
Discrepancy-Based Approach for Solving

Distributed Constraint Optimization Problems

William Yeoh† Roie Zivan‡ Sven Koenig†

†Computer Science Department
University of Southern California

Los Angeles, CA 90089-0781
{wyeoh,skoenig}@usc.edu

‡Robotics Institute
Carnegie Mellon University
Pittsburgh, PA 15213-3890

zivanr@cs.cmu.edu

Abstract. The distributed constraint optimization (DCOP) model
is a popular model for formulating and solving agent-coordination
problems. The cost-minimal solution that most DCOP algorithms look
for might not be desirable in dynamically changing environments where
agents are committed to an existing solution. In such situations, it
might be more desirable to find either (a) a cost-minimal solution
where at most k agents need to break their commitments, where k
is a user-defined constant; or (b) any solution within a user-defined
error bound that minimizes the number of agents that need to break
their commitments. Limited discrepancy search searches for solutions
in the order of increasing number of discrepancies, i.e. number of
agents that need to break their commitments, and is thus ideally suited
for finding the two types of solutions mentioned above. We describe
how one can transform a DCOP algorithm that employs depth-first
branch-and-bound to employ limited discrepancy search and, as an ex-
ample, transform BnB-ADOPT to Limited Discrepancy Search ADOPT.

Key words: LDS; Limited Discrepancy Search; BnB-ADOPT;
DCOP; Distributed Constraint Optimization; Distributed Search
Algorithms

1 Introduction

A distributed constraint optimization (DCOP) problem is a problem where sev-
eral agents coordinate to take on values such that the objective of the DCOP
problem is achieved. Typically, optimizing the objective of the DCOP problem
means finding a complete solution (= an assignment of values to all agents)
that is cost-minimal (= the minimal sum of the constraint costs). DCOP prob-
lems are a popular way of formulating and solving agent-coordination problems,
including scheduling meetings [8], coordinating traffic lights [7] and allocating

targets to sensors [9]. As a result, researchers have developed a variety of DCOP
algorithms [14, 9, 11, 3], including BnB-ADOPT [12].

Although finding a cost-minimal complete solution is a noble goal, a cost-
minimal complete solution might not always be desirable. For example, assume
that the problem at hand is to schedule meetings for employees in a company.
Assume that, after a cost-minimal complete solution was found, there is a change
in the constraints regarding one of the meeting. For example, the current time
slot for the meeting is no longer available due to a fire drill. As a result, a
new solution needs to be found. The cost-minimal complete solution to this new
DCOP problem might not be desirable if it is significantly different from the
previous solution especially if a large number of meetings need to be rescheduled.
The reason is that the employees might already have committed to their previous
schedules by making other arrangements with their schedules as constraints. In
such a situation, it might be more desirable to find either (a) a cost-minimal
complete solution where at most k meetings need to be rescheduled, where k
is a user-defined constant, or (b) any complete solution whose cost is within a
user-defined error bound that minimizes the number of meetings that need to
be rescheduled.

To obtain such solutions, we propose that DCOP algorithms employ limited
discrepancy search (LDS) [5] to search through the space of possible solutions.
LDS searches for complete solutions in an increasing order of the number of
discrepancies, i.e. number of agents that have to break their commitments, and
is thus well suited for finding the two types of solutions mentioned above. LDS
has been successfully extended in [2] to solve Hierarchical DCOP problems,
where hierarchical subproblems need to be solved in sequence. However, this
DCOP algorithm cannot solve more general DCOP problems and, to the best of
our knowledge, there does not exist a DCOP algorithm that finds either of the
two types of solutions mentioned above. We describe how one can transform a
DCOP algorithm that employs depth-first branch-and-bound (DFBnB) search
to employ LDS by transforming BnB-ADOPT to Limited Discrepancy Search
ADOPT (LDS-ADOPT).

2 Background

We now define DCOP problems and describe existing DCOP algorithms.

2.1 DCOP Problems

A DCOP problem is defined by a finite set of agents X = {x1, x2, ..., xn}; a set
of finite domains D = {Dom(x1), Dom(x2), ..., Dom(xn)}, where the domain
Dom(xi) is the set of possible values for agent xi ∈ X ; and a set of binary con-
straints F = {f1, f2, ..., fm}, where each constraint fi : Dom(xi1)×Dom(xi2) →
R

+ ∪ ∞ specifies its non-negative cost as a function of the values of distinct
agents xi1 ∈ X and xi2 ∈ X that share the constraint.

x1

x3

x2

x1

x3

x2

for i < j

xi xj Cost

0 0 5
0 1 8
1 0 20
1 1 3

(a) (b) (c)

Fig. 1. Example DCOP Problem

Each agent is responsible for assigning itself (= taking on) values from its
domain. The agents coordinate these value assignments via messages that they
exchange with other agents. A complete solution is an agent-value assignment
for all agents, while a partial solution is an agent-value assignment for a subset
of agents. The cost of a complete solution is the sum of the constraint costs of all
constraints, while the cost of a partial solution is the sum of the constraint costs
of all constraints shared by agents with known values in the partial solution.
Solving a DCOP problem optimally means to achieve its objective.

It is common to visualize a DCOP problem as a constraint graph where the
vertices are the agents and the edges are the constraints. Most DCOP algorithms
operate on a pseudo-tree, which is a spanning tree of the constraint graph with
the property that no two vertices in different subtrees are connected by an edge
in the constraint graph. Figure 1(a) shows the constraint graph of an exam-
ple DCOP problem with three agents that can each take on the values zero
or one, Figure 1(b) shows one possible pseudo-tree (the dotted line is part of
the constraint graph but not the pseudo-tree), and Figure 1(c) shows the con-
straint costs. To be precise, the pseudo-tree is actually a pseudo-chain since the
constraint graph is fully connected.

2.2 DCOP Algorithms

There are two classes of DCOP algorithms: Complete DCOP algorithms such as
SynchBB [6], ADOPT [9], DPOP [11], NCBB [1], AFB [3] and BnB-ADOPT,
find globally optimal solutions; and incomplete DCOP algorithms [14, 10] find
locally optimal solutions. We use the term DCOP algorithms to refer to com-
plete DCOP algorithms and the terms optimal/cost-minimal to refer to globally
optimal/cost-minimal since we are interested in finding globally optimal solu-
tions.

DPOP is a DCOP inference algorithm that employs dynamic programming
to propagate the constraint costs of all agents to the root agent, which then finds
the cost-minimal complete solution. SynchBB, ADOPT, NCBB, AFB and BnB-
ADOPT are DCOP search algorithms that employ different search strategies to
search through the space of solutions to find a cost-minimal solution. ADOPT
employs best-first search while SynchBB, NCBB, AFB and BnB-ADOPT em-
ploy depth-first branch-and-bound (DFBnB) search. Since DCOP algorithms that
employ DFBnB are often faster than DCOP algorithms that employ best-first

h i onmlkj

a

cb

gfed

0 1 322121Discrepancies

x1

x3

x2

(a)

15 21 94331451933

0

00

32085

0 1 322121Discrepancies

x1

x3

x2

(b)

Fig. 2. Search Tree

X X XXXXXX

0

00

XXXX

ub = infinity

Step 1

X X XXXXXX

0

05

XX85

ub = infinity

Step 2

15 21 XXXXXX

0

08

XX815

ub = infinity

Step 3

15 21 XXXXXX

0

08

XX815

ub = 15

Step 4

X X XXXX1933

0

015

XX1915

ub = 15

Step 5

X X XXXXXX

3

315

320XX

ub = 15

Step 6

X X 943XXXX

9

915

920XX

ub = 15

Step 7

X X 943XXXX

9

915

920XX

ub = 9

Step 8

Fig. 3. Execution Trace of Depth-First Branch-and-Bound Based DCOP Algorithms

search [3, 12], we transform DCOP algorithms that employ DFBnB to employ
LDS.

3 Discrepancy-Based DCOP Algorithms

In this section, we first describe the limited discrepancy search (LDS) strategy.
Then, we describe the general idea behind DFBnB-based DCOP algorithms,
before proceeding to describe how one can transform these DCOP algorithms to
discrepancy-based DCOP algorithms.

3.1 Limited Discrepancy Search

To illustrate the search process of LDS, we use the search trees and terminology
of A* [4]. Figure 2 shows the search tree for our example DCOP problem.

Each level of a search tree corresponds to an agent. For our example DCOP
problem, the level of depth 1 corresponds to agent x1. A left branch that enters
a level means that the corresponding agent takes on the value 0. A right branch
means that the corresponding agent takes on the value 1. A node in the search
tree thus corresponds to a solution. For our example DCOP problem, the partial
solution of node e is (x1 = 0, x2 = 1). The numbers inside the nodes in Fig-
ure 2(b) are the costs of the partial solutions associated with the nodes. These
numbers correspond to the f -values of an A* search, if we assume for simplicity

that the zero heuristics are used. The letters inside the nodes in Figure 2(a) are
identifiers that allow us to refer to the nodes easily.

Assume that every agent maintains a user-defined default value. When an
agent takes on a non-default value, this action results in a discrepancy. The
number of discrepancies in a solution then is the number of agents that take on
non-default values in that solution. The number of discrepancies for the eight
possible complete solutions of our example DCOP problem is shown under the
search tree in Figure 2(b) if we assume that the default value is zero for all agents.
LDS operates as follows: First, it searches for the complete solution with zero
discrepancies (x1 = 0, x2 = 0, x3 = 0). Then, it searches for complete solutions
with one discrepancy by allowing one agent at a time to take on a non-default
value. The agents do so sequentially from the root agent to the leaf agent of the
pseudo-tree. Thus, the complete solutions with one discrepancy are found in the
following order: (x1 = 1, x2 = 0, x3 = 0), (x1 = 0, x2 = 1, x3 = 0), (x1 = 0, x2 =
0, x3 = 1). It continues the search with increasing numbers of discrepancies until
a cost-minimal complete solution has been found or all complete solutions with
the user-defined maximum number of discrepancies have been found.

3.2 Depth-First Branch-and-Bound-Based DCOP Algorithms

We now describe DFBnB and the general idea behind DCOP algorithms that
employ this search strategy.

Depth-First Branch-and-Bound

To illustrate the search process of DFBnB-based DCOP algorithms, we use
the search trees shown in Figure 3. For simplicity, we assume that the agents
operate sequentially and that information is propagated instantaneously, which
is sufficient to describe the general search strategy. The nodes that are being
expanded and their ancestors are shaded grey. The agents of each level maintain
lower bounds for the grey nodes and their children, shown as the numbers in the
nodes. Lower bounds that are not maintained are shown as crosses in the nodes.
The agents initialize the lower bounds of the nodes that they maintain with the
f -values and then set them to the minimum of the lower bounds of the children
of the nodes. Therefore the lower bound of the root node is an underestimate of
the cost of a cost-minimal solution. The agents of each level also maintain upper
bounds for grey nodes and their children. However, we only show the upper
bound of the root node, shown as ub, as that is the only upper bound that is
essential for our discussion. The upper bound of the root node is always set to
the smallest cost of all complete solutions found so far. Therefore, the upper
bound of the root node is an overestimate of a cost of the cost-minimal solution.

DFBnB expands the children of a node in the order of increasing f -values
and prunes those nodes whose f -values are no smaller than the upper bound of
the root node. Thus, it expands nodes in the order a, b, d, h, i∗, e, k∗, j∗, c, g
and o, where the nodes with asterisks are pruned. DFBnB terminates when the

lower bound of the root node equals the upper bound of the root node, indicating
that a cost-minimal solution has been found.

Outline of Algorithms

The description so far is very simplistic as it assumes that agents propagate
information instantaneously. In reality, agents do not have complete knowledge
of the values taken on by their ancestor agents (= agents higher up in the pseudo-
tree) at all times. These sets of agent-value pairs are called the contexts of the
agents. Generally, an agent sends VALUE messages to its descendant agents that
it is connected to in the constraint graph with the value that it currently takes
on.1 Upon receiving these messages, the receiving agents update their contexts
to reflect the value of the sending agent contained in the messages. Neither do
agents have complete knowledge of the lower and upper bounds of their children
agents at all times. Generally, an agent sends COST messages to its parent agent
with its lower and upper bounds.2 Upon receiving these messages, the parent
agent updates its own lower and upper bounds accordingly. For example, the
lower bound of a node in Figure 3 is always set to the minimum of the lower
bounds of its children.

Generally, the agents operate in the following fashion. They first take on
an initial value and send VALUE messages. They then operate the following
loop: They receive and process incoming messages. If they received a VALUE
message, they update their contexts. If they received a COST message, they
update their lower and upper bounds. After that, they take on a new value if
they can prune the subtree rooted at the node that correspond to their current
value. Subsequently, they send VALUE and COST messages, if necessary, and
wait for new incoming messages.

It is important to note that there are differences in both the content of the
messages and the communication links between agents for the different algo-
rithms. Agents in AFB send their entire contexts together with their current
values in VALUE messages, while agents in BnB-ADOPT only send their cur-
rent values in VALUE messages. Agents in NCBB send COST messages to all
ancestor agents that they are connected to in the constraint graph, while agents
in BnB-ADOPT only send COST messages to their parent agents.

3.3 LDS-ADOPT

We now describe how one can transform a DCOP algorithm that employs DF-
BnB to employ LDS. As an example, we transform BnB-ADOPT to Limited
Discrepancy Search ADOPT (LDS-ADOPT).

Notation

1 These messages are called SEARCH messages in NCBB and CPA MSG messages in
AFB.

2 These messages are called FB ESTIMATE messages in AFB.

We use the following notation from BnB-ADOPT to describe LDS-ADOPT:
V alInit(x) ∈ Dom(x) is the default value of agent x ∈ X . C(x) ⊆ X is the set
of children agents of agent x in the pseudo-tree, and CD(x) ⊆ X is the set of
its descendant agents that it is connected to in the constraint graph. pa(x) ⊆ X
is the parent agent of agent x ∈ X , A(x) ⊆ X is the set of its ancestor agents
(including its parent agent), SCA(x) ⊆ A(x) is the set of its ancestor agents
(including its parent agent) that it or one of its descendant agents is connected
to in the constraint graph, and CA(x) ⊆ SCA(x) is the set of its ancestor agents
(including its parent agent) that it is connected to in the constraint graph.

Brief Description of Transformation

There are two major differences between a DCOP algorithm that employs
DFBnB and a DCOP algorithm that employs LDS. The first difference is the
notion of tokens and anchor agents. Tokens are used to restrict the number of
discrepancies in the solutions found. An agent in an LDS-based DCOP algorithm
can take on a non-default value only when it has a token. An agent is an anchor
agent if it has a token and there is at least one token that is passed around
among its descendant agents. The second difference is the notion of pruning. An
agent in a DFBnB based DCOP algorithm is able to prune the subtree rooted at
a node that corresponds to its value when no solution in that subtree can have
a smaller cost than the best solution found so far. On the other hand, an agent
in an LDS based DCOP algorithm can prune the subtree rooted at a node that
corresponds to its value when no complete solution in that subtree can have a
smaller cost than the best complete solution found so far, given the constraint
that the maximum number of non-default values its descendant agents take on
is at most the number of tokens that they have. Note that, when an agent in
an LDS-based DCOP algorithm prunes a subtree, there might exist a complete
solution in that subtree whose cost is smaller than the best complete solution
found so far, but it must have a larger number of descendant agents take on
non-default values than the number of tokens that it has.

Operation of LDS-ADOPT

LDS-ADOPT transforms the constraint graph to a pseudo-chain in a pre-
processing step. Then, it performs the following operations.

– Zero discrepancies: Initially, every agent has zero tokens and thus takes
on its default value. It updates its bounds, checks to see if it can prune
its current branch of the search tree and sends its updated bounds to its
parent agent. Once the bounds have been propagated up to the root agent,
indicating that the current branch of the root agent can be pruned, the
complete solution with zero discrepancies has been found.

– One discrepancy: The root agent increases the number of its tokens by
one. Thus, the root agent now has one token, allowing it to take on a non-
default value. The root agent takes on a non-default value, prunes the branch
corresponding to its current value once the bounds have been propagated up

to it and takes on a new non-default value. It repeats this process for all
values in its domain. Finally, the root agent takes on its default value and
passes the token down to its child agent. The child agent repeats the process
until the token is passed to the leaf agent. After the leaf agent has taken on
all values in its domain, all complete solutions with one discrepancy have
been found. Then, the leaf agent takes on its default value and the token is
propagated back to the root agent.

– Two discrepancies: The root agent increases the number of its tokens by
one. Thus, the root agent now has two tokens. It declares itself to be an
anchor agent, passes one token down to its child agent and takes on a non-
default value. The child agent repeats the process described as above for
one discrepancy. Then, all complete solutions with two discrepancies where
the root agent takes on its current value have been found. Thus, the root
agent takes on a new non-default value and repeats the process. Once the
root agent has taken on all non-default values in its domain, it takes on its
default value, declares itself to no longer be an anchor agent and passes both
tokens down to its child agent. The child agent repeats the process until both
tokens have been passed down to the leaf agent. At this point, all complete
solutions with two discrepancies have been found. The leaf agent takes on
its default value and both tokens are propagated back to the root agent.

– Three to |X | discrepancies: The root agent increases the number of its
tokens by one, and recursively repeats the above process until it has in-
troduced |X | tokens to the system. LDS-ADOPT terminates when a cost-
minimal complete solution has been found or when all complete solutions
with the user-defined maximum number of discrepancies have been found.

4 Experimental Evaluation

We use the same experimental setup as [8, 12] and conduct experiments with two
DCOP problem types, namely graph coloring problems with 10 vertices/agents,
density 2 and domain cardinality 3; and meeting scheduling problems with 10
meetings/agents and domain cardinality 3. We average the experimental results
over 50 DCOP problem instances. The objective is to find a cost-minimal com-
plete solution under the constraint that at most k agents can take on non-default
values. The default value for every agent is 0. Since, to the best of our knowledge,
no other DCOP algorithms exists for this objective, we compare LDS-ADOPT
to a DCOP algorithm that is similar to SynchBB, but performs limited discrep-
ancy search instead of depth-first branch-and-bound search. We call this DCOP
algorithm SynchLDS. It assigns values to agents sequentially from the root agent
to the leaf agent in the pseudo-chain and backtracks after it has assigned a value
to the leaf agent. It uses LDS to determine which agent to backtrack to. We
measure the runtimes of both DCOP algorithms in time slices called cycles [9],
where smaller numbers of cycles indicate smaller runtimes. During each cycle,
all agents receive and process all their incoming messages and send all outgoing
messages. A new cycle starts immediately after the last agent sends its outgoing
messages.

Graph Coloring Problems

50000

60000

70000

80000

90000

1 2 3 4 5

Maximum Number of Discrepancies

S
o

lu
ti

o
n

 C
o

st
s

(a)

Meeting Scheduling Problems

500

600

700

800

900

1 2 3 4 5 6 7 8 9

Maximum Number of Discrepancies

S
o

lu
ti

o
n

 C
o

st
s

(b)

Graph Coloring Problems

0

30000

60000

90000

120000

1 2 3 4 5

Maximum Number of Discrepancies

N
u

m
b

er
 o

f
C

yc
le

s

LDS-ADOPT SynchLDS

(c)

Meeting Scheduling Problems

0

10000

20000

30000

40000

50000

1 2 3 4 5 6 7 8 9

Maximum Number of Discrepancies

N
u

m
b

er
 o

f
C

yc
le

s

LDS-ADOPT SynchLDS

(d)

Fig. 4. Experimental Results

Figures 4(a) and 4(b) plot the costs of the complete solutions found by LDS-
ADOPT and SynchLDS against the maximum number of agents that can take
on non-default values (= maximum number of discrepancies). Both DCOP al-
gorithms find complete solutions with lower costs as the maximum number of
discrepancies increases. Figures 4(c) and 4(d) compare the runtimes of LDS-
ADOPT and SynchLDS. LDS-ADOPT is faster than SynchLDS for both DCOP
problem types. The speedup is due to the asynchronous and concurrent execu-
tion of agents in LDS-ADOPT. Agents in SynchLDS operate synchronously and
sequentially and are thus often idle while waiting for activation messages from
other agents. Paired Student’s t-tests determine all results to be statistically
significant (p < 0.05). The runtimes of both DCOP algorithms increase as the
maximum number of discrepancies increases. There are two phases in the run-
time of both DCOP algorithms: When the maximum number of discrepancies
is small, their runtime grows exponentially, and when the maximum number of
discrepancies is sufficiently large, their runtime stays constant. For example, the
phase transition is at four discrepancies in Figure 4(d). This behavior is due
to the DCOP algorithms finding a cost-minimal complete solution at the phase
transition. Thus, larger numbers of allowed discrepancies do not affect their run-
time. This result is consistent with the result in Figure 4(b) where the cost of
the complete solution found remains constant when the maximum number of
discrepancies is at least four.

5 Conclusions

Although DCOP problems are a popular way of formulating and solving agent-
coordination problems, the typical objective of DCOP algorithms is to find
a cost-minimal complete solution. However, a cost-minimal complete solution
might not be desirable in dynamically changing environments where agents are
committed to a previous complete solution. In such a situation, it might be more
desirable to find either (a) a cost-minimal complete solution where at most k
agents need to break their commitments, where k is a user-defined constant, or
(b) any complete solution within a user-defined error bound that minimizes the
number of agents that need to break their commitments.

To obtain such solutions, we proposed that DCOP algorithms employ lim-
ited discrepancy search to search through the space of possible solutions. Limited
discrepancy search searches for complete solutions in an increasing order of dis-
crepancies, i.e. number of agents that have to break their commitments by taking
on a non-default value, and is thus well suited for finding the two types of solu-
tions mentioned above. We illustrated how one can transform a DCOP algorithm
that employs depth-first branch-and-bound search to employ limited discrepancy
search by transforming BnB-ADOPT to Limited Discrepancy Search ADOPT
(LDS-ADOPT).

Although we provided experimental results for the first type of solutions
only, namely cost-minimal complete solutions where at most k agents need to
break their commitments, the second type of solutions can be found with only
a small change to the termination condition of LDS-ADOPT, namely by letting
it terminate when it finds a complete solution whose cost is within the user-
defined error bound instead of when it reaches user-defined the maximum number
of discrepancies. Our experimental results showed that LDS-ADOPT is indeed
faster than SynchLDS for graph coloring and meeting scheduling problems. In
the future, we plan to extend LDS-ADOPT to operate on pseudo-trees instead of
pseudo-chains. We also plan to further optimize LDS-ADOPT by incorporating
the tradeoff mechanisms from [13] to find complete solutions whose costs are
within a user-defined error bound as well as variable reordering methods [15] to
increase its efficiency.

Acknowledgments

This material is based upon work supported by, or in part by, the U.S. Army
Research Laboratory and the U.S. Army Research Office under contract/grant
number W911NF-08-1-0468 and by NSF under contract 0413196. The views and
conclusions contained in this document are those of the authors and should not
be interpreted as representing the official policies, either expressed or implied,
of the sponsoring organizations, agencies, companies or the U.S. government.

References

1. A. Chechetka and K. Sycara. No-commitment branch and bound search for dis-
tributed constraint optimization. In Proceedings of AAMAS, pages 1427–1429,
2006.

2. J. Gaudreault, J. Frayret, and G. Pesant. Discrepancy-based method for hierar-
chical distributed optimization. In Proceedings of ICTAI, pages 29–31, 2007.

3. A. Gershman, A. Meisels, and R. Zivan. Asynchronous forward-bounding for dis-
tributed constraints optimization. In Proceedings of ECAI, pages 103–107, 2006.

4. P. Hart, N. Nilsson, and B. Raphael. A formal basis for the heuristic determination
of minimum cost paths. IEEE Transactions on Systems Science and Cybernetics,
SSC4(2):100–107, 1968.

5. W. Harvey and M. Ginsberg. Limited discrepancy search. In Proceedings of IJCAI,
pages 607–615, 1995.

6. K. Hirayama and M. Yokoo. Distributed partial constraint satisfaction problem.
In Proceedings of CP, pages 222–236, 1997.

7. R. Junges and A. Bazzan. Evaluating the performance of DCOP algorithms in a
real world, dynamic problem. In Proceedings of AAMAS, pages 599–606, 2008.

8. R. Maheswaran, M. Tambe, E. Bowring, J. Pearce, and P. Varakantham. Taking
DCOP to the real world: Efficient complete solutions for distributed event schedul-
ing. In Proceedings of AAMAS, pages 310–317, 2004.

9. P. Modi, W. Shen, M. Tambe, and M. Yokoo. ADOPT: Asynchronous distributed
constraint optimization with quality guarantees. Artificial Intelligence, 161(1-
2):149–180, 2005.

10. J. Pearce and M. Tambe. Quality guarantees on k-optimal solutions for distributed
constraint optimization problems. In Proceedings of IJCAI, pages 1446–1451, 2007.

11. A. Petcu and B. Faltings. A scalable method for multiagent constraint optimiza-
tion. In Proceedings of IJCAI, pages 1413–1420, 2005.

12. W. Yeoh, A. Felner, and S. Koenig. BnB-ADOPT: An asynchronous branch-and-
bound DCOP algorithm. In Proceedings of AAMAS, pages 591–598, 2008.

13. W. Yeoh, S. Koenig, and X. Sun. Trading off solution cost for smaller runtime in
DCOP search algorithms (short paper). In Proceedings of AAMAS, pages 1445–
1448, 2008.

14. W. Zhang, G. Wang, Z. Xing, and L. Wittenberg. Distributed stochastic search
and distributed breakout: Properties, comparison and applications to constraint
optimization problems in sensor networks. Artificial Intelligence, 161(1-2):55–87,
2005.

15. R. Zivan and A. Meisels. Dynamic ordering for asynchronous backtracking on
disCSPs. In Proceedings of CP, pages 32–46, 2005.

