or images),

6 i.e., a pair of vertices not connected by an edge

A FastMap-Based Algorithm for Block Modeling 5

or medical datasets (like ECGs or MRIs), there is no geometric space in which
they can be naturally visualized. However, there is often a well-defined distance
function between every pair of objects in the problem domain. For example,
the edit distance between two DNA strings is well-defined although an individual
DNA string cannot be conceptualized in geometric space.

FastMap embeds a collection of abstract objects in an artificially created Eu-
clidean space to enable geometric interpretations, algebraic manipulations, and
downstream machine learning algorithms. It gets as input a collection of abstract
objects O, where D(Oi, Oj) represents the domain-specific distance between ob-
jects Oi, Oj ∈ O. A Euclidean embedding assigns a K-dimensional point ~pi ∈ RK

to each object Oi. For ~pi = ([~pi]1, [~pi]2 . . . [~pi]K) and ~pj = ([~pj]1, [~pj]2 . . . [~pj]K),

we define the Euclidean distance χij =
√∑K

r=1([~pj]r − [~pi]r)2. A good Euclidean

embedding is one in which χij between any two points ~pi and ~pj closely approx-
imates D(Oi, Oj).

FastMap creates a K-dimensional Euclidean embedding of the abstract ob-
jects in O for a user-specified value of K. In the very first iteration, FastMap
heuristically identifies the farthest pair of objects Oa and Ob in linear time. Once
Oa and Ob are determined, every other object Oi defines a triangle with sides
of lengths dai = D(Oa, Oi), dab = D(Oa, Ob), and dib = D(Oi, Ob), as shown in
Figure 2a. The sides of the triangle define its entire geometry, and the projection
of Oi onto the line OaOb is given by

xi = (d2ai + d2ab − d2ib)/(2dab). (3)

FastMap sets the first coordinate of ~pi, the embedding of Oi, to xi. In the
subsequent K − 1 iterations, the same procedure is followed for computing the
remaining K − 1 coordinates of each object. However, the distance function is
adapted for different iterations. For example, for the first iteration, the coordi-
nates of Oa and Ob are 0 and dab, respectively. Because these coordinates fully
explain the true distance between these two objects, from the second iteration
onward, the rest of ~pa and ~pb’s coordinates should be identical. Intuitively, this
means that the second iteration should mimic the first one on a hyperplane
that is perpendicular to the line OaOb, as shown in Figure 2b. Although the
hyperplane is never constructed explicitly, its conceptualization implies that the
distances for the second iteration should be changed for all i and j so that:

Dnew(O′i, O
′
j)

2 = D(Oi, Oj)
2 − (xi − xj)2. (4)

Here, O′i and O′j are the projections of Oi and Oj , respectively, onto this hyper-
plane, and Dnew(·, ·) is the new distance function.

FastMap can also be used to embed the vertices of a graph in a Euclidean
space to preserve the pairwise shortest-path distances between them. The idea is
to view the vertices of a given graph G = (V,E) as the objects to be embedded.
As such, the Data Mining FastMap algorithm cannot be directly used for gener-
ating an embedding in near-linear time. This is so because it assumes that the
distance dij between any two objects Oi and Oj can be computed in constant

6 A. Li et al.

time, independent of the number of objects in the problem domain. However,
computing the shortest-path distance between two vertices depends on the size
of the graph.

The near-linear time complexity of FastMap can be retained as follows: In
each iteration, after we heuristically identify the farthest pair of vertices Oa

and Ob, the distances dai and dib need to be computed for all other vertices Oi.
Computing dai and dib for any single vertex Oi can no longer be done in constant
time but requires O(|E| + |V | log |V |) time instead [7]. However, since we need
to compute these distances for all vertices, computing two shortest-path trees
rooted at each of the vertices Oa and Ob yields all necessary distances in one
shot. The complexity of doing so is also O(|E|+ |V | log |V |), which is only linear
in the size of the graph7. The amortized complexity for computing dai and dib
for vertex Oi is therefore near-constant time.

The foregoing observations are used in [12] to build a graph-based version of
FastMap that embeds the vertices of a given undirected graph in a Euclidean
space in near-linear time. The Euclidean distances approximate the pairwise
shortest-path distances between vertices. A slight modification of this FastMap
algorithm, presented in [4], can also be used to preserve consistency and admis-
sibility of the Euclidean distance approximation, which is important when using
it as a heuristic in A* search for shortest-path computations. In both [4] and [12],
K is user-specified, but a threshold parameter ε is introduced to terminate with
a smaller value of K once diminishing returns on the accuracy of approximating
pairwise shortest-path distances are detected.

3 FastMap-Based Block Modeling Algorithm (FMBM)

In this section, we describe FMBM, our novel algorithm for block modeling based
on FastMap [12]. As mentioned before, FMBM works in two phases. In the first
phase, FMBM uses FastMap to efficiently embed vertices in a K-dimensional Eu-
clidean space, preserving the probabilistically-amplified shortest-path distances
between them. In the second phase, FMBM identifies the required blocks in the
resulting Euclidean space using GMM clustering.

To facilitate the description of FMBM, we first examine what happens when
FastMap is used naively in the first phase, i.e., when it is used to embed the
vertices of a given undirected graph in a K-dimensional Euclidean space for
preserving the pairwise shortest-path distances. This naive attempt fails even
in relatively simple cases. For example, Figures 3a-3d show that it fails on a
bipartite graph and a core-periphery graph. This is so because preserving the
pairwise shortest-path distances in Euclidean space does not necessarily help
GMM clustering to identify the two blocks (partitions). In fact, in a bipartite
graph, the closest neighbors of a vertex are in the other partition.

7 unless |E| = O(|V |), in which case the complexity is near-linear in the size of the
input because of the log |V | factor

A FastMap-Based Algorithm for Block Modeling 7

(a) (b) (c)

(d) (e) (f)

Fig. 3: The figure shows two simple graphs that guide the design of a proper FastMap
distance function for block modeling. (a) shows a fully-connected bipartite graph with
the red and blue vertices indicating the two partitions. (b) shows a core-periphery graph
with the red vertices indicating the core and the blue vertices indicating the periphery.
All pairs of red vertices are connected by edges (not all shown to avoid clutter). (c) and
(d) show the FastMap Euclidean embeddings of the graphs in (a) and (b), respectively,
using the shortest-path distance function. This naive FastMap distance function fails
for block modeling. Red and blue points correspond to red and blue vertices of the
graphs, respectively. Many vertices are mapped to the same point. (e) and (f) show the
FastMap Euclidean embeddings of the graphs in (a) and (b), respectively, when using
the probabilistically-amplified shortest-path distance function. This FastMap distance
function is appropriate for block modeling.

3.1 Probabilistically-Amplified Shortest-Path Distances

From the foregoing discussion, it is clear that the shortest-path distance between
two vertices vi and vj is not a viable distance function for block modeling.
Therefore, in this subsection, we create a new distance functionD(vi, vj) for pairs
of vertices based on the following intuitive guidelines: (a) the smaller the shortest-
path distance between vi and vj , the smaller the distance D(vi, vj) should be;
(b) the more paths exist between vi and vj , the smaller the distance D(vi, vj)
should be; and (c) the complement graph8 Ḡ of the given graphG should yield the
same distance function as G: The distance function should be independent of the
arbitrary choice of representing a relationship between two vertices as either an

8 The complement graph Ḡ has the same vertices as the original graphG but represents
every edge in G as a non-edge and every non-edge in G as an edge.

8 A. Li et al.

edge or a non-edge. Intuitively, these guidelines capture an effective “resistance”
between vertices and facilitate the subsequent embedding to represent relative
“potentials” of vertices in Euclidean space. The effectiveness of these guidelines
is validated through test cases in this section and comprehensive experiments in
the next section.

We define a new distance functionDP (vi, vj), referred to as the probabilistically-
amplified shortest-path distance (PASPD) between vi and vj , as:∑

G∈Gset

dG(vi, vj). (5)

Here, dG(vi, vj) represents the shortest-path distance between vi and vj in an
undirected graph G. Gset represents a collection of undirected graphs derived
from the given graph G or its complement Ḡ. In particular, each graph in Gset

is an edge-induced subgraph of either G or Ḡ.9 The edge-induced subgraphs are
created by probabilistically dropping edges from G or Ḡ.

Intuitively, the use of shortest-path distances on multiple graphs that are
probabilistically derived from the same input graph G accounts for DP (·, ·).
Indeed, the smaller dG(vi, vj), the smaller DP (vi, vj) also is. Similarly, the more
paths between vi and vj in G, the more likely it is for such paths to survive in its
edge-induced subgraphs, and the smaller DP (vi, vj) consequently is. Moreover,
since the subgraphs in Gset are derived from both G and Ḡ, DP (·, ·) satisfies all
these intuitive guidelines mentioned above. From an efficiency perspective, the
use of multiple graphs does not create much overhead if the number of graphs
does not depend on the size of G. However, Ḡ can have significantly more edges
than G if G is sparse. In such cases, if G has n vertices and m <

(
n
2

)
/2 edges,

Ḡ itself is probabilistically derived from G by randomly retaining only m out
of the

(
n
2

)
− m edges that it would otherwise have. This keeps the size of Ḡ

upper-bounded by the size of the input.
Although more details on FMBM are presented in the next subsection, the

benefits of using a probabilistically-amplified distance function are visually ap-
parent in Figures 3e and 3f. In both cases, the red and blue vertices are mapped
to linearly-separable red and blue points, respectively, in Euclidean space. Its
benefits can also be seen in Figure 1b, where the core red vertices are mapped to
a core set of red points and the peripheral blue vertices are mapped to a periph-
eral set of blue points, respectively, in Euclidean space. In this case, although
the red and blue points are not linearly separable, GMM clustering [15] in the
second phase of FMBM is capable of separating them using two overlapping but
different Gaussian distributions.

3.2 Main Algorithm

Algorithm 1 shows the pseudocode for computing the PASPD functionDP (·, ·)
parameterized by L and F . Like the shortest-path distance function, it, too, can

9 An edge-induced subgraph of G has the same vertices as G but a subset of its edges.

A FastMap-Based Algorithm for Block Modeling 9

Algorithm 1 SS-PASPD: Single-Source Probabilistically-Amplified Shortest-Path
Distance Function
Input: G = (V,E) and vs ∈ V
Parameters: L and F
Output: dsi for each vi ∈ V
1: Let Ḡ = (V, Ē) be the complement graph of G.
2: Gset ← {} and Tset ← {}.
3: for l = 1, 2 . . . L do
4: G← G and Ḡ← Ḡ.
5: if |Ē| > |E| then
6: Drop |Ē| − |E| randomly chosen edges from Ḡ.
7: end if
8: Gset ← Gset ∪ {G} and f ← |E|/F .
9: while G has edges do

10: Drop f randomly chosen edges from G to obtain Ĝ.
11: Gset ← Gset ∪ {Ĝ}.
12: G← Ĝ.
13: end while
14: Repeat lines 8-13 for Ḡ.
15: end for
16: for Gi ∈ Gset do
17: Ti ← SS-ShortestPathDistance(Gi, vs).
18: Tset ← Tset ∪ {Ti}.
19: end for
20: for each vj ∈ V do
21: dsj ←

∑
Ti∈Tset

Ti(vj).
22: end for
23: return dsi for each vi ∈ V .

be computed efficiently (in one shot) for all pairs (vs, vi), for a specified source
vs and all vi ∈ V . On Lines 3-15, the algorithm populates Gset with L lineages
of F nested edge-induced subgraphs of G and Ḡ. On Lines 5-7, the algorithm
constructs the complement graph Ḡ but probabilistically retains at most |E| of
its edges. On Lines 16-23, it uses the single-source shortest-path distance func-
tion to compute and return the sum of the shortest-path distances from vs to
vi in all G ∈ Gset, for all vi ∈ V . If vs and vi are disconnected in any graph
G ∈ Gset, dG(vs, vi) is technically equal to +∞. However, for practical reasons
in such cases, dG(vs, vi) is set to twice the maximum shortest-path distance from
vs to any other vertex connected to it in G. Ti on Line 17 refers to the array
of shortest-path distances from vs in Gi. Ti(vj) on Line 21 is the array element
that corresponds to vertex vj .

Algorithm 2 shows the pseudocode for FMBM. On Lines 3-25, it essentially
implements FastMap as described in [12] but calls the SS-PASPD distance func-
tion in Algorithm 1 instead of the regular single-source shortest-path distance
function. As in FastMap [12], K represents the user-specified upper bound on
the dimensionality of the Euclidean embedding, ε represents the user-specified

10 A. Li et al.

Algorithm 2 FMBM: FastMap-Based Block Modeling

Input: G = (V,E) and k
Parameters: L, F , T , K, Q, and ε
Output: ci for each vi ∈ V
1: MinObj ← +∞ and BestC ← ∅.
2: for t = 1, 2 . . . T do
3: for r = 1, 2 . . .K do
4: Choose va ∈ V randomly and let vb ← va.
5: for q = 1, 2 . . . Q do
6: {dai : vi ∈ V } ← SS-PASPD(G, va).
7: vc ← argmaxvi

{d2ai −
∑r−1

j=1([~pa]j − [~pi]j)
2}.

8: if vc == vb then
9: Break.

10: else
11: vb ← va and va ← vc.
12: end if
13: end for
14: {dai : vi ∈ V } ← SS-PASPD(G, va).
15: {dib : vi ∈ V } ← SS-PASPD(G, vb).
16: d′ab ← d2ab −

∑r−1
j=1([~pa]j − [~pb]j)

2.

17: if d′ab < ε then
18: Break.
19: end if
20: for each vi ∈ V do
21: d′ai ← d2ai −

∑r−1
j=1([~pa]j − [~pi]j)

2.

22: d′ib ← d2ib −
∑r−1

j=1([~pi]j − [~pb]j)
2.

23: [~pi]r ← (d′ai + d′ab − d′ib)/(2
√
d′ab).

24: end for
25: end for
26: P ← [~p1, ~p2 . . . ~p|V |].
27: C ← GMM(P , k).
28: Obj ← GetObjectiveValue(G, C).
29: if Obj ≤MinObj then
30: MinObj ← Obj.
31: BestC ← C.
32: end if
33: end for
34: return ci for each vi ∈ V according to BestC.

threshold to recognize an accurate embedding, and Q represents a small constant
number of pivot changes used to heuristically identify the farthest pair of ver-
tices. L and F are simply passed to Algorithm 1 in the function call SS-PASPD.
Because Algorithm 2 employs randomization, it qualifies as a Monte-Carlo algo-
rithm. It implements an outer loop to boost the performance of FMBM using
T independent trials. On Lines 26-32, each trial invokes the GMM clustering

A FastMap-Based Algorithm for Block Modeling 11

algorithm and evaluates the results on the objective function in Equation 2,10

keeping record of the best value. The results of the best trial, i.e., the block
assignment ci for each vi ∈ V , are returned on Line 34.11

A formal time complexity analysis of FMBM is evasive since Line 27 of Al-
gorithm 2 calls the GMM clustering procedure, which has no defined time com-
plexity. Therefore, we only claim to be able to reformulate the block modeling
problem on graphs to its Euclidean version in O(LFK(|E| + |V | log |V |)) time
in each of the T iterations. Here, the factor LF comes from the cardinality of
Gset in Algorithm 1, and the factor K(|E|+ |V | log |V |) comes from the complex-
ity of FastMap, that uses SS-PASPD on Lines 3-25 of Algorithm 2. The time
complexity of GetObjectiveValue on Line 28 is technically O(|V |2k+ |V |k2),
where k is the user-specified number of blocks, also passed to the GMM clus-
tering algorithm. This time complexity comes from the matrix multiplication
CMC> in Equation 2. The factor |V |2 in this matrix multiplication, and more
generally in Equation 2, can be reduced to O(|E|) by evaluating |E| entries

corresponding to edges and min(|E|,
(|V |

2

)
− |E|) randomly chosen entries corre-

sponding to non-edges in the matrix expression (A − CMC>) ◦ (A − R). The
matrix multiplication CM takes O(|V |k2) time and results in a |V | × k matrix.

|E|+min(|E|,
(|V |

2

)
−|E|) entries in the multiplication of this matrix with C> can

be computed in O(|E|k) time. Overall, therefore, the reformulation to Euclidean
space can be done in near-linear time, i.e., linear in |V | and |E|, after ignoring
logarithmic factors.

4 Experiments

In this section, we present empirical results on the comparative performances of
FMBM and three other state-of-the-art solvers for block modeling: Graph-Tool,
DANMF, and CPLNS. We also compared against two other solvers for block
modeling: FactorBlock [3] and ASBlock [19]. However, they are not competitive
with the other solvers; and we exclude them from Tables 1, 2, 3, 4, and 5 to
save column space. Graph-Tool [17] uses an agglomerative multi-level Markov
Chain Monte Carlo algorithm and has been largely ignored in the computer
science literature on block modeling; DANMF [20] uses deep autoencoders; and
CPLNS [14] uses constraint programming with large neighborhood search.

We used the following hyperparameter values for FMBM:12 L = 4, F = 10,
T = 10, K = 4, Q = 10, and ε = 10−4. The value of k, i.e., the number of blocks,

10 M can be computed from A and C in O(|E|+k2) time while evaluating the objective
function in Equation 2.

11 The domain of each ci is {1, 2 . . . k}. Block Bh refers to the collection of all vertices
vi ∈ V such that ci = h.

12 These values are only important as ballpark estimates. We observed that the perfor-
mance of FMBM often stays stable within broad ranges of hyperparameter values,
imparting robustness to FMBM. Moreover, only a few different hyperparameter set-
tings had to be examined to determine the best one.

12 A. Li et al.

Test Case Size (|V |, |E|) FMBM Graph-Tool DANMF CPLNS
Objective NMI Time Objective NMI Time Objective NMI Time Objective NMI Time

adjnoun (112, 425) 616.86 0.0025 6.11 612.98 0.2978 0.04 636.75 0.0083 1.62 591.76 0.0154 1.51
baboons (14, 23) 11.97 0.0158 0.54 11.49 0.2244 0.00 15.49 0.1341 0.97 12.81 0.0172 0.87
football (115, 613) 665.97 0.5608 9.22 343.32 0.9150 0.03 863.91 0.2574 1.55 558.94 0.6991 83.33
karate (34, 78) 74.66 0.6127 1.47 64.67 0.2512 0.00 81.94 0.1672 0.77 75.43 0.2228 1.06
polblogs (1,490, 16,715) 98,788.53 0.0098 239.33 99,014.21 0.4668 2.14 101,195.89 0.0465 404.02 95,859.73 0.0543 506.29
polbooks (105, 441) 522.33 0.5329 6.20 496.02 0.5462 0.02 590.20 0.3177 1.98 531.48 0.2073 2.09

Table 1: Real-World Single-View Undirected Graphs.

Test Case Size (|V |, |E|) FMBM Graph-Tool DANMF CPLNS
Objective NMI Time Objective NMI Time Objective NMI Time Objective NMI Time

adjnoun (112, 5,791) 611.04 0.0048 25.34 636.34 0.0168 0.41 641.40 0.0000 8.34 591.54 0.0169 1.85
baboons (14, 68) 12.64 0.0547 0.62 12.86 0.0416 0.01 15.46 0.0500 1.23 13.35 0.0316 0.86
football (115, 5,944) 595.52 0.5899 27.53 344.38 0.9111 0.17 815.71 0.2229 9.56 525.54 0.7040 82.11
karate (34, 483) 72.73 0.7625 2.46 77.31 0.2065 0.02 84.23 0.0914 1.78 75.00 0.2439 1.04
polblogs (1,490, 1,094,951) 26,896.52 0.0153 3155.33 26,048.04 0.0454 49.90 - - > 1 hour 25,871.42 0.0541 470.48
polbooks (105, 5,019) 509.88 0.5409 21.55 606.96 0.0867 0.13 631.77 0.0141 8.09 531.65 0.2056 2.15

Table 2: Complement Graphs of the Graphs in Table 1.

Test Case Size (|E|) FMBM Graph-Tool DANMF CPLNS
Objective NMI Time Objective NMI Time Objective NMI Time Objective NMI Time

V0400b04 6,722 9,355.91 0.1622 83.22 8,385.61 0.6565 1.49 9,465.48 0.0111 10.88 9,400.46 0.0534 39.74
V0800b04 14,723 24,201.35 0.1775 199.14 22,848.79 0.6599 3.99 24,387.24 0.0019 62.50 24,303.43 0.0394 195.08
V1600b04 25,103 45,849.52 0.2357 391.92 44,598.02 0.9667 7.04 46,379.74 0.0043 753.62 46,292.59 0.0206 1018.54
V3200b04 70,973 134,217.82 0.0348 1,376.41 131,751.34 0.6654 108.08 - - > 1 hour - - > 1 hour
V0400b10 3,246 5,461.99 0.1217 40.9 4,728.69 0.8542 0.63 5,489.8 0.0509 7.25 5,364.07 0.1289 101.01
V0800b10 7,499 13,623.69 0.0425 108.69 12,612.44 0.9596 2.01 13,636.29 0.0156 47.49 13,485.93 0.0734 423.03
V1600b10 15,118 28,782.35 0.0691 272.65 27,828.70 0.8556 4.82 28,829.58 0.0117 537.27 28,682.31 0.0384 2019.76
V3200b10 36,170 70,292.36 0.0369 782.44 68,653.51 0.9173 17.62 70,315.35 0.0074 3,272.65 - - > 1 hour
V0400b20 2,297 4,048.03 0.1639 29.66 3,632.92 0.6256 0.54 4,064.77 0.1859 8.03 - - > 1 hour
V0800b20 5,049 9,451.30 0.0848 72.92 8,960.16 0.5857 1.90 9,460.80 0.0828 62.32 - - > 1 hour
V1600b20 11,575 22,305.01 0.0457 251.06 21,591.83 0.6718 3.91 22,315.63 0.0445 444.49 - - > 1 hour
V3200b20 24,639 48,321.14 0.0212 579.90 47,650.73 0.6067 12.89 - - > 1 hour - - > 1 hour

Table 3: Sparse Single-View Undirected Graphs Using Generative Model 1.

Test Case Size (|E|) FMBM Graph-Tool DANMF CPLNS
Objective NMI Time Objective NMI Time Objective NMI Time Objective NMI Time

V0100b06 4,125 815.58 0.1308 20.06 818.83 0.1291 0.46 829.20 0.0829 5.85 750.28 0.2727 3.50
V0300b06 41,771 4,702.6 0.2061 176.65 4,819.43 0.0311 1.93 4,828.49 0.0149 143.10 4,746.32 0.0629 18.14
V0500b06 118,536 10,473.0 0.0537 513.31 10,489.79 0.0193 4.86 10,497.63 0.0053 658.45 10,419.98 0.0411 41.13
V0100b08 4,212 782.91 0.2182 19.23 761.68 0.3024 0.33 807.05 0.1532 6.02 712.92 0.3331 4.59
V0300b08 42,078 4,468.67 0.0944 175.55 4,487.12 0.0443 1.48 4,498.23 0.0151 144.96 4,397.28 0.0895 19.95
V0500b08 120,166 8,188.55 0.1503 505.41 8,278.07 0.0267 4.94 8,290.82 0.0056 680.16 8,175.52 0.0582 59.04
V0100b10 4,268 731.61 0.3446 19.22 720.38 0.3290 0.32 779.34 0.1570 6.41 662.42 0.4100 6.93
V0300b10 42,385 4,069.42 0.1652 171.93 4,126.01 0.0569 1.47 4,141.94 0.0292 146.23 4,009.88 0.1160 29.28
V0500b10 120,366 7,931.97 0.1174 516.16 7,985.47 0.0347 4.03 8,000.60 0.0000 616.74 7,872.77 0.0761 60.22

Table 4: Dense Single-View Undirected Graphs Using Generative Model 1.

was given as input for all the solvers in the experiments.13 We used three metrics
for comparison: the value of the objective function stated in Equation 2, the
Normalized Mutual Information (NMI) value with respect to the ground truth,
and the running time in seconds. Unlike other methods, FMBM is an anytime
algorithm since it uses multiple trials. Each trial takes roughly (1/T)’th, i.e.,
one-tenth, of the time reported for FMBM in the experimental results. For each

13 Although Graph-Tool does not require a user-specified value of k, it has a tendency
to produce trivial solutions with k = 1, resulting in 0 NMI values when the value of
k is not explicitly specified.

A FastMap-Based Algorithm for Block Modeling 13

Test Case Size (|E|) FMBM Graph-Tool DANMF CPLNS
Objective NMI Time Objective NMI Time Objective NMI Time Objective NMI Time

V0400b04 7,176 9,843.84 0.0327 75.09 9,444.48 0.8214 1.77 9,855.97 0.0116 12.23 9,786.67 0.0246 34.55
V0800b04 16,780 27,040.21 0.0087 192.97 26,982.65 0.0698 5.67 27,053.24 0.0008 69.68 26,945.04 0.0087 243.28
V1600b04 28,183 51,531.41 0.0146 386.32 51,556.38 0.0043 8.04 51,559.96 0.0025 684.58 51,467.00 0.0073 1,098.12
V3200b04 72,182 136,376.53 0.0087 1,196.30 135,967.24 0.5287 32.92 - - > 1 hour - - > 1 hour
V0400b10 7,069 9,729.49 0.0639 73.76 9,349.76 0.4827 1.52 9,753.04 0.0625 10.69 9,585.60 0.0837 127.68
V0800b10 15,613 25,528.33 0.0385 181.56 25,022.25 0.4893 4.05 25,553.52 0.0274 86.58 25,353.08 0.0418 494.10
V1600b10 32,294 58,279.85 0.0195 428.40 58,244.14 0.0305 13.92 58,305.57 0.0157 687.84 58,103.92 0.0224 2459.38
V3200b10 79,173 148,741.84 0.0082 1,307.21 148,745.65 0.0065 32.88 - - > 1 hour - - > 1 hour
V0400b20 6,829 9,453.81 0.1425 72.78 9,139.14 0.2039 1.38 9,506.35 0.1790 9.98 - - > 1 hour
V0800b20 15,106 24,810.19 0.0784 176.60 24,521.35 0.1251 3.49 24,866.54 0.0918 62.93 - - > 1 hour
V1600b20 30,462 55,265.42 0.0436 420.49 55,207.39 0.0366 9.38 55,310.7 0.0440 606.39 - - > 1 hour
V3200b20 67,675 128,267.45 0.0232 1,199.32 128,234.10 0.0168 40.91 - - > 1 hour - - > 1 hour

Table 5: Single-View Undirected Graphs Using Generative Model 2.

method and test case, we averaged the results over 10 runs. All experiments were
conducted on a laptop with a 3.1GHz Quad-Core Intel Core i7 processor and
16GB LPDDR3 memory. Our implementation of FMBM was done in Python3
with NetworkX [10].

Although the underlying theory of FMBM can be generalized to directed
graphs with weighted edges [9] and to multi-view graphs, the current version
of FMBM is operational only on singe-view undirected graphs, sufficient to il-
lustrate the power of FastMap embeddings. Therefore, only such test cases are
borrowed from other commonly used datasets [16,19]. However, we also created
new synthetic test cases to be able to do a more comprehensive analysis.14

The synthetic test cases were generated according to two similar stochastic
block models [1] as follows. In Generative Model 1, given a user-specified number
of vertices |V | and a user-specified number of blocks k, we first assign each vertex
to a block chosen uniformly at random to obtain the membership matrix C,
representing the ground truth. The image matrix M is drafted using certain
“block structural characteristics” designed for that instance with a parameter p.
Each entry Mij is set to either p or 10p according to a rule explained below. If
Mij is set to p (10p), the two blocks Bi and Bj are weakly (strongly) connected
to each other with respect to p. The adjacency matrix A, representing the entire
graph, is constructed from C and M by connecting any two vertices vs ∈ Bi and
vt ∈ Bj with probability Mij . In Generative Model 2, each entry Mij is set to
cp, where c is an integer chosen uniformly at random from the interval [1, 10].

Tables 1, 2, 3, 4, and 5 show the comparative performances of FMBM, Graph-
Tool, DANMF, and CPLNS.15 Table 1 contains commonly used real-world test
cases from [16] and [19]. Here, FMBM outperforms DANMF and CPLNS with
respect to the value of the objective function on 3 out of 6 instances, despite the
fact that it uses the expression in Equation 2 only for evaluation on Line 28 of
Algorithm 2. Graph-Tool performs well on all the instances. Table 2 shows the
comparative performances on the complement graphs of the graphs in Table 1.
This is done to test the robustness of the solvers against encoding the same

14 https://github.com/leon-angli/Synthetic-Block-Modeling-Dataset
15 DANMF did not assign any block membership to a few vertices in some synthetic

test cases. We assign Block B1 by default to such vertices.

https://github.com/leon-angli/Synthetic-Block-Modeling-Dataset

14 A. Li et al.

relationships between vertices as either edges or non-edges. While the value of
the objective function and the running time are expected to change, the NMI
value is expected to be stable. We observe that FMBM and CPLNS are the only
solvers that convincingly pass this test. Moreover, FMBM outperforms the other
solvers on more instances than in Table 1. Tables 1 and 2 do not test scalability
since |V | is small in these test cases.

Table 3 contains synthetic sparse test cases from Generative Model 1, named
“Vnbk”, where n indicates the number of vertices and k indicates the number of
blocks. These test cases have the following block structural characteristics. Each
block is strongly connected to two other randomly chosen blocks and weakly
connected to the remaining ones (including itself). We set p = (ln |V |)/|V |,
making |E| = O(|V | log |V |) in expectation. After generating A, we also add some
noise to it by flipping each of its entries independently with probability 0.05/|V |.
FMBM outperforms DANMF and CPLNS with respect to both the value of the
objective function and the NMI value on 8 out of 12 instances. We also begin
to see FMBM’s advantages in scalability. However, Graph-Tool outperforms all
other methods by a significant margin on all the instances. Table 4 contains
synthetic dense test cases from Generative Model 1 constructed by setting p =
(ln |V |)/|V |, modifying each entry Mij to 1−Mij , and adding noise, as before.
We observe that the performance of Graph-Tool is poor on such dense graphs.
FMBM outperforms DANMF and CPLNS with respect to the NMI value on 6
out of 9 instances. Although CPLNS produces marginally better values of the
objective function, its performance on large sparse graphs in Table 3 is bad.

Table 5 contains synthetic test cases from Generative Model 2 constructed
by setting p = (ln |V |)/|V |. FMBM outperforms DANMF and CPLNS with
respect to the value of the objective function on 6 out of 12 instances. It also
outperforms DANMF and CPLNS with respect to the NMI value on a different
set of 6 instances. Graph-Tool performs comparatively well on all the instances
but occasionally produces low NMI values.

4.1 Visualization

In addition to identifying blocks, their visualization is important for uncovering
trends, patterns, and outliers in large graphs. A good visualization aids human
intuition for gauging the spread16 of blocks, both individually and relative to each
other. In market analysis, for example, a representative element can be chosen
from each block with proper visualization. Figure 4 shows that FMBM provides a
much more perspicuous visualization compared to a standard graph visualization
procedure in NetworkX17 used with Graph-Tool, even though Graph-Tool shows
good overall performance in Tables 1, 3, and 5. This is so because FMBM solves
the block modeling problem in Euclidean space, while other approaches use
abstract methods that are harder to visualize.

16 The spread here refers to how a block extends from its center to its periphery.
17 https://networkx.org/documentation/stable/reference/generated/networkx.

drawing.nx pylab.draw.html

https://networkx.org/documentation/stable/reference/generated/networkx.drawing.nx_pylab.draw.html
https://networkx.org/documentation/stable/reference/generated/networkx.drawing.nx_pylab.draw.html

A FastMap-Based Algorithm for Block Modeling 15

(a) standard graph visualization
of blocks in an instance with
1, 600 vertices and 4, 353 edges

(b) FMBM visualization of
blocks in Euclidean space for
the instance from 4a

(c) standard graph visualization
of blocks in an instance with
1, 600 vertices and 25, 103 edges

(d) FMBM visualization of
blocks in Euclidean space for
the instance from 4c

Fig. 4: The left column shows a visualization of two different instances with four blocks
obtained by a standard graph visualization procedure in NetworkX used with Graph-
Tool. The right column shows a visualization of the same two instances obtained in
the Euclidean embedding by FMBM. Four different colors are used to indicate the four
different blocks. The FMBM visualization is more helpful for gauging the spread of
blocks, both individually and relative to each other.

5 Conclusions and Future Work

In this paper, we proposed FMBM, a FastMap-based algorithm for block mod-
eling. In the first phase, FMBM adapts FastMap to embed a given undirected
graph into a Euclidean space in near-linear time such that the pairwise Euclidean
distances between vertices approximate a probabilistically-amplified graph-based
distance function between them. In doing so, it avoids having to directly work on
the given graphs and instead reformulates the graph block modeling problem to a
Euclidean version. In the second phase, FMBM uses GMM clustering for identi-
fying clusters (blocks) in the resulting Euclidean space. Empirically, FMBM out-
performs other state-of-the-art methods like FactorBlock, Graph-Tool, DANMF,
and CPLNS on many benchmark and synthetic test cases. FMBM also enables a
perspicuous visualization of blocks in the graphs, not provided by other methods.

In future work, we will generalize FMBM to work on directed graphs and
multi-view graphs. We will also apply FMBM and its generalizations to real-
world graphs from various domains, including social and biological networks.

16 A. Li et al.

References

1. Abbe, E.: Community detection and stochastic block models: Recent developments.
Journal of Machine Learning Research (2017)

2. Antonopoulos, C.G.: Dynamic range in the C. elegans brain network. Chaos: An
Interdisciplinary Journal of Nonlinear Science (2016)

3. Chan, J., Liu, W., Kan, A., Leckie, C., Bailey, J., Ramamohanarao, K.: Discovering
latent blockmodels in sparse and noisy graphs using non-negative matrix factori-
sation. In: Proceedings of the ACM International Conference on Information &
Knowledge Management (2013)

4. Cohen, L., Uras, T., Jahangiri, S., Arunasalam, A., Koenig, S., Kumar, T.K.S.:
The FastMap algorithm for shortest path computations. In: Proceedings of the
International Joint Conference on Artificial Intelligence (2018)

5. Davis, T.: USAir97 (2014), https://www.cise.ufl.edu/research/sparse/matrices/
Pajek/USAir97

6. Faloutsos, C., Lin, K.I.: FastMap: A fast algorithm for indexing, data-mining and
visualization of traditional and multimedia datasets. In: Proceedings of the ACM
SIGMOD International Conference on Management of Data (1995)

7. Fredman, M.L., Tarjan, R.E.: Fibonacci heaps and their uses in improved network
optimization algorithms. Journal of the ACM (JACM) (1987)

8. Girvan, M., Newman, M.E.: Community structure in social and biological networks.
National Academy of Sciences (2002)

9. Gopalakrishnan, S., Cohen, L., Koenig, S., Kumar, T.K.S.: Embedding directed
graphs in potential fields using FastMap-D. In: Proceedings of the International
Symposium on Combinatorial Search (2020)

10. Hagberg, A., Swart, P., S Chult, D.: Exploring network structure, dynamics, and
function using NetworkX. Tech. rep., Los Alamos National Lab, Los Alamos, NM
(United States) (2008)

11. Lee, J., Gross, S.P., Lee, J.: Improved network community structure improves
function prediction. Scientific Reports (2013)

12. Li, J., Felner, A., Koenig, S., Kumar, T.K.S.: Using FastMap to solve graph prob-
lems in a Euclidean space. In: Proceedings of the International Conference on
Automated Planning and Scheduling (2019)

13. Lin, S., Hu, Q., Wang, G., Yu, P.S.: Understanding community effects on informa-
tion diffusion. In: Proceedings of Pacific-Asia Conference on Knowledge Discovery
and Data Mining (2015)

14. Mattenet, A., Davidson, I., Nijssen, S., Schaus, P.: Generic constraint-based block
modeling using constraint programming. Journal of Artificial Intelligence Research
(2021)

15. Murphy, K.P.: Machine Learning: A probabilistic perspective. The MIT Press
(2012)

16. Newman, M.E.: Finding community structure in networks using the eigenvectors
of matrices. Physical Review E (2006)

17. Peixoto, T.P.: Efficient Monte Carlo and greedy heuristic for the inference of
stochastic block models. Physical Review E (2014)

18. Perozzi, B., Al-Rfou, R., Skiena, S.: DeepWalk: Online learning of social represen-
tations. In: Proceedings of the ACM SIGKDD International Conference on Knowl-
edge Discovery and Data Mining (2014)

https://www.cise.ufl.edu/research/sparse/matrices/Pajek/USAir97
https://www.cise.ufl.edu/research/sparse/matrices/Pajek/USAir97

A FastMap-Based Algorithm for Block Modeling 17

19. Ramteke, R., Stuckey, P.J., Chan, J., Ramamohanarao, K., Bailey, J., Leckie, C.,
Demirović, E.: Improving single and multi-view blockmodelling by algebraic simpli-
fication. In: Proceedings of the International Joint Conference on Neural Networks
(IJCNN) (2020)

20. Ye, F., Chen, C., Zheng, Z.: Deep autoencoder-like nonnegative matrix factoriza-
tion for community detection. In: Proceedings of the ACM International Confer-
ence on Information and Knowledge Management (2018)

	A FastMap-Based Algorithm for Block Modeling

