
IMPROVING DECISION-MAKING IN SEARCH ALGORITHMS

FOR COMBINATORIAL OPTIMIZATION WITH MACHINE LEARNING

by

Taoan Huang

A Dissertation Presented to the
FACULTY OF THE USC GRADUATE SCHOOL
UNIVERSITY OF SOUTHERN CALIFORNIA

In Partial Fulfillment of the
Requirements for the Degree
DOCTOR OF PHILOSOPHY
(COMPUTER SCIENCE)

December 2024

Copyright 2024 Taoan Huang

Dedication

To my grandma.

ii

Acknowledgements

First and foremost, I would like to express my deepest gratitude to my advisors, Bistra Dilkina and Sven

Koenig, for their unwavering patience and guidance throughoutmy research journey, for their constructive

advice whenever I needed it and for the freedom they offered me to explore diverse research problems.

Their enthusiasm, curiosity and dedication to research have profoundly inspired me as a junior researcher.

I am also deeply grateful to the members of my dissertation committee, Lars Lindemann, Meisam

Razaviyayn, and Peter Stuckey, for their generous time, insightful feedback and support. A special thanks

to Lars for accepting the invitation to join my dissertation committee on short notice.

I would like to extend my heartfelt thanks to Fei Fang, my former undergraduate research advisor,

for her pivotal role in shaping my early research career. Fei took me as an intern at Carnegie Mellon

University in 2018 when I had no prior research experience. She guided me through my first couple of

research projects with extraordinary patience.

I have been fortunate to collaborate with many talented researchers. To Yuandong Tian from Meta

AI Research, thank you for many brilliant suggestions for many research problems and our productive

collaboration. To Vikas Shivashankar, Michael Caldara and Joseph Durham from Amazon Robotics, thank

you for your support and for providing me with the opportunity to work on my first real-world warehouse

planning problem. To Jiaoyang Li, thank you for the productive discussions and valuable insights into the

multi-agent path finding problem. I would also like to thank my other collaborators, Brandon Amos,

Xiaohui Bei, Vadim Bulitko, Junyang Cai, Weizhe Chen, Bohui Fang, Tianyu Gu, Minbiao Han, Weimin

iii

Huang, Thomy Phan, Sumedh Pendurkar, Martin Schubert, Guni Sharon, Weiran Shen, Rohit Singh, Benoit

Steiner, Roni Stern, Shuwei Wang, Haifeng Xu, David Zeng, Daochen Zha, Shuyang Zhang and Arman

Zharmagambetov, for our fruitful collaborations.

I have thoroughly enjoyed my time with my labmates from the IDM lab and CAIS. To Sina Aghaei,

Junyang Cai, Shao-Hung Chan, Weizhe Chen, Aaron Ferber, Amrita Gupta, Weimin Huang, Qing Jin, Car-

oline Johnston, Nathan Justin, Christopher Leet, Haoming Li, Jiaoyang Li, Laksh Matai, Hannah Murray,

Thomy Phan, Caleb Robinson, Qingshi Sun, Bill Tang, Yimin Tang, Yingxiao Ye, Han Zhang and Yi Zheng,

thank you for the casual but interesting conversations we had and the many fun lab events.

Finally, I would like to express my deepest gratitude tomy parents andmy sister for their unconditional

love and support. My heartfelt thanks also go to Zixin Huang for her companionship and for being by my

side every step of the way.

This dissertation reports on research supported by the National Science Foundation (NSF) under grant

numbers 1409987, 1724392, 1817189, 1837779, 1935712 and 2112533, the U.S. Department of Homeland Se-

curity under grant number 2015-ST-061-CIRC01 as well as a gift from Amazon. The views and conclusions

contained in this dissertation should not be interpreted as necessarily representing the official policies,

either expressed or implied, of the sponsoring organizations, agencies or the U.S. government. I would

also like to thank Shuyang Zhang, an amazing undergraduate student I co-advised with Jiaoyang Li, for

contributing to the empirical evaluation and part of the writing in Section 2.9.

iv

Table of Contents

Dedication . ii

Acknowledgements . iii

List of Tables . viii

List of Figures . xi

Abstract . xv

Chapter 1: Introduction . 1
1.1 Combinatorial Optimization Problems (COPs) . 2

1.1.1 Multi-Agent Path Finding (MAPF) . 2
1.1.2 Mixed Integer Linear Program (MILP) . 4

1.2 Search Algorithms for COPs . 4
1.2.1 Machine Learning (ML) for COPs . 6

1.3 Contributions . 10

Chapter 2: Improving Decision-Making in MAPF Search Algorithms 15
2.1 Introduction . 16
2.2 Multi-Agent Path Finding . 18
2.3 Background . 19

2.3.1 Conflict-Based Search (CBS) . 19
2.3.2 Enhanced CBS (ECBS) . 20
2.3.3 MAPF-LNS . 22
2.3.4 Prioritized Planning (PP) . 23
2.3.5 MAPF Instances Used in the Empirical Evaluation 24

2.4 Related Work . 25
2.4.1 MAPF Search Algorithms . 26
2.4.2 ML for MAPF . 28
2.4.3 ML for other COPs that Inspires Our Work . 29

2.5 An Imitation Learning Framework for Learning Decision-Making Strategies 30
2.6 Learning to Select Conflicts for CBS . 33

2.6.1 Machine Learning Methodolody . 34
2.6.1.1 Experts for Conflict Selection . 34
2.6.1.2 Data Collection . 36
2.6.1.3 Model Learning . 39

v

2.6.1.4 ML-Guided Search . 39
2.6.2 Empirical Evaluation . 40

2.6.2.1 Setup . 41
2.6.2.2 Results . 42

2.7 Learning to Select Nodes for ECBS . 45
2.7.1 Machine Learning Methodology . 46

2.7.1.1 Expert for Node Selection . 46
2.7.1.2 Data Collection . 47
2.7.1.3 Model Learning . 49
2.7.1.4 ML-Guided Search . 53

2.7.2 Empirical Evaluation . 55
2.7.2.1 Setup . 56
2.7.2.2 Results . 57

2.8 Learning to Select Agent Sets for MAPF-LNS . 63
2.8.1 Machine Learning Methodology . 64

2.8.1.1 Expert for Agent-Set Selection . 65
2.8.1.2 Data Collection . 66
2.8.1.3 Model Learning . 67
2.8.1.4 ML-Guided Search . 70

2.8.2 Empirical Evaluation . 71
2.8.2.1 Setup . 71
2.8.2.2 Results . 73

2.9 Learning to Prioritize Agents for PP . 78
2.9.1 Machine Learning Methodology . 79

2.9.1.1 Expert for Assigning Agents’ Priorities 80
2.9.1.2 Data Collection . 83
2.9.1.3 Model Learning . 85
2.9.1.4 ML-Guided Search . 86

2.9.2 Empirical Evaluation . 88
2.9.2.1 Setup . 88
2.9.2.2 Results . 92

2.10 Summary . 97

Chapter 3: Improving Decision-Making in MILP Search Algorithms 98
3.1 Introduction . 99
3.2 Mixed Integer Linear Programs . 102
3.3 Background . 103

3.3.1 LNS for MILP solving . 103
3.3.1.1 Local Branching Heuristic . 104
3.3.1.2 Local Branching Relaxation Heuristic . 105

3.3.2 Neural Diving . 105
3.3.3 Predict-and-Search . 106

3.4 Related Work . 107
3.4.1 LNS for MILPs and Other COPs . 107
3.4.2 LNS-Based Primal Heuristics in BnB . 107
3.4.3 Learning to Solve MILPs with BnB . 109
3.4.4 Solution Predictions for COPs . 109
3.4.5 Contrastive Learning for COPs . 109

vi

3.5 A Contrastive Learning Framework for Learning Decision-Making Strategies 110
3.6 Contrastive Large Neighborhood Search . 111

3.6.1 Machine Learning Methodology . 112
3.6.1.1 Data Collection . 112
3.6.1.2 Neural Network Architecture . 114
3.6.1.3 Model Learning with a Contrastive Loss 115
3.6.1.4 ML-Guided Search . 115

3.6.2 Empirical Evaluation . 116
3.6.2.1 Setup . 116
3.6.2.2 Results . 119

3.7 Contrastive Predict-and-Search . 127
3.7.1 Machine Learning Methodology . 127

3.7.1.1 Data Collection . 128
3.7.1.2 Neural Network Architecture . 131
3.7.1.3 Model Learning with a Contrastive Loss 131
3.7.1.4 ML-Guided Search . 132

3.7.2 Empirical Evaluation . 132
3.7.2.1 Setup . 133
3.7.2.2 Results . 139

3.8 Summary . 142

Chapter 4: Conclusions . 144

Bibliography . 149

Appendices . 166
A Supplementary Materials to Chapter 3 . 166

A.1 Additional Details of MILP Instance Generation . 166
A.2 Supplementary Materials to Section 3.6 . 168

A.2.1 Neural Network Architecture for CL-LNS 168
A.2.2 Hyperparameter Tuning . 169
A.2.3 Additional Experimental Results . 171

A.3 Supplementary Materials to Section 3.7 . 172
A.3.1 Neural Network Architecture for ConPaS 172
A.3.2 Hyperparameter Tuning . 180
A.3.3 Additional Experimental Results . 183

vii

List of Tables

1.1 Acronyms and their meanings. 14

2.1 Performance of CBSH2 with different experts and our method CBS+ML. Expert time is
the runtime of the expert. Search time is the runtime minus the expert time. All entries
are averaged over the MAPF instances that are solved by all methods. 35

2.2 Features of a conflict c = ⟨ai, aj , u, t⟩ (⟨ai, aj , u, v, t⟩) of a CT node N . Given
the underlying graph G = (V,E), let VT = {(v, t) : v ∈ V, t ∈ Z≥0}, ET =
{((u, t), (v, t + 1)) : t ∈ Z≥0 ∧ (u = v ∨ (u, v) ∈ E)}, and define the time-expanded
graph as an unweighted graph GT = (VT , ET). Let du,v be the cost of the cost-
minimal path between vertices u and v in G and d(u′,t′),(u,t) be the distance from
(u′, t′) to (u, t) in GT if t′ ≤ t or from (u, t) to (u′, t′), otherwise. For a conflict
c′ = ⟨a′i, a′j , u′, t′⟩ (⟨a′i, a′j , u′, v′, t′⟩) in NConf , define Vc′ = {u′} (Vc′ = {u′, v′})
and V T

c′ = {(u′, t′)} (V T
c′ = {(u′, t′), (v′, t′)}). For an agent a, define Va = {(u, t) :

agent a is at vertex u at time step t following its path}. The counts are the numbers of
features contributed by the corresponding entries, which add up to p = 67. 38

2.3 Numbers of agents in MAPF instances in ITrain and IValid, validation losses and accuracies.
The swapped pairs are the percentages of swapped pairs averaged over all test CT nodes,
and the top pick accuracy is the accuracy of the ranking function selecting one of the
conflicts labeled as 1 in the test dataset. 42

2.4 Success rates and the average runtimes and CT sizes of MAPF instances solved by
all methods (ML-S and ML-O stand for CBS+ML-S and CBS+ML-O, respectively) for
different numbers of agents k on five maps. For the success rates of ML-S and ML-O,
the percentages of MAPF instances solved by both our methods and CBSH2 are given in
parentheses (bolded if they solve all MAPF instances that CBSH2 solves). For each grid
map, we report the percentages of our improvement over CBSH2 on the runtime and CT
size on MAPF instances solved by all methods. 43

2.5 Parameters for each grid map. w is the suboptimality factor, m is the number of different
numbers of agents we train and test on, k1 is the smallest number of agents that we
train and test on, km is the largest number of agents that we train and test on, and |V | is
the number of unblocked cells on the grid map. k2, · · · , km−1 are evenly distributed on
[k1, km], i.e., ki = (i− 1)(km − k1)/(m− 1) + k1. 55

viii

2.6 Loss li ∈ [0, 1] of ranking function πi for ki agents evaluated by Equation (2.1) averaged
over all CTs in the training data. 55

2.7 Agent ai’s features with respect to instance I and incumbent solution PI = {pi : i ∈ [k]}.
The counts are the numbers of features contributed by the corresponding entries. 66

2.8 Validation results for the learned ranking function π. “Training k” is the number of agents
of the training instances. “Average ranking” is the average rank of the first agent set
selected by π among the S = 20 agent sets. “Improving choice” is the fraction of times
π selects an agent set that results in a positive cost improvement. “Regret” is calculated
as the average of 100% minus the cost improvement achieved by π as a percentage of the
cost improvement achieved by the expert. 72

2.9 The average ratios of the AUCs of MAPF-LNS and variants of MAPF-ML-LNS (ML-S
and ML-O) with their standard deviations, the win/loss counts with respect to the AUCs
and the average sums of delays with the average suboptimalities for a runtime limit
of 60 seconds. All entries take only the solved MAPF instances into account. We bold
the number of agents k on which ML-S is trained and the entries where a variant of
MAPF-ML-LNS outperforms MAPF-LNS. 74

2.10 The average number of replans of MAPF-LNS and ML-S for a runtime limit of 60 seconds. 77

2.11 p = 26 features for agent ai. Column “Count” reports the numbers of features contributed
by the corresponding entries. We consider an MDD MDD i for agent ai that consists
of all individually cost-minimal paths from si to ti, i.e., the MDD that would have been
computed at the root CT node in CBS. 84

2.12 Success rate and solution rank for deterministic ranking. The best results achieved among
all algorithms are shown in bold. The results are obtained by training and testing on the
same map with the same number of agents k, except for maps lak303d and ost003d with
k > 500, where the results are obtained by training on the same map with k = 500. 90

2.13 Success rate and runtime to the first solution for stochastic ranking with random restarts.
The best results achieved among all algorithms are shown in bold. The results are obtained
by training and testing on the same grid map with the same number of agents k, except for
grid maps lak303d and ost003d with k > 500, where the results are obtained by training
on the same map with k = 500. 93

3.1 Names and the average numbers of variables and constraints of the test instances. 116

3.2 Primal gap (PG) (in percent), primal integral (PI) at 60-minute runtime cutoff, averaged
over 100 test instances and their standard deviations. “↓” means the lower, the better. For
ML methods, the policies are trained only on small training instances but are tested on
both small and large test instances. 121

3.3 Ablation study: Primal gap (PG) (in percent) and primal integral (PI) at 60-minute runtime
cutoff, averaged over 100 small test instances and their standard deviations. “↓” means the
lower the better. 126

ix

3.4 The average numbers of variables and constraints in the test instances. 132

3.5 Comparison of different loss functions. We report the primal gaps (PG) and the primal
integrals (PI) at the 1,000-second runtime cutoff averaged over 100 instances. 140

3.6 The primal gap and primal integral at the 1,000-second runtime cutoff on the CA instances
with different k0 averaged over 100 instances. 141

A.1 Hyperparameters with their notations and values used. 171

A.2 Test results on small instances: Primal bound (PB), primal gap (PG) (in percent), primal
integral (PI) at 30 minutes time cutoff, averaged over 100 instances and their standard
deviations. 178

A.3 Test results on small instances: Primal bound (PB), primal gap (PG) (in percent), primal
integral (PI) at 60 minutes time cutoff, averaged over 100 instances and their standard
deviations. 178

A.4 Generalization results on large instances: Primal bound (PB), primal gap (PG) (in percent),
primal integral (PI) at 30 minutes time cutoff, averaged over 100 instances and their
standard deviations. 179

A.5 Generalization results on large instances: Primal bound (PB), primal gap (PG) (in percent)
and primal integral (PI) at 60 minutes time cutoff, averaged over 100 instances and their
standard deviations. 179

A.6 Hyperparameters (k0, k1,∆) used for PaS and ConPaS. 180

A.7 Tabular representation of the primal integral plots in Figures 3.10 and 3.11: The primal
integral and the standard deviation at 1,000 seconds runtime cutoff averaged over 100
instances. 181

A.8 Comparisons with Gurobi: Hyperparameters (k0, k1,∆) used for PaS and ConPaS-LQ. . . 181

A.9 Prediction accuracy and AUROC on 100 validation instances. 183

x

List of Figures

1.1 An ML method that applies to a search algorithm for a COP. 7

1.2 An ML method that applies to a search algorithm for multiple COPs. 7

1.3 An ML framework: An ML method that applies to multiple search algorithms for a COP. . 9

1.4 Contribution 1: An ML framework that applies imitation learning to multiple MAPF
search algorithms. 11

1.5 Contribution 2: An ML framework that applies contrastive learning to multiple MILP
search algorithms. 11

2.1 Success rates for a runtime limit of 5 minutes as a function of the number of agents for
each grid map. The values of w and the numbers of agents are listed in Table 2.5. For
ECBS+ML, ECBS+ML(ES) and ECBS+IL, the vertical line of the same color indicates the
number of agents in the last iteration where a ranking function is learned in the training
algorithm. In the figure for the warehouse map, the graph of ECBS+h1 coincides entirely
with the one of ECBS+h2. 58

2.2 Success rates for a fixed number of agents as a function of the runtime limit for each grid
map. 59

2.3 Success rates for a runtime limit of 5 minutes as a function of the suboptimality factor w
on the random map for 95 agents. The vertical brown line indicates the value of w in the
last iteration where a ranking function is learned for ECBS+ML(w). 60

2.4 Feature importance plots. We restate the definitions of some atomic features here (see
Section 2.7.1.2 for the full list): f1 is the number of conflicts, f2 is the number of pairs of
agents that have at least one conflict with each other, f3 is the number of agents that have
at least one conflict with other agents, and f9 is the depth of the CT node. 62

2.5 Evolution of the solution quality as a function of the number of replans for MAPF-LNS,
MAPF-ML-LNS and MAPF-LNS with the expert. 65

xi

2.6 Evolutions of the sum of costs (solid curves with the y-axis on the left side, smaller is
better) from 1 second to 60 seconds for MAPF-LNS, ML-S and ML-O, averaged over all
solved instances, and the average ratio of the AUCs of MAPF-LNS and one of ML-S and
ML-O (dotted curves with the y-axis on the right side, greater than 1 is better), also
averaged over all solved instances, as a function of the runtime. The error bars represent
the standard deviation. 75

2.7 Normalized sum of costs (i.e., we normalize them by taking the ratio of the sum of costs
of the solution over the sum of the lengths of the individually cost-minimal paths of
all agents) of 100 PP runs with different random priority orderings on MAPF instance
“room-32-32-4-random-1.scen” from [181] with 20 agents, sorted in increasing order of
their normalized sums of costs. PP runs that fail to find a solution are shown on the top of
the plot. 79

2.8 An example of Op. Assume we have a MAPF instance with k = 4 agents on an empty
4× 5 grid map. The start and goal vertices of agents a1 and a2 are shown in (a). 82

2.9 Normalized sum of costs for deterministic ranking on the random map. Unsolved MAPF
instances are shown on top of the plot. 92

2.10 Solution rank for stochastic ranking with random restarts. 95

3.1 An overview of training and data collection for CL-LNS. For each MILP instance for
training, we run several LNS iterations with LB. In each iteration, we collect both positive
and negative neighborhood samples and add them to the training dataset, which is used
in downstream supervised contrastive learning for neighborhood selections. 111

3.2 The primal gap (the lower, the better) as a function of runtime averaged over 100 test
instances. For ML methods, the policies are trained only on small training instances but
are tested on both small and large test instances. 120

3.3 The survival rate (the higher, the better) over 100 test instances as a function of runtime
to meet the primal gap threshold 1.00%. For ML methods, the policies are trained only on
small training instances but are tested on both small and large test instances. 122

3.4 The best performing rate (the higher the better) as a function of runtime on 100 test
instances. The sum of the best performing rates at a given runtime might sum up greater
than 1 since ties are counted multiple times. 123

3.5 The primal bound (the lower, the better) as a function of the number of iterations averaged
over 100 small test instances. LB and LB (data collection) are LNS with LB using the
neighborhood sizes fine-tuned for CL-LNS and data collection, respectively. The table
shows the neighborhood size (NH size) and the average runtime in seconds (with standard
deviations) per iteration. 125

3.6 Ablation study: The primal gap (the lower, the better) as a function of time averaged over
100 small test instances. 126

xii

3.7 Overview of ConPaS. For training, we collect data from a set of MILP instances, including
positive samples that are optimal and near-optimal solutions and negative samples that
are low-quality or infeasible solutions. We use the data in supervised CL to predict optimal
solutions. During testing, the predictions are used in Predict-and-Search [70]. 128

3.8 The primal gap (the lower the better) as a function of runtime, averaged over 100 test
instances. 134

3.9 The survival rate (the higher, the better) to meet a certain primal gap threshold over 100
test instances as a function of runtime. The primal gap threshold is set to the median of
the average primal gaps at the 1,000-second runtime cutoff among all methods rounded to
the nearest 0.50%. 136

3.10 The primal integral (the lower, the better) at the 1,000-second runtime cutoff, averaged
over 100 test instances. The error bars represent the standard deviation. A tabular
representation is provided in the Appendix Table A.7. 137

3.11 Generalization to 100 large instances: The primal gap as a function of runtime, the survival
rate as a function of runtime and the primal integral at the 1,000-second runtime cutoff.
The primal gap threshold for the survival rate is chosen as the medium of the average
primal gaps at the 1,000-second runtime cutoff among all methods rounded to the nearest
0.50%. A tabular representation for the primal integral plots is provided in Appendix. . . . 138

3.12 Training on different fractions of training instances: The primal gap as a function of
runtime and the primal integral at the 1,000-second runtime cutoff. ConPaS-LQ-50% and
ConPaS-LQ-25% denote the versions of ConPaS trained with only 50% and 25% of the
training instances, respectively (similarly for PaS). 138

A.1 The primal gap (the lower the better) as a function of time, averaged over 100 instances.
For ML approaches, the policies are trained on only small training instances but tested on
both small and large test instances. 173

A.2 The survival rate (the higher the better) over 100 instances as a function of time to meet
primal gap threshold 1.00%. For ML approaches, the policies are trained on only small
training instances but tested on both small and large test instances. 174

A.3 The primal bound (the lower the better) as a function of time, averaged over 100 instances.
For ML approaches, the policies are trained on only small training instances but tested on
both small and large test instances. 175

A.4 The best performing rate (the higher the better) as a function of runtime over 100 test
instances. For ML approaches, the policies are trained on only small training instances
but tested on both small and large test instances. 176

A.5 The gap to virtual best (the lower the better) as a function of runtime, averaged over 100
test instances. For ML approaches, the policies are trained on only small training instances
but tested on both small and large test instances. 177

xiii

A.6 The primal gap as a function of runtime and the primal integral at 1,000 seconds runtime
cutoff. Note that the curves of PaS and ConPaS highly overlap with each other. 180

A.7 Comparisons with Gurobi: The primal gap (the lower, the better) as a function of runtime
averaged over 100 test instances. 182

A.8 Comparisons with Gurobi: The primal integral (the lower, the better) at 1,000 seconds
runtime cutoff, averaged over 100 test instances. The error bars represent the standard
deviation. 182

xiv

Abstract

Combinatorial optimization is fundamental in computer science and operations research, focusing on find-

ing high-quality solutions in structured solution spaces. It encompasses a wide range of real-world prob-

lems, including those in logistics, manufacturing, transportation and finance. Many search algorithms have

been proposed to solve combinatorial optimization problems (COPs). The high complexity of COPs makes

effective decision-making strategies crucial in these algorithms. These strategies guide the search pro-

cess by navigating the search space. Effective decision-making strategies enhance the efficiency of finding

optimal or near-optimal solutions. Despite the significant advancements in search algorithms, human-

designed strategies have a few limitations. They often rely on domain-specific knowledge that may not

generalize well to different instances and may lead to suboptimal performance. In this dissertation, we

show that one can use machine learning (ML) to improve human-designed decision-making strategies for

different search algorithms for COPs. Specifically, we focus on two important COPs, namely multi-agent

path finding and mixed integer linear programs.

Multi-agent path finding (MAPF) is the problem of finding conflict-free (i.e., collision-free) paths for

agents in a shared environment that minimizes their total travel time. It is an NP-hard problem that has

important applications for distribution centers, traffic management and computer games. Various search

algorithms have been proposed to solve MAPF. Search algorithms, such as Conflict-Based Search (CBS),

are guaranteed to find optimal solutions. To trade off runtime with solution quality, bounded-suboptimal

search algorithms, such as Enhanced CBS (ECBS), have been proposed to find solutions with a guaranteed

xv

approximation ratio and are more scalable than optimal search algorithms. Unbounded-suboptimal search

algorithms, such as Prioritized Planning (PP) and Large Neighborhood Search (LNS), drop optimality guar-

antees to find solutions even faster. There are a handful of decisions in these search algorithms that concern

partitioning the search space, prioritizing search space exploration and pruning the search space. Thus,

they typically have a big impact on the efficiency and/or effectiveness of the search. In the past decade

of research on MAPF, these decisions have mainly been made manually by humans. In this dissertation,

we show that one can leverage ML to improve decision-making in various types of search algorithms for

MAPF and introduce CBS+ML, ECBS+ML, MAPF-ML-LNS and PP+ML. Specifically, we apply general ML

techniques to learn (1) which conflict to resolve next in CBS, (2) which search tree node to expand next in

ECBS, (3) which part of the solutions to improve next in LNS and (4) which priority to assign to agents in

PP. In these four settings, we deploy imitation learning to imitate slow but effective experts and reduce the

ML task to learning-to-rank problems where the ML models rank available decision options. Empirically,

we demonstrate that our ML-guided search algorithms show substantial improvement in terms of the suc-

cess rates, runtimes and/or solution qualities over their state-of-the-art non-ML-guided counterparts on

several different types of grid maps from a popular MAPF benchmark.

Mixed integer linear programs (MILP) are flexible and powerful tools for modeling and solving many

difficult real-world COPs. In the past decades, research efforts have been dedicated to improving Branch-

and-Bound (BnB), an optimalMILP search algorithm. It is a tree search algorithm that repeatedly breaks the

MILP down into smaller subproblems andmaintains upper and lower bounds to eliminate subproblems that

cannot contain an optimal solution. Unlike BnB, meta-heuristic search algorithms, such as Large Neigh-

borhood Search (LNS) and Predict-and-Search (PaS), are popular unbounded-suboptimalMILP search algo-

rithms that can find high-quality solutions to MILPs much faster without having to prove their optimality.

There are important decisions to make in both LNS and PaS: LNS improves the solution by iteratively

reoptimizing a subset of variables, and deciding which subset of variables to reoptimize is a challenging

xvi

decision to make; PaS predicts which values to assign to a subset of variables based on the input MILP to

get a reduced-size MILP that is much faster to solve, and deciding which variables to fix to which values

is also important. In previous works, those decisions have mainly been made manually by humans and

learned by imitation learning algorithms. In this dissertation, we show that one can leverage contrastive

learning to improve decision-making in both LNS and PaS and introduce CL-LNS and ConPaS. In these

two settings, we develop novel data collection techniques to collect both positive and negative samples,

which are crucial to the success of contrastive learning, and use supervised contrastive losses to train the

ML models. Empirically, we demonstrate that both CL-LNS and ConPaS significantly outperform their

non-ML-guided and ML-guided counterparts in terms of both runtime and solution quality.

xvii

Chapter 1

Introduction

Combinatorial optimization [153] is a pivotal area in computer science and operations research, focusing

on selecting the best solutions from vast but structured solution spaces. Such problems are characterized

by decisions that are discrete in nature, involving yes/no or select-from-many options. These challenges

are prevalent across numerous sectors, including logistics, manufacturing, telecommunications, finance

and healthcare, underscoring their significance in both theoretical research and practical applications.

In the past decades, search algorithms for combinatorial optimization problems (COPs) play a crucial

role by helping to navigate the solution spaces efficiently and/or effectively. Here, efficiency refers to small

runtimes and effectiveness refers to high-quality solutions. On the other hand, machine learning (ML) has

profoundly advanced various domains within computer science, revolutionizing traditional approaches

and enabling new paradigms of innovation. In this dissertation, we explore leveraging ML to improve

search algorithms for COPs and validate the following hypothesis:

One can leverage general ML frameworks to improve decision-making strategies in different types of

search algorithms for combinatorial optimization problems.

To explain the hypothesis, we first provide an introduction to COPs in Section 1.1. We then provide an

overview of search algorithms for COPs in Section 1.2, where we also talk about decision-making strategies

1

in search algorithms and what has or has not been done in using ML to improve those strategies. Finally,

we present the contribution of this dissertation in Section 1.3.

1.1 Combinatorial Optimization Problems (COPs)

The significance of combinatorial optimization extends across various practical applications. In logistics

and transportation, it is employed to optimize routing and scheduling, reducing costs and improving ef-

ficiency [189]. In manufacturing, it aids in resource allocation and production scheduling [165, 109]. In

network design and management, it is applied to optimizing the operation of transportation and utility

networks to enhance the networks’ throughput or reliability [84, 67].

The primary objective in COPs is to optimize a particular objective function, such as cost, time or re-

source usage, subject to a set of constraints. This could involve, for example, finding the most cost-effective

route in a delivery network that adheres to constraints such as distance and capacity limits. Problems in

this field are inherently complex, often requiring sophisticated mathematical models and algorithms. The

complexity arises from the exponential growth of possible solutions as the instance size increases, making

many of these problems NP-hard and thus challenging to solve [153].

In this dissertation, we focus on two specific NP-hard COPs, namely multi-agent path finding (MAPF)

and mixed integer linear programs (MILPs). Next, we introduce both MAPF and MILP.

1.1.1 Multi-Agent Path Finding (MAPF)

MAPF is a COP that involves finding the optimal paths for multiple agents to navigate from their respective

start locations to their target locationswithout collidingwith each other and static obstacles in a potentially

congested shared environment. The objective ofMAPF typically involves minimizing the sum of all agents’

travel times.

2

We focus on MAPF in this dissertation since it has significant relevance across multiple real-world

domains: In robotics, it is crucial to coordinate the movement of autonomous robots in warehouses or

factories, where efficient path planning can drastically improve effectiveness and safety [199]. In computer

games, MAPF algorithms enhance the realism by managing the non-player characters to move in certain

formations [140, 125] which contributes to more enjoyable gameplay. In transportation management and

logistics, MAPF algorithms benefit applications like drone delivery systems [81] and autonomous vehicle

coordination [45, 123, 33], which also help to reduce traffic congestion and improve safety. In disaster

response scenarios, managing the paths of multiple agents efficiently is also pivotal since search and rescue

operations rely on coordinatedmovements of responders and evacuees tomaximize coverage andminimize

response times [161, 157]. Overall, the significance of MAPF lies in its ability to enhance efficiency and

effectiveness in systems involving multiple agents that are not allowed to collide. As the deployment

of multi-agent systems continues to grow, the ability to solve MAPF problems efficiently and effectively

becomes increasingly critical.

However, solving MAPF optimal is an NP-hard problem on general graphs [208] and some specific

types of graphs, such as planar graphs [207] and grid graphs [9], meaning that finding the optimal so-

lution can require computational time that grows exponentially with the problem instance size. Even

approximate solutions can be challenging to obtain within a reasonable runtime [139]. The complexity

arises from the need to account for the interactions between agents, which leads to exponential growth

in the search space as the number of agents increases. This difficulty is even exacerbated in dynamic en-

vironments where agents must adapt to changing conditions in real-time [126] or when path planning is

coupled with other tasks such as target assignments [138].

3

1.1.2 Mixed Integer Linear Program (MILP)

In addition to MAPF, we also focus on mixed integer linear programs (MILP) since they are powerful

mathematical modeling techniques, and a wide range of COPs can be formulated as MILPs. MILPs extend

linear programs by allowing some or all of the decision variables to be restricted to integer values. The

general form of a MILP involves an objective function, which is to be maximized or minimized, subject

to a set of linear equality and/or inequality constraints. Including integer variables in MILPs makes them

particularly useful for solving problems requiring discrete decisions. MILPs have applications in numerous

domains due to their flexibility in modeling complex decision-making: In operations research, MILPs are

used to solve scheduling [109, 146], resource allocation [165] and supply chainmanagement problems [204,

93, 171]. In finance, they are applied to portfolio optimization [13, 145], where investment decisions must

comply with risk control and budget constraints. In the energy sector, MILPs are used to optimize power

generation and distribution [29, 152, 129]. In logistics and transportation, MILPs help in vehicle routing

and network design [134, 65]. The versatility of MILPs makes them an essential tool for industries where

optimal decision-making is crucial.

However, MILPs are generally NP-hard to solve. This complexity arises from the integer constraints,

which create a combinatorial explosion of possible solutions. Unlike linear programs, where efficient

polynomial-time algorithms exist, large-scale MILP instances with numerous variables and constraints

are much harder to solve, requiring significant computational resources and sophisticated algorithms.

1.2 Search Algorithms for COPs

Search algorithms for COPs have been developed and play a crucial role by helping to navigate the solution

spaces efficiently and effectively. To name a few, there are optimal search algorithms, such as A* search

[72] and Branch-and-Bound (BnB) [113], bounded-suboptimal search algorithms, such as focal search [155]

4

and explicit estimation search [186], and unbounded-suboptimal search algorithms, such as local search

[97] and genetic algorithms [79]. Many solvers for COPs based on these search algorithms have evolved

considerably over the past decades and can handle large-scale problem instances thanks to algorithmic

advances. There are many decisions to make in search algorithms that are crucial to their success. These

decisions concern the exploration and exploitation of the search space. These decisions include partitioning

the search space into multiple parts, determining the order in which to explore these parts and deciding

which part of the search space should be pruned.

In the context of MAPF, recent research has focused on developing efficient MAPF search algorithms

to tackle its inherent complexity. MAPF search algorithms can be broadly categorized into centralized and

decentralized methods. Centralized methods, such as Conflict-Based Search (CBS) [174] and its variants

[10, 120, 124], provide optimal or bounded-suboptimal solutions by considering the joint state space of

all agents that includes information of all agents’ locations at every time step. Decentralized methods

[78, 172], on the other hand, allow agents to plan independently while coordinating with other agents

to avoid conflicts (i.e., collisions), offering scalability benefits. However, decentralized methods typically

find lower-quality solutions than centralized methods. Thus, we focus on centralized methods in this

dissertation.

Research on MILPs is a dynamic and evolving field, with ongoing efforts to develop more efficient

algorithms. In the past decades, innovations in optimal MILP search algorithms, such as BnB [113] and

Branch-and-Cut [64], have significantly improved the efficiency of solving MILPs and become the cores

of many state-of-the-art solvers, such as SCIP [21], Gurobi [69] and CPLEX [37]. On the other hand,

popular unbounded-suboptimal search algorithms, such as greedy algorithms [27] and local search [114,

71, 177], provide solutions faster and are often good enough for practical purposes. Other unbounded-

suboptimal search algorithms, such as genetic algorithms [136], simulated annealing [185] and particle

swarm optimization [105], have also been explored to solve MILP problems.

5

There are notable similarities between some MAPF and MILP search algorithms. For example, CBS in

MAPF and BnB in MILP are both tree search algorithms that repeatedly break problems down into smaller

subproblems. CBS selects conflicts to resolve, while BnB selects variables to branch on. These decisions

significantly impact the efficiency of the search algorithms [102, 22]. Another important decision shared by

both BnB and the unbounded suboptimal variants of CBS∗ is selecting which search tree nodes to expand.

Large Neighborhood Search (LNS) is another search algorithm applied to bothMAPF andMILP. LNS begins

with a feasible solution and iteratively improves it by reoptimizing a part of the solution. For both MAPF

and MILP, selecting which part of the solution to reoptimize is a crucial decision in LNS [117, 177, 198,

179].

The idea of combining research efforts in MAPF and MILP search algorithms has been explored, par-

ticularly in formulating MAPF as a MILP. [209] models MAPF as a multi-commodity flow problem using

MILPs. This approach involves a time-expanded graph where vertices are indexed by location and time,

with binary variables for each pair of agents and edges in the graph. For small MAPF instances, these

MILPs can be solved using off-the-shelf MILP solvers. However, this formulation does not scale well to

large instances due to its inefficient representation of MAPF. The Branch-and-Cut-and-Price algorithm

[112] is a MILP-based MAPF search algorithm that addresses this issue by incrementally constructing the

necessary variables and constraints to resolve conflicts in agents’ paths.

1.2.1 Machine Learning (ML) for COPs

Despite the advances in search algorithms and their ability to tackle large-scale COPs, many state-of-the-

art search algorithms still rely on hand-crafted strategies to make decisions that are otherwise too expen-

sive to compute or not well-defined mathematically. These hand-crafted strategies inherently face several

limitations since they often rely on domain-specific knowledge and intuition, which, while valuable, can
∗BnB maintains both upper and lower bounds on the solution. Thus, the order in which search tree nodes are expanded does

not affect the proof of optimality. CBS and its variants maintain only the lower bounds. Thus, CBS has little flexibility in selecting
search tree nodes since it always selects the ones with the lowest bounds, but its bounded-suboptimal variants do not.

6

An ML Method A Search Algorithm A COP

Figure 1.1: An ML method that applies to a search algorithm for a COP.

An ML Method A Search Algorithm

COP 1

COP 2

COP 3

Figure 1.2: An ML method that applies to a search algorithm for multiple COPs.

be subjective and may not generalize well across different problem instances or problem sizes. Moreover,

manually tuning parameters and designing effective strategies for balancing exploration and exploitation

in the search space is a complex and time-consuming task, prone to human errors and bias. This can lead to

suboptimal performance, especially in new environments where generalizable decision-making is crucial.

Given these limitations, ML presents a promising avenue for enhancing decision-making in search

algorithms for COPs [14]. ML can learn from vast amounts of data, identifying patterns and strategies

that may not be apparent to human designers. By leveraging techniques such as supervised learning and

imitation learning, it is possible to develop decision-making models that make decisions more efficiently

and effectively. These models can dynamically adjust parameters, balance exploration and exploitation,

andmake decisions based on the state of the search that includes, for example, information on the solutions

found and statistics on the search process. Consequently, integrating ML into combinatorial optimization

has the potential to significantly improve the efficiency and effectiveness of solving complex real-world

problems.

ML has been applied to improve search algorithms for various COPs. Much of the previous research

has focused on developing ML methods tailored to specific problems, including routing problems such as

7

the traveling salesman problem (TSP) [12, 42] and the vehicle routing problem (VRP) [149, 107, 132, 127], as

well as resource allocation problems such as the bin packing problem [83, 47] and the scheduling problem

[108, 215]. These studies specialize in one COP and propose ML methods tailored to one search algorithm,

as illustrated by Figure 1.1. However, this narrow focus presents challenges in generalization: MLmethods

developed for a particular search algorithm in one COP cannot easily be adapted to other search algorithms

for the same COP or the same search algorithm for different COPs. For example, applying ML methods

designed for local search in VRP [132, 127] to greedy algorithms for VRP [12, 107] is not straightforward,

as these methods use different features, network architectures and learning algorithms. Similarly, ML

methods for local search in VRP may not be easily transferable to local search for other COPs, as they are

often tailored to the specific features and structures of VRP.

There are studies that partially address this issue by developing an ML method for a specific search

algorithm that can be applied to multiple COPs, as illustrated by Figure 1.2. For example, one of the

earliest works on ML-guided COP [99] improves a greedy algorithm to solve multiple graph optimization

problems, including TSP, the maximum cut problem and the maximum independent set problem; [28]

learns to improve a search algorithm based on constraint programming and dynamic programming for

TSP, the portfolio optimization problem and the packing problem; [32] learns to perform reoptimization in

local search for expression simplification, the scheduling problem and VRP. However, these approaches are

limited by their focus on specific search algorithms, restricting their applicability to only those COPs that

the search algorithms can address. For example, the greedy algorithm in [99, 143] constructs solutions by

sequentially adding vertices, which works well for graph optimization problems where feasible solutions

are easy to obtain but may not generalize to other problems with more complex constraints.

MILP itself is a COP and serves as a general technique for solving various COPs, partially addressing

the limitations of earlier studies by modeling and solving a broader range of problems. Recent research

has integrated ML with MILP search algorithms to enhance decision-making strategies. These efforts

8

An ML Method Search Algorithm 2

Search Algorithm 1

Search Algorithm 3

A COP

Figure 1.3: An ML framework: An ML method that applies to multiple search algorithms for a COP.

are motivated by the observation that MILP instances in certain applications often share structural sim-

ilarities [6]. A growing body of literature has emerged to enhance MILP search algorithms, particularly

Branch-and-Bound [102, 59] and Large Neighborhood Search [177, 198, 179], by incorporating adaptable

ML components that leverage data and training.

In the context of MAPF, there has been progress as well in integrating ML techniques to enhance

decentralized MAPF algorithms. For instance, reinforcement learning and imitation learning have been

applied to construct agents’ paths in warehouse environments with limited communication capabilities

[172, 38]. However, to the best of our knowledge, there has been little progress in advancing centralized

MAPF search algorithms with ML.

Several gaps remain in the current literature:

1. Lack of ML methods for Centralized MAPF Search Algorithms Despite the similarities in

decision-making between MAPF and MILP search algorithms, there has been little progress on ap-

plying ML to improve decision-making in centralized MAPF search algorithms. Leveraging insights

from ML-guided MILP algorithms is a promising research direction to address this gap.

2. Limited Exploration of ML Techniques Most studies in ML for COPs have focused on imita-

tion learning and reinforcement learning, leaving opportunities for other emerging ML techniques.

For example, contrastive learning, which has seen success in computer vision [77, 74, 30], natural

9

language processing [62, 164] and graph representation learning [205, 188], could be explored to

improve decision-making strategies in search algorithms for COPs.

3. Need for General ML Frameworks Most crucially, a significant gap is the absence of general ML

frameworks that can be applied to multiple search algorithms for a specific COP, as illustrated in

Figure 1.3. While previous studies have developed ML methods for a specific search algorithm for

one or multiple COPs, there is no existing work that formulates a general ML framework capable of

improving decision-making strategies for multiple search algorithms for a single COP. This is impor-

tant because (1) different types of search algorithms are needed since the desired trade-offs between

optimality requirements of the solutions and the computation budgets to solve a COP change when

solving different instances under different circumstances; (2) valuable common insights into a COP

and engineering techniques can be utilized to improve multiple search algorithms; and (3) a general

ML framework could enable the reuse ofML implementations, making tools more accessible to users,

including those without extensive ML expertise. Developing such a framework is challenging, as it

requires not just an ML method but a general ML framework that can be applied to diverse search

algorithms designed to function differently.

1.3 Contributions

In this dissertation, we fill the gaps in the current literature and make two major contributions. The first

major contribution validates the hypothesis for MAPF, addressing the first and third gaps. The second

major contribution validates the hypothesis for MILP, addressing the second and third gaps. Addressing

the second gap for MAPF is left for future work and discussed in Chapter 4.

• Contribution 1 To validate the hypothesis for MAPF, we first formulate a general imitation-

learning framework to improve decision-making strategies for MAPF search algorithms. Building

10

Imitation
Learning ECBS

CBS

MAPF-LNS

PP

MAPF

Figure 1.4: Contribution 1: An ML framework that applies imitation learning to multiple MAPF search
algorithms.

Contrastive
Learning

LNS

PaS

MILP

Figure 1.5: Contribution 2: An ML framework that applies contrastive learning to multiple MILP search
algorithms.

on existing imitation learning methods for MILP solving [102, 73], we tailor our framework specif-

ically for MAPF. We utilize domain knowledge from MAPF to design the data collection processes

and features, which are crucial for imitation learning. We then apply this framework to four differ-

ent state-of-the-art MAPF search algorithms, namely (1) Conflict-Based Search (CBS), (2) Enhanced

Conflict-Based Search (ECBS), (3) Large Neighborhood Search (MAPF-LNS) and (4) Prioritized Plan-

ning (PP), as illustrated in Figure 1.4. CBS is an optimal tree search algorithm that repeatedly detects

conflicts between agents and resolves one of them by splitting the current problem into two sub-

problems. For CBS, we propose CBS+ML, that learns to select which conflict to resolve. ECBS is a

bounded-suboptimal variant of CBS that expands the search tree by repeatedly selecting search tree

nodes from a list of candidate nodes. For ECBS, we propose ECBS+ML, that learns to select which

search tree node to expand next. MAPF-LNS is an anytime MAPF search algorithm that iteratively

11

selects a subset of agents’ paths to reoptimize. For MAPF-LNS, we propose MAPF-ML-LNS, that

learns to select promising subsets. PP is a greedy search algorithm that plans agents’ paths sequen-

tially in descending order of their preassigned priorities. For PP, we propose PP+ML, that learns to

assign priorities to agents. Finally, we empirically show that CBS+ML, ECBS+ML, MAPF-ML-LNS

and PP+ML significantly outperform their respective vanilla versions in terms of runtime and/or

solution quality. Further details are provided in Chapter 2.

• Contribution 2 To validate the hypothesis for MILP, we first formulate a general contrastive-

learning framework to improve decision-making strategies for MILP search algorithms. We then

apply this framework to two different state-of-the-art MILP search algorithms as illustrated in Fig-

ure 1.5, namely (1) Large Neighborhood Search (LNS) and (2) Predict-and-Search (PaS). LNS is an

anytime MILP search algorithm that iteratively selects a subset of variables to reoptimize. For LNS,

we propose CL-LNS, that learns to select promising subsets. PaS is a greedy search algorithm that

first greedily fixes values for a subset of variables and then solves a reduced-size MILP. For PaS, we

propose ConPaS, that learns to predict which values to fix for which subset of variables. Finally, we

empirically show that both CL-LNS and ConPaS significantly outperform their respectiveML-guided

and non-ML-guided counterparts in terms of both runtime and solution quality. Futher details are

provided in Chapter 3.

To summarize, we introduce two generalML frameworks aimed at improving human-designed decision-

making strategies in different search algorithms for MAPF and MILP, respectively. They are the first ML

frameworks capable of improving multiple search algorithms for a single COP. Although MAPF cannot be

solved efficiently when using its MILP formulation, as discussed in Section 1.2, we leverage insights from

ML methods tailored for MILP search algorithms to formulate an ML framework that improves four dif-

ferent MAPF search algorithms. They are the first works that use ML techniques to enhance MAPF search

12

algorithms and the first ML framework that provides systematic guidance on improving these algorithms

with ML.

For MILP, previous research has applied imitation learning and reinforcement learning to improve

decision-making strategies in various MILP search algorithms. However, no prior work has demonstrated

how to systematically apply a general ML framework across multiple search algorithms, nor has any used

contrastive learning, an ML technique proven more effective than imitation learning and reinforcement

learning in other domains. We address these gaps by proposing the first contrastive learning-based ML

framework for MILP and applying it to improve two MILP search algorithms.

Finally, we suggest that the contrastive learning framework developed forMILP can also be generalized

to MAPF search algorithms. Moreover, we propose that both ML frameworks could be generalized to other

COPs within the context of multi-task learning. These possibilities, along with the realized impact of our

two major contributions, are discussed in Chapter 4.

13

MAPF Multi-Agent Path Finding
MILP Mixed Integer Linear Program
COP Combinatorial Optimization Problem
ML Machine Learning
CBS Conflict-Based Search
ECBS Enhanced Conflict-Based Search
LNS Large Neighborhood Search
PP Prioritized Planning
BnB Branch-and-Bound
PaS Predict-and-Search
TSP Traveling Salesman Problem
VRP Vehicle Routing Problem
CT Constraint Tree
PPS Parallel-Push-and-Swap
WDG Weighted Dependency Graph
ICBS Improved Conflict-Based Search
MDD Multi-Valued Decision Diagram
CG Conflict Graph
EECBS Explicit Estimation Conflict-Based Search
SVM Support Vector Machine
LB Local Branching
ND Neural Diving
CL Contrastive Learning
LP Linear Program
GAT Graph Attention Network
PG Primal Gap
PI Primal Integral
DNN Deep Neural Network
AUC Area Under the Curve
GCN Graph Convolutional Network
MLP Multi-Layer Perceptron
MVC Minimum Vertex Cover
MIS Maximum Independent Set
CA Combinatorial Auction
SC Set Covering
IP Item Placement

Table 1.1: Acronyms and their meanings.

14

Chapter 2

Improving Decision-Making in MAPF Search Algorithms

In this chapter, we present the first major contribution of this dissertation. Specifically, we formulate a

general imitation learning framework to improve decision-making strategies for MAPF search algorithms.

We identify important decisions that are typically made by human-designed strategies in four different

state-of-the-art MAPF search algorithms, namely Conflict-Based Search (CBS), Enhanced Conflict-Based

Search (ECBS), Large Neighborhood Search (MAPF-LNS) and Prioritized Planning (PP), and then apply

the framework to improve them. Empirically, the machine learning-guided versions of the MAPF search

algorithms substantially outperform their non-ML-guided counterparts in terms of runtime and/or solution

quality. Therefore, these results validate the hypothesis that one can leverage a general ML framework to

improve human-designed decision-making strategies in different types of MAPF search algorithms.

The remainder of this chapter is structured as follows. In Section 2.1, we state the motivation behind

using machine learning (ML) for MAPF and provide an overview of our contributions. In Section 2.2, we

formally define MAPF. In Section 2.3, we introduce CBS, ECBS, MAPF-LNS and PP. In Section 2.4, we

summarize related work. In Section 2.5, we introduce the framework. In Sections 2.6-2.9, we introduce

CBS+ML, ECBS+ML, MAPF-ML-LNS and PP+ML, respectively, and evaluate them empirically. Finally, in

Section 2.10, we summarize the contributions of this chapter.

15

2.1 Introduction

Multi-Agent Path Finding (MAPF) is the problem of finding a set of conflict-free (that is, collision-free)

paths for a team of agents that moves on a given underlying graph and minimizes the sum of path costs.

MAPF has practical applications in distribution centers [138, 80], traffic management [45] and video games

[140]. For these applications, a MAPF instance can involve hundreds and sometimes thousands of agents.

MAPF is NP-hard to solve optimally [209, 9]. However, given its importance in various applications,

different MAPF search algorithms have been proposed. One of the leading categories of MAPF search algo-

rithms is optimal and bounded-suboptimal algorithms, which guarantee to return a solution that is optimal

and not larger than optimal by more than some user-specified multiplicative factor w ≥ 1, respectively.

The state of the art in this category includes Conflict-Based Search (CBS) [174], Branch-and-Cut-and-Price

[112], Enhanced CBS (ECBS) [10] and Explicit Estimation CBS (EECBS) [124]. CBS is an optimal MAPF

search algorithm and the backbone of most of these algorithms. It uses a single-agent path-finding algo-

rithm to plan a path for each agent first and resolves conflicts afterward. The key idea behind CBS is to

use a bi-level search that resolves conflicts by adding constraints at the high level and replans paths for

agents respecting these constraints at the low level. The high level of CBS performs a best-first search on

a binary search tree called constraint tree (CT). A CT node consists of a set of paths, one for each agent,

and a set of constraints on these paths. The cost of a CT node is the sum of costs of all agents’ paths. CBS

maintains an open list that sorts all CT nodes that have not been expanded in increasing order of their

costs. CBS always expands the first CT node in the open list. To expand a CT node, CBS chooses a conflict

between two agents’ paths to resolve and adds constraints that prevent this conflict in the child CT nodes.

ECBS is a bounded-suboptimal version of CBS. It uses focal searches [155] instead of best-first searches for

both the high-level and the low-level searches to guarantee bounded suboptimality. The high-level search

of ECBS maintains a focal list that contains the subset of CT nodes in the open list whose costs are at most

16

w times the lowest cost of any CT node in the open list and can select an arbitrary one in the focal list for

expansion.

The other category of MAPF search algorithms is unbounded-suboptimal algorithms that can solve

very large MAPF instances but usually find low-quality solutions. These algorithms include greedy algo-

rithms, such as prioritized planning (PP) [49], rule-based algorithms, such as Parallel-Push-and-Swap (PPS)

[170] and Priority Inheritance with Backtracking [150], and anytime algorithms∗, such as Large Neighbor-

hood Search for MAPF (MAPF-LNS) [117]. MAPF-LNS is one of the state-of-the-art MAPF search algo-

rithms in this category. MAPF-LNS first finds a set of conflict-free paths quickly using an existing MAPF

search algorithm, such as EECBS, PP or PPS. It then improves the sum of costs of the conflict-free paths

to near-optimal over time by iteratively destroying subsets of the paths generated by agent-set selection

strategies and replanning them using a repair operator while leaving the remaining paths unchanged. On

the other hand, PP is one of the fastest algorithms for solving MAPF suboptimally based on a simple plan-

ning scheme [49] that assigns each agent a unique priority and computes, in descending priority ordering,

each agent’s individually cost-minimal path that avoids conflicts with both static obstacles and the paths

of the already-planned agents (which are treated as moving obstacles).

There is a lot of important decision-making in MAPF search algorithms that concerns, for example,

how to partition the search space into two or more parts, which part of the search space to explore next

and how to prune the search space. In the past, decision-making was often done by hand-crafted strategies

which requires domain knowledge and a thorough understanding of the algorithms. In this chapter, we

apply a general ML framework to learn such strategies and demonstrate that the performance of MAPF

search algorithms, i.e., their runtime and/or solution quality, can be improved with ML-guided strategies.

In particular, we introduce CBS+ML, ECBS+ML, MAPF-ML-LNS and PP+ML to show that the framework

is applicable to state-of-the-art MAPF search algorithms of different types: the optimal algorithm CBSwith
∗An anytime algorithm can be stopped at any point after a feasible solution is found during its execution and still provides

a valid solution to the problem.

17

improved heuristics [120], the bounded-suboptimal algorithm ECBS [10] and the unbounded-suboptimal

algorithms MAPF-LNS [117] and PP [49]. To apply this ML framework to improve a MAPF search algo-

rithm, we first identify an important decision to make in the search. For example, there are strategies that

decide which conflict to resolve next in CBS, which node in the focal list to expand next in ECBS, which

subset of agents to replan next in MAPF-LNS and which priorities to assign to agents in PP. We then learn

to imitate effective decisions from an expert: for CBS, we propose an expert to select the next conflict to

resolve based on a weighted dependency graph (WDG) heuristic [120] that solves a weighted vertex cover

problem for each conflict on a graph that captures interaction among agents; for ECBS, the expert selects

the next node to expand by retrospectively computing the complete search tree; for MAPF-LNS, the expert

samples agent subsets and replans them to select the best one; for PP, the expert samples random priority

orderings and plans agents’ paths with each of them to select the best one. These experts are too slow to

be directly useful in the search but provide effective guidance for the search. By observing and recording

the features and decisions of the expert, we deploy imitation learning to learn strategies to predict deci-

sions that are as similar as possible to the expert without actual exhaustive computation. Empirically, we

show that variants of MAPF search algorithms with the learned strategies substantially outperform their

non-ML-guided counterparts in terms of runtime and/or solution quality. The results demonstrate how

a general ML framework can be applied to advance some state-of-the-art MAPF search algorithms and

possibly others.

2.2 Multi-Agent Path Finding

The Multi-Agent Path-Finding (MAPF) problem is to find a set of conflict-free paths for a set of agents

{a1, . . . , ak} on a given 2D four-neighbor grid map with blocked cells that is represented as an undirected

unweighted graph G = (V,E). Each agent ai has a start vertex si ∈ V and a goal vertex ti ∈ V . A

path pi = (pi,0, . . . , pi,l(pi)) for agent ai is a sequence of vertices, where pi,0 = si, pi,l(pi) = ti and l(pi)

18

is the length of the path. Time is discretized into time steps, and, at each time step t, every agent takes

an action: It either moves to an adjacent vertex, i.e., (pi,t, pi,t+1) ∈ E, or waits at its current vertex, i.e.,

pi,t = pi,t+1 ∈ V . Two types of conflicts are considered: i) A vertex conflict ⟨ai, aj , v, t⟩ occurs when

agents ai and aj are at the same vertex v at time step t; and ii) an edge conflict ⟨ai, aj , u, v, t⟩ occurs when

agents ai and aj traverse the same edge (u, v) in opposite directions from time step t to time step t + 1.

The cost of agent ai is defined as l(pi), which is the number of time steps until it reaches its goal vertex

ti and remains there. The delay of agent ai is defined as the difference between l(pi) and the distance

between its start and goal vertices. A solution is a set of conflict-free paths that move all agents from their

start vertices to their goal vertices. The sum of costs (and delays) of a solution is the sum of all agent costs∑k
i=1 l(pi) (and their delays, respectively). Our goal is to find a solution with the minimum sum of costs.

2.3 Background

In this section, we provide a brief introduction to MAPF search algorithms, CBS, ECBS, MAPF-LNS and

PP, that we focus on in this chapter. At the end, we introduce the MAPF instances used in the empirical

evaluation.

2.3.1 Conflict-Based Search (CBS)

CBS is a bi-level tree search algorithm. It records the following information for each CT node N :

1. NCon: The set of constraints imposed so far in the search. There are two types of constraints: i) a

vertex constraint ⟨ai, v, t⟩, corresponding to a vertex conflict, prohibits agent ai from being at vertex

v at time step t; and ii) an edge constraint ⟨ai, u, v, t⟩, corresponding to an edge conflict, prohibits

agent ai from moving from vertex u to vertex v between time steps t and t+ 1.

19

2. NSol: A set of individually cost-minimal paths for all agents respecting the constraints in NCon that

are potentially not conflict-free. An individually cost-minimal path for an agent is a cost-minimal

path between its start and goal vertices under the assumption that it is the only agent in the graph.

3. NCost: The cost of N , calculated as the sum of costs of all agents in NSol.

4. NConf : The set of conflicts between any two paths in NSol.

On the high level, CBS starts with a CT with only one CT node whose set of constraints is empty and then

expands the CT in a best-first manner by always expanding a CT node with the lowestNCost. After choos-

ing a CT node to expand, CBS identifies the set of conflictsNConf inNSol. If there are none, CBS terminates

and returns NSol. Otherwise, CBS randomly (by default) selects one of the conflicts to resolve and adds

two child CT nodes to N by imposing, depending on the type of conflict, an edge or vertex constraint on

one of the two conflicting agents and adding the constraint toNCon of one of the child nodes and similarly

for the other conflicting agent and NCon of the other child node. On the low level, it replans the paths in

NSol to accommodate the newly-added constraints, if necessary. CBS guarantees optimality by performing

best-first searches on both of its high and low levels. CBS itself does not guarantee completeness, but [210]

has an algorithm to detect whether a solution exists for a MAPF instance which can be run to guarantee

completeness prior to running CBS. We do not implement such a component in our empirical evaluation.

2.3.2 Enhanced CBS (ECBS)

ECBS is a bounded-suboptimal version of CBS [10] and is summarized in Algorithm 1. Given a subopti-

mality factor w ≥ 1 (Line 1), ECBS is guaranteed to find a w-approximate solution. Both the high-level

and low-level searches of ECBS use focal searches [155] instead of best-first searches. Consider a CT node

N . On the low level, ECBS runs a focal search for each agent ai (Line 12) such that the cost of the path

found is at most wNLB,i, where NLB,i is the lower bound on the cost of the individually cost-minimal

20

Algorithm 1 ECBS
1: Input: A MAPF instance and suboptimality factor w
2: Generate the root CT node R and calculate RSol, RCost and RConf

3: Initialize open list N ← {R}
4: LB← RLB, and initialize focal list F ← {R}
5: while N is not empty do
6: N ← a CT node with the minimum d-value in F
7: if NConf = ∅ then
8: return NSol

9: Delete N from the open and focal lists
10: Pick a conflict in NConf

11: Generate 2 child CT nodes N1 and N2 of N , and update N1
Con and N2

Con

12: Call low-level search for N i to calculate N i
Sol, N

i
Cost and N i

Conf for i = 1, 2
13: Add N i to N if N i

Sol exists for i = 1, 2
14: Add N i to F if N i

Sol exists and N i
Cost ≤ wLB for i = 1, 2

15: if minN∈NNLB > LB then
16: LB← minN∈NNLB

17: F ← {N ∈ N : NLB ≤ wLB}
18: return No solution

path for ai that respects the set of constraints of CT node N and is computed by the focal search. Let

NLB =
∑k

i=1NLB,i. On the high level, ECBS performs a focal search (Lines 5 - 17) with a focal list that

contains all CT nodes N in N such that NCost ≤ wLB (Lines 4, 14 and 17), where N is the open list and

LB = minN∈N NLB (Lines 4 and 16). Since LB is a lower bound on the sum of costs of any solution, once

a solution is found by always expanding a CT node in the focal list, it is guaranteed to be a w-approximate

solution. Selecting CT nodes from the focal list for expansions (Line 6) in the high level search of ECBS is

an important decision to make. The common practice is to select a CT node with the minimum d-value,

where the d-value is typically a hand-crafted value that is computed for each CT node when it is generated.

The d-value of a CT node is an estimate of the effort required to find a solution in the CT subtree rooted

at that CT node.

21

Algorithm 2MAPF-LNS
1: Input: A MAPF instance I
2: P = {pi : i ∈ [k]} ← runInitialSolver(I)
3: Initialize the weights ω of the agent-set selection strategies
4: while runtime limit not exceeded do
5: H ← selectDestroyHeuristic(w)
6: B ← selectAgentSet(I,H)
7: P− ← {pi ∈ P : ai ∈ B}
8: P+ ← runReplanSolver(I,B, P \ P−)
9: Update the weights ω of the agent-set selection strategies
10: if

∑
p∈P+ l(p) <

∑
p∈P− l(p) then

11: P ← (P \ P−) ∪ P+

12: return P

2.3.3 MAPF-LNS

MAPF-LNS [117] is the state-of-the-art anytime MAPF search algorithm. It is able to solve large MAPF

instances that most existing MAPF search algorithms fail to either solve or provide high-quality solutions

for.

MAPF-LNS, shown in Algorithm 2, takes a MAPF instance as input and calls an efficient initial search

algorithm to compute a solution P (Line 2). In each iteration, it selects an agent set B using an agent-set

selection strategyH (Lines 5-6), deletes the paths P− of the agents inB from P (Line 7) and calls a replan

search algorithm to replan new paths P+ for them that conflict with neither each other nor the paths in

P \ P− (Line 8). If P+ decreases the sum of costs (Line 10), then MAPF-LNS replaces P− with P+ (Line

11). The initial search algorithm could be any off-the-shelf MAPF search algorithm, and the replan search

algorithm could be any off-the-shelf MAPF search algorithm that can handle moving obstacles.

MAPF-LNS uses two randomized agent-set selection strategies, namely an agent-based heuristic and a

map-based heuristic, to generate the agent sets B. The agent-based heuristic generates the agent set B by

including the agent ai with the largest delay and other agents (found via a random walk procedure) whose

paths prevent it from achieving a lower agent cost. The map-based heuristic randomly chooses a vertex

with a degree greater than 2 in graph G and generates the agent set B by including some of the agents

whose paths visit the chosen vertex. Both the agent-based and the map-based heuristics impose a limit

22

on the cardinality of the agent set. MAPF-LNS uses Adaptive LNS [166], essentially an online learning

algorithm, to select one of the two agent-set selection strategies by maintaining a weight for each of them.

2.3.4 Prioritized Planning (PP)

Definition 2.3.1 (Priority ordering). A priority ordering≺≺≺ is a strict partial order on {a1, . . . , ak}: ai ≺ aj

iff agent ai has higher priority than agent aj [137]. ≺≺≺ is a total priority ordering iff any two agents in

{a1, . . . , ak} are comparable (i.e., either ai ≺ aj or aj ≺ ai for all ai ̸= aj) and a partial priority ordering

otherwise.

Prioritized Planning (PP) [49] is an unbounded-suboptimal MAPF search algorithm. In PP, we arrange

all agents into a predefined total priority ordering. Then, we plan paths for all agents one by one in de-

scending order according to the priority ordering. The path of each agent is the individually cost-minimal

path from its start vertex to its goal vertex that has no conflicts with the paths of all higher-priority agents.

So, instead of planning paths for all agents at once, PP decouples the planning process and plans for the

agents sequentially. PP does not guarantee completeness or optimality, but it is popular because of its

efficiency and simplicity. A key consideration in PP is how to determine the predefined total priority or-

dering. It is typically determined either randomly or via manually designed heuristics. We introduce a few

of them in the following.

Query-Distance Heuristic [17] proposes the query-distance heuristic, which measures the start-goal

graph distance dist(si, gi) of each agent ai and assigns higher priority to agents with longer distances.

The motivation behind this heuristic was to prioritize agents that need to travel longer distances and thus

minimize the makespan (i.e., the largest cost of all agents). An opposite version of the query-distance

heuristic, which assigns higher priority to agents with shorter start-goal graph distances, has been used

in [137].

23

Least-OptionHeuristic Building on the idea behind themost-constrained-variable heuristic for solving

constraint satisfaction problems, [191] and [196] propose the least-option heuristic, which assigns higher

priority to agents with fewer path options, where the number of path options for an agent is defined as

the number of paths that do not have conflicts with the paths of already-planned agents within a given

number of time steps in [191] or the number of homology classes of paths in [196].

Start-and-Goal-Conflict Heuristic [24] propose prioritization rules that consider the potential con-

flicts at the start and goal vertices of the agents. Intuitively, if the individually cost-minimal path of agent

ai visits the start vertex of another agent aj , then aj needs to be planned prior to ai; if the individually

cost-minimal path of agent ai visits the goal vertex of another agent aj , then ai needs to be planned prior

to aj . This heuristic tends to reduce the runtime of PP [24] and increase its success rate [18].

RandomRestarts When the priority ordering is assigned randomly, people often apply random restarts

to improve the performance of PP [16]. When PP with a particular priority ordering fails to find a solution

for a MAPF instance, we can “restart” it with a new randomized priority ordering.

2.3.5 MAPF Instances Used in the Empirical Evaluation

In our empirical evaluation, we use grid maps from the following sources: (1) grid maps from the MAPF

benchmark [181]; (2) grid map “‘lak503d”’ from the 2D pathfinding benchmarks [182]; and (3) random

maps and warehouse maps that we generate following [120], where random maps are grid maps with

randomly blocked cells and warehouse maps are grid maps with rectangular obstacles (clusters of blocked

cells).

We describe the training instances, validation instances and test instances used in our empirical eval-

uation. For each grid map from the MAPF benchmark [181], we use the 25 random scenarios provided. A

scenario is a list of randomly created pairs of start and goal vertices for a given grid map. Given a grid

24

map M and a number of agents k, we generate 25 test instances I(M)
Test , one from each scenario, by using

the first k pairs of start and goal vertices. In order to generate training instances and validation instances

that follow a similar distribution as the test instances, given a scenario with a mapM ∈M and a number

of agents k, we generate a training instance I ∈ I(M)
Train by randomly selecting k start vertices from all start

vertices in the scenario, randomly selecting k goal vertices from all goal vertices in the scenario and then

randomly combining them into k pairs of start and goal vertices. For grid maps that are not from theMAPF

benchmark, we generate the MAPF instances in the same way.

The numbers of agents and the types of grid maps used in theMAPF instances and the runtime limits in

our empirical evaluation are mainly based on the scalability of the MAPF search algorithms. For example,

CBS is an optimal MAPF search algorithm, which is slow and does not scale compared to ECBS, MAPF-

LNS or PP. Thus, we use MAPF instances on smaller grid maps with lower agent and/or obstacle densities

and use longer runtime limits. In contrast, for MAPF-LNS and PP, we use MAPF instances on larger maps

with higher agent and/or obstacle densities (that is, easier MAPF instances) and use shorter runtime limits.

These MAPF instance configurations are also impacted by the amount of computation resources we had

access to, which changed from time to time. When we had limited computation resources available, we

tended to use shorter runtime limits and easier MAPF instances.

All empirical evaluations in this chapter follow the setup described above unless stated otherwise.

2.4 Related Work

In this section, we summarize related works on MAPF search algorithms and using ML for MAPF. Finally,

we discuss ML for other combinatorial optimization problems (COP) that inspires our work.

25

2.4.1 MAPF Search Algorithms

For optimal MAPF search algorithms, there has been a huge effort to improve CBS. Selecting which conflict

to resolve next has been explored in Improved CBS (ICBS) [22]. ICBS categorizes conflicts into three types

to prioritize them: (i) A conflict is cardinal iff, when CBS uses the conflict to split CT node N , the costs of

both resulting child nodes are strictly larger thanNCost; (ii) a conflict is semi-cardinal iff the cost of one of

the child nodes is strictly larger thanNCost and the cost of the other child node is the same asNCost; and (iii)

a conflict is non-cardinal otherwise. By first resolving cardinal conflicts, then semi-cardinal conflicts and

finally non-cardinal conflicts, CBS is able to improve its efficiency since it increases the lower bound on the

optimal cost more quickly by generating child nodes with larger costs. ICBS uses Multi-Valued Decision

Diagrams (MDDs) to classify conflicts. An MDD for agent ai is a directed acyclic graph consisting of all

cost-minimal paths from si to ti that respect the current constraints NCon. The vertices at level t of the

MDD are exactly the vertices that agent ai could be at when following one of its cost-minimal paths. The

width of an MDD level is the number of vertices at that level and a singleton is an MDD level with width

one. A vertex conflict ⟨ai, aj , v, t⟩ (edge conflict ⟨ai, aj , u, v, t⟩) is cardinal iff vertex v (edge (u, v)) is the

only vertex at depth t (the only edge from depth t to depth t + 1) in the MDDs of both agents. [122]

proposes to split the search space into two disjoint ones when expanding a CT node in CBS and prioritizes

conflicts based on the number of singletons in or the widths of level t of the MDDs of both agents. To the

best of our knowledge, other than selecting conflicts using MDDs, conflict selection for CBS has not yet

been explored. In this chapter, we show how one can apply ML to learn an improved conflict-selection

strategy in CBSH2 [120] for CBS-based optimal MAPF search algorithms. CBSH2 is the state-of-the-art

version of CBS and uses the same conflict-selection strategy as ICBS.

Another line of research focuses on speeding up CBS by calculating a tighter lower bound on the opti-

mal cost to guide the high-level search. When expanding a CT node N , CBSH [54] uses the CG heuristic,

which builds a conflict graph (CG) whose vertices represent agents and whose edges represent cardinal

26

conflicts inNSol. Then, the lower bound on the optimal cost within the subtree rooted atN is guaranteed

to increase at least by the size of the minimum vertex cover of this CG. We refer to this increment as the

h-value of the CT node. Based on CBSH, CBSH2 [120] uses the DG and WDG heuristics that general-

ize CG and compute h-values for CT nodes using (weighted) pairwise dependency graphs that take into

account semi-cardinal and non-cardinal conflicts besides cardinal ones. CBSH2 with the WDG heuristic

is the current state-of-the-art CBS-based optimal MAPF search algorithm [120]. CBSH2 uses the same

conflict-selection strategy proposed in Improved CBS [22].

There are optimal compilation-basedMAPF search algorithms that reduceMAPF to other COPs. Branch-

and-cut-and-price [112, 111] is a bi-level MAPF search algorithm based on MILP solvers. MAPF has also

been encoded as satisfiability [183], constraint programming [57] and answer set programming problems

[63].

For bounded-suboptimal MAPF search algorithms, there are A∗-based algorithms, such as Enhanced

Partial-Expansion A∗ [53], A∗ with operator decomposition [180] andM* [190], and CBS-based algorithms,

such as ECBS [10] and EECBS [124]. Variants of ECBS, such as ECBS with the highway heuristic [35]

and Improved ECBS [36], have been proposed to speed up ECBS by generating highways (paths for the

agents that include edges from user-provided sets of edges) in environments such as warehouses. However,

these approaches are not generalizable to environments with open areas or environments without straight

corridors. EECBS [124] is the current state-of-the-art bounded-suboptimal MAPF search algorithm. It

replaces focal search in ECBS with explicit estimation search [186], that selects the next node to expand

the CT from three different lists based on certain rules. In contrast, ECBS selects nodes only from the

focal list, which is a simpler rule. For demonstration purposes, in this chapter, we use ECBS as an example

to show how one can apply ML to learn an improved node-selection strategy for CBS-based bounded-

suboptimal MAPF search algorithms.

27

For unbounded-suboptimal MAPF search algorithms, there are prioritized planning-based algorithms,

such as prioritized planning, and rule-based algorithms, such as Push-and-Swap [135], PPS [170] and Pri-

ority Inheritance with Backtracking [150]. MAPF-LNS [117] and MAPF-LNS2 [119] are the state-of-the-art

unbounded-suboptimal MAPF search algorithms based on LNS. MAPF-LNS starts with finding an initial

solution fast and then iteratively improves it over time. MAPF-LNS2 starts with a set of pathswith conflicts,

then iteratively reduces the number of conflicts to find a solution and finally uses MAPF-LNS to optimize

this solution. For demonstration purposes, in this chapter, we use MAPF-LNS to show how one can apply

ML to learn an improved agent-set selection strategy for LNS-based unbounded-suboptimal MAPF search

algorithms. Although the solution qualities of rule-based and prioritized planning-based algorithms are

often worse than those of other types of MAPF search algorithms, they run in polynomial time. Therefore,

they can compute a solution quickly and are quite popular. In this chapter, we also show how one can

apply ML to learn a priority-assignment strategy for PP.

2.4.2 ML for MAPF

Our work is one of the first to useML to improve decision-making withinMAPF search algorithms. ML has

been applied to decentralized MAPF, where agents coordinate in a decentralized fashion. [172] proposes a

framework that combines reinforcement learning and imitation learning to learn decentralized policies for

agents to avoid expensive centralized planning. An enhanced version [38] is later proposed that resolves

deadlocks in congested environments using symmetry-breaking techniques. [141, 128, 193] show that the

communication capabilities of agents help further resolve deadlocks and congestion. ML has also been

used to select the best MAPF search algorithms for solving MAPF optimally [98, 163] and suboptimally

[31].

28

2.4.3 ML for other COPs that Inspires Our Work

Using ML to improve combinatorial search has been studied extensively for other COPs. Mixed integer

linear programs (MILP) are powerful tools for modeling and solving a wide variety of COPs. There is a

huge body of studies that use ML to improve decision-making in Branch-and-Bound (BnB) search [194]

for MILPs, and our works have been inspired by some of them. BnB is a tree search, and, as part of BnB,

nodes in the search tree that contain unassigned variables must be expanded into two child nodes by

selecting one of the unassigned variables and splitting its domain by adding new constraints. There has

been a line of works on learning how to select variables to branch on for BnB [102, 59, 68, 211], where

the main goal is commonly to imitate the effective but expensive Strong Branching heuristic [7]. Conflict

selection in CBS is similar to variable selection in BnB, but previous methods are not directly applicable

since the Strong Branching heuristic does not apply to CBS and features used in those works are based

on variables and constraints that are specific to MILPs. We thus leverage insights from MAPF to craft

our methods. In addition, learning to select nodes to expand [73, 178, 110] in BnB and learning to select

variables to reoptimize in LNS [177] have been explored for solving MILPs. For node selection in BnB,

[73] uses imitation learning to learn node-selection and node-pruning strategies for solving MILPs. [178]

scale up this approach by progressively increasing the instance sizes in the form of curriculum learning.

For variable selection in LNS, both [177] and [179] use imitation learning where [177] learns to imitate an

expert based on random sampling and [179] learns to imitate the Local Branching heuristic [56], which is

a more effective one. Inspired by these early works, we seek to improve similar decisions for ECBS and

MAPF-LNS and develop methods that work for our specific tasks in the context of MAPF.We show howwe

achieve those tasks by leveraging domain expertise and designing engineering techniques that suit MAPF

search algorithms.

29

2.5 An Imitation Learning Framework for Learning Decision-Making

Strategies

In this section, we propose a general ML framework based on imitation learning to learn decision-making

strategies for MAPF search algorithms. As will be shown in Sections 2.6-2.9, based on our framework, we

develop the first MLmethods to improve centralized MAPF search algorithms. It is also the first ML frame-

work in the literature that has been successfully applied to improving multiple MAPF search algorithms.

It consists of the following steps:

1. Identify a Decision to Improve Given aMAPF search algorithm, identify a decision that is crucial

to its performance. The goal is to learn a strategy to improve making this decision.

2. Find an Expert Since our framework is based on imitation learning, this step identifies an expert

to provide high-quality demonstrations for decision-making so that we can imitate it via supervised

learning. Formally, we define a state as a snapshot of the search whenever a decision needs to be

made and the set of actionsA(s) at state s as the set of possible decisions at s. An expert evaluates all

actions A(s) and selects the optimal or suboptimal action a∗ ∈ A(s) as the decision. Compared to a

trivial strategy (for example, a greedy strategy or a random choice strategy), an ideal expert makes

more effective decisions at a slightly higher but reasonable computational cost. The computational

cost should not be too low, otherwise one could potentially simply deploy the expert in the search

to get good solutions with low runtime. It should not be too high either since the expert will be

used to collect demonstrations as labels for supervised learning and we need a sufficient amount of

them to train an ML model. Since the expert evaluates multiple actions, it provides not only the best

decisions but also information on low-quality decisions.

3. Data Collection We obtain a training dataset D, which is a set of states. At each state s of the

search, we can compute features and labels for each available action a ∈ A(s). By observing and

30

recording the features and the decisions given by the expert, we then learn to make predictions as

similar as possible to the expert without actually probing it. Features serve as signals to inform

predictions and should be fast to compute. The features depend on the choice of ML model. For

example, image-like features are more suitable for convolutional neural networks, and graph rep-

resentations are needed for graph neural networks. Lightweight models, such as linear regression

models, support vector machines (SVM) and decision trees, are sometimes more favorable for re-

peated decision-making since they have much lower computational overhead. For each decision,

labels serve as the learning target and are derived from the quality of actions determined by the

expert. Given the expert, one could label the actions as good or bad actions based on a performance

metric, such as the solution quality or runtime they lead to, or a proxy for the metric.

4. Model Learning We reduce the ML problem to an imitation learning task, that is, to imitate the

expert. There are a few methods for imitation learning. One could learn to classify actions based on

their labels or predict the labels. In our work, we deploy a learning-to-rank method, where we learn

to rank the actions based on their rankings derived from the labels. The main benefit of learning-to-

rank is that it learns to predict the actions of the expert from the differences among actions, which

has been shown effective [73, 102].

5. ML-Guided Search Once we have a trained ML model, we plug it into the MAPF search algorithm

as a decision-making strategy.

In the rest of this section, we formulate the imitation-learning task in Step 4 as a learning-to-rank task.

For a state s and an action a ∈ A(s), let ϕs(a) ∈ Rp be the feature vector of action a ∈ A(s) and ys(a) be

the ground truth label for a. The goal is to learn a ranking function π : Rp → R that serves as a scoring

function for each action, where better actions receive higher scores. π takes as input the p-dimensional

features ϕs(a) of action a at state s and then predicts a∗ = argmaxa∈A(s) ŷs(a) as the best action, where

31

ŷs(a) = π(ϕs(a)) is the predicted score. π could be learned by regression on the labels or classifying the

labels. However, such methods learn to score each action independently. In contrast to a regression or

classification task, we adopt a formulation of learning-to-rank that predicts the score based on the relative

differences between pairs of actions instead of based on the action itself. The labels must be numerical

values that indicate the qualities of the actions, such as runtimes or solution qualities. The loss function

for training is based on a strict partial order onA(s) derived from the labels. Formally, given a set of states

as the training data D, we minimize the following loss function

L(w) =
∑
s∈D

l(ys, ŷs) +
C

2
||w||22,

where w are the learnable weights of π, C is a regularization parameter and l(ys, ŷs) is a loss function

based on a pairwise loss between the ground truth labels ys and the predicted scores ŷs. To compute

l(ys, ŷs), we consider the set of ordered pairs of actions at state s where one of their labels is greater than

the other

Ps = {(a′, a′′) : ys(a′) > ys(a
′′) ∧ a′, a′′ ∈ A(s)}.

l(ys, ŷs) is the weighted fraction of swapped pairs in the predictions defined as

l(ys, ŷs) =

∑
(a′,a′′)∈Ps:ŷs(a′)≤ŷs(a′′)

w̃a′,a′′∑
(a′,a′′)∈Ps

w̃a′,a′′
,

where w̃a′,a′′ is a weight associated with each pair of actions in Ps. One could simply set w̃a′,a′′ to a

constant for an unweighted version of l(ys, ŷs).

To learn π, one could train a deep neural network (DNN), like most of the existing works in the lit-

erature, such as RankNet [25] and LambdaRank [162]. However, DNNs introduce an undesirably large

32

computational overhead if used for repeated decision-making in the MAPF search algorithms. We thus

learn a linear ranking function

π : Rp → R : π(ϕs(a)) = wTϕs(a)

using SVMrank [94] instead, which has been shown to be efficient and effective in previouswork on learning

to rank [102, 73] in the context of search algorithms for other COPs. In practice, one can train the linear

ranking function with open-source solvers such as those developed for SVMrank [95] and LIBLINEAR [52].

These solvers minimize an upper bound on the loss, since the loss itself is NP-hard to minimize. In our

implementation, we use SVMrank [94] for the unweighted version of l(ys, ŷs) and use LIBLINEAR [52]

otherwise, since SVMrank is simpler to use but does not allow customizing the weights.

2.6 Learning to Select Conflicts for CBS

In this section, we introduce CBS+ML to show how the framework can be applied to improve conflict

selection in CBS [174]. CBS is one of the leading algorithms for solving MAPF optimally, and a number

of enhancements to CBS have been developed [22, 120, 54, 10]. Picking good conflicts is important, and a

good strategy for conflict selection could have a big impact on the efficiency of CBS by reducing both the

size of the CT and its runtime. We refer the readers to the example in Figure 1 in [22] that demonstrates

why the size of the CT can be impacted by conflict selections. To the best of our knowledge, other than

prioritizing conflicts using MDDs in ICBS [22], conflict prioritization has not yet been explored much. In

the rest of this section, we apply the framework introduced in Section 2.5 and propose CBS+ML tailored

to conflict selection in CBS. We then empirically demonstrate the effectiveness and efficiency of CBS+ML.

33

2.6.1 Machine Learning Methodolody

Our goal is to learn a conflict-selection strategy that reduces the runtime of CBS. The conflict-selection

strategy is applied when expanding a CT node N . Thus, we represent the state of the search with the

CT node s = N . The state contains information about not only CT node N but also its ancestors and

siblings that are generated before expanding N . CBS can select any conflict from NConf to resolve. Thus,

the available actions at CT node N are A(N) = NConf . To apply the framework, we first propose an

expert for conflict selection that results in smaller CT sizes than the ones used in previous work. However,

the expert is much more computationally expensive since it has to compute the WDG heuristic for each

conflict that will be explained in Section 2.6.1.1. Next, given the expert, we explain how we use ML to

imitate its decisions.

2.6.1.1 Experts for Conflict Selection

Given a MAPF instance, an expert for conflict selection at a particular CT node N is a ranking function

that takes the set of conflicts NConf as input, calculates a real-valued score for each conflict and outputs

the ranks determined by the scores. We say that CBS follows an expert for conflict selection iff CBS builds

the CT by always resolving the conflict with the highest rank. We define expert O0 as the one proposed

in ICBS [22], which uses MDDs to rank conflicts.

Definition 2.6.1. Given a CT nodeN , expertO0 ranks the conflicts inNConf in the order of cardinal conflicts,

semi-cardinal conflicts and non-cardinal conflicts, breaking ties in favor of conflicts at the smallest time step

and remaining ties randomly.

Next, we define experts O1 and O2, that both calculate 1-step lookahead scores by using, for each

conflict, the two child nodes of N that would result if the conflict were resolved at N .

Definition 2.6.2. Given a CT node N , expert O1 computes the score vc = min{glc + hlc, g
r
c + hrc} for each

conflict c ∈ NConf , where glc and grc would be the costs of the two child nodes of N and hlc and hrc would be

34

The Random Map
Runtime CT Size Expert Time Search Time

CBSH2+O0 9.95s 2,362 nodes 0.00s 9.95s
CBSH2+O1 24.89s 746 nodes 21.34s 3.55s
CBSH2+O2 12.13s 632 nodes 9.52s 2.61s
CBS+ML 6.19s 998 nodes 0.88s 5.31s

The Game Map
Runtime CT Size Expert Time Search Time

CBSH2+O0 2.3min 952 nodes 0.0min 2.3min
CBSH2+O1 19.8min 565 nodes 19.0min 0.8min
CBSH2+O2 27.4min 2,252 nodes 23.4min 4.0min
CBS+ML 1.6min 754 nodes 0.2min 1.4min

Table 2.1: Performance of CBSH2 with different experts and our method CBS+ML. Expert time is the
runtime of the expert. Search time is the runtime minus the expert time. All entries are averaged over the
MAPF instances that are solved by all methods.

the h-values given by the WDG heuristic for the two child nodes ofN if conflict c were resolved atN . Then, it

outputs the ranks determined by the decreasing order of the scores (i.e., the highest rank for the highest score).

Expert O1 selects the conflict that results in the tightest lower bound on the optimal cost estimated

by the WDG heuristic in the child nodes. Inspired by CBSH2, we use the WDG heuristic in expert O1 to

compute the h-values since it is the state of the art. The intuition behind using this expert is that the sum of

the cost and the h-value of a node is a lower bound on the cost of any solution found in the subtree rooted

in the node, and, sometimes, the lower bound maintained by CBS might not increase for most conflicts

you select. Thus, we want CBS to increase the lower bound as much as possible to find a solution quickly

by selecting the right conflict to resolve next.

Definition 2.6.3. Given a CT node N , expert O2 computes the score vc = min{ml
c,m

r
c} for each conflict

c ∈ NConf , where ml
c and mr

c would be the number of remaining conflicts in the two child nodes of N if

conflict c were resolved at N . Then, it outputs the ranks determined by the increasing order of the scores (i.e.,

the highest rank for the lowest score).

Expert O2 selects the conflict that results in the least number of conflicts in the child nodes.

35

We use CBSH2 with the WDG heuristic as our search algorithm and run it with experts O0, O1 and

O2 on (1) the random map, which is a 20 × 20 four-neighbor grid map with 25% randomly generated

blocked cells [120], and (2) the game map “lak503d” [182], which is a 192 × 192 four-neighbor grid map

with 51% blocked cells from the video game Dragon Age: Origins. The maps are shown in Table 2.4. The

experiments are conducted on 2.4 GHz Intel Core i7 CPUs with 16 GB RAM. We set the runtime limit to

20 minutes for the random map and 1 hour for the game map. We set the number of agents to k = 18 for

the random map and k = 100 for the game map and run each variant of CBSH2 on 50 MAPF instances for

each grid map. The MAPF instances are generated the same way for training instances as in Section 2.3.5.

In Table 2.1, we present the performance of the three experts as well as our method CBS+ML. All entries

are averaged over the MAPF instances that are solved by all methods. We evaluate the experts according

to the resulting CT sizes since they determine the runtime when the calculation of the experts is not taken

into account (and everything else being equal) and first look at the CT sizes of CBSH2 with each of the

three experts. Expert O2 is best for the random map, followed closely by expert O1. Expert O1 is best

for the game map. Overall, expert O1 is best. Therefore, in the rest of the chapter, we mainly focus on

learning a ranking function that imitates expert O1. Table 2.1 shows that, by learning to imitate expert

O1, our method CBS+ML† achieves the best runtime, even though it induces a larger CT than CBSH2+O1.

Next, we introduce our ML methodology.

2.6.1.2 Data Collection

The next step in our framework is to construct a training dataset from which we can learn a model that

imitates the expert’s output. First, we fix the graph underlying the MAPF instances that we want to solve

and the number of agents. The number of agents is only fixed during the data collection and model learn-

ing steps. Later in Section 2.6.2, we show that the models can generalize to MAPF instances with larger

numbers of agents during testing. We obtain a set of MAPF instances ITrain for training. A MAPF instance
†This is the CBS+ML-S variant that will be introduced in Section 2.6.2.

36

dataset DI is obtained for each I ∈ ITrain, and the final training dataset is obtained by taking the union

of these datasets D =
⋃

I∈ITrain DI . To obtain dataset DI , we run CBSH2 on I and expert O1 is run for

each CT node N to produce the ranking for NConf . DI consists of a set of those CT nodes N which are

the expanded CT nodes during the search. For each node N ∈ DI , the conflicts in NConf are the available

actions A(N). For each c ∈ NConf , we compute a binary label yN (c) ∈ {0, 1} derived from the expert’s

ranking of the conflicts and a p-dimensional feature vector ϕN (c) that describes the characteristics of the

conflict c at CT node N . We also collect a validation dataset on another set of MAPF instances IValid for

validation to evaluate the prediction accuracy of the learned model.

Features We collect a p-dimensional feature vector ϕN (c) that describes a conflict c ∈ NConf in CT node

N . The p = 67 features of a conflict ⟨ai, aj , v, t⟩ (⟨ai, aj , u, v, t⟩) in our implementation are summarized

in Table 2.2. They consist of (1) the properties of the conflict, (2) statistics of CT node N , the conflicting

agents ai and aj and the contested vertex or edge with respect to NSol, (3) the number of conflicts that

have been resolved for a vertex‡ or an agent, and (4) features of the MDD and the WDG. We perform a

linear transformation to normalize the value of each feature to the range of [0, 1] across all conflicts in

NConf , where the minimum value of that feature gets transformed into a 0 and the maximum value gets

transformed into a 1. All features of a given conflict c ∈ NConf can be computed in O(|NConf |+ k) time.

Labels We label each conflict in NConf such that conflicts with higher ranks determined by the expert

have larger labels. Instead of using the full ranking provided by expertO1, we use a binary labeling scheme

similar to the one proposed by [102]. We assign label 1 to a conflict if no more than 20% of the conflicts

in NConf have the same or a higher score; otherwise, we assign label 0 to it. When more than 20% of

the conflicts have the same highest O1 score, we assign label 1 to those conflicts and label 0 to the rest.

By doing so, we ensure that at least one conflict is labeled 1 and conflicts with the same score have the
‡An edge conflict is considered to be resolved for both vertices on the edge.

37

Feature Descriptions Count
Types of the conflict: binary indicators for edge conflicts, vertex conflicts, cardinal conflicts,
semi-cardinal conflicts and non-cardinal conflicts.

5

Number of conflicts involving agent ai (aj) that have been selected and resolved so far during
the search: their minimum, maximum and sum.

3

Number of conflicts that have been selected and resolved so far during the search at vertex u
(v): their minimum, maximum and sum.

3

Number of conflicts that agent ai (aj) is involved in: their minimum, maximum and sum. 3
Time step t of the conflict. 1
Ratio of t and the makespan of NSol. 1
Cost of the path of agent ai (aj) in NSol: their minimum, maximum, sum, absolute difference
and ratio of their maximum and minimum.

5

Delay of agent ai (aj): their minimum and maximum. 2
Ratio of the costs of the path of agent ai (aj) and its individually cost-minimal path: their min-
imum and maximum.

2

Difference of the cost of the path of agent ai (aj) and t: their minimum and maximum. 2
Ratio of the cost of the path of agent ai (aj) and t: their minimum and maximum. 2
Ratio of the cost of the path of agent ai (aj) and NCost: their minimum and maximum. 2
Binary indicator whether none (at least one) of agents ai and aj has reached its goal vertex by
time step t.

2

Number of conflicts c′ ∈ NConf such thatmin{dq,q′ : q ∈ V T
c , q′ ∈ V T

c′ } = w (0 ≤ w ≤ 5). 6
Number of agents a such that there exists q′ ∈ Va and q ∈ V T

c such that dq,q′ = w (0 ≤ w ≤ 5). 6
Number of conflicts c′ ∈ NConf such thatmin{dq,q′ : q ∈ Vc, q

′ ∈ Vc′} = w (0 ≤ w ≤ 5). 6
Width of level w (|w− t| ≤ 2) of the MDD for agent ai(aj) (we use zero as the width of a level
that does not exist): their minimum and maximum [122].

10

Weight of the edge between agents ai and aj in the weighted dependency graph [120]. 1
Number of vertices q′ in graph G such thatmin{dq′,q : q ∈ Vc} = w (1 ≤ w ≤ 5). 5

Table 2.2: Features of a conflict c = ⟨ai, aj , u, t⟩ (⟨ai, aj , u, v, t⟩) of a CT node N . Given the underlying
graph G = (V,E), let VT = {(v, t) : v ∈ V, t ∈ Z≥0}, ET = {((u, t), (v, t + 1)) : t ∈ Z≥0 ∧ (u = v ∨
(u, v) ∈ E)}, and define the time-expanded graph as an unweighted graphGT = (VT , ET). Let du,v be the
cost of the cost-minimal path between vertices u and v inG and d(u′,t′),(u,t) be the distance from (u′, t′) to
(u, t) inGT if t′ ≤ t or from (u, t) to (u′, t′), otherwise. For a conflict c′ = ⟨a′i, a′j , u′, t′⟩ (⟨a′i, a′j , u′, v′, t′⟩)
in NConf , define Vc′ = {u′} (Vc′ = {u′, v′}) and V T

c′ = {(u′, t′)} (V T
c′ = {(u′, t′), (v′, t′)}). For an agent a,

define Va = {(u, t) : agent a is at vertex u at time step t following its path}. The counts are the numbers
of features contributed by the corresponding entries, which add up to p = 67.

38

same label. This labeling scheme relaxes the definition of “top” conflicts that allows the learning algorithm

to focus on only high-ranking conflicts and avoids the irrelevant task of learning the correct ranking of

conflicts with low scores. We tried directly using their O1 scores as their labels but did not get as good

performance as using the scheme described.

2.6.1.3 Model Learning

Given the training dataset D =
⋃

I∈ITrain DI , we follow the formulation in Section 2.5 to learn a linear

ranking function with parameter w ∈ Rp

π : Rp → R : π(ϕN (c)) = wTϕN (c)

that minimizes the loss function

L(w) =
∑
N∈D

l(yN , ŷN) +
C

2
||w||22.

To compute l(yN , ŷN), we consider the set of pairs PN = {(ci, cj) : ci, cj ∈ NConf ∧ yN (ci) > yN (cj))},

where ŷN (c) = π(ϕN (c)) is the predicted scores for conflict c. The loss function l(·, ·) is the fraction of

swapped pairs, computed as

l(yN , ŷN) =
1

|PN |
|{(ci, cj) ∈ PN : ŷN (ci) ≤ ŷN (cj)}|.

2.6.1.4 ML-Guided Search

After data collection and model learning, we replace expert O1 for conflict selection in CBS with the

learned ranking function π(·). At each CT node N , we first compute the feature vector ϕN (c) for each

conflict c ∈ NConf and pick the conflict with the maximum score c∗ = argmaxc∈NConf
π(ϕN (c)). The time

39

complexity of conflict selection at node N is O(|NConf |(|NConf | + k))§. Even though the complexity of

conflict selection with expert O0 is only O(|NConf |), we will show in our experiments that we are able to

outperform CBSH2+O0 in terms of both the CT size and the runtime.

Discussion Improving conflict-selection strategies with ML in CBS is inspired by previous works [102,

59] on improving variable-selection strategies with ML in BnB for MILPs. We leverage several techniques

and insights from previous works and tailor them for CBS. First, we leverage imitation learning to imitate

decisions made by an expert. For MILP, [102, 59] imitate the Strong Branching [7] heuristic that solves a

linear program relaxation for each candidate variable to estimate the increase on the lower bound in the

resulting child nodes if it is branched on. For MAPF, one of the main contributions is that we design expert

O1 similarly to estimate the increase on the lower bound in the resulting child CT nodes for each conflict

if it is selected. Second, we leverage a linear ranking function as our ML model. For MILP, both linear

ML models [102] and deep neural networks [59] have been used. For MAPF, we choose to use the linear

model since MAPF search algorithms are a lot more sensitive to the inference runtime (i.e., the runtime

for computing the features and predictions) than MILP search algorithms. Therefore, we leverage domain

expertise to craft features for the linear model that suit MAPF search algorithms. Third, we leverage the

labeling scheme that relaxes the definition of “top” conflicts. Such a scheme is more effective than labeling

each conflict with its score given by the expert, which aligns with the observation in MILP solving by

[102].

2.6.2 Empirical Evaluation

In this subsection, we demonstrate the efficiency of CBS+ML through experiments. In the following, we

introduce our evaluation setup and then present the results.
§We exclude the time complexity of building the MDDs for both CBS+ML and CBSH2+O0.

40

2.6.2.1 Setup

We use the C++ code for CBSH2 with the WDG heuristic [120] as our CBS version. We compare against

CBSH2+O0 as a baseline since O0 is the most commonly used conflict-selection expert. The reason why

we choose CBSH2 with the WDG heuristic over CBS, ICBS and CBSH2 with the CG or DG heuristics is

that it performs best, as demonstrated in [120]. We use the same compute resources as described in Section

2.6.1.1.

Our experiments provide answers to the following questions:

1. If the graph underlying theMAPF instances is known in advance, canwe learn amodel that performs

well on unseen MAPF instances on the same graph with different numbers of agents?

2. If the graph underlying the MAPF instances is unknown in advance, can we learn a model from

other graphs that performs well on MAPF instances on that graph?

We use a set of five four-neighbor grid mapsM of different sizes and structures as the graphs under-

lying the MAPF instances and evaluate our algorithms on them. M includes (1) a warehouse map [121],

which is a 79× 31 grid map with 100 6× 2 rectangular obstacles; (2) the room map “room-32-32-4” [181],

which is a 32× 32 grid map with 64 3× 3 rooms connected by single-cell doors; (3) the random map; (4)

the city map “Paris_1_256” [181], which is a 256× 256 grid map of Paris; (5) the game map. The figures of

the maps are shown in Table 2.4. For each grid map M ∈ M, we collect data for training instances I(M)
Train

and validation instances I(M)
Valid onM with a fixed number of agents, where |I(M)

Train| = 30 and |I(M)
Valid| = 20.

We learn two ranking functions for grid mapM : one ranking function that is trained using 5,000 CT nodes

i.i.d. sampled from the training dataset collected by solving training instances I(M)
Train on the same grid map

and another one that is trained using 5,000 CT nodes sampled from the training dataset collected by solv-

ing training instances ∪M ′∈MI
(M ′)
Train \I

(M)
Train on the other maps, namely an equal number of i.i.d. CT nodes

sampled from each of the four other maps. We use only 30 training instances since they are sufficient for

41

Warehouse Room Random City Game
Number of agents in MAPF instances in ITrain and IValid 30 22 18 180 100
Training on
the same map

Swapped pairs (%) 5.78 12.58 10.89 2.89 4.40
Top pick accuracy (%) 84.93 67.56 69.03 83.05 60.16

Training on
the other maps

Swapped pairs (%) 6.08 15.24 19.64 7.66 7.45
Top pick accuracy (%) 86.85 66.80 50.44 78.57 53.13

Table 2.3: Numbers of agents in MAPF instances in ITrain and IValid, validation losses and accuracies.
The swapped pairs are the percentages of swapped pairs averaged over all test CT nodes, and the top
pick accuracy is the accuracy of the ranking function selecting one of the conflicts labeled as 1 in the test
dataset.

collecting 5,000 CT nodes for each grid map. For each grid map M ∈ M, we denote CBS+ML that uses

the ranking function trained on the same grid map by CBS+ML-S and CBS+ML that uses the one trained

on the other maps by CBS+ML-O. We set the regularization parameter C = 1/100 to train an SVMrank

[94] with a linear kernel to obtain each of the ranking functions. We varied C ∈ {1/10, 1/100, 1/1000}

and achieved similar results. We test the learned ranking functions on the validation dataset collected by

solving I(M)
Valid. The numbers of agents in the training instances used for data collection, the validation

losses and the accuracies of selecting one of the conflicts labeled as 1 are reported in Table 2.3. We varied

the number of agents for data collection and find that they led to similar performance. In general, the

losses of the ranking functions for CBS+ML-O are larger and their accuracies of selecting “good” conflicts

are lower than those for CBS+ML-S.

2.6.2.2 Results

Success Rate, Runtime and Tree Size We run CBSH2, CBS+ML-S and CBS+ML-O on 25 test instances

on each of the five maps and vary the number of agents. The runtime limits are set to 60 minutes for the

two largest maps (the city and game maps) and 10 minutes for the other maps. In Table 2.4, we report

the success rates together with the average runtimes and the average CT sizes of the test instances solved

by all methods for different numbers of agents on each grid map. CBS+ML-S and CBS+ML-O dominate

CBSH2 in all metrics on all maps for almost all cases. For CBS+ML-S, even though we learn the ranking

42

Grid Map k
Success Rate (%) Runtime (min) CT Size (nodes)

CBSH2 ML-S ML-O CBSH2 ML-S ML-O CBSH2 ML-S ML-O

Warehouse

30 100 100 (100) 100 (100) 0.15 0.05 0.05 541 131 152
36 92 100 (92) 100 (92) 0.42 0.06 0.07 1992 268 321
42 52 68 (52) 68 (52) 1.97 0.63 0.32 11243 3533 1503
45 28 44 (28) 48 (28) 3.41 1.33 0.50 17348 5320 1997
48 16 36 (16) 40 (16) 0.23 0.10 0.12 1328 517 676
54 4 20 (4) 20 (4) 0.49 1.11 0.20 2808 5633 1087

Improvement over CBSH2 0 73.5% 76.1% 0 77.0% 81.9%

Room

22 96 96 (96) 96 (96) 0.08 0.07 0.07 313 228 227
26 80 80 (76) 80 (76) 0.94 0.44 0.42 10983 4373 3859
28 60 72 (60) 68 (60) 1.43 1.02 1.01 17551 10505 9968
30 40 44 (40) 44 (40) 1.76 0.98 1.04 23250 11348 11987
32 24 24 (20) 24 (20) 3.16 2.26 2.26 42041 27035 25986
34 4 8 (4) 4 (4) 2.68 0.67 0.80 36137 7925 9090

Improvement over CBSH2 0 34.3% 33.1% 0 47.7% 47.2%

Random
18 92 92 (92) 92 (92) 0.16 0.15 0.15 2609 2366 2302
20 88 88 (88) 88 (88) 0.90 0.88 0.89 8779 7897 7742
23 60 72 (56) 68 (56) 1.60 1.37 1.40 27628 23970 24257
26 40 40 (40) 40 (40) 3.01 2.85 2.51 47297 44770 43094
29 24 36 (24) 28 (24) 4.44 3.38 3.46 64965 52105 52463

Improvement over CBSH2 0 27.4% 25.2% 0 25.3% 22.8%

City

180 76 84 (76) 84 (19) 4.73 3.37 3.45 578 280 285
200 72 76 (72) 76 (72) 7.92 4.62 4.76 878 288 297
220 48 64 (48) 68 (48) 6.04 4.47 3.73 934 445 402
240 36 44 (36) 48 (36) 9.25 5.91 5.71 790 510 507
260 24 24 (24) 32 (24) 10.59 8.80 8.62 1363 1088 1074
280 24 24 (24) 28 (24) 12.72 14.27 10.16 1529 1650 1414

Improvement over CBSH2 0 23.6% 29.8% 0 40.9% 42.4%

Game

100 72 76 (72) 76 (72) 6.47 4.88 3.87 3418 1729 1470
110 44 56 (44) 52 (44) 7.13 4.47 4.44 3157 1312 1366
115 44 48 (44) 48 (44) 8.06 4.96 4.95 3990 1753 1805
120 36 36 (36) 36 (36) 12.48 6.59 6.47 6176 3664 3536
130 24 32 (24) 28 (24) 14.03 16.52 13.89 6649 6700 6621
135 20 28 (20) 24 (20) 8.88 11.68 8.43 2537 2598 2502

Improvement over CBSH2 0 27.2% 37.6% 0 45.7% 48.7%

Table 2.4: Success rates and the average runtimes and CT sizes of MAPF instances solved by all methods
(ML-S and ML-O stand for CBS+ML-S and CBS+ML-O, respectively) for different numbers of agents k on
five maps. For the success rates of ML-S and ML-O, the percentages of MAPF instances solved by both our
methods and CBSH2 are given in parentheses (bolded if they solve all MAPF instances that CBSH2 solves).
For each grid map, we report the percentages of our improvement over CBSH2 on the runtime and CT size
on MAPF instances solved by all methods.

43

function from data collected on instances with a fixed number of agents (listed in Table 2.3), the learned

function generalizes to instances with larger numbers of agents on the same grid map and outperforms

CBSH2. CBS+ML-O, without seeing the actual grid map being tested on during training, is competitive

with CBS+ML-S. The results suggest that our approach, when focusing on solving instances on a particular

grid map, can outperform CBSH2 substantially and, when faced with new maps, still has an advantage.

CBS+ML-O even outperforms CBS+ML-S sometimes on the warehouse, city, and game maps (similarly in

Table 2.3), which suggests that learning from the expert’s demonstration on multiple grid maps benefits

CBS+ML since the effectiveness of the expert varies across grid maps.

Feature Importance Next, we look at the feature importance of the learned ranking functions. For

CBS+ML-O, the five ranking functions have nine features in common among their eleven features with

the largest absolute weights. Thus, they are similar when looking at the important features. We take the

average of each weight and sort them in decreasing order of their absolute values. The top eight features

are (1) the weight of the edge between agents ai and aj in the WDG; (2) the binary indicator for non-

cardinal conflicts; (3) the maximum of the differences of the cost of the path of agent ai (aj) and t; (4) the

binary indicator for cardinal conflicts; (5) the minimum of the numbers of conflicts that agent ai (aj) is

involved in; and (6-8) the minimum, the maximum and the sum of the numbers of conflicts involving agent

ai (aj) that have been selected and resolved. Those features mainly belong to three categories: features

related to the conflict type, the WDG and the number of conflicts having been resolved for agents, where

the first one is commonly used in previous work on CBS and the third one is an analogue of the branching

variable pseudocosts in Branch-and-Bound for MILP solving [2].

44

2.7 Learning to Select Nodes for ECBS

In this section, we introduce ECBS+ML to show how the framework to learn heuristic can be applied

to improve node selection in Enhanced Conflict-Based Search (ECBS) [174]. MAPF is NP-hard to solve

optimally [209, 9] and, therefore, optimal MAPF search algorithms, such as CBS, do not scale to many

agents. ECBS and its variants [35, 36] are guaranteed to find solutions whose sums of costs of the paths

are at most w ≥ 1 times the minimum ones and run faster than optimal MAPF search algorithms. Which

CT nodes to select from the focal list for expansion is important decision-making in ECBS. A generic

node-selection strategy for ECBS assigns a d-value to each CT node and always selects a CT node with

the minimum d-value in the focal list for expansion. The most commonly used node-selection strategy

in previous work uses the number of conflicts |NConf | as the d-value of a CT node N . We refer to this

strategy as h1. [10] propose other strategies that use the number of pairs of agents that have at least one

conflict with each other and the number of agents that have at least one conflict with other agents as the

d-values. We refer to these two strategies as h2 and h3, respectively. We implement and experiment with

h1, h2 and h3 in Section 2.7.2.

Instead of manually defining the d-values, we introduce ECBS+ML to show how our framework can be

applied to improving node selection in ECBS. We borrow tools such as imitation learning and curriculum

learning from the machine learning literature [167, 168, 178, 15] and propose a novel method for learning

node-selection strategies for the high-level focal search to speed up ECBS. This method could also be

applied to the low-level focal search but we focus on the high-level one since the low-level focal search

runs in polynomial time and does not have as big an impact on the efficiency of ECBS as the high-level

one. We then empirically demonstrate the effectiveness and efficiency of ECBS+ML.

45

2.7.1 Machine Learning Methodology

For training, we do not directly learn the d-values but rather a ranking function that differentiates CT nodes

that have shorter distances to leaf nodes in the CT withw-approximate solutions from those CT nodes that

have longer distances to one. During the search, the ranking function takes a CT node’s features as input

and calculates a real-valued d-value. Our goal is to learn a ranking function such that its d-values allow

ECBS to get closer to a w-approximate solution every time it expands a CT node and, therefore, help it to

find a solution more quickly. The node-selection strategies are applied when selecting a node to expand

the CT. Thus, we represent the state of the search with the CT s = T ′ ECBS built prior to selecting the

node. ECBS can select any CT node from the focal list F(T ′) when T ′ is built, thus, the available actions

are all CT nodes in the list, i.e., A(T ′) = F(T ′). To apply the framework, we first propose an expert that

retrospectively computes the complete CT to select CT nodes. The complete CT is defined as the CT we

get when ECBS terminates, which is expensive to compute. Next, given the expert, we explain how we use

it to collect data and apply ML to imitate its decisions. During training, we fix the underlying graph and

learn node-selection strategies from solving the training instances on that graph where the start and goal

vertices of the agents are drawn from a given distribution. We start with a small number of agents and

use imitation learning [40, 167, 168] to learn a node-selection strategy for that number of agents. We then

continue learning node-selection strategies for larger and larger numbers of agents. Instead of learning

from scratch every time the number of agents increases, we use curriculum learning [15] to learn more

efficiently by using previously learned node-selection strategies as starting points.

2.7.1.1 Expert for Node Selection

Given a MAPF instance, an expert for node selection at a given state T ′ is a ranking function π′ that takes

the focal list F(T ′) as input, calculates a real-valued score per CT node N ∈ F(T ′) as its d-value and

46

outputs the ranks determined by the scores. We say that ECBS follows an expert for node selection iff

ECBS builds the CT by always selecting the CT node with the highest rank to expand.

The expert we propose retrospectively computes the complete CT to find all w-approximate solutions

to the MAPF instance. For each CT node N ∈ F(T ′), we define Nd as the distance between N and any

w-approximate solution found within the subtree rooted at N . We assign Nd = ∞ if no solution was

found within its subtree. The expert outputs the ranks determined by the increasing order of the d-values

(i.e., the highest rank for the smallest d-value). However, retrospectively computing the complete CT and

finding all w-approximate solutions are prohibitively expensive computationally. Therefore, in practice,

we run the expert until either it exceeds a runtime limit, T w-approximate solutions have been found or

the expert terminates.

2.7.1.2 Data Collection

Given an instance I and the expert’s ranking function π′, we describe a subroutine CollectData(I, π′) for

data collection that is used in our learning algorithm. CollectData(I, π′) runs ECBS following the expert

using the node-selection strategy π′ and returns the complete CT T .

Features For each CT node N ∈ F at state T ′, it computes the following atomic features f1, . . . , f9:

1. features related to the conflicts: the number of conflicts |NConf | (f1), the number of pairs of agents

that have at least one conflict with each other (f2) and the number of agents that have at least one

conflict with other agents (f3);

2. features related to NCost: f4 := NCost, f5 := NCost
LB , f6 := NCost − LB, f7 := NCost − S and f8 :=

NCost/S, where S is the sum of costs of the individually cost-minimal paths of all agents; and

3. the depth of N in the CT (f9).

47

From these atomic features, we obtain interaction features fifj (for i ≤ j), which are the pairwise products

of the atomic features. The final feature vector ϕT ′(N) ∈ Rp (p = 54) is obtained by concatenating all

atomic features and interaction features, resulting in the degree-2 polynomial kernel in the space of atomic

features. Features f2 and f3 can be computed in time O(|NConf |), and the other features can be computed

in time O(1). Therefore, the overall time complexity for computing all 54 features is O(|NConf |).

The interaction features are a richer set of features than the atomic features. This is also known as using

the polynomial kernel in SVM, where we use a polynomial with degree two. But using them increases the

runtime for training an SVMrank. It is not an issue for learning to select nodes in ECBS since we have only

nine atomic features, in contrast to having 67 of them in the previous section where we learn to select

which conflict to resolve next in CBS. We do not use interaction features either in Sections 2.8 and 2.9 for

the same reasons.

Labels During data collection, we run the expert until either T solutions are found, the search exceeds

the runtime limit or the expert terminates. If the expert exceeds the runtime limit without finding any

solution, we return an empty set of training data for instance I . Otherwise, we return the set of states

encountered during the search. We assign a label yT ′(N) to each CT node N ∈ F(T ′) based on the

minimum distanceNd betweenN and any w-approximate solution found within the subtree rooted atN .

We assign Nd =∞ if no solution was found within its subtree. Since we want to assign smaller d-values

48

to CT nodes that are closer to a solution, we label N in a way such that the closer N is to a solution, the

smaller yN is:

yT ′(N) =



0, if Nd < τ0,

1, if τ0 ≤ Nd < τ1,

2, if τ1 ≤ Nd < τ2,

3, if τ2 ≤ Nd <∞,

∞, otherwise,

where τ2 > τ1 > τ0 > 0 are three thresholds. Our labeling scheme allows us to focus on pairs of CT

nodes that have large differences in Nd when the labels are used to learn a ranking function. Different

from using yT ′(N) = Nd, it avoids having to rank CT nodes correctly that are almost equally good or bad,

which is irrelevant for making good node selections. We indeed tried using yT ′(N) = Nd but did not get

better performance than ECBS without ML-guided node selection.

2.7.1.3 Model Learning

We want to learn node-selection strategies for instances with different numbers of agents on a fixed un-

derlying graphG = (V,E)with a fixed suboptimality factor w. The idea central to our training algorithm

is that we start learning a node-selection strategy by solving easy instances with a small number of agents

and iteratively increasing the number of agents to learn another strategy based on the previous one. In

particular, we want to learn to solve instances with increasing difficulty, i.e., with m different numbers

of agents k1, . . . , km where k1 < . . . < km. For each ki, we learn a node-selection strategy that assigns

πi(ϕT ′(N)) to CT node N as its d-value, where πi is a learned ranking function. Therefore, a desirable

ranking function is one that assigns smaller d-values to CT nodes that are closer to a w-approximate so-

lution and larger d-values to those CT nodes that are farther away from one.

49

Algorithm 3 Training Algorithm: Curriculum Learning
1: Input: {k1, . . . , km} and m sets of training instances {I1, . . . , Im}
2: π0 ← π∗

3: for i = 1 tom do
4: πi ← DAgger(πi−1, Ii) ▷ Call Algorithm 4
5: if πi = πi−1 then ▷ Stopping criterion met
6: ∀i < j ≤ m,πj ← πi
7: break
8: return {π1, . . . , πm}

One of the main challenges is that, as ki increases, it becomes increasingly hard to collect a sufficient

amount of training data due to the increased difficulties of the MAPF instances and, thus, the increased

runtime to collect data. To overcome this challenge, we propose a training algorithm based on curriculum

learning, as shown in Algorithm 3. Curriculum learning is a machine learning technique that trains an ML

model using examples (in our case, MAPF instances) of increasing difficulty. The ML model is first trained

on simple tasks (in our case, node selection in ECBS on easier MAPF instances) and then knowledge from

those tasks is transferred to the difficult task. Algorithm 3 takes {k1, . . . , km} and m sets of training

instances {I1, . . . , Im} as input and outputs {π1, . . . , πm}. Each instance in Ii includes ki agents, where

the start and goal vertices of the agents are drawn i.i.d. from a given distribution. π0 is set to a ranking

function π∗ that corresponds to an initial node-selection strategy (e.g., one of node-selection strategies h1,

h2 and h3) (Line 2). To obtain π1 for instances with k1 agents, we use DAgger(π∗, I1) [168] (see Algorithm

4) as a training algorithm that learns a ranking function from solving the training instances in I1 using π∗

as a starting point. To obtain πi (for i > 1), instead of starting from π∗ again, we start learning from πi−1.

We obtain πi (1 < i ≤ m) by calling DAgger(πi−1, Ii), which learns a ranking function starting from πi−1

as the ranking function of the node-selection strategy (Line 3-4) until a stopping criterion is met (Lines

5-7) or i > m. If the stopping criterion is met before i > m, we terminate training (Line 7) and simply set

πj = πi for all i < j ≤ m (Line 6). If DAgger(πi−1, Ii) returns πi−1, then it cannot find a better ranking

function than πi−1. This situation typically occurs at some point in time during training for hard instances

with many agents since only data collected from solved instances during data collection contributes to the

50

training data, and, for hard instances, it is difficult to collect a sufficient amount of training data, which

makes it difficult to improve on πi−1. When the training algorithm observes this situation (Line 5), it stops

training and uses the last obtained ranking function for all instances with larger numbers of agents than

the one for which it could not improve the ranking function.

DAgger(π(0), Ii), shown in Algorithm 4, is an imitation learning algorithm. The inputs π(0) and Ii are

the ranking function of the initial node-selection strategy and the set of training instances, respectively.

DAgger repeatedly determines a ranking function that makes better decisions in those situations that

were encountered when running ECBS with the previous version of the ranking function. Initially, the

training data D is set to ∅ (Line 1). Let R be the number of iterations for which the algorithm runs (Line

4). In iteration j, it collects training data by solving the instances in Ii with the ranking function π(j−1)

obtained in iteration j − 1, aggregates it with D (Line 6) and learns a new ranking function π(j) from D

that minimizes a loss function overD (Line 7). When collecting training data using π(j−1) in ECBS, we set

a runtime limit for each instance. We record the success rate (i.e., the fraction of instances solved within

the given runtime limit) on Ii (Line 8) and the average runtime for the solved instances in Ii (Line 9).

Finally, DAgger returns the ranking function that achieves the highest success rate on the instances in Ii

in all R iterations (Line 10), breaking ties in favor of the lowest average runtime for the solved instances

(Line 11).

Learning a Ranking Function One could follow the learning-to-rank formulation in Section 2.5 to

train a ranking function that minimizes the loss function l(yT ′ , ŷT ′) across all states. However, l(yT ′ , ŷT ′)

needs to considerPT ′ which consists of all ordered CT node pairs in the focal listF(T ′) and has a quadratic

number of CT node pairs. Thus, the total number of CT node pairs needed to be considered to compute

the loss function for a single CT T is O(|T |3) for just a single training instance where |T | is the number

of CT nodes in T , and it would be prohibitively expensive to compute.

51

Algorithm 4 DAgger(π(0), Ii)
1: D = ∅
2: r0 ← success rate on Ii using π(0) in ECBS
3: c0 ← average runtime on solved instances in Ii using π(0) in ECBS
4: for j = 1 to R do
5: for I in training instance set Ii do
6: D ← D ∪ CollectData(I, π(j−1)) ▷ Call ECBS
7: π(j) ← train a ranking function using D
8: rj ← success rate on Ii using π(j) in ECBS
9: cj ← average runtime on solved instances in Ii using π(j) in ECBS
10: L← argmax0≤l′≤R{rl′}
11: l← an element from argminl′∈L{cl′}
12: return π(l)

Notice that the value of label yT ′(N) depends solely on the complete CT T , i.e., yT ′(N) = yT (N) for

any T ′. Also, notice that the features ϕT ′(N) depend only on the information of CT node N and, thus,

ϕT ′(N) = ϕT (N) for any T ′.

Based on the above observation, we propose to consolidate the states T ′ of a MAPF instance to a

single state represented by the complete CT T and call T ′ ⊆ T a substate of T . To compute the loss for

the consolidated state T , we consider all ordered CT node pairs in every substate, i.e., we let

P̃T =
⋃

T ′⊆T
PT ′ .

P̃T consists of all ordered pairs of CT nodes that occur in the focal list during the search. After the

consolidation, the training dataset D is a set of complete CTs, one for each training instance. We train a

linear ranking function with parameter w ∈ Rp

π : Rp → R : π(ϕT (N)) = wTϕT (N)

52

and minimize the loss function

L(w) =
∑
T ∈D

l(yT , ŷT) +
C

2
||w||22

over the training dataD, where yT is the ground-truth label vector of all CT nodes that appear in T , ŷT is

the corresponding vector of predicted values resulting from applying π to the feature vector ϕT (N), and

l(yT , ŷT) is computed as follows:

l(yT , ŷT) =

∑
(Ni,Nj)∈P̃T :ŷT (Ni)≤ŷT (Nj)

w̃Ni,Nj∑
(Ni,Nj)∈P̃T

w̃Ni,Nj

. (2.1)

The weight w̃Ni,Nj of each pair (Ni, Nj) ∈ P̃T is set to e−(di+dj)/rdmax , where di and dj are the depths

of Ni and Nj in T respectively, dmax is the depth of T , and r is a damping factor. The weight w̃Ni,Nj

takes into account the fact that the CT grows exponentially and can be understood as the product of the

weights of Ni and Nj , where the weight of Ni is e−di/rdmax . We use the weighted version of the ranking

loss to help focus on making accurate predictions for CT nodes that are close to the root early in the search

since expanding a CT node that contains no w−approximate solution would bring an extra computation

cost that is exponential of the depth of the sub-CT rooted at that CT node in the worst case. Alternatively,

one could argue setting the weight e−min(di,dj)/rdmax since the importance of ranking a pair of CT nodes

(Ni, Nj) correctly depends on the closest solution to either ofNi orNj . We did not try this in our empirical

evaluation but do not want to rule out the possibility that this could also be a good choice for setting the

weights.

2.7.1.4 ML-Guided Search

After learning the ranking functions {π1, . . . , πm}, we deploy them in ECBS. Given an instance with k

agents and the same underlying graph as used during training, we run ECBS with ranking function πj ,

53

where j ∈ argmini∈[m]{|k − ki|}, i.e. the one trained on the most similar number of agents. When a CT

node N is generated, we compute its feature vector ϕT (N) and set its d-value to πj(ϕT (N)). The overall

time complexity of computing the d-value is O(|NConf |) because of the time complexity of computing

the features. Even though the time complexity of computing the d-value for node-selection strategy h1 is

O(1), we will show experimentally that ECBS+ML outperforms ECBS with h1 in terms of both the success

rate and the runtime.

Discussion Our main motivation to train multiple ranking functions for different numbers of agents is

that, as will be shown in Section 5.2, the ranking functions learned with DAgger(·, ·) do not generalize

well to instances with different numbers of agents, especially when those numbers are substantially larger

than the one we train on. There are two reasons for this issue: (1) We are not able to normalize the feature

values based on their minimums and maximums as we did for CBS+ML since we need to compute the

d-value of a CT node immediately during the search when it is generated, but the minimum and maximum

are not known until ECBS terminates. (2) Different features are important for instances with different

numbers of agents, which will be shown in Section 2.7.2. Therefore, we learn node-selection strategies

specific to the number of agents, and we use curriculum learning to learn them efficiently. In contrast, we

did not use curriculum learning in Section 2.6 since we observed that the ML models generalized well to

MAPF instances with larger numbers of agents than the training instances. However, it is possible that

curriculum learning can further improve the performance of CBS+ML.

There are heuristic components in our training algorithm. The first component is the design of the

stopping criterion for curriculum learning (Line 5 inAlgorithm 3). If we cannot improve onπi−1 in iteration

i of the training algorithm, we are not able to improve on it in subsequent iterations either. The other

component is the criterion for choosing the best ranking function in DAgger. One could argue that the

best ranking function should be chosen based on the performance on a set of validation instances drawn

from the same distribution as for training (Lines 8-9 in Algorithm 4). However, we do not use validation

54

Grid Map Random Warehouse Maze Game City
w 1.1 1.05 1.01 1.005 1.005
m 10 11 9 16 13
k1 75 140 45 80 160
km 125 240 125 305 400
|V | 819 5,699 14,818 28,178 47,240

Table 2.5: Parameters for each grid map. w is the suboptimality factor, m is the number of different
numbers of agents we train and test on, k1 is the smallest number of agents that we train and test on, km
is the largest number of agents that we train and test on, and |V | is the number of unblocked cells on the
grid map. k2, · · · , km−1 are evenly distributed on [k1, km], i.e., ki = (i− 1)(km − k1)/(m− 1) + k1.

Grid Map Random Warehouse Maze Game City
l1 0.0075 0.0088 0.0092 0.0085 0.0051

l⌊m/2⌋ 0.0330 0.0166 0.0192 0.0131 0.0068
lm 0.0653 0.0283 0.0318 0.0204 0.0107

Table 2.6: Loss li ∈ [0, 1] of ranking function πi for ki agents evaluated by Equation (2.1) averaged over
all CTs in the training data.

instances since this would approximately double the runtime of DAgger and, thus, also of the training

algorithm if the numbers of instances for validation and training were the same. Our criterion allows the

training algorithm to select a good ranking function more efficiently.

We learn the ranking function differently from Section 2.6 in several aspects. First, we use a weighted

version of the loss function since the unweighted version did not perform well on all the grip maps except

the randommap that we tested in our empirical evaluation in the next subsection. Secondly, we consolidate

the training dataset by considering the pairs of CT nodes that occur in multiple PT ′ only once in the loss

function to reduce the runtime for learning the ranking function. We did not do the same thing in Section

2.6 since the number of pairs of actions (i.e., conflicts at a CT node) for conflict selection in CBS was much

smaller than the number of pairs of actions (i.e., CT nodes in the focal list) for node selection in ECBS.

2.7.2 Empirical Evaluation

In this subsection, we demonstrate the efficiency of ECBS+ML through experiments. In the following, we

introduce our evaluation setup and then present the results.

55

2.7.2.1 Setup

We implement ECBS+ML in C++ and conduct our experiments on a 2.4 GHz Intel Core i7 CPU with 16 GB

RAM. During testing, we compare against ECBS with the node-selection strategies h1, h2 and h3, denoted

by ECBS+h1, ECBS+h2 and ECBS+h3, respectively. We also compare against two versions of ECBS+ML,

one that stops early, denoted by ECBS+ML(ES), and one that uses only imitation learning without cur-

riculum learning, denoted by ECBS+IL. In our ablation study, we also compare against ECBS+ML(ES) and

ECBS+IL. ECBS+ML(ES) uses the same training algorithm as ECBS+ML except that it stops training earlier

than ECBS+ML. The number of agents in the last iteration of training in the training algorithm is the one

where the success rate of ECBS+h1 first drops below 60%. ECBS+IL uses the same training algorithm as

ECBS+ML except that, for each number of agents, it learns a ranking function starting from the given ini-

tial ranking function without relying on the previously learned one. We replace Line 4 in Algorithm 3 with

“πi ← DAgger(π∗, Ii)” and “πi = πi−1” on Line 5 with “πi = π∗”. We set the runtime limit to 5 minutes

per instance for running ECBS for both data collection and testing. The number of solutions T collected

during data collection is set to 10. The thresholds that determine the labels τ0, τ1 and τ2 are set to 10, 30

and 60, respectively. The number of iterations R for DAgger is set to 10. The damping factor r for weight

w̃Ni,Nj is set to 0.3727. r is chosen so that a CT node at depth 0.6dmax has weight e−0.6/r = 0.2. Since we

are using a pairwise loss, we suffer from a quadratic time complexity (O(|T |2)) for the loss computation.

Therefore, we record only the first 10,000 CT nodes generated for each instance during data collection.

We use the default values for all parameters in LIBLINEAR, including the regularization parameter C ,

which is set to 1. We did not try out many other values for the hyperparameters since the improvement

of ECBS+ML over ECBS is already substantial with these values.

We evaluate ECBS+ML on five grid maps of different sizes and structures from the MAPF benchmark

[181], including (1) a random map “random-32-32-20”, which is a 32 × 32 grid map with 20% randomly

blocked cells; (2) a warehouse map “warehouse-10-20-10-2-1”, which is a 163 × 63 grid map with 200

56

10 × 2 rectangular obstacles; (3) a maze map “maze-128-128-10”, which is a 128 × 128 grid map with

ten-cell-wide corridors; (4) a game map “den520d”, which is a 257 × 256 grid map from the video game

Dragon Age: Origins; and (5) a city map “Paris_1_256”, which is a 256 × 256 grid map of Paris. Since

ECBS has better scalability than CBS, compared to the MAPF instances used in Section 2.6.2, we use MAPF

instances with larger sizes and higher obstacle and agent densities. For example, we increase the sizes of

the random map and the warehouse map. We also increase the number of agents in MAPF instances on

the same city map. We use 25 MAPF instances for both training and testing. The parameters related to

each grid map are listed in Table 2.5. k1 is chosen such that at least one of ECBS+hi (i=1,2,3) has a success

rate of 88% or higher. We fix the increment between ki and ki+1 for each grid map, and km is chosen such

that either the success rate of ECBS+ML falls below 20% or all ECBS+hi (i=1,2,3) have 0% success rates. We

fix the suboptimality factor w, following the reasoning in previous work [10], where small w values are

chosen for large grid maps and large w values are chosen for small grid maps. Our objective is to obtain a

ranking function πi for each number of agents ki in {k1, . . . , km}. The training loss of the learned ranking

functions is shown in Table 2.6. It is small. We now test the node-selection strategies that correspond to

those ranking functions on unseen instances with k1, . . . , km agents.

2.7.2.2 Results

Success Rate and Runtime Figure 2.1 plots the success rates on all grid maps. Overall, ECBS+ML

substantially outperforms the three baselines, ECBS+h1, ECBS+h2 and ECBS+h3, on all grid maps. On the

game map, in particular, the success rates of the baselines drop below 20% when the number of agents

increases to 170, and the baselines can hardly solve instances with more than 245 agents, while the success

rates of ECBS+ML stay above 76% for up to 245 agents and ECBS+ML can still solve 16% of the instances

with 305 agents. Overall, the success rates of ECBS+ML are 52% to 80% when those of the baselines begin

to drop below 20%. When the success rates of the baselines are all below 8%, ECBS+ML can still solve

57

Figure 2.1: Success rates for a runtime limit of 5 minutes as a function of the number of agents for each
grid map. The values of w and the numbers of agents are listed in Table 2.5. For ECBS+ML, ECBS+ML(ES)
and ECBS+IL, the vertical line of the same color indicates the number of agents in the last iteration where
a ranking function is learned in the training algorithm. In the figure for the warehouse map, the graph of
ECBS+h1 coincides entirely with the one of ECBS+h2.

58

Figure 2.2: Success rates for a fixed number of agents as a function of the runtime limit for each grid map.

59

Figure 2.3: Success rates for a runtime limit of 5 minutes as a function of the suboptimality factor w on
the random map for 95 agents. The vertical brown line indicates the value of w in the last iteration where
a ranking function is learned for ECBS+ML(w).

instances with 9% to 17% more agents with success rates around 12% to 20%. To demonstrate the efficiency

of ECBS+ML further, we show the success rates for different runtime limits in Figure 2.2. We show one

figure for each grid map with a fixed number of agents, namely the smallest number of agents ki where

the baseline with the weakest heuristic has a success rate below 50% for a runtime limit of 5 minutes. In

these cases, ECBS+ML has a success rate above 80% and still substantially outperforms the baselines for

shorter runtime limits, e.g., of 1 or 2 minutes.

We have applied curriculum learning (Algorithm 3) to learn node-selection strategies for MAPF in-

stances with increasing difficulties in terms of the number of agents. Next, we demonstrate that we can

do the same for other measurements of difficulties, such as the suboptimality factor w. When w decreases,

the difficulty increases. Figure 2.3 shows the success rates of ECBS+ML and the baselines for a runtime

limit of 5 minutes as a function of the suboptimality factor w on the random map for 95 agents. We use

ECBS+ML with the ranking function obtained in the experiment described in the previous paragraph that

is trained on 95 agents and w = 1.1. To show that the success rates of ECBS+ML can be improved with

curriculum learning, we use the same training algorithm (Algorithm 3) but, instead of using a fixed value

for w and different numbers of agents, we use a fixed number of agents and different values of w, namely,

60

wi ∈ {1.09, 1.08, . . . , 1.05}. We then obtain a ranking function for each wi. Figure 2.3 shows the success

rates of the resulting variant ECBS+ML(w). ECBS+ML(w) achieves higher success rates by applying cur-

riculum learning on different values of w than ECBS+ML, which just generalizes the ranking function for

w = 1.1 to other values of w.

Ablation Analysis To assess the effect of curriculum learning, we perform two ablation analyses. First,

we experimentwith ECBS+ML(ES). The success rates of ECBS+ML(ES) are shown in Figure 2.1. ECBS+ML(ES)

is competitive with ECBS+ML on the random, warehouse and maze maps and outperforms all baselines

on the random and warehouse maps, but its success rates on the city and game map drop dramatically

beyond the number of agents that ECBS+ML(ES) stopped training at. The results imply that the learned

node-selection strategy does not generalize well to larger numbers of agents on some grid maps and cur-

riculum learning helps to learn better strategies in those cases.

Second, we experiment with ECBS+IL. The success rates of ECBS+IL are shown in Figure 2.1. ECBS+IL

outperforms the baselines but not as substantially as ECBS+ML. The results show another two advantages

of curriculum learning: (1) It enables learning for one to three more iterations (see the gaps between

the vertical lines for ECBS+ML and ECBS+IL in Figure 2.1) than ECBS+IL by enabling DAgger to collect

more data for training due to being provided with better node-selection strategies for this purpose; and (2)

it obtains better node-selection strategies based on the previously-learned strategies than ECBS+IL that

learns the node-selection strategy from the given initial ranking function in every iteration.

Feature Importance Next, we study the feature importance of the learned ranking functions of ECBS+ML,

measured by the permutation feature importance [4] of each feature, which is the increase in the loss on

the training data after randomly permuting the values of that feature across all CT nodes for each CT in the

training data. In Figure 2.4, we plot the normalized permutation feature importance of the top 12 features

of the ranking functions for some numbers of agents and some grid maps. We first study the important

61

(a) Permutation feature importance of the learned ranking functions for different numbers of agents on the maze
map.

(b) Permutation feature importance of the learned ranking functions for different grid maps.

Figure 2.4: Feature importance plots. We restate the definitions of some atomic features here (see Section
2.7.1.2 for the full list): f1 is the number of conflicts, f2 is the number of pairs of agents that have at least
one conflict with each other, f3 is the number of agents that have at least one conflict with other agents,
and f9 is the depth of the CT node.

62

features of the ranking functions when varying the numbers of agents for a single grid map, as shown in

Figure 2.4a. We choose the maze map as a representative example to show that the learned node-selection

strategies change as the number of agents increases. For 45 agents, the most important features are related

to f1 (the number of conflicts), followed by some features related to f2 (the number of pairs of agents that

have at least one conflict with each other). For both 65 and 85 agents, the top 6 features are related to f2,

followed by some features related to f3 (the number of agents that have at least one conflict with other

agents) for 65 agents and f1 for 85 agents. For 105 agents, the most important features are related to f3,

followed by some features related to f1. To show that the set of important features varies across grid maps,

we study the feature importance of the ranking functions for the random, warehouse, game and city maps,

as shown in Figure 2.4b. The ranking functions are for the numbers of agents used in Figure 2.2. For the

random and warehouse maps, the most important features are related to f3, and the feature importance

drops after the 4th feature. For the city map, the most important features include five features related to

f9 (the depth of the CT node). For the game map, the two most important features are also related to f9,

followed by some features related to f3.

2.8 Learning to Select Agent Sets for MAPF-LNS

In this section, we introduce MAPF-ML-LNS to show how our framework can be applied to improving

selecting agent sets in MAPF-LNS. We have introduced how our framework can be applied to improve

optimal and bounded-suboptimal MAPF search algorithms. However, both CBS and ECBS often run too

slowly due to proving (sub)optimality during the search, especially when solving large MAPF instances

with high agent or obstacle densities. To tackle these issues, researchers have studied anytime unbounded-

suboptimal MAPF search algorithms. The appeal of an anytime MAPF search algorithm is that it first finds

an initial solution quickly using any existing MAPF search algorithm and, if more runtime is available,

63

then improves the solution quality over time. MAPF-LNS [117] is a state-of-the-art anytime MAPF search

algorithm that uses Large Neighborhood Search (LNS).

MAPF-LNS uses an agent-based and a map-based heuristic to select agent sets to destroy. The number

of agent sets that could be generated by these (randomized) agent-set selection strategies can be exponen-

tial in the cardinality of the agent sets, and MAPF-LNS randomly selects one of them (namely the one that

is first randomly generated). However, some agent sets might not improve the solution as much as other

agent sets and even result in no improvement at all, even if they are all generated by the same agent-set

selection strategy. We apply the framework introduced in Section 2.5 and tailor it for agent set selection

in MAPF-LNS. We then empirically demonstrate the effectiveness and efficiency of MAPF-ML-LNS.

2.8.1 Machine Learning Methodology

Our goal is to learn an agent-set selection strategy to improve the solution faster than the existing ones.

The agent-set selection strategy is applied in every iteration of MAPF-LNS. Thus, we represent the state

of the search with the incumbent solution s = P (the solution with the lowest sum of costs found so far

in the search), and we let the set of actions A(P) = B(P) be the sets of agent sets that can be selected

by the strategy. The size of B(P) is exponential in the cardinality of the agent sets. We first propose a

sampling-based expert for agent-set selection. The expert reduces the size of A(P) by down-sampling a

collection of agent sets using one of the two agent-set selection strategies in MAPF-LNS. It then replans

the paths of all agents in the sampled agent sets and selects the agent set that reduces the sum of costs the

most. However, the expert is time-consuming to compute. We therefore learn to imitate the expert with a

linear ranking function. Finally, we use the learned ranking function to guide agent-set selection during

the search.

64

Figure 2.5: Evolution of the solution quality as a function of the number of replans for MAPF-LNS, MAPF-
ML-LNS and MAPF-LNS with the expert.

2.8.1.1 Expert for Agent-Set Selection

Given a MAPF instance and its incumbent solution P , the expert for agent-set selection first calls the

agent-set selection strategies to sample a collection of S agent sets B(P), where S is a constant that is set

to 20 throughout the experiments. Each agent-set sample is generated by a randomized agent-set selection

strategy chosen from the agent-based and map-based heuristics¶ with uniform probability, and its size is

chosen uniformly at random from 5 to 16. For each of the S agent sets, the expert replans the paths of the

agents in it and records the cost improvement, i.e., the resulting decrease in the sum of costs. Finally, the

expert outputs the agent set with the highest rank, i.e., the one with the largest cost improvement.

We replace the agent-set selection in MAPF-LNS (Lines 5-6 in Algorithm 2) with the expert and com-

pare the resulting version of MAPF-LNS with the expert against MAPF-LNS for 100 agents on the random

map “random-32-32-10”, which is a 32× 32 grid map from the MAPF benchmark set [181] with 10% ran-

domly blocked cells. The grid map is shown in Table 2.9. We follow the experimental setup introduced in

Section 2.8.2. We allocate a budget of 100 replans to each algorithm (instead of a runtime limit). Figure

2.5 shows how the average sum of costs changes after each replan. The average runtime of MAPF-LNS is
¶We started this work when an earlier version [118] of MAPF-LNS came out that uses only the two heuristics. MAPF-LNS

[117] actually uses a third heuristic that randomly generates agent sets. We tried adding this heuristic to the expert but saw little
improvement in the results.

65

Feature Descriptions Count
Static Features 6
Distance between ai’s start and goal vertices. 1
Row and column numbers of ai’s start and goal vertices. 4
Degree of ai’s goal vertex. 1
Dynamic Features 10
Delay of ai. 1
Ratio between the delay of ai and the distance between ai’s start and goal vertices. 1
Minimum, maximum, sum and average of the heat values of the vertices on ai’s path pi:
The heat value of vertex v ∈ V is the number of time steps that v is occupied by an agent.
The heat value of a vertex counts multiple times in the sum and average if the vertex is
visited by the agent multiple times until it no longer leaves the goal vertex.

4

Number of time steps that ai is on a vertex with degree j (1 ≤ j ≤ 4) until it no longer
leaves the goal vertex.

4

Table 2.7: Agent ai’s features with respect to instance I and incumbent solution PI = {pi : i ∈ [k]}. The
counts are the numbers of features contributed by the corresponding entries.

0.8 seconds, while the one of MAPF-LNS with the expert is more than 16 seconds, which is too slow to be

useful for MAPF solving. However, the huge difference between the curves of MAPF-LNS (red) and MAPF-

LNS with the expert (blue) in Figure 2.5 suggests that, if we could learn an ML model that approximates

the expert accurately with a small computational overhead during MAPF solving, then a version of MAPF-

LNS with ML-guided LNS might be able to improve the solution quality faster early in the search than

MAPF-LNS. The curves of MAPF-ML-LNS (green) in Figures 2.5 and 2.6 show that this is indeed possible.

2.8.1.2 Data Collection

Given an instance I , the incumbent solution P and the number S of agent sets to sample, we describe

the subroutine collectData(I, P, S) that will be used to collect features and labels for P in our learning

algorithm.

For incumbent solution P , we sample a collection B(P) of S agent sets using the expert. For each

B ∈ B(P), we compute a feature vector ϕP (B) and a ground-truth label yP (B) transformed from the

expert’s ranking.

66

Features To compute the feature vector ϕP (B) of a given agent set B ∈ B(P), we first compute a set

of 16 agent features for each agent ai ∈ {a1, . . . , ak}, which are summarized in Table 2.7. We then divide

the set of agents into two subsets, B and {a1, . . . , ak} \ B. For each subset, we compute the minimum,

maximum, sum and average of the value of each of the 16 agent features over all agents in the subset,

resulting in 4 × 16 = 64 features for the subset and p = 2 × 64 = 128 features for both subsets. We

perform a linear transformation to normalize the value of each feature to the range of [0, 1] across all

agent sets in B(P), where the minimum value of that feature gets transformed into a 0 and the maximum

value gets transformed into a 1. We then concatenate them to obtain the feature vector ϕP (B).

Labels A ground-truth label yP (B) is a value assigned to each agent setB ∈ B(P), such that agent sets

that result in higher cost improvements have smaller values. We use a simple and intuitive soft labeling

scheme following previous work [102]: Let α and β (α ≥ β) be the cost improvements of the agent sets

ranked at the 75 and 50 percentiles by the expert, respectively, and set yP (B) = 1[∆B≥α] + 1[∆B≥β],

where∆B is the cost improvement of B (in our study, we achieved similar results when labeling with 75,

50 and 25 percentiles as well as 80 and 50 percentiles). This labeling scheme assigns label 2 to the agent sets

ranked in the top 25%, label 1 to the ones ranked in the top 50% but not the top 25% (i.e., the ones better

than a choice at random) and label 0 to the rest. Our labeling scheme relaxes the definition of the best

agent set and allows us to learn a ranking function that focuses on selecting only high-ranking agent sets

with respect to their cost improvements and avoids having to correctly rank agent sets with small or no

cost improvements. We tried using binary labels, e.g., yP (B) = 1[∆B≥α], and using the cost improvements

∆B as the labels but did not get as good performance as the one we proposed.

2.8.1.3 Model Learning

We use imitation learning to learn a strategy for agent-set selection. We adapt the data-aggregation algo-

rithm [168] combined with the forward training algorithm [167] to our use case.

67

Algorithm 5 Training Algorithm
1: Input: Training instance set ITrain, number R of iterations and number S of agent set samples
2: for I ∈ ITrain do
3: P ← runInitialSolver(I)
4: Record P as the incumbent solution of I
5: D = ∅
6: for r = 1 to R do
7: for I ∈ ITrain do
8: P ← incumbent solution of I
9: collectData(I, P, S) ▷ Sample S agent sets for instance I and collect their features and labels using the expert.
10: D ← D ∪ {P} ▷ Then, add the state P to the training dataset.

11: Train π(r) with D
12: for I ∈ ITrain do
13: P ← incumbent solution of I
14: B(P)← ∅
15: for i = 1 to S do
16: H ← uniformly select one of the two heuristics
17: B(P)← B(P) ∪ selectAgentSet(I,H)
18: B ← argmaxB′∈B(P) π

(r)(ϕP (B
′))

19: P− ← {pi ∈ P : ai ∈ B}
20: P+ ← runReplanSolver(I,B, P \ P−)
21: if

∑
p∈P+ l(p) <

∑
p∈P− l(p) then

22: P ← (P \ P−) ∪ P+

23: Update P as the incumbent solution of I
24: π ← validate({π(1), . . . , π(R)})
25: return π

The training algorithm, shown in Algorithm 5, takes as input a set ITrain of training instances and

runs for R iterations. We fix the grid map and the number of agents for the training instances, where

the start and goal vertices of the agents are drawn i.i.d. from a given distribution. The training algorithm

first computes an initial solution P for each I ∈ ITrain (Lines 2-4). In each iteration r (1 ≤ r ≤ R), it

collects training data for each I ∈ ITrain by probing the expert and recording its decision with respect to

the incumbent solution P of I as well as the features of the agent sets sampled by the expert (Lines 7-10).

Then, it trains a ranking function π(r) that minimizes a loss function over the aggregated training data

D (Line 11). To improve P , it evaluates all agent sets B(P) to select an agent set B using π(r) (Line 18),

replans the paths of all agents in B (Line 16) and updates P if the solution improves (Lines 21-23). After

R iterations, it returns the ranking function that performs best during validation (Lines 24-25). Algorithm

68

Algorithm 6MAPF-ML-LNS
1: Input: MAPF instance I , ranking function π and number S of agent set samples
2: P = {pi : i ∈ [k]} ← runInitialSolver(I)
3: Initialize the weights ω of the agent-set selection strategies
4: while runtime limit not exceeded do
5: B(P)← ∅
6: for i = 1 to S do
7: H ← selectDestroyHeuristic(w)
8: B(P)← B(P) ∪ selectAgentSet(I,H)
9: Compute π(ϕP (B)) for all B ∈ B(P)
10: for B ∈ B(P) in descending order of π(ϕP (B)) do
11: P− ← {pi : ai ∈ B}
12: P+ ← runReplanSolver(I,B, P \ P−)
13: Update the weights ω of the agent-set selection strategies
14: if

∑
p∈P+ l(p) <

∑
p∈P− l(p) then

15: P ← (P \ P−) ∪ P+

16: break
17: return P

5 repeatedly determines a ranking function that makes good decisions in those situations encountered in

previous iterations when using the previously learned ranking functions to guide agent-set selection.

Given the datasetD collected during training, we follow the formulation in Section 2.5 to learn a linear

ranking function

π : Rp → R : π(ϕP (B)) = wTϕP (B)

with parameter w ∈ Rp, that minimizes the loss function

L(w) =
∑
P∈D

l(yP , ŷP) +
C

2
||w||22.

To compute l(yP , ŷP), we consider the set of pairsPP = {(B′, B′′) : B′, B′′ ∈ B(P)∧yP (B′) > yP (B
′′)}

and calculates it as the fraction of swapped pairs

l(yP , ŷP) =
|{(B′, B′′) ∈ PP : ŷB′ ≤ ŷB′′}|

|PP |
.

69

2.8.1.4 ML-Guided Search

After learning the ranking function π, we deploy it in MAPF-ML-LNS. MAPF-ML-LNS is summarized

in Algorithm 6. In each iteration, given the incumbent solution P , MAPF-ML-LNS samples a collection

B(P) of S agent sets using the two agent-set selection strategies (Lines 6-8) and computes the predicted

score π(ϕP (B)) for each agent set B ∈ B(P) (Line 9). The agent-set selection strategies are chosen from

the agent-based and map-based heuristics with probabilities according to the weights ω maintained by

adaptive LNS. MAPF-ML-LNS replans the paths for the agents in agent sets (Line 12) in descending order

of the predicted scores of the agent sets. If a new incumbent solution is found, it discards the remaining

agent sets, recomputes the agent features and continues to the next iteration (Lines 14-16).

Given an instance I and its incumbent solution P = {pi : i ∈ [k]}, the time complexity of computing

the 16 agent features is bounded by O(k +
∑

i∈[k] l(pi)), which is linear in the number of agents and the

sum of costs. The agent features need to be recomputed only if a new incumbent solution is found. For each

B ∈ B(P), ϕP (B) can be computed in time O(|B|p).This could be done by pre-processing the largest 16

values, the smallest 16 values and the sum of feature values for each agent feature when computing them.

Discussion One of the main contributions in this section is the expert for agent-set selection. Previous

works have applied imitation learning to improve LNS for MILP solving [179, 177]. For MILP, we will

see in Chapter 3 that there is an existing expert called Local Branching [56] to guide selecting which

subset of variables to reoptimize next and [179] learns to predict the subset given by Local Branching.

However, for MAPF, there is no existing expert. Therefore, we design one that leverages spatio-temporal

information by using two heuristics and frame our ML problem as learning an agent-set selection strategy

to guide destroying a part of the solution in LNS. Subsequently, this allows us to use a lightweight linear

ML model, such as SVMrank, that is easy to train and fast to evaluate during MAPF solving. We do not

learn how to construct agent sets or predict the cost improvement of given agent sets since these are much

70

more complicated ML problems that require using larger ML models, such as deep neural networks. We

experimented with graph convolutional networks for these tasks on an agent dependency graph [120] and

ended up with good ML performance but an undesirably large computational overhead due to their high

model complexity, rendering them useless without further in-depth engineering.

2.8.2 Empirical Evaluation

In this subsection, we demonstrate the efficiency and effectiveness ofMAPF-ML-LNS through experiments.

In the following, we introduce our evaluation setup and then present the results.

2.8.2.1 Setup

We implement MAPF-ML-LNS in C++ and conduct our experiments on a 2.4 GHz Intel Core i7 CPU with

16 GB RAM. We compare against MAPF-LNS on five grid maps of different sizes and structures from the

MAPF benchmark set [181]: (1) the random map “random-32-32-10”; (2) the game map “den520d”, which

is a 257× 256 grid map from the video game Dragon Age: Origins; (3) the city map “Paris_1_256”, which is

a 256× 256 grid map of Paris; (4) the game map “ost003d”, which is a 194× 194 grid map from the video

game Dragon Age: Origins; and (5) the warehouse map “warehouse-10-20-10-2-1”, which is a 163×63 grid

map with 200 10 × 2 rectangular obstacles. The five grid maps are shown in Table 2.9. Compared to the

MAPF instances used in Section 2.7.2, we use grid maps of similar sizes and obstacle densities but increase

the agent densities since MAPF-LNS scales better than ECBS.

MAPF-LNS and MAPF-ML-LNS use the same setup. For the initial search algorithms and each grid

map, we follow [117] and select the MAPF search algorithm from PP, PPS and EECBS that has the highest

success rate on the instances with the largest number of agents within a runtime limit of 10 seconds as

reported by them. We use that MAPF search algorithm consistently for training and MAPF solving. That

is, we use PP as the initial search algorithm for the city and both game maps (den520d and ost003d), and

71

Grid Map Training k Average
Ranking

Improving
Choice Regret

random 100 6.5/20 90% 25%
den520d 200 7.0/20 96% 33%
city 250 6.7/20 99% 19%

ost003d 100 5.4/20 91% 26%
warehouse 100 6.0/20 90% 28%

Table 2.8: Validation results for the learned ranking function π. “Training k” is the number of agents of
the training instances. “Average ranking” is the average rank of the first agent set selected by π among
the S = 20 agent sets. “Improving choice” is the fraction of times π selects an agent set that results in
a positive cost improvement. “Regret” is calculated as the average of 100% minus the cost improvement
achieved by π as a percentage of the cost improvement achieved by the expert.

PPS for the random and warehouse maps. We use PP as the replan search algorithm for all grid maps, since

PP dominates the other MAPF search algorithms, namely CBS and EECBS [117].

During training, we run Algorithm 5 for R = 100 iterations. For each grid map, we use |ITrain| = 16

instances with a fixed number of agents. The number of agents k of the training instances is reported in

Table 2.8. Since we use a randomized version of PP that uses random agent priorities, the cost improve-

ment of each agent set used for creating its label is the average taken over 6 runs. We use regularization

parameter C = 0.1 and the default values for the other parameters in the SVMrank solver. We also tried

C ∈ {0.01, 0.001} and achieved similar results. It takes 2 to 8 hours, depending on the grid map, to run

Algorithm 5 on a single CPU. If collecting training data for the 16 instances were done in parallel on 16

CPUs in each iteration (Line 7 in Algorithm 5), the training time could be reduced to less than 1 hour.

During validation, we evaluate π1, . . . , πT on the validation data and return the ranking function π that

selects agent sets with the highest average ranking. We run MAPF-LNS with the expert for 100 iterations

on 4 MAPF instances from the same distribution as the training instances. The validation results for π are

summarized in Table 2.8. During testing, we use 25 MAPF instances and set a runtime limit of 60 seconds

per instance. For both MAPF-LNS and MAPF-ML-LNS, the runtime limit for finding the initial solution

is set to 10 seconds. Those instances for which they fail to find an initial solution within 10 seconds are

considered unsolvable and not included in our results. We use the same random seed to ensure that both

72

methods compute the same instances and initial solutions. The runtime limit of PP per replan is set to 2

seconds for the warehouse map and 0.6 seconds for the other grid maps initially and then adaptively set

to twice the average runtime of all successful replans so far after the first 30 successful replans. We use

the adaptive runtime limits for replanning since we observe that the runtime for unsuccessful replans is

longer than that for successful replans, and the runtime for replans is different on different maps. During

both training and MAPF solving, when generating an agent set using the agent-set selection strategies in

LNS, we draw its cardinality uniformly from 5 to 16. We sample S = 20 agent sets in each iteration of

MAPF-ML-LNS.

2.8.2.2 Results

Our results provide answers to the following questions:

1. If the grid map is known in advance, can we learn a ranking function that performs well on the same

grid map with the same and different numbers of agents?

2. If the grid map is unknown in advance, can we learn a ranking function from other grid maps that

performs well on the unknown one?

We therefore learn two ranking functions with SVMrank for each grid map, namely a ranking function

trained on MAPF instances on that grid map (resulting in MAPF search algorithm ML-S) and a ranking

function trained on MAPF instances from the other four grid maps (resulting in MAPF search algorithm

ML-O).

Solution Quality and the Speed of Improving the Solution An important metric for evaluating the

performance of an anytime MAPF search algorithm is its speed of improving the solution. Let ITest be the

set of test instances and, for each I ∈ ITest, let tSI,init, SOCS
I (t) and SODS

I (t) be the runtime needed to

find the initial solution, the sum of costs and the sum of delays of the solution at runtime t, respectively,

73

Grid Map k
AUC Ratio Win/Loss Sum of Agents’ Delay (Suboptimality)

ML-S ML-O ML-S ML-O MAPF-LNS ML-S ML-O

random
100 1.15±0.23 1.12±0.20 20/5 20/5 30 (1.01) 28 (1.01) 28 (1.01)
150 1.14±0.12 1.07±0.12 22/3 21/4 105 (1.03) 96 (1.03) 96 (1.03)
200 1.03±0.10 1.07±0.19 15/9 15/9 309 (1.07) 275 (1.06) 270 (1.06)
250 0.98±0.17 0.95±0.12 10/15 8/17 806 (1.15) 843 (1.15) 845 (1.15)
300 1.13±0.14 1.06±0.15 18/6 13/11 4,460 (1.67) 3,754 (1.56) 4,301 (1.61)
350 0.99±0.08 0.94±0.08 11/12 6/17 21,310 (3.78) 22,234 (3.90) 23,674 (4.08)

den520d

200 1.97±0.56 1.75±0.53 23/2 24/1 64 (1.00) 65 (1.00) 66 (1.00)
300 1.62±0.55 1.45±0.43 21/4 20/5 400 (1.01) 298 (1.00) 328 (1.01)
400 1.65±0.54 1.31±0.30 25/0 22/3 1,327 (1.02) 778 (1.01) 1,121 (1.01)
500 1.25±0.35 1.13±0.22 19/6 18/7 3,616 (1.04) 2,676 (1.03) 3,281 (1.03)
600 1.10±0.15 1.10±0.08 18/7 24/1 8,134 (1.08) 6,654 (1.06) 6,967 (1.07)
700 1.07±0.06 1.05±0.06 22/3 20/5 12,558 (1.10) 11,785 (1.10) 11,535 (1.09)

city
250 1.75±0.41 1.14±0.32 22/3 14/11 229 (1.00) 110 (1.00) 128 (1.00)
350 1.12±0.34 1.02±0.24 19/6 14/11 469 (1.01) 372 (1.01) 368 (1.01)
450 1.30±0.35 1.01±0.22 19/6 13/12 763 (1.01) 629 (1.01) 753 (1.01)
550 1.05±0.18 1.06±0.24 16/9 14/11 1,932 (1.02) 2,056 (1.02) 1,536 (1.01)
650 1.08±0.13 1.10±0.25 17/8 17/8 3,274 (1.03) 3,041 (1.02) 3,033 (1.02)
750 1.07±0.14 1.09±0.08 17/6 19/4 8,371 (1.06) 8,363 (1.06) 7,413 (1.05)

ost003d
100 1.28±0.33 1.17±0.28 21/4 15/10 42 (1.00) 42 (1.00) 42 (1.00)
200 1.43±0.36 1.20±0.27 19/4 17/6 458 (1.01) 332 (1.01) 372 (1.01)
300 1.14±0.19 1.16±0.16 16/8 20/4 2,509 (1.05) 2,379 (1.05) 2,152 (1.04)
400 1.05±0.08 1.06±0.08 17/6 17/6 6,907 (1.11) 6,584 (1.10) 6,417 (1.10)
500 1.02±0.03 1.04±0.05 15/7 16/6 14,750 (1.19) 14,431 (1.19) 14,251 (1.18)
600 1.02±0.03 1.03±0.04 14/6 16/4 24,684 (1.27) 24,468 (1.27) 24,401 (1.27)

warehouse

100 1.35±0.33 1.25±0.30 20/5 20/5 57 (1.01) 37 (1.00) 37 (1.00)
150 1.21±0.24 1.14±0.22 18/7 16/9 295 (1.02) 195 (1.01) 217 (1.02)
200 1.19±0.22 1.05±0.13 21/4 15/10 925 (1.06) 736 (1.05) 842 (1.05)
250 1.17±0.20 1.11±0.18 17/8 16/9 1,817 (1.09) 1,595 (1.08) 1,805 (1.09)
300 1.18±0.21 1.13±0.19 17/8 18/7 4,719 (1.20) 3,852 (1.16) 3,547 (1.15)
350 1.07±0.10 1.02±0.07 15/9 13/11 12,004 (1.43) 10,191 (1.36) 12,143 (1.43)

Table 2.9: The average ratios of the AUCs of MAPF-LNS and variants of MAPF-ML-LNS (ML-S and ML-O)
with their standard deviations, the win/loss counts with respect to the AUCs and the average sums of
delays with the average suboptimalities for a runtime limit of 60 seconds. All entries take only the solved
MAPF instances into account. We bold the number of agents k on which ML-S is trained and the entries
where a variant of MAPF-ML-LNS outperforms MAPF-LNS.

74

Figure 2.6: Evolutions of the sum of costs (solid curves with the y-axis on the left side, smaller is better)
from 1 second to 60 seconds for MAPF-LNS, ML-S and ML-O, averaged over all solved instances, and the
average ratio of the AUCs of MAPF-LNS and one of ML-S and ML-O (dotted curves with the y-axis on the
right side, greater than 1 is better), also averaged over all solved instances, as a function of the runtime.
The error bars represent the standard deviation.

75

when solving instance I using MAPF search algorithm S . Following [117], we compute the Area Under

the Curve (AUC) of the sum of delays as a function of the runtime of MAPF search algorithm S on each

instance I , which is formally defined as AUCS
I (tlimit) =

∫ tlimit
tSI,init

SODS
I (t)dt, where tlimit is the runtime

limit (60 seconds). The smaller the AUC, the higher the speed of improving the solution is. In Table 2.9, we

report the average ratios of the AUCs of MAPF-LNS and our MAPF search algorithms, the win/loss counts

with respect to the AUC and the average sums of delays with the average suboptimalities over all solved

test instances∥. The win/loss counts are the numbers of instances where the AUCs of ML-S or ML-O are

smaller/larger than those of MAPF-LNS. The suboptimalities are overestimated values calculated as the

ratio between the final sum of costs and the sum of distances between the agents’ start and goal vertices.

On the city and both gamemaps (den520d and ost003d), the AUCs of MAPF-LNS are 43% to 97%worse than

the ones of ML-S. On these three maps, ML-S substantially outperforms MAPF-LNS also with respect to

the win/loss counts and, for almost all tested numbers of agents, with respect to the final solution qualities.

On the random and warehouse maps, ML-S outperforms MAPF-LNS with respect to all metrics, except for

a few cases with large numbers of agents (250 and 350 agents on the random map). Even though ML-S

learns the ranking functions on MAPF instances with a fixed number of agents, they generalize well to

MAPF instances with larger numbers of agents on the same grid map and outperformMAPF-LNS in almost

all cases. ML-O also substantially outperforms MAPF-LNS. ML-O, without seeing the test grid map during

training, is competitive with ML-S and even outperforms it sometimes on both game maps and the city

map. For the random map, the improvement of MAPF-ML-LNS over MAPF-LNS is not as substantial as

for the other grid maps, especially on MAPF instances with large numbers of agents. We tried retraining

the ranking functions on MAPF instances with larger numbers of agents (e.g., 250 agents for the random

map) but achieved similar results. It is future work to improve the effectiveness of MAPF-ML-LNS on this

grid map.
∥All search algorithms have the same set of solved instances since they use the same initial search algorithm with the same

random seeds.

76

To demonstrate the effectiveness of our MAPF search algorithms further, we show the average sum

of costs forMAPF-LNS, ML-S andML-O in Figure 2.6 together with the average ratios between the AUCs of

MAPF-LNS and one ofML-S andML-O as functions of the runtime limit tlimit, i.e., 1
|ITest|

∑
I∈ITest SOCS

I (tlimit)

and 1
|ITest|

∑
I∈ITest

AUCMAPF-LNS
I (tlimit)

AUCS
I (tlimit)

for each S ∈ {ML-S,ML-O}. In these cases, ML-S and ML-O establish

advantages early in the search and substantially outperformMAPF-LNS for several shorter runtime limits,

e.g., 20 or 30 seconds.

Grid Map k
Number of Replans
MAPF-LNS ML-S

random
100 19,075 15,892
200 6,398 5,673
300 1,002 711

den520d
200 1,138 932
400 633 620
600 401 374

city
250 1,978 1,452
450 1,314 1,101
650 794 783

ost003d
100 1,398 1,044
300 419 317
500 168 138

warehouse
100 3,152 2,706
200 874 695
300 241 188

Table 2.10: The average number of replans of MAPF-LNS and ML-S for a runtime limit of 60 seconds.

The runtime overhead of MAPF-ML-LNS induced by computing the features and evaluating the rank-

ing function is small. Table 2.10 shows the average number of replans of MAPF-LNS and ML-S for a

runtime limit of 60 seconds. MAPF-ML-LNS performs fewer replans than MAPF-LNS on average. These

results suggest that our learned ranking functions select agent sets more effectively since they improve

the solutions faster and achieve better solution qualities than MAPF-LNS with fewer replans.

Feature Importance Finally, we study the feature importance of the learned ranking function for ML-S

for each grid map, measured by the absolute values of the learned feature weights. It makes sense to do

77

so since the features are normalized. Features related to the delays are the most important ones for all five

grid maps. The other important features are related to the costs of the paths, the ratios between the delays

and costs, the sums of the heat values on the paths and the numbers of time steps that the agents are on a

vertex with degree 2 or 3 (see Table 2.7 for definitions).

2.9 Learning to Prioritize Agents for PP

In this section, we introduce PP+ML to show how our framework can be applied to improve the assignment

of priorities to agents in prioritized planning (PP) [175]. PP is one of the fastest algorithms for solving

MAPF suboptimally. It is based on a simple planning scheme [49]: It assigns each agent a unique priority

and computes, in descending priority ordering, each agent’s cost-minimal path that avoids conflicts with

both static obstacles and the already-planned agents (moving obstacles). Because of its computational

efficiency and simplicity, PP remains the most commonly-adopted MAPF algorithm in practice [197]. For

example, PP is commonly used to find the initial solution in LNS-based MAPF search algorithms [117, 91].

However, its solution quality is sensitive to the predetermined priority ordering. Good priority orderings

can yield (near-)optimal solutions, whereas bad priority orderings can lead to solutions with large sums of

costs or even failures to find any solution for solvable MAPF instances, as shown in Figure 2.7.

Existing PP algorithms use either randomized assignments or greedy heuristics to determine the prior-

ity ordering, such as the query-distance heuristic [17], least-option heuristic [191, 196] and start-and-goal-

conflict heuristic [24, 116]. However, these hand-crafted heuristics have been developed in the context of

specific usage scenarios, and none of them dominates the others in all cases in terms of the success rate

and solution quality (measured by the sum of costs). We apply our framework introduced in Section 2.5

to this task and tailor it for priority assignments for agents in PP. We then empirically demonstrate the

effectiveness and efficiency of PP+ML.

78

Figure 2.7: Normalized sum of costs (i.e., we normalize them by taking the ratio of the sum of costs of the
solution over the sum of the lengths of the individually cost-minimal paths of all agents) of 100 PP runswith
different random priority orderings on MAPF instance “room-32-32-4-random-1.scen” from [181] with 20
agents, sorted in increasing order of their normalized sums of costs. PP runs that fail to find a solution are
shown on the top of the plot.

2.9.1 Machine Learning Methodology

Our goal is to learn a priority-assignment strategy that increases the success rate of PP and its solution

quality compared to a human-designed strategy. In general, a priority-assignment strategy takes theMAPF

instance and the already-planned paths as input and outputs the agent that will be planned next (i.e., it

assigns the highest priority to this agent among the remaining ones). The state of the search is represented

by the MAPF instance and the already-planned paths. The actions are the agents that have not been

planned yet. For example, the least-option heuristic recalculates the number of path options for each agent

every time a new path is planned [191]. On the other hand, the total priority ordering does not necessarily

have to be either determined online during the planning process or based on the agents that have already

been assigned priorities. Many previous works simplify the priority-assignment strategy to consider only

the MAPF instance and, therefore, determine a total priority ordering, i.e., select all actions, before starting

to plan the first cost-minimal path. Such a strategy is simple and easy to implement, and does not require

extra overhead for computing the next agent to plan a path for during the planning process, in contrast to

79

an online strategy. In the following, we learn such a strategy. Thus, we represent the state of the search

with the MAPF instance s = I and let the set of actions A(I) = {a1, . . . , ak} be the set of agents. The

learned priority-assignment strategy, represented by a ranking function, sequentially selects an agent with

the highest rank without replacement to produce a total priority ordering in descending order. We first

propose a sampling-based expert for assigning agents’ priorities. The expert randomly samples a set of

sequences of k agents without replacement to form a set of total priority orderings. It then uses PP to

plan the paths for all agents for each total priority ordering and outputs a total or partial priority ordering

based on the resulting sums of costs. However, the expert is time-consuming to compute. We, therefore,

learn to imitate the expert with a linear ranking function. Finally, we use the learned ranking function to

determine assigning agents’ priorities in PP.

2.9.1.1 Expert for Assigning Agents’ Priorities

Given a MAPF instance I , the expert for assigning agents’ priorities outputs a priority ordering≺≺≺I instead

of a single decision, from which a sequence of decisions to be made at state I can be derived. To obtain

the priority ordering ≺≺≺I , the expert first runs PP repeatedly for x times with randomly generated total

priority orderings on the agents in instance I . There are two variants of the expert to construct≺≺≺I . One

outputs a total priority ordering and the other one outputs a partial priority ordering. We denote the two

variants by OT and OP .

OT sets ≺≺≺I to the total priority ordering that generates the solution with the smallest sum of costs

among the x runs. It is simple and straightforward but has two drawbacks. First, the total priority ordering

may be arbitrary in places. For example, if agents ai and aj are located far away from each other and do

not collide with each other, then it does not matter which agent has the higher priority. Second, the total

priority ordering is based on a single example, which may not be sufficiently robust.

80

Motivated by these drawbacks, we propose Op to collect the x′ ≥ 1 samples that result in the smallest

sums of costs from the x runs and generate a partial priority ordering by imposing an ordering on two

agents only if swapping their priorities can decrease the sum of costs substantially. It works as follows:

For each PP run p = 1, ..., x, it starts with an empty partial priority ordering ≺≺≺p
I . Each iteration of

PP calls space-time A∗ [175] (i.e., A∗ that searches the space-time space, whose states are vertex-timestep

pairs) to plan an individually cost-minimal path for a single agent ai that avoids conflicts with the already-

planned paths. When this A∗ search generates an A∗ node n with an f -value of fn that moves ai from

one vertex to another, it checks if this move action leads to a conflict with an already-planned path, say,

that of agent aj , and, if so, prunes node n. The A∗ search records such pruned nodes, i.e., the pair (aj , fn).

When the A∗ search terminates and returns a path pi of length l(pi) for ai, we collect the set of agentsBH

in the recorded pairs whose fn values are smaller than l(pi) and add ai ≺ aj for all aj ∈ BH to≺≺≺p
I , for

the following reason: If any agent in BH had lower priority than ai, then A∗ might find a path of length

within [fn, l(pi)) for ai, i.e., it might find a shorter path than the current one. In contrast, even if all agents

not in BH had a lower priority than ai, then A∗ still cannot find a shorter path.

When we select the top x′ samples, we collect the associated partial priority orderings ≺≺≺p
I for p =

1, . . . , x′ and combine them into a joint partial priority ordering ≺≺≺I . To do so, we first find all pairs

of agents in each ≺≺≺p
I . Specifically, we convert ≺≺≺p

I to a directed acyclic graph (DAG) Hp
I , where node

i represents agent ai and each directed edge i → j represents ai ≺p
I aj . We run the Floyd-Warshall

algorithm on Hp
I to find all connected agent pairs. We then sort the agent pairs in descending order of

their occurrences in the top x′ samples (ai ≺ aj and aj ≺ ai are treated as two different agent pairs)

and add them one by one to≺≺≺I whenever possible. That is, if the agent pair is ai ≺ aj , we add it to≺≺≺I

iff agents ai and aj are not comparable in ≺≺≺I . We also record the occurrences and use #(ai ≺ aj) to

represent how often ai ≺ aj occurs in the x′ priority orderings.

81

(a) Assume in the top 1 sample of the PP runs, agent a2
is planned first and agent a1 is planned second. The solid
arrows represent the paths planned by space-time A∗. The
dashed arrow shows a conflict between a1 and a2 if a1 also
takes its individually cost-minimal paths. n represents the
node space-time A∗ pruned away to avoid such a conflict.

PP Run Sample Agent Pairs Added
Top 1 sample a1 ≺ a2
Top 2 sample a1 ≺ a2, a3 ≺ a4
Top 3 sample a2 ≺ a1
Top 4 sample a1 ≺ a2, a1 ≺ a4
Top 5 sample a3 ≺ a4

(b) An example of agent pairs added from the
top 5 PP samples assuming x′ = 5.

Occurrence Agent Pairs
3 a1 ≺ a2
2 a3 ≺ a4
1 a1 ≺ a4, a2 ≺ a1

(c) Occurrences of agent pairs added from the top 5 PP
samples. a2 ≺ a1 is not added to≺≺≺I because it contradicts
with a1 ≺ a2 which has a higher occurrence. (d) The DAG representation of≺≺≺I .

Figure 2.8: An example of Op. Assume we have a MAPF instance with k = 4 agents on an empty 4 × 5
grid map. The start and goal vertices of agents a1 and a2 are shown in (a).

Figure 2.8 shows an example of how Op works. Assume we have a MAPF instance I on an empty

4 × 5 grid map with four agents, and we select the top x′ = 5 samples of PP runs. The start and goal

vertices of agents a1 and a2 are shown in Figure 2.8a. Assume that in the top 1 sample, a2 and a1 have the

highest and second highest priorities, respectively. Therefore, a2 takes one of its individually cost-minimal

paths, as shown in Figure 2.8a (the solid blue arrow). When planning the path for a1, the space-time A∗

finds that a1 would have a conflict with a2 if a1 also takes its individually cost-minimal path (the dashed

red arrow). Therefore, space-time A∗ prunes away the corresponding node n where fn = 4. At the end,

space-time A∗ finds a path p1 where l(p1) = 6 (the solid red arrows). The expert then compares l(p1)with

fn. Since l(p1) > fn, it means a1 would have found a path with a lower cost if it had not had to avoid the

conflict with a2. Therefore, the expert adds a1 ≺ a2 to≺≺≺1
I . Figure 2.8b shows an example of the agent

pairs added to≺≺≺p
I from the top p ≤ 5 samples. Figure 2.8c counts the occurrences of each agent pair in

82

≺≺≺p
I (p ≤ 5). Finally, the expert constructs the partial ordering≺≺≺I greedily by adding agent pairs with the

highest occurrences. It does not add a2 ≺ a1 to≺≺≺p
I since a1 ≺ a2 is added before a2 ≺ a1. Figure 2.8d

shows the DAG representation of≺≺≺I .

2.9.1.2 Data Collection

The next step in our framework is to construct a training dataset from which we can learn a model that

imitates the expert’s output. First, we fix the graph underlying the MAPF instances that we want to solve

and the number of agents. Then, we obtain a set of MAPF instances ITrain for training. The training dataset

D = ITrain since the states of the search are represented by the instances themselves. For each I ∈ D,

we run one of the experts OT and OP on I and derive a label yI(ai) for each available action ai ∈ A(I)

from the expert’s priority ordering. We also compute a p-dimensional feature vector ϕI(ai) that describes

agent ai.

Features We collect a p-dimensional feature vector ϕI(ai) for each agent ai and each MAPF instance

I ∈ ITrain. The p = 26 features in our implementation are summarized in Table 2.11 and can be classified

into four categories:

1. Start-Goal DistancesMotivated by the query-distance heuristic [17] (see Section 2.3.4), we design 4

features about the graph and Manhattan distances between the start and goal vertices of ai (Feature

Group 1). We also generalize this idea to looking at the graph distances between the start/goal

vertices of ai and those of the other agents (Feature Groups 2 and 3).

2. MDD We consider an MDD MDD i for agent ai that consists of all individually cost-minimal paths

from si to ti, i.e., the MDD computed at the root CT node in CBS. Motivated by the least-option

heuristic (see Section 2.3.4), we design 5 features aboutMDD i (Feature Groups 4-6) becauseMDD i

captures information about the path options of ai.

83

Feature Description Count
Graph and Manhattan distances between si and gi: their respective values, absolute
difference and the ratio of the graph distance over the Manhattan distance.

4

Graph distance between si and the start vertices of the other agents: their maximum,
minimum, and mean.

3

Graph distance between gi and the goal vertices of the other agents: their maximum,
minimum, and mean.

3

Sum of the widths of all levels ofMDD i. 1
Width of each level (excluding the first and the last levels) ofMDD i: their maximum,
minimum, and mean.

3

Number of levels ofMDD i with width one. 1
Number of the other agents whose MDDs contain si. 1
Number of the other agents whose MDDs contain gi. 1
Number of the other agents whose start vertices are inMDD i. 1
Number of the other agents whose goal vertices are inMDD i. 1
Number of vertex, edge and cardinal conflicts between any cost-minimal path of ai
and any cost-minimal path of one of the other agents: counted once for each agent
pair and counted once for each conflict.

6

Number of vertices inMDD i that are also in the MDD of at least one other agent. 1

Table 2.11: p = 26 features for agent ai. Column “Count” reports the numbers of features contributed
by the corresponding entries. We consider an MDD MDD i for agent ai that consists of all individually
cost-minimal paths from si to ti, i.e., the MDD that would have been computed at the root CT node in
CBS.

3. Start and Goal Vertices Motivated by the start-and-goal-conflict heuristic (see Section 2.3.4), we

design 4 features about the potential conflicts at the start or goal vertices of the other agents that

ai might be involved in and vice versa, namely potential conflicts between ai and another agent

aj when ai is at its start or goal vertex and aj follows (one of) its individually cost-minimal paths

(Feature Groups 7 and 8) or when aj is at its start or goal vertex and ai follows (one of) its individually

cost-minimal paths (Feature Groups 9 and 10).

4. Conflicts We finally design 7 features about conflicts (Feature Group 11) and potential conflicts

(Feature Group 12) of different types that ai might be involved in. In particular, Feature 11 counts

the number of each type of conflicts that ai can be involved in if all agents follow their individually

cost-minimal paths. Feature 12 counts the number of potential vertex conflicts that ai can be involved

in if all agents follow their individually cost-minimal paths but can wait for some time steps along

84

their paths. We use the numbers of these conflicts as features because they can be easily computed

by reasoning about the MDDs of the agents.

We perform a linear transformation to normalize the value of each feature to the range of [0, 1], where

the minimum value of that feature gets transformed into a 0 and the maximum value gets transformed

into a 1.

Labels Depending on the expert used in data collection, we use different labels derived from≺≺≺I .

For expertOT , we group the agents into ⌊k/m⌋+1 priority groups (wherem ∈ N is a hyperparameter)

by setting yI(ai) = ⌊ri/m⌋, where ri represents that agent ai has the ri-th lowest priority among all

agents. That is, agents with larger labels are in higher priority groups and agents with the same label are

in the same priority group.

For expert OP , we assign labels such that yI(ai) > yI(aj) if ai ≺I aj . Such assignments always exist

according to Definition 2.3.1 (see Section 2.3.4) and can be found by performing a topological sort on the

DAG that captures≺≺≺I .

2.9.1.3 Model Learning

Given the training dataset D = ITrain, we follow the formulation in Section 2.5 to learn a linear ranking

function with parameters w ∈ Rp

π : Rp → R : π(ϕI(ai)) = wTϕI(ai)

that minimizes the loss function

L(w) =
∑

I∈ITrain

l(yI , ŷI) +
C

2
||w||22.

85

where ŷI(ai) = π(ϕI(ai)) is the predicted scores for agent ai. To compute l(yI , ŷI), we consider the set

of pairs PI = {(ai, aj) : yI(ai) > yI(aj)) ∧ ai, aj ∈ A(I)}. l(yT , ŷT) is computed as follows:

l(yI , ŷI) =

∑
(ai,aj)∈PI :ŷI(ai)≤ŷI(aj)

w̃ai,aj∑
(ai,aj)∈PI

w̃ai,aj

. (2.2)

We train two variants of PP+ML, namely ML-T and ML-P, that are trained with data collected based on

OT and OP , respectively. For ML-T, we set w̃ai,aj = 1 to assign uniform weights to discordant pairs in

the loss function. For ML-P, we set w̃ai,aj = #(ai ≺ aj) to assign weights to discordant pairs in the loss

function based on the number of occurrences of the agent pairs in≺≺≺I .

2.9.1.4 ML-Guided Search

After data collection and model learning, we apply the learned ranking function π to the feature vectors

for each test instance I ∈ ITest. Based on the predicted scores ŷI : {a1, . . . , ak} → Rk returned by π, we

propose two different methods to produce a total priority ordering.

Deterministic ranking. We rank the agents by their predicted scores, namely ai ≺ aj iff ŷI(ai) >

ŷI(aj).

Stochastic ranking. We use the predicted scores to produce a probability distribution and generate a

total priority ordering sequentially from agents with high priority to agents with low priority. Specifically,

we normalize the predicted scores ŷI using the softmax function

σ : Rk → [0, 1]k : σ(ŷI) =
(eγŷI(a1), . . . , eγŷI(ak))∑k

j=1 e
γŷI(aj)

, (2.3)

where γ ∈ R+ is a hyperparameter. We then repeatedly assign the next highest priority to an agent

that is selected with a probability proportional to its normalized predicted score (where, of course, every

86

agent can be selected only once). Agents with higher normalized scores have higher probabilities of being

selected earlier and thus assigned higher priority. This adds randomness to the total priority orderings and

allows us to leverage the random restart scheme when experimenting with PP+ML.

Discussion We address the limitations of PP+ML here. We will show in Section 2.9.2 that PP+ML does

not outperform the baselines in some cases. First, our expert for assigning agents’ priorities is based on the

best of 100 random samples. Thus, there might be not enough effective samples. Especially for large grid

maps, it is hard to get enough samples since evaluating each sample with the expert is slow. We thought

about using the least-option heuristic as the expert since it is slow but effective. However, computing the

number of path options requires high-precision computing for large grid maps which causes significant

runtime overhead in the expert and makes it difficult to implement. One way to reduce such runtime

overhead is to compute the number of path options modulo some large prime number (that is less than

32 bits) and repeat it with different prime numbers. We need to ensure that the number of path options

is bounded by the multiplication of all prime numbers we use. We then use Chinese remainder theorem

to compute the actual number of path options using high-precision computing. This method allows most

arithmetic operations to be donewith 64-bit integers. However, this is evenmore complicated to implement

and we did not invest time on it. Second, the ML model does not generalize well across grid maps or

different numbers of agents on the same grid map. We did not get good results when we tried curriculum

learning to address this limitation similar to what we did in Section 2.7. It is also slow to collect training

data on large grid maps. Therefore, for those maps, we train only one model for a fixed number of agents.

Puttingmore effort into feature engineering and/or using a more expressiveMLmodel than SVMrank might

mitigate some of these limitations.

87

2.9.2 Empirical Evaluation

In this subsection, we demonstrate the efficiency and effectiveness of PP+ML through experiments. In the

following, we introduce our evaluation setup and then present the results.

2.9.2.1 Setup

We compare the two variants of PP+ML, namely ML-T and ML-P, against three non-ML-guided variants

of PP: (1) LH, a query-distance heuristic where agents with longer individually cost-minimal paths have

higher priority [17], breaking ties uniformly at random; (2) SH, a query-distance heuristic where agents

with shorter individually cost-minimal paths have higher priority [137], breaking ties uniformly at random;

and (3)RND, a heuristic that generates a random total priority ordering [16]. We implement all algorithms

in C++ with the same PP code base and run experiments on Ubuntu 20.04 LTS on an Intel Xeon 8175M

processor with 8 GB of memory.

We evaluate PP+ML on a set of six grid mapsM, illustrated in Table 2.13, with different sizes and

structures from the MAPF benchmark [181]: (1) the random map “random-32-32-20”, which is a 32 × 32

grid map with 20% randomly blocked cells; (2) the room map “room-32-32-4”, which is a 32 × 32 grid

map with 64 square rooms connected by single-cell doors; (3) the maze map “maze-32-32-2”, which is a

32 × 32 grid map with two-cell-wide corridors; (4) the warehouse map “warehouse-10-20-10-2-1”, which

is a 161 × 63 grid map with 200 10 × 2 rectangular obstacles; (5) the first game map “lak303d” and (6)

the second game map “ost003d”, which are both 194 × 194 grid maps from the video game Dragon Age:

Origins. We refer to the first four grid maps as small maps and to the last two as large maps.

We generate a set I(M)
Train of training instances for each grid mapM . For ML-T, we generate 99 training

instances from each of the 25 scenarios, so |I(M)
Train| = 2,475. For ML-P, we generate one training instance

from each scenario since the training loss converges already for a small training dataset, so |I(M)
Train| = 25.

88

To collect training data, we run PP x = 100 times, once with LH, once with SH and 98 times with RND,

to solve each MAPF instance I ∈ I(M)
Train. We pick the PP run with the least sum of costs for ML-T and the

top k = 5 PP runs with the least sums of costs for ML-P to generate the outputs of the experts. However,

when we use small maps with large numbers of agents k, most of the 100 PP runs fail to find any solutions.

We show in Section 2.9.2.2 that our ML models often have higher success rates than LH, SH and RND on

small maps with small numbers of agents k. Therefore, when the success rate of the 100 PP runs is less

than 5% for the given MAPF instances (i.e., on the random, room and maze maps with k ≥ 200, k ≥ 125

and k ≥ 90, respectively), we replace 10 of the 98 RND runs with PP+ML trained on a smaller number of

agents on the same map (i.e., the number of agents shown on the previous row of the row in Tables 2.12

and 2.13 that corresponds to the map and the number of agents of the given MAPF instance). Specifically,

we run PP+ML with random restarts with a runtime limit of 3 seconds (i.e., repeatedly run PP using the

stochastic ranking method until a solution is found or the runtime limit is reached) in each run and always

use the same ML model for training and testing (i.e., train ML-T with datasets partially generated by ML-T

and train ML-P with datasets partially generated by ML-P). This is effective in gathering training data for

large numbers of agents on all small maps except for the warehouse map, for which we did not use PP+ML

to generate training datasets (because it did not result in higher success rates). We varied the group size

m ∈ {1, 5, 10} for ML-T and picked m = 5 as it leads to the best results. We varied the regularization

parameter C ∈ {0.1, 1, 10, 20, 100} and picked C = 20 to train ML-T since there was no significant

difference in the test results. We used the built-in cross-validation function in LIBLINEAR [52] to obtain

the value of C = 128 to train ML-P.

We always train and test on the same grid map. For small grid maps, we train and test with the same

number of agents. For large grid maps, we are only able to gather training datasets for MAPF instances

with k ≤ 500 because the runtime for a single PP run with a larger k is too high. We, therefore, train and

test with the same number of agents when k ≤ 500 and use the ML models trained on MAPF instances

89

Grid Map k
Success rate (%) Solution rank

LH SH RND ML-T ML-P LH SH RND ML-T ML-P
random 50 96 16 76 84 56 2.00 2.72 1.24 1.52 1.24

100 100 20 60 32 24 1.20 1.68 1.16 1.32 1.68
150 68 4 20 64 8 0.72 1.44 1.28 0.68 1.40
200 24 0 0 32 24 0.44 0.80 0.80 0.28 0.44
250 0 0 0 0 0 0.00 0.00 0.00 0.00 0.00

room 50 88 12 52 76 16 1.48 2.00 1.28 0.72 1.72
75 92 0 8 0 44 0.28 1.44 1.36 1.44 0.72
100 60 0 0 56 60 0.92 1.76 1.76 0.64 0.56
125 24 0 0 16 20 0.28 0.60 0.60 0.44 0.32
150 4 0 0 0 0 0.00 0.04 0.04 0.04 0.04

maze 50 84 0 12 76 68 1.32 2.40 2.12 0.68 0.96
70 76 0 0 84 88 0.84 2.48 2.48 0.88 0.88
90 64 0 0 52 80 0.96 1.96 1.96 0.84 0.68
110 44 0 0 32 44 0.56 1.20 1.20 0.52 0.56
130 16 0 0 8 16 0.20 0.40 0.40 0.32 0.20

warehouse 100 92 32 80 92 80 2.72 2.64 1.40 1.96 0.64
200 80 28 56 36 60 1.80 1.36 1.56 1.44 0.88
300 52 16 12 24 20 0.72 0.68 1.04 0.68 0.84
400 32 4 8 12 24 0.44 0.64 0.64 0.60 0.44
500 12 0 4 0 0 0.04 0.16 0.08 0.16 0.16

lak303d 300 100 28 96 96 76 2.64 2.64 1.96 1.16 1.24
400 100 36 88 88 72 2.84 2.24 1.64 1.52 1.08
500 100 44 88 84 80 2.76 1.76 1.48 2.24 0.96
600 88 8 36 80 12 1.24 1.84 1.36 0.72 1.80
700 16 0 0 68 0 0.64 0.84 0.84 0.16 0.84

ost003d 300 100 28 96 92 80 2.72 2.68 1.20 2.04 1.04
400 88 32 92 84 92 2.84 2.44 2.04 1.04 0.96
500 96 28 84 96 64 2.32 2.40 1.52 1.76 1.20
600 92 16 60 84 40 1.76 2.16 1.28 1.32 1.44
700 72 8 40 68 12 1.08 1.60 0.88 0.88 1.64

Table 2.12: Success rate and solution rank for deterministic ranking. The best results achieved among all
algorithms are shown in bold. The results are obtained by training and testing on the same map with
the same number of agents k, except for maps lak303d and ost003d with k > 500, where the results are
obtained by training on the same map with k = 500.

90

with k = 500 to test on MAPF instances with k > 500. The runtime limit for testing is set to 1 minute for

small grid maps and 10 minutes for large grid maps. We pre-compute the graph distances from each goal

vertex to all vertices on the grid map and use them as the admissible heuristics for the space-time A∗ search

for all variants of PP. Unlike Sections 2.6 and 2.8, we do not test on the grid map that is different from the

one trained on since the ML models did not generalize well to unseen grid maps. For the same reason, we

do not test on MAPF instances with numbers of agents that are different from the training instances.

We evaluate all variants of PP with four metrics on 25 test instances for each pair of number of agents

and grid map. Success rate is the percentage of solved test instances within the runtime limit. Runtime to

first solution is the runtime needed to find the first solution, averaged over all test instances, in which the

runtime limit is used for unsolved instances. Here, we consider only the PP runtime and ignore the runtime

overhead of generating the total priority orderings for PP because such runtime overhead for SH and LH

is negligible as the start-goal graph distances are pre-computed and that for ML-T and ML-P are also small

due to the small ML runtime overhead.∗∗ Normalized sum of costs is the ratio of the sum of costs and the

sum of the start-goal graph distances of all agents. Solution rank evaluates the relative solution quality as

follows: For each test instance, we rank the variants of PP in ascending order of the sums of costs of their

solutions. The lower the sum of costs, the lower the numerical value of the rank. The lowest numerical

value of the rank is 0. Algorithms that lead to the same sum of costs have the same rank, which is set to

the numerical value of the lowest rank in the tie. For example, if the sums of costs of the 5 algorithms are

101, 101, 102, 103 and 103, then their ranks are 0, 0, 2, 3 and 3, respectively. Variants of PP that fail to solve

the MAPF instances have the largest numerical value of the rank. Solution rank is the average numerical

value of the rank over the test instances.
∗∗The ML runtime overhead mainly comes from the runtime for collecting features, which, for example, is 0.03 seconds, 0.01

seconds, 0.02 seconds, 0.7 seconds, 4.37 seconds and 3.34 seconds per MAPF instance for the six grid maps with their respective
largest numbers of agents tested in Table 2.13. Moreover, the features need to be collected only once for each MAPF instance
even if we run PP multiple times via random restarts.

91

Figure 2.9: Normalized sum of costs for deterministic ranking on the random map. Unsolved MAPF in-
stances are shown on top of the plot.

2.9.2.2 Results

Deterministic Ranking We first experiment with deterministic ranking for the baseline PP algorithms,

LH, SH and RND and two variants of PP+ML, ML-T and ML-P, on test instances on each of the six grid

maps and vary the number of agents. Here, each variant of PP generates one total priority ordering and

runs exactly once for each MAPF instance. (RND uses the first total priority ordering that the randomized

algorithm generates.) We report, in Table 2.12, the success rate and the solution rank for all grid maps and,

in Figure 2.9, the normalized sum of costs for the random map.

In terms of success rate, both variants of PP+ML, ML-T and ML-P, achieve comparable results but do

not completely dominate the non-ML-guided variants of PP. ML-T generally has a higher success rate than

ML-P, but both are often more prone to failure than LH. In terms of solution quality, ML-T achieves results

comparable to RND. Although ML-P often fails to find a solution, when it does find one, it often finds a

solution with lower sum of costs than the other algorithms, as shown in Figure 2.9. In other words, ML-P

suffers from low success rates but yields good solution qualities.

92

Grid Map k
Success rate (%) Runtime to the first solution (seconds)

LH SH RND ML-T ML-P LH SH RND ML-T ML-P
random 150 100 100 100 100 100 0.08 0.65 0.42 0.24 1.37

175 100 100 100 100 100 3.24 2.54 6.22 1.06 1.49
200 88 80 88 100 100 15.60 20.56 18.25 2.13 2.86
225 16 20 28 88 92 51.09 49.70 46.10 8.82 13.17
250 0 0 0 44 52 60.00 60.00 60.00 40.88 33.79

room 50 100 100 100 100 100 0.24 0.17 0.15 0.11 0.65
75 100 100 100 100 100 0.66 1.23 1.13 1.47 0.52
100 84 80 76 100 100 12.56 22.70 23.07 3.35 0.70
125 20 8 4 80 88 49.50 59.60 58.21 16.21 10.18
150 0 0 0 24 32 60.00 60.00 60.00 51.53 44.57

maze 50 100 100 100 100 100 0.61 3.86 2.19 1.30 1.28
70 100 68 68 96 100 3.17 25.48 28.58 3.24 0.49
90 68 16 16 100 100 22.81 55.27 54.18 2.84 0.72
110 44 0 0 92 96 33.67 60.02 60.01 15.22 9.90
130 12 0 0 36 52 52.85 60.01 60.02 42.78 33.90

warehouse 350 96 96 96 100 92 9.67 13.62 13.18 13.45 13.43
400 80 84 72 84 76 26.00 25.24 26.80 24.39 29.06
450 68 48 52 60 48 35.80 39.67 39.45 37.10 40.91
500 24 28 20 20 32 52.86 49.96 52.50 53.06 49.11
550 12 8 8 24 12 58.29 56.73 59.54 56.11 56.63

lak303d 500 100 96 100 100 100 26.74 65.87 62.98 43.78 98.97
600 100 96 92 96 88 58.18 117.80 135.97 100.26 174.64
700 100 96 88 88 84 99.51 140.22 230.52 257.10 270.98
800 100 68 76 68 56 192.71 397.20 395.42 381.47 451.95
900 68 32 32 36 16 423.82 565.70 536.69 541.53 584.13

ost003d 500 100 100 96 96 92 15.68 49.15 60.60 53.10 87.81
600 100 96 96 96 92 43.07 85.94 93.92 94.57 136.83
700 96 92 92 92 88 77.55 163.39 205.10 468.27 232.78
800 100 84 84 92 72 126.35 287.04 299.36 263.53 369.30
900 88 64 64 72 40 273.00 462.16 456.27 420.71 525.51

Table 2.13: Success rate and runtime to the first solution for stochastic ranking with random restarts. The
best results achieved among all algorithms are shown in bold. The results are obtained by training and
testing on the same grid map with the same number of agents k, except for grid maps lak303d and ost003d
with k > 500, where the results are obtained by training on the same map with k = 500.

93

Stochastic RankingwithRandomRestarts The random restart technique has been shown to improve

the success rate of PP by tryingmultiple priority assignments [16]. Therefore, we use it to boost the success

rate of both variants of PP+ML. We now illustrate stochastic ranking in conjunction with random restarts,

whichwe apply to all five algorithms to ensure a fair comparison. Tomake random restarts possible, we add

randomness to the deterministic algorithms LH and SH. LH relies on the start-goal graph distances of all

agents to determine the total priority ordering. Therefore, for LH, we use the stochastic ranking method in

Section 2.9.1.4 with dist(si, gi) replacing ŷI(ai) as agent ai’s score. For SH, since it is the reversed version

of LH, we use the stochastic ranking method as for LH but generate a total priority ordering from low to

high (instead of high to low). We varied parameter γ ∈ {0.1, 0.5, 1.0, 1.5} in the softmax function and

picked γ = 0.5 for SH, LH, ML-T andML-P as it leads to the best results. RND is directly used with random

restarts. We keep restarting each algorithm with a new random seed until the runtime limit is reached. We

report, in Table 2.13, the success rate and the runtime to the first solution and, in Table 2.10, the solution

rank, where the solution, which we refer to as the final solution, is the one with the least sum of costs

found within the runtime limit.

ML-T and ML-P outperform all non-ML-guided variants of PP in terms of the success rate, runtime

to the first solution and sum of costs of the final solution on the random, room and maze maps. ML-P

has a slightly higher success rate and a better solution rank than ML-T. The advantage of PP+ML is most

apparent on these grid maps when the number of agents is large and a solution is hard to find with the

non-ML-guided variants of PP. On the warehouse map, ML-T and ML-P achieve results comparable to the

baseline algorithms. On the large grid maps, ML-T achieves success rates and solution ranks comparable to

the baseline algorithms, while ML-P has a marginally lower success rate but a better solution rank. These

results, to some degree, are consistent with the difficulty of obtaining high-quality training datasets: As

we described in the experimental setup at the beginning of this section, it is difficult to get good training

datasets on the warehouse map and the large grid maps due to both the low success rates of existing PP

94

Figure 2.10: Solution rank for stochastic ranking with random restarts.

95

variants and their long runtimes. This is the reason why we train and test using different numbers of

agents on the lak303d and ost003d maps. Our results on these grid maps demonstrate the limited ability

of ML-P to generalize to a higher number of agents.

Feature Importance We now analyze the feature importance of the learned ranking functions with

good success rates and solution ranks, i.e., on the random, room and maze maps, each with the largest

number of agents, because these ranking functions substantially outperform the baseline algorithms. We

sort the feature weightsw in decreasing order of their absolute values. Since the features are normalized,

we use the absolute values of the feature weights to represent their importance.

The three ranking functions for ML-T, one for each grid map, have nine features in common among

their top ten features with the largest absolute values: the graph and Manhattan distances between si and

gi and their absolute difference in Feature Group 1 (three features, definition in Section 2.9.1.2), the number

of vertex conflicts counted by agent pair in Feature Group 11 (one feature) and Feature Groups 4, 6, 9, 10

and 12 (five features).

The three ranking functions forML-P, one for each gridmap, have five features in common among their

top ten features with the largest absolute values: the graph distance between si and gi and the absolute

difference between the graph and Manhattan distances between si and gi in Feature 1 (two features) and

Feature Groups 4, 6 and 10 (three features).

Taking the intersection between the most important features for ML-T and ML-P, we determine the

most important features to be Feature Groups 1, 4, 6 and 10, which correspond to the query-distance

heuristic (Feature Group 1), the least-option heuristic (Feature Groups 4 and 6) and the start-and-goal-

conflict heuristic (Feature Group 10). This indicates that our learned ranking functions cleverly combine

the strengths of the existing heuristic methods.

96

2.10 Summary

In this chapter, we validated the hypothesis that one can leverage a general ML framework to improve

human-designed decision-making strategies in different types of MAPF search algorithms. We first pro-

posed a general ML framework based on imitation learning. To apply the framework, we find an expert to

provide high-quality demonstrations of decisions that we are interested in improving and use the expert

to collect data. Then, we learn an ML model to imitate the expert’s decisions using imitation learning to

speed up decision-making since the expert is slow. Finally, the learned ML model replaces the expert’s

decisions during the search.

We identified important decisions in CBS, ECBS, MAPF-LNS and PP, which are optimal, bounded-

suboptimal and unbounded-suboptimal MAPF search algorithms, and then demonstrated the applicability

of the framework to these algorithms. We introduced CBS+ML, ECBS+ML, MAPF-ML-LNS and PP+ML,

where we learned an improved conflict-selection strategy for CBS, a node-selection strategy for ECBS, an

agent-set selection strategy for MAPF-LNS and a priority-assignment strategy for PP that showed substan-

tial improvement in empirical performance in terms of efficiency and/or effectiveness over their non-ML

counterparts. Specifically, for CBS and ECBS, we improved their efficiency, and for MAPF-LNS and PP, we

improved both their efficiency and effectiveness. With the imitation learning framework, we also showed

how imitation learning with the same loss function, the same ML model and similar features can be reused

in improving different MAPF search algorithms.

97

Chapter 3

Improving Decision-Making in MILP Search Algorithms

In this chapter, we present the second major contribution of this dissertation. In contrast to MAPF, imita-

tion learning and reinforcement learning have been applied to improving MILP search algorithms. How-

ever, there are machine learning (ML) techniques, such as contrastive learning, that have shown success in

various domains within computer science, such as computer vision [74] and natural language processing

[66], but have not been applied to solving combinatorial optimization problems (COPs). To fill this gap,

we formulate a general contrastive learning framework to improve decision-making strategies for MILP

search algorithms. We identify important decisions to make in two different state-of-the-art MILP search

algorithms, namely Large Neighborhood Search (LNS) and Predict-and-Search (PaS), and then apply the

framework to improve them. Different from the imitation learning framework for MAPF introduced in

Chapter 2, contrastive learning learns to make discriminative predictions based on the expert’s demon-

strations (that is, positive samples) and bad examples of demonstrations (that is, negative samples). One

of the main challenges is to design algorithms to calculate both positive and negative samples, which is

similar to finding an expert in the imitation learning framework. In this chapter, we will again see how

the same ML algorithm, the same ML model, the same loss function and similar features can be reused

in improving different MILP search algorithms. Empirically, the ML-guided versions of the MILP search

algorithms substantially outperform their non-ML-guided and other ML-guided counterparts in terms of

98

both runtime and solution quality. Therefore, these results validate the hypothesis that one can leverage a

general ML framework to improve human-designed decision-making strategies in different types of MILP

search algorithms.

The remainder of this chapter is structured as follows. In Section 3.1, we state the motivation behind

usingML forMILP solving and provide an overview of our contributions. In Section 3.2, we formally define

MILPs. In Section 3.3, we introduce MILP search algorithms, including LNS and PaS. In Section 3.4, we

summarize related work. In Section 3.5, we introduce the framework. In Sections 3.6 and 3.7, we introduce

CL-LNS and ConPaS, respectively, and evaluate them empirically. Finally, in Section 3.8, we summarize

the contributions of this chapter.

3.1 Introduction

Algorithm designs for COPs are important and challenging tasks. A wide variety of real-world problems

are COPs, such as vehicle routing [189], path planning [158] and resource allocation [144] problems, and a

majority of them are NP-hard to solve. In the past few decades, algorithms, including optimal algorithms,

approximation algorithms and heuristic algorithms, have been studied extensively due to the importance

of COPs. Those algorithms are mostly designed by humans through costly processes that often require a

deep understanding of the problem domains and their underlying structures as well as considerable time

and effort.

Recently, there has been an increased interest in automating algorithm designs for COPs with ML.

Many ML methods learn to either construct or improve solutions or improve decision-making within an

algorithmic framework, such as greedy search, local search or tree search, for a specific COP, such as

MAPF, for which we demonstrate concrete examples in Chapter 2. Other examples include the traveling

salesman problem (TSP) [200, 214], vehicle routing problem (VRP) [107] or independent set problem [130].

The ML methods for those COPs are often not easily applicable to the others.

99

In contrast, Mixed Integer Linear Programs (MILPs) can flexibly encode and solve a broad family of

COPs, such as network design problems [96, 43, 84], mechanism design problems [41], facility location

problems [76, 5]. MILPs can be solved by Branch and Bound (BnB) [113], an optimal tree search algorithm

that can achieve state-of-the-art for MILPs. Over the past decades, BnB has been improved tremendously

to become the core of many popularMILP solvers such as SCIP [21], CPLEX [37] and Gurobi [69]. However,

due to its exhaustive search nature, it is hard for BnB to scale to large instances [102, 59].

On the other hand, meta-heuristic algorithms are MILP search algorithms that can find high-quality

solutions much faster than BnB for largeMILP instances. One of them is Large Neighborhood Search (LNS)

[177, 198, 179, 86]. LNS starts from an initial solution (i.e., a feasible assignment of values to variables)

and then improves the current best solution by iteratively selecting a subset of variables to reoptimize

while leaving others fixed. Selecting which subset to reoptimize, i.e., the destroy heuristic, is a critical

component in LNS. Hand-crafted destroy heuristics, such as the randomized heuristic [177, 179] and the

Local Branching (LB) heuristic [56], are often either inefficient (slow to find good subsets) or ineffective

(find subsets of bad quality). ML-based destroy heuristics have also been proposed and outperformed

hand-crafted ones. State-of-the-art methods include IL-LNS [179] that uses imitation learning to imitate

the LB heuristic and RL-LNS [198] that uses a similar framework to IL-LNS but trained with reinforcement

learning.

Another line of research on meta-heuristic algorithms focuses on primal heuristics that generate high-

quality solutions to MILPs. In particular, they focus on generating full or partial high-quality feasible

assignments of values to variables. Diving is one of the most popular primal heuristics. In BnB, diving

typically explores the BnB search tree to sequentially fix the values of the variables via depth-first search.

Recently, there has been an increased interest in data-driven primal heuristic designs for MILPs since

MILPs from the same application domain often share similar structures and characteristics. Among them,

variants of diving [148, 70] have been proposed with a few main differences from diving: First, diving

100

can be performed at any search tree node in BnB and descend into the search tree to make assignments

for variables sequentially, but the variants we discuss here make assignments for multiple variables all

at once at the root node. Second, diving typically makes assignments for all variables, but these variants

make assignments for only a subset of variables and then solve for the remaining variables with a MILP

solver. One of these variants is called Neural Diving (ND) [148], where it learns to partially assign values

to integer variables via imitation learning and delegate the reduced sub-MILP to a MILP solver, e.g., SCIP.

The fraction of variables to assign values to is controlled by a hyperparameter called the coverage rate. A

SelectiveNet [60] is trained for each coverage rate that jointly decides which variables to fix and the values

to fix to during testing. The main two disadvantages of ND are that (1) enforcing variables to fixed values

leads to low-quality or infeasible solutions if the predictions are not accurate enough and (2) it requires

trainingmultiple SelectiveNet to obtain the appropriate coverage rate, which is computationally expensive.

Tomitigate these issues, [70] propose another variant called Predict-and-Search (PaS) that deploys a search

inspired by the trust region method. Instead of fixing variables, PaS searches for high-quality solutions

within a pre-defined proximity of the predicted partial assignment, which allows better feasibility and

finding higher-quality solutions than ND. For both ND and PaS, the crucial decisions to make are which

variables to make assignment to and what values they should be assigned to. Their effectiveness (i.e., the

quality of the solution found) and efficiency (i.e., the speed at which high-quality solutions are found)

depend on the accuracy of the machine learning prediction and the number of variables (controlled by

hyperparameters) whose values to fix.

We have mentioned important decision-making in two MILP search algorithms, namely, which subset

of variables to select to reoptimize in LNS and deciding what values to assign to which subset of variables

in PaS. In the past, ML methods that have been applied to improve them are mostly based on imitation

learning [179, 177, 148, 70] or reinforcement learning [198, 177]. In this chapter, we propose a general

101

contrastive learning (CL) [30, 103] framework to learn such strategies and demonstrate that the perfor-

mance of MILP search algorithms, i.e., the runtime and solution quality, can be improved with ML-guided

strategies. CL is an ML method that enhances the performance of ML-guided strategies by contrasting

good and bad decision samples to learn attributes that are common among good decisions and attributes

that set apart good decisions from bad ones. In particular, we introduce CL-LNS and ConPaS to show that

it is applicable to both LNS and PaS. To apply this CL framework to algorithms for MILP solving, we first

identify an important decision to make in the search. Then, we collect training data. The crucial step in

data collection for CL is to design both positive and negative samples representing good and bad decisions,

respectively. By contrasting positive and negative samples, CL learns to make discriminative predictions

of the decisions. Empirically, we show that variants of MILP search algorithms with contrastive-learned

strategies substantially outperform their imitation-learned and/or reinforcement-learned counterparts in

terms of both runtime and solution quality. The results also demonstrate how a general CL framework can

be applied to advance state-of-the-art MILP search algorithms, which provide useful guidance to improve

ML-guided MILP solving.

3.2 Mixed Integer Linear Programs

A mixed integer linear program (MILP) M = (A, b, c, q) is defined as

min cTx

s.t. Ax ≤ b

x ∈ {0, 1}q × Rn−q,

(3.1)

where x = (x1, . . . , xn)
T denotes the q binary variables and n− q continuous variables to be optimized,

c ∈ Rn is the vector of objective coefficients, A ∈ Rm×n and b ∈ Rm specify m linear constraints. A

102

Algorithm 7 LNS for MILPs
1: Input: A MILP M .
2: x0 ← Find an initial solution toM
3: t← 0
4: while time limit not exceeded do
5: X t ← Select a subset of binary variables to destroy
6: xt+1 ← Solve the MILPM with additional constraints {xi = xti : i ≤ q ∧ xi /∈ X t}
7: t← t+ 1

8: return xt

solution x is feasible if its satisfies all the constraints. Finding an optimal solution to the MILP is NP-

hard. In this chapter, for the purpose of demonstrating our methodologies, we focus on the mixed-binary

formulation above. However, both our methods CL-LNS and ConPaS can also handle general integers

using the same engineering techniques introduced in [148] and [179].

Linear Program (LP) Relaxation of aMILP If we replace the integer constraints in Equations 3.1 with

x ∈ [0, 1]q ×Rn−q , we obtain the linear program (LP) relaxation of the MILP. Finding an optimal solution

to the LP relaxation takes polynomial time. The optimal solution to the LP relaxation is a lower bound of

the MILP. If the optimal solution satisfies the integer constraints, it is also an optimal solution to the MILP.

3.3 Background

In this section, we provide detailed introductions to LNS forMILP solving, Neural Diving [148] and Predict-

and-Search [70].

3.3.1 LNS for MILP solving

LNS is a heuristic algorithm that starts with an initial solution and then iteratively destroys and reoptimizes

a part of the solution until a runtime limit is exceeded or some stopping condition is met. Let M =

(A, b, c, q) be the input MILP, whereA, b and c are the coefficients and q is the number of binary variables

defined in Equation (3.1), andx0 be the initial solution (typically found by running BnB for a short runtime).

103

In iteration t ≥ 0 of LNS, given the incumbent solution xt, defined as the best solution found so far, a

destroy heuristic selects a subset of kt binary variables X t = {xi1 , . . . , xikt}. The reoptimization is done

by solving a sub-MILP with X t being the variables while fixing the values of xj /∈ X t to the same values

as in xt. The solution to the sub-MILP is the new incumbent solution xt+1 and then LNS proceeds to

iteration t + 1. Compared to BnB, LNS is more effective in improving the objective value cTx, especially

on difficult and large-scale instances [177, 179, 198]. Compared to other local searchmethods, LNS explores

a large neighborhood in each step and thus, is more effective in avoiding local minima. LNS for MILPs is

summarized in Algorithm 7.

Adaptive Neighborhood Size Adaptive methods are commonly used to set the neighborhood size kt

in previous work [179, 86]. The initial neighborhood size k0 is set to a constant or a fraction of the number

of binary variables. In this chapter, we consider the following adaptive method [86]: in iteration t, if LNS

finds an improved solution, we let kt+1 = kt, otherwise kt+1 = min{γ · kt, β · n} where γ > 1 is a

constant and we upper bound kt to a constant fraction β < 1 of the number of binary variables to make

sure the sub-MILP is not too large (thus, too difficult) to solve. Adaptively setting kt helps LNS escape

local minima by expanding the search neighborhood when it fails to improve the solution.

3.3.1.1 Local Branching Heuristic

The LB Heuristic [56] is originally proposed as a primal heuristic in BnB but also applicable in LNS for

MILP solving [179, 131]. Given the incumbent solution xt in iteration t of LNS, LB aims to find the subset

of binary variables to destroy X t such that it leads to the optimal xt+1 that differs from xt on at most kt

variables, i.e., it computes the optimal solution xt+1 that sits within a given Hamming ball of radius kt

104

centered around xt. To find xt+1, the LB heuristic solves the LB MILP that is exactly the same MILP from

input but with one additional constraint that limits the distance between xt and xt+1:

∑
i≤q:xt

i=0

xt+1
i +

∑
i≤q:xt

i=1

(1− xt+1
i) ≤ kt.

The LB MILP is of the same size of the input MILP (i.e., it has the same number of variables and one more

constraint), therefore, it is often too slow to be useful in practice.

3.3.1.2 Local Branching Relaxation Heuristic

We propose the Local Branching Relaxation (LB-RELAX) heuristic in [86] that first solves the LP relaxation

of the LB MILP and then selects variables X t to destroy based on the LP relaxation solution. Specifically,

given an MILP and the incumbent solution xt in iteration t, we construct the LB MILP with neighborhood

size kt and solve its LP relaxation. Let x̄t+1 be the LP relaxation solution to the LB MILP. Also, let ∆t
i =

|x̄it+1 − xti| and X̄ t = {xi : ∆t
i > 0, i ≤ q}. To construct X t (the set of variables to destroy), LB-RELAX

greedily selects kt variables with the largest ∆t
i from X̄ t and breaks ties uniformly at random. If X̄ t has

less than kt variables, we select all of them in X̄ t and kt − |X̄ t| from the rest of the binary variables

uniformly at random. Intuitively, LB-RELAX greedily selects the variables whose values are more likely

to change in the incumbent solution xt after solving the LB MILP. In [86], we propose two other variants

of LB-RELAX with randomization. Empirically, LB-RELAX runs much faster than the LB heuristic. It also

improves solutions faster than several state-of-the-art methods on a few problems but not for some others.

3.3.2 Neural Diving

ND [148] learns to generate a Bernoulli distribution for the solution values of binary variables. It learns

the conditional distribution of the solution x given a MILP M = (A, b, c, q) defined as p(x|M) =

exp(−E(x|M))∑
x′∈SM

p
exp(−E(x′|M)) , where S

M
p is a set of optimal or near-optimal solutions to M and E(x|M) is an

105

energy function of a solution x defined as cTx if x is feasible or∞ otherwise. ND learns pθ(x|M) param-

eterized by a graph convolutional network to approximate p(x|M) assuming conditional independence

between variables p(x|M) ≈
∏

i≤q pθ(xi|M). Since the full prediction pθ(x|M)might not give a feasible

solution, ND predicts only a partial solution controlled by the coverage rates and employs SelectiveNet

[60] to learn which variables’ values to predict for each coverage rates. ND uses binary cross-entropy loss

combined with the loss function for SelectiveNet to train the neural network. During testing, the input

MILP M is then reduced to solving a smaller MILP after fixing the selected variables.

3.3.3 Predict-and-Search

Predict-and-Search (PaS) [70] uses the same framework as ND to learn to predict p(x|M). Instead of

using SelectiveNet to learn to fix variables, PaS searches for near-optimal solutions within a neighborhood

based on the prediction. Specifically, given the prediction pθ(xi|M) for each binary variable, PaS greedily

selects k0 binary variables X0 with the smallest pθ(xi|M) and k1 binary variables X1 with the largest

pθ(xi|M), such that X0 and X1 are disjoint (k0 + k1 ≤ q). PaS fixes all variables in X0 to 0 and X1 to 1

in the sub-MILP, but also allows ∆ ≥ 0 of the fixed variables to be flipped when solving it. Formally, let

B(X0,X1,∆) = {x :
∑

xi∈X0
xi+

∑
xi∈X1

1−xi ≤ ∆} andD be the feasible region of the original MILP,

PaS solves the following optimization problem:

min cTx s.t. x ∈ D ∩B(X0,X1,∆). (3.2)

Restricting the solution space to B(X0,X1,∆) can be seen as a generalization of the fixing strategy em-

ployed in ND where∆ = 0. Though in ND, X0 and X1 are constructed using sampling methods based on

the neural network output.

106

3.4 Related Work

In this section, we summarize related work on LNS for MILPs and other COPs, LNS-based primal heuristics

in BnB, learning to solveMILPs with BnB, solution predictions for COPs and contrastive learning for COPs.

3.4.1 LNS for MILPs and Other COPs

A huge effort has beenmade to improve BnB for MILPs in the past decades, but LNS for MILPs has not been

studied extensively. Recently, [177] show that even a randomized destroy heuristic in LNS can outperform

state-of-the-art BnB. They also show that an ML-guided decomposition-based LNS can achieve even better

performance, where they apply reinforcement learning and imitation learning to learn destroy heuristics

that decompose the set of variables into equally-sized subsets using a classification loss. [179] learn to

select variables by imitating LB. RL-LNS [198] uses a similar framework but trained with reinforcement

learning and outperforms [177]. Both [198] and [179] use the bipartite graph representations of MILPs

to learn the destroy heuristics represented by GCNs. Another line of related work focuses on improving

the LB heuristic. [131] use ML to tune the runtime limit and neighborhood sizes for LB. [86] propose

LB-RELAX to select variables by solving the LP relaxation of LB.

Besides MILPs, LNS has been applied to solve many COPs, such as VRP [166, 8], TSP [176], schedul-

ing [108, 215] and MAPF [119, 117, 91]. ML methods have also been applied to improve LNS for those

applications [32, 133, 82, 127, 90].

3.4.2 LNS-Based Primal Heuristics in BnB

LNS-based primal heuristics are a family of primal heuristics in BnB and have been studied extensively.

With the same purpose of improving primal bounds, the main differences between the LNS-based primal

heuristics in BnB and LNS for MILPs are: (1) LNS-based primal heuristics are executed periodically at

different search tree nodes during the search and the execution schedule is itself dynamic because they

107

are often more expensive to run than the other primal heuristics in BnB; (2) the destroy heuristics in LNS-

based primal heuristics are often designed to use information specific to BnB, such as the dual bound and

the LP relaxation at a search tree node, and they are not directly applicable in LNS for MILPs in our setting.

Next, we briefly summarize the destroy heuristics in LNS-based primal heuristics:

• Crossover Heuristics [169] It destroys variables that have different values in a set of selected

known solutions (typically two).

• Mutation heuristics [169] It destroys a random subset of variables.

• Relaxation Induced Neighborhood Search [39] It destroys variables whose values disagree in

the solution of the LP relaxation at the search tree node and the incumbent solution.

• Relaxation Enforced Neighborhood Search [20] It restricts the neighborhood to be the feasible

roundings of the LP relaxation at the current search tree node.

• Local Branching [56] It restricts the neighborhood to a ball around the current incumbent solu-

tion.

• Distance Induced Neighborhood Search [61] It takes the intersection of the neighborhoods of

the Crossover, Local Branching and Relaxation Induced Neighborhood Search heuristics.

• Graph-Induced Neighborhood Search [142] It destroys the breadth-first-search neighborhood

of a variable in the bipartite graph representation of the MILP.

Recently, an adaptive LNS primal heuristic [75] has been proposed to combine the power of these heuristics,

where it essentially solves a multi-armed bandit problem to choose which heuristic to apply.

108

3.4.3 Learning to Solve MILPs with BnB

Several studies have applied ML to improve BnB. The majority of works focus on learning to either select

variables to branch on [102, 59, 68, 211] or select nodes to expand [73, 110]. There are also works on

learning to schedule and run primal heuristics [100, 34] and to select cutting planes [184, 154, 92].

3.4.4 Solution Predictions for COPs

There are other works on learning to predict solutions to MILPs in addition to ND and PaS. [44] learn to

predict backbone variables [48] whose values stay unchanged across different optimal and near-optimal

solutions and then search for optimal solutions based on the predicted backbone variables. However,

this method is not applicable to many COPs since backbone variables do not necessarily exist for them.

Recently, [203] propose threshold-aware learning to optimize the coverage rate in ND and is one of the

state-of-the-art methods. However, this method also fixes variables when solving the sub-MILP. [101] and

[130] learn to guide decision-making, such as warm-starting and node selection, in COP solvers, such as

MIP solvers and local search, via solution predictions.

3.4.5 Contrastive Learning for COPs

While contrastive learning of visual representations [77, 74, 30] and graph representations [205, 188] have

been studied extensively, it has not been explored much for COPs. [147] derive a contrastive loss for

decision-focused learning to solve COPs with uncertain inputs that can be learned from historical data,

where they view non-optimal solutions as negative samples. [46] use contrastive pre-training to learn

good representations for the boolean satisfiability problem.

109

3.5 A Contrastive Learning Framework for Learning Decision-Making

Strategies

In this section, we introduce a general ML framework based on contrastive learning to learn decision-

making strategies for MILP solving. As will be shown in Sections 3.6 and 3.7, this is a framework that

has been successfully applied to different tasks for MILP solving. We employ CL rather than other learn-

ing methods, such as imitation learning and reinforcement learning, because it has been theoretically

demonstrated to be effective [187]. CL has empirically outperformed them in combinatorial optimization

problems [46, 147] and other problem domains [51]. The framework consists of the following steps:

1. Identify a Decision to Improve Given a MILP search algorithm, identify a decision that is crucial

to its performance. The goal is to learn a strategy to improve making this decision.

2. Data Collection One of the crucial steps in CL is to design both positive and negative samples.

Similar to imitation learning, CL learns from positive samples, which are high-quality demonstra-

tions of the decisions and can be acquired from an expert. Unlike imitation learning, CL requires

negative samples, which are low-quality or infeasible demonstrations of the decisions. It is encour-

aged to find negative samples that are deceptively similar to positive ones since it has been analyzed

to be beneficial for CL [187]. For features, one of the popular techniques to featurize MILPs is using

its bipartite graph representation [59], which is often used with a graph neural network. In this

chapter, we use such an engineering technique, but this framework is compatible with the others,

such as those introduced in [102] and [177].

3. Model Learning with a Contrastive Loss The goal is to learn a model to predict decisions that

are as similar to the positive samples as possible and, at the same time, dissimilar to the negative

samples. A contrastive loss is a function whose value is low when this holds true. In this chapter,

110

Figure 3.1: An overview of training and data collection for CL-LNS. For eachMILP instance for training, we
run several LNS iterations with LB. In each iteration, we collect both positive and negative neighborhood
samples and add them to the training dataset, which is used in downstream supervised contrastive learning
for neighborhood selections.

we utilize a form of supervised contrastive loss, called InfoNCE [151, 74], but this framework is

compatible with other contrastive losses, such as the margin loss [195] and the triplet loss [160].

4. ML-Guided Search Once we have a trained ML model, we plug it into the MILP search algorithm

as a decision-making strategy.

3.6 Contrastive Large Neighborhood Search

In this section, we introduce CL-LNS to show how the framework can be applied to learn efficient and

effective destroy heuristics. Similar to IL-LNS [179], we learn to imitate the LB heuristic, a destroy heuris-

tic that selects the optimal subset of variables within the Hamming ball of the incumbent solutions. LB

requires solving another MILP with the same size as the original problem and thus is computationally

expensive. We not only use the optimal subsets provided by LB as the expert demonstration (as in IL-LNS)

but also leverage intermediate solutions and perturbations. When solving the MILP for LB, intermediate

solutions are found and those that are close to optimal in terms of effectiveness become positive samples.

We also collect negative samples by randomly perturbing the optimal subsets. With both positive and

111

negative samples, instead of a classification loss as in IL-LNS, we use a contrastive loss that encourages

the model to predict the subset similar to the positive samples but dissimilar to the negative ones with

similarity measured by dot products [151, 74]. Finally, we also use a richer set of features and graph at-

tention networks (GAT) instead of GCN to further boost performance. Empirically, we show that CL-LNS

outperforms state-of-the-art ML-guided and non-ML-guided versions of LNS at different runtime cutoffs

ranging from a few minutes to an hour in terms of multiple metrics, including the primal gap, the primal

integral, the best performing rate and the survival rate, demonstrating the effectiveness and efficiency of

CL-LNS. In addition, CL-LNS shows great generalization performance on test instances 100% larger than

training instances.

3.6.1 Machine Learning Methodology

Our goal is to learn a policy, a destroy heuristic represented by an ML model, that selects a subset of

variables to destroy and reoptimize in each LNS iteration. Specifically, let st = (M,xt) be the current

state in iteration t of LNS whereM = (A, b, c, q) is the MILP and xt is the incumbent solution, the policy

predicts an action at = (at1, . . . , a
t
q) ∈ {0, 1}q , a binary representation of the selected binary variables X t

indicating whether xi is selected (ati = 1) or not (ati = 0). We use contrastive learning to learn to predict

high quality at such that, after solving the sub-MILP derived from at (or X t), the resulting incumbent

solution xt+1 is improved as much as possible. Next, we describe our novel data collection process, the

policy network and the contrastive loss used in training. An overview of our training and data collection

pipeline is shown in Figure 3.1. Finally, we introduce how the learned policy is used in CL-LNS.

3.6.1.1 Data Collection

Following previous work [179], we use LB as the expert policy to collect good demonstrations to learn to

imitate. Formally, for a given state st = (M,xt), we use LB to find the optimal action at that leads to the

112

minimum cTxt+1 after solving the sub-MILP. Different from previous work [179, 177], we use contrastive

learning to learn to make discriminative predictions of at by contrasting positive and negative samples

(i.e., good and bad examples of actionsat). In the following, we describe howwe collect the positive sample

set Stp and the negative sample set Stn.

Collecting Positive SamplesStp During data collection, given st = (M,xt), we solve the LBMILPwith

the incumbent solution xt and neighborhood size kt to find the optimal xt+1. LNS proceeds to iteration

t+ 1 with xt+1 until no improving solution xt+1 could be found by the LB MILP within a runtime limit.

In experiments, the LB MILP is solved with SCIP 8.0.1 [21] with an hour runtime limit and kt is fine-tuned

for each type of instances. After each solve of the LB MILP, in addition to the best solution found, SCIP

records all intermediate solutions found during the solve. We look for intermediate solutions x′ whose

resulting improvements on the objective value is at least 0 < αp ≤ 1 times the best improvement (i.e.,

cT(xt − x′) ≥ αp · cT(xt − xt+1)) and consider their corresponding actions as positive samples. We

limit the number of the positive samples |Stp| to up. If more than up positive samples are available, we

record the top up ones to avoid large computational overhead with too many samples when computing

the contrastive loss (see subsection 3.6.1.3). αp and up are set to 0.5 and 10, respectively, in experiments.

Collecting Negative Samples Stn Negative samples are critical parts of contrastive learning to help

distinguish between good and bad demonstrations. We collect a set of ctn negative samples Stn, where

ctn = κ|Stp| and κ is a hyperparameter to control the ratio between the numbers of positive and negative

samples. Suppose X t is the optimal set of variables selected by LB. We then perturb X t to get X̂ t by

replacing 5% of the variables in X t with the same number of those binary variables not in X t uniformly

at random. We then solve the corresponding sub-MILP derived from X̂ t to get a new incumbent solution

x̂t+1. If the resulting improvement of x̂t+1 is less than 0 ≤ αn < 1 times the best improvement (i.e.,

cT(xt − x̂t+1) ≤ αn · cT(xt − xt+1)), we consider its corresponding action as a negative sample. We

113

repeat this ctn times to collect negative samples. If less than ctn negative samples is collected, we increase the

perturbation rate from 5% to 10% and generate another ctn samples. We keep increasing the perturbation

rate at an increment of 5% until ctn negative samples are found or it reaches 100%. In experiments, we set

κ = 9 and αn = 0.05 and it takes less than 5 minutes to collect negative samples for each state.

3.6.1.2 Neural Network Architecture

Following previous work on learning for MILPs [59, 179, 198], we use a bipartite graph representation

of MILP to encode a state st. The bipartite graph consists of n + m nodes representing the n variables

and m constraints on two sides, respectively, with an edge connecting a variable and a constraint if the

variable has a non-zero coefficient in the constraint. Following [179], we use features proposed in [59] for

node features and edge features in the bipartite graph and also include a fixed-size window of most recent

incumbent values as variable node features with the window size set to 3 in experiments. In addition to

features used in [179], we include features proposed in [102] computed at the root node of BnB to make it

a richer set of variable node features.

We learn a policy πθ(·) represented by a GAT [23] parameterized by learnable weights θ. The policy

takes as input the state st and outputs a score vector πθ(st) ∈ [0, 1]q , one score per variable. To increase the

modeling capacity and to manipulate node interactions proposed by our architecture, we use embedding

layers to map each node feature and edge feature to space Rd. Let vj , ci, ei,j ∈ Rd be the embeddings of

the j-th variable, i-th constraint and the edge connecting them output by the embedding layers. Since our

graph is bipartite, following previous work [59], we perform two rounds of message passing through the

GAT. In the first round, each constraint node ci attends to its neighbors Ni using an attention structure

withH attention heads to get updated constraint embeddings c′i (computed as a function of vj , ci, ei,j). In

the second round, similarly, each variable node attends to its neighbors to get updated variable embeddings

v′ (computed as a function of vj , c
′
i, ei,j) with another set of attention weights. After the two rounds of

114

message passing, the final representations of variables v′ are passed through a multi-layer perceptron

(MLP) to obtain a scalar value for each variable and, finally, we apply the sigmoid function to get a score

between 0 and 1. Full details of the network architecture are provided in Appendix. In experiments, d and

H are set to 64 and 8, respectively.

3.6.1.3 Model Learning with a Contrastive Loss

Given a set of MILP instances for training, we follow the expert’s trajectory to collect training data. Let

DCL-LNS = {(s,Sp,Sn)} be the set of states with their corresponding sets of positive and negative samples

in the training data. A contrastive loss is a function whose value is low when the predicted action πθ(s)

is similar to the positive samples Sp and dissimilar to the negative samples Sn. With similarity measured

by dot products, a form of supervised contrastive loss, called InfoNCE [151, 74], is used for CL-LNS:

LCL-LNS(θ) =
∑

(s,Sp,Sn)∈DCL-LNS

−1
|Sp|

∑
a∈Sp

log
exp(aTπθ(s)/τ)∑

a′∈Sn∪{a} exp(a
′Tπθ(s)/τ)

where τ is a temperature hyperparameter set to 0.07 [74] in experiments.

3.6.1.4 ML-Guided Search

During testing, we apply the learned policy πθ in LNS. In iteration t, let (v1, · · · , vq) := πθ(s
t) be the

variable scores output by the policy. To select kt variables, CL-LNS greedily selects those with the high-

est scores. Previous works [179, 198] commonly use sampling methods to select the variables, but those

sampling methods are empirically worse than our greedy method in CL-LNS. However, when the adap-

tive neighborhood size kt reaches its upper bound β · q, CL-LNS may repeat the same prediction due to

the deterministic selection process. When this happens, we switch to the sampling method introduced in

[179]. The sampling method selects variables sequentially: at each step, a variable xi that has not been

115

Small Instances Large Instances
Name MVC-S MIS-S CA-S SC-S MVC-L MIS-L CA-L SC-L

#Variables 1,000 6,000 4,000 4,000 2,000 12,000 8,000 8,000
#Constraints 65,100 23,977 2,675 5,000 135,100 48,027 5,353 5,000

Table 3.1: Names and the average numbers of variables and constraints of the test instances.

selected yet is selected with probability proportional to vηi , where η is a temperature parameter set to 0.5

in experiments.

3.6.2 Empirical Evaluation

In this subsection, we demonstrate the efficiency and effectiveness of CL-LNS through experiments. In the

following, we introduce our evaluation setup and then present the results.

3.6.2.1 Setup

Instance Generation We evaluate on four NP-hard MILP problems that are widely used in existing

studies [198, 177, 173], which consist of two graph optimization problems, namely the minimum vertex

cover (MVC) and maximum independent set (MIS) problems, and two non-graph optimization problems,

namely the combinatorial auction (CA) and set covering (SC) problems. We first generate 100 small test

instances for each MILP problem, namely MVC-S, MIS-S, CA-S and SC-S. MVC-S instances are generated

according to the Barabasi-Albert random graph model [3], with 1,000 nodes and an average degree of 70

following [177]. MIS-S instances are generated according to the Erdos-Renyi random graph model [50],

with 6,000 nodes and an average degree of 5 following [177]. CA-S instances are generated with 2,000

items and 4,000 bids according to the arbitrary relations in [115]. SC-S instances are generated with 4,000

variables and 5,000 constraints following [198]. We then generate another 100 large test instances for each

MILP problem by doubling the number of variables, namely MVC-L, MIS-L, CA-L and SC-L. For each set of

test instances, Table 3.4 shows its average numbers of variables and constraints. More details of instance

generation are included in Appendix.

116

For data collection and training, we generate another set of 1,024 small instances for each MILP prob-

lem. We split these instances into 892 training instances and 128 validation instances.

Baselines We compare CL-LNS with five baselines: (1) BnB: using SCIP (v8.0.1), the state-of-the-art

open-source MILP solver, with the aggressive mode fine-tuned to focus on improving the objective value;

(2) RANDOM: LNS which selects the neighborhood by uniformly sampling kt variables without replace-

ment; (3) LB-RELAX [86]: LNS which selects the neighborhood with the LB-RELAX heuristics; (4) IL-LNS

[179]; (5) RL-LNS [198]. We compare with two more baselines in Appendix. For each ML method, a sepa-

rate model is trained for each MILP problem on the small training instances and tested on both small and

large test instances. We implement IL-LNS and fine-tune its hyperparameters for each MILP problem since

the authors do not fully open-source the code. For RL-LNS, we use the code and hyperparameters provided

by the authors and train the models with five random seeds to select one with the best performance on the

validation instances. We do not compare to the method by [177] since it performs worse than RL-LNS on

multiple MILP problems [198]. For both IL-LNS and RL-LNS, we also test their generalization performance

on the large instances.

Metrics We use the following metrics to evaluate all methods:

1. The primal bound is the objective value of the MILP;

2. The primal gap [19] is the normalized difference between the primal bound v and a precomputed

best known objective value v∗, defined as |v−v∗|
max(v,v∗,ε) if v exists and v · v∗ ≥ 0, or 1 otherwise. We

use ε = 10−8 to avoid division by zero; v∗ is the best primal bound found within 60 minutes by any

method in the portfolio for comparison.

117

3. The primal integral [1] at time z is the integral on [0, z] of the primal gap as a function of runtime. It

captures the quality of and the speed at which solutions are found. This is similar to the area under

the curve that we use for MAPF-LNS in Section 2.8.2;

4. The survival rate to meet a certain primal gap threshold is the fraction of instances with primal gaps

below the threshold [179];

5. The best performing rate of a method is the fraction of instances on which it achieves the best primal

gap (including ties) compared to all methods at a given runtime cutoff.

Hyperparameters We conduct experiments on 2.5GHz Intel Xeon Platinum 8259CL CPUs with 32 GB

memory. Training is done on a NVIDIA A100 GPU with 40 GB memory. All experiments use the hyper-

parameters described below unless stated otherwise. We use SCIP (v8.0.1) [21] to solve the sub-MILP in

every iteration of LNS. To run LNS, we find an initial solution by running SCIP for 10 seconds. We set the

time limit to 60 minutes to solve each instance and 2 minutes to solve the sub-MILP in every LNS iteration.

All methods require a neighborhood size kt in LNS, except for BnB and RL-LNS (kt in RL-LNS is defined

implicitly by how the policy is used). For LB-RELAX, IL-LNS and CL-LNS, the initial neighborhood size

k0 is set to 100, 3000, 1000 and 150 for MVC, MIS, CA and SC, respectively, except k0 is set to 150 for

SC for IL-LNS; for RANDOM, it is set to 200, 3000, 1500 and 200 for MVC, MIS, CA and SC, respectively.

All methods use adaptive neighborhood sizes with γ = 1.02 and β = 0.5, except for BnB and RL-LNS.

For IL-LNS, when applying its learned policies, we use the sampling methods on MVC and CA instances

and the greedy method on SC and MIS instances. For CL-LNS, the greedy method is used on all instances.

Additional details on hyperparameter tunings are provided in Appendix.

For data collection, we use different neighborhood sizes k0 = 50, 500, 200 and 50 for MVC, MIS, CA

and SC, respectively, which we justify in subsection 3.6.2.2. We set γ = 1 and run LNS with LB until

no new incumbent solution is found (i.e., we do not adaptively update neighborhood sizes during data

118

collection). The runtime limit for solving LB in every iteration is set to 1 hour. For training, we use the

Adam optimizer [104] with learning rate 10−3. We use a batch size of 32 and train for 30 epochs (the

training typically converges in less than 20 epochs and 24 hours).

Since BnB and LNS are both anytime algorithms, we show these metrics as a function of runtime or

the number of iterations in LNS (when applicable) to demonstrate their anytime performance.

3.6.2.2 Results

Figure 3.8 shows the primal gap as a function of runtime. Table 3.2 presents the average primal gap and

primal integral at 60-minute runtime cutoff on small and large instances, respectively (see results at 30-

minute runtime cutoff in Appendix). Note that wewere not able to reproduce the results on CA-S and CA-L

reported in [198] for RL-LNS despite using their code and repeating training with five random seeds. CL-

LNS shows better anytime performance than all baselines on all MILP problems. On the small instances, it

achieves 32%-42% lower average primal gaps and 26%-59% lower average primal integrals than the second-

best method at the 60-minute runtime cutoff. It also demonstrates strong generalization performance on

large instances unseen during training, reducing the second-best average primal gap and average primal

integral by up to 94.4% and 57.1%, respectively. Figure 3.9 shows the survival rate to meet the 1.00% primal

gap threshold. CL-LNS achieves the best survival rate at the 60-minute runtime cutoff on all instances,

except that, on SC-L, its final survival rate is slightly worse than RL-LNS, but it achieves the rate with a

much shorter runtime. On MVC-L, MIS-S and MIS-L instances, several baselines achieve the same survival

rate as CL-LNS, but it always achieves the rates with the shortest runtime. Figure 3.4 shows the best

performing rate. CL-LNS consistently performs best on 50% to 100% of the small instances and has the

highest best performing rate in most cases on the large instances. In Appendix, we present strong results

in comparison with two more baselines and on one more performance metric.

119

(a) MVC-S (left) and MVC-L (right).

(b) MIS-S (left) and MIS-L (right).

(c) CA-S (left) and CA-L (right).

(d) SC-S (left) and SC-L (right).

Figure 3.2: The primal gap (the lower, the better) as a function of runtime averaged over 100 test instances.
For ML methods, the policies are trained only on small training instances but are tested on both small and
large test instances.

120

PG (%) ↓ PI ↓ PG (%) ↓ PI ↓
MVC-S MIS-S

BnB 1.32±0.43 66.1±13.1 5.10±0.69 222.8±25.9
RANDOM 0.96±1.26 38.0±44.8 0.24±0.14 22.1±5.0
LB-RELAX 1.38±1.51 57.0±51.2 0.65±0.20 46.9±6.5
IL-LNS 0.29±0.23 19.2±10.2 0.22±0.17 19.4±5.8
RL-LNS 0.61±0.34 29.6±11.5 0.22±0.14 17.2±5.2
CL-LNS 0.17±0.09 8.7±6.7 0.15±0.15 12.8±5.4

CA-S SC-S
BnB 2.28±0.59 137.4±25.9 1.13±0.95 86.7±37.9

RANDOM 5.90±1.02 235.6±34.9 2.67±1.29 124.3±45.4
LB-RELAX 1.65±0.57 140.5±18.3 0.86±0.83 63.2±31.6
IL-LNS 1.09±0.51 90.0±20.8 1.33±0.97 63.2±34.3
RL-LNS 6.32±1.03 249.2±35.9 1.10±0.77 77.8±28.9
CL-LNS 0.65±0.32 50.7±22.7 0.50±0.58 26.2±12.8

MVC-L MIS-L
BnB 2.41±0.40 130.2±11.1 6.29±1.62 285.1±18.2

RANDOM 0.38±0.24 22.7±8.0 0.11±0.08 19.0±3.1
LB-RELAX 0.46±0.23 48.4±7.5 0.91±0.16 68.6±5.5
IL-LNS 0.27±0.23 21.2±8.1 0.29±0.15 27.1±5.5
RL-LNS 0.59±0.30 37.3±9.6 0.14±0.12 18.9±4.1
CL-LNS 0.05±0.04 9.1±3.4 0.12±0.11 12.9±4.4

CA-L SC-L
BnB 2.74±1.87 320.9±83.1 1.54±1.33 115.0±42.5

RANDOM 5.37±0.75 229.2±24.4 3.31±1.79 166.4±61.3
LB-RELAX 1.61±1.50 153.0±50.3 1.91±1.42 88.3±48.9
IL-LNS 4.56±0.98 254.2±33.4 1.72±1.19 79.1±42.4
RL-LNS 4.91±0.81 197.0±28.5 0.66±0.72 116.2±27.1
CL-LNS 0.09±0.10 116.1±18.0 0.58±0.45 39.2±23.2

Table 3.2: Primal gap (PG) (in percent), primal integral (PI) at 60-minute runtime cutoff, averaged over 100
test instances and their standard deviations. “↓” means the lower, the better. For ML methods, the policies
are trained only on small training instances but are tested on both small and large test instances.

121

(a) MVC-S (left) and MVC-L (right).

(b) MIS-S (left) and MIS-L (right).

(c) CA-S (left) and CA-L (right).

(d) SC-S (left) and SC-L (right).

Figure 3.3: The survival rate (the higher, the better) over 100 test instances as a function of runtime to meet
the primal gap threshold 1.00%. For ML methods, the policies are trained only on small training instances
but are tested on both small and large test instances.

122

(a) MVC-S (left) and MVC-L (right).

(b) MIS-S (left) and MIS-L (right).

(c) CA-S (left) and CA-L (right).

(d) SC-S (left) and SC-L (right).

Figure 3.4: The best performing rate (the higher the better) as a function of runtime on 100 test instances.
The sum of the best performing rates at a given runtime might sum up greater than 1 since ties are counted
multiple times.

123

Comparison with LB (the Expert) Both IL-LNS and CL-LNS learn to imitate LB. On the small test

instances, we run LB with two different neighborhood sizes, one that is fine-tuned in data collection and

the other the same as CL-LNS, for 10 iterations and compare its per iteration performance with IL-LNS

and CL-LNS. This allows us to compare the quality of the learned policies to the expert independently of

their speed. The runtime limit per iteration for LB is set to 1 hour. Figure 3.5 shows the primal bound

as a function of the number of iterations. The table in the figure summarizes the neighborhood sizes and

the average runtime per iteration. For LB, the result shows that the neighborhood size affects the overall

performance. Intuitively, using a larger neighborhood size in LB allows LNS to find better incumbent

solutions by exploring larger neighborhoods. However, in practice, LB becomes less efficient in finding

good incumbent solutions as the neighborhood size increases and sometimes even performs worse than

using a smaller neighborhood size (the one for data collection). The neighborhood size for data collection

is fine-tuned on validation instances to achieve the best primal bound upon convergences, allowing the

MLmodels to observe demonstrations that lead to as good primal bounds as possible in training. However,

when using the ML models in testing, we have the incentive to use a larger neighborhood size and fine-

tune it since we no longer suffer from the bottleneck of LB. Therefore, we fine-tune the neighborhood sizes

for IL-LNS and CL-LNS separately on validation instances. CL-LNS has a strong per-iteration performance

that is consistently better than IL-LNS. With the fine-tuned neighborhood size, CL-LNS even outperforms

the expert that it learns from (LB for data collection) on MIS-S and CA-S.

Ablation Study We evaluate how contrastive learning and two enhancements contribute to CL-LNS’s

performance. Compared to IL-LNS, CL-LNS uses (1) addition features from [102] and (2) GAT instead of

GCN. We denote by “FF” the full feature set used in CL-LNS and “PF” the partial feature set in IL-LNS.

In addition to IL-LNS and CL-LNS, we evaluate the performance of IL-LNS with FF and GAT (denoted by

IL-LNS-GAT-FF), CL-LNS with GCN and PF (denoted by CL-LNS-GCN-PF) as well as CL-LNS with GAT

and PF (denoted by CL-LNS-GAT-PF) on MVC-S and CA-S. Figure 3.6 shows the primal gap as a function

124

MVC-S MIS-S CA-S SC-S
NH size Runtime NH size Runtime NH size Runtime NH size Runtime

LB 100 3600±0 3,000 3600±0 1,000 3600±0 100 3600±0
LB (data collection) 50 3600±0 500 3600±0 200 3600±0 50 3600±0

IL-LNS 100 2.1±0.1 3,000 1.3±0.2 1,000 20.8±13.1 150 120.9±1.3
CL-LNS 100 2.2±0.1 3,000 1.3±0.1 1,000 25.1±15.3 100 50.1±10.4

(a) MVC-S (b) MIS-S

(c) CA-S (d) SC-S

Figure 3.5: The primal bound (the lower, the better) as a function of the number of iterations averaged
over 100 small test instances. LB and LB (data collection) are LNS with LB using the neighborhood sizes
fine-tuned for CL-LNS and data collection, respectively. The table shows the neighborhood size (NH size)
and the average runtime in seconds (with standard deviations) per iteration.

125

(a) MVC-S (b) CA-S

Figure 3.6: Ablation study: The primal gap (the lower, the better) as a function of time averaged over 100
small test instances.

PG (%) ↓ PI ↓ PG (%) ↓ PI ↓
MVC-S CA-S

IL-LNS(-GCN-PF) 0.29±0.23 19.2±10.2 1.09±0.51 90.0±20.8
IL-LNS-GAT-FF 0.24±0.17 15.3±7.3 1.13±0.63 78.9±22.7
CL-LNS-GCN-PF 0.17±0.10 11.4±8,8 0.75±0.40 57.9±21.2
CL-LNS-GAT-PF 0.16±0.09 10.1±0.6 0.76±0.39 53.8±22.1

CL-LNS(-GAT-FF) 0.17±0.09 8.7±6.7 0.65±0.32 50.7±22.7

Table 3.3: Ablation study: Primal gap (PG) (in percent) and primal integral (PI) at 60-minute runtime cutoff,
averaged over 100 small test instances and their standard deviations. “↓” means the lower the better.

of runtime. Table 3.3 presents the primal gap and primal integral at a 60-minute runtime cutoff. The result

shows that IL-LNS-GAT-FF, imitation learning with the two enhancements, still performs worse than CL-

LNS-GCN-PF without any enhancements. CL-LNS-GCN-PF and CL-LNS-GAT-PF perform similarly in

terms of the primal gaps, but CL-LNS-GAT-PF has better primal integrals, showing the benefit of replacing

GCN with GAT. On MVC-S, CL-LNS and its other two variants have similar average primal gaps. On

CA-S, CL-LNS has a better average primal gap than the other two variants. However, adding the two

enhancements helps improve the primal integral, leading to the overall best performance of CL-LNS on

both MVC-S and CA-S.

126

3.7 Contrastive Predict-and-Search

In this section, we introduce ConPaS, Contrastive Predict-and-Search for MILPs, to show how the frame-

work can be applied to improve the predictions of partial assignments of values to variables in PaS. ConPaS

leverages CL in the important task of learning to construct high-quality (partial) solutions to MILPs. A

key to adapting the framework to this task is devising an appropriate and effective way of collecting pos-

itive and negative samples in this new context. Similar to both ND [148] and PaS [70], we collect a set

of optimal and near-optimal solutions as positive samples; but different from ND and PaS, we additionally

collect negative samples for CL. We propose to collect two types of negative samples - infeasible solutions

and low-quality solutions that are similar to the positive samples - with novel approaches tailored to our

task. For infeasible solutions, we use a sampling approach that randomly perturbs a small fraction of the

positive samples. For low-quality solutions, we formulate the task as a maximin optimization. During

training, instead of using a binary cross entropy loss to penalize the inaccurate predictions for each vari-

able separately, we use a contrastive loss that encourages the model to predict solutions that are similar

to the positive samples but dissimilar to the negative ones. Empirically, we test ConPaS on a variety of

MILP problems, including problems from the NeurIPS Machine Learning for Combinatorial Optimization

competition [58]. We show that ConPaS achieves state-of-the-art anytime performance on finding high-

quality solutions to MILPs, substantially outperforming other learning-based methods such as ND and PaS

in terms of solution quality and speed. In addition, ConPaS shows great generalization performance on

test instances that are 50% larger than the training instances.

3.7.1 Machine Learning Methodology

For a given MILP M , our goal is to use CL to predict the conditional distribution of the solution p(x|M),

such that it leads to high-quality solutions fast when it is used to guide downstream MILP solving. In

this chapter, we mainly focus on using the prediction in Predict-and-Search (optimization problems (3.2))

127

MILP instances for training
For each
instance

Negative samples:
Obtain infeasible or low-
quality solutions that are
similar to each positive
sample.

Positive samples:
Solve the instance to
obtain optimal and near-
optimal solutions.

Training data collection

Supervised
contrastive learning
to predict optimal
solution

Dataset Predict-and-Search
(Han et al., 2022):
1. Predict scores for variables
2. Fix some variables greedily
based on scores
3. Search for the unfixed
variables while allowing to
change a few fixed ones

Testing

Figure 3.7: Overview of ConPaS. For training, we collect data from a set of MILP instances, including
positive samples that are optimal and near-optimal solutions and negative samples that are low-quality or
infeasible solutions. We use the data in supervised CL to predict optimal solutions. During testing, the
predictions are used in Predict-and-Search [70].

following [70]. However, such prediction can be used to decompose the feasible regions of the input MILP

for exact solving [44] or seed LNS with a better primal solution for heuristic solving [179]. Figure 3.7 gives

an overview of ConPaS. Next, we describe our novel data collection, our supervised CL and how we apply

solution predictions in the search.

3.7.1.1 Data Collection

In ConPaS, we use CL to learn to make discriminative predictions of optimal solutions by contrasting

positive and negative samples. Since finding good assignments for integer variables is essentially the most

challenging part of solving a MILP, we follow previous work [148] to learn p(x|M) approximately as∏
i≤q pθ(xi|M) where we mainly focus on predicting pθ(xi|M) for binary variables (i ≤ q). Therefore,

our definition of positive and negative samples of solutions mainly concerns the partial solutions on binary

variables (since the optimal solutions for continuous variables can be computed in polynomial time once

the binary ones are fixed). Now, we describe how we collect positive and negative samples.

Positive Samples Collection For a given MILPM , we collect a set of optimal or near-optimal solutions

SMp as our positive samples following previous works [148, 70]. This is done by solving M exhaustively

128

with a MILP solver and collecting up to up solutions with the minimum objective values. In experiments,

up is set to 50.

Negative Samples Collection Negative samples are critical parts of CL to help distinguish between

high-quality and low-quality (or even infeasible) solutions. We propose to collect negative samples that

are similar to the positive ones. From a theoretical point of view, the InfoNCE loss [151, 74] we use for

training later can automatically focus on hard negative pairs (i.e., samples with similar representation but

of very different qualities) and learn representations to separate them apart [187].

Given a MILP M , we collect a set of un negative samples SMn where un = βn|SMp | and βn is a hyper-

parameter to control the ratio between the number of positive and negative samples. In experiments, βn is

set to 10. We propose two novel approaches to collect them: (1) a sampling approach to collect infeasible

solutions and (2) an optimization-based approach to collect low-quality solutions.

• Infeasible Solutions as Negative Samples We introduce a sampling approach. For each positive

sample x ∈ SMp , we collect βn infeasible solutions as negative samples. We randomly perturb 10%

of the binary variable values in x (i.e., flipping from 0 to 1 or 1 to 0). If the MILP M contains only

binary variables, we validate that the perturbed solutions are indeed infeasible if they violate at least

one constraint inM . IfM contains both binary and continuous variables, we fix the binary variables

to the values in the perturbed solutions and ensure that no feasible assignment of the continuous

variables exists using a MILP solver. If less than βn negative samples are found after validating 2βn

perturbed samples, we increase the perturbation rate by 5% and repeat the same process until we

have βn samples.

• Low-Quality Solutions as Negative Samples We introduce an optimization-based approach. For

each positive samplex = (x1, . . . , xn) ∈ SMp , we find the worst βn feasible solutions that differ from

129

x in at most 10% of the binary variables. If theMILPM = (A, b, c, q) contains only binary variables,

we find negative samples x′ by solving the following Local Branching [56] MILP:

max cTx′

s.t. Ax′ ≤ b, x′ ∈ {0, 1}q × Rn−q, (3.3)

∑
i≤q:xi=0 x

′
i +

∑
i≤q:xi=1(1− x′i) ≤ k.

The above MILP is essentially solving the same problem asM , but with a negated objective function

that tries to find solution x′ as low-quality as possible and a constraint that allows changing at most

k of the binary variables. After solving it, we consider only solutions as negative samples if they are

worse than a given threshold. k is initially set to 10% × q, but if less than βn negative samples are

found with the current k, we increase it by 5% and resolve optimization problem (3.3). We repeat

the same process until we have βn negative samples.

If M contains continuous variables, the goal is to find partial solutions on binary variables, such

that we get as low-quality solutions x′ as possible when we fix the binary values and optimize for

the rest of the continuous variables. Formally, solving for the partial solutions on binary variables

x′1, . . . , x
′
q can be written as a maximin optimization:

maxx′
1,...,x

′
q
minx′

q+1,...,x
′
n
cTx′

s.t. Ax′ ≤ b, x′ ∈ {0, 1}q × Rn−q, (3.4)

∑
i≤q:xi=0 x

′
i +

∑
i≤q:xi=1(1− x′i) ≤ k.

130

Solving the above maximin optimization exactly is prohibitively hard and, to the best of our knowl-

edge, there are no general-purpose solvers for it [11, Chapter 7]. Therefore, we use a heuristic ap-

proachwherewe iteratively solve the innerminimization problem and add a constraint cTx′ > cTx∗

to enforce the next solution found is strictly better than the current best-found solution x∗ to the

maximin problem. It terminates until no better solution can be found. For faster convergence,

we sometimes enforce the next solution found to be at least ϵ > 0 better than x∗, i.e., we add

cTx′ ≥ cTx∗ + ϵ, where ϵ is a hyperparameter tuned adaptively in a binary search manner. If we

find less than βn samples, we adjust k the same way as in the previous case.

3.7.1.2 Neural Network Architecture

Following previous work [70], we use a bipartite graph to represent the input MILP M . The bipartite

graph has n variables and m constraints on two sides, respectively, with an edge connecting a variable

and a constraint if the variable has a non-zero coefficient in the constraint. Following [148] and [70], we

use node and edge features in the bipartite graph proposed by [59] . We learn pθ(x|M) represented by a

graph convolutional network (GCN) parameterized by learnable weights θ. The GCN takes the bipartite

graph representation ofM and the features as input. We perform two rounds of message passing through

the GCN to obtain an embedding of the variables, which is then passed through a multi-layer perceptron

(MLP) followed by a sigmoid activation layer to obtain the final output pθ(xi|M). Details of the GCN

architecture are included in Appendix.

3.7.1.3 Model Learning with a Contrastive Loss

Given a set of MILP instancesM for training, let DConPaS = {(SMp ,SMn) : M ∈M} be the set of positive

and negative samples for all training instances. A contrastive loss is a function whose value is low when

the predicted pθ(x|M) is similar to the positive samples SMp and dissimilar to the negative samples SMn .

131

MILP Problem MVC MIS CA IP
#Binary Variables 6,000 6,000 4,000 1,050

#Continuous Variables 0 0 0 33
#Constraints 29,975 29,975 2,675 195

Table 3.4: The average numbers of variables and constraints in the test instances.

With similarity measured by dot products, we use an alternative form of InfoNCE, a supervised contrastive

loss, that takes into account the solution qualities of both positive and negative samples:

LConPaS(θ) =
∑

(SM
p ,SM

n)∈DConPaS

−1
|SMp |

∑
xp∈SM

p

log
exp(xT

ppθ(x|M)/τ(xp|M))∑
x′∈SM

n ∪{xp} exp(x
′Tpθ(x|M)/τ(x′|M))

where we let 1
τ(x|M) ∝ −E(x|M) if x is feasible to M where E(x|M) is the same energy function used

in previous works [70, 148]; otherwise τ(x|M) is set to a constant τ ′ (τ ′ = 1 in experiments). Intuitively,

setting τ(x|M) in this manner encourages the predictions pθ(x|M) to be more similar to positive samples

xp with better objectives.

3.7.1.4 ML-Guided Search

We apply the predicted solution to reduce the search space of the input MILP the same way as Predict-

and-Search [70]. We greedily selectX0 andX1 based on the prediction and solve the optimization problem

defined by Equation (3.2) given hyperparameters k0, k1 and ∆.

3.7.2 Empirical Evaluation

In this subsection, we demonstrate the efficiency of ConPaS through experiments. In the following, we

introduce our evaluation setup and then present the results.

132

3.7.2.1 Setup

MILP Problems We evaluate on four NP-hard MILP problems that are widely used in existing studies

[59, 70], which consist of two graph optimization problems, namely the minimum vertex cover (MVC)

and maximum independent set (MIS) problems, and two non-graph optimization problems, namely the

combinatorial auction (CA) and item placement (IP) problems. Both MVC and MIS instances are generated

according to the Barabasi-Albert random graph model [3], with 6,000 nodes and an average degree of 5.

CA instances are generated with 2,000 items and 4,000 bids according to the arbitrary relations in [115].

IP instances are provided by the NeurIPS Machine Learning for Combinatorial Optimization competition

[58]. The workload appointment problem is another MILP problem from the competition. However, they

are not challenging enough for the baselines and our method. Therefore, we exclude the results on the

workload appointment problem from themain content and report them in Appendix. For each problem, we

have 400 training instances, 100 validation instances and 100 test instances. For each set of test instances,

Table 3.4 shows its average numbers of variables and constraints. More details of instance generation are

included in Appendix.

Baselines We compare ConPaS with three baselines: (1) SCIP (v8.0.1) [21], the state-of-the-art open-

source ILP solver. We allow restart and presolving with the aggressive mode turned on for primal heuris-

tics to focus on improving the objective value; (2) ND [148]; and (3) Predict-and-Search (PaS) [70]. We

have considered another version of PaS where we replace the neural network output with the LP relax-

ation solutions of the MILP. However, this method causes very high infeasibility rates when solving the

optimization problem defined by Equation (3.2). We also compare ConPaS with Gurobi (v10.0.0) [69] and

present the results in Appendix.

133

(a) MVC (b) MIS

(c) CA (d) IP

Figure 3.8: The primal gap (the lower the better) as a function of runtime, averaged over 100 test instances.

134

For ML-based methods, a separate model is trained for each MILP problem. For PaS, we train the

models with the code provide by [70]. For ND, we implement it and fine-tune its hyperparameters for each

MILP problem since their code is not available.

Metrics We use the following metrics to evaluate all methods: (1) The primal gap [19] is the normalized

difference between the primal bound v and a precomputed best known objective value v∗, defined as

|v−v∗|
max(v,v∗,ε) if v exists and v · v∗ ≥ 0, or 1 otherwise. We use ε = 10−8 to avoid division by zero; v∗ is the

best primal bound found within 60 minutes by any method in the portfolio for comparison; (2) The primal

integral [1] at runtime cutoff t is the integral on [0, t] of the primal gap as a function of runtime. It captures

the quality of the solutions found and the speed at which they are found; and (3) The survival rate [179]

to meet a certain primal gap threshold is the fraction of instances with primal gaps below the threshold.

Hyperparameters We conduct experiments on 2.4 GHz Intel Core i7 CPUs with 16 GB memory. Train-

ing is done on a NVIDIA P100 GPU with 32 GB memory. For data collection, we collect 50 best found

solutions for each training instance with an hour runtime using Gurobi (v10.0.0). For training, we use

the Adam optimizer [104] with learning rate 10−3. We use a batch size of 8 and train for 100 epochs (the

training typically converges in less than 50 epochs and 5 hours). For testing, we set the runtime cutoff to

1,000 seconds to solve the reduced MILP of each test instance with SCIP (v8.0.1).∗ To tune (k0, k1,∆) (see

definition in subsection 3.3.3) for both PaS and ConPaS, we first fix ∆ = 5 or 10 and vary k0, k1 to be

0%, 10%, . . . , 50% of the number of binary variables to test their performance on the validation instances

to get their initial values. We then adjust ∆, k0, k1 around their initial values to find the best ones. The

fine-tuned values are reported in Appendix.
∗Note that our method is agnostic to the solver for the reduced MILP. The test results with Gurobi are reported in Appendix.

135

(a) MVC (b) MIS

(c) CA (d) IP

Figure 3.9: The survival rate (the higher, the better) to meet a certain primal gap threshold over 100 test
instances as a function of runtime. The primal gap threshold is set to the median of the average primal
gaps at the 1,000-second runtime cutoff among all methods rounded to the nearest 0.50%.

136

(a) MVC (b) MIS

(c) CA (d) IP

Figure 3.10: The primal integral (the lower, the better) at the 1,000-second runtime cutoff, averaged over
100 test instances. The error bars represent the standard deviation. A tabular representation is provided
in the Appendix Table A.7.

137

(a) MVC (large instances).

(b) CA (large instances).

Figure 3.11: Generalization to 100 large instances: The primal gap as a function of runtime, the survival
rate as a function of runtime and the primal integral at the 1,000-second runtime cutoff. The primal gap
threshold for the survival rate is chosen as the medium of the average primal gaps at the 1,000-second
runtime cutoff among all methods rounded to the nearest 0.50%. A tabular representation for the primal
integral plots is provided in Appendix.

Figure 3.12: Training on different fractions of training instances: The primal gap as a function of runtime
and the primal integral at the 1,000-second runtime cutoff. ConPaS-LQ-50% and ConPaS-LQ-25% denote
the versions of ConPaS trained with only 50% and 25% of the training instances, respectively (similarly for
PaS).

138

3.7.2.2 Results

We test two variants of ConPaS, denoted by ConPaS-Inf and ConPaS-LQ, that use infeasible solutions and

low-quality solutions as negative samples, respectively. Figure 3.8 shows the primal gap as a function of

runtime. Overall, SCIP performs the worst. PaS achieves lower average primal gaps than ND on three

of the MILP problems at the 1,000-second runtime cutoff. Both ConPaS-Inf and ConPaS-LQ show better

anytime performance than all baselines on all MILP problems. ConPaS-LQ performances slightly better

than ConPaS-Inf. At the 1,000-second runtime cutoff, ConPaS-Inf achieves 3.54%-52.83% lower average

primal gaps and ConPaS-LQ achieves 9.82%-86.02% lower average primal gaps than the best baseline.

Figure 3.9 shows the survival rate to meet a certain primal gap threshold. The primal gap threshold

is chosen as the medium of the average primal gap at the 1,000-second runtime cutoff among all methods

rounded to the nearest 0.50%. ND surprisingly has the lowest survival rate (even lower than SCIP) on the

CA instances, indicating high variance in performance of both SCIP and ND†, but ND is better than both

SCIP and PaS on both the two graph optimization problems. PaS has higher survival rates on the CA and

IP instances. ConPaS-Inf and ConPaS-LQ have the best survival rate at the 1,000-second runtime cutoff on

all instances. Specifically, on the MVC and MIS instances, at the runtime cutoffs when they both first reach

100% survival rates, the best baseline only achieves about 10%-80% survival rates. These results indicate

that ConPaS not only finds better solutions on average but also finds them on more instances. Figure 3.10

shows the average primal integral at the 1,000-second runtime cutoff. The result demonstrates that both

ConPaS-Inf and ConPaS-LQ not only find better solutions than the other methods but also find them at a

faster speed.

Next, we test the generalization performance and conduct an ablation study on the loss functions.

Given the large computation overhead, we focus on two representative MILP problems, a graph optimiza-

tion problem MVC and a non-graph optimization problem CA.
†When the primal gap threshold is set to 5.00%, ND has a 98% survival rate whereas SCIP has only 56%.

139

MVC CA
PG PI PG PI

PaS 0.17% 13.9 1.16% 28.9
ConPaS-LQ-unweighted 0.12% 3.3 0.57% 24.3
ConPaS-LQ 0.10% 2.9 0.16% 19.7

Table 3.5: Comparison of different loss functions. We report the primal gaps (PG) and the primal integrals
(PI) at the 1,000-second runtime cutoff averaged over 100 instances.

Generalization to Larger Instances We test the generalization performance of the trained models on

larger instances. We generate 100 large MVC instances according to the Barabasi-Albert random graph

model [3], with 9,000 nodes and an average degree of 5. We also generate 100 large CA instances with

3,000 items and 6,000 bids according to the arbitrary relations in [115]. These larger instances have 50%

more variables and constraints than the previous test instances. In Figure 3.11, we show the results of the

average primal gaps, survival rates and the average primal integral over 100 test instances. All ML-based

methods demonstrate good generalizability. On large MVC instances, ND, PaS and ConPaS-Inf perform

similarly in terms of the primal gap, while ConPaS-Inf improves the primal gap faster than the other

methods. On large CA instances, both ConPaS-Inf and ConPaS-LQ are substantially better than the other

baselines in terms of all performance metrics. Overall, on both large MVC and CA instances, ConPaS-LQ

is the best and its primal integral at the 1,000-second runtime cutoff is 57.9%-70.3% lower than the best

baseline PaS. It also reaches 100% survival rates fastest for the given thresholds.

Ablation Study We conduct an ablation study on ConPaS-LQ to assess the effectiveness of the alternate

form of InfoNCE loss. The results are shown in Table 3.5, where ConPaS-LQ-unweighted refers to training

using the original InfoNCE loss without considering different qualities of the samples where we fine-

tune and set τ(x|M) to constant 1. ConPaS-LQ refers to the one that takes into account the solution

qualities. ConPaS-LQ is still able to outperform PaS. Its performance further improves when the modified

loss function is used.

140

Primal Gap (%) Primal Integral
k0 PaS ConPaS-LQ PaS ConPaS-LQ
800 6.28 6.59 114.4 117.5
1200 5.45 5.05 104.3 97.3
1600 2.91 2.06 75.6 70.4
2000 1.17 0.55 28.9 19.7
2400 2.19 1.40 27.5 22.9
2700 5.63 4.58 58.0 47.4
3000 12.74 11.56 127.8 115.8

Table 3.6: The primal gap and primal integral at the 1,000-second runtime cutoff on the CA instances with
different k0 averaged over 100 instances.

The Effect of Hyperparameters We study the effect of hyperparameters. Specifically, we focus our

study on PaS and ConPaS-LQ on the CA instances. We first empirically study howmany training instances

are needed for each method. We train separate models with 50% and 25% of the training instances and

test their performance on the test instances. Figure 3.12 shows the results on the primal gap and primal

integral. The two models for ConPaS-LQ trained with 50% and 100% of the instances perform similarly

to each other. This is also true for PaS, but its two models are both worse than ConPaS-LQ. When we

use 25% of the training instances, we observe a drop in performance for both methods. However, in this

case, ConPaS-LQ performs much better than PaS and only slightly worse than PaS trained on 100% or 50%

instances. These empirical results indicate that CL can achieve better performance using fewer training

instances than other learning methods.

We also study the effect of different (k0, k1,∆) for PaS and ConPaS-LQ on the CA instances. For

CA instances, fixing both k1 and ∆ to 0 always gives better primal gaps and primal integrals than other

values. Therefore, we vary only k0. We present the results on primal gaps and primal integrals in Table 3.6.

Overall, setting k0 = 2, 000 gives the best performance for both PaS and ConPaS-LQ. Either increasing

or decreasing k0 from 2,000 hurts their performance. However, if we increase k0 from 2,000, both of them

converge to the eventual solutions fast and therefore have comparable primal integrals with small k0, even

though sometimes their primal gaps are worse. In general, having a smaller k requires the search to search

141

for the values on more variables; therefore, it converges slower and has a larger primal integral. On the

other hand, having a larger k reduces the search space more, therefore, it converges faster but to a worse

solution.

3.8 Summary

In this chapter, we validated the hypothesis that one can leverage a general ML framework to improve

human-designed decision-making strategies in different types of MILP search algorithms. We proposed a

general ML framework based on contrastive learning. To apply this framework, we identify decisions in

MILP search algorithms that we want to improve. Then, we collect training data for supervised CL. The

training data includes positive and negative samples that are demonstrations of the decisions. Then, we

train an ML model with a contrastive loss to predict decisions that are similar to the positive samples and

dissimilar to negative ones. Finally, we use the learned ML model to make decisions during the search.

We first applied the framework to LNS and proposed CL-LNS that learned efficient and effective destroy

heuristics in LNS. We presented a novel data collection process tailored for CL-LNS and used GAT with a

richer set of features to further improve its performance. Empirically, CL-LNS substantially outperformed

state-of-the-art methods on four MILP problems with respect to the primal gap, the primal integral, the

best performing rate and the survival rate. CL-LNS achieved good generalization performance on out-of-

distribution instances that are 100% larger than those used in training.

We then applied the framework to PaS and proposed ConPaS that learned to predict high-quality so-

lutions by contrasting optimal and near-optimal solutions with infeasible or low-quality solutions. We

presented a novel data collection process tailored for ConPaS, proposing a novel sampling-based approach

and a novel optimization-based approach to collect negative samples. In testing, we solved a reduced-size

MILP by restricting the search space to the proximity of the predicted solutions. Empirically, we showed

142

that ConPaS found solutions better and faster than the baselines, which include two state-of-the-art ML-

guided MILP search algorithms. ConPaS achieved good generalization performance on out-of-distribution

instances that are 50% larger than those used in training.

143

Chapter 4

Conclusions

In today’s rapidly evolving society and economy, the scale, pace and variety of tasks related to resource

allocation, design, planning and operations are expanding. These tasks are often subject to stringent re-

source constraints, high quality expectations and increasingly complex environments. Central to address-

ing the challenges of these tasks is addressing complex combinatorial optimization problems (COPs). In

the past decades, search algorithms have been proposed to solve COPs. There are many decisions made by

human-designed strategies in search algorithms that are crucial to their successful algorithmic advances.

However, handcrafting those strategies is a complicated task that is prone to human errors and bias. On the

other hand, machine learning (ML) has been the major force behind the successful advancements of many

real-world applications nowadays. In this dissertation, we show that one can leverage general machine

learning frameworks to improve human-designed decision-making strategies in different types of search

algorithms for COPs. Specifically, we focus on two important COPs, namely multi-agent path finding

(MAPF) and mixed integer linear programs (MILPs).

In Chapter 2, we presented our first major contributions to using ML to improving decision-making

strategies inMAPF search algorithms. We contributed a generalML framework based on imitation learning

and implemented the framework on four different MAPF search algorithms, namely CBS, ECBS, MAPF-

LNS and PP, which substantially improved their performance in terms of runtime and/or solution quality.

144

The main contributions of this chapter were published in major artificial intelligence conferences individ-

ually in 2021 and 2022 [85, 89, 90, 213]. They are the first works that use ML techniques to enhance MAPF

search algorithms by improving the quality of decision-making within the search process. Our works have

inspired other works in the community since they were published [206, 192, 201, 156], where [206] uses

a graph transformer architecture to improve node-selection strategies for ECBS, [192] uses genetic algo-

rithms to learn priority-assignment strategies that can be expressed as arithmetic formulae for PP, [201]

proposes a new deep neural network architecture to improve agent set-selection strategies for MAPF-LNS,

and [156] uses online learning to learn to configure agent set-selection strategies. Both [192] and [201]

are built upon our proposed ML framework. We believe that, by formulating a general ML framework and

providing the four examples of implementations for different use cases, the contribution in Chapter 2 will

serve as important guidance on how to improve MAPF search algorithms systematically.

Next, we discuss the limitations of the contribution in Chapter 2 and future work for improving

decision-making strategies in MAPF search algorithms. The ML framework proposed in Chapter 2 uses

imitation learning. Thus, one of its limitations is the need for computationally expensive data collec-

tion and an effective expert. Finding such an expert might require a good understanding of MAPF itself.

For future work, it would be interesting to design unsupervised learning methods, such as reinforcement

learning (RL) methods, to learn decision-making strategies in MAPF search algorithms without the need

for data collection or an expert. RL has been applied to MAPF before but is mostly used to learn policies

to construct conflict-free solutions for the agents [172, 38]. Applying RL to improving search algorithms

poses a unique challenge since it is not straightforward to model some search algorithms, such as tree

search, as a Markov decision process and the rewards are typically sparse, especially for difficult MAPF

instances [173]. It would also be interesting future work to integrate deep learning techniques into the

proposed ML framework. Though deep learning has been successfully used to improve solving MILPs and

145

other COPs [14, 212], it is challenging for MAPF due to the non-negligible computational overhead intro-

duced by deep neural networks (DNNs) and the highly-optimized nature of state-of-the-art MAPF search

algorithms. Recent work [201] has applied knowledge-distillation techniques to reduce the complexity

of a DNN for MAPF-LNS. We believe designing engineering techniques to overcome such challenges is

important and promising.

In Chapter 3, we presented our second major contribution to using ML to improve decision-making

strategies in MILP search algorithms. We contributed a general ML framework based on contrastive learn-

ing (CL) and implemented the framework on two different MILP search algorithms, namely LNS and PaS,

which substantially improved their performance in terms of both runtime and solution quality when com-

pared to imitation learning and/or RL methods. The main contributions of this chapter were published in

the International Conference on Machine Learning in 2023 and 2024 [87, 88]. Despite a lot of success in

ML-guided MILP solving, they are the first works that apply CL techniques to improve MILP search algo-

rithms. Our works have inspired other works in the ML-guided MILP-solving community since they were

published [26, 55], where [26] apply the same CL framework to predict a subset of variables to prioritize

branching on and [55, 106] use generative models to learn destroy heuristics for LNS. We believe that the

contribution in Chapter 3 is valuable and will further facilitate the use of CL for ML-guided MILP solving.

Next, we discuss the limitations of the contribution in Chapter 3 and future work for improving

decision-making strategies in MILP search algorithms. Solving MILPs based on solution predictions, such

as ConPaS, does not guarantee completeness or optimality. CL-LNS does not either since it is based on

LNS. Therefore, it would be interesting and important future work to integrate each of them into optimal

MILP search algorithms such as Branch-and-Bound (BnB). For example, CL-LNS can be implemented as

a primal heuristic, a class of heuristics that are capable of finding high-quality feasible solutions to the

MILP fast in BnB. For this direction, it will be important to craft and utilize features related to the search

tree of BnB, since BnB is a tree search that provides dynamic information, such as the dual bound of the

146

solution, cutting planes generated to prune the search space and branching decisions for partitioning the

search space. On the other hand, ConPaS can also be incorporated in BnB, where the predicted solutions

can be used to assign branching priorities to the variables or to select a linear combination of variables to

branch on for generalized strong branching [202]. Furthermore, it is also promising future work to apply

the CL framework to improve the performance of imitation learning or RL methods for decision-making

in BnB, such as selecting variables to branch on and selecting nodes to expand.

To summarize, we presented two generalML frameworks to improve human-designed decision-making

strategies in different search algorithms for MAPF and MILP, respectively. They are the first ML frame-

works in the literature that provide guidance on how one could improve different search algorithms for a

COP systematically. These frameworks are useful because one needs different search algorithms when the

optimality requirements for the solutions and/or the computation budget to solve the COP change from

time to time. Finally, we discuss how our contributions can be generalized to other COPs. First, it is a nat-

ural idea to apply the CL framework for MILP to MAPF. We discuss how this could be done for MAPF-LNS

and PP and identify potential challenges. In Chapter 3, we showed that CL learned joint representations

of variables given MILP instances that were useful for guiding decision-making for both LNS and PaS. For

MAPF, we could leverage it to learn useful representations of agents given MAPF instances. For MAPF-

LNS, instead of learning to select agent sets proposed by an expert in MAPF-ML-LNS, CL can be applied

to learn to directly construct the agent sets, similarly to CL-LNS for MILPs. For PP, instead of predicting

priorities for agents individually (even though we use features that capture information of other agents),

we could leverage CL to learn to jointly predict a score for each agent to derive their priorities. To train

the model, one could use scores or ranks for agents derived from good and bad total priority orderings as

positive and negative samples, respectively. This approach would eliminate the need to assign labels using

a heuristic method to account for multiple good total priority orderings, as we did for PP+ML. One impor-

tant open question is to design features and ML model architectures for MAPF that capture dependencies

147

among agents, similar to the bipartite graph representations and graph neural networks for MILPs that

capture dependencies between variables and constraints. Second, it is future work to apply either of the

two ML frameworks to other COPs. Both frameworks used the same ML models, ML methods and loss

functions as well as similar features for a COP, demonstrating good generalizability. We focused on train-

ing an ML model to make a single decision and evaluate that trained model only for making that decision.

A promising way to apply the frameworks to COPs, in general, is to learn an ML model that generalizes

across different COPs and/or decision-making tasks. In this direction, our ML frameworks can serve as

the foundation for multi-task learning, where we can put together the data collected for different tasks

with the frameworks to form a larger training dataset. We then use this larger training dataset to train a

foundational ML model capable of performing various decision-making tasks in search algorithms for one

or multiple COPs, with minimal or no fine-tuning required for each task.

148

Bibliography

[1] Tobias Achterberg, Timo Berthold, and Gregor Hendel. “Rounding and propagation heuristics for
mixed integer programming”. In: Operations Research Proceedings. Springer, 2012, pp. 71–76.

[2] Tobias Achterberg, Thorsten Koch, and Alexander Martin. “Branching rules revisited”. In:
Operations Research Letters 33.1 (2005), pp. 42–54.

[3] Réka Albert and Albert-László Barabási. “Statistical mechanics of complex networks”. In: Reviews
of modern physics 74.1 (2002), p. 47.

[4] André Altmann, Laura Toloşi, Oliver Sander, and Thomas Lengauer. “Permutation importance: a
corrected feature importance measure”. In: Bioinformatics 26.10 (2010), pp. 1340–1347.

[5] Andre RS Amaral. “An exact approach to the one-dimensional facility layout problem”. In:
Operations Research 56.4 (2008), pp. 1026–1033.

[6] Brandon Amos. “Tutorial on amortized optimization”. In: Foundations and Trends in Machine
Learning 16.5 (2023), pp. 592–732.

[7] David Applegate, Robert Bixby, Vašek Chvátal, and William Cook. Finding cuts in the TSP (A
preliminary report). Vol. 95. Citeseer, 1995.

[8] Nabila Azi, Michel Gendreau, and Jean-Yves Potvin. “An adaptive large neighborhood search for a
vehicle routing problem with multiple routes”. In: Computers & Operations Research 41 (2014),
pp. 167–173.

[9] Jacopo Banfi, Nicola Basilico, and Francesco Amigoni. “Intractability of time-optimal multirobot
path planning on 2d grid graphs with holes”. In: IEEE Robotics and Automation Letters 2.4 (2017),
pp. 1941–1947.

[10] Max Barer, Guni Sharon, Roni Stern, and Ariel Felner. “Suboptimal variants of the conflict-based
search algorithm for the multi-agent pathfinding problem”. In: Symposium on Combinatorial
Search. 2014, pp. 19–27.

[11] Yasmine Beck and Martin Schmidt. “A gentle and incomplete introduction to bilevel
optimization”. In: (2021). url: https://optimization-online.org/?p=17182.

149

https://optimization-online.org/?p=17182

[12] Irwan Bello, Hieu Pham, Quoc V Le, Mohammad Norouzi, and Samy Bengio. “Neural
combinatorial optimization with reinforcement learning”. In: arXiv preprint arXiv:1611.09940
(2016).

[13] Stefano Benati and Romeo Rizzi. “A mixed integer linear programming formulation of the
optimal mean/value-at-risk portfolio problem”. In: European Journal of Operational Research 176.1
(2007), pp. 423–434.

[14] Yoshua Bengio, Andrea Lodi, and Antoine Prouvost. “Machine learning for combinatorial
optimization: a methodological tour d’horizon”. In: European Journal of Operational Research
290.2 (2021), pp. 405–421.

[15] Yoshua Bengio, Jérôme Louradour, Ronan Collobert, and Jason Weston. “Curriculum learning”.
In: International Conference on Machine Learning. 2009, pp. 41–48.

[16] Maren Bennewitz, Wolfram Burgard, and Sebastian Thrun. “Finding and optimizing solvable
priority schemes for decoupled path planning techniques for teams of mobile robots”. In: Robotics
and Autonomous Systems 41.2-3 (2002), pp. 89–99.

[17] Jur P. van den Berg and Mark H. Overmars. “Prioritized motion planning for multiple robots”. In:
IEEE/RSJ International Conference on Intelligent Robots and Systems. 2005, pp. 430–435.

[18] Jur P. van den Berg, Jack Snoeyink, Ming C. Lin, and Dinesh Manocha. “Centralized path
planning for multiple robots: Optimal decoupling into sequential plans”. In: Robotics: Science and
Systems V. 2009, pp. 2–3.

[19] Timo Berthold. “Primal heuristics for mixed integer programs”. PhD thesis. Zuse Institute Berlin
(ZIB), 2006.

[20] Timo Berthold. “RENS”. In: Mathematical Programming Computation 6.1 (2014), pp. 33–54.

[21] Ksenia Bestuzheva, Mathieu Besançon, Wei-Kun Chen, Antonia Chmiela, Tim Donkiewicz,
Jasper van Doornmalen, Leon Eifler, Oliver Gaul, Gerald Gamrath, Ambros Gleixner,
Leona Gottwald, Christoph Graczyk, Katrin Halbig, Alexander Hoen, Christopher Hojny,
Rolf van der Hulst, Thorsten Koch, Marco Lübbecke, Stephen J. Maher, Frederic Matter,
Erik Mühmer, Benjamin Müller, Marc E. Pfetsch, Daniel Rehfeldt, Steffan Schlein,
Franziska Schlösser, Felipe Serrano, Yuji Shinano, Boro Sofranac, Mark Turner, Stefan Vigerske,
Fabian Wegscheider, Philipp Wellner, Dieter Weninger, and Jakob Witzig. The SCIP optimization
suite 8.0. Technical Report. Optimization Online, Dec. 2021. url:
http://www.optimization-online.org/DB_HTML/2021/12/8728.html.

[22] Eli Boyarski, Ariel Felner, Roni Stern, Guni Sharon, David Tolpin, Oded Betzalel, and
Eyal Shimony. “ICBS: Improved conflict-based search algorithm for multi-agent pathfinding”. In:
International Joint Conference on Artificial Intelligence. 2015, pp. 442–449.

[23] Shaked Brody, Uri Alon, and Eran Yahav. “How attentive are graph attention networks?” In:
International Conference on Learning Representations (2022).

150

http://www.optimization-online.org/DB_HTML/2021/12/8728.html

[24] Stephen J Buckley. “Fast motion planning for multiple moving robots”. In: IEEE International
Conference on Robotics and Automation. 1989, pp. 322–326.

[25] Chris Burges, Tal Shaked, Erin Renshaw, Ari Lazier, Matt Deeds, Nicole Hamilton, and
Greg Hullender. “Learning to rank using gradient descent”. In: International Conference on
Machine Learning. 2005, pp. 89–96.

[26] Junyang Cai, Taoan Huang, and Bistra Dilkina. “Learning backdoors for mixed integer programs
with contrastive learning”. In: arXiv preprint arXiv:2401.10467 (2024).

[27] Yi Cao, Sivakumar Rathinam, and Dengfeng Sun. “Greedy-heuristic-aided mixed-integer linear
programming approach for arrival scheduling”. In: Journal of Aerospace Information Systems 10.7
(2013), pp. 323–336.

[28] Quentin Cappart, Thierry Moisan, Louis-Martin Rousseau, Isabeau Prémont-Schwarz, and
Andre A Cire. “Combining reinforcement learning and constraint programming for combinatorial
optimization”. In: AAAI Conference on Artificial Intelligence. Vol. 35. 5. 2021, pp. 3677–3687.

[29] Gary W Chang, YD Tsai, CY Lai, and JS Chung. “A practical mixed integer linear programming
based approach for unit commitment”. In: IEEE Power Engineering Society General Meeting, 2004.
IEEE. 2004, pp. 221–225.

[30] Ting Chen, Simon Kornblith, Mohammad Norouzi, and Geoffrey Hinton. “A simple framework
for contrastive learning of visual representations”. In: International Conference on Machine
Learning. PMLR. 2020, pp. 1597–1607.

[31] Weizhe Chen, Zhihan Wang, Jiaoyang Li, Sven Koenig, and Bistra Dilkina. “No panacea in
planning: Algorithm selection for suboptimal multi-agent path finding”. In: arXiv preprint
arXiv:2404.03554 (2024).

[32] Xinyun Chen and Yuandong Tian. “Learning to perform local rewriting for combinatorial
optimization”. In: Advances in Neural Information Processing Systems 32 (2019).

[33] Zhe Chen, Daniel Harabor, Jiaoyang Li, and Peter J Stuckey. “Traffic flow optimisation for
lifelong multi-agent path finding”. In: AAAI Conference on Artificial Intelligence. Vol. 38. 18. 2024,
pp. 20674–20682.

[34] Antonia Chmiela, Elias Khalil, Ambros Gleixner, Andrea Lodi, and Sebastian Pokutta. “Learning
to schedule heuristics in branch and bound”. In: Advances in Neural Information Processing
Systems 34 (2021), pp. 24235–24246.

[35] Liron Cohen, Tansel Uras, and Sven Koenig. “Feasibility study: Using highways for
bounded-suboptimal multi-agent path finding”. In: Symposium on Combinatorial Search. 2015.

[36] Liron Cohen, Tansel Uras, TK Satish Kumar, Hong Xu, Nora Ayanian, and Sven Koenig.
“Improved solvers for bounded-suboptimal multi-agent path finding.” In: International Joint
Conference on Artificial Intelligence. 2016, pp. 3067–3074.

151

[37] IBM ILOG Cplex. “V12. 1: User’s manual for CPLEX”. In: International Business Machines
Corporation 46.53 (2009), p. 157.

[38] Mehul Damani, Zhiyao Luo, Emerson Wenzel, and Guillaume Sartoretti. “PRIMAL_2: Pathfinding
via reinforcement and imitation multi-agent learning-lifelong”. In: IEEE Robotics and Automation
Letters 6.2 (2021), pp. 2666–2673.

[39] Emilie Danna, Edward Rothberg, and Claude Le Pape. “Exploring relaxation induced
neighborhoods to improve MIP solutions”. In: Mathematical Programming 102.1 (2005), pp. 71–90.

[40] Hal Daumé, John Langford, and Daniel Marcu. “Search-based structured prediction”. In: Machine
Learning 75.3 (2009), pp. 297–325.

[41] Sven De Vries and Rakesh V Vohra. “Combinatorial auctions: A survey”. In: INFORMS Journal on
computing 15.3 (2003), pp. 284–309.

[42] Michel Deudon, Pierre Cournut, Alexandre Lacoste, Yossiri Adulyasak, and
Louis-Martin Rousseau. “Learning heuristics for the TSP by policy gradient”. In: Integration of
Constraint Programming, Artificial Intelligence, and Operations Research. Springer. 2018,
pp. 170–181.

[43] Bistra Dilkina and Carla P Gomes. “Solving connected subgraph problems in wildlife
conservation.” In: International Conference on Integration of Constraint Programming, Artificial
Intelligence, and Operations Research. Vol. 6140. Springer. 2010, pp. 102–116.

[44] Jian-Ya Ding, Chao Zhang, Lei Shen, Shengyin Li, Bing Wang, Yinghui Xu, and Le Song.
“Accelerating primal solution findings for mixed integer programs based on solution prediction”.
In: AAAI Conference on Artificial Intelligence. Vol. 34. 02. 2020, pp. 1452–1459.

[45] Kurt Dresner and Peter Stone. “A multiagent approach to autonomous intersection management”.
In: Journal of Artificial Intelligence Research 31 (2008), pp. 591–656.

[46] Haonan Duan, Pashootan Vaezipoor, Max B Paulus, Yangjun Ruan, and Chris Maddison.
“Augment with care: Contrastive learning for combinatorial problems”. In: International
Conference on Machine Learning. PMLR. 2022, pp. 5627–5642.

[47] Lu Duan, Haoyuan Hu, Yu Qian, Yu Gong, Xiaodong Zhang, Jiangwen Wei, and Yinghui Xu. “A
multi-task selected learning approach for solving 3D flexible bin packing problem”. In:
International Conference on Autonomous Agents and MultiAgent Systems. 2019, pp. 1386–1394.

[48] Olivier Dubois and Gilles Dequen. “A backbone-search heuristic for efficient solving of hard
3-SAT formulae”. In: International Joint Conference on Artificial Intelligence. Vol. 1. 2001,
pp. 248–253.

[49] Michael Erdmann and Tomas Lozano-Perez. “On multiple moving objects”. In: Algorithmica 2
(1987), pp. 477–521.

[50] Paul Erdos, Alfréd Rényi, et al. “On the evolution of random graphs”. In: Publ. Math. Inst. Hung.
Acad. Sci 5.1 (1960), pp. 17–60.

152

[51] Benjamin Eysenbach, Tianjun Zhang, Sergey Levine, and Russ R Salakhutdinov. “Contrastive
learning as goal-conditioned reinforcement learning”. In: Advances in Neural Information
Processing Systems 35 (2022), pp. 35603–35620.

[52] Rong-En Fan, Kai-Wei Chang, Cho-Jui Hsieh, Xiang-Rui Wang, and Chih-Jen Lin. “LIBLINEAR: A
library for large linear classification”. In: Journal of Machine Learning Research 9.Aug (2008),
pp. 1871–1874.

[53] Ariel Felner, Meir Goldenberg, Guni Sharon, Roni Stern, Tal Beja, Nathan R Sturtevant,
Jonathan Schaeffer, and Robert Holte. “Partial-Expansion A* with Selective Node Generation.” In:
AAAI Conference on Artificial Intelligence. 2012, pp. 180–181.

[54] Ariel Felner, Jiaoyang Li, Eli Boyarski, Hang Ma, Liron Cohen, TK Satish Kumar, and
Sven Koenig. “Adding heuristics to conflict-based search for multi-agent path finding”. In:
International Conference on Automated Planning and Scheduling. 2018, pp. 83–87.

[55] Shengyu Feng, Zhiqing Sun, and Yiming Yang. “DIFUSCO-LNS: Diffusion-guided large
neighborhood search for integer linear programming”. In: (2023).

[56] Matteo Fischetti and Andrea Lodi. “Local branching”. In: Mathematical programming 98.1 (2003),
pp. 23–47.

[57] Graeme Gange, Daniel Harabor, and Peter J Stuckey. “Lazy CBS: implicit conflict-based search
using lazy clause generation”. In: International Conference on Automated Planning and Scheduling.
Vol. 29. 2019, pp. 155–162.

[58] Maxime Gasse, Simon Bowly, Quentin Cappart, Charfreitag, et al. “The machine learning for
combinatorial optimization competition (ml4co): Results and insights”. In: NeurIPS 2021
Competitions and Demonstrations Track. PMLR. 2022, pp. 220–231.

[59] Maxime Gasse, Didier Chételat, Nicola Ferroni, Laurent Charlin, and Andrea Lodi. “Exact
combinatorial optimization with graph convolutional neural networks”. In: Advances in Neural
Information Processing Systems 32 (2019).

[60] Yonatan Geifman and Ran El-Yaniv. “Selectivenet: A deep neural network with an integrated
reject option”. In: International Conference on Machine Learning. PMLR. 2019, pp. 2151–2159.

[61] Shubhashis Ghosh. “DINS, a MIP improvement heuristic”. In: International Conference on Integer
Programming and Combinatorial Optimization. Springer. 2007, pp. 310–323.

[62] John Giorgi, Osvald Nitski, Bo Wang, and Gary Bader. “DeCLUTR: Deep contrastive learning for
unsupervised textual representations”. In: Annual Meeting of the Association for Computational
Linguistics and International Joint Conference on Natural Language Processing (Volume 1: Long
Papers). 2021, pp. 879–895.

[63] Rodrigo N Gómez, Carlos Hernández, and Jorge A Baier. “A compact answer set programming
encoding of multi-agent pathfinding”. In: IEEE Access 9 (2021), pp. 26886–26901.

153

[64] Ralph E Gomory. Outline of an algorithm for integer solutions to linear programs and an algorithm
for the mixed integer problem. Springer, 2010.

[65] Lacy M Greening, Mathieu Dahan, and Alan L Erera. “Lead-time-constrained middle-mile
consolidation network design with fixed origins and destinations”. In: Transportation Research
Part B: Methodological 174 (2023), p. 102782.

[66] Beliz Gunel, Jingfei Du, Alexis Conneau, and Veselin Stoyanov. “Supervised contrastive learning
for pre-trained language model fine-tuning”. In: International Conference on Learning
Representations. 2021.

[67] Amrita Gupta and Bistra Dilkina. “Budget-constrained demand-weighted network design for
resilient infrastructure”. In: 2019 IEEE 31st International Conference on Tools with Artificial
Intelligence. IEEE. 2019, pp. 456–463.

[68] Prateek Gupta, Maxime Gasse, Elias Khalil, Pawan Mudigonda, Andrea Lodi, and Yoshua Bengio.
“Hybrid models for learning to branch”. In: Advances in Neural Information Processing Systems 33
(2020), pp. 18087–18097.

[69] Gurobi Optimization, LLC. Gurobi optimizer reference manual. 2022. url: https://www.gurobi.com.

[70] Qingyu Han, Linxin Yang, Qian Chen, et al. “A GNN-guided predict-and-search framework for
mixed-integer linear programming”. In: International Conference on Learning Representations.
2022.

[71] Pierre Hansen, Nenad Mladenović, Jack Brimberg, and José A Moreno Pérez. Variable
neighborhood search. Springer, 2019.

[72] Peter E Hart, Nils J Nilsson, and Bertram Raphael. “A formal basis for the heuristic determination
of minimum cost paths”. In: IEEE transactions on Systems Science and Cybernetics 4.2 (1968),
pp. 100–107.

[73] He He, Hal Daume III, and Jason M. Eisner. “Learning to search in branch and bound algorithms”.
In: Advances in Neural Information Processing Systems. 2014, pp. 3293–3301.

[74] Kaiming He, Haoqi Fan, Yuxin Wu, Saining Xie, and Ross Girshick. “Momentum contrast for
unsupervised visual representation learning”. In: IEEE/CVF Conference on Computer Vision and
Pattern Recognition. 2020, pp. 9729–9738.

[75] Gregor Hendel. “Adaptive large neighborhood search for mixed integer programming”. In:
Mathematical Programming Computation 14.2 (2022), pp. 185–221.

[76] Sunderesh S Heragu and Andrew Kusiak. “Efficient models for the facility layout problem”. In:
European Journal of Operational Research 53.1 (1991), pp. 1–13.

[77] R Devon Hjelm, Alex Fedorov, Samuel Lavoie-Marchildon, Karan Grewal, Phil Bachman,
Adam Trischler, and Yoshua Bengio. “Learning deep representations by mutual information
estimation and maximization”. In: International Conference on Learning Representations (2019).

154

https://www.gurobi.com

[78] Florence Ho, Rúben Geraldes, Artur Gonçalves, Bastien Rigault, Benjamin Sportich,
Daisuke Kubo, Marc Cavazza, and Helmut Prendinger. “Decentralized multi-agent path finding
for UAV traffic management”. In: IEEE Transactions on Intelligent Transportation Systems 23.2
(2020), pp. 997–1008.

[79] John H Holland. “Genetic algorithms”. In: Scientific American 267.1 (1992), pp. 66–73.

[80] Wolfgang Hönig, Scott Kiesel, Andrew Tinka, Joseph W. Durham, and Nora Ayanian. “Persistent
and robust execution of MAPF schedules in warehouses”. In: IEEE Robotics and Automation Letters
4.2 (2019), pp. 1125–1131.

[81] Wolfgang Hönig, James A Preiss, TK Satish Kumar, Gaurav S Sukhatme, and Nora Ayanian.
“Trajectory planning for quadrotor swarms”. In: IEEE Transactions on Robotics 34.4 (2018),
pp. 856–869.

[82] André Hottung and Kevin Tierney. “Neural large neighborhood search for the capacitated vehicle
routing problem”. In: European Conference on Artificial Intelligence. IOS Press, 2020, pp. 443–450.

[83] Haoyuan Hu, Xiaodong Zhang, Xiaowei Yan, Longfei Wang, and Yinghui Xu. “Solving a new 3d
bin packing problem with deep reinforcement learning method”. In: arXiv preprint
arXiv:1708.05930 (2017).

[84] Taoan Huang and Bistra Dilkina. “Enhancing seismic resilience of water pipe networks”. In: ACM
SIGCAS Conference on Computing and Sustainable Societies. 2020, pp. 44–52.

[85] Taoan Huang, Bistra Dilkina, and Sven Koenig. “Learning node-selection strategies in bounded
suboptimal conflict-based search for multi-agent path finding”. In: International Joint Conference
on Autonomous Agents and Multiagent Systems (AAMAS). 2021.

[86] Taoan Huang, Aaron Ferber, Yuandong Tian, Bistra Dilkina, and Benoit Steiner. “Local branching
relaxation heuristics for integer linear programs”. In: International Conference on Integration of
Constraint Programming, Artificial Intelligence, and Operations Research. Springer. 2023,
pp. 96–113.

[87] Taoan Huang, Aaron M Ferber, Yuandong Tian, Bistra Dilkina, and Benoit Steiner. “Searching
large neighborhoods for integer linear programs with contrastive learning”. In: International
Conference on Machine Learning. PMLR. 2023, pp. 13869–13890.

[88] Taoan Huang, Aaron M Ferber, Arman Zharmagambetov, Yuandong Tian, and Bistra Dilkina.
“Contrastive predict-and-search for mixed integer linear programs”. In: International Conference
on Machine Learning. PMLR. 2024.

[89] Taoan Huang, Sven Koenig, and Bistra Dilkina. “Learning to resolve conflicts for multi-agent path
finding with conflict-based search”. In: AAAI Conference on Artificial Intelligence. Vol. 35. 13. 2021,
pp. 11246–11253.

[90] Taoan Huang, Jiaoyang Li, Sven Koenig, and Bistra Dilkina. “Anytime multi-agent path finding
via machine learning-guided large neighborhood search”. In: AAAI Conference on Artificial
Intelligence. Vol. 36. 9. 2022, pp. 9368–9376.

155

[91] Taoan Huang, Vikas Shivashankar, Michael Caldara, Joseph Durham, Jiaoyang Li, Bistra Dilkina,
and Sven Koenig. “Deadline-aware multi-agent tour planning”. In: International Conference on
Automated Planning and Scheduling. 2023.

[92] Zeren Huang, Kerong Wang, Furui Liu, Hui-Ling Zhen, Weinan Zhang, Mingxuan Yuan,
Jianye Hao, Yong Yu, and Jun Wang. “Learning to select cuts for efficient mixed-integer
programming”. In: Pattern Recognition 123 (2022), p. 108353.

[93] Anil Jindal and Kuldip Singh Sangwan. “Closed loop supply chain network design and
optimisation using fuzzy mixed integer linear programming model”. In: International Journal of
Production Research 52.14 (2014), pp. 4156–4173.

[94] Thorsten Joachims. “Optimizing search engines using clickthrough data”. In: ACM SIGKDD
International Conference on Knowledge Discovery and Data Mining. 2002, pp. 133–142.

[95] Thorsten Joachims. “Training linear SVMs in linear time”. In: ACM SIGKDD International
Conference on Knowledge Discovery and Data Mining. 2006, pp. 217–226.

[96] David S Johnson, Jan Karel Lenstra, and AHG Rinnooy Kan. “The complexity of the network
design problem”. In: Networks 8.4 (1978), pp. 279–285.

[97] David S Johnson, Christos H Papadimitriou, and Mihalis Yannakakis. “How easy is local search?”
In: Journal of computer and system sciences 37.1 (1988), pp. 79–100.

[98] Omri Kaduri, Eli Boyarski, and Roni Stern. “Algorithm selection for optimal multi-agent
pathfinding”. In: International Conference on Automated Planning and Scheduling. 2020,
pp. 161–165.

[99] Elias Khalil, Hanjun Dai, Yuyu Zhang, Bistra Dilkina, and Le Song. “Learning combinatorial
optimization algorithms over graphs”. In: Advances in Neural Information Processing Systems 30
(2017).

[100] Elias B Khalil, Bistra Dilkina, George L Nemhauser, Shabbir Ahmed, and Yufen Shao. “Learning to
Run Heuristics in Tree Search.” In: International Joint Conference on Artificial Intelligence. 2017,
pp. 659–666.

[101] Elias B Khalil, Christopher Morris, and Andrea Lodi. “Mip-gnn: A data-driven framework for
guiding combinatorial solvers”. In: AAAI Conference on Artificial Intelligence. Vol. 36. 9. 2022,
pp. 10219–10227.

[102] Elias Boutros Khalil, Pierre Le Bodic, Le Song, George L. Nemhauser, and Bistra Dilkina.
“Learning to branch in mixed integer programming”. In: AAAI Conference on Artificial
Intelligence. 2016, pp. 724–731.

[103] Prannay Khosla, Piotr Teterwak, Chen Wang, Aaron Sarna, Yonglong Tian, Phillip Isola,
Aaron Maschinot, Ce Liu, and Dilip Krishnan. “Supervised contrastive learning”. In: Advances in
Neural Information Processing Systems 33 (2020), pp. 18661–18673.

156

[104] Diederik P Kingma and Jimmy Ba. “Adam: A method for stochastic optimization”. In:
International Conference on Learning Representations. 2015.

[105] Satoshi Kitayama and Keiichiro Yasuda. “A method for mixed integer programming problems by
particle swarm optimization”. In: Electrical Engineering in Japan 157.2 (2006), pp. 40–49.

[106] Shufeng Kong, Caihua Liu, and Carla P Gomes. “ILP-FORMER: Solving Integer Linear
Programming with Sequence to Multi-Label Learning”. In: Uncertainty in Artificial Intelligence.
2024.

[107] Wouter Kool, Herke Van Hoof, and Max Welling. “Attention, learn to solve routing problems!” In:
International Conference on Learning Representations. 2018.

[108] Attila A Kovacs, Sophie N Parragh, Karl F Doerner, and Richard F Hartl. “Adaptive large
neighborhood search for service technician routing and scheduling problems”. In: Journal of
Scheduling 15.5 (2012), pp. 579–600.

[109] Wen-Yang Ku and J Christopher Beck. “Mixed integer programming models for job shop
scheduling: A computational analysis”. In: Computers & Operations Research 73 (2016),
pp. 165–173.

[110] Abdel Ghani Labassi, Didier Chételat, and Andrea Lodi. “Learning to compare nodes in branch
and bound with graph neural networks”. In: Advances in Neural Information Processing Systems
(2022).

[111] Edward Lam and Pierre Le Bodic. “New valid inequalities in branch-and-cut-and-price for
multi-agent path finding”. In: International Conference on Automated Planning and Scheduling.
2020, pp. 184–192.

[112] Edward Lam, Pierre Le Bodic, Daniel Damir Harabor, and Peter J Stuckey.
“Branch-and-cut-and-price for multi-agent pathfinding.” In: International Joint Conference on
Artificial Intelligence. 2019, pp. 1289–1296.

[113] Ailsa H Land and Alison G Doig. “An automatic method for solving discrete programming
problems”. In: 50 Years of Integer Programming 1958-2008. Springer, 2010, pp. 105–132.

[114] Jasmina Lazić, Saıd Hanafi, Nenad Mladenović, and Dragan Urošević. “Variable neighbourhood
decomposition search for 0–1 mixed integer programs”. In: Computers & Operations Research 37.6
(2010), pp. 1055–1067.

[115] Kevin Leyton-Brown, Mark Pearson, and Yoav Shoham. “Towards a universal test suite for
combinatorial auction algorithms”. In: ACM conference on Electronic Commerce. 2000, pp. 66–76.

[116] Hui Li, Teng Long, Guangtong Xu, and Yangjie Wang. “Coupling-degree-based heuristic
prioritized planning method for UAV swarm path generation”. In: Chinese Automation Congress.
2019, pp. 3636–3641.

157

[117] Jiaoyang Li, Zhe Chen, Daniel Harabor, Peter J Stuckey, and Sven Koenig. “Anytime multi-agent
path finding via large neighborhood search”. In: International Joint Conference on Artificial
Intelligence. 2021, pp. 4127–4135.

[118] Jiaoyang Li, Zhe Chen, Daniel Harabor, Peter J. Stuckey, and Sven Koenig. “Anytime multi-agent
path finding via large neighborhood search: Extended abstract”. In: International Joint Conference
on Autonomous Agents and Multiagent Systems. 2021.

[119] Jiaoyang Li, Zhe Chen, Daniel Harabor, Peter J. Stuckey, and Sven Koenig. “MAPF-LNS2: Fast
Repairing for Multi-Agent Path Finding via Large Neighborhood Search”. In: AAAI Conference on
Artificial Intelligence. 2022, pp. 10256–10265.

[120] Jiaoyang Li, Ariel Felner, Eli Boyarski, Hang Ma, and Sven Koenig. “Improved heuristics for
multi-agent path finding with conflict-based search.” In: International Joint Conference on
Artificial Intelligence. 2019, pp. 442–449.

[121] Jiaoyang Li, Graeme Gange, Daniel Harabor, Peter J Stuckey, Hang Ma, and Sven Koenig. “New
techniques for pairwise symmetry breaking in multi-agent path finding”. In: Proceedings of the
International Conference on Automated Planning and Scheduling. 2020, pp. 193–201.

[122] Jiaoyang Li, Daniel Harabor, Peter J. Stuckey, Hang Ma, and Sven Koenig. “Disjoint splitting for
multi-agent path finding with conflict-based search”. In: International Conference on Automated
Planning and Scheduling. 2019, pp. 279–283.

[123] Jiaoyang Li, Eugene Lin, Hai L Vu, Sven Koenig, et al. “Intersection coordination with
priority-based search for autonomous vehicles”. In: AAAI Conference on Artificial Intelligence.
Vol. 37. 10. 2023, pp. 11578–11585.

[124] Jiaoyang Li, Wheeler Ruml, and Sven Koenig. “Eecbs: A bounded-suboptimal search for
multi-agent path finding”. In: AAAI Conference on Artificial Intelligence. Vol. 35. 14. 2021,
pp. 12353–12362.

[125] Jiaoyang Li, Kexuan Sun, Hang Ma, Ariel Felner, TK Kumar, and Sven Koenig. “Moving agents in
formation in congested environments”. In: Symposium on Combinatorial Search. Vol. 11. 1. 2020,
pp. 131–132.

[126] Jiaoyang Li, Andrew Tinka, Scott Kiesel, Joseph W Durham, TK Satish Kumar, and Sven Koenig.
“Lifelong multi-agent path finding in large-scale warehouses”. In: AAAI Conference on Artificial
Intelligence. Vol. 35. 13. 2021, pp. 11272–11281.

[127] Sirui Li, Zhongxia Yan, and Cathy Wu. “Learning to delegate for large-scale vehicle routing”. In:
Advances in Neural Information Processing Systems 34 (2021), pp. 26198–26211.

[128] Wenhao Li, Hongjun Chen, Bo Jin, Wenzhe Tan, Hongyuan Zha, and Xiangfeng Wang.
“Multi-agent path finding with prioritized communication learning”. In: International Conference
on Robotics and Automation. IEEE. 2022, pp. 10695–10701.

158

[129] Xiang Li, Tiejian Li, Jiahua Wei, Guangqian Wang, and William W-G Yeh. “Hydro unit
commitment via mixed integer linear programming: A case study of the three gorges project,
China”. In: IEEE Transactions on Power Systems 29.3 (2013), pp. 1232–1241.

[130] Zhuwen Li, Qifeng Chen, and Vladlen Koltun. “Combinatorial optimization with graph
convolutional networks and guided tree search”. In: Advances in Neural Information Processing
Systems 31 (2018).

[131] Defeng Liu, Matteo Fischetti, and Andrea Lodi. “Learning to search in local branching”. In: AAAI
Conference on Artificial Intelligence. 2022.

[132] Hao Lu, Xingwen Zhang, and Shuang Yang. “A learning-based iterative method for solving
vehicle routing problems”. In: International Conference on Learning Representations. 2019.

[133] Hao Lu, Xingwen Zhang, and Shuang Yang. “A learning-based iterative method for solving
vehicle routing problems”. In: International Conference on Learning Representations. 2020.

[134] Paramet Luathep, Agachai Sumalee, William HK Lam, Zhi-Chun Li, and Hong K Lo. “Global
optimization method for mixed transportation network design problem: a mixed-integer linear
programming approach”. In: Transportation Research Part B: Methodological 45.5 (2011),
pp. 808–827.

[135] Ryan Luna and Kostas E Bekris. “Push and swap: Fast cooperative path-finding with completeness
guarantees”. In: International Joint Conference on Artificial Intelligence. 2011, pp. 294–300.

[136] Yuh-Chyun Luo, Monique Guignard, and Chun-Hung Chen. “A hybrid approach for integer
programming combining genetic algorithms, linear programming and ordinal optimization”. In:
Journal of Intelligent Manufacturing 12 (2001), pp. 509–519.

[137] Hang Ma, Daniel Harabor, Peter J. Stuckey, Jiaoyang Li, and Sven Koenig. “Searching with
consistent prioritization for multi-agent path finding”. In: AAAI Conference on Artificial
Intelligence. 2019, pp. 7643–7650.

[138] Hang Ma, Jiaoyang Li, TK Satish Kumar, and Sven Koenig. “Lifelong multi-agent path finding for
online pickup and delivery tasks”. In: International Conference on Autonomous Agents and
Multi-Agent Systems. 2017, pp. 837–845.

[139] Hang Ma, Craig Tovey, Guni Sharon, TK Satish Kumar, and Sven Koenig. “Multi-agent path
finding with payload transfers and the package-exchange robot-routing problem”. In: AAAI
Conference on Artificial Intelligence. 2016.

[140] Hang Ma, Jingxing Yang, Liron Cohen, TK Satish Kumar, and Sven Koenig. “Feasibility study:
Moving non-homogeneous teams in congested video game environments”. In: Artificial
Intelligence and Interactive Digital Entertainment Conference. 2017, pp. 270–272.

[141] Ziyuan Ma, Yudong Luo, and Hang Ma. “Distributed heuristic multi-agent path finding with
communication”. In: 2021 IEEE International Conference on Robotics and Automation. IEEE. 2021,
pp. 8699–8705.

159

[142] Stephen J Maher, Tobias Fischer, Tristan Gally, Gerald Gamrath, Ambros Gleixner,
Robert Lion Gottwald, Gregor Hendel, Thorsten Koch, Marco Lübbecke, Matthias Miltenberger,
et al. “The SCIP optimization suite 4.0”. In: (2017).

[143] Sahil Manchanda, Akash Mittal, Anuj Dhawan, Sourav Medya, Sayan Ranu, and Ambuj Singh.
“Learning heuristics over large graphs via deep reinforcement learning”. In: arXiv preprint
arXiv:1903.03332 (2019).

[144] Alan S Manne. “On the job-shop scheduling problem”. In: Operations Research 8.2 (1960),
pp. 219–223.

[145] Renata Mansini, Wlodzimierz Ogryczak, and M Grazia Speranza. “Twenty years of linear
programming based portfolio optimization”. In: European Journal of Operational Research 234.2
(2014), pp. 518–535.

[146] Leilei Meng, Chaoyong Zhang, Yaping Ren, Biao Zhang, and Chang Lv. “Mixed-integer linear
programming and constraint programming formulations for solving distributed flexible job shop
scheduling problem”. In: Computers & Industrial Engineering 142 (2020), p. 106347.

[147] Maxime Mulamba, Jayanta Mandi, Michelangelo Diligenti, Michele Lombardi,
Victor Bucarey Lopez, and Tias Guns. “Contrastive losses and solution caching for
predict-and-optimize”. In: International Joint Conference on Artificial Intelligence. 2021, p. 2833.

[148] Vinod Nair, Sergey Bartunov, Felix Gimeno, et al. “Solving mixed integer programs using neural
networks”. In: arXiv preprint arXiv:2012.13349 (2020).

[149] Mohammadreza Nazari, Afshin Oroojlooy, Lawrence Snyder, and Martin Takác. “Reinforcement
learning for solving the vehicle routing problem”. In: Advances in Neural Information Processing
Systems 31 (2018).

[150] Keisuke Okumura, Manao Machida, Xavier Défago, and Yasumasa Tamura. “Priority inheritance
with backtracking for iterative multi-agent path finding”. In: Artificial Intelligence 310 (2022),
p. 103752.

[151] Aaron van den Oord, Yazhe Li, and Oriol Vinyals. “Representation learning with contrastive
predictive coding”. In: arXiv preprint arXiv:1807.03748 (2018).

[152] James Ostrowski, Miguel F Anjos, and Anthony Vannelli. “Tight mixed integer linear
programming formulations for the unit commitment problem”. In: IEEE Transactions on Power
Systems 27.1 (2011), pp. 39–46.

[153] Christos H Papadimitriou and Kenneth Steiglitz. Combinatorial optimization: algorithms and
complexity. Courier Corporation, 1998.

[154] Max B Paulus, Giulia Zarpellon, Andreas Krause, Laurent Charlin, and Chris Maddison. “Learning
to cut by looking ahead: Cutting plane selection via imitation learning”. In: International
Conference on Machine Learning. PMLR. 2022, pp. 17584–17600.

160

[155] Judea Pearl and Jin H. Kim. “Studies in semi-admissible heuristics”. In: IEEE Transactions on
Pattern Analysis and Machine Intelligence 4 (1982), pp. 392–399.

[156] Thomy Phan, Taoan Huang, Bistra Dilkina, and Sven Koenig. “Adaptive anytime multi-agent path
finding using bandit-based large neighborhood search”. In: AAAI Conference on Artificial
Intelligence. Vol. 38. 16. 2024, pp. 17514–17522.

[157] Victor Pillac, Pascal Van Hentenryck, and Caroline Even. “A conflict-based path-generation
heuristic for evacuation planning”. In: Transportation Research Part B: Methodological 83 (2016),
pp. 136–150.

[158] Ira Pohl. “Heuristic search viewed as path finding in a graph”. In: Artificial intelligence 1.3-4
(1970), pp. 193–204.

[159] Antoine Prouvost, Justin Dumouchelle, Lara Scavuzzo, Maxime Gasse, Didier Chételat, and
Andrea Lodi. “Ecole: A gym-like library for machine learning in combinatorial optimization
solvers”. In: Learning Meets Combinatorial Algorithms at NeurIPS2020. 2020. url:
https://openreview.net/forum?id=IVc9hqgibyB.

[160] Qi Qian, Lei Shang, Baigui Sun, Juhua Hu, Hao Li, and Rong Jin. “Softtriple loss: Deep metric
learning without triplet sampling”. In: IEEE/CVF International Conference on Computer Vision.
2019, pp. 6450–6458.

[161] Arthur Queffelec, Ocan Sankur, and François Schwarzentruber. “Conflict-based search for
connected multi-agent path finding”. In: arXiv preprint arXiv:2006.03280 (2020).

[162] C Quoc and Viet Le. “Learning to rank with nonsmooth cost functions”. In: Advances in Neural
Information Processing Systems. 2007, pp. 193–200.

[163] Jingyao Ren, Vikraman Sathiyanarayanan, Eric Ewing, Baskin Senbaslar, and Nora Ayanian.
“MAPFAST: A deep algorithm selector for multi agent path finding using shortest path
embeddings”. In: International Conference on Autonomous Agents and MultiAgent Systems. 2021.

[164] Nils Rethmeier and Isabelle Augenstein. “A primer on contrastive pretraining in language
processing: Methods, lessons learned, and perspectives”. In: ACM Computing Surveys 55.10 (2023),
pp. 1–17.

[165] Julia Rieck, Juergen Zimmermann, and Thorsten Gather. “Mixed-integer linear programming for
resource leveling problems”. In: European Journal of Operational Research 221.1 (2012), pp. 27–37.

[166] Stefan Ropke and David Pisinger. “An adaptive large neighborhood search heuristic for the pickup
and delivery problem with time windows”. In: Transportation science 40.4 (2006), pp. 455–472.

[167] Stéphane Ross and Drew Bagnell. “Efficient reductions for imitation learning”. In: International
Conference on Artificial Intelligence and Statistics. 2010, pp. 661–668.

[168] Stéphane Ross, Geoffrey Gordon, and Drew Bagnell. “A reduction of imitation learning and
structured prediction to no-regret online learning”. In: International Conference on Artificial
Intelligence and Statistics. 2011, pp. 627–635.

161

https://openreview.net/forum?id=IVc9hqgibyB

[169] Edward Rothberg. “An evolutionary algorithm for polishing mixed integer programming
solutions”. In: INFORMS Journal on Computing 19.4 (2007), pp. 534–541.

[170] Qandeel Sajid, Ryan Luna, and Kostas Bekris. “Multi-agent pathfinding with simultaneous
execution of single-agent primitives”. In: Symposium on Combinatorial Search. Vol. 3. 1. 2012,
pp. 88–96.

[171] Arun Kumar Sangaiah, Erfan Babaee Tirkolaee, Alireza Goli, and Saeed Dehnavi-Arani. “Robust
optimization and mixed-integer linear programming model for LNG supply chain planning
problem”. In: Soft Computing 24 (2020), pp. 7885–7905.

[172] Guillaume Sartoretti, Justin Kerr, Yunfei Shi, Glenn Wagner, TK Satish Kumar, Sven Koenig, and
Howie Choset. “PRIMAL: Pathfinding via reinforcement and imitation multi-agent learning”. In:
IEEE Robotics and Automation Letters 4.3 (2019), pp. 2378–2385.

[173] Lara Scavuzzo, Feng Chen, Didier Chételat, Maxime Gasse, Andrea Lodi, Neil Yorke-Smith, and
Karen Aardal. “Learning to branch with tree MDPs”. In: Advances in Neural Information Processing
Systems 35 (2022), pp. 18514–18526.

[174] Guni Sharon, Roni Stern, Ariel Felner, and Nathan R. Sturtevant. “Conflict-based search for
optimal multi-agent pathfinding”. In: Artificial Intelligence 219 (2015), pp. 40–66.

[175] David Silver. “Cooperative pathfinding”. In: Artificial Intelligence and Interactive Digital
Entertainment Conference. 2005, pp. 117–122.

[176] Stephen L Smith and Frank Imeson. “GLNS: An effective large neighborhood search heuristic for
the generalized traveling salesman problem”. In: Computers & Operations Research 87 (2017),
pp. 1–19.

[177] Jialin Song, Ravi Lanka, Yisong Yue, and Bistra Dilkina. “A general large neighborhood search
framework for solving integer linear programs”. In: Advances in Neural Information Processing
Systems. Vol. 33. 2020.

[178] Jialin Song, Ravi Lanka, Albert Zhao, Aadyot Bhatnagar, Yisong Yue, and Masahiro Ono.
“Learning to search via retrospective imitation”. In: arXiv preprint arXiv:1804.00846 (2018).

[179] Nicolas Sonnerat, Pengming Wang, Ira Ktena, Sergey Bartunov, and Vinod Nair. “Learning a large
neighborhood search algorithm for mixed integer programs”. In: arXiv preprint arXiv:2107.10201
(2021).

[180] Trevor Scott Standley. “Finding optimal solutions to cooperative pathfinding problems.” In: AAAI
Conference on Artificial Intelligence. 2010, pp. 28–29.

[181] Roni Stern, Nathan R. Sturtevant, Ariel Felner, Sven Koenig, Hang Ma, Thayne Walker,
Jiaoyang Li, Dor Atzmon, Liron Cohen, TK Satish Kumar, Eli Boyarski, and Roman Bartak.
“Multi-agent pathfinding: Definitions, variants, and benchmarks”. In: Symposium on
Combinatorial Search. 2019, pp. 151–158.

162

[182] Nathan R. Sturtevant. “Benchmarks for grid-based pathfinding”. In: IEEE Transactions on
Computational Intelligence and AI in Games 4.2 (2012), pp. 144–148.

[183] Pavel Surynek. “Unifying search-based and compilation-based approaches to multi-agent path
finding through satisfiability modulo theories”. In: Symposium on Combinatorial Search. Vol. 10. 1.
2019, pp. 202–203.

[184] Yunhao Tang, Shipra Agrawal, and Yuri Faenza. “Reinforcement learning for integer
programming: Learning to cut”. In: International Conference on Machine Learning. PMLR. 2020,
pp. 9367–9376.

[185] J Teghem, M Pirlot, and C Antoniadis. “Embedding of linear programming in a simulated
annealing algorithm for solving a mixed integer production planning problem”. In: Journal of
Computational and Applied Mathematics 64.1-2 (1995), pp. 91–102.

[186] Jordan Tyler Thayer and Wheeler Ruml. “Bounded suboptimal search: A direct approach using
inadmissible estimates”. In: International Joint Conference on Artificial Intelligence. Vol. 2011. 2011,
pp. 674–679.

[187] Yuandong Tian. “Understanding Deep Contrastive Learning via Coordinate-wise Optimization”.
In: Advances in Neural Information Processing Systems. 2022.

[188] Zekun Tong, Yuxuan Liang, Henghui Ding, Yongxing Dai, Xinke Li, and Changhu Wang.
“Directed graph contrastive learning”. In: Advances in Neural Information Processing Systems 34
(2021), pp. 19580–19593.

[189] Paolo Toth and Daniele Vigo. The vehicle routing problem. SIAM, 2002.

[190] Glenn Wagner and Howie Choset. “M*: A complete multirobot path planning algorithm with
performance bounds”. In: IEEE/RSJ International Conference on Intelligent Robots and Systems.
2011, pp. 3260–3267.

[191] Jiangxing Wang, Jiaoyang Li, Hang Ma, Sven Koenig, and S Kumar. “A new constraint
satisfaction perspective on multi-agent path finding: Preliminary results”. In: International
Conference on Autonomous Agents and Multiagent Systems. 2019, pp. 2253–2255.

[192] Shuwei Wang, Vadim Bulitko, Taoan Huang, Sven Koenig, and Roni Stern. “Synthesizing priority
planning formulae for multi-agent pathfinding”. In: AAAI Conference on Artificial Intelligence and
Interactive Digital Entertainment. Vol. 19. 1. 2023, pp. 360–369.

[193] Yutong Wang, Bairan Xiang, Shinan Huang, and Guillaume Sartoretti. “SCRIMP: Scalable
communication for reinforcement-and imitation-learning-based multi-agent pathfinding”. In:
International Conference on Autonomous Agents and Multiagent Systems. 2023, pp. 2598–2600.

[194] Laurence A. Wolsey and George L. Nemhauser. Integer and combinatorial optimization. Vol. 55.
John Wiley & Sons, 1999.

163

[195] Chao-Yuan Wu, R Manmatha, Alexander J Smola, and Philipp Krahenbuhl. “Sampling matters in
deep embedding learning”. In: IEEE International Conference on Computer Vision. 2017,
pp. 2840–2848.

[196] Wenying Wu, Subhrajit Bhattacharya, and Amanda Prorok. “Multi-robot path deconfliction
through prioritization by path prospects”. In: IEEE International Conference on Robotics and
Automation. 2020, pp. 9809–9815.

[197] Wenying Wu, Subhrajit Bhattacharya, and Amanda Prorok. “Multi-robot path deconfliction
through prioritization by path prospects”. In: IEEE international conference on robotics and
automation. IEEE. 2020, pp. 9809–9815.

[198] Yaoxin Wu, Wen Song, Zhiguang Cao, and Jie Zhang. “Learning large neighborhood search policy
for integer programming”. In: Advances in Neural Information Processing Systems 34 (2021),
pp. 30075–30087.

[199] Peter R Wurman, Raffaello D’Andrea, and Mick Mountz. “Coordinating hundreds of cooperative,
autonomous vehicles in warehouses”. In: AI Magazine 29.1 (2008), pp. 9–9.

[200] Liang Xin, Wen Song, Zhiguang Cao, and Jie Zhang. “NeuroLKH: Combining deep learning model
with lin-kernighan-helsgaun heuristic for solving the traveling salesman problem”. In: Advances
in Neural Information Processing Systems 34 (2021), pp. 7472–7483.

[201] Zhongxia Yan and Cathy Wu. “Neural neighborhood search for multi-agent path finding”. In:
International Conference on Learning Representations. 2024.

[202] Yu Yang, Natashia Boland, Bistra Dilkina, and Martin Savelsbergh. “Learning generalized strong
branching for set covering, set packing, and 0–1 knapsack problems”. In: European Journal of
Operational Research 301.3 (2022), pp. 828–840.

[203] Taehyun Yoon, Jinwon Choi, Hyokun Yun, and Sungbin Lim. “Threshold-aware Learning to
Generate Feasible Solutions for Mixed Integer Programs”. In: arXiv preprint arXiv:2308.00327
(2023).

[204] Fengqi You and Ignacio E Grossmann. “Mixed-integer nonlinear programming models and
algorithms for large-scale supply chain design with stochastic inventory management”. In:
Industrial & Engineering Chemistry Research 47.20 (2008), pp. 7802–7817.

[205] Yuning You, Tianlong Chen, Yongduo Sui, Ting Chen, Zhangyang Wang, and Yang Shen. “Graph
contrastive learning with augmentations”. In: Advances in Neural Information Processing Systems
33 (2020), pp. 5812–5823.

[206] Chenning Yu, Qingbiao Li, Sicun Gao, and Amanda Prorok. “Accelerating multi-agent planning
using graph transformers with bounded suboptimality”. In: IEEE International Conference on
Robotics and Automation. 2023, pp. 3432–3439.

[207] Jingjin Yu. “Intractability of optimal multirobot path planning on planar graphs”. In: IEEE Robotics
and Automation Letters 1.1 (2015), pp. 33–40.

164

[208] Jingjin Yu and Steven M LaValle. “Structure and intractability of optimal multi-robot path
planning on graphs”. In: AAAI Conference on Artificial Intelligence. 2013, pp. 1443–1449.

[209] Jingjin Yu and Steven M. LaValle. “Planning optimal paths for multiple robots on graphs”. In: IEEE
International Conference on Robotics and Automation. 2013, pp. 3612–3617.

[210] Jingjin Yu and Daniela Rus. “Pebble motion on graphs with rotations: Efficient feasibility tests
and planning algorithms”. In: Algorithmic Foundations of Robotics XI: Selected Contributions of the
Eleventh International Workshop on the Algorithmic Foundations of Robotics. Springer. 2015,
pp. 729–746.

[211] Giulia Zarpellon, Jason Jo, Andrea Lodi, and Yoshua Bengio. “Parameterizing branch-and-bound
search trees to learn branching policies”. In: AAAI Conference on Artificial Intelligence. 2021.

[212] Jiayi Zhang, Chang Liu, Xijun Li, Hui-Ling Zhen, Mingxuan Yuan, Yawen Li, and Junchi Yan. “A
survey for solving mixed integer programming via machine learning”. In: Neurocomputing 519
(2023), pp. 205–217.

[213] Shuyang Zhang, Jiaoyang Li, Taoan Huang, Sven Koenig, and Bistra Dilkina. “Learning a priority
ordering for prioritized planning in multi-agent path finding”. In: Symposium on Combinatorial
Search. 2022.

[214] Jiongzhi Zheng, Kun He, Jianrong Zhou, Yan Jin, and Chu-Min Li. “Combining reinforcement
learning with Lin-Kernighan-Helsgaun algorithm for the traveling salesman problem”. In: AAAI
Conference on Artificial Intelligence. 2021.

[215] Ivan Žulj, Sergej Kramer, and Michael Schneider. “A hybrid of adaptive large neighborhood
search and tabu search for the order-batching problem”. In: European Journal of Operational
Research 264.2 (2018), pp. 653–664.

165

Appendix

A Supplementary Materials to Chapter 3

A.1 Additional Details of MILP Instance Generation

We present the MILP formulations for the minimum vertex cover (MVC), maximum independent set (MIS),

set covering (SC) and combinatorial auction (CA) problems. The descriptions and formulations for the item

placement and workload appointment problems can be found at the ML4CO competition [58] website∗.

In an MVC instance, we are given an undirected graph G = (V,E). The goal is to select the smallest

subset of nodes such that at least one end point of every edge in the graph is selected:

min
∑

v∈V xv

s.t. xu + xv ≥ 1, ∀(u, v) ∈ E,

xv ∈ {0, 1}, ∀v ∈ V.

∗ML4CO Competition Website: https://github.com/ds4dm/ml4co-competition/blob/main/DATA.md

166

https://github.com/ds4dm/ml4co-competition/blob/main/DATA.md

In an MIS instance, we are given an undirected graph G = (V,E). The goal is to select the largest

subset of nodes such that no two nodes in the subsets are connected by an edge in G:

min−
∑

v∈V xv

s.t. xu + xv ≤ 1, ∀(u, v) ∈ E,

xv ∈ {0, 1}, ∀v ∈ V.

In an SC instance, we are givenm elements and a collection S of sets whose union is the set of all elements.

The goal is to select a minimum number of sets from S such that the union of the selected set is the set of

all elements:

min
∑

s∈S xs

s.t.
∑

s∈S:i∈s xs ≥ 1, ∀i ∈ [m],

xs ∈ {0, 1}, ∀s ∈ S.

In a CA instance, we are given ñ bids {(Bi, pi) : i ∈ [ñ]} for m̃ items, where Bi is a subset of items

and pi is its associated bidding price. The objective is to allocate items to bids such that the total revenue

is maximized:

min−
∑

i∈[ñ] pixi

s.t.
∑

i:j∈Bi
xi ≤ 1, ∀j ∈ [m̃],

xi ∈ {0, 1}, ∀i ∈ [ñ].

167

A.2 Supplementary Materials to Section 3.6

A.2.1 Neural Network Architecture for CL-LNS

We give full details of the GAT architecture described in subsection 3.6.1.2. The policy takes as input the

state st and outputs a score vector πθ(st) ∈ [0, 1]n, one score per variable. We use 2-layer MLPs with 64

hidden units per layer and ReLU as the activation function to map each node feature and edge feature to

Rd where d = 64.

Let vj , ci, ei,j ∈ Rd be the embeddings of the j-th variable, i-th constraint and the edge connecting

them output by the embedding layers. We perform two rounds of message passing through the GAT. In the

first round, each constraint node ci attends to its neighbors Ni using an attention structure with H = 8

attention heads:

c′i =
1

H

H∑
h=1

α
(h)
ii,1θ

(h)
c,1 ci +

∑
j∈Ni

α
(h)
ij,1θ

(h)
v,1vj


where θ(h)

c,1 ∈ Rd×d and θ
(h)
v,1 ∈ Rd×d are learnable weights. The updated constraint embeddings c′i are

averaged across H attention heads using attention weights [23]

α
(h)
ij,1 =

exp(wT
1 ρ([θ

(h)
c,1 ci,θ

(h)
v,1vj ,θ

(h)
e,1ei,j]))∑

k∈Ni
exp(wT

1 ρ([θ
(h)
c,1 ci,θ

(h)
v,1vk,θ

(h)
e,1ei,k]))

where the attention coefficients w1 ∈ R3d and θ
(h)
e,1 ∈ Rd×d are both learnable weights and ρ(·) refers to

the LeakyReLU activation function with negative slope 0.2. In the second round, similarly, each variable

node attends to its neighbors to get updated variable node embeddings

v′
j =

1

H

H∑
h=1

α
(h)
jj,2θ

(h)
v,2vj +

∑
i∈Nj

α
(h)
ji,2θ

(h)
c,2 c

′
i



168

with attention weights

α
(h)
ji,2 =

exp(wT
2 ρ([θ

(h)
c,2 c

′
i,θ

(h)
v,2vj ,θ

(h)
e,2ei,j]))∑

k∈Nj
exp(wT

2 ρ([θ
(h)
c,2 c

′
i,θ

(h)
v,2vj ,θ

(h)
e,2ei,k]))

where w2 ∈ R3d and θ
(h)
c,2 ,θ

(h)
v,2 ,θ

(h)
e,2 ∈ Rd×d are learnable weights. After the two rounds of message

passing, the final representations of variables v′ are passed through a 2-layer MLP with 64 hidden units

per layer to obtain a scalar value for each variable. Finally, we apply the sigmoid function to get a score

between 0 and 1.

Features We use features proposed in [59] for node features and edge features in the bipartite graph

and also include a fixed-size window of most recent incumbent values as variable node features with the

window size set to 3 in experiments. In addition, we include features proposed in [102] computed at the

root node of BnB to make it a richer set of variable node features. The full list of features can be found in

Table 2 in Appendix of [59] and Table 1 in [102]. In our implementation, we compute them using the APIs

provided by the Ecole library [159]†.

A.2.2 Hyperparameter Tuning

For RL-LNS, we use all the hyperparameters provided in their code [198] in our experiments. For the

other LNS methods, all hyperparameters used in experiments are fine-tuned on the validation set, and the

hyperparameter tunings are described below.

For β, which upper bounds the neighborhood size, we tried values from {0.25, 0.5, 0.6, 0.7}. β = 0.25

is the worst for all approaches, resulting in the highest gap. For LB-RELAX, IL-LNS and CL-LNS, all values

perform similarly (because they select effective neighborhoods early in the search and their neighborhood
†More details and the source code can be found at https://doc.ecole.ai/py/en/stable/reference/observations.

html.

169

https://doc.ecole.ai/py/en/stable/reference/observations.html
https://doc.ecole.ai/py/en/stable/reference/observations.html

sizes either do not reach the upper bound or they already converge to good solutions before reaching it).

For RANDOM and GRAPH, β = 0.5 is the best for them. So, we set β = 0.5 consistently for all approaches.

For initial neighborhood sizes k0, we observe that the best values are sensitive for approaches that

need longer runtime to select variables, such as LB-RELAX, IL-LNS and CL-LNS, thus they need the right

k0 from the beginning and we fine-tune it for them. For RANDOM and GRAPH, their runtime for selecting

variables is short, and with the adaptive neighborhood size mechanism, they could very quickly find the

right neighborhood size and are insensitive to k0. They converge to the same primal gaps (< 1% rela-

tive differences) with similar primal integrals (< 2% relative differences) using different k0. Despite the

differences being small, we still use the best k0 for them.

For γ that controls the rate at which kt increases, we tried values from {1, 1.01, 1.02, 1.05}. Overall,

γ does not greatly impact the performance if γ > 1; however, γ = 1 is far worse than the others.

For the runtime limit for each repair operation, we tried different limits of 0.5, 1, 2 and 5 minutes. None

of the approaches are sensitive to it since most repairs are finished within 20 seconds. Except for IL-LNS

on the SC instances, it selects neighborhoods that require a longer time to repair and a 2-minute runtime

limit is necessary. Therefore, we use 2 minutes consistently.

For BnB, the aggressive mode is fine-tuned for each problem on the validation set. With the aggressive

mode turned on, BnB (SCIP) does not always deliver better anytime performance compared to when it is

turned off. Based on the validation results, the aggressive mode is turned on for MVC and SC instances

and turned off for CAT and MIS instances.

For IL-LNS, it uses the same training dataset as CL-LNS but uses only the positive samples. We fine-tune

its hyperparameters for each problem on the validation set, resulting in a different k0 on the SC instance

from CL-LNS. In [179], they use sampling methods to select variables when using the learned policy. For

the temperature parameter η in the sampling method, we tried values from {1/2, 2/3, 1} and η = 0.5

performs the best overall. However, in our experiment, we observe that our greedy method described in

170

Table A.1: Hyperparameters with their notations and values used.

Hyperparameter Notation Value
Suboptimality threshold to determine positive samples αp 0.5
Upper bound on the number of positive samples up 10
Suboptimality threshold to determine negative samples αn 0.05
Ratio between the numbers of positive and negative samples κ 9
Feature embedding dimension d 64
Window size of the most recent incumbent values in variable features 3
Number of attention heads in the GAT H 8
Temperature parameter in the contrastive loss τ 0.07
Rate at which kt increases γ 1.02
Upper bound on kt as a fraction of number of variables β 0.5
Temperature parameter for sampling variables in IL-LNS η 0.5
Initial neighborhood size k0 Fine-tuned for each case
Runtime for finding initial solution 10 seconds
Runtime limit for each reoptimization 2 minutes
Learning rate for CL-LNS and IL-LNS 10−3

Batch size for CL-LNS and IL-LNS 32
Number of training epochs for CL-LNS and IL-LNS 30

subsection 3.6.1.4 works better for IL-LNS on SC and MIS instances. Thus, CL-LNS is compared against

the corresponding results on SC and MIS instances.

For LB-RELAX, three variants are presented in [86]. For simplicity, we present only the best of the

three variants for each problem in the paper.

In Table A.1, we summarize all the hyperparameters with their notations and values used in our ex-

periments.

A.2.3 Additional Experimental Results

In this subsection, we add two more baselines and evaluate all approaches on one more metric. We show

that CL-LNS outperforms all approaches in terms of all metrics.

We establish two additional baselines:

• LB LNS which selects the neighborhood with the LB heuristics. We set the time limit to 10 minutes

for solving the LB ILP in each iteration;

171

• GRAPH LNSwhich selects the neighborhood based on the bipartite graph representation of the ILP

similar to GINS [142]. A bipartite graph representation consists of nodes representing the variables

and constraints on two sides, respectively, with an edge connecting a variable and a constraint if a

variable has a non-zero coefficient in the constraint. It runs a breadth-first search starting from a

random variable node in the bipartite graph and selects the first kt variable nodes expanded.

Figure A.1 shows the full results on the primal gap as a function of runtime. Figure A.2 shows the

full results on the survival rate as a function of runtime. Figure A.3 shows the full results on the primal

bound as a function of runtime. Tables A.2 and A.3 present the average primal bound, primal gap and

primal integral at 30 and 60 minutes runtime cutoff, respectively, on the small instances. Tables A.4 and

A.5 present the average primal bound, primal gap and primal integral at 30 and 60 minutes runtime cutoff,

respectively, on the large instances.

Next, we evaluate the performance with one additional metric: The gap to virtual best at time z for

an approach is the normalized difference between its best primal bound found up to time z and the best

primal bound found up to time z by any approach in the portfolio.

Figure A.4 shows the full results on the best performing rate as a function of runtime. Figure A.5 shows

the full results on the gap to virtual best as a function of runtime.

A.3 Supplementary Materials to Section 3.7

A.3.1 Neural Network Architecture for ConPaS

We follow previous work [59, 70] to use a bipartite graph representation to encode a MILP M . For the

node (variable and constraint)and edge features of the bipartite graph, we use the same features as [70].

We use the same GCN architecture as previous work [70]. The GCN takes as input the bipartite graph

representation of a MILP M with its features and outputs pθ(x|M), a [0, 1]-score vector for the binary

variables. For node features, we use 2-layer multi-layer perceptrons (MLP) with 64 hidden units per layer

172

(a) MVC-S (left) and MVC-L (right).

(b) MIS-S (left) and MIS-L (right).

(c) CA-S (left) and CA-L (right).

(d) SC-S (left) and SC-L (right).

Figure A.1: The primal gap (the lower the better) as a function of time, averaged over 100 instances. For
ML approaches, the policies are trained on only small training instances but tested on both small and large
test instances.

173

(a) MVC-S (left) and MVC-L (right).

(b) MIS-S (left) and MIS-L (right).

(c) CA-S (left) and CA-L (right).

(d) SC-S (left) and SC-L (right).

Figure A.2: The survival rate (the higher the better) over 100 instances as a function of time to meet primal
gap threshold 1.00%. ForML approaches, the policies are trained on only small training instances but tested
on both small and large test instances.

174

(a) MVC-S (left) and MVC-L (right).

(b) MIS-S (left) and MIS-L (right).

(c) CA-S (left) and CA-L (right).

(d) SC-S (left) and SC-L (right).

Figure A.3: The primal bound (the lower the better) as a function of time, averaged over 100 instances. For
ML approaches, the policies are trained on only small training instances but tested on both small and large
test instances.

175

(a) MVC-S (left) and MVC-L (right).

(b) MIS-S (left) and MIS-L (right).

(c) CA-S (left) and CA-L (right).

(d) SC-S (left) and SC-L (right).

Figure A.4: The best performing rate (the higher the better) as a function of runtime over 100 test instances.
For ML approaches, the policies are trained on only small training instances but tested on both small and
large test instances.

176

(a) MVC-S (left) and MVC-L (right).

(b) MIS-S (left) and MIS-L (right).

(c) CA-S (left) and CA-L (right).

(d) SC-S (left) and SC-L (right).

Figure A.5: The gap to virtual best (the lower the better) as a function of runtime, averaged over 100 test
instances. For ML approaches, the policies are trained on only small training instances but tested on both
small and large test instances.

177

PB PG (%) PI PB PG (%) PI
MVC MIS

BnB 449.67±9.69 1.55±0.44 40.2±6.6 -2,004.24±26.21 5.60±1.00 127.1±12.4
LB 454.89±11.55 2.66±1.16 58.2±14.1 -2,064.30±16.40 2.77±0.51 89.9±7.3

RANDOM 447.16±11.22 0.98±1.26 20.6±22.5 -2,115.23±11.82 0.37±0.16 16.9±2.7
GRAPH 447.75±11.39 1.11±1.30 24.2±22.1 -2,111.84±12.06 0.53±0.16 24.4±2.7

LB-RELAX 449.02±11.53 1.38±1.51 32.1±24.2 -2,102.85±11.97 0.95±0.19 33.0±3.6
IL-LNS 444.27±9.61 0.35±0.25 13.5±6.9 -2,115.30±12.04 0.36±0.18 14.4±3.2
RL-LNS 445.71±9.98 0.67±0.35 18.2±5.7 -2,116.64±11.53 0.30±0.15 12.7±2.9
CL-LNS 443.48±9.56 0.17±0.09 5.5±3.6 -2,117.58±11.86 0.26±0.17 9.3±3.0

CA SC
BnB -113,068±1,595 2.75±0.62 93.5±18.6 172.09±12.65 1.63±1.20 62.9±22.5
LB -110,303±2,001 5.13±1.08 191.6±16.9 172.37±12.71 1.79±1.11 89.4±22.3

RANDOM -109,040±1,685 6.21±1.05 126.8±17.6 174.70±12.75 3.10±1.38 73.4±24.6
GRAPH -107,802±1,892 7.28±1.07 152.2±18.9 186.79±14.13 9.33±2.28 175.7±38.8

LB-RELAX -114,103±1,521 1.86±0.57 109.5±9.4 171.60±12.43 1.36±1.02 44.6±19.3
IL-LNS -114,621±1638 1.41±0.58 68.1±13.9 171.59±12.45 1.35±1.00 39.3±17.4
RL-LNS -108,562±1,854 6.63±1.05 132.9±18.2 171.70±12.30 1.42±0.88 55.7±15.6
CL-LNS -115,513±1,621 0.65±0.32 39.1±11.6 170.16±12.13 0.53±0.63 16.7±12.3

Table A.2: Test results on small instances: Primal bound (PB), primal gap (PG) (in percent), primal integral
(PI) at 30 minutes time cutoff, averaged over 100 instances and their standard deviations.

PB PG (%) PI PB PG (%) PI
MVC-S MIS-S

BnB 448.63±9.58 1.32±0.43 66.1±13.1 -2,014.85±20.04 5.10±0.69 222.8±25.9
LB 453.45±11.81 2.35±1.30 102.2±35.9 -2,079.07±14.34 2.07±0.44 130.9±13.6

RANDOM 447.06±11.21 0.96±1.26 38.0±44.8 -2,117.92±11.31 0.24±0.14 22.1±5.0
GRAPH 447.14±10.83 0.98±1.20 42.9±44.0 -2,116.15±11.58 0.32±0.15 31.8±5.0

LB-RELAX 449.01±11.53 1.38±1.51 57.0±51.2 -2,109.17±11.17 0.65±0.20 46.9±6.5
IL-LNS 444.00±9.73 0.29±0.23 19.2±10.2 -2,118.38±11.77 0.22±0.17 19.4±5.8
RL-LNS 445.45±9.99 0.61±0.34 29.6±11.5 -2,118.44±11.36 0.22±0.14 17.2±5.2
CL-LNS 443.48±9.56 0.17±0.09 8.7±6.7 -2,119.78±12.14 0.15±0.15 12.8±5.4

CA-S SC-S
BnB -113,608±1,611 2.28±0.59 137.4±25.9 171.22±12.50 1.13±0.95 86.7±37.9
LB -111,342±1,732 4.23±0.75 272.1±26.9 171.39±12.81 1.22±0.97 113.7±35.2

RANDOM -109,397±1,684 5.90±1.02 235.6±34.9 173.95±12.98 2.67±1.29 124.3±45.4
GRAPH -108,422±1,775 6.74±1.03 277.7±36.5 185.57±14.17 8.74±2.13 337.8±76.4

LB-RELAX -114,348±1,516 1.65±0.57 140.5±18.3 170.74±12.35 0.86±0.83 63.2±31.6
IL-LNS -115,001±1,564 1.09±0.51 90.0±20.8 171.55±12.47 1.33±0.97 63.2±34.3
RL-LNS -108,920±1,816 6.32±1.03 249.2±35.9 171.14±12.30 1.10±0.77 77.8±28.9
CL-LNS -115,513±1,621 0.65±0.32 50.7±22.7 170.11±12.10 0.50±0.58 26.2±12.8

Table A.3: Test results on small instances: Primal bound (PB), primal gap (PG) (in percent), primal integral
(PI) at 60 minutes time cutoff, averaged over 100 instances and their standard deviations.

178

PB PG (%) PI PB PG (%) PI
MVC MIS

BnB 919.96±12.38 4.06±0.38 73.4±6.8 -3,888.39±20.62 8.24±0.31 150.5±5.6
LB 900.15±12.32 1.95±0.35 52.6±6.0 -4,009.23±71.94 5.39±1.59 123.1±15.1

RANDOM 886.39±12.71 0.43±0.25 15.6±3.9 -4,225.74±15.63 0.28±0.10 15.8±1.8
GRAPH 886.89±12.79 0.48±0.23 22.9±3.9 -4,206.29±16.76 0.74±0.16 31.6±2.7

LB-RELAX 887.64±12.21 0.57±0.23 39.4±4.4 -4,177.14±18.22 1.42±0.16 48.5±3.0
IL-LNS 885.58±12.65 0.33±0.26 15.9±4.0 -4,216.32±17.30 0.50±0.17 20.4±3.0
RL-LNS 888.89±12.64 0.71±0.30 25.8±4.8 -4,224.37±15.79 0.31±0.13 15.1±2.2
CL-LNS 883.07±12.61 0.05±0.04 8.1±2.1 -4,226.65±15.56 0.26±0.13 9.7±2.6

CA SC
BnB -216,772±13,060 5.58±5.42 257.1±56.4 109.39±7.26 2.02±1.36 84.4±22.2
LB -206,526±3,750 10.03±1.39 245.1±19.2 116.43±8.97 7.84±2.88 162.6±39.2

RANDOM -216,326±2,603 5.76±0.74 129.4±12.1 111.71±7.65 4.02±1.86 100.6±32.0
GRAPH -213,142±2,713 7.14±0.78 177.6±13.2 112.74±7.64 4.91±1.80 141.7±31.1

LB-RELAX -225,154±4,366 1.91±1.60 121.9±23.9 109.26±7.07 1.91±1.42 53.9±24.5
IL-LNS -214,495±3,148 6.56±1.01 154.0±17.9 109.04±6.94 1.72±1.19 48.1±21.3
RL-LNS -217,600±2,705 5.20±0.84 106.3±14.2 108.66±6.83 1.38±0.99 98.1±15.1
CL-LNS -223,257±2,667 2.74±0.71 95.0±12.5 107.78±6.64 0.58±0.45 28.6±12.6

Table A.4: Generalization results on large instances: Primal bound (PB), primal gap (PG) (in percent),
primal integral (PI) at 30 minutes time cutoff, averaged over 100 instances and their standard deviations.

PB PG (%) PI PB PG (%) PI
MVC-L MIS-L

BnB 904.41±12.95 2.41±0.40 130.2±11.1 -3,970.78±71.54 6.29±1.62 285.1±18.2
LB 893.56±12.62 1.22±0.30 77.8±10.1 -4,079.76±43.09 3.72±0.87 200.7±32.5

RANDOM 886.00±12.74 0.38±0.24 22.7±8.0 -4,232.68±15.42 0.11±0.08 19.0±3.1
GRAPH 886.34±12.67 0.42±0.23 30.9±7.6 -4,220.89±16.42 0.39±0.15 41.1±5.1

LB-RELAX 886.68±12.33 0.46±0.23 48.4±7.5 -4,199.04±17.54 0.91±0.16 68.6±5.5
IL-LNS 885.00±12.56 0.27±0.23 21.2±8.1 -4,225.28±16.25 0.29±0.15 27.1±5.5
RL-LNS 887.90±12.67 0.59±0.30 37.3±9.6 -4,231.52±15.97 0.14±0.12 18.9±4.1
CL-LNS 883.07±12.61 0.05±0.04 9.1±3.4 -4,232.50±14.86 0.12±0.11 12.9±4.4

CA-L SC-L
BnB -223,225±5,106 2.74±1.87 320.9±83.1 108.87±7.35 1.54±1.33 115.0±42.5
LB -208,500±3,976 9.17±1.43 414.0±36.9 115.12±8.77 6.80±2.73 293.5±79.7

RANDOM -217,204±2,612 5.37±0.75 229.2±24.4 110.88±7.55 3.31±1.79 166.4±61.3
GRAPH -214,926±2,649 6.37±0.86 297.5±26.9 111.49±7.51 3.85±1.74 218.9±56.7

LB-RELAX -225,848±4,201 1.61±1.50 153.0±50.3 109.26±7.07 1.91±1.42 88.3±48.9
IL-LNS -219,074±3,278 4.56±0.98 254.2±33.4 109.04±6.94 1.72±1.19 79.1±42.4
RL-LNS -218,273±2,725 4.91±0.81 197.0±28.5 107.87±6.74 0.66±0.72 116.2±27.1
CL-LNS -229,331±2,800 0.09±0.10 116.1±18.0 107.78±6.64 0.58±0.45 39.2±23.2

Table A.5: Generalization results on large instances: Primal bound (PB), primal gap (PG) (in percent) and
primal integral (PI) at 60 minutes time cutoff, averaged over 100 instances and their standard deviations.

179

Figure A.6: The primal gap as a function of runtime and the primal integral at 1,000 seconds runtime cutoff.
Note that the curves of PaS and ConPaS highly overlap with each other.

and ReLU as the activation function to map them toR64. We then perform two rounds of message passings,

the first from variable nodes to constraint nodes and the second from constraint nodes to variable nodes,

using graph convolution layers [59] to obtain a final variable embedding. The final variable embedding

is then passed through a 2-layer MLP with 64 hidden units per layer and ReLU as the activation function

followed by a sigmoid layer to obtain the output pθ(x|M).

PaS ConPaS-Inf ConPaS-LQ
MVC (500, 100, 10) (800, 200, 20) (800, 200, 20)
MIS (600, 600, 5) (1200, 600, 10) (1000, 600, 15)
CA (2000, 0, 0) (2000, 0, 0) (2000, 0, 0)
IP (400, 5, 3) (400, 5, 5) (400, 5, 2)

Table A.6: Hyperparameters (k0, k1,∆) used for PaS and ConPaS.

A.3.2 Hyperparameter Tuning

In this subsection, we discuss the hyperparameters used for SCIP, ND, PaS and ConPaS.

For SCIP, we fine-tune its restart, presolving and primal heuristic modes on the validation instances.

We observe that allowing both restarts and presolving with the aggressive mode turned on for primal

heuristics yields the best performance for SCIP. For SCIP with the default mode, it delivers similar primal

performance for the CA problem but is worse than the fine-tuned version on others. We also observe that

allowing restarts is especially helpful for the IP instances.

180

SCIP ND PaS ConPaS-Inf ConPaS-LQ
MVC 44.5±2.7 10.7±1.2 13.9±6.3 3.1±0.9 2.8±0.6
MIS 46.3±2.9 22.9±14.9 34.5±5.8 5.5±1.3 5.4±1.3
CA 138.9±28.6 71.0±18.2 28.9±5.6 24.0±6.2 19.7±4.8
IP 349.3±87.1 244.0±76.4 236.8±80.6 221.8±73.0 192.0±67.8

MVC (large) 88.3±5.0 8.8±2.2 5.0±2.1 3.7±1.1 2.1±0.8
CA (large) 167.2±8.2 151.4±21.5 96.9±17.1 39.4±10.4 28.7±5.7

Table A.7: Tabular representation of the primal integral plots in Figures 3.10 and 3.11: The primal integral
and the standard deviation at 1,000 seconds runtime cutoff averaged over 100 instances.

PaS ConPaS-LQ
MVC (500, 100, 10) (500, 100, 15)
MIS (500, 500, 10) (500, 500, 10)
CA (1500, 0, 0) (1500, 0, 0)

Table A.8: Comparisons with Gurobi: Hyperparameters (k0, k1,∆) used for PaS and ConPaS-LQ.

For ND, following [148], we train a model separately for each coverage rate value. Due to limited

computing resources, we train models with {0.2, 0.3, 0.4} coverage rate values. The best coverage rates

we found for the MVC, MIS, CA and IP problems are 0.2, 0.2, 0.4 and 0.3, respectively.

For PaS and ConPaS, the values of k0, k1 and ∆ are summarized in Table A.6. Note that the best

hyperparameters for both MVC and MIS are quite different for PaS and ConPaS. On MVC instances for

PaS, we observe that (k0, k1,∆) = (600, 200, 20) has a smaller primal integral than (500, 100, 10) but

has a larger primal gap at 1,000 seconds runtime cutoff. We also test (k0, k1,∆) = (500, 100, 10) for

ConPaS-LQ, it converges to the same primal gaps (with < 0.002% differences) as (800, 200, 20) but has a

34.1% increase in primal integral. On MIS instances for PaS, we observe that increasing k0 or ∆ (or both)

leads to significantly worse performance. However, if we use (k0, k1,∆) = (600, 600, 6) for ConPaS-LQ,

it converges to the same primal gaps (with < 0.032% differences) as (1000, 600, 15) but has a 131.8%

increase in primal integral (still being better than any other baseline).

181

(a) MVC. (b) MIS. (c) CA.

Figure A.7: Comparisons with Gurobi: The primal gap (the lower, the better) as a function of runtime
averaged over 100 test instances.

(a) MVC. (b) MIS. (c) CA.

Figure A.8: Comparisons with Gurobi: The primal integral (the lower, the better) at 1,000 seconds runtime
cutoff, averaged over 100 test instances. The error bars represent the standard deviation.

182

MVC CA
Accuracy AUROC Accuracy AUROC

PaS 81.2% 0.88 88.3% 0.87
ConPaS-LQ 76.9% 0.91 86.9% 0.86

Table A.9: Prediction accuracy and AUROC on 100 validation instances.

A.3.3 Additional Experimental Results

Results on theWorkloadAppointment Problem FigureA.6 presents the results on theWA instances.

Both PaS and ConPaS-LQ outperform SCIP significantly in terms of the primal gap and the primal integral.

However, both approaches converge quickly to low primal gaps, with ConPaS-LQ being very slightly better

than PaS.

Comparisons with Gurobi We compare the performance of ConPaS-LQ against PaS and Gurobi on the

MVC, MIS and CA instances. Note that in this experiment, we use Gurobi in the Predict-and-Search phase

for both PaS and ConPaS-LQ to ensure a fair comparison. The hyperparameters (k0, k1,∆) are reported

in Table A.8. Figure A.7 shows the primal gap as a function of runtime. Figure A.8 shows the primal

integral at 1,000 seconds runtime cutoff. The results show that both PaS and ConPaS-LQ outperform

Gurobi significantly on MVC and MIS instances. Overall, ConPaS-LQ is still the best when applied on

Gurobi.

Prediction Accuracy To assess how accurate the predicted solutions by the neural networks are, we

report the classification accuracy over all binary variables (with the threshold set to 0.5) in Table A.9.

We report it for both PaS and ConPaS-LQ on the MVC and CA problems on 100 validation instances. The

accuracy is the fraction of correctly classified variables averaged over 50 positive samples for each instance,

and we report the average accuracy over 100 validation instances. Since the classification accuracy is

sensitive to the threshold, we also report the AUROC. On the MVC instances, though ConPaS has a lower

accuracy (w.r.t. the threshold of 0.5), it has higher AUROC than PaS. On the CA instances, their accuracies

183

and AUROCs are similar. However, we would like to point out that a better accuracy/AUROC does not

necessarily indicate a better downstream search performance.

184

	Dedication
	Acknowledgements
	Table of Contents
	List of Tables
	List of Figures
	Abstract
	Introduction
	Combinatorial Optimization Problems (COPs)
	Multi-Agent Path Finding (MAPF)
	Mixed Integer Linear Program (MILP)

	Search Algorithms for COPs
	Machine Learning (ML) for COPs

	Contributions

	Improving Decision-Making in MAPF Search Algorithms
	Introduction
	Multi-Agent Path Finding
	Background
	Conflict-Based Search (CBS)
	Enhanced CBS (ECBS)
	MAPF-LNS
	Prioritized Planning (PP)
	MAPF Instances Used in the Empirical Evaluation

	Related Work
	MAPF Search Algorithms
	ML for MAPF
	ML for other COPs that Inspires Our Work

	An Imitation Learning Framework for Learning Decision-Making Strategies
	Learning to Select Conflicts for CBS
	Machine Learning Methodolody
	Experts for Conflict Selection
	Data Collection
	Model Learning
	ML-Guided Search

	Empirical Evaluation
	Setup
	Results

	Learning to Select Nodes for ECBS
	Machine Learning Methodology
	Expert for Node Selection
	Data Collection
	Model Learning
	ML-Guided Search

	Empirical Evaluation
	Setup
	Results

	Learning to Select Agent Sets for MAPF-LNS
	Machine Learning Methodology
	Expert for Agent-Set Selection
	Data Collection
	Model Learning
	ML-Guided Search

	Empirical Evaluation
	Setup
	Results

	Learning to Prioritize Agents for PP
	Machine Learning Methodology
	Expert for Assigning Agents' Priorities
	Data Collection
	Model Learning
	ML-Guided Search

	Empirical Evaluation
	Setup
	Results

	Summary

	Improving Decision-Making in MILP Search Algorithms
	Introduction
	Mixed Integer Linear Programs
	Background
	LNS for MILP solving
	Local Branching Heuristic
	Local Branching Relaxation Heuristic

	Neural Diving
	Predict-and-Search

	Related Work
	LNS for MILPs and Other COPs
	LNS-Based Primal Heuristics in BnB
	Learning to Solve MILPs with BnB
	Solution Predictions for COPs
	Contrastive Learning for COPs

	A Contrastive Learning Framework for Learning Decision-Making Strategies
	Contrastive Large Neighborhood Search
	Machine Learning Methodology
	Data Collection
	Neural Network Architecture
	Model Learning with a Contrastive Loss
	ML-Guided Search

	Empirical Evaluation
	Setup
	Results

	Contrastive Predict-and-Search
	Machine Learning Methodology
	Data Collection
	Neural Network Architecture
	Model Learning with a Contrastive Loss
	ML-Guided Search

	Empirical Evaluation
	Setup
	Results

	Summary

	Conclusions
	Bibliography
	Appendices
	Supplementary Materials to Chapter 3
	Additional Details of MILP Instance Generation
	Supplementary Materials to Section 3.6
	Neural Network Architecture for CL-LNS
	Hyperparameter Tuning
	Additional Experimental Results

	Supplementary Materials to Section 3.7
	Neural Network Architecture for ConPaS
	Hyperparameter Tuning
	Additional Experimental Results

