
DECISION-THEORETIC PLANNING

UNDER RISK-SENSITIVE PLANNING OBJECTIVES

A Dissertation
Presented to

The Academic Faculty

by

Yaxin Liu

���ÆÆÆccc

In Partial Fulfillment
of the Requirements for the Degree

Doctor of Philosophy

College of Computing
Georgia Institute of Technology

April 2005

Copyright c© 2005 by Yaxin Liu

DECISION-THEORETIC PLANNING

UNDER RISK-SENSITIVE PLANNING OBJECTIVES

Approved by:

Dr. Sven Koenig, Co-advisor
College of Computing
Georgia Institute of Technology

Dr. Craig Tovey, Co-advisor
College of Computing
Georgia Institute of Technology

Dr. Anton Kleywegt
School of Industrial and Systems Engineering
Georgia Institute of Technology

Dr. Frank Dellaert
College of Computing
Georgia Institute of Technology

Dr. Ashok Goel
College of Computing
Georgia Institute of Technology

Dr. Richard Goodwin
IBM T.J. Watson Research Center

Date Approved: April 11, 2005

To Zhijie and Emily.

Hofstadter’s Law: It always takes longer than you think, even when you take into account

Hofstadter’s Law.

— Douglas R. Hofstadter

ACKNOWLEDGEMENTS

Many thanks to my advisor, Sven Koenig, for helping me through the process. Thanks

to my co-advisor, Craig Tovey, for many encouraging conversations. Thanks to Richard

Goodwin, for his guidance of my summer internships at IBM and for shaping the direction

of this work. Thanks to Anton Kleywegt, for his encouragement and support from early

on. Thanks to Frank Dellaert, for his advice on writing. And thanks to Ashok Goel, for

helping in various ways.

Thanks to my fellow students, David Furcy, for long-term encouragement and collaboration;

to Jimmy Davies, for moral support; to Chip Mappus, for much help with English; and to

Patrick Yaner, for his bookshelf.

Thanks to Peter Stone, for allowing me to finish the thesis at UT Austin.

Special thanks to my friends Yuan Chen and Xiaoling Cao, for helping taking care of Emily.

I am forever in debt to Zhijie for the many years of enduring, and to Emily for not-so-

many years. Lastly and not leastly, I appreciate the help and support from my parents and

parents-in-law.

This work is partially supported by an IBM Fellowship.

v

TABLE OF CONTENTS

ACKNOWLEDGEMENTS . v

LIST OF TABLES . x

LIST OF FIGURES . xi

LIST OF ALGORITHMS . xiv

SUMMARY . xv

CHAPTER I INTRODUCTION . 1

1.1 Risk Attitudes . 2

1.2 AI Planning and Two Examples . 5

1.3 Decision-Theoretical Planning . 9

1.4 Risk-Sensitive Planning . 14

1.5 Scope of Research . 17

1.6 Contributions . 18

1.6.1 Exponential Utility Functions . 19

1.6.2 General Risk-Sensitive Utility Functions 21

1.6.3 Problems with Arbitrary Rewards 22

1.6.4 Summary . 23

CHAPTER II BACKGROUND . 25

2.1 Utility Theory . 25

2.1.1 Principle of Maximization of Expected Utility 26

2.1.2 Utility Functions on the Real Line and Risk Attitudes 30

2.2 Markov Decision Process Models . 33

2.2.1 Definitions . 33

2.2.2 Planning Objectives . 38

2.2.3 Basic Problems Concerning Planning with MDPs 46

2.3 Risk-Neutral Planning Objectives and Results 48

2.3.1 Finite Horizon . 49

2.3.2 Infinite Horizon with Discounting 51

2.3.3 Infinite Horizon without Discounting 53

vi

2.3.4 Semi-MDPs . 60

2.3.5 Summary . 61

2.4 Related Work: Risk-Sensitive Planning . 62

2.4.1 MDPs with Exponential Utility Functions 62

2.4.2 MDPs with Target-Level Utility Functions 67

2.4.3 MDPs with General Risk-Sensitive Utility Functions 69

2.4.4 MDPs with Even More General Utility Functions 71

2.5 Related Work: Large-Scale MDPs under Risk-Neutral Objectives 73

2.5.1 Symbolic Strategies . 73

2.5.2 Numerical Strategies . 77

CHAPTER III EXPONENTIAL UTILITY FUNCTIONS 79

3.1 Exponential Utility Functions . 80

3.2 An Overview of Basic Properties . 82

3.2.1 Problems without Explicit Goal States 83

3.2.2 Problems with Explicit Goal States 86

3.2.3 Online Testing of Finiteness Conditions 87

3.3 The Representation Transformation . 101

3.3.1 Definition . 101

3.3.2 Planning Problems with Proper Policies Only 106

3.3.3 Planning Problems with Improper Policies 107

3.3.4 Advantages and Limitations of the Representation Transformation 108

3.4 Transformation of Algorithms . 108

3.4.1 Pseudo-Probability Transformation 109

3.4.2 Pseudo-Discount Factor Transformation 110

3.4.3 Short Summary . 111

3.5 Explicit Probabilities: The LAO* Example 112

3.5.1 LAO* Search . 113

3.5.2 Risk-Neutral LAO* . 119

3.5.3 Risk-Sensitive LAO* . 120

3.6 Pseudo-Probability Transformation and Temporally Extended Probabilities 123

3.6.1 Pseudo-Probabilities from Action Sequences 124

vii

3.6.2 Pseudo-Probabilities from Simple Options 142

3.6.3 Options as Temporally Extended Actions 156

3.6.4 Pseudo-Discount Factor Transformation? 161

3.7 Pseudo-Discount Factor Transformation and Factored Probabilities 162

3.7.1 Factored Representation of MDPs 162

3.7.2 SPUDD . 175

3.7.3 Risk-Sensitive Symbolic LAO* . 188

3.8 Summary . 193

CHAPTER IV GENERAL RISK-SENSITIVE UTILITY FUNCTIONS 195

4.1 Introduction . 196

4.2 Finite Horizon . 197

4.2.1 Basic Properties . 197

4.2.2 Augmenting the State Space . 199

4.2.3 Basic Properties Revisited . 206

4.2.4 Functions as Values . 208

4.2.5 Approximations . 209

4.2.6 Piecewise Linear Approximations 213

4.3 Infinite Horizon . 217

4.3.1 The Augmented Model . 217

4.3.2 Existence and Finiteness of Optimal Values 219

4.3.3 Existence of Optimal Policies . 222

4.3.4 Value Iteration and Approximation 223

4.3.5 Example: Deadline Utility Functions 238

4.4 One-Switch Utility Functions . 252

4.4.1 Finite Horizon . 254

4.4.2 Infinite Horizon: Limiting Cases . 256

4.4.3 Infinite Horizon: Negative Models 257

4.4.4 Infinite Horizon: Positive Models 266

4.5 Summary . 273

viii

CHAPTER V PROBLEMS WITH ARBITRARY REWARDS 275

5.1 Results for the MER Objective . 275

5.1.1 Structural Implications . 278

5.2 A Template for the Proofs of Existence Results 281

5.3 Exponential Utility Functions . 285

5.3.1 Concave Exponential Utility Functions 295

5.3.2 Convex Exponential Utility Functions 300

5.4 General Risk-Sensitive Utility Functions 302

5.4.1 Bounded Utility Functions . 302

5.4.2 Linearly Bounded Utility Functions 304

5.4.3 Exponentially Bounded Utility Functions 308

5.4.4 Bounded Total Rewards and Arbitrary Utility Functions 312

5.5 Summary . 315

CHAPTER VI CONCLUSION AND FUTURE WORK 316

6.1 Summary . 316

6.2 Future Work: Short Term . 317

6.2.1 Theoretical Results . 317

6.2.2 Solution Methods . 318

6.2.3 Extensions . 318

6.3 Future Work: Long Term . 319

REFERENCES . 320

ix

LIST OF TABLES

1.1 An illustrative example for risk attitudes . 2

1.2 Summary of existing research and contributions 19

2.1 Notation for planning objectives, values, and policies 46

2.2 Results for finite models with risk-neutral planning objectives 61

3.1 Trace of LAO* for the painted-blocks problem 118

3.2 Optimal risk-sensitive sensing policies . 140

3.3 Planning complexity . 141

3.4 Transition probabilities and rewards under the MER objective 146

3.5 Pseudo-probabilities and rewards under the MEUexp objective 151

3.6 CPTs for move X from Y to Z with the Outcome node 169

3.7 CPTs for move X from Y to Z without the Outcome node 173

4.1 Optimal values (probabilities of success) with hard deadlines 240

4.2 Breakpoints of the value functions from Figure 4.12 243

4.3 Breakpoints of the value functions from Figure 4.17 246

4.4 Breakpoints of the value functions from Figure 4.22 252

4.5 Segments of the value functions from Figure 4.25 265

x

LIST OF FIGURES

1.1 Interpretation of the lottery example using a concave exponential utility function 4

1.2 A grid-world robot navigation example . 5

1.3 Action models . 6

1.4 Deterministic and contingent plans . 7

1.5 Two possible trajectories under the contingent plan 8

1.6 A painted blocks problem . 9

1.7 A probabilistic action model . 9

1.8 Simulated frequencies of state visits for the contingent plan 10

1.9 Simulated frequencies of total rewards for the contingent plan 10

1.10 An optimal plan under the MER objective . 13

1.11 Optimal plans under the MEU objective with exponential utility functions . . . 15

2.1 The relationships among different classes of policies 37

2.2 An example for the (non)-existence of values 41

2.3 An example for the finiteness of values . 42

3.1 The “nominal transformation of algorithms” approach 80

3.2 The “representation transformation” approach 80

3.3 Exponential utility functions . 82

3.4 An example MDP with infinite values . 90

3.5 Backward and forward searches in LAO* . 114

3.6 An optimal plan obtained by LAO* under the MER objective 119

3.7 Optimal risk-sensitive plans for the painted-blocks problem 123

3.8 Segments of two possible sensing plans . 128

3.9 State-visit frequencies of sensing plans . 140

3.10 A simple option for traversing the top horizontal path 143

3.11 Available options . 147

3.12 An “optimal” policy under the MER objective using simple options only 148

3.13 “Optimal” policies under the MEUexp objective using simple options only . . . 152

3.14 Options obtained from pre-options using hierarchical dynamic programming . . 155

xi

3.15 An “optimal” policy under the MER objective using hierarchical dynamic pro-
gramming . 156

3.16 Options obtained from pre-options for a risk-averse agent using hierarchical dy-
namic programming . 157

3.17 An “optimal” policy under the MEUexp objective for a risk-averse agent using
hierarchical dynamic programming . 158

3.18 Options obtained from pre-options for a risk-seeking agent using hierarchical
dynamic programming . 159

3.19 An “optimal” policy under the MEUexp objective for a risk-seeking agent using
hierarchical dynamic programming . 160

3.20 2-time dynamic Bayesian networks . 163

3.21 The named version of the painted-blocks problem from Figure 1.6 167

3.22 Actions for the painted-blocks problem . 167

3.23 Convert move X from Y to Z from a PSO representation to a 2TBN representation169

3.24 2TBN representation for actions of the painted-blocks domain 174

3.25 The ADD representation of factored CPTs from Figure 3.20(c) and the reward
function . 176

3.26 The ADD representation of factored CPTs for action move A from B to C . . . 177

3.27 Optimal plans for the factored version of painted-blocks problem 192

4.1 The sandwich method . 215

4.2 Lower PWL approximation for asymptotically constant utility functions 226

4.3 Upper PWL approximation for asymptotically constant utility functions 228

4.4 Lower PWL approximation for asymptotically linear utility functions 230

4.5 Upper PWL approximation for asymptotically linear utility functions 233

4.6 A painted-blocks problem for general risk-sensitive utility functions 239

4.7 A hard deadline utility function and its modification for value iteration 239

4.8 Optimal functional value functions of relevant states for the hard deadline utility
function . 240

4.9 An SD-optimal policy for the augmented model with the hard deadline utility
function . 241

4.10 The aSD-optimal policy for the original model with the hard deadline utility
function . 241

4.11 Linearly soft deadline utility function . 242

xii

4.12 Optimal functional value functions of relevant states for the linearly soft deadline
utility function . 243

4.13 An SD-optimal policy for the augmented model with the linearly soft deadline
utility function . 244

4.14 The aSD-optimal policy for the original model with the linearly soft deadline
utility function . 244

4.15 The SD-optimal policy for the original model with a linear utility function . . . 245

4.16 Exponentially soft deadline utility function . 245

4.17 Optimal functional value functions of relevant states for the exponentially soft
deadline utility function . 246

4.18 An SD-optimal policy for the augmented model with the exponentially soft dead-
line utility function . 247

4.19 The aSD-optimal policy for the original model with the exponentially soft dead-
line utility function . 247

4.20 The SD-optimal policy for the original model with an exponential utility function248

4.21 Mixed soft deadline utility function . 249

4.22 Optimal functional value functions of relevant states for the mixed soft deadline
utility function . 250

4.23 An SD-optimal policy for the augmented model with the mixed soft deadline
utility function . 251

4.24 The aSD-optimal policy for the original model with the mixed soft deadline
utility function . 251

4.25 Optimal functional value functions of relevant states for the one-switch utility
function . 265

4.26 An aSD-optimal policy for the one-switch utility function 266

5.1 The example MDP from Figure 2.2 and its positive and negative parts 276

5.2 An example MDP with well-defined values but excluded by Condition 5.1 . . . 276

5.3 Example MDPs that illustrate Lemma 5.2 . 280

5.4 MDPs satisfying Condition 5.1 but without expected utilities 287

xiii

LIST OF ALGORITHMS

2.1 Backward Induction for Finite Models under the MERT Objective 50

2.2 Value Iteration Procedure for Finite Models under the MERβ Objective 52

2.3 Policy Iteration Procedure for Finite Models under the MERβ Objective 53

3.1 LAO* with Policy Iteration . 116

3.2 Forward and Backward Search Procedures in LAO* 117

3.3 Policy Iteration with a Restricted Domain under the MER Objective 119

3.4 Policy Iteration with a Restricted Domain under the MEUexp Objective 121

3.5 Policy Iteration with a Restricted Domain under the MERβ Objective 121

3.6 Policy Improvement Using Heuristic Search under the MER Objective 132

3.7 Policy Iteration for MDPwO under the MER Objective 133

3.8 Policy Improvement Using Heuristic Search under the MEUexp Objective 135

3.9 Policy Iteration for MDPwO under the MEUexp Objective 136

3.10 SPUDD under the MER Objective . 182

3.11 SPUDD under the MEUexp Objective . 186

3.12 LAO* for Factored MDPs Using SPUDD . 189

3.13 Search in LAO* Using BDDs . 190

3.14 SPUDDExp with a Restricted Domain for LAO*Exp 191

4.1 Backward Induction under the MEUT Objective 207

4.2 Backward Induction under the MEUT Objective: Functional Form 209

4.3 Value Iteration under the MEU Objective: Functional Form 224

4.4 Backward Induction for Negative Models under the MEUone Objective 262

4.5 Calculate and Insert the Switching Point for Negative Models 263

4.6 Customized Insertion Operation for Algorithm 4.4 264

4.7 Backward Induction for Positive Models under the MEUone Objective 271

4.8 Calculate and Insert the Switching Point for Positive Models 272

4.9 Customized Insertion Operation for Algorithm 4.7 273

xiv

SUMMARY

Risk attitudes crucially affect human decision making preferences, especially in scenarios

where huge wins or losses are possible, as exemplified by planetary rover navigation, oilspill

response, and business applications. Decision-theoretic planners therefore need to take risk

aspects into account to serve their users better. However, most existing decision-theoretic

planners use simplistic planning objectives that are risk-neutral. The thesis research is

the first comprehensive study of how to incorporate risk attitudes into decision-theoretic

planners and solve large-scale planning problems represented as Markov decision process

models. The thesis consists of three parts.

The first part of the thesis studies risk-sensitive planning in the case where exponential

utility functions are used to model risk attitudes. In this case, there exists an optimal

plan that maps states to actions. I show that existing decision-theoretic planners can be

transformed to take risk attitudes into account. My approach is more general than previ-

ous approaches, which transform the planning tasks rather than the planning algorithms.

The transformed algorithms bear visual resemblance to the original algorithms but spe-

cial treatment may be needed to ensure their validity. Moreover, different transformations

are needed if the transition probabilities are implicitly given, namely, temporally extended

probabilities and probabilities given in a factored form. I show how the transformations

and their variants can be applied to various decision-theoretic planners.

The second part of the thesis studies risk-sensitive planning in the case where general

nonlinear utility functions are used to model risk attitudes. In this case, there does not in

general exist an optimal plan that maps states to actions, and an optimal plan must take

into consideration the accumulated rewards starting from the initial state. I show that a

state-augmentation approach can be used to reduce a risk-sensitive planning problem to a

risk-neutral planning problem with an augmented state space. I further use a functional

xv

interpretation of value functions and approximation methods to solve the planning problems

efficiently with value iteration. I also develop an exact method for solving risk-sensitive

planning problems where one-switch utility functions are used to model risk attitudes.

The third part of the thesis studies risk sensitive planning in case where arbitrary rewards

are used. In this case, many of the basic properties are unknown, including the existence and

finiteness of optimal expected utilities. I propose a spectrum of conditions that can be used

to constrain the utility function and the planning problem so that the optimal expected

utilities exist and are finite. These conditions are the basis for the further development

of computational procedures. I prove that the existence and finiteness properties hold for

stationary plans, where the action to perform in each state does not change over time, under

different sets of conditions.

I use two running examples to demonstrate that risk-sensitive planners can be easily cre-

ated from their risk-neutral counterparts, and the resulting optimal plans are qualitatively

different from optimal plans under a risk-neutral planning objective.

xvi

CHAPTER I

INTRODUCTION

In the not-very-distant future, software agents will be able to provide decision support

for human decision makers, or even behave autonomously in the environment on behalf of

human decision makers. These software agents need built-in planning capabilities to cope

with the complexity of real-world applications, because decisions are not made in isolation

and earlier decisions will affect how later decisions can be made. Artificial intelligence (AI)

planning deals with the problem how such decisions can be made. It is important that

planners of such agents have the same planning objectives as their human users; otherwise

the plans generated by them are not what people really want, and thus of little use to their

human users. Planners of such agents also need to deal with uncertainty, which, for example,

can result from sensor or actuator errors, as well as incomplete information or incomplete

modeling of the environment. However, current decision-theoretic (DT) planners, although

a promising approach to planning under uncertainty, are insufficient for such real-world

applications since they use simple planning objectives that often do not meet people’s

needs.

A human decision maker’s preference structure indicates how he or she compares dif-

ferent outcomes of his or her decisions. The preference structure determines the planning

objective. Decision theory has studied empirical and normative preference structures of

human decision makers. However, it only specifies what optimal plans should be, but not

how to obtain them efficiently. On the other hand, decision-theoretic planning has devel-

oped planners that solve artificial intelligence planning problems efficiently by exploiting

structures of these planning problems. But it only uses simple planning objectives such as

maximizing the expected plan-execution reward or maximizing the probability of achieving

a goal state. Therefore, the current “decision-theoretic” planning research is not complete,

1

Table 1.1: An illustrative example for risk attitudes

Probability Reward Expected Reward Utility Expected Utility

Alternative 1
50% $10,000,000

$5,000,000
0.95

0.475
50% $ 0 0.00

Alternative 2 100% $ 4,500,000 $4,500,000 0.74 0.740

without investigating how to plan efficiently with more realistic preference structures from

decision theory.

This thesis studies risk-sensitive planning objectives, an important type of realistic plan-

ning objectives, in the decision-theoretic planning framework, by combining principles from

decision theory, theoretical foundations from operations research (OR), and constructive

methods from artificial intelligence planning, thus combining the strengths of these decision-

making disciplines and extending the applicability of AI planners.

1.1 Risk Attitudes

Risk-sensitive planning objectives are planning objectives that take into account human

users’ risk attitudes. Risk attitudes are an important type of preference structure that

influences how people make decisions in domains where huge wins or losses are possible.

Many domains in AI planning under uncertainty are such high-stake planning domains

since huge losses of money, equipment, or even human life are possible in these domains.

Examples include space applications, such as autonomous spacecraft control (Pell et al.,

1998) and rover navigation (Simmons et al., 1995; Zilberstein et al., 2002); environmental

applications, such as fighting forest fires (Cohn et al., 1989) and containing marine oil spills

(Blythe, 1997); and business applications, such as production planning (Murthy et al., 1999)

and autonomous trading agents (Goodwin et al., 2002).

In high-stake decision scenarios, human decision makers usually do not maximize the

expected reward because they take their risk attitudes into account. Risk attitudes explain

why human decision makers buy insurance even though the insurance premium is usually

much larger than the expected loss from the insurance cause, and also why human decision

makers buy lottery tickets even though the ticket price is usually much larger than the

2

expected lottery prize. Before considering how risk attitudes affect planning, we first illus-

trate the concept of risk attitudes more specifically using a simple lottery example shown

in Table 1.1. The decision problem involves a choice between two alternatives, and one can

choose to participate in one and only one of the two lotteries at no charge. When human

decision makers have to decide whether they would like to choose Alternative 1: $10,000,000

with 50% probability (and nothing otherwise), or Alternative 2: $4,500,000 for sure, many

prefer Alternative 2 although its expected reward is clearly lower — they are risk-averse

(basically meaning that they tolerate a smaller expected reward for a reduced variance, and

thus put more weights on the worst case of all possible outcomes, although this explanation

is a bit simplified). If a planner chooses Alternative 1, then many human decision makers

will be extremely unhappy half of the time. But this is exactly what a planner will do un-

der the currently popular planning objective in decision-theoretic planning research, which

maximizes the expected reward.

Decision theory (French, 1986) has been used as a normative framework for making

rational decisions under uncertainty, and can explain why the behavior of choosing Alter-

native 2 is perfectly rational. The two components of decision theory are probability theory

and utility theory, where probability theory deals with uncertainty and utility theory deals

with preferences. Utility theory (von Neumann and Morgenstern, 1944; Fishburn, 1970;

Barberá et al., 1998) suggests that people prefer an alternative with the maximal expected

utility, where the utility, in this context, is the value of a monotonically increasing function

of the wealth level (how much money one has), and the function is risk-sensitive if it is

nonlinear. Intuitively, the utility reflects how happy the decision maker is with its current

wealth level. Maximizing the expected utility and maximizing the expected reward result

in the same decisions if either the domain is deterministic or the utility function is linear,

in which case the utility function and the agent are referred to as risk-neutral. These as-

sumptions, however, are often not satisfied. For example, nonlinear utility functions are

necessary to account for the risk-averse attitudes of many human decision makers in the

lottery example above.

3

0 2 4 6 8 10 12 14 16 18 20
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

payoff [million dollars]

u
ti
lit

y

Figure 1.1: Interpretation of the lottery example using a concave exponential utility func-
tion

Utility theory explains the behavior of taking Alternative 2 as follows. Exponential

utility functions are a popular type of risk-sensitive utility function (Corner and Corner,

1995). With a concave exponential utility function 1− 0.9999997w when being offered the

lotteries, the human decision maker associates utility 0.00 with a wealth level of $0, utility

0.74 with a wealth level of $4,500,000, and utility 0.95 with a wealth level of $10,000,000.

Then, the (expected) utility of getting $4,500,000 for sure is 0.74, whereas the expected

utility of getting $10,000,000 with 50% probability is only 0.475. These calculations are also

depicted in Figure 1.1, where the solid lines correspond to Alternative 1 and the dashed

lines correspond to Alternative 2. In this case, Alternative 2 maximizes the expected utility

for this person, which captures why this person prefers the safe alternative (Alternative 2)

over the one with the larger expected reward (Alternative 1). Other human decision makers

can have other utility functions and thus may arrive at different decisions. For example,

some human decision makers, such as aggressive gamblers, can be risk-seeking, who would

welcome a larger variance for a reduced expected reward, and thus put more weight on

the best case of all possible outcomes. For example, a risk-seeking person may still take

Alternative 1 in the lottery example for the chance of winning big, even if the sure reward

4

1 2 3 4 5 6 7 8 9 10 11

A

B

C

D

E

F

G

H

I

J

K

L

2 2 2 3 3 3 5 5 4 5 7

0 0 0 0 0 0 0 0 3 4 6

0 0 0 0 0 0 0 0 0 3 5

0 0 0 0 0 0 0 0 0 0 5

9 8 7 7 6 5 3 0 0 0 7

9 9 9 8 7 6 4 0 0 0 5

9 9 9 8 7 6 4 0 0 0 3

9 7 8 7 6 6 3 0 0 0 4

0 0 0 0 0 0 0 0 0 0 4

0 0 0 0 0 0 0 0 0 3 4

0 0 0 0 0 0 0 0 3 4 7

2 3 3 4 4 3 3 4 4 7 7

1 2 3 4 5 6 7 8 9 10 11

A

B

C

D

E

F

G

H

I

J

K

L

(a) The Map (b) Costs of States

Figure 1.2: A grid-world robot navigation example

in Alternative 2 were increased to $5,500,000, which would be higher than the expected

reward from Alternative 1.

Intuitively, risk attitudes will also affect which plan to choose in high-stake planning

domains, where the multiple decisions are made sequentially. In this thesis, I study how

to incorporate risk attitudes into decision-theoretic planning to make it more suitable for

building software agents in real-world applications. Before we discuss risk-sensitive planning

in more detail, we first briefly review some concepts from AI planning and DT planning,

and introduce two running examples.

1.2 AI Planning and Two Examples

In this section, we briefly review some concepts of AI planning under uncertainty. This

review is necessary since we need to re-examine the concepts from current decision-theoretic

planning under risk-sensitive planning objectives, in order to understand their similarities

and differences.

We also introduce two running examples, a robot navigation problem and a painted

blocks problem, which will be used throughout this thesis. The robot navigation example

is also used in this section to illustrate concepts in AI planning under uncertainty. The

painted blocks example will be introduced toward the end of this section.

5

1 2

A

B

C

1 2

A

B

C

(a) A Deterministic Action (b) A Nondeterministic Action

Figure 1.3: Action models

Planning in artificial intelligence concerns determining how intelligent agents should act

in the environment. The agent can perform actions that change its states in the environ-

ment. The first example is a grid-world robot navigation problem. Figure 1.2(a) shows the

map for this problem, where the states are cells, and actions are movements in the four main

compass directions, north (N), east (E), south (S), or west (W). The robot is able to enter

any cell in the map. If there is no uncertainty, the robot will move deterministically into the

cell next to its current cell in the direction corresponding to the action it chose, as shown

in Figure 1.3(a), where the solid arrow indicates the action and the dashed arrow indicates

the resulting state. But if uncertainty is present, a movement action can have multiple

distinct outcomes. Figure 1.3(b) illustrates such a case. A moving east action (E) in state

B1 can result in one of the states A2, B2, or C2. Usually actions are associated with costs

or rewards. In the example, performing an action incurs a unit cost, and additional costs

are possible if the robot enters muddy terrain (darker colors) but there are no additional

costs if it remains on the road (white color). The additional costs of states are shown in

Figure 1.2(b). The robot does not move when it bumps into the border of the grid world.

The agent usually needs to determine a series of actions that achieve a certain goal, and

this process is called planning. A plan is a collection of actions that can be executed by

the agent. If deterministic actions are sufficient to model the problem, the robot will be

able to reach the goal state J1 starting from the initial state C1, following a deterministic

plan as shown in Figure 1.4(a). But if uncertainty is unavoidable, as in many real-world

applications, the agent needs plans that can handle all possible contingencies. Such a

plan is called a contingent plan. A contingent plan for the robot navigation example is

6

1 2 3 4 5 6 7 8 9 10 11

A

B

C

D

E

F

G

H

I

J

K

L

s

g

1 2 3 4 5 6 7 8 9 10 11

A

B

C

D

E

F

G

H

I

J

K

L

s

g

(a) A Deterministic Plan (b) A Contingent Plan

Figure 1.4: Deterministic and contingent plans

shown in Figure 1.4(b). This contingent plan tries to recover from unintended outcomes of

actions by always going back to the nominal path suggested by the deterministic plan from

Figure 1.4(a).

A trajectory is the course of actions and states resulting from executing a plan. Since

we consider planning problems involving uncertainty, where there can be multiple distinct

outcomes when performing the same action in the same state but at different times, execut-

ing a plan several times can result in multiple distinct trajectories. For example, Figure 1.5

shows two possible trajectories for executing the contingent plan from Figure 1.4(b).

Planning objectives concern how the agent chooses among plans based on the agent’s

preference structure. For example, the agent may prefer a plan achieving a goal state over

one not achieving a goal state, or the agent may prefer a plan with a lower cost when

achieving a goal state. For an autonomous agent acting on behalf of a human user, or

a decision support agent for a human user, it is essential that the software agent uses the

same preference structure as its human user. Otherwise the resulting plans may not be very

useful for the user. When uncertainties are involved, the planning objectives should also

take into account all contingencies, rather than just comparing plans based on one sample

trajectory resulting from each plan. For example, in the robot navigation problem, the

contingent plan shown in Figure 1.4(b) is often preferred over the deterministic plan shown

7

1 2 3 4 5 6 7 8 9 10 11

A

B

C

D

E

F

G

H

I

J

K

L

s

g

1 2 3 4 5 6 7 8 9 10 11

A

B

C

D

E

F

G

H

I

J

K

L

s

g

Figure 1.5: Two possible trajectories under the contingent plan

in Figure 1.4(a), since the former can deal with all possible trajectories, but the latter only

takes into account one possible trajectory.

The second example is the painted blocks domain (Koenig and Simmons, 1994b). An

agent tries to build towers of blocks. The agent can only move one top block at a time,

and it can move the block onto the table or onto the top of another tower. We assume that

the moving actions have uncertain outcomes. When the agent tries to move a top block

onto the top of a tower, this block may drop onto the table, and thus the action fails. The

action of moving a top block onto the table, however, always succeeds. Moreover, the agent

can perform deterministic painting actions that paint a block black or white. We assume

that it takes one minute to perform the moving action, and three minutes to perform the

painting action. A planning problem in the painted-blocks domain is to convert a given

initial configuration to a given goal configuration, which may only be partially specified.

An example of a painted-blocks problem is shown in Figure 1.6. If we do not distinguish

the individual blocks, the initial configuration Figure 1.6(a) is also the initial state, but the

goal configuration Figure 1.6(b) corresponds to seven goal states since the remaining two

blocks are not specified in the goal configuration.

8

(a) Initial Configuration (b) Goal Configuration

Figure 1.6: A painted blocks problem

1 2

A

B

C

0
.2

0.6

0
.2

Figure 1.7: A probabilistic action model

1.3 Decision-Theoretical Planning

Decision-theoretic planning (Blythe, 1999; Boutilier et al., 1999) deals with planning prob-

lems under uncertainty in a quantitative fashion. It uses probabilities to describe the

likelihoods of uncertain outcomes of actions. For the robot navigation problem, we may

assign probabilities as shown in Figure 1.7. For the painted blocks problem, we assume that

the action of moving a block to the top of a tower succeeds with probability 0.5, which is

different from (Koenig and Simmons, 1994b). Therefore, following a certain plan does not

produce a single trajectory, but a probability distribution over possible trajectories. Since

some trajectories are more preferable than others, the agent needs to trade off between the

probabilities of realizing a trajectory and the preferability of doing so. For the robot nav-

igation example, we can use simulation to illustrate the distribution of trajectories under

the contingent plan from Figure 1.4(b) with the probabilistic action model from Figure 1.7.

Since it is difficult to show the distribution of trajectories directly, we show the frequen-

cies of state visits (Figure 1.8, where a darker cell indicates a higher probability) and total

rewards (Figure 1.9) as indications of the distribution of trajectories. These results are

obtained by simulating complete runs from the initial state to the goal state 200,000 times.

For the contingent plan, the expected total reward is −30.74 and the variance of the total

reward is 25.75.

9

1 2 3 4 5 6 7 8 9 10 11

A

B

C

D

E

F

G

H

I

J

K

L

Figure 1.8: Simulated frequencies of state visits for the contingent plan

−70 −60 −50 −40 −30 −20 −10 0
0

0.02

0.04

0.06

0.08

0.1

0.12

Total Reward

F
re

q
u

e
n

c
y

Figure 1.9: Simulated frequencies of total rewards for the contingent plan

10

I use decision theory, especially utility theory, as a normative framework for making this

tradeoff. In the context of planning, utility theory claims that under a set of reasonable

assumptions, we can define a utility function that maps trajectories to real-valued utilities.

The utility function is based on the agent’s preference structure so that a trajectory with a

higher utility is preferred over a trajectory with a lower utility. Moreover, the utility func-

tion assigns values such that when facing uncertainty, a rational agent’s planning objective

is to choose the plan that maximizes the expected utility (MEU) over all possible trajecto-

ries. Human decision makers sometimes deviate from utility theory because utility theory

does not model human inadequacies in decision making and thus is not able to explain all

empirical findings about human decision making (Kahneman et al., 1982; Bell et al., 1988).

This is not a problem for planning, since planners are supposed to follow a theory of nor-

mative rather than empirical decision making in order to eliminate inconsistencies. Besides,

recent empirical studies show that if human decision makers are given opportunities to learn

their inconsistencies, their behaviors will converge to what utility theory suggests (van de

Kuilen and Wakker, 2004). In this work, we assume that the agent is rational and follows

the implications of utility theory, that is, it prefers the plan that maximizes the expected

utility, where the expectation is taken over the probability space of the trajectories. When

the maximizing plan is hard to find, the planning objective is relaxed to finding a plan that

approximately maximizes the expected utility, that is, a “good” plan, which often can be

obtained much faster.

However, utility theory by itself only provides methods for choosing actions in simple

problems where all possible alternatives can be enumerated. For AI planning problems,

there are too many possible plans to enumerate (in fact there can be an infinite number of

plans). To alleviate this problem, many decision-theoretic planners adopt Markov decision

process (MDP) models from operations research as the formal representation of planning

problems under uncertainty (Koenig, 1992; Boutilier et al., 1999). The MDP formulation

can model various kinds of uncertainties such as uncertain outcomes of actions, exogenous

events, and has been extended to partially observable MDPs (POMDPs) to model sensor

11

uncertainty (Sondik, 1971). With the MDP formulation, planning problems involving un-

certainty are now expressed in a language well-known to the operation research community

and with a rich literature (Puterman, 1994; Feinberg and Shwartz, 2002), from which AI

planning can use a lot of results and methods.

A popular planning objective for MDPs is to maximize the expected total reward (MER).

This planning objective is based on a simple utility function that is defined as the total

reward along the trajectory, by summing up the rewards obtained from each action. As

suggested by utility theory, the agent will choose a plan that maximizes the expected total

reward, which is a risk-neutral planning objective since the utility is identical to the total

reward and the identity utility function is risk-neutral. For the robot navigation problem,

an optimal plan under the MER objective is shown in Figure 1.10(a). The expected total

reward is −28.33 and the variance of the total reward is 13.68. To compare it with the plan

from Figure 1.4(b), we show the simulated frequencies of state visits in Figure 1.10(b) and

total rewards in Figure 1.10(c).

Risk-neutral planning objectives1 are used by most decision-theoretic planners. Under a

risk-neutral objective, we can construct efficient AI planning algorithms based on a synthesis

of results from operation research, probabilistic reasoning, and classical AI planning. For

example, decision-theoretic planners from (Barto et al., 1995; Hansen and Zilberstein, 2001)

use heuristic search methods, which are popular in artificial intelligence (Hart et al., 1968;

Korf, 1990; Nilsson, 1980) and in AI planners for deterministic planning problems (Korf,

1987; Bonet and Geffner, 2001; Hoffman and Nebel, 2001), to focus computational effort on

parts of the state space that are relevant for solving the planning problem; decision-theoretic

planners from (Hauskrecht et al., 1998; Sutton et al., 1999b; Dietterich, 2000; Parr, 1998)

use domain knowledge to hierarchically decompose planning problems, analogous to the

hierarchical planning ideas in classical AI planners such as (Tate, 1977; Nau et al., 1999);

1There are variants of the MER objective that we just described, for example, the discounted version
MERβ. We refer to the MER objective and its variants collectively as risk-neutral planning objectives. They
are described in more detail in Section 2.3.

12

1 2 3 4 5 6 7 8 9 10 11

A

B

C

D

E

F

G

H

I

J

K

L

s

g

1 2 3 4 5 6 7 8 9 10 11

A

B

C

D

E

F

G

H

I

J

K

L

(a) The Plan (b) Simulated Frequencies of State Visits

−70 −60 −50 −40 −30 −20 −10 0
0

0.02

0.04

0.06

0.08

0.1

0.12

Total Reward

F
re

q
u

e
n

c
y

(c) Simulated Frequencies of Total Rewards

Figure 1.10: An optimal plan under the MER objective

13

and decision-theoretical planners from (Boutilier et al., 2000; Hoey et al., 1999) use feature-

based representations of the state space, similar to the representations used in classical AI

planning research (Fikes and Nilsson, 1971; Pednault, 1989).

Nevertheless, risk-neutral objectives also have their negative side. They emphasize a par-

ticular utility function, and thus a particular preference structure. This is overly simplistic

in some applications such as high-stake decision scenarios. To account for more realistic

preference structures of human decision makers, we need to use the more general MEU ob-

jectives with more general utility functions. Since it is important to take human decision

makers’ risk attitudes into account when solving planning problems involving uncertainty,

this thesis discuss general approaches and specific planners that plan under risk-sensitive

planning objectives that reflect different risk attitudes.

1.4 Risk-Sensitive Planning

As illustrated by the lottery example, the MER objective is often too simplistic to model the

preference structures of human decision makers adequately. In particular, it cannot model

the risk attitudes when facing high-stake decision scenarios.

How to plan under risk-sensitive planning objectives that are useful in high-stake scenar-

ios, however, is a topic that has been neglected in the literature of AI planning, with very

few exceptions (Koenig and Simmons, 1994a,b; Koenig, 1997; Koenig and Liu, 1999). It is

nevertheless an important topic because the recommendations of planners should reflect the

opinions of their users correctly, and risk attitudes are a common type of preference struc-

ture that cannot be captured by the overly simplistic risk-neutral objectives. Therefore, I

believe that risk-sensitive planning has its place in AI planning research and will have its

appropriate applications.

The results from risk-sensitive planners are qualitatively different from those from risk-

neutral planners. This phenomenon reflects the effects of the risk aspects of human pref-

erence structures. We can demonstrate such effects with the robot navigation example.

Suppose exponential utility functions are used. An optimal plan for a risk-seeking agent2 is

2γ = 1.4 is a risk parameter. See Chapter 3 for the meaning of γ.

14

1 2 3 4 5 6 7 8 9 10 11

A

B

C

D

E

F

G

H

I

J

K

L

s

g

1 2 3 4 5 6 7 8 9 10 11

A

B

C

D

E

F

G

H

I

J

K

L

(a) Risk-Seeking (b) State Visits

1 2 3 4 5 6 7 8 9 10 11

A

B

C

D

E

F

G

H

I

J

K

L

s

g

1 2 3 4 5 6 7 8 9 10 11

A

B

C

D

E

F

G

H

I

J

K

L

(c) Risk-Averse (d) State Visits

Figure 1.11: Optimal plans under the MEU objective with exponential utility functions

15

shown in Figure 1.11(a), and the simulated frequencies resulting from this plan is shown in

Figure 1.11(b). An optimal plan for a risk-averse agent3 is shown in Figure 1.11(c), and the

simulated frequencies resulting from this plan is shown in Figure 1.11(d). Comparing these

two plans to the optimal plan under the MER objective (−28.33 and 13.68 respectively), we

can identify qualitative differences between a risk-sensitive plan and a risk-neutral plan.

We can also interpret risk-sensitive planning objectives as a way of making tradeoffs

between the mean and the variance of the total plan-execution reward. A risk-averse agent

will tolerate a decrease in the mean in exchange for a smaller variance, while a risk-seeking

agent will tolerate a decrease in the mean in exchange for a larger variance. For the robot

navigation example, the risk-seeking optimal plan has an expected total reward of −29.89

and a variance of 38.16, and the risk-averse optimal plan has an expected reward of −28.66

and a variance of 12.34. Comparing these values to those for the risk-neutral optimal plan,

we see that the risk-seeking agent prefers a higher variance with a modest reduction in

the expected total reward, and the risk-averse agent prefers a lower variance with a similar

reduction.

However, a planning objective directly involving the variance is not an MEU objective

in general. Otherwise, according to utility theory, the variances of non-deterministic out-

comes would be the expectation of variances of deterministic outcomes, namely zero, which

obviously is not true. The risk-sensitive objectives, however, provide a way to take the

variance into account. Since a larger variance implies a better best-case scenario and a

worse worst-case scenario, and conversely, a smaller variance implies a worse best-case sce-

nario and a better worst-case scenario, the tradeoff between the mean and the variance is

also a tradeoff among planning for the best-case, expected-case, and worst-case scenarios.

For a risk-averse agent, the tradeoff is between the expected case and the worst case; for

a risk-seeking agent, the tradeoff is between the expected case and the best case. In real-

ity, the best-case and worst-case scenarios rarely happen, therefore planning based on such

scenarios is often extremely biased. Even worse, the worst-case scenarios can have infinite

loops, and thus are not suitable for planning problems with goal states, which will never be

3γ = 0.8.

16

reached. Risk-sensitive planning hence provides a well-founded alternative for agents that

care about the variances.

1.5 Scope of Research

This thesis studies how to solve AI planning problems efficiently under uncertainty under

risk-sensitive planning objectives. For this purpose, I formulate the planning problems as

Markov decision process models with a finite number of states and actions, and consider

indefinite planning horizons with goal states. I consider both exponential utility functions

and general risk-sensitive utility functions in this research.

Most AI planning problems have a finite number of states and actions. AI planning

problems are often described using a finite set of features, each with a finite number of

values. This results in problems with a finite number of states and a finite number of

actions.

AI planning problems often have goals to achieve. The most common type of goal is to

reach a set of goal states. The agent will stop acting only when it is in a goal state. Planning

horizons concern how far into the future the planner considers a plan. When goal states are

present, it is appropriate to consider indefinite planning horizons that are characterized by

reaching a goal state, but cannot be determined for certain in advance.

DT planning is closely related to reinforcement learning (Sutton and Barto, 1998; Kael-

bling et al., 1996). The major difference is that reinforcement learning assumes that the

transition probabilities and the reward function are unknown, therefore a reinforcement

learning method needs either to estimate the transition probabilities and the reward func-

tion (the model-based approach) or to estimate the optimal value function or an optimal

policy directly (the model-free approach). On one hand, the model-based approaches essen-

tially use a DT planning method to solve the problem after the model has been estimated.

On the other hand, a model-free method can also be used to solve DT planning problems

if the problem formulation, which has known transition probabilities and a known reward

function, is used as a generative model. In this thesis, we consider only DT planning

methods.

17

Exponential utility functions, as used in the example in Section 1.1, are a popular class

of risk-sensitive utility functions (Corner and Corner, 1995). By varying a risk parameter,

exponential utility functions can express a spectrum of constant risk attitudes such that the

preferences among alternatives do not change with the wealth level. I consider planning with

exponential utility functions, because they are the most widely used risk-sensitive utility

functions, and also because they are of special structure and thus the planning methods can

be customized to be more efficient.

I also consider more general risk-sensitive utility functions to model variable risk atti-

tudes, where the preferences among alternatives can change with the wealth level. Human

decision makers can be both risk-averse and risk-seeking at the same time, as exemplified

by those buying lottery tickets and insurance at the same time. Such a risk attitude can

only be modeled by general risk-sensitive utility functions representing variable risk atti-

tudes, but not by exponential utility functions, since the latter can only model constant

risk attitudes.

When discussing computational procedures for exponential and general risk-sensitive

utility functions, I consider problems with only nonpositive rewards, since they can model

action costs such as consumption of resources, which human decision makers care about. We

also consider problems with only nonnegative rewards, since such problems have solution

procedures almost identical to those with only nonpositive rewards.

It is often convenient to have arbitrary (both nonnegative and nonpositive) rewards in

the formulation of AI planning problems. However, it is a subtle matter for risk-sensitive

planning, since many basic properties such as the existence and finiteness of optimal values

remain unknown. Therefore, for problems with arbitrary rewards, I discuss their basic

properties in this thesis, which are prerequisites for solving such problems.

1.6 Contributions

As a preview of the contributions, Table 1.2 lists a rough classification of research effects

for planning with MDPs under different planning objectives, and shows where this thesis

18

Table 1.2: Summary of existing research and contributions

Reward Model and Objective Basic Properties Basic Algorithms Large-Scale Problems

MERβ Well Known Well Known Active Research

Nonnegative/ MER Well Known Well Known Active Research

Nonpositive MEUexp Recent Recent Chapter 3

Rewards MEU Chapter 4 —

Arbitrary MER Known Known —

Rewards MEUexp and MEU Chapter 5 — —

work fits. In the table, MERβ indicates the discounted risk-neutral planning objective and

MEUexp indicates the risk-sensitive planning objective with an exponential utility function.

This work consists of three contributions related to risk-sensitive planning. For risk-

sensitive planning objectives with exponential utility functions, I use a transformation-of-

algorithms approach and show that many existing AI planners under a risk-neutral objective

can be adapted to solve risk-sensitive planning problems. For risk-sensitive planning ob-

jectives with general risk-sensitive utility functions, I use a state-augmentation approach

and construct basic dynamic programming algorithms to solve such risk-sensitive planning

problems. For planning problems with arbitrary rewards, I investigate their basic proper-

ties, especially existence and finiteness properties under risk-sensitive planning objectives.

In the following subsections, I discuss these contributions in more detail.

1.6.1 Exponential Utility Functions

The benefit of an exponential utility function is that a planning problem remains decom-

posable under the corresponding MEU planning objective. This makes it possible to reuse

results for solving large problems under risk-neutral planning objectives.

I use transformations of algorithms that transforms a risk-neutral planner to an MEUexp

planner. The transformations are of two principle types. The first type relates probabilities

to pseudo-probabilities that may not sum to one. The second type relates (transition-

dependent) discount factors to transition-dependent pseudo-discount factors that may be

greater than one. These two types are almost equally applicable to MDPs whose transition

probabilities are represented explicitly. But they differ when the probabilities are implicitly

19

represented. Two kinds of implicit representations of probabilities are common in decision-

theoretic planning: temporally extended probabilities that involve multiple time-steps, and

probabilities represented in feature-based (or factored) forms. The key intuition is that

the pseudo-probability transformation is more convenient for temporally extended prob-

abilities, while the pseudo-discount factor transformation is more convenient for factored

probabilities.

To demonstrate how the transformation-of-algorithms works, I use generalizations of ex-

isting methods for solving large-scale risk-neutral planning problems. The LAO* method,

a search-based method (Hansen and Zilberstein, 2001), is used to show that if the prob-

abilities are given explicitly, either type can lead to the correct algorithm. The pseudo-

probability transformation is demonstrated using the sensor-planning method from (Hansen,

1994, 1997) and hierarchical decision-theoretic planning methods (Sutton et al., 1999b; Di-

etterich, 2000; Parr, 1998). On the other hand, the pseudo-discount factor transformation is

applied to structured dynamic programming methods for solving factored MDPs (Boutilier

et al., 2000; Hoey et al., 1999; Feng and Hansen, 2002; Hansen et al., 2002).

The transformation-of-algorithms approach has the advantage that ideas from solving

large-scale planning problems under a risk-neutral objective can be reused to solve risk-

sensitive planning problems, rather than developing completely new methods from scratch.

When new methods for planning under a risk-neutral objective become available, they can

be adapted to solve risk-sensitive planning problems. Since it is unlikely that there will

be a universal planning method that can work for all kinds of AI planning problems under

uncertainty, we will also need risk-sensitive planners that use different techniques, and the

transformation approach is very attractive for its simplicity and ease of implementation to

obtain risk-sensitive planners from their risk-neutral counterparts.

I emphasize that the transformation-of-algorithms is only nominal, in the sense that

we can solve the problem using a method with visual resemblance to the corresponding

method under a risk-neutral objective, but there might be conditions and separate proofs

to ensure the correctness of the transformed planner, and thus I do not pursue an automatic

algorithm transformer. The benefit of a nominal transformation is that it is easier to relate

20

and communicate the underlying ideas, and can hint at the correct procedures when we

consider whether an idea from planning under a risk-neutral objective can be reused to

solve problems under risk-sensitive planning objectives. It requires only minimal changes

to existing risk-neutral planners in order to obtain risk-sensitive planners.

1.6.2 General Risk-Sensitive Utility Functions

Different from the case of exponential utility functions, I consider basic computational

procedures for planning with general risk-sensitive utility functions, as well as properties

leading to the construction of such procedures.

For general risk-sensitive utility functions, I augment states with accumulated plan-

execution rewards. This state-augmentation approach converts a planning problem under

the MEU objective into a planning problem under the MER objective with an augmented

state space, which in general has an infinite number of states. But the benefit is that we can

use results for MDPs under the MER objective with infinite state spaces. An equivalence

result is obtained for the original problems and the augmented problems, so that an optimal

plan for the augmented problem is also an optimal plan for the original problem.

With the state-augmentation approach, we immediately obtain that if there exists an

optimal plan, an optimal plan in general is not a function from states to actions. It also

depends on how much reward has been accumulated starting from the initial state. In other

words, there are optimal plans that are functions from the augmented states to actions.

The augmented model with augmented states in general has a countably infinite number

of states since there are countably many possible accumulated rewards, so we need a method

to deal with an infinite number of states. I use a functional interpretation of value functions

and approximation techniques. More concretely, I use functional value functions that map

(original) states to real-valued functions of the wealth level, and approximate each functional

value function for each original state. The functional interpretation of value functions is

possible since the augmented states that correspond to the same original states but different

accumulated rewards share the same transition probabilities for any given action. We can

then view that the (original) states have functional value functions that are mappings from

21

(original) states to real-valued functions of the accumulated reward, while regular value

functions are mappings from states to real numbers. However, to deal with the infinite

state space, we still need to use some approximation method. The functional interpretation

also allows for approximation techniques, for example, using piecewise linear functions so

that approximately optimal values can be obtained efficiently. To fully understand the

properties and complexities of this approximation technique, I first study finite horizon

problems for which the approximation problem is simpler.

One-switch utility functions form an interesting class of utility functions (Bell, 1988;

Bell and Fishburn, 2001). It has an attractive property that it models a class of smoothly

varying risk attitudes, which cannot be modeled by exponential utility functions. It also

has an attractive form as a linear combination of exponential and linear utility functions,

two types of utility functions for which we know how to solve planning problems. This

suggests that the planning problems with one-switch utility functions can be solved by

combining results for linear, exponential, and general utility functions. We provide a value

iteration procedure and a backward induction procedure for solving planning problems with

one-switch utility functions.

1.6.3 Problems with Arbitrary Rewards

As mentioned in Section 1.5, the risk-sensitive planning methods, with either exponential

or general risk-sensitive utility functions, are applicable to problems with pure action costs,

which are the most common type of planning problems. Since costs are nonpositive rewards

in the MDP formulation, MDP models of these planning problems are called negative in

the MDP literature. Some of these methods are also applicable to positive models where

the rewards are all nonnegative, since the same procedure often works for both positive and

negative models, although for different reasons.

It can be more convenient for decision-theoretic planning to use arbitrary rewards that

can be both nonpositive and nonnegative. One proposal is to use costs (negative rewards)

associated with actions and arbitrary rewards associated with states (Boutilier et al., 1999).

However, using arbitrary rewards poses a problem for risk-sensitive planning, since many

22

of the theoretical foundations are not yet known. The most important research question is

to determine sufficient conditions under which the optimal expected utilities exist and are

finite, conditions general enough to allow for most of the interesting AI planning problems.

I propose different sets of conditions, each of which consists of two classes of conditions:

one that constrains the utility function and one that constrains the MDP model. For each

class, we have a spectrum of conditions. These two classes of conditions are complementary

in the sense that if we pick a stronger condition from one class, then we can pick a weaker

condition from the other class, and the existence and finiteness properties should hold under

this combination of conditions. In this way, we can characterize a wide range of problems

that can be considered in the MDP framework.

In this thesis, I show that the existence and finiteness properties hold for a special class

of plans, namely, stationary plans where the action to perform in each state does not change

over time, under those different sets of conditions. We conjecture that the existence and

finiteness properties also hold for all possible plans.

1.6.4 Summary

I argue that the current decision-theoretic planners have shortcomings that limit their ap-

plications, since they lack the ability to deal with risk attitudes that arise in planning under

uncertainty. I therefore combine ideas from AI planning, operations research, and utility

theory to study the basic properties and computational issues involved. The fusion of these

methods is most promising for risk-sensitive planning. Utility theory provides the funda-

mental theoretical background for the MEU approach to planning. But utility theory does

not answer the question of how to construct complex plans. Operations research then pro-

vides basic computational approaches in the risk-neutral case, which is the starting point of

this research. Operations research also provides some tools for obtaining theoretical results

for risk-sensitive planning, such as the existence of optimal expected values and plans, and

the structures of optimal or near-optimal plans. But operations research methods for solv-

ing MDPs often are not sufficient for large-scale problems under general MEU objectives.

AI planning, on the other hand, focuses on using knowledge about the structure of problems

23

to solve large-scale problems and speed up the solution process. I show that we then can

use ideas from various AI planning methods to solve planning problems under risk-sensitive

planning objectives. To my knowledge, this work is the first comprehensive investigation of

general risk-sensitive planning objectives in AI planning.

24

CHAPTER II

BACKGROUND

This chapter provides the background information on which this work is built, and reviews

related work from the literature. In Section 2.1, we review concepts and results from utility

theory, including the principle of maximization of expected utility and risk-sensitive utility

functions. Section 2.2 formally defines Markov decision process models and related concepts.

Section 2.2 also introduces risk-sensitive planning objectives and a series of related problems

for solving MDPs under risk-sensitive planning objectives. In Section 2.3, we review basic

results from the literature for solving MDPs under risk-neutral planning objectives. These

results are important since risk-neutral planning objectives can be considered a special case

of risk-sensitive planning objectives, and on the other hand, our treatment of risk-sensitive

planning objectives is built on results for risk-neutral planning objectives. Section 2.4 briefly

reviews results for risk-sensitive planning objectives from both the artificial intelligence

planning and operations research literatures. Section 2.5 reviews recent developments in

solving large-scale MDPs under risk-neutral objectives, whose ideas are reused as the basis

for solving large-scale MDPs under risk-sensitive objectives.

2.1 Utility Theory

Utility theory provides a formal foundation for expressing risk-sensitive planning objectives.

Utility theory is a normative theory for decision making (von Neumann and Morgenstern,

1944; Fishburn, 1970; Barberá et al., 1998). As a component of decision theory, it focuses

on formal properties of preference structures. For this thesis, we adopt the version of (von

Neumann and Morgenstern, 1944), also known as the von Neumann-Morgenstern (vNM)

utility theory.

25

2.1.1 Principle of Maximization of Expected Utility

Utility theory studies preference structures and their numerical representations in form of

utility functions. In this section, we introduce the preference relations and results about

the existence of utility functions. We also discuss how decisions are made with the aid of

utility functions.

A preference structure can be formulated as a binary preference relation. Suppose Z is a

set of outcomes resulting from an agent’s decisions. We assume that the agent’s preference

structure over Z is captured by a preference relation ≻ on Z, defined as a binary relation

with the following property: for all outcomes A,B ∈ Z,

• A is preferred over B if and only if A ≻ B.

It is also convenient to define two more relations ∼ and % as follows: for all outcomes

A,B ∈ Z,

• A is indifferent to B if and only if A ∼ B, that is, neither A ≻ B nor B ≻ A, and

• A % B if and only if A ≻ B or A ∼ B.

The preference relation % is assumed to be a total order, that is, every pair of outcomes

are comparable. Formally, the relation %, as induced by ≻ and thus ∼, is a binary relation

with the following three properties:

Reflexivity: For all outcomes A ∈ Z, A ∼ A.

Orderability: For all outcomes A,B ∈ Z, exactly one of the following holds: A ≻ B,

B ≻ A, or A ∼ B.

Transitivity: For all outcomes A,B,C ∈ Z, if A % B and B % C, then A % C.

Preference structures can be extended to uncertain outcomes. Uncertain outcomes

are represented using (discrete) distributions over Z, referred to as lotteries. A lottery

L with a finite number of distinct outcomes C1, C2, . . . , Cn ∈ Z and respective probabilities

p1, p2, . . . , pn is written as

L = [p1, C1; p2, C2; . . . ; pn, Cn], where

n∑

i=1

pi = 1, pi ≥ 0, i = 1, . . . , n.

26

A lottery is degenerate if n = 1, in which case we omit the probability in the notation. A lot-

tery can also have a countably infinite number of distinct outcomes C1, C2, . . . , Cn, . . . ∈ Z

with respective probabilities p1, p2, . . . , pn, . . . , which can be written as

L = [p1, C1; p2, C2; . . . ; pn, Cn; . . .], where

∞∑

i=1

pi = 1, pi > 0, i = 1, 2, . . .

We denote as L(Z) the set of all lotteries over the outcome set Z. The agent’s preference

relation is correspondingly extended to lotteries, and we still use the notation ≻,∼,% for

the preference relation on lotteries. Preference structures over lotteries are also assumed

to have additional properties that are consistent with human intuition about preference

structures involving uncertainty (following Russell and Novig, 2002, Chapter 16):

Continuity: For all lotteries A,B,C ∈ L(Z), if A ≻ B ≻ C, then there exists p ∈ (0, 1)

such that

[p,A; 1 − p,C] ∼ B.

Substitutability: For all lotteries A,B ∈ L(Z), if A ∼ B, then for all lotteries C ∈ L(Z)

and all p ∈ [0, 1],

[p,A; 1 − p,C] ∼ [p,B; 1− p,C].

Monotonicity: For all lotteries A,B ∈ L(Z), if A ≻ B, then for all p, q ∈ [0, 1], p ≥ q if

and only if

[p,A; 1− p,B] % [q,A; 1− q,B].

Decomposability: For all lotteries A,B,C ∈ L(Z) and all p, q ∈ [0, 1],

[
p,A; 1− p, [q,B; 1 − q, C]

]
∼ [p,A; (1 − p)q,B; (1 − p)(1− q), C].

These properties imply that the extended preference relation is also a total order on L(Z).

A fundamental result from utility theory is the existence of utility functions (Fishburn,

1970). If the extended preference relation satisfies the above set of seven properties, also

referred to as the utility axioms, then there exists a utility function U : L(Z) 7→ R such

27

that for all lotteries A,B ∈ L(Z), A % B if and only if U(A) ≥ U(B), where the utility of

a lottery L is the expectation of the utilities of its components:

U(L) = U
(
[p1, C1; p2, C2; . . . ; pn, Cn; . . .]

)
=

∞∑

i=1

pi · U(Ci) = E
[
U(z)

]
, (2.1)

where z is the random variable for the outcomes of lottery L. Therefore, the utility function

only needs to be defined for elements in Z, and its definition on L(Z) can be obtained using

Eq. (2.1). Moreover, the utility function is unique up to a positive linear transformation,

that is, both U1(·) and U2(·) = aU1(·) + b (where a > 0) are utility functions corresponding

to the same preference structure. In applications, it is not hard to determine a normalized

utility function whose a and b values are uniquely determined, if we assign arbitrary distinct

values (0 and 1, for example) to a pair of distinct outcomes that are not indifferent. For

example, the concave exponential utility function used in Section 1.1 is normalized so that

a zero wealth level corresponds to a utility of zero and a positive infinity wealth level

corresponds to a utility of one.1 Without loss of generality, in this thesis, we assume that

the utility function is always normalized in such a way.

Consequently, a rational agent facing a set of finite lotteries L ⊆ L(Z) will choose the

lottery that is maximal in L, that is, the lottery that maximizes the expected utility of all

possible outcomes. This is the principle of maximization of expected utility (MEU). Under

this principle, the decision making problem can be solved with the aid of utility functions.

The agent needs to find the maximum expected utility

U∗ = max
L∈L

U(L).

If this is possible, we will make an optimal decision by choosing

L∗ ∈ arg max
L∈L

U(L).

However, if there are an infinite number of lotteries, we may only be able to make

approximately optimal decisions. In this case, it is possible that the maximal utility does

1Concave exponential utility functions are special in that the utility of positive infinity is well-defined,
which is not the case in general.

28

not exist, but we can always obtain the supremum of the expected utility

U∗ = sup
L∈L

U(L).

If the supremum cannot be reached by choosing a lottery from L, we cannot obtain an

optimal decision. However, if U∗ is finite, we can approximate the optimal utility U∗ to

within an arbitrary error. There are two cases where the optimal utility is finite:

• As discussed in (Fishburn, 1967), the original formulation of the vNM-utility theory

leads to bounded utility functions, that is, U(·) is finite for all outcomes (and thus for

all lotteries). In this case, U∗ is finite.

• However, it is sometimes convenient to allow for unbounded utility functions (Fish-

burn, 1975), by using technically more subtle sets of utility axioms. In this case,

Kennan (1981) provided a set of sufficient conditions on the utility function so that

the MEU principle can still be used. The essential one from his conditions is that the

optimal utility U∗ is finite. Notice that in this case, the utility function (of lotteries)

is bounded from above, but can still be unbounded from below.

In either case, we will then seek an ǫ-optimal decision L∗
ǫ such that for a given error ǫ > 0,

U(L∗
ǫ) ≥ U∗ − ǫ.

ǫ-optimal decisions are meaningful since vNM-utility theory defines a cardinal utility, that is,

the utilities of different lotteries not only indicate the ordering of these lotteries, but also the

strength of preferences among the lotteries (Köbberling, 2002). For lotteries A,B,C,D ∈

L(Z), suppose that U(A) > U(B) and U(C) > U(D). If U(A)−U(B) > U(C)−U(D), then

the strength of the preference of A over B is greater than the strength of the preference of C

over D. This property allows us to find an ǫ-optimal decision if an optimal decision does not

exist. Since we assume that the utility function is normalized, the desired approximation

error can be often selected based on the specific form of the utility function. We also seek

an ǫ-optimal decision if an optimal decision is hard to obtain. This is especially important

for decision-theoretic planning, where we often want to obtain a “good” plan fast, rather

29

than spending a lot of extra computational effort on finding a marginally better optimal

one.

On the other hand, according to utility theory, any real-valued function on Z defines a

preference structure through Eq. (2.1). In fact, the risk-sensitive utility functions that we

discuss next can be seen as defining risk-sensitive preference structures in this way. However,

it would be more convenient to define preference structures based on real-valued functions

on L(Z) directly for decision problems under uncertainty. According to utility theory, a

real-valued function on L(Z) can define a preference structure satisfying the utility axioms

if and only if it satisfies the functional form of the utility axioms, namely

Continuity: For all lotteries A,B,C ∈ L(Z), if U(A) > U(B) > U(C), then there exists

p ∈ (0, 1) such that

U
(
[p,A; 1− p,C]

)
= U(B).

Substitutability: For all lotteries A,B ∈ L(Z), if U(A) = U(B), then for all lotteries

C ∈ L(Z) and all p ∈ [0, 1],

U
(
[p,A; 1− p,C]

)
= U

(
[p,B; 1− p,C]

)
.

Monotonicity: For all lotteries A,B ∈ L(Z), if A ≻ B, then for all p, q ∈ [0, 1], p ≥ q if

and only if

U
(
[p,A; 1 − p,B]

)
≥ U

(
[q,A; 1 − q,B]

)
.

Decomposability: For all lotteries A,B,C ∈ L(Z) and all p, q ∈ [0, 1],

U
([
p,A; 1− p, [q,B; 1 − q, C]

])

= U
([
p,A; (1 − p)q,B; (1− p)(1− q), C

])

.

Since the relation > is a total order on R, we do not need to include the first three utility

axioms: reflexibility, orderability, and transitivity.

2.1.2 Utility Functions on the Real Line and Risk Attitudes

Since planning is based on the rewards gathered in the process of execution, it is convenient

to define the relevant utility functions on Z = R. In this case, the argument of a utility

30

function is usually referred to as wealth level, denoted by w. For such a utility function,

it is intuitive to require that the utility function be monotonically nondecreasing in w.

Sometimes, we can further assume that the utility function is continuous in w.

For a utility function that is strictly monotonically increasing and continuous in w, the

certainty equivalent of a lottery L = w is

ceU (w) = U−1
(

E
[
U(w)

])

,

where we use w to emphasize that the random outcome of L is a wealth level. If an agent is

faced with a nondegenerate lottery, then the agent is indifferent between participating in the

lottery and getting a deterministic reward whose amount equals the certainty equivalent.

This also holds for degenerate lotteries trivially.

Agents can have different risk attitudes, that is, different ways of evaluating a (nonde-

generate) lottery. Risk attitudes are modeled using the agents’ utility functions. Based on

the utility functions, we can identify different types of risk attitudes, which can be traced

back to (Friedman and Savage, 1948):

• if U
(
E[w]

)
= E

[
U(w)

]
for all nondegenerate lotteries w, then the utility function

and thus the agent are risk-neutral;

• if U
(
E[w]

)
> E

[
U(w)

]
for all nondegenerate lotteries w, then the utility function

and thus the agent are risk-averse; and

• if U
(
E[w]

)
< E

[
U(w)

]
for all nondegenerate lotteries w, then the utility function

and thus the agent are risk-seeking.

A risk-neutral utility function is linear, and thus is equivalent to an identity function; a

utility function is risk-sensitive if and only if it is not risk-neutral, that is, if and only if it

is nonlinear. Moreover, an agent is risk-averse if and only if its utility function is strictly

concave, and an agent is risk-seeking if and only if its utility function is strictly convex.

Risk aversion and risk seekingness defined above are global properties of risk attitudes, since

these properties do not change with the wealth level.

31

Pratt (1964) defined local properties of risk attitudes as well as a measure of risk-

sensitivity, which are convenient for risk attitudes involving both risk aversion and risk

seekingness, such as the risk attitude of a person who buys insurance (risk-averse) and

lottery tickets (risk-seeking) at the same time. The local risk property is related to the

local convexity of the utility function. If the utility function is twice differentiable and

strictly monotonically increasing, Pratt (1964) defined the risk measure as

RU (w) = −U
′′(w)

U ′(w)
. (2.2)

The local risk measure RU (w) relates to the global risk properties as follows: if RU (w) = 0

everywhere, then the utility function is linear, and thus the agent is risk-neutral; if RU (w) > 0

everywhere, then the utility function is strictly concave, and thus the agent is risk-averse;

and if RU (w) < 0 everywhere, then the utility function is strictly convex, and thus the

agent is risk-seeking.

One reason why the risk measure takes this particular form rather than just the second

derivative, which also indicates local convexity, is that this definition is invariant with

respect to a positively linear transformation of utility functions, which does not change the

agent’s preference structure, and thus does not change its risk attitude. In other words, a

risk measure function uniquely determines a utility function that is twice differentiable and

strictly monotonically increasing (up to a positively linear transformation), and vice versa.

Another reason why the risk measure takes the form in Eq. (2.2) is that the risk measure

RU (w) also provides an interpretation for nonlinear utility functions as a way of making

tradeoffs between the mean and the variance of a lottery. Suppose that w ∈ L(R) is a lottery

on the real line. Then a direct tradeoff between the mean E[w] and the variance Var[z] is

in the form of k1E[w] + k2 Var[w] where k1, k2 ∈ R. However, this is not a utility function

in the vNM-utility theory, since it violates the substitutability property, for example. This

violation can be verifies as follows. It is easy to see that the mean E[w] is a well-defined

utility function for w. Therefore the violation can be verified by checking the variance

Var[w] alone. Consider (deterministic) outcomes A,B,C ∈ R, where A = 0, B = 10, and

C = 1. Then Var[A] = Var[B] = Var[C] = 0. Now consider D = [0.5, A; 0.5, C] and

32

E = [0.5, B; 0.5, C]. If the substitutability property held for the variance, we should have

Var[D] = Var[E], but in fact Var[D] = 0.25 6= Var[E] = 20.25. Actually, we can also verify

that the variance violates the monotonicity property as well.

However, it is intuitively appealing to have a planning objective related to variances.

Risk-sensitive utility functions can play such a role. In fact, if the variance is small, the

expected risk-sensitive utility can be viewed as an approximate tradeoff of the mean and

the variance. Suppose that the agent is faced with a lottery w with a small variance. Let

w0 = E[w]. Pratt (1964) showed that the risk measure and the certainty equivalent of w

have the following relation

ceU (w) ≈ w0 −
1

2
Var[w0] · RU (w0) = E[w]− 1

2
Var[w] ·RU (E[w]).

Therefore, if the agent is risk-averse, that is, RU (w) > 0, then the certainty equivalent of

w is lower than the expected outcome by an amount that is approximately proportional to

the variance, and thus prefers a lottery with a smaller variance. Likewise, if the agent is

risk-seeking, that is, RU (w) < 0, it prefers a lottery with a larger variance. This indicates

that utility theory can be used to make tradeoffs among the worst-case, expected-case, and

best-case outcomes, where the worst-case scenario suffers from a large variance, and the

best-case scenario benefits from a large variance.

2.2 Markov Decision Process Models

We are interested in AI planning problems under uncertainty. Many of these problems can

be modeled as Markov decision process (MDP) problems. In such a problem, the agent has

opportunities to make decisions to influence its state in the environment. The influence is

nondeterministic in nature, and is modeled probabilistically. The agent needs to plan a set

of actions according to a given planning objective.

2.2.1 Definitions

The agent can make decisions at a set of time points, known as decision epochs. We consider

discrete decision epochs, denoted by natural numbers t ∈ N. A Markov decision process

(MDP) model M is a 4-tuple (S,A, P, r) consisting of

33

• a state space S;

• an action space A, where the set of available actions in state s is As, and A =
⋃

s∈S
As;

• a transition probability distribution function P : S × A p⇀ P(S), where P(S) is

the space of probability distributions over the state space S, and P (s′|s, a) denotes

the probability of resulting in state s′ ∈ S starting from state s ∈ S and executing

a ∈ As ⊆ A; and

• a reward function r : S×A×S p⇀ R, where r(s, a, s′) is the immediate reward received

for the transition (s, a, s′) where P (s′|s, a) > 0.

Notice that the transition probability P is a partial function that is only defined for all

states s ∈ S and all actions a ∈ As. The reward function is also a partial function that

is not defined for all combinations of (s, a, s′) where s, s′ ∈ S and a ∈ A, but only for

those where the transition probability P (s′|s, a) is defined and positive. We refer to such

transitions as valid transitions.

We are especially interested in finite MDPs, that is, MDPs whose state and action spaces

are finite. Our future discussions assume that the state and action spaces are finite unless

we explicitly state otherwise.

Condition 2.1 (Finite Model). The state space S and the action space A are finite.

For later reference (especially for general utility functions in Chapter 4), we also need

results for models with countably infinite states. But we restrict the number of available

actions in each state to be finite.

Condition 2.2 (Countable States). The state space S is countable, and the set of available

actions As is finite for each s ∈ S.

Condition 2.1 implies Condition 2.2. The reason is that if S and A are finite, then

As ⊆ A is also finite is also finite. In fact, only under Condition 2.2, the above definitions of

the transition probability distribution and the reward function are meaningful. Otherwise,

additional technical conditions are needed to make the model well-defined (Feinberg and

Shwartz, 2002).

34

The planning horizon (or horizon for short) is the number of decision epochs that the

planner considers, and it can be finite or infinite. In the finite horizon case, we refer to

the last decision epoch as T where T ≥ 1 and no decision is made at or after t = T ,

corresponding to the termination of the MDP. We also allow T = 0 for convience. In the

infinite horizon case, the agent acts forever unless a goal state g ∈ G is reached (to be

discussed shortly).

For later convenience, we define the successor set of the pair of a state s ∈ S and an

action a ∈ As to be

succ(s, a) =
{
s′ s′ ∈ S,P (s′|s, a) > 0

}

and the successor set of a state s ∈ S is

succ(s) =
⋃

a∈As

succ(s, a).

The predecessor set of the pair of a state s ∈ S and an action a ∈ A is defined as

s′ ∈ pred(s, a) if and only if s ∈ succ(s′, a),

and the predecessor set of a state s ∈ S is defined as

s′ ∈ pred(s) if and only if s ∈ succ(s′).

An MDP problem consists of an MDP model, a set of initial states, a set of goal states,

and a planning objective. The set of initial states is S0 ⊆ S where S0 6= ∅, since the agent

has to start acting from some state. Often, the set of initial states S0 is not explicitly

given, in which case, we mean S0 = S and all states can be an initial state. The set of

goal states are denoted as G ⊆ S. Reaching a goal state indicates the termination of the

agent’s actions. In this sense, MDP problems with non-empty goal states are problems with

indefinite planning horizons. Equivalently, we may also use an implicit representation of

goal states, by assuming that only a special action anull is allowed in a goal state g, such

that P (g|g, anull) = 1, and r(g, anull, g) = 0. In this way, we can treat goal states in the

same way as ordinary states, which is sometimes convenient mathematically. It is possible

that G = ∅, which means that the agent will never stop acting unless the planning horizon

35

is reached (in the finite horizon case). In this thesis, we mainly discuss MDP problems with

goal states, and use both the explicit and implicit representation of goal states, depending

on which one is more convenient. We defer the discussion of planning objectives until

Section 2.2.2.

The agent starts acting in an initial state s0 ∈ S0. At decision epoch t, the agent is

in state st. The agent performs an action at ∈ Ast , then transitions into a new state st+1

according to the transition probability distribution P (st+1|st, at), and receives an immediate

reward rt = r(st, at, st+1). Therefore, for the transition (s, a, s′), we can refer to s as

the current-time state, and s′ as the next-time state. The qualifier Markov is used since

the transition probability distributions only depend on the previous state and the action

performed, which is known as the Markovian property of transition probabilities.

A history at decision epoch t is the sequence of states and actions performed, from the

initial state through the current state. Formally, a history is ht = (s0, a0, . . . , st−1, at−1, st),

which follows the recursive relation h0 = (s0) and ht = ht−1 ◦ (at−1, st). We define the set

of all histories recursively as

H0 = S, Ht+1 = {ht ◦ (at, st+1) ht ∈ Ht, at ∈ Ast , P (st+1|st, at) > 0}. (2.3)

This definition differs from a common definition of history, where Ht = (S ×A)t × S, since

many elements in the common definition of Ht are not realizable. Our definition is preferred

to simplify proofs in Chapter 4. A similar definition has been used in (Hinderer, 1970). Let

H =
T⋃

t=0
Ht or H =

∞⋃

t=0
Ht be the set of all histories of finite or infinite horizons, respectively.

A trajectory h is a “complete” history whose length is 2T +1 (for a finite horizon problem)

or countably infinite (for an infinite horizon problem). The set of trajectories are HT and

H∞, respectively. With a slight abuse of notation, we also use h to denote a history with

an unspecified length. The exact meaning should be clear from the context. In the latter

case, we also use ht to denote the prefix of h up to decision epoch t.

A decision rule is used by the agent to determine which action to perform in the current

state. A deterministic history-dependent (HD) decision rule at decision epoch t is a mapping

dt : Ht 7→ Ast . A randomized history-dependent (HR) decision rule at decision epoch t is a

36

ΠSD

ΠSR ΠMD

ΠMR ΠHD

ΠHR = Π

Figure 2.1: The relationships among different classes of policies

mapping dt : Ht 7→ P(Ast), where P(Ast) indicates a probability distribution over the action

set Ast . The probability of performing action a ∈ Ast under an HR decision rule dt thus

is denoted by dt(ht, a). Markovian decision rules are an important class of decision rules,

where the dependence upon the history is only through the current state st. A deterministic

Markovian (MD) decision rule at decision epoch t is a mapping dt : S 7→ Ast . A randomized

Markovian (MR) decision rule at decision epoch t is a mapping dt : S 7→ P(Ast). The

probability of applying action a ∈ Ast under an MR decision rule dt is denoted by dt(st, a).

We denote the class of a particular type of decision rules at decision epoch t by DK
t , where

K ∈ {HR,HD,MR,MD}.

In the MDP literature, a plan is traditionally referred to as a policy.2 A policy, denoted

as π, is a sequence of decision rules corresponding to the decision epochs. If the horizon is

finite, a policy is a sequence of T decision rules, π = (d0, d1, . . . , dT−1); otherwise, a policy is

an infinite sequence of decision rules, π = (d0, d1, . . . , dt, . . .). We also denote the different

types of policies according to the types of their component decision rules by ΠK , where

K ∈ {HR,HD,MR,MD}. The set of policies ΠK = DK
0 ×DK

1 × . . . ×DK
T−1 if the planning

horizon is finite, and ΠK = DK
0 ×DK

1 × . . . if the planning horizon is infinite. Moreover,

a policy is stationary if it is Markovian and dt = d for all t. If the policy π is stationary,

π = (d, d, . . .), we use the notation π(s, a) = d(s, a) if π is randomized and π(s) = d(s) if π

is deterministic. We denote the class of deterministic stationary (SD) policies by ΠSD and

the class of randomized stationary (SR) policies by ΠSR. The class of all possible policies

2There are some differences in the literature in addition to the traditions of different communities, but
we use them as synonyms in this thesis.

37

Π is just ΠHR. The relationships among the different classes of policies are illustrated in

Figure 2.1, where the arrows lead from more general cases to more specific classes.

For a given policy π, we let P π denote probabilities under this policy. We also use P s,π

as a shorthand to indicate a probability under π where the initial state s0 = s.

Under an HR policy π = (d0, d1, . . . , dt, . . .) ∈ ΠHR, the probability of realizing a history

ht = (s0, a0, s1, a1, . . . , st) is

P s0,π(ht) = P s0,π(s0, a0, s1, a1, . . . , st)

= d0(s0, a0)P (s1|s0, a0)d1(h1, a1)P (s2|s1, a1) · · · dt−1(ht−1, at−1)P (st|st−1, at−1). (2.4)

Under an MR policy π = (d0, d1, . . . , dt, . . .) ∈ ΠMR, this probability is simplified to

P s0,π(ht) = P s0,π(s0, a0, s1, a1, . . . , st)

= d0(s0, a0)P (s1|s0, a0)d1(s1, a1)P (s2|s1, a1) · · · dt−1(st−1, at−1)P (st|st−1, at−1).

Under an HD or MD policy π, this probability is further simplified to

P s0,π(ht) = P s0,π(s0, a0, s1, a1, . . . , st) = P0(s1|s0, a0)P1(s2|s1, a1) · · ·Pt−1(st|st−1, at−1),

where at = dt(ht) or at = dt(st), respectively. Under an SR policy π, the MDP model is

reduced to a homogeneous Markov chain (Kemeny and Snell, 1960; Kemeny et al., 1976).

If π ∈ ΠSR, the transition probabilities are

P π(s′|s) =
∑

a∈As

π(s, a)P (s′|s, a).

If π ∈ ΠSD, the transition probabilities are

P π(s′|s) = P (s′|s, π(s)).

2.2.2 Planning Objectives

The MDP problem is to find the “best” policy for the given MDP model. However, there

can be different ways of defining whether a policy is better than another one. So there

are possibly different “best” policies under different planning objectives (also referred to as

optimality criteria in the operations research literature). For a given initial state, a policy

38

determines the possible trajectories and their respective probabilities according to Eq. (2.4).

In the terminology of utility theory, for MDP problems, the set of outcomes is the set of all

possible trajectories, and the set of lotteries is the set of all possible policies. Therefore, we

can compare the policies based on the expected utility of the trajectory. As we discussed

in Section 2.1.1, once we define the utility function of a trajectory, we have also defined the

expected utility for a policy according to Eq. (2.1) and Eq. (2.4). We will compare policies

using their expected utilities following utility theory. In other words, our planning objective

is to maximize the expected risk-sensitive utility of the trajectory.

2.2.2.1 Finite Horizon

In some AI planning problems, there is a predetermined finite planning horizon, either

suggested by the problem itself or set as a parameter when invoking the planner. The agent

stops acting when the planning horizon is reached.

For finite horizon problems, we use the subscript T to indicate the finite planning hori-

zon. We assume that the utility of a trajectory is fully captured by a utility function of the

reward sequence of the trajectory, that is,

~U(h) = ~U(s0, a0, s1, a1, . . . , sT−1, aT−1, sT) = ~U(r0, r1, . . . , rT−1),

where the notation ~U emphasizes that the utility function is multi-dimensional, and

r0, r1, . . . , rT−1 are the immediate rewards received at each decision epoch of the trajec-

tory such that rt = r(st, at, st+1).

In this thesis, we are especially interested in risk-sensitive (and risk-neutral) utility

functions of accumulated rewards. In this case, we assume that the utility function can be

further decomposed into two parts, where one part summarizes a sequence of immediate

rewards into a single accumulated reward, and the other part represents the risk attitude

toward the accumulated reward, which is a random variable. In the finite horizon case, the

decomposition can be represented as

~U(h) = ~U(r0, r1, . . . , rT−1) = Urisk

(
Usum,T (r0, r1, . . . , rT−1)

)
,

39

where Urisk is a one-dimensional utility function, and Usum,T is a summarization utility

function summarizing the immediate reward sequences over a finite horizon T ≥ 1. The

total (undiscounted) reward is a summarization function defined as

Usum,T (r0, r1, . . . , rT−1) = wT =
T−1∑

t=0

rt.

For completeness, we define w0 = 0. Therefore, the risk-sensitive (and risk-neutral) utility

of h is defined as

U(h) = ~U(h) = U

(
T−1∑

t=0

rt

)

= U(wT),

where for simplicity, we use U with a slight abuse of notation to indicate both the utility

function of a history and the one-dimensional utility function Urisk.

Consequently, the expected utility of the state s for the policy π under a risk-sensitive

planning objective3 with the utility function U over a finite horizon T , is defined as

vπ
U,T (s) = Es,π

[
U(h)

]
= Es,π

[

U

(
T−1∑

t=0

rt

)]

= Es,π
[
U(wT)

]
. (2.5)

The expected utility is state-specific since the probability distribution of the trajectory

induced by a given policy only makes sense if the trajectories have the same initial state

s0. Notice that we use the superscripts of the expectation to indicate the initial state and

the given policy. In this thesis, we use the convention that superscripts of the expectation

symbol indicate known information, and subscripts indicate random variables. These scripts

may be omitted if it is unnecessary to make the distinction.

The MEU principle then requires us to obtain (or approximate) the optimal expected

utility of the state s under a risk-sensitive planning objective with the utility function U

over a finite horizon T , defined as

v∗U,T (s) = sup
π∈Π

Es,π
[
U(h)

]
= sup

π∈Π
Es,π

[
U(wT)

]
,

for the given initial state s.

Under Condition 2.2 (Countable States), for all initial states s0 = s ∈ S and all policies

π ∈ Π, the expected utility vπ
U,T (s) exists and is bounded, since the number of possible

3We consider the risk-neutral planning objective as a special case of the risk-sensitive planning objective
where a linear (or equivalently, identity) utility function is used.

40

s1 s2

+1/1.0

−1/1.0

Figure 2.2: An example for the (non)-existence of values

trajectories is finite for finite horizon problems, and thus there are only a finite number of

outcomes at each decision epoch and there are a finite number of decision epochs. Conse-

quently, the optimal expected utility v∗U,T (s) exists and is finite.

2.2.2.2 Infinite Horizon

Typically, we need to deal with an infinite planning horizon, since there is no predefined

finite planning horizon in many problems. The expected utility over an infinite horizon is

defined as the limit of a series of finite-horizon expected utilities as the horizon approaches

infinity. Formally, we denote the expected utility of the state s for the policy π under a

risk-sensitive utility function with the utility function as

vπ
U (s) = lim

T→∞
vπ
U,T (s). (2.6)

The expected value exists if and only if the limit converges on the extended real line R̄ =R∪ {−∞,∞}, namely, results in a finite value, positive infinity, or negative infinity. Notice

that in this case, we actually do not have a direct definition of the utility function of an

infinite trajectory. Instead, we define the expected utility directly. In this way, we can

define the optimal expected utility of a state s over an infinite horizon to be

v∗U (s) = sup
π∈Π

vπ
U (s).

The supremum over all policies is well-defined if for all policies, the expected utility exists.

As discussed in Section 2.1, it is also desirable for the optimal values to be finite, otherwise

the agent is unable to compare policies with infinite expected utilities.

It is important that the optimal expected utilities exist, since we need to determine

a policy that achieves the optimal expected utilities. Figure 2.2 illustrates a case where

the optimal expected utilities do not exist. An agent that starts in state s1 receives the

41

s1 s2
−1/0.5

−1/0.5

−2/0.5

−2/0.5

0/1.0

Figure 2.3: An example for the finiteness of values

following sequence of rewards for its only policy: +1,−1,+1,−1, . . . , and consequently the

following sequence of total rewards: +1, 0,+1, 0, . . . , which oscillates. Thus, the limit in

Eq. (2.6) does not exist for this policy with any utility function where U(1) 6= U(0), and

the optimal expected utility of state s1 does not exist either. A similar argument holds for

state s2 as well.

It is also important that the optimal expected utilities are finite. The MDP in Figure 2.3

illustrates a case that the optimal expected utilities are infinite and the problem that it

poses for DT planners. The MDP has two SD policies. Policy π1 assigns the top action to

state s1, and policy π2 assigns the bottom action to state s1. For either policy, the total

reward follows a geometric distribution. Suppose the utility function is U(w) = −γw where

0 < γ < 1. For state s2, we have vπ1
U (s2) = vπ2

U (s2) = −1. For state s1, the expected utility

for policy π1 is

vπ1
U (s1) =

∞∑

t=1

[

−γ(−1)t · 0.5t
]

= −
∞∑

t=1

(
1

2γ

)t

=

− 1
2γ−1 ,

1
2 < γ < 1

−∞, 0 < γ ≤ 1
2 ,

and the expected utility for policy π2 is

vπ2
U (s1) =

∞∑

t=1

[

−γ(−2)t · 0.5t
]

= −
∞∑

t=1

(
1

2γ2

)t

=

− 1
2γ2−1

,
√

1
2 < γ < 1

−∞, 0 < γ ≤
√

1
2 .

Therefore, if 0 < γ ≤ 1
2 , we have vπ1

U (s1) = vπ2

U (s1) = −∞. Then utility theory implies that

these two policies are indifferent. However, for all finite horizons T , we have vπ1
U,T (s1) >

vπ2
U,T (s2). Thus intuitively, policy π1 should be preferred over policy π2, which contradicts

our earlier conclusion.

In fact, infinite expected utilities can cause problems only if the optimal expected utilities

are infinite. If the optimal utilities are finite, it is not a problem if the expected utilities for

42

a certain policy are infinite (in fact, negative infinity). This is the case when 1
2 < γ ≤

√
1
2 ,

where vπ1
U (s1) = − 1

2γ2−1 > vπ2
U (s1) = −∞, and thus policy π1 is preferred over policy π2.

In fact, policy π1 is an optimal policy for this problem.

This example also shows that this problem can exist for some utility functions, but not

some other utility functions. For example, if
√

1
2 < γ < 1, then the expected utilities

for both policies are finite, and policy π1 is preferred over π2. The case is similar for the

risk-neutral utility function U(w) = w.

2.2.2.3 Discounting

In this thesis, we use the total undiscounted reward. In the literature of risk-neutral plan-

ning objectives, it is popular to use the total discounted reward if the planning horizon

is infinite. The total discounted reward is a summarization function defined for infinite

horizon problems as

Usum,β(r0, r1, . . . , rt, . . .) =

∞∑

t=0

βtrt,

where β ∈ (0, 1) is a discount factor. Under Condition 2.1 (Finite Model), this infinite

summation is well-defined and also bounded. The expected (risk-neutral utility of the)

total discounted reward of the state s for the policy π is defined as

vπ
β (s) = Es,π

[∞∑

t=0

βtrt

]

,

and the optimal expected (risk-neutral utility of the) total discounted reward of state s is

v∗β(s) = sup
π∈Π

vπ
β (s).

It is straightforward to generalize discounting to risk-sensitive planing objectives. The

expected utility of total discounted reward of the state s for the policy π under a risk-

sensitive planning objective with the utility function U is defined as

vπ
U,β(s) = Es,π

[

U

(∞∑

t=0

βtrt

)]

,

and the optimal expected utility of the state s is

v∗U,β(s) = sup
π∈Π

vπ
U,β(s).

43

Discounting is a common technique used in the literature so that under Condition 2.1

and for all possible trajectories, the total discounted rewards are finite, therefore the values

always exist and are finite. Using discounting also makes it simpler to construct efficient

planners for MDPs and characterize how good the resulting plans are. Without discounting,

these problems are more subtle and more difficult.

We discuss total discounted reward for two purposes. First, our approach will make

use of some planners that are developed for discounted risk-neutral planning objectives.

Second, we will review some results in the literature that deal with the planning objective of

maximizing the expected risk-sensitive utility of the total discounted reward. However, this

thesis does not include new results under risk-sensitive planning objectives with discounting,

as explained next.

We prefer not to use discounting in our discussion of risk-sensitive planning objectives

for two reasons. First, discounting expresses a temporal preference that is not fully justi-

fied in AI planning. Discounting means that receiving positive rewards now is better than

receiving them later, and receiving negative rewards now is worse than receiving them later

(Keeney and Raiffa, 1976). In MDPs, discounting is often implemented geometrically as a

discount factor β ∈ (0, 1), and the reward received t time steps later is discounted by the

factor βt. Although discounting is a reasonable preference structure, its applicability and

the particular form of geometric discounting have been questioned in the literature (Harvey,

1995; Laibson, 1994; Whittle, 1996). AI planning tasks often have a relatively small time

span (hours) where temporal preference is not prominent. In many (risk-neutral) applica-

tions people use discount factors very close to one only for the mathematical convenience

of discounting. This is the fundamental reason why we are not in favor of discounting.

The second reason is more pragmatic. If discounting is used under risk-neutral planning

objectives, there exist SD policies that are optimal, the same as in the undiscounted case.

Thus discounting does not require additional structural complexity to represent the optimal

policies that we seek. For risk-sensitive planning objectives, this is not the case. For expo-

nential utility functions, it is known that the optimal policy is time-dependent if discounting

is used (Jaquette, 1976; Chung and Sobel, 1987), while there exists an SD policy that is

44

optimal if discounting is not used (Ávila-Godoy, 1999; Cavazos-Cadena and Montes-de-Oca,

2000a). Similarly, for more general risk-sensitive utility functions, existing results show that

optimal policies for discounted problems have more complex structures (White, 1987) than

those for undiscounted problems (see Chapter 4 and Chapter 5). Therefore, we do not use

discounting in our planning objectives.

2.2.2.4 Values, Optimal Policies, and Notation

To simplify our terminology, we refer to the expected utility of the state s for the policy π

as the value of the state s for the policy π, and also refer to the optimal expected utility of

the state s as the optimal value of the state s.

According to utility theory (see Section 2.1.1), we seek optimal or ǫ-optimal policies.

An optimal policy for state s is a policy whose value of s equals the optimal value of s. An

optimal policy is a policy that is optimal for all states. It is possible that the optimal values

cannot be achieved by any policy. In this case, we are interested in ǫ-optimal policies. An

ǫ-optimal policy for state s is a policy whose value is lower than the optimal value of s by

at most ǫ, and an ǫ-optimal policy is a policy that is ǫ-optimal for all states. We are also

interested in ǫ-optimal policies if the optimal ones are difficult to find.

For the convenience of later discussion, we list in Table 2.1 the notation for different

planning objectives, as well as the notation for values and policies under these planning

objectives. For optimal policies and ǫ-optimal policies, we do not use a different notation

to distinguish whether it is with respect to particular initial states, rather we rely on the

context to make this distinction. We use the following convention when choosing the no-

tation: T indicates the planning horizon, and it is omitted for infinite horizon problems;

β indicates the discount factor, and it is omitted for undiscounted problems; U indicates

the risk-sensitive utility function, and it is omitted for linear (risk-neutral) utility functions.

For the notation for planning objectives, MER indicates the risk-neutral planning objectives,

and MEU indicates risk-sensitive planning objectives. We include the planning objectives

with exponential utility functions, which are distinguished by the subscript exp, since they

will be discussed in detail in Chapter 3. We also include the infinite horizon discounted

45

Table 2.1: Notation for planning objectives, values, and policies

Planning Objective Values
for

Policy π

Optimal
Values

Optimal
Policy

ǫ-Optimal
Policy

Utility Function Horizon Discounting Notation

Risk-Neutral
Finite No MERT vπ

T v∗T π∗T π∗,ǫT

(Linear) Infinite
No MER vπ v∗ π∗ π∗,ǫ

Yes MERβ vπ
β v∗β π∗β π∗,ǫβ

Finite No MEUexp,T vπ
exp,T v∗exp,T π∗exp,T π∗,ǫexp,T

Exponential
Infinite

No MEUexp vπ
exp v∗exp π∗exp π∗,ǫexp

Yes MEUexp,β vπ
exp,β v∗exp,β π∗exp,β π∗,ǫexp,β

General
Finite No MEUT vπ

U,T v∗U,T π∗U,T π∗,ǫU,T

Risk-Sensitive
Infinite

No MEU vπ
U v∗U π∗U π∗,ǫU

(Nonlinear)
Yes MEUβ vπ

U,β v∗U,β π∗U,β π∗,ǫU,β

planning objectives, where planners under the MERβ objective will be used as the basis for

our transformation-of-algorithms approach, and we will present in Section 2.4 results from

the literature under MEUβ objectives.

2.2.3 Basic Problems Concerning Planning with MDPs

Operations research studies the following basic problems of MDP models. Solutions to

these problems provide the basis for solving AI planning problems represented as MDPs.

In this thesis, we also need to explore these problems for risk-sensitive planning objectives,

especially for MDP models with general rewards.

2.2.3.1 Existence and Finiteness of Optimal Values

The first problem is the existence and finiteness of the optimal values under a given planning

objective, which in turn depend on the existence and finiteness of values for a given policy.

We have shown that for a finite model, these properties are guaranteed for finite horizon

problems, and for infinite horizon problems with discounting. But for problems under the

objective of maximizing the expected risk-sensitive utility of total (undiscounted) rewards

46

over an infinite horizon, we still need to identify what additional conditions are required to

ensure the existence and finiteness properties, as we have illustrated using examples from

Figure 2.2 and Figure 2.3. If the values for all policies exist, then the optimal values exist.

If, in addition, the values of all states for all policies are bounded from above, the optimal

values are finite.

2.2.3.2 Optimality Equations

The second problem is the optimality equations. Optimality equations represent the rela-

tionship among the optimal values of different states. This relationship is important because

the agent transitions among states, and the values of different states are interdependent.

Therefore, we need to identify the optimality equations under risk-sensitive planning objec-

tives. Besides, a solution to the optimality equations is not guaranteed to yield the optimal

values. So we also need to identify conditions that ensure that the solution gives the optimal

values.

2.2.3.3 Optimal Policies

The desired result from solving an MDP model is an optimal or ǫ-optimal policy, not

just optimal values. Therefore, the next problem is about optimal policies, especially the

existence of an optimal policy, the relationship of an optimal policy to the optimal values,

and the existence of an optimal policy of a special structure. The existence of an optimal

policy means whether the optimal values can be achieved by a policy, and whether they can

be achieved simultaneously for all states. If an optimal policy exists, we also need to know

the relationship between an optimal policy and the optimal values, so that we can judge

based on the optimal values whether a policy is optimal. In addition, it is desired to have

an optimal policy in a restricted class of policies, such as ΠMD or ΠSD, so that the structure

of an optimal policy is simplified. If a K policy is optimal, we say this policy is K-optimal,

where K ∈ {HR,HD,MR,MD,SR,SD}.4

4Do not confuse a K-optimal policy with a policy that is optimal within the class of K policies, to which
we will not give a special name.

47

If there exists no optimal policy, we will instead seek an ǫ-optimal policy to approximate

the optimal values to within a given error ǫ > 0. In this case, we need to answer a set of

questions similar to those for optimal policies. If a K policy is ǫ-optimal, we say this policy

is K-ǫ-optimal, where K ∈ {HR,HD,MR,MD,SR,SD}. Notice that if there exists an K-

optimal policy, there also exists a K-ǫ-optimal policy, simply because an optimal policy is

also ǫ-optimal for any choice of ǫ > 0.

2.2.3.4 Computational Procedures

The last and the most important problem for AI planning concerns computational proce-

dures for finding an optimal or ǫ-optimal policy. The most important solution procedures

for MDPs are dynamic programming methods.5 Basic dynamic programming methods for

solving MDPs include backward induction for finite horizon problems, and value iteration

and policy iteration for infinite horizon problems. We thus consider generalizations of these

methods for risk-sensitive planning objectives.

Value functions play an important role when solving MDPs. A value function is a

mapping from states to extended real numbers v : S 7→ R̄. The optimal values form an

optimal value function. Value functions are important since if the optimal value function is

known, an optimal policy can often be retrieved in a greedy fashion.

2.3 Risk-Neutral Planning Objectives and Results

In this section, we review basic results under risk-neutral planning objectives. These results

are important since they are the basis for our discussion of risk-sensitive planning objec-

tives. First, for exponential utility functions, an important class of risk-sensitive utility func-

tions, risk-neutral planners serve as the starting point of our transformation-of-algorithms

approach. Second, for general risk-sensitive utility functions, results for countable state

space models under risk-neutral planning objectives will be used directly since a state-

augmentation approach is taken. This section reviews basic results for solving MDPs under

risk-neutral planning objectives, which are mainly taken from (Puterman, 1994).

5Another solution method is linear programming. Since most of the DT planners use dynamic program-
ming methods, we will not discuss linear programming in this thesis.

48

A risk-neutral utility function is a linear function, which is equivalent to the identity

function since utility functions are unique up to a positively linear transformation. With

an identity utility function, we have for any random variables x and y,

E[x + y] = E[x] + E[y] (2.7)

which holds whether or not x and y are independent. This decomposition is the basis of

the results and computational methods under risk-neutral planning objectives.

The above decomposition also explains why the MDP literature usually uses the reward

model r(s, a) for risk-neutral planning objectives. In fact, the most general reward model

is that the immediate reward received for a transition (s, a, s′) forms a distribution on R,

denoted as Fr(r|s, a, s′). But we can show that for risk-neutral planning objectives, it is

sufficient to use the reward model r(s, a). Consider state s and action a ∈ As. For any

random total future reward r, which can be dependent upon the next-time state s′, we have

Es,a[r0 + r] = Es,a[r0] + Es,a[r]

according to Eq. (2.7). Since the first term of the above expression does not involve the

next-time state s′ and only depends on s and a, the reward model r(s, a) = Es,a[r0] is

sufficient to capture all kinds of rewards that occur after performing a in s. Moreover, we

can define

r(s, a) = Es,a[r0] = Es,a
s′

[

Es,a
[
r0
∣
∣s′
]]

=
∑

s′∈S

Es,a
[
r0
∣
∣s′
]
· P (s′|s, a)

=
∑

s′∈S

∫

rFr(dr|s, a, s′) · P (s′|s, a).

But for consistency and later convenience, we still use the reward model r(s, a, s′) in this

thesis. We will see in Chapter 3 and Chapter 4 that the reward model r(s, a) is not sufficient

for risk-sensitive planning objectives.

2.3.1 Finite Horizon

For finite horizon problems under Condition 2.2 (Countable States), the values for all policies

exist and are bounded, since the number of possible trajectories starting from one state is

49

Algorithm 2.1 Backward Induction for Finite Models under the MERT Objective

v∗T , π
∗
T = BackwardInduction(M,T)

Input:

• M = (S, A, P, r), a finite MDP model; • T , a planning horizon;
Output:

• v∗,t
T

, the optimal values; • π∗
T

= (d∗0 , d∗1 , · · · , d∗
T−1), an MD-optimal policy;

1: t← T ;
2: for all s ∈ S do

3: v∗,t
T (s)← 0;

4: end for

5: for t← T − 1 downto 0 do

6: for all s ∈ S do

7: v∗,t
T (s)← max

a∈As

∑

s′∈S

P (s′|s, a)
[

r(s, a, s′) + v∗,t+1
T (s′)

]

;

8: select d∗t (s) ∈ arg max
a∈As

∑

s′∈S

P (s′|s, a)
[

r(s, a, s′) + v∗,t+1
T (s′)

]

;

9: end for

10: end for

finite. Therefore the optimal values always exist and are finite. The system of optimality

equations is given by

vT
T (s) = 0, s ∈ S,

vt
T (s) = max

a∈As

∑

s′∈S

P (s′|s, a)
[
r(s, a, s′) + vt+1

T (s′)
]
, s ∈ S, t ∈ N where 0 ≤ t < T.

Since the optimality equations are actually recursive definitions, the optimality equations

have a unique solution such that for all states s ∈ S, v0
T (s) = v∗T (s) (Puterman, 1994,

Theorem 4.5.1). In fact, for all states s ∈ S and all t ∈ N where 0 ≤ t ≤ T , it holds that

vt
T (s) = v∗T−t(s), since the transition probabilities and the reward function do not change

over time. Moreover, under Condition 2.2, there exists an MD-optimal policy (Puterman,

1994, Proposition 4.4.3a).

If Condition 2.1 (Finite Model) holds, then the optimality equations can be solved using

the backward induction (BI) procedure Algorithm 2.1 (BackwardInduction), which simply

follows from the optimality equations. The BI procedure also finds an MD-optimal policy.

In principle, the procedure is also correct if Condition 2.2 holds, but it is computationally

infeasible since the number of states is infinite. However, the version with an infinite state

space is the basis for our discussion of risk-sensitive planning objectives with general utility

functions in Chapter 4.

50

2.3.2 Infinite Horizon with Discounting

If the planning horizon is infinite, there are subtle differences between the MERβ and MER

objectives, so we discuss them separately.

Most of the existing DT planners use discounting, and these planners are the starting

points of our transformation-of-algorithms approach for risk-sensitive planning with expo-

nential utility functions. Therefore, we review results for the MERβ objective in this section.

For discounted infinite horizon problems under Condition 2.1 (Finite Model), the values

for all policies exist and are bounded, therefore the optimal values exist and are finite. The

optimal values satisfy the following system of optimality equations:

vβ(s) = max
a∈As

∑

s′∈S

P (s′|s, a)
[
r(s, a, s′) + βvβ(s′)

]
, s ∈ S, (2.8)

where β ∈ (0, 1), and the optimal values v∗β form the unique solution. Under Condition 2.1,

there exists an SD-optimal policy (Puterman, 1994, Theorem 6.2.10a).

An SD-optimal policy can be retrieved if the optimal values are known according to the

following result.

Theorem 2.1 (Theorem 6.2.7b in Puterman, 1994). Under Condition 2.1, if an SD policy

π satisfies

v∗β(s) =
∑

s′∈S

P (s′|s, π(s))
[
r(s, π(s), s′) + βv∗β(s′)

]
, s ∈ S, (2.9)

then π is optimal under the MERβ objective where β ∈ (0, 1).

A stationary policy satisfying Eq. (2.9) is called conserving. Obviously, an optimal policy

must be conserving. Furthermore, if conserving policies are also optimal, and the optimal

values are known, then a greedy policy with respect to the optimal values is optimal. A

greedy policy πv
β with respect to a value function v is an SD policy such that

πv
β(s) ∈ arg max

a∈As

∑

s′∈S

P (s′|s, a)
[
r(s, a, s′) + βv(s′)

]
, s ∈ S.

The concepts of greedy policies and conserving policies can be generalized to other planning

objectives if we change the equations involved accordingly in a similar way in which the

optimality equations change.

51

Algorithm 2.2 Value Iteration Procedure for Finite Models under the MERβ Objective

v, π = ValueIteration(M,β, ǫ)
Input:

• M = (S, A, P, r), a finite MDP model; • β, a discount factor, 0 < β < 1;
• ǫ, an accuracy parameter, ǫ > 0;

Output:

• v∗,ǫ

β
, an ǫ-optimal value function; • π∗,ǫ

β
, an SD-ǫ-optimal policy;

1: initialize v0 to be an arbitrary finite vector;
2: t← 0;
3: repeat

4: for all s ∈ S do

5: vt+1(s)← max
a∈As

∑

s′∈S

P (s′|s, a)
[
r(s, a, s′) + βvt(s′)

]
;

6: end for

7: t← t+ 1;

8: until ‖vt − vt−1‖ ≤ 1− β
2β

ǫ;

9: v∗,ǫ
β ← vt;

10: for all s ∈ S do

11: select π∗,ǫ
β (s) ∈ arg max

a∈As

∑

s′∈S

P (s′|s, a)
[

r(s, a, s′) + βv∗,ǫ
β (s′)

]

;

12: end for

The value iteration (VI) procedure Algorithm 2.2 (ValueIteration) can be viewed as a

generalization of backward induction to infinite horizon problems. Value iteration uses a

value function to approximate the optimal values. Value iteration starts with an initial value

function, and gradually improves the value function as shown on Line 5 until it is sufficiently

close to the optimal values. When the approximation is close enough, an ǫ-optimal policy

can be obtained by acting greedily as shown on Line 11.

The policy iteration (PI) procedure Algorithm 2.3 (PolicyIteration), on the other hand,

gradually improves the current policy until it is optimal. Policy iteration starts with an

arbitrary policy, and alternates between policy evaluation and policy improvement until

the policy is optimal. The policy evaluation step Line 4 obtains the values for the current

policy, and the policy improvement step Line 6 tries to obtain a better policy based on the

values resulting from the policy evaluation step.

It is worth noting that it is not necessary to have a non-empty set of goal states under the

MERβ objective. On the other hand, if there exist goal states, the computational procedures

will calculate the correct values for goal states (namely zero) starting from an arbitrary value

function (for VI) or an arbitrary policy (for PI). Therefore, the optimality equations and

52

Algorithm 2.3 Policy Iteration Procedure for Finite Models under the MERβ Objective

v, π = PolicyIteration(M,β)
Input:

• M = (S, A, P, r), a finite MDP model; • β, a discount factor vector, 0 < β < 1;
Output:

• v∗
β
, the optimal values; • π∗

β
, an SD-optimal policy;

1: initialize π0 to be an arbitrary SD policy;
2: t← 0;
3: repeat

4: solve for vt(s) from the system of equations

vβ(s) =
∑

s′∈S

P (s′|s, πt(s))
[
r(s, πt(s), s′) + βvβ(s′)

]
, s ∈ S;

5: for all s ∈ S do

6: select πt+1(s) ∈ arg max
a∈As

∑

s′∈S

P (s′|s, a)
[
r(s, a, s′) + βvt(s′)

]
,

setting πt+1(s) = πt(s) if possible;
7: end for

8: t← t+ 1;
9: until πt = πt−1;

10: π∗
β ← πt;

11: v∗β ← vt−1;

computational procedures under the MERβ objective do not need to mention goal states

explicitly. But for the undiscounted objective MER, special treatments are needed for goal

states, as we will see next.

2.3.3 Infinite Horizon without Discounting

The undiscounted risk-neutral planning objective MER is a lot subtler than the MERβ objec-

tive. However, results for the MER objective provide a starting point for our transformation-

of-algorithm approach for risk-sensitive planning with exponential utility functions in Chap-

ter 3, and also the foundation for our discussion of risk-sensitive planning with general

risk-sensitive utility functions in Chapter 4. Therefore, this objective deserves a detailed

discussion.

For undiscounted infinite horizon problems, the value of a state s ∈ S under a given

policy π ∈ Π is defined as

vπ(s) = lim
T→∞

Es,π

[
T−1∑

t=0

rt

]

= lim
T→∞

vπ
T (s). (2.10)

Such a limit may not exist or can be infinite.

53

There are two classes of undiscounted infinite horizon problems, one with a non-empty

set of goal states, and one without. We are interested in problems with goal states since

AI planning problems often have a non-empty set of goal states. But results for problems

with goal states rely on the assumption that a goal state can be reached, which may not be

known in advance for AI planning problems. Therefore, we are also interested in problems

without goal states since the results do not rely on the above assumption. We are interested

in problems without goal states also because there exist results for countable state space

models, which will be used in our discussion of risk-sensitive planning with general utility

functions. We first consider problems with goal states in Section 2.3.3.1, then consider

problems without explicit goal states in Section 2.3.3.2.

2.3.3.1 Problems with Explicit Goal States

In AI planning, we are often interested in problems with goal states. These problems are

also viewed as stochastic generalizations of shortest path problems (Bertsekas and Tsitsiklis,

1991). We assume that Condition 2.1 (Finite Model) holds when considering problems with

goal states.

For problems with goal states, we are interested in policies that can reach a goal state.

Such a stationary policy is called proper. Formally, a stationary policy π is proper if and

only if under this policy, there exists a finite number n such that the value

ρπ
n = max

s/∈G
P s,π(sn /∈ G) < 1, (2.11)

where sn is the state at decision epoch n. A stationary policy that is not proper is an

improper policy. If a goal state cannot be reached from s under an improper policy π, we

say π is improper at s.

Intuitively, a proper policy is a policy under which a goal state can be reached with a

positive probability from any state in finite time. Consequently, it can be proved that a

goal state can be reached with probability one from any state under a proper policy. It is

natural and necessary to have the following condition in the following discussions.

Condition 2.3 (Proper Policy). There exists at least one proper policy.

54

Condition 2.3 concerns the reachability of a goal state, regardless of the reward function

of the model. It is possible that there exist states from which a goal state cannot be reached,

but an optimal policy may never enter those states starting from a given set of initial states.

Then this condition is overly restrictive. However, in this case, we can restore Condition 2.3

by deleting such states from the model. One way to guarantee this condition is to delete

from the model those states and actions that lead to unavoidable infinite cycles, which can

be done through the Selective State-Deletion procedure given in (Koenig and Liu, 2002) if

the state space can be enumerated.

For a problem with goal states, the value of a goal state is always zero for any policy

since only zero rewards can occur. If we assume that the optimal values exist, we have the

following system of optimality equations

v(s) = 0, s ∈ G

v(s) = max
a∈As

∑

s′∈S

P (s′|s, a)
[
r(s, a, s′) + v(s′)

]
, s /∈ G.

However, without additional conditions, the optimality equations may not have a solution,

or may have multiple solutions. The following conditions eliminate these possibilities.

2.3.3.1.1 Bertsekas’s Condition for Improper Policies

Bertsekas (2001, Chapter 2) proposed the following condition that prevents an improper

policy from being optimal.

Condition 2.4 (Infinite Values for Improper Policies). For every improper policy π, the

value lim
T→∞

vπ
T (s) = −∞ for at least one state s.

One important special case for AI planning is r(s, a, s′) < 0 for all transitions (s, a, s′)

where s /∈ G, which is the action penalty representation (Dean et al., 1995), that is, penal-

izing all action executions until a goal state is reached. In addition, we can also allow for

models that give positive rewards only for transitions resulting in a goal state. However,

Condition 2.4 can be hard to check in general.

Bertsekas (2001, Chapter 2) obtained the following results under Condition 2.1, Condi-

tion 2.3, and Condition 2.4: the optimal values exist and are finite; the optimal equations

55

have a unique solution, which is the optimal values; there exists an SD-optimal policy that

is also proper; and a conserving policy is optimal.

The main computational procedures for the MERβ objective can be adapted to solve

problems with goals under the MER objective (Bertsekas, 2001, Chapter 2). In both value

iteration and policy iteration, we need to fix the values of goal states to be zero. Then

the value iteration procedure converges to the optimal values with any initial value vector,

and the policy iteration procedure converges to a deterministic optimal proper policy if the

initial policy is proper, which is often easy to obtain.

2.3.3.1.2 Bertsekas’s Nonpositive Reward Condition

Under Condition 2.1 and Condition 2.3, Bertsekas (2001, Exercise 2.12) showed that results

similar to those from the previous section hold if r(s, a, s′) ≤ 0 for all possible transitions

where s /∈ G. More concretely, the optimal values exist and are finite, and they are the

unique solution to the optimality equations if we only consider nonpositive values. There

also exists an SD-optimal proper policy, and a conserving policy is optimal. However, there

exist improper policies whose values equal the optimal values. Bertsekas (2001, Exercise

2.12) mistakenly claimed that a conserving policy is also proper. A counterexample is

a model with all zero rewards. Then the optimal values are all zero, and any policy is

conserving and optimal, but not necessarily proper. So even if the optimal values are

known, acting greedily may not result in an optimal proper policy. The computational

methods are still valid, but special care is needed so that we obtain a proper policy.

2.3.3.2 Problems without (Explicit) Goal States

Undiscounted infinite horizon problems without goal states are also important since the

technical conditions to ensure the existence of a proper optimal policy is not easy to check

and sometimes overly restrictive. It is also important to have some knowledge about models

without goal states as the basis for our later discussion of risk-sensitive planning with general

risk-sensitive utility functions.

Actually, models with explicit goal states are special cases of models without goal states.

For models without explicit goal states, it is still the case that the agent will eventually

56

enter a set of recurrent states, from which no other states are reachable, but this set of

states is not trivially known in advance as in models with explicit goal states.

Two special cases of undiscounted infinite horizon problems without goal states are

negative and positive models, where the rewards are all nonpositive and nonnegative, re-

spectively. Models discussed in Section 2.3.3.1.2 are special cases of negative models, and

we will see the differences in results shortly. We discuss these two cases in this chapter,

and models with more general rewards will be discussed in Chapter 5. For later conve-

nience, we discuss these models under Condition 2.2 (Countable States), rather than under

Condition 2.1 (Finite Model) as in Section 2.3.3.1.

Under the condition that the optimal values exist, the optimal values satisfy the opti-

mality equation

v(s) = max
a∈As

∑

s′∈S

P (s′|s, a)
[
r(s, a, s′) + v(s′)

]
, s ∈ S, (2.12)

although some values can be infinite (Puterman, 1994, Chapter 7). Unfortunately, the

solution to this equation is not unique, since for example, if v(·) is a solution value function,

then v(·) + k for any real number k ∈ R is also a solution value function.

2.3.3.2.1 Negative Models

In negative models, the immediate rewards are all nonpositive as shown in the following

condition. AI planning problems are often modeled as negative models where the negative

rewards represent action costs.

Condition 2.5 (Negative Model). For all s, s′ ∈ S and all a ∈ As where P (s′|s, a) > 0, it

holds that r(s, a, s′) ≤ 0.

Since only negative or zero rewards are possible, the finite horizon values are monotonic

in the planning horizon. Therefore, the expected total rewards for all policies and the

optimal values exist. However, these values can be negative infinity. The following condition

is needed to ensure the optimal values are finite. Notice that this condition should always

go together with Condition 2.5.

57

Condition 2.6 (Negative Model with Finite Expected Rewards). There exists a policy

π ∈ Π such that for all states s ∈ S, the value vπ(s) is finite.

Suppose Condition 2.2 (Countable States), Condition 2.5 and Condition 2.6 hold. The

optimal value v∗ is the maximal nonpositive solution to the optimal equation. Under the

same conditions, there exists an SD-optimal policy (Puterman, 1994, Theorem 7.3.6a).

Moreover, a conserving policy is optimal (Puterman, 1994, Theorem 7.3.5).

Under Condition 2.2, Condition 2.5, and Condition 2.6, value iteration converges state-

wise with any initial value function v0 such that for all states s ∈ S, 0 ≥ v0(s) ≥ v∗(s)

(Puterman, 1994, Corollary 7.3.12). The value iteration procedure can be carried out if

Condition 2.1 also holds. Unfortunately, a direct generalization of policy iteration from

discounted models does not work for negative models since it is possible that a suboptimal

policy cannot be improved any further (Puterman, 1994, Example 7.3.4). A proper policy

iteration procedure is more complex (Puterman, 1994, Section 10.4).

2.3.3.2.2 Positive Models

In positive models, the immediate rewards are all nonnegative as shown in the following

condition. Positive models have been used to model problems such as gambling and optimal

stopping (Puterman, 1994, Section 7.2).

Condition 2.7 (Positive Model). For all s, s′ ∈ S and all a ∈ As where P (s′|s, a) > 0, it

holds that r(s, a, s′) ≥ 0.

Since all rewards are nonnegative, the finite-horizon values are monotonic with the

planning horizon. Therefore, the expected total rewards for all policies and the optimal

values exist. However, these values can be positive infinity. To ensure the values for all

policies to be finite, we need the following condition. Under Condition 2.1 (Finite Model),

this condition also implies the optimal values are finite. Similar to the negative model case,

this condition always goes with Condition 2.7.

Condition 2.8 (Positive Model with Finite Expected Rewards). For all policies π ∈ Π and

all states s ∈ S, the value vπ(s) is finite.

58

Suppose Condition 2.2 (Countable States), Condition 2.7, and Condition 2.8 hold. The

optimal value v∗ is the minimal nonnegative solution to the optimality equation (Puterman,

1994, Theorem 7.2.3a).

Moreover, there exists an SD-optimal policy if Condition 2.1 holds (Puterman, 1994,

Theorem 7.1.9). But otherwise, only a weaker result can be obtained (Puterman, 1994,

Theorem 7.2.7): for all ǫ > 0, there exists an SD policy π such that

vπ(s) ≥ (1− ǫ)v∗(s), s ∈ S.

Consequently, if for all states s ∈ S, the optimal value v∗(s) is bounded, then there exists an

SD-ǫ-optimal policy (Puterman, 1994, Corollary 7.2.8). On the other hand, under Condi-

tion 2.2, Condition 2.7, and Condition 2.8 only, if there exists an optimal policy, then there

exists an SD-optimal policy (Puterman, 1994, Theorem 7.2.11). However, a conserving

policy may not be optimal (Puterman, 1994, Example 7.2.3).

Similar to the discounted case, value iteration and policy iteration can be used to solve

positive models, but minor changes are needed. Under Condition 2.2, Condition 2.7, and

Condition 2.8, value iteration converges statewise with any initial value function v0 such

that for all states s ∈ S, 0 ≤ v0(s) ≤ v∗(s) (Puterman, 1994, Corollary 7.2.13). The value

iteration procedure can be carried out if Condition 2.1 (Finite Model) also holds.

Under Condition 2.1, an optimal policy can also be obtained using policy iteration with

subtle changes to the procedure (Puterman, 1994, Section 7.2.5). When solving the policy

evaluation equations, the solution is not unique. To obtain the correct values, we need to

set the values of recurrent states to zero. Since the model is reduced to a Markov chain

under fixed stationary policies, a recurrent state under a stationary policy is the same as

a recurrent states in a finite Markov chain. For finite Markov chains, a state is recurrent

if and only if starting from this state, the expected first time of returning to this state is

finite. In other words, a state is recurrent if and only if the state is in a cycle of the graph

corresponding to the Markov chain. Therefore, the recurrent states can be identified using

algorithms from graph theory, for example, topological sorting (Corman et al., 1990).

59

2.3.4 Semi-MDPs

For MDP models, the decisions are made at discrete decision epochs. These decision epochs

are assumed to be equally divided in time, or we assume the passage of time is irrelevant

except that decisions are made at specific points of time. If it is not the case, we need to

consider continuous time models, or semi-MDPs (SMDPs) (Puterman, 1994, Chapter 11).

We consider SMDPs in this section because results for SMDPs provide another starting

point for our transformation-of-algorithms approach in Chapter 3. In fact, we use the

variably discounted form (see below) of SMDPs instead of the original form, although the

latter is more popular.

The major difference between MDPs and SMDPs is the sojourn time, or the time of

staying in a state before transitioning to the next state. MDPs do not explicitly model

this time since all transition times are equal or irrelevant. In SMDPs, the sojourn times to

the next state follow the probability distribution Ft(t|s, a, s′). This sojourn time affects the

decision only when we consider the discounted total reward objective.

Discounting in SMDPs is implemented through a discount rate 0 < β < 1. Given a

trajectory, the total discounted reward is
∞∑

t=0
βσtrt, where σt =

t−1∑

k=0

τk, and τk is the sojourn

time at decision epoch k.

Parr (1998) observed that a discounted SMDP is equivalent to a variably discounted

MDP (VDMDP) where the discount factor depends on the transitions. For later conve-

nience, we refer to a VDMDP as an MDP under the MERβββ objective, where the boldface βββ

indicates that the discount factors depend on the transitions, and this notational convention

extends to value functions and optimal policies. The optimality equations for SMDPs or

VDMDPs are

vβββ(s) = max
a∈As

∑

s′∈S

P (s′|s, a)
[
r(s, a, s′) + β(s, a, s′)vβββ(s′)

]
,

where β(s, a, s′) is a transition-dependent discount factor, and

β(s, a, s′) =

∫ ∞

0
βtFt(dt|s, a, s′).

The computational procedures for (regular) discounted MDPs also apply to discounted

SMDPs, namely value iteration and policy iteration methods, provided that the minimal

60

Table 2.2: Results for finite models with risk-neutral planning objectives

MER
Objective MERT MERβ

G 6= ∅ G = ∅

Existence of
optimal values Yes Yes

∃ proper π;
improper π ⇒
∃s, vπ(s) = −∞

r(s, a, s′) ≤ 0 r(s, a, s′) ≥ 0 r(s, a, s′) ≤ 0

Finiteness of
optimal values Yes Yes Yes ∃ proper π ∀π, vπ < +∞ ∃π, vπ > −∞

Solution to
optimality
equations?

Unique Unique Unique Unique Minimal
nonnegative

Maximal
nonpositive

Structure of
optimal policy MD SD SD, proper SD SD SD

Is conserving
policy optimal? Yes Yes Yes Yes No Yes

Computational
procedures BI VI, PI VI, PI VI, PI VI, PI VI, PI’

sojourn time is greater than zero (thus the transition-dependent discount factors are less

than one) (Puterman, 1994, Chapter 11). The requirement that the minimal sojourn time

is greater than zero also eliminates the possibility to have an infinite number of transitions

during a finite period. However, if the minimal sojourn time can be zero (thus the transition-

dependent discount factors can be one), it is not guaranteed that the optimality equations

have a unique solution in general. In this case, the SMDPs (and VDMDPs) have properties

similar to undiscounted MDPs, and the computational procedures are analogous to those

for undiscounted MDPs with similar restrictions.

2.3.5 Summary

We summarize the results for finite models with risk-neutral planning objectives in Table 2.2,

where PI’ in the last entry indicates that a more complicated variant of PI is needed. For

conciseness, the table should be read that the conditions needed for the finiteness property

also include those for the existence property. Limited by space, some conditions are not

presented in their complete form, so we should refer back to the main text for the exact

conditions.

61

2.4 Related Work: Risk-Sensitive Planning

In this section, we briefly review existing results from operations research and DT planning

for risk-sensitive planning objectives and other planning objectives based on the MEU

principle.

2.4.1 MDPs with Exponential Utility Functions

Exponential utility functions are the most widely used risk-sensitive utility function (Corner

and Corner, 1995). Exponential utility functions have the form

Uexp(w) =

γw, γ > 1

−γw, 0 < γ < 1.

The risk parameter γ indicates the degree of risk seekingness or risk aversion. If γ > 1, the

agent is risk-seeking, and if 0 < γ < 1, the agent is risk-averse. A more detailed discussion

about exponential utility functions is given in Section 3.1.

2.4.1.1 Finite Horizon Expected Exponential Utility of Total Rewards

The finite horizon problem was first formulated in (Howard and Matheson, 1972). We refer

to this planning objective as MEUexp,T . They studied how to find optimal policies in the

class of MD policies for finite horizon problems, and obtained the system of optimality

equations, which has a unique solution. Based on the optimality equations, they showed

that the finite horizon problems can be solved using a backward induction procedure.

Although an argument similar to that for the risk-neutral case can be used to show that

under Condition 2.2 (Countable States), an optimal policy in the class of MD policies is also

optimal in the class of all policies, a rigorous proof had not been made explicit until quite

recently (Ávila-Godoy et al., 1997). Coraluppi and Marcus (1996) also claimed without

proof that there is an MD policy that is optimal in the class of HD policies.

62

2.4.1.2 Infinite Horizon Expected Exponential Utility of Total Discounted Rewards

The planning objective of maximizing the expected exponential utility of total discounted

rewards over an infinite horizon, referred to as MEUexp,β, is an extension of discounting

from the risk-neutral case to the case of exponential utility functions.

Jaquette (1973) is the first study of the MEUexp,β objective. He studied the risk-averse

case as a tool for studying the so-called moment optimal objective. He showed that for

finite models, there exists a threshold value γ0 ∈ (0, 1) such that for all γ ∈ [γ0, 1), there is

a stationary policy that is optimal in the class of MD policies under the MEUexp,β objec-

tive. Such a policy is also moment optimal at the same time, that is, it lexicographically

maximizes the sequence of signed moments of the total discounted reward, where the sign

is positive (negative) if the order of the moment is odd (even). Moreover, Jaquette (1973)

presented a computation-intensive procedure for finding a moment optimal SD policy. In

fact, the procedure finds all moment optimal policies, based on which the threshold risk

parameter γ0 can be determined. Jaquette (1976) further showed that for arbitrary risk-

averse exponential utility functions, the policy that is optimal in the class of MD policies

is non-stationary in general. He showed that such a policy is ultimately stationary, that

is, the policy has a stationary tail, and that the stationary tail must be a moment optimal

policy. He also presented a method for constructing an MD policy that is optimal in the

class of MD policies for risk-averse agents, provided a moment optimal SD policy and the

threshold risk parameter γ0 are known. In this case, the problem is reduced to a finite

horizon problem where the planning horizon is a function of γ0, γ and β, and the desired

policy can be obtained using a procedure similar to backward induction. In these studies,

there is no reference to optimality equations.

Chung and Sobel (1987) studied this objective for risk-averse agents and finite models

with nonnegative rewards, while the optimization is restricted to the class of MD policies.

They first obtained the system of optimality equations. Different from the risk-neutral case,

the system has an infinite number of equations. They showed that under their assumptions,

a conserving policy (that is, a greedy policy with respect to the optimal values) is optimal

in the class of MD policies, and that value iteration converges to the optimal values. They

63

further pointed out that the result still holds for risk-seeking agents and finite models with

nonpositive rewards.

Coraluppi and Marcus (1996) also presented the same system of optimality equations for

risk-averse agents, by referring to Chung and Sobel (1987) for its correctness, and claimed

it remains valid if the optimization is over HD policies. However, in subsequent discussions,

they implicitly assume the rewards are nonpositive, therefore their argument was not well-

founded until (Ávila-Godoy et al., 1997) proved the validity of the system of optimality

equations (for all policies). Coraluppi and Marcus (1996) discussed approximating optimal

policies using finite horizon problems under the implicit assumption of nonpositive rewards.

The method is a variant of the backward induction procedure.

Ávila-Godoy et al. (1997) showed that for countable state space models with bounded

rewards (thus including finite models) and for any exponential utility function, the optimal

values satisfy the same system of optimality equations. They also showed that if the model

has nonpositive rewards, then there exists an MD-optimal policy, a conserving policy is

optimal, and value iteration converges to the optimal values, regardless of whether the

agent is risk-averse or risk-seeking.

2.4.1.3 An Alternative Discounted Objective Using Exponential Utility Functions

Another approach to extending discounting to infinite horizon problems with exponential

utility functions was taken in (Porteus, 1975) based on dynamic choice theory, where the

exponential utility function is viewed as an “intra”-epoch utility function. Roughly speak-

ing, the certainty equivalent of the current state is the sum of immediate rewards and the

discounted certainty equivalent of future rewards. In this case, there still exist SD-optimal

policies, unlike the discounted model discussed above. Coraluppi and Marcus (1996) showed

that the corresponding dynamic programming operator is a contraction mapping. Eagle

(1975) took a similar approach and showed there also exists an SD-optimal policy for a

slightly different objective. All these works assumed that the agent is risk-averse and the

rewards are nonpositive.

64

2.4.1.4 Infinite Horizon Expected Exponential Utility of Total Rewards

Similar to the case of the MER objective, the expected utility of (undiscounted) total rewards

using exponential utility functions may not exist, or may be infinite, since the value is

defined as the limit of finite horizon values as the horizon approaches infinity. So we need

to specify conditions under which such values exist and are finite. We refer to this objective

as MEUexp.

We give a brief overview of results for the MEUexp objective. More details are given in

Section 3.2 since these results are more related to our transformation-of-algorithms approach

to solving large-scale problems under the MEUexp objective.

2.4.1.4.1 Problems with Explicit Goal States

Denardo and Rothblum (1979) discussed this objective for finite models with goal states in

the class of SD policies, and provided a linear programming formulation for solving such

problems.

For risk-averse agents, Denardo and Rothblum (1979) showed that if there exists an SD

policy π for which vπ
exp(s) is finite for all states, and if for any improper policy π′, vπ′

exp(s)

is infinite for at least one state, then the following results hold: an optimal policy (in the

class of SD policies) exists and is proper, the optimal solution to the linear program equals

the optimal values, a conserving policy is optimal, and the optimal values are the unique

negative solution to the system of optimality equations. They also showed that the required

set of sufficient conditions can be checked once the linear program is solved.

For risk-seeking agents, Denardo and Rothblum (1979) showed that if for any SD policy

π, vπ
exp(s) is finite for all states, then the following results hold, which are similar to those in

the risk-averse case: an SD-optimal policy exists, the optimal solution to the linear program

equals the optimal values, a conserving policy is optimal, and the optimal values are the

unique solution to the above optimality equations. The required sufficient condition can be

checked by solving an auxiliary linear program. However, an SD-optimal policy is proper

only when v∗exp(s) > 0 for all states.

65

Patek (2001) considered risk-averse agents and finite state space models with strictly

negative rewards, under the condition that there exists a proper policy with finite values.

He showed that the following results hold: there is an SD policy that is optimal in the class

of MD policies, the optimality equations have a unique solution, and a conserving policy is

optimal. He also showed that value iteration and policy iteration can be used to solve such

problems. Patek’s conditions, however, are obviously implied by the conditions of (Denardo

and Rothblum, 1979).

2.4.1.4.2 Problems without Goal States

Assuming the values exist for all policies, Ávila-Godoy (1999) showed that the optimal val-

ues for finite models must satisfy the system of optimality equations. Cavazos-Cadena and

Montes-de-Oca (2000a,b) considered finite models with nonnegative rewards (Positive Mod-

els) and Ávila-Godoy (1999) considered finite models with nonpositive rewards (Negative

Models). See Section 3.2.1 for more details.

2.4.1.5 Average Certainty Equivalent of Expected Exponential Utility

Another line of active research concerning exponential utility functions is the planning

objective of maximizing the average certainty equivalents. For a given policy π, the average

certainty equivalent of state s is defined as

lim
T→∞

1

T
U−1

exp

(

Eπ,s

[

Uexp

(
T−1∑

t=0

rt

)])

= lim
T→∞

1

T
logγ

Eπ,s

γ

T−1P
t=0

rt

 .

Howard and Matheson (1972) is the first work on this planning objective. They developed

a policy iteration procedure for finite models that are aperiodically recurrent6. This plan-

ning objective was later studied for more general models, including countable state space

models and semi-Markov models, under various technical conditions in (Marcus et al., 1997;

Hernández-Hernández and Marcus, 1996, 1999; di Masi and Stettner, 1999; Cavazos-Cadena

and Fernández-Gaucherand, 1999; Brau-Rojas, 1999; Chawla, 2000). However, this objec-

tive does not fit into the MEU framework for decision-theoretic planning.

6An MDP is aperiodically recurrent if and only if under any stationary policy, the induced Markov chain
is aperiodically recurrent. A Markov chain is aperiodically recurrent if and only if all states are recurrent
and there does not exist t0 such that for any (decision) epoch t and any trajectory, st = st+t0 .

66

2.4.1.6 Representation Transformation

Koenig and Simmons (1994a,b) and Koenig (1997) considered exponential utility functions

in the context of AI planning. They took a representation transformation approach. Ide-

ally, in this approach, a planning problem under the MEUexp objective can be transformed

into an equivalent problem under the MER objective, and a planner for the MER objective

can be directly used to solve the transformed problem, thus solving the original problem.

Koenig (1997) considered two types of representation transformations: additive and mul-

tiplicative transformations, where the additive transformation can be viewed as a special

case of the multiplicative transformation. The multiplicative transformation converts the

transition probabilities into pseudo-probabilities that do not necessarily sum to one, and the

agent is only rewarded for reaching a goal state in the transformed problem. Koenig (1997)

showed that for models with strictly negative rewards and risk-seeking exponential utility

functions, as well as models with strictly positive rewards and risk-averse exponential utility

functions, the transformed problems have an interpretation where the pseudo-probabilities

are legitimate probabilities, and the original problem is transformed into a legitimate risk-

neutral planning problem. Therefore computational methods for the risk-neutral objective,

such as value iteration and policy iteration, can be directly used to solve problems under

the MEUexp objective. He also showed that, for acyclic problems with arbitrary rewards,

the transformation can be used in a nominal sense, and methods for risk-neutral objectives

can also be used directly. However, for more general models, the representation trans-

formation method does not guarantee finding the correct result. Koenig does not discuss

the applicability of the representation transformation approach to other decision-theoretic

planning methods. A detailed discussion about the applicability of this approach is given

in Section 3.3.

2.4.2 MDPs with Target-Level Utility Functions

Besides exponential utility functions, target-level utility functions form the only other exten-

sively studied class of risk-sensitive utility functions (Bouakiz, 1985; White, 1993; Bouakiz

and Kebir, 1995; Yu et al., 1998; Wu and Lin, 1999; Ohtsubo and Toyonaga, 2002). In some

67

applications, the agent’s objective is to maximize the probability that the total discounted

or undiscounted reward exceeds a target level a. This planning objective can be recast as

an objective of maximizing the expected utility with a target level utility function, which

is a nonlinear utility function defined as

Utgt(w) =

0, w < a

1, w ≥ a
.

In other words, the MEU objective with a target-level utility function models a stochastic

extension of the “satisficing” planning objective (Simon, 1947).

Bouakiz (1985) considered the planning objective using target-level utility functions and

total discounted rewards over an infinite horizon, as well as total undiscounted rewards over

a finite horizon. He restricted attention to finite models with nonnegative rewards and

considered HD policies only. For finite horizon problems, he showed that there exists an

MD policy that is optimal in the class of HD policies, obtained the optimality equations,

and provided a backward induction procedure. For infinite horizon problems, he obtained

the optimality equations and provided a value iteration procedure. He also showed that

there may not exist a stationary optimal policy for infinite horizon problems, but showed

that under some technical conditions, there can be ultimately stationary optimal policies.

Bouakiz and Kebir (1995) continued the previous work under the same assumptions. They

showed that for finite horizon problems, the optimal values are the unique solution to the

optimal equations, and that for infinite horizon problems, the optimal values are the minimal

nonnegative solution to the optimal equations. They also initiated the approach of studying

target-level objectives using an augmented models with an augmented state space, which is

the cross product of the original state and the (equivalent) target level-to-go.

White (1993) extended the augmented space approach to consider finite models with

more general reward models and optimization over all augmented policies, which are poli-

cies for the augmented models. His results include that the optimal values are the unique

solution to the optimality equations, and that there exists an SD-optimal policy in the aug-

mented sense. He also presented a policy iteration procedure. However, an error in (Bouakiz

68

and Kebir, 1995) and (White, 1993), which is due to the neglected fact that an augmented

policy may not be a policy for the original model, was pointed out by (Wu and Lin, 1999).

This error invalidates the proof of a result concerning value iteration in (Bouakiz and Ke-

bir, 1995), and also affects results concerning infinite horizon problems in (White, 1993).

Wu and Lin (1999) further considered the target level objective for countable state space

models with bounded rewards. For finite horizon problems, they showed that there exists

an MD-optimal policy in the augmented sense, and that a conserving policy is optimal. For

infinite horizon problems, they obtained the optimality equations for models with arbitrary

rewards, and showed that there exists an SD conserving policy in the augmented sense

and a conserving policy may not be optimal. They also provided a corrected proof for the

result from (White, 1993) that there exists an SD-optimal policy in the augmented sense.

Along this line, Ohtsubo and Toyonaga (2002) showed the optimal values are the minimal

solution (among “reasonable” value functions) to the optimality equations. They further

provided technical conditions under which the results of (White, 1993) are recovered. They

also showed under the same set of conditions, a conserving policy is optimal.

Yu et al. (1998) extended these works to undiscounted problems with goal states and

strictly positive rewards. They obtained the optimality equations, showed that there ex-

ists a unique solution, and showed that the problem can always be reduced to a finite

horizon problem. For finite models, they showed that there exists an MD-optimal policy,

and provided an algorithm using backward induction to obtain the optimal values and all

MD-optimal policies. They also discussed an extension to the planning objective of simul-

taneously maximizing the values (that is, probabilities of reaching the target level) for all

target levels in an interval of real numbers. For this extension, they showed that if an

optimal policy exists, it must be an SD policy.

2.4.3 MDPs with General Risk-Sensitive Utility Functions

Besides the target-level objective, Bouakiz (1985) also studied quadratic utility functions

and showed that in general, there does not exist an SD policy that maximizes the expected

utility of total discounted rewards over an infinite horizon. He further studied general

69

continuous risk-sensitive utility functions using the second order Taylor expansion of a

utility function and results for quadratic utility functions, and concluded that there does

not exist an SD policy that maximizes the expected utility of total discounted rewards over

an infinite horizon.

White (1987) studied finite models under the objective of maximizing the expected

utility of total undiscounted and discounted rewards with a general risk-sensitive utility

function. He took a state augmentation approach that augments the state space with the

accumulated total (discounted or undiscounted) rewards up to the current decision epoch.

He provided the optimality equation for finite horizon undiscounted problems, and used a

result from (Fainberg [sic], 1982)7 to show that there exists an MD-optimal policy in the

augmented sense for any given initial state. He also considered infinite horizon discounted

problems, used the same result from (Fainberg [sic], 1982) to point out that there exists an

augmented MD policy that is ǫ-optimal, and sketched a finite horizon approximation pro-

cedure for a set of continuous (Lipschitz continuous) risk-sensitive utility functions. (These

claims are dubious, though. His original statement was that MD policies and augmented

MD policies are “sufficient” for finite horizon and infinite horizon discounted problems, re-

spectively. The context suggested he meant optimality. However, Fainberg [sic] (1982) does

not directly provide such claims, only that such policies are ǫ-optimal.)

Kadota et al. (1994) discussed infinite horizon discounted problems with general con-

tinuous risk-sensitive utility functions for models with countable state spaces, more general

action spaces, and nonnegative bounded rewards. They showed that there always exists an

optimal policy with respect to any given initial state, and provided the optimality equations.

Kadota et al. (1998a) further discussed stopping problems under the same objective, where

the agent can choose to reach a goal state deterministically from any state, and provided

a sufficient condition for an optimal policy. Kadota et al. (1998b) extended their previous

work on stopping problems to total undiscounted rewards.

7Eugene Feinberg’s last name was initially spelt as Fainberg due to a transcription from Russia.

70

One important approach is to augment the state space with the accumulated rewards.

This approach converts a risk-sensitive planning problem to a risk-neutral planning prob-

lem, for which a rich literature is available. White (1987) used the state augmentation

approach to discuss maximizing expected general risk-sensitive utility of total discounted

rewards. Kerr (1999) used the state augmentation approach to solve a finite horizon dy-

namic programming problem with general risk-sensitive utility functions where the rewards

are not necessarily additive. Müller (2000) used the state augmentation approach to discuss

optimal stopping problems with general risk-sensitive utility functions.

The only other work dealing with general risk-sensitive utility functions from the DT

planning community is (Dolgov and Durfee, 2004). This work proposed to use a series

of moments of the total (undiscounted) reward to approximate the expected utility, and

to use Legendre polynomials to approximate the cumulative distribution function of the

total reward so that these moments can be calculated in closed forms. This work has

several problems, however. First, this method can only be used to calculate moments for

stationary policies, which we know are not sufficient for the MEU objective with general

risk-sensitive utility functions (see above and Chapter 4). Second, this work actually only

proposed a method for approximating the expected utilities for a given stationary policy,

not a method for obtaining an optimal policy nor even a method for obtaining a policy that

is optimal in the class of stationary policies. Third, this method requires that the total

rewards are bounded,8 which greatly limits its applicability.

2.4.4 MDPs with Even More General Utility Functions

The more general utility function for MDPs is a utility function defined directly on the set

of trajectories, ~U(h). Utility functions defined in this way are interesting from the first

principles of utility theory and Markov models, but they are not practical without further

structural assumptions about the utility function or the model. Therefore, works related

8They argued that the method can still be used if the total rewards are bounded with a probability close
to one. However, they cannot quantify this probability, and we know that risk-sensitive planning is sensitive
to events with low probabilities.

71

to such utility functions are inherently limited to discussions such as the existence condi-

tions of optimal values, the existence of optimal policies within special classes of policies,

and the required properties of optimal policies (Kreps, 1977a,b, 1978; Fainberg [sic], 1982;

Schäl, 1981). On the other hand, computational procedures are impossible for such general

definition of utility functions, or at best only of theoretical significance.

In a series of papers (Kreps, 1977a,b, 1978), Kreps discussed maximizing expected util-

ity of trajectories within the set of HD policies for countable state space models. Kreps

(1977a) discussed upper and lower convergent problems, and Kreps (1978) discussed more

general upper and lower transient problems, all of which can be viewed as different general-

izations of the negative and positive models, respectively. For these problems, the optimal

values exist but can be infinite. Kreps (1977b) considered problems with summary states,

where a summary state summarizes the history up to the current decision epoch and the

utility function defined on the complete trajectory is required to be equivalent to the utility

function defined on the current summary state and the same tail of the given trajectory.

Kreps (1977b) also showed that under the upper/lower or convergent/transient conditions,

along with some technical conditions, a “stationary” deterministic policy exists, where the

stationarity is with respect to the summary states.

Fainberg [sic] (1982) showed relations among different classes of policies for some even

more general planning objectives, which is based on a direct mapping from a policy to a

numerical value. When specialized to the case of maximizing expected utility of trajectories,

Fainberg [sic] (1982) showed that there exists an MD (HD) policy that approximates any

given MR (HR) policy, but there is no guarantee that the optimal values exist or are finite.

Hill and Pestien (1987) showed that for the objective of maximizing expected utility of

complete trajectories, the optimal values can be obtained by considering only HD policies if

the utility function is bounded, thus partially completing Kreps’s results, which are obtained

only within the set of HD policies.

72

For the same planning objective and models with more general state and action spaces,

Schäl (1981) gave more conditions under which a policy is optimal, and showed the equiv-

alence of some of such conditions if an optimal policy exists, but he did not answer the

question under what conditions the optimal values and optimal policies exist.

2.5 Related Work: Large-Scale MDPs under Risk-Neutral

Objectives

In this section, we review recent developments in DT planning for solving large-scale MDPs

under risk-neutral objectives. These developments provide ideas that serve as the basis for

our construction of solution methods for planning problems under risk-sensitive planning

objectives, especially those using exponential utility functions.

Solution methods for large-scale problems under risk-neutral objectives can be roughly

classified as using a symbolic strategy or a numerical strategy. In this thesis, I consider

reusing ideas from methods with a symbolic strategy, but methods from both categories

will be reviewed in this section.

2.5.1 Symbolic Strategies

Common symbolic strategies in AI include ideas such as search, temporal abstraction, and

state abstraction. All of these strategies have been used to solve large-scale MDPs. Search-

based methods explore only the relevant part of the state space to avoid enumerating all

states. However, search-based methods do not guarantee that only a small number of states

are visited and the problem may still be intractible. Therefore, in general, abstractions are

needed to deal with large-scale problems. Temporal and state (or spatial) abstractions are

two orthogonal abstraction strategies, where temporal abstraction uses “long-term” abstract

actions and state abstraction uses abstract states that correspond to multiple “real” states.

2.5.1.1 Search

Search-based methods deal with the problem of reaching a set of goal states from a given

set of initial states. The benefit of search methods is that when solving the problem, we

only need to care about states that can be reached in the process of solving the problem.

73

Therefore, search methods provide partial policies that do not specify the actions for those

states that need not be reached. Another benefit of search methods is that they can use

heuristics, which are rough estimates of the true value functions based on prior knowledge,

to speed up the convergence.

The real-time dynamic programming (RTDP) method (Barto et al., 1995) is an online

search method. It can be viewed as a stochastic generalization of LRTA*, which is a real-

time search method for deterministic problems (Korf, 1990). The RTDP method performs

an asynchronized version of value iteration based on simulation. In each step of the search,

RTDP only updates the value of the current state the agent is in, and the agent commits to

the currently-known best action right away. RTDP has been extended to solve large-scale

MDPs in (Bonet and Geffner, 2002, 2003b,a; Feng et al., 2003). The resulting policies from

these methods may not deal with all contingencies, but only contingencies with sufficiently

high probabilities.

LAO* (Hansen and Zilberstein, 2001) is an offline search method, as a generalization

of the AO* method for search AND-OR graphs (Nilsson, 1980). MDPs can be viewed as

AND-OR graphs, where the states are OR nodes and the actions are AND nodes. For an

OR node, the solution depends on exactly one child, which is the max operation over all

actions. For an AND node, the solution depends on all children, which is the expectation

operation over all possible outcomes. The major difference between LAO* and AO* is

that LAO* can deal with loops. LAO* can be seen as interleaving search and dynamic

programming, where search is guided by the values obtained by dynamic programming and

dynamic programming is only performed on a subset of states obtained by search, which

are part of the best solution currently known. LAO* has also been extended to deal with

problems represented in a factored form (see Section 2.5.1.3) in (Feng and Hansen, 2002;

Hansen et al., 2002). Different from RTDP and its descendants, LAO* and its descendants

deal with all possible contingencies. LAO* and related methods will be discussed in more

detail in Section 3.5, when they are used as examples for our transformation-of-algorithms

approach.

74

2.5.1.2 Temporal Abstraction

Temporal abstraction are used to overcome the problem that (primitive) actions, as pro-

vided in the problem formulation, are often too fine-grained for solving large-scale planning

problems. Therefore, temporal abstraction in AI planning uses abstract actions, or op-

tions following (Parr, 1998; Precup, 2000), to express “long-term” effects, where options are

canned policies for parts of the state space to achieve some subtasks. For example, the robot

navigation problem from Section 1.2 can be solved using options that can be interpreted as:

“traverse the top path”, “make the top right turn”, “traverse the downward path”, “make

the bottom right turn”, and “traverse the bottom path”. Temporal abstraction methods

are originally developed as reinforcement learning methods (Sutton et al., 1999b; Parr and

Russell, 1998; Dietterich, 2000), but the ideas have also been used in DT planning methods

(Hauskrecht et al., 1998).

Parr (1998) and Precup (2000) showed that options can be viewed as regular actions,

and the original MDP can be reduced to an MDP (if discounting is not used) or a semi-MDP

(if discounting is used) that uses only options. Hauskrecht et al. (1998) provided a planning

method that uses a special type of options.

The MAXQ (Dietterich, 2000) and HAM (Parr and Russell, 1998; Parr, 1998) methods

are hierarchical methods, which use task decomposition and incompletely specified policies.

Subtasks (in MAXQ) and abstract machines (in HAM) are reduced to options in their

respective solution processes. For this reason, the terms hierarchical methods and temporal

abstraction are often used interchangeably in the DT planning and reinforcement learning

literature.

Current methods using temporal abstractions assume that the abstraction or hierarchy

is given to the planner. Such an abstraction or a hierarchy expresses domain knowledge

that can be used to speed up planning. This is in line with hierarchical planning in classical

AI planning research (Tate, 1977; Nau et al., 1999). Options and hierarchical methods will

be discussed in more detail in Chapter 3, as the basis for the pseudo-probability variant of

our transformation-of-algorithms approach.

75

2.5.1.3 State Abstraction

State abstraction is used to overcome the problem that states, as provided in the problem

formulation, are also often too fine-grained for solving large-scale problems. Therefore, state

abstraction in AI planning uses abstract states to express “wide-range” properties, where an

abstract state corresponds to multiple states in the original problem formulation. For this

reason, some state abstraction methods are also referred to as state aggregation methods.

A convenient representation for state abstraction uses factored MDPs (Boutilier et al.,

1999). A factored MDP is a feature-based representation. In a factored MDP, the state is

represented as a tuple of values of all features and the state space is the cross product of

the sets of values of all features. Moreover, the transition probabilities for actions are rep-

resented compactly using 2-stage temporal Bayesian networks (Dean and Kanazawa, 1989;

Boutilier et al., 1999). More details of the factored representation are given in Section 3.7.1.

The SVI (Boutilier et al., 1995, 2000) and SPUDD (Hoey et al., 1999) methods use de-

cision trees and algebraic decision diagrams, respectively, to represent the transition prob-

abilities of factored MDPs even more compactly, by grouping together entries of the same

values. Consequently, the value functions can also be represented compactly using deci-

sion trees or algebraic decision diagrams, where states with the same value are grouped

together as an abstract state. SVI and SPUDD can be generalized to perform approximate

dynamic programming where states with similar values are grouped together (Boutilier and

Dearden, 1996; St. Aubin et al., 2000). The SPUDD method has also been combined with

search methods to solve even larger problems (Feng and Hansen, 2002; Hansen et al., 2002;

Feng et al., 2003). We discuss SPUDD and related methods in more detail in Chapter 3,

as an example of the pseudo-discount factor variant of our transformation-of-algorithms

approach.

Givan et al. (2003) used model minimization as a general framework for state abstrac-

tion. This approach tries to find the “smallest” model that is equivalent to the original MDP.

In particular, solution methods for factored MDPs (Boutilier et al., 2000; Hoey et al., 1999)

can be viewed as special cases of model minimization. Model minimization can also be done

approximately, and the resulting models are called bounded parameter MDPs, which have

76

imprecise transition probabilities and reward functions. Such models can be solved using

the method from (Givan et al., 2000).

2.5.2 Numerical Strategies

Numerical strategies originated in numerical analysis and operations research, but are in-

creasingly accepted by AI researchers. For DT planning, numerical strategies include meth-

ods using function approximators, direct policy search, and samping-based methods. We

only briefly review DT planning methods using a numerical strategy.

2.5.2.1 Function Approximators

Function approximators have been used to approximate the values of states or the values of

state-action pairs. Example function approximators include CMACs, radial basis functions,

SDMs, and neutral networks (Sutton and Barto, 1998; Bertsekas and Tsitsiklis, 1996).

For factored MDPs, a class of promising function approximators are linear function

approximators, which are used to approximate the value functions. A linear function ap-

proximator is a linear combination of a fixed number of basis functions, each of which only

depend on a small number of factors. Methods from (Koller and Parr, 1999, 2000; Guestrin

et al., 2001, 2003; Poupart et al., 2002; Patrascu et al., 2002) are based on linear function

approximators.

2.5.2.2 Direct Policy Search

Another numerical strategy for solving large-scale MDPs is to directly search for an “opti-

mal” policy in a class of policies, which are parameterized. The “optimal” policy can only

be optimal in the class of parameterized policies where the search takes place. Methods like

those of (Baxter and Bartlett, 2001; Baxter et al., 2001) and (Sutton et al., 1999a) perform

a gradient search in a subspace of the class of SR policies ΠSR, which is a continuous space.

They both represent the SR policy using a parameterized representation, but estimate the

gradients differently.

77

2.5.2.3 Sampling-Based Methods

Sampling-based methods use the planning problem specification as a generative model to

generate samples. In fact, model-free reinforcement learning methods can all be used in this

fashion and thus viewed as sampling-based methods (Sutton and Barto, 1998, Chapter 9).

Kearns et al. (2002) describes a “pure” sampling-based method. Different from reinforce-

ment learning methods, their method has explicit bounds on the number of samples needed

to approximate the optimal values within a given error, but the sample complexity is expo-

nential in the look-ahead. Sampling-based methods are also used to evaluate given policies.

Ng and Jordan (2000) is a different sampling-based method and the sample complexity is

polynomial for estimating a given policy. This method relies on policy search methods for

optimization. Sampling is also used in (Fern et al., 2003) as the policy evaluation method

in an approximate policy iteration procedure.

78

CHAPTER III

EXPONENTIAL UTILITY FUNCTIONS

Exponential utility functions are the most widely used risk-sensitive utility functions (Corner

and Corner, 1995) because they can model a spectrum of risk attitudes. We first define

exponential utility functions and discuss their properties in Section 3.1, and then review in

Section 3.2 basic results for solving MDPs under the MEU objective with exponential utility

functions.

To solve large-scale planning problems under risk-sensitive planning objectives with

exponential utility functions, I propose that existing decision-theoretic planners using a

symbolic strategy can be transformed to take risk attitudes into account, as illustrated in

Figure 3.1. The transformed algorithms bear visual resemblance to the original algorithms

but special conditions are needed to ensure their validity. The transformation-of-algorithms

approach is more general than the previous representation transformation approach (Fig-

ure 3.2), which transforms the planning tasks (Koenig and Simmons, 1994a,b; Koenig,

1997). In order to understand the advantages and limitations of the representation trans-

formation approach, a detailed analysis is provided in Section 3.3. Next, Section 3.4 dis-

cusses the transformation-of-algorithms approach, and introduces the two transformation:

one with pseudo-probabilities and one with transition-dependent pseudo-discount factors.

If the probabilities are given explicitly, Section 3.5 shows that these two transformations are

almost the same, using the LAO* method as an example. The LAO* method is also used

to demonstrate how the search strategy can be used when solving risk-sensitive planning

problems. The two transformations differ when the probabilities are given implicitly: the

pseudo-probability transformation is more convenient for temporally extended probabilities,

which result from temporal abstraction; and the pseudo-discount factor transformation is

more convenient for factored probabilities, which result from state abstraction. They are

79

Risk-Neutral Planner Risk-Sensitive Planner

Risk-Neutral Plan

Risk-Neutral Planning Problem

Risk-Sensitive Plan

Risk-Sensitive Planning Problem

Nominal Transformation
of Algorithms

Figure 3.1: The “nominal transformation of algorithms” approach

Risk-Neutral Planner

Risk-Sensitive Plan

Risk-Neutral Planning Problem
with pseudo-probabilities

Risk-Sensitive Planning Problem

Representation Transformation

Figure 3.2: The “representation transformation” approach

discussed in detail using DT planning methods with temporal and state abstraction strate-

gies in Section 3.6 and Section 3.7, respectively. Since many DT planning methods use one

of these two types of implicitly represented probabilities and thus one of these two abstrac-

tion strategies, we anticipate that our transformation-of-algorithms approach can be widely

applied.

Following the convention in Table 2.1, we use subscripts exp in place of U to indicate

that an exponential utility function is used and, if the risk parameter needs to be specified

explicitly, we use subscripts exp(γ).

3.1 Exponential Utility Functions

Exponential utility functions are the most widely used risk-sensitive utility functions. In a

review paper, Corner and Corner (1995) noted that 27.5% of the applications they reviewed

adopt exponential utility functions, while two thirds of them just use expected values and

are thus risk-neutral.

80

Exponential utility functions have the form

Uexp(w) =

γw, γ > 1

−γw, 0 < γ < 1

To simplify the notation, let ι = sgn ln γ, where sgn is the sign function. Then

Uexp(w) = ιγw, (3.1)

and its inverse is

U−1
exp(u) = logγ(ιu). (3.2)

Exponential utility functions are constantly risk-sensitive utility functions, since the risk

measure for an exponential utility function is a constant, which can be verified as follows.

We have

U ′
exp(w) = ι log γγw, U ′′

exp(w) = ι(log γ)2γw,

and according to Eq. (2.2), the risk measure is

Rexp(w) = −
U ′′

exp(w)

U ′
exp(w)

= − ι(log γ)
2γw

ι log γγw
≡ − log γ.

When γ > 1, the utility function is convex and Rexp < 0, indicating the agent is risk-seeking

(Figure 3.3(a)). When 0 < γ < 1, the utility function is concave and Rexp > 0, indicating

the agent is risk-averse (Figure 3.3(b)). Being constantly risk-sensitive also implies that the

preferences do not change with the wealth level (Pratt, 1964).

For a given lottery involving a finite number of wealth levels as outcomes,

w = [w1, p1;w2, p2; · · · , wn, pn], it is easy to verify the following results (Koenig and Sim-

mons, 1994a):

lim
γ↓0

ceexp(w) = min
1≤i≤n

wi,

lim
γ→1

ceexp(w) =

n∑

i=1

piwi = E[w],

lim
γ→+∞

ceexp(w) = max
1≤i≤n

wi.

81

w

U

(0, 0)

w
U

(0, 0)

(a) Convex (Risk-Seeking) (b) Concave (Risk-Averse)

Figure 3.3: Exponential utility functions

This result means that by varying the parameter γ, we can make different tradeoffs among

the best-case, expected-case, and worst-case scenarios. Therefore, the exponential utility

function can model a spectrum of (constant) risk attitudes.

3.2 An Overview of Basic Properties

We start with a brief overview of the basic properties for planning with MDP models

under the MEUexp planning objective. We only present results that are relevant to our

transformation-of-algorithms approach.

Similar to the MER objective, the MEUexp objective is also decomposable, since for any

random variables x and y, it holds that

E
[
Uexp(x + y)

]
= E

[
ιγx+y

]
= E

[
γxE [ιγy]

]
= E

[

γxE
[
Uexp(y)

]]

. (3.3)

However, we cannot decompose it further to be E[γx]E
[
Uexp(y)

]
if x and y are not indepen-

dent, which in general is the case for the rewards received in MDP models. Therefore, the

decomposition is a kind of “partial” decomposition, in contrast to the “complete” decompo-

sition for linear utility functions discussed in Section 2.3. In fact, this property requires us

to use the reward model r(s, a, s′) rather than the reward model r(s, a) (Chung and Sobel,

1987). The reason is as follows. Consider state s and action a ∈ As. For any random total

future reward r that is dependent on next-time state s′, we have

Es,a
[
Uexp(r0 + r)

]
= Es′

[

Es,a
[
Uexp(r0 + r)

∣
∣s′
]]

= Es′

[

Es,a
[

γr0E
[
Uexp(r)

∣
∣s′
]
∣
∣
∣s′
]]

82

= Es′

[

Es,a
[

γr0Es′
[
Uexp(r)

]
∣
∣
∣s′
]]

= Es′

[

Es,a
[
γr0
∣
∣s′
]
Es′
[
Uexp(r)

]]

,

where the last equality holds since r0 and r are independent given next-time state s′.

Comparing to Eq. (3.3), we can see that an appropriate reward model needs to involve

current-time state s, action a, and next-time state s′, that is, γr(s,a,s′) = Es,a [γr0 |s′], or

r(s, a, s′) = logγ E
s,a [γr0 |s′] for the MEUexp planning objective. If we consider the most

general reward model where the immediate reward received for a transition (s, a, s′) forms

a distribution Fr(r|s, a, s′) (see Section 2.3), we have

r(s, a, s′) = logγ E
s,a
[
γr0
∣
∣s′
]

= logγ

∫

γrFr(dr|s, a, s′).

We consider finite MDP models under the MEUexp planning objective. Similar to the

case of the MER objective, we define the value of a state s ∈ S under a policy π as the limit

of the finite-horizon values as T approaches infinity

vexp(s) = lim
T→∞

vexp,T (s) = lim
T→∞

E

[

Uexp

(
T−1∑

t=0

rt

)]

= lim
T→∞

E [ιγwT] .

The value vexp(s) may not exist, or may be infinite. So we need to specify conditions

under which such values exist and are finite. In this chapter, we only consider models with

either nonpositive or nonnegative rewards. Therefore, it is more convenient to first consider

problems without explicit goal states in Section 3.2.1. Then we consider additional results

for problems with goal states in Section 3.2.2. These results resemble their counterparts

under the MER objective, and thus are the basis for our discussion of the transformation-

of-algorithm approach.

3.2.1 Problems without Explicit Goal States

Assuming that Condition 2.1 (Finite Model) holds and the expected utility of total rewards

exist under all policies, Ávila-Godoy (1999) showed that the optimal values satisfy the

system of optimality equations

vexp(s) = max
a∈As

∑

s′∈S

P (s′|s, a)γr(s,a,s′)vexp(s′),

83

which does not have a unique solution, since for example, if v∗exp(·) is a solution, then kv∗exp(·)

is also a solution for all k ≥ 0.

In fact, most of the following results also hold under Condition 2.2 (Countable States),

but we present a version under Condition 2.1 (Finite Model) since we focus on finite models

in DT planning (see Section 1.5).

3.2.1.1 Negative Models

For negative models (Condition 2.5), similar to the MER case, the finite horizon values are

monotonic in the planning horizon, and the values for all policies and the optimal values

exist. The optimal values are finite if the following condition holds (Ávila-Godoy, 1999).

Condition 3.1 (Negative Model with Finite Exponential Certainty Equivalents). There

exists a policy π ∈ Π such that for all states s ∈ S, the value U−1
exp

(
vπ
exp(s)

)
is finite.

Under Condition 2.1 (Finite Model), Condition 2.5, and Condition 3.1, the optimal

values are the maximal solution to the optimality equations in the set of value functions

that are no greater than ι = Uexp(0) (Ávila-Godoy, 1999). Moreover, there exists an SD

optimal policy (Ávila-Godoy, 1999).

A policy π is conserving under the MEUexp objective if for all states s ∈ S,

v∗exp(s) = max
a∈As

∑

s′∈S

P (s′|s, π(s))γr(s,π(s),s′)v∗exp(s′).

Ávila-Godoy (1999) also showed that a conserving policy is optimal.

Under Condition 2.1, Condition 2.5, and Condition 3.1, value iteration can be used to

solve the MDP. The value iteration procedure uses the following value update rule

vt
exp(s) = max

a∈As

∑

s′∈S

P (s′|s, a)γr(s,a,s′)vt−1
exp (s), s ∈ S,

and vt
exp converges to the optimal values starting from an initial value function v0

exp where for

all states s ∈ S, ι ≥ v0
exp(s) ≥ v∗exp(s) (Ávila-Godoy, 1999). However, policy iteration cannot

be used since a suboptimal value function can be a solution of the optimality equations,

which is similar to the MER objective.

84

In fact, if γ > 1, the above results still hold if Condition 3.1 is violated, but it is possible

that v∗exp(s) = 0 for some states s. This case and Condition 3.1 can be summarized in the

following condition.

Condition 3.2 (Negative Model with Finite Exponential Utilities). There exists a policy

π ∈ Π such that for all states s ∈ S, the value vπ
exp(s) is finite.

3.2.1.2 Positive Models

Similar to negative models, for positive models (Condition 2.7), the finite horizon values

are monotonic in the planning horizon, and the values for all policies and the optimal

values exist. The optimal values are finite if Condition 2.1 and the following condition hold

(Cavazos-Cadena and Montes-de-Oca, 2000a,b).

Condition 3.3 (Positive Model with Finite Exponential Certainty Equivalents). For all

policies π ∈ Π and all states s ∈ S, the value U−1
exp

(
vπ
exp(s)

)
is finite.

Under Condition 2.1 (Finite Model), Condition 2.7, and Condition 3.3, the optimal

values are the minimal solution to the optimality equations in the set of value functions

that are no less than ι = Uexp(0) (Cavazos-Cadena and Montes-de-Oca, 2000a). There also

exists an SD-optimal policy (Cavazos-Cadena and Montes-de-Oca, 2000a).

Under Condition 2.1, Condition 2.7, and Condition 3.3, Cavazos-Cadena and Montes-

de-Oca (2000b) showed that a conserving SD policy that is also unichain is optimal. A

stationary policy is unichain if and only if the induced Markov chain has only a single

recurrent class.1

Under Condition 2.1, Condition 2.7, and Condition 3.3, we can use value iteration and

policy iteration. Under these conditions, the value iteration procedure converges to the

optimal values starting from an initial value function v0
exp such that for all states s ∈ S,

ι ≤ v0
exp(s) ≤ v∗exp(s) (Cavazos-Cadena and Montes-de-Oca, 2000b). The value update rule

is the same as the one for negative models.

1A recurrent class of a Markov chain is a set of states that are recurrent and reachable from each other.

85

The policy iteration procedure can also be used to obtain an SD-optimal policy, where

the policy evaluation equation is

vexp(s) =
∑

s′∈S

P (s′|s, π(s))γr(s,π(s),s′)vexp(s′), s ∈ S.

It is, however, necessary to set the values for recurrent states under π to ι = Uexp(0), since

the solution is not unique (Cavazos-Cadena and Montes-de-Oca, 2000b).

Similar to negative models, if 0 < γ < 1, the results also hold without Condition 3.3,

and it is possible that v∗exp(s) = 0 for some states s. This case and Condition 3.3 can be

summarized as the following condition.

Condition 3.4 (Positive Model with Finite Exponential Utilities). For all policies π ∈ Π

and all states s ∈ S, the value vπ
exp(s) is finite.

3.2.2 Problems with Explicit Goal States

For a problem with goal states, the value of a goal state is always Uexp(0) = ι for any policy.

If we assume the optimal values exist, we have the following system of optimality equations

vexp(s) = ι, s ∈ G,

vexp(s) = max
a∈As

∑

s′∈S

P (s′|s, a)γr(s,a,s′)vexp(s′), s ∈ S \G.

It is natural to assume that Condition 2.3 (Proper Policy) holds for problems with goal

states.

3.2.2.1 Negative Models

We consider finite negative models with goal states in this section. From Section 3.2.1.1, we

know that there exists an SD-optimal policy, and a conserving policy is optimal. Moreover,

the optimality equations have the optimal values as the unique solution under Condition 3.1

(Denardo and Rothblum, 1979).

A strictly negative model is a negative model with goal states whose rewards are strictly

negative before a goal state is reached.

Condition 3.5 (Strictly Negative Model). For all s ∈ S \ G (G 6= ∅), all a ∈ As, and all

s′ ∈ S where P (s′|s, a) > 0, it holds that r(s, a, s′) < 0.

86

For risk-averse agents and strictly negative models, Condition 3.1 (or Condition 3.2)

implies Condition 2.3 (Proper Policy) (Patek, 2001). Under the same conditions, an SD-

optimal policy is also proper (Patek, 2001). In this case, both value iteration and policy

iteration can be used to solve such problems, where value iteration can start with any

negative initial values, and policy iteration needs to start with a proper SD policy with

finite values (Patek, 2001).

For risk-seeking agents, the values are bounded under all policies. An SD-optimal policy

is proper only if for all states s ∈ S, the optimal values v∗exp(s) are positive (Denardo and

Rothblum, 1979), that is, if Condition 3.1 holds. Both value iteration and policy iteration

can be used to solve such problems, where value iteration can start with any positive initial

values, and policy iteration needs to start with a proper SD policy, which always has finite

values. In fact, the correctness of value iteration and policy iteration can be obtained by

using the representation transformation (Koenig and Simmons, 1994a; Koenig, 1997, see

also Section 3.3).

3.2.2.2 Positive Models

We consider finite positive models with goal states in this section. From Section 3.2.1.2, we

know that there exists an SD-optimal policy, and that value iteration and policy iteration

procedures can be used to solve such problems under Condition 3.4. Moreover, under

Condition 3.3, the optimality equations have the optimal values as the unique solution,

an SD-optimal policy is proper, and a conserving proper policy is optimal (Denardo and

Rothblum, 1979).

Under Condition 3.3, value iteration can start with any negative (positive) initial values

for risk-averse (risk-seeking) agents, and policy iteration needs to start with a proper SD

policy and keeps all improved policies proper to obtain a proper SD-optimal policy.

3.2.3 Online Testing of Finiteness Conditions

It is important to know whether the optimal value function is finite, since otherwise value

iteration and policy iteration may not produce meaningful results, or may not even termi-

nate at all. For problems with goal states, one way to test the finiteness conditions is to use

87

the linear programming formulation of (Denardo and Rothblum, 1979), which in fact also

solves the MDP. However, most of DT planning methods take the dynamic programming

approach and are based on value iteration or policy iteration. It is therefore desirable to

be able to test the conditions online as value iteration or policy iteration proceeds. In this

section, we show that online testing can be done for problems with goal states.

The values are always finite if the model is positive and the agent is risk-averse, or

if the model is negative and the agent is risk-seeking. We consider the other two cases

with goal states, which are also the most interesting for risk-sensitive planning: risk-averse

agents and strictly negative models, as well as risk-seeking agents and positive models. We

also assume that Condition 2.3 (Proper Policy) holds. Under these settings, there exists a

proper SD-optimal policy.

3.2.3.1 Equivalent Conditions for Proper Policies with Infinite Values

We now consider some conditions equivalent to policies with infinite values. These con-

ditions will be tested online. Notice that in the two settings we consider, it holds that

γr(s,a,s′) ≥ 1 for all valid transitions (s, a, s′).

First, the finiteness property of a proper SD policy π can be determined by solving the

system of policy evaluation equations for π:

vexp(s) = ι, s ∈ G,

vexp(s) =
∑

s′∈S

P (s′|s, π(s))γr(s,π(s),s′)vexp(s′), s ∈ S \G.

The value vπ
exp(s) is finite for all states s ∈ S if and only if the above system has a unique

solution whose elements have the same sign as ι (Patek, 2001). Therefore if vπ
exp(s) is infinite

for some states, then the system has no solution, multiple solutions, or an invalid solution.

A solution vexp is invalid if ι = 1 but vexp(s) ≤ 0, or if ι = −1 but vexp(s) ≥ 0. They

are invalid since the value functions should be nonnegative (nonpositive) if ι = 1 (ι = −1).

These situations can be illustrated using a simple example shown in Figure 3.4, where the

double circle indicates a goal state. There is only one policy π. We have the following

88

system of policy evaluation equations

vexp(s1) =
1− p

2
γrvexp(s1) +

p

2
γrvexp(s2) +

1

2
γrvexp(s3),

vexp(s2) =
p

2
γrvexp(s1) +

1− p
2

γrvexp(s2) +
1

2
γrvexp(s3),

vexp(s3) = ι.

The coefficient matrix of the above system is

1−p
2 γr − 1 p

2γ
r 1

2γ
r

p
2γ

r 1−p
2 γr − 1 1

2γ
r

0 0 1

,

and its determinant is
(

1
2γ

r − 1
) (

1
2 − p− γ−r

)
γr. We notice that if 0 ≤ p = 1

2 − γ−r ≤ 1,

then the first two equations reduce to the same form, and thus the system has an infi-

nite number of solutions. We also notice that if γr = 2, then the first two equations are

inconsistent, and thus the system has no solution. In other cases, the system has a solution

vexp(s1) = vexp(s2) =
γrι

2− γr
, vexp(s3) = ι.

But if γ2 > 2 (and p 6= 1
2 − γ−r), vexp(s1) and vexp(s2) have a sign different from vexp(s3),

and thus this solution is invalid in this case. On the other hand, it is easy to verify that

the values vexp(s1) and vexp(s2) are finite only if γr < 2 and infinite otherwise.

Although we can determine whether a proper SD policy has infinite values by solving the

policy evaluation equations, it is an expensive operation. It is desirable to use alternatives

that are computationally more efficient. We notice that the finiteness property of a proper

SD policy is related to the spectral radius of a matrix. For a given SD policy π, the matrix

Dπ is defined such that its (s, s′) entry is

Dπ(s, s′) = P (s′|s, π(s))γr(s,π(s),s′), s, s′ ∈ S. (3.4)

Then the T -horizon value for state s is

vπ
exp,T (s) = ι

∑

s′∈S

DT
π (s, s′), (3.5)

89

s1

s2

s3

r/p
2

r/p
2

r/0.5

r/
0.
5

r/
1
−

p
2

r/
1
−

p
2

Figure 3.4: An example MDP with infinite values

where DT
π is the T -th power of Dπ (Patek, 2001). If G 6= ∅, the definition of Dπ can be

refined as

Dπ(s, s′) =

P (s′|s, π(s))γr(s,π(s),s′), s ∈ S \G,

1, s = s′, s ∈ G,

0, s 6= s′, s ∈ G,

since r(s, π(s), s′) = 0 and P (s|s, π(s)) = 1 for all s ∈ G. Now suppose π is proper. We

can order the states so that the last |G| rows and columns of Dπ correspond to goal states,

that is,

Dπ =

Aπ Bπ

0 1

 . (3.6)

The spectral radius ρ(Aπ) is the largest magnitude of Aπ’s eigenvalues. The spectral radius

ρ(Aπ) ≥ 1 if and only if the values of some states for π are infinite (Patek, 2001, see also

Section 5.3). The spectral radius of a nonnegative matrix can be calculated more efficiently

than solving the system of policy evaluation equations (Jia, 1998).

An SD policy has infinite values because the agent has a possibility of looping in a part

of the state space. Identifying the part of the state space where the agent loops can rule

out all SD policies that contain such a loop. Consider again the matrix Dπ defined above.

90

We can arrange the states such that Dπ has a canonical form (Seneta, 1981)

Dπ =

D11 D12 · · · D1k D1,k+1 · · · D1ℓ

D22 · · · D2k D2,k+1 · · · D2ℓ

. . .
...

...
...

Dkk Dk,k+1 · · · Dkℓ

Dk+1,k+1

. . .

Dℓℓ

where Dii (1 ≤ i ≤ ℓ) are irreducible square matrices2 along the main diagonal. Let Si

be the subset of states corresponding to block Dii, and S+
i =

ℓ⋃

j=i
Sj. It is known that the

irreducible blocks correspond to strongly connected components of the graph Gπ = (S, Eπ)

(Seneta, 1981), where3

Eπ =
{

(s, s′) s, s′ ∈ S,P
(
s′|s, π(s)

)
> 0
}

.

The strongly connected components, and thus the irreducible blocks Dii, can be found using

a standard algorithm (Corman et al., 1990). Notice that in particular, the blocks Dk+1,k+1

through Dℓℓ corresponds to recurrent states under π, and therefore ℓ ≥ k + 1 since there

exists at least one recurrent state.

The following theorem relates the finiteness of values for an SD policy π to the spectral

radii of the irreducible blocks of Dπ.

Theorem 3.1. Assume that Condition 2.1 and Condition 2.5 (Condition 2.7) hold. Con-

sider an SD policy π and the matrix Dπ in the canonical form. Then the values vπ
exp(s)

are finite for all states s ∈ S if and only if for all irreducible blocks Dii (1 ≤ i ≤ ℓ), either

ρ(Dii) < 1, or ρ(Dii) = 1 and r
(
s, π(s), s′

)
= 0 for all states s, s′ ∈ Si.

We will use the following result, which is a part of the famous Perron-Frobenius Theorem

for finite nonnegative matrices.

2A matrix is irreducible if we cannot rearrange its rows and columns so that the nonzero elements have
a block upper triangle form.

3We allow self-loops in Gπ.

91

Lemma 3.2 (Seneta 1981). If D1 and D2 are finite nonnegative matrices and D1 is less

than or equal to D2 elementwise, denoted as D1 ≤ D2, then ρ(D1) ≤ ρ(D2). If, in addition,

D2 is irreducible, ρ(D1) = ρ(D2) implies that D1 = D2.

Proof of Theorem 3.1. We prove a stronger result by induction from ℓ to 1: for all 1 ≤ i ≤ ℓ, the

values vπ
exp(s) are finite for all state s ∈ S+

i if and only if for all irreducible blocks Djj (i ≤ j ≤ ℓ),

either ρ(Djj) < 1 or ρ(Djj) = 1 and r
(
s, π(s), s′

)
= 0 for all states s, s′ ∈ Sj .

Let Pπ be the transition probability matrix with the same structure as Dπ, that is, Pπ(s, s′) =

P (s′|s, π(s)) and

Pπ =

P11 P12 · · · P1k P1,k+1 · · · P1ℓ

P22 · · · P2k P2,k+1 · · · P2ℓ

. . .
...

...
...

Pkk Pk,k+1 · · · Pkℓ

Pk+1,k+1

. . .

Pℓℓ

Notice that γr(s,a,s′) ≥ 1 under our assumptions. We thus have Pπ ≤ Dπ and Pij ≤ Dij for each

block.

First we consider blocks corresponding to recurrent states, that is, the set Si with k+1 ≤ i ≤ ℓ.

Since Pii ≤ Dii, it holds that ρ(Dii) ≥ 1. If r
(
s, π(s), s′

)
= 0 for all transitions with s, s′ ∈ Si, then

Dii = Pii and thus ρ(Dii) = ρ(Pii) = 1. On the other hand, since only zero rewards are possible in

this case, we have vπ
exp(s) = ι for all states s ∈ Si. If r

(
s, π(s), s′

)
6= 0 for some states s, s′ ∈ Si, the

values for all states in Si are infinite since this transition will be taken infinitely often. In this case

Dπ 6= Pπ, and it must hold that ρ(Dπ) > 1 due to Lemma 3.2. Therefore, the result holds for all

s ∈ Si with k + 1 ≤ i ≤ ℓ.

Now we consider the set Si with 1 ≤ i ≤ k. Suppose that the result holds for states in S+
i+1. We

can assume that for all states s ∈ S+
i+1, the value vπ

exp(s) is finite. We define

D̄π,i =

Dii Di,i+1 · · · Diℓ

1

. . .

1

,

where the lower-right portion of Dπ is replaced with an identity matrix. We can ignore the rows

corresponding to states in S \ S+
i since the values of states in Si cannot depend on those states.

92

We can consider a reduced MDP model that only includes states in S+
i with the same transition

probabilities as the original model, and the same reward function except for transitions among states

outside Si, where the rewards are assumed to be zero. Therefore, ρ(Dii) ≥ 1 if and only if the values

of some states in S+
i in the reduced model are infinite. In the reduced model, it is only possible

that the value of a state in Si is infinite. If the value of state s ∈ Si is infinite, the following sum

approaches positive infinity as T →∞:

∑

s′∈Si∪···∪Sℓ

D̄T
π,i(s, s

′) =
∑

s′∈S

D̄T
π,i(s, s

′).

Let

Dπ,i =

Dii · · · Dik Di,k+1 · · · Diℓ

. . .
...

...
...

Dkk Dk,k+1 · · · Dkℓ

Dk+1,k+1

. . .

Dℓℓ

It holds D̄π,i ≤ Dπ,i and thus D̄T
π,i ≤ DT

π,i. Then for a state s ∈ Si, we have

ι · vπ
exp,T (s) =

∑

s′∈S

DT
π (s, s′) =

∑

s′∈S

DT
π,i(s, s

′) ≥
∑

s′∈Si

D̄T
π,i(s, s

′).

Therefore, if ρ(Dii) ≥ 1, the right hand side of the inequality and thus ι · vπ
exp,T (s) approaches

positive infinity as T → ∞. Moreover, if ρ(Dii) = 1, there must be some s, s′ ∈ Si such that

r
(
s, π(s), s′

)
6= 0. Otherwise Dii will be a substochastic matrix since Di,i+1, . . . , Diℓ are not all

zero, and thus ρ(Dii) < 1, which is a contradiction.

Now suppose that ρ(Dii) < 1. We consider the matrix

D̂π,i =

Dii · · · Dik Di,k+1 · · · Diℓ

. . .
...

...
...

Dkk Dk,k+1 · · · Dkℓ

1

. . .

1

,

which replace the lower-right portion of Dπ,i with the identity matrix. Since we assume vπ
exp(s) is

finite for all s ∈ S+
i+1, we have ρ(Djj) < 1 for i + 1 ≤ j ≤ k and r

(
s, π(s), s′

)
= 0 for all states

93

s, s′ ∈ S+
k . It holds that for all states s ∈ Si and all T ∈ N

ι · vπ
exp,T (s) =

∑

s′∈S

DT
π (s, s′) =

∑

s′∈S

DT
π,i(s, s

′) =
∑

s′∈S

D̂T
π,i(s, s

′).

Since we have

ρ

Dii · · · Dik

. . .
...

Dkk

= max
i≤j≤k

ρ(Djj) < 1,

the values of states in S+
i are all finite. Thus the result holds for all states in S.

Let H = (SH, EH) be a subgraph of the induced graph Gπ where SH is the set of vertices

and EH is the set of edges. Define the square matrix DH whose index set is SH to be

DH(s, s′) =

Dπ(s, s′), (s, s′) ∈ EH,

0, otherwise.

Lemma 3.3. Assume that Condition 2.1 and Condition 2.5 (Condition 2.7) hold. Consider

an SD policy π and the induced graph Gπ. Let H = (SH, EH) be a strongly connected subgraph

of Gπ and DH be the matrix corresponding to H. If not all rewards corresponding to edges in

EH are zero, then ρ(DH) ≥ 1 implies that for all states s ∈ SH, the value vπ
exp(s) is infinite.

Proof. Notice thatH must be a subgraph of a strongly connected component of Gπ. Let this strongly

connnected component be Gπ,i, the corresponding irreducible block be Dii, and the corresponding

set of states be Si. Consider the matrix D̃H of index set Si where

D̃H(s, s′) =

DH(s, s′), (s, s′) ∈ SH,

0, otherwise.

It holds that ρ(DH) = ρ(D̃H) ≥ 1 and D̃H ≤ Dii. Then according to Lemma 3.2, it holds that

ρ(Dii) ≥ 1. The result follows from our assumption and Theorem 3.1.

A partial SD policy π is a partial mapping from the state space S to the action space A.

Let Sπ be the set of states for which π is defined. Define Gπ = (Sπ, Eπ) to be the induced

subgraph of π where the vertex set is Sπ and the edge set is

Eπ =
{

(s, s′) s, s′ ∈ Sπ, P
(
s′|s, π(s)

)
> 0
}

.

94

Define a completion of π to be an SD policy that has the same mapping as π for states in

Sπ, denoted as π◦. Then the following theorem follows directly from the above lemma.

Theorem 3.4. Assume that Condition 2.1 and Condition 2.5 (Condition 2.7) hold. Con-

sider a partial SD policy π and the induced graph Gπ. Let Dπ be the matrix corresponding

to Gπ. If Gπ is strongly connected and not all rewards corresponding to edges in Eπ are zero,

then ρ(Dπ) ≥ 1 implies that for all states s ∈ Sπ and all completions of π (denoted π◦), the

value vπ◦

exp(s) is infinite.

3.2.3.2 Positive Models and Condition 3.4

For positive models, one policy with infinite values is sufficient to violate Condition 3.4

(Positive Model with Finite Exponential Utilities).

Policy iteration should always start with a proper SD policy in our settings. Recall

that policy iteration alternates between policy evaluation and policy improvement steps.

Therefore, if any SD policy (including the initial policy) is evaluated to have infinite values,

policy iteration needs to be terminated. Since policy evaluation is part of policy iteration,

no additional tests are needed. Since there are only a finite number of SD policies, policy

iteration will terminate.

We now consider value iteration. For positive models, there are two possibilities. If

there is no proper greedy SD policy with respect to the current values, the optimal values

are infinite since if a state is improper under the improper greedy SD policy (Test1), its

value must be infinite. If, however, there always exists a proper greedy SD policy with

respect to the current values, we can check the spectral radius ρ(Aπ) in the main loop and

terminate value iteration if ρ(Aπ) ≥ 1 (Test2). Adding Test1 and Test2 does not change

the value update rule, therefore the version of value iteration with these tests still converges

to the optimal values if Condition 3.4 holds. Now we show that if Condition 3.4 does not

hold, Test1 or Test2 will succeed within a finite time. Suppose Test1 and Test2 never

succeed. Then all greedy policies are proper SD policies with finite values. Let the initial

95

value function be v0
exp and the greedy policy at iteration t be πt. We have

vt+1
exp (s) =

∑

s′∈S

P (s′|s, πt(s))γr(s,πt(s),s′)vt
exp(s′) =

∑

s′∈S

Dπt(s, s
′)vt

exp(s′), s ∈ S \G,

where Dπt is the matrix corresponding to πt as defined in Eq. (3.4). In a matrix form, it is

vt+1
exp = Dπtvt

exp.

We therefore have

vt+1
exp = DπtDπt−1vt−1

exp = · · · = DπtDπt−1 · · ·Dπ0v0
exp.

Recall that the matrix Dπt can be written as
(

Aπt Bπt

0 1

)

. Since πt is a proper SD policy

with finite values for all t, the submatrix Aπt of Dπt has a spectral radius less than one.

There are a finite number of proper SD policies, and thus the maximum of the spectral radii

of their corresponding A-matrices is also less than one, denoted by ρ̂. Therefore according

to (Seneta, 1981; Hartfiel, 2002), we have

lim
t→∞

AπtAπt−1 · · ·Aπ0 = 0

and there exists a nonnegative matrix Â such that

Aπt+jAπt+j−1 · · ·Aπj ≤ ρ̂t+1Â,

where we actually choose elements of Â large enough so that 1 ≤ Â. There also exists a

nonnegative matrix B̂ such that for all proper SD policy with finite values π, it holds that

Bπ ≤ B̂. Now we can show that

DπtDπt−1 · · ·Dπ0 ≤

ρ̂t+1Â 1−ρ̂t+1

1−ρ̂ ÂB̂

0 1

 .

Since it holds for nonnegative matrices that if A1 ≤ B1 and A2 ≤ B2 then A1A2 ≤ B1B2,

we have

Dπ0 =

Aπ0 Bπ0

0 1

 ≤

ρ̂Â B̂

0 1

 ≤

ρ̂Â ÂB̂

0 1

 ,

96

Dπ1Dπ0 =

Aπ1 Bπ1

0 1

Aπ0 Bπ0

0 1

 =

Aπ1Aπ0 Aπ1Bπ0 +Bπ1

0 1

≤

ρ̂2Â ρ̂ÂB̂ + B̂

0 1

 ≤

ρ̂2Â ρ̂ÂB̂ + ÂB̂

0 1

 =

ρ̂2Â 1−ρ̂2

1−ρ̂ ÂB̂

0 1

 ,

and thus in general

DπtDπt−1 · · ·Dπ0 =

Aπt Bπt

0 1

Aπt−1 Bπt−1

0 1

 · · ·

Aπ0 Bπ0

0 1

=

AπtAπt−1 · · ·Aπ0 Aπt · · ·Aπ1Bπ0 +Aπt · · ·Aπ2Bπ1 + · · ·+AπtBπt−1 +Bπt

0 1

≤

ρ̂t+1Â ρ̂tÂB̂ + ρ̂t−1ÂB̂ + · · ·+ ρ̂ÂB̂ + ÂB̂

0 1

 =

ρ̂t+1Â 1−ρ̂t+1

1−ρ̂ ÂB̂

0 1

 .

Therefore

lim
t→∞

vt+1
exp = lim

t→∞
DπtDπt−1 · · ·Dπ0v0

exp

≤ lim
t→∞

ρ̂t+1Â 1−ρ̂t+1

1−ρ̂ ÂB̂

0 1

 v0

exp =

0 ÂB̂
1−ρ̂

0 1

 v0

exp =

0 ÂB̂
1−ρ̂

0 1

v̄0
exp

1

=
ÂB̂v̄0

exp

1− ρ̂ .

That is, for all t, vt
exp is bounded. However, on the other hand, since Condition 3.4 does

not hold, there exists a policy π̃ such that vπ̃
exp(s̃) is unbounded for some state s̃ ∈ S \ G.

Then it follows that the sequence defined as

ṽ0
exp(s) = v0

exp(s), s ∈ S,

ṽt+1
exp (s) =

∑

s′∈S

P (s′|s, π̃(s))γr(s,π̃(s),s′)ṽt
exp(s′), s ∈ S \G,

is unbounded for s̃. According to the value update rule, we can show by induction that

vt
exp(s) ≥ v̂t

exp(s), s ∈ S.

97

The above claim holds for t = 0 trivially. Suppose it holds for t. Then

vt+1
exp (s) = max

a∈As

∑

s′∈S

P (s′|s, a)γr(s,a,s′)vt
exp(s′) ≥

∑

s′∈S

P (s′|s, π̃(s))γr(s,π̃(s),s′)vt
exp(s′)

≥
∑

s′∈S

P (s′|s, π̃(s))γr(s,π̃(s),s′)ṽt
exp(s′) = ṽt+1

exp (s).

In particular, the value vt
exp(s̃) ≥ ṽt

exp(s̃) is unbounded, which contradicts the earlier claim

that vt+1
exp is bounded for all t. Therefore, if Condition 3.4 does not hold, value iteration with

Test1 and Test2 will eventually identify an SD policy with infinite values and terminate

within a finite time.

We summarize the above discussion in the following theorem.

Theorem 3.5. Assume that Condition 2.1 and Condition 2.7 hold.

a. Policy iteration terminates within a finite time. If Condition 3.4 holds, it terminates

with a proper SD-optimal policy; otherwise, it outputs “infinite values”.

b. Value iteration with Test1 and Test2 converges to the optimal values if Condition 3.4

holds; otherwise, it terminates within a finite time and outputs “infinite values”.

3.2.3.3 Strictly Negative Models and Condition 3.2

For strictly negative models, if Condition 3.4 does not hold, we need to show that no proper

policy has a finite value in order to show that Condition 3.2 (Negative Model with Finite

Exponential Utilities) is violated. We do this by keeping track of partial policies that result

in infinite values based on Theorem 3.1 and Theorem 3.4.

According to Theorem 3.4, a partial policy results in infinite values if its induced sub-

graph is a strongly connected with non-zero rewards and its corresponding matrix has a

spectral radius great or equal to one. We call such a partial policy a forbidden partial

policy. When solving the MDP, we should not consider any policy that is a completion of

a forbidden partial policy. We therefore maintain a set of forbidden partial policies and

disallow action assignments consistent with these forbidden partial policies.

A minimal forbidden partial policy is a forbidden partial policy where removing any

state makes it not forbidden. To maximize the number of policies we can rule out, we

98

search for minimal forbidden partial policies whenever a forbidden partial policy is found.

Such minimal policies can be found by enumerating all strongly connected subgraphs of the

induced subgraph of the known forbidden partial policy, by starting from those containing

only one state and increasing the number of states. Details of the search will be documented

elsewhere.

We represent a partial policy as a set of state-action pairs and maintain a set of forbidden

policies. Two partial policies can be merged if one is a subset of the other and only the

former partial policy is needed. An action is forbidden at a state if this pair of state and

action appears in the set of forbidden policies.

In principle, we can go over all partial policies starting from those with only one state.

Since a forbidden partial policy can rule out all its completions, we do not need to enumerate

all SD policies. However, if Condition 3.2 holds, we still need to go through all policies with

finite values, which is intractible. On the other hand, we may favor this approach if we are

almost sure no policy has finite values and want to prove it.

Policy iteration only needs to deal with proper policies with infinite values at the ini-

tialization step. We start with an arbitrary proper policy and an empty set of forbidden

partial policies. If this policy has infinite values (known from solving the policy evaluation

equation), we identify its minimal forbidden partial policies and add them to the set. Then

we try to obtain a new proper policy that does not contain a known forbidden partial policy.

We repeat this procedure until a proper policy with finite values is found or there exists a

state for which all actions are forbidden, in which case no policy has finite values. Since

there are only a finite number of SD policies, the procedure terminates.

For value iteration, we need to keep track of the set of forbidden policies as we proceed.

In each iteration, we obtain the greedy policy and identify its strongly connected compo-

nents. If any strongly connect component indicates a forbidden partial policy, minimal

partial policies are sought and added to the set of forbidden partial policies. When doing

value updates, we need to avoid using maximizing actions if they in combination form a

forbidden partial policy. This does not affect the convergence of value iteration if Condi-

tion 3.2 holds, since on the one hand, a forbidden partial policy eventually drives the values

99

unbounded and cannot be part of a proper SD-optimal policy, and on the other hand, value

iteration terminates with any negative initial values. In this way, we also make sure that

all forbidden partial policies can be met if no policy has finite values. If we do not avoid

forbidden partial policies, the maximizing actions may not change although the finiteness

condition is violated. We terminate value iteration if the error between consecutive iter-

ations are close enough (on convergence) or the set of forbidden partial policies indicates

that no policy has finite values. This procedure terminates since either we prove no policy

has finite values or value iteration converges.

We summarize the above discussion in the following theorem and refer to the procedure

of maintaining forbidden partial policies and testing for the negation of Condition 3.2 as

Test3.

Theorem 3.6. Assume that Condition 2.1 and Condition 3.5 hold.

a. Policy iteration with Test3 terminates within a finite time. If Condition 3.2 holds, it

terminates with a proper SD-optimal policy; otherwise, it outputs “infinite values”.

b. Value iteration with Test3 converges to the optimal values if Condition 3.2 holds; oth-

erwise, it terminates within a finite time and outputs “infinite values”.

3.2.3.4 Practical Considerations

In practice, we may not need to test the finiteness conditions at all, or may only test when

there are signs that the finiteness conditions are violated. We next consider what can be

done for the individual cases we discussed earlier.

First consider positive models. If policy iteration is used, the testing is part of policy

iteration (solving the evaluation equations) and no extra work is needed. If value iteration

is used, we may test the condition only when there are signs of not converging, for example,

when the errors between consecutive iterations keep increasing instead of decreasing.

Now consider strictly negative models. If policy iteration is used and we know there

are many proper policies with finite values, we may simply restart policy iteration with a

different proper policy, hoping that it has finite values. We can still switch to using the

100

testing after many trials fail. If value iteration is used and we are confident that there is

a proper policy with finite values, we can simply perform value iteration without checking

for forbidden partial policies since it should converge according to (Patek, 2001). Again, we

can still switch to using the testing just to prove that the finiteness condition is violated.

Therefore, to simplify the presentatio in the later parts of this chapter, I will not include

testing for finiteness conditions. We can alway incoporate these tests to make the algorithms

complete.

3.3 The Representation Transformation

In this section, we discuss in detail the representation transformation approach from (Koenig

and Simmons, 1994a,b; Koenig, 1997) in order to fully understand its applicability, advan-

tages, and disadvantages. As illustrated in Figure 3.2, a risk-sensitive planning problem

with exponential utility functions is transformed into a risk-neutral planning problem with

pseudo-probabilities, which are nonnegative numbers appearing in the places of real prob-

abilities and they do not necessarily sum to one. Then the transformed problem can be

solved using risk-neutral planners without any change as long as the planners do not check

whether these numbers satisfy the constraints of real probabilities.

In this section, we assume that the rewards can be arbitrary real numbers and the values

for all stationary policies exist and are finite.

3.3.1 Definition

For our convenience, we define the representation transformation slightly different from that

in (Koenig and Simmons, 1994a,b; Koenig, 1997). Our definition can deal with transformed

models both with and without a probabilistic interpretation, thus is a generalization of the

original definition. The transformation transforms probabilities and rewards as follows:

P̄ (s′|s, a) = P (s′|s, a)γr(s,a,s′), s, s′ ∈ S, a ∈ As, (3.7)

r̄(s, a, s′) =

0, s′ ∈ S \G,

ι, s′ ∈ G,
s, s′ ∈ S, a ∈ As, (3.8)

101

where P̄ (s′|s, a) are known as pseudo-probabilities. In addition, we define the values under

an SD policy π in the transformed model with the help of finite horizon values v̄π
T (s). Since

P̄ (s′|s, a) are not probabilities, we need to define v̄π
T (s) starting from scratch. The finite

horizon values are defined as

v̄π
0 (s) = 0, s ∈ S, (3.9)

and for all T ∈ N,

v̄π
T (s) = 0, s ∈ G, (3.10)

v̄π
T+1(s) =

∑

s′∈S

P̄
(
s′
∣
∣s, π(s)

)(

r̄
(
s, π(s), s′

)
+ v̄π

T (s′)
)

=
∑

s′∈S\G
P̄
(
s′
∣
∣s, π(s)

)
v̄π
T (s′) + ι

∑

s′∈G

P̄
(
s′
∣
∣s, π(s)

)
, s ∈ S \G, (3.11)

where the last step follows from Eq. (3.8) and Eq. (3.10). Then the infinite horizon values

are

v̄π(s) = lim
T→∞

v̄π
T (s), s ∈ S. (3.12)

Let T approach ∞. Then we obtain from Eq. (3.11) that the values v̄π(s) satisfy the

following system of policy evaluation equations

v̄π(s) = 0, s ∈ G, (3.13)

v̄π(s) =
∑

s′∈S

P̄
(
s′
∣
∣s, π(s)

)(

r̄
(
s, π(s), s′

)
+ v̄π(s′)

)

=
∑

s′∈S\G
P̄
(
s′
∣
∣s, π(s)

)
v̄π(s′) + ι

∑

s′∈G

P̄
(
s′
∣
∣s, π(s)

)
, s ∈ S \G. (3.14)

Moreover, we define the optimal values to be

v̄∗(s) = max
π∈ΠSD

v̄π(s), s ∈ S. (3.15)

3.3.1.1 Pseudo-Probabilities with a Probabilistic Interpretation

We next show that under the following Condition 3.6, the transformed model has a prob-

abilistic interpretation. This is a generalization of the cases analyzed in (Koenig and Sim-

mons, 1994a,b; Koenig, 1997), where only strictly negative or strictly positive rewards are

102

considered. This interpretation highlights which risk-neutral solution methods can be used

together with the representation transformation to solve MEUexp problems.

Condition 3.6 (Substochastic Pseudo-Probabilities). For all states s, s′ ∈ S and all actions

a ∈ As,

∑

s′∈S

P (s′|s, a)γr(s,a,s′) ≤ 1. (3.16)

That is, for all states s, s′ ∈ S and all SD policies π ∈ ΠSD, the pseudo-probabilities under

π form a substochastic matrix.

A special case is that γr(s,a,s′) ≤ 1 for all transitions, which holds when the agent is

risk-averse and the original model is positive, or when the agent is risk-seeking and the

original model is negative.

When Condition 3.6 (Substochastic Pseudo-Probabilities) holds, we can consider an

auxiliary MDP that reduces to the transformed model. The auxiliary MDP has an extra

dummy goal state s◦. All transitions in the transformed model are included in the auxiliary

MDP, and for all states s ∈ S and all actions a ∈ As, we have additional transitions to the

dummy goal state. Formally, the auxiliary model is defined as follows:

• The state space is Ŝ = S ∪ {s◦}. The set of goal states is Ĝ = G ∪ {s◦}.

• The action space is A, the set of applicable actions at state s ∈ S is As, and As◦ =

{anull} since s◦ is a goal state.

• The transition probabilities for all states s, s′ ∈ S and all actions a ∈ As are defined

as

P̂ (s′|s, a) = P (s′|s, a)γr(s,a,s′),

P̂ (s◦|s, a) = 1−
∑

s′∈S

P (s′|s, a)γr(s,a,s′).

• The reward function is defined as: for all states s ∈ S, all actions a ∈ As, and all

next-time states s′ ∈ S ∪ {s◦},

r̂(s, a, s′) =

0, s′ ∈ (S \G) ∪ {s◦},

ι, s′ ∈ G.

103

Because of Condition 3.6 (Substochastic Pseudo-Probabilities), the auxiliary MDP is well-

defined.

We denote the values of the auxiliary MDP under the MER objective as v̂. We need

to show that for all SD policies π ∈ ΠSD and all states s ∈ S, v̂π(s) = v̄π(s). First, by

comparing the auxiliary MDP and the transformed model, we have immediately that for

all states s, s′ ∈ S and all actions a ∈ As, it holds that

P̄ (s′|s, a) = P̂ (s′|s, a) and r̄(s, a, s′) = r̂(s, a, s′).

Next we show by induction that the finite horizon values are equal for all horizons. Suppose

the SD policy is π. Since s◦ is a goal state in the auxiliary MDP, we have for all T ∈ N,

v̂π
T (s◦) = 0. When T = 0, for all states s ∈ S, v̂π

0 (s) = v̄π
0 (s) = 0 by definition. Suppose it

holds for T that for all states s ∈ S, v̂π
T (s) = v̄π

T (s). We have by definition that for all goal

states s ∈ G, v̂T+1(s) = v̄T+1(s) = 0. For all non-goal states s ∈ S \G,

v̂π
T+1(s) =

∑

s′∈Ŝ

P̂
(
s′
∣
∣s, π(s)

)(

r̂
(
s, π(s), s′

)
+ v̂π

T (s′)
)

=
∑

s′∈S

P̂
(
s′
∣
∣s, π(s)

)(

r̂
(
s, π(s), s′

)
+ v̂π

T (s′)
)

+ P̂
(
s◦
∣
∣s, π(s)

)(

r̂
(
s, π(s), s◦

)
+ v̂π

T (s◦)
)

=
∑

s′∈S

P̂
(
s′
∣
∣s, π(s)

)(

r̂
(
s, π(s), s′

)
+ v̂π

T (s′)
)

⊲ r̂
�
s, π(s), s◦

�
= 0 and v̂π

T (s◦) = 0

=
∑

s′∈S

P̄
(
s′
∣
∣s, π(s)

)(

r̄
(
s, π(s), s′

)
+ v̄π

T (s′)
)

= v̄π
T+1(s). ⊲ definition

Therefore, for all states s ∈ S and all T ∈ N, it holds that v̂π
T (s) = v̄π

T (s). By taking limits

on both sides, we have that for all states s ∈ S, it holds that v̂π(s) = v̄π(s). Therefore, the

pseudo-probabilities have a probabilistic interpretation and the transformed model can be

viewed as an MDP with an implicitly represented goal state s◦.

We notice that

• if the agent is risk-seeking, the transformed rewards r̄(s, a, s′) only take values 0 and

ι = 1, and the transformed model is positive; and

• if the agent is risk-averse, the transformed rewards r̄(s, a, s′) only take values 0 and

ι = −1, and the transformed model is negative.

104

Therefore, the auxiliary MDP can be solved using methods for the MER objective. When

the agent is risk-seeking, we can use solution methods for positive models, such as value

iteration and policy iteration methods. When the agent is risk-averse, we can use solution

methods for negative models, which include value iteration, and if there exists a proper

optimal policy, policy iteration. However, it is not guaranteed that for all non-goal states s,

the resulting optimal value v̄∗(s) equals the risk-sensitive optimal value v∗exp(s), which will

be discussed next.

3.3.1.2 Conditions for the Representation Transformation to Work

The purpose of the representation transformation is that the transformed problem will be

solved using an MER-planner without any change. That is, the MER-planner can find or

approximate an SD policy π̄∗ such that v̄π̄∗
(s) = v̄∗(s) for all states s ∈ S.

Some conditions must be satisfied for the representation transformation to be applicable.

First, we must have v∗exp(s) = v̄∗(s) for all non-goal states s ∈ S\G. Second, there must exist

an MEUexp-optimal policy π∗exp such that π∗exp(s) = π̄∗(s) for all non-goal states s ∈ S \G.

Last, we need MER algorithms that do not rely on the “probabilities” to sum to one.

Disregarding the presence of pseudo-probabilities, we have noticed that when the agent

is risk-seeking, the transformed model is positive, and when the agent is risk-averse, the

transformed model is negative. These observations hold even if Condition 3.6 (Substochastic

Pseudo-Probabilities) does not hold. Ideally, the MER algorithms for positive and negative

models can be used without any change to solve MEUexp problems of the above cases

respectively by solving the transformed problems. Such algorithms include value iteration

and policy iteration, neither of which check whether the “probabilities” sum to one. It

is then reduced to verify whether these methods can find or approximate v̄∗, the optimal

values of the transformed model, and π̄∗, an SD optimal policy of the transformed model.

In the following subsections, we discuss in detail under what conditions the represen-

tation transformation can be applied, and whether the value iteration and policy iteration

methods can be used together with the representation transformation to solve MEUexp

problems.

105

3.3.2 Planning Problems with Proper Policies Only

Under a proper policy, the agent reaches a goal state with probability one. We show that

if all stationary policies are proper, then the representation transformation can be used.

We first show that under a deterministic proper policy, the transformed model and the

original model have the same values for non-goal states under their respective planning

objectives. For all deterministic proper policies π, the values for the original model under

the MEUexp objective satisfy the following system of policy evaluation equations,

vπ
exp(s) = ι, s ∈ G,

vπ
exp(s) =

∑

s′∈S

P (s′|s, π(s))γr(s,π(s),s′)vπ
exp(s′), s ∈ S \G.

For a non-goal state s ∈ S \G, we have

vπ
exp(s) =

∑

s′∈S

P (s′|s, π(s))γr(s,π(s),s′)vπ
exp(s′)

=
∑

s′∈S\G
P (s′|s, π(s))γr(s,π(s),s′)vπ

exp(s′) +
∑

s′∈G

P (s′|s, π(s))γr(s,π(s),s′)vπ
exp(s′)

=
∑

s′∈S\G
P (s′|s, π(s))γr(s,π(s),s′)vπ

exp(s′) + ι
∑

s′∈G

P (s′|s, π(s))γr(s,π(s),s′)

=
∑

s′∈S\G
P̄ (s′|s, π(s))vπ

exp(s′) + ι
∑

s′∈G

P̄ (s′|s, π(s)),

which is the same system of equations as Eq. (3.14), the policy evaluation equations for

non-goal states in the transformed model, except that v̄∗ is replaced with v∗exp. Recall that

we assumed at the beginning of this section that the values for all stationary policies are

finite. We also know that if the values under a deterministic proper policy exist and are

finite for all non-goal states, then the above system of equations has a unique solution

(Patek, 2001). Therefore, for all non-goal states s ∈ S \G, it holds that v̄π(s) = vπ
exp(s).

Suppose further that all stationary policies are proper. A special case is that the model is

acyclic (Koenig, 1997). Then for an MEUexp-optimal policy π∗exp, which is proper, and for all

non-goal states s ∈ S \G, it holds that v∗exp(s) = v
π∗
exp

exp (s) = v̄π∗
exp(s) ≤ v̄∗(s). On the other

hand, if there exists some policy π̄∗ such that there exists a non-goal state s ∈ S \ G and

v̄∗(s) = v̄π̄∗
(s) > v̄π∗

exp(s), then v̄π̄∗
(s) = vπ̄∗

exp(s) > v∗exp(s), which is impossible. Therefore,

106

for all non-goal states s ∈ S \ G, it holds that v∗exp(s) = v̄∗(s) and there exists a policy π̄∗

that is optimal in both senses.

Under the assumption that all stationary policies are proper, the MER versions of value

iteration and policy iteration can be used to solve MEUexp planning problems, since v̄π(s) =

vπ
exp(s) for all stationary policies π and thus these methods are reduced to their respective

MEUexp version.

3.3.3 Planning Problems with Improper Policies

If not all stationary policies are proper, the representation transformation may not work.

For the convenience of analysis, we assume that there exists a proper optimal policy for the

original model under the MEUexp objective.

We first consider the case where the agent is risk-seeking. In this case, the representation

transformation can be applied. When the agent is risk-seeking, ι = 1 and the optimal

MEUexp-values v∗exp(s) for non-goal states are positive since we assumed there is a proper

optimal policy. If π is improper at s, the value v̄π(s) = 0 since non-zero rewards can only be

collected when a goal state is reached. But for a proper policy π∗exp that is MEUexp-optimal,

the previous subsection shows that for all non-goal states s ∈ S \G, v̄π∗
exp(s) = v

π∗
exp

exp (s) > 0.

Therefore for all non-goal states s ∈ S \ G and all policies π that are improper at s,

v̄∗(s) = v∗exp(s) > v̄π(s) = 0. That is, an improper policy cannot be optimal for the

transformed model. Since the solution methods for the transformed model can find or

approximate v̄∗(s) for all non-goal states s ∈ S \G, they will also solve the original MEUexp

problem.

Next we consider risk-averse agents. In this case, the representation transformation

cannot be applied when there are improper policies. When the agent is risk-averse, ι = −1

and the optimal MEUexp-values v∗exp(s) for non-goal states are negative. Again, if π is

improper at s, the value v̄π(s) = 0. But for a proper policy π, the previous subsection

shows that for all non-goal states s ∈ S \G, v̄π(s) = vπ
exp(s) < 0. Therefore for all non-goal

states s ∈ S \ G and all policy π that is improper at s, v̄∗(s) = v̄π(s) = 0 > v∗exp(s). That

is, an optimal policy for the transformed model will be improper. The MER value iteration

107

method, when applied to the transformed model, will find or approximate the values v̄∗(s)

for all states. The policy iteration method on the other hand cannot be applied if no proper

policy is optimal. Thus the representation transformation cannot be used.

3.3.4 Advantages and Limitations of the Representation Transformation

The representation transformation, when applicable, is used as a preprocessing step together

with risk-neutral planners to solve risk-sensitive planning problems with an exponential

utility function (see Figure 3.2). Another advantage is that it can also deal with problems

with both negative and positive rewards when applicable.

However, the representation transformation has severe limitations. It is not applicable

to risk-averse agents if there can be improper policies, which is a common case in planning.

More importantly, it is not justified to be used together with solution methods other than

straightforward value iteration and policy iteration, since usually the state space or the

transition probabilities are represented implicitly. This is inadequate for solving large-scale

planning problems that require more complicated solution methods, where it is not clear

how to define pseudo-probabilities in a systematic way. In the rest of this chapter, I use a

transformation-of-algorithms approach to overcome these limitations.

3.4 Transformation of Algorithms

As illustrated in Figure 3.1, I consider a nominal transformation of algorithms that trans-

forms a planning algorithm for a risk-neutral objective to an algorithm for the MEUexp

objective. The transformation hints on how the risk-neutral algorithms can be adapted to

solve MEUexp problems. The transformed algorithms need to be justified, which usually can

be done in a way parallel to the justification for the original algorithms.

This transformation has two variants, which are best explained using the optimality

equations. We use the value iteration method for negative models with goal states to illus-

trate how these variants help constructing basic computational procedures for the MEUexp

objective. Recall that the system of optimality equations for finite models under the MEUexp

108

objective is

v∗exp(s) = ι, s ∈ G,

v∗exp(s) = max
a∈As

∑

s′∈S

P (s′|s, a)γr(s,a,s′)v∗exp(s′), s ∈ S \G.

First, we have the following mapping for goal states in both variants:

v(s) = 0, s ∈ G,
x

y

vexp(s) = ι, s ∈ G.

(3.17)

The two variants differ for non-goal states. We discuss them separately.

3.4.1 Pseudo-Probability Transformation

The pseudo-probability variant relates an MEUexp planner to an MER planner through

pseudo-probabilities. This can be shown as follows by comparing for non-goal states the

respective systems of optimality equations, which the optimal values satisfy respectively:

v(s) = max
a∈As

∑

s′∈S

P (s′|s, a) [r(s, a, s′) + v(s′)],
x

y

x

y

vexp(s) = max
a∈As

∑

s′∈S

P (s′|s, a)γr(s,a,s′)[0 + vexp(s′)].

(3.18)

Therefore, the rewards r(s, a, s′) in the MER planner correspond to 0 in the MEUexp

planner, and the probabilities in the MER planner correspond to the pseudo-probabilities

P (s′|s, a)γr(s,a,s′) in the MEUexp planner. We use the name pseudo-probability because it

does not hold that
∑

s′∈S

P (s′|s, a)γr(s,a,s′) = 1, and the sum can be greater or less than one.

We will also use P̄ (s′|s, a) = P (s′|s, a)γr(s,a,s′) to indicate pseudo-probabilities.

Now we consider how the transformation works for the value iteration method for nega-

tive models. The value iteration method for negative models under the MER objective uses

the following value update rule for non-goal states:

v0(s) = 0, vt+1(s) = max
a∈As

∑

s′∈S

P (s′|s, a)[r(s, a, s′) + vt(s′)].

109

To use the pseudo-probability transformation, we replace P (s′|s, a) with P (s′|s, a)γr(s,a,s′)

and r(s, a, s′) with 0. We also need to replace the initial value 0 with ι = Uexp(0). The

transformation is like this:

v0(s) = 0, vt+1(s) = max
a∈As

∑

s′∈S

P (s′|s, a) [r(s, a, s′)+ vt(s′)]

y

y

y

v0
exp(s) = ι , vt+1

exp (s) = max
a∈As

∑

s′∈S

P (s′|s, a)γr(s,a,s′)[0 +vt
exp(s′)]

= max
a∈As

∑

s′∈S

P (s′|s, a)γr(s,a,s′)vt
exp(s′).

The transformed value update rule therefore is the same as that in the value iteration

method for negative models with goal states under the MEUexp objective.

3.4.2 Pseudo-Discount Factor Transformation

The other variant relates an MEUexp planner to a variably discounted MERβββ planner but

through pseudo-discount factors. This can be shown as follows:

v(s) = max
a∈As

∑

s′∈S

P (s′|s, a)[r(s, a, s′) + β(s, a, s′) v(s′)],
x

y

x

y

vexp(s) = max
a∈As

∑

s′∈S

P (s′|s, a)[0 + γr(s,a,s′) vexp(s′)].

(3.19)

Again, the rewards r(s, a, s′) in the MERβββ planner correspond to 0 in the MEUexp plan-

ner, but the state-dependent discount factors β(s, a, s′) in the MER planner correspond to

pseudo-discount factors γr(s,a,s′). We use the name pseudo-discount factor because γr(s,a,s′)

may be greater than one.

We continue to use the value iteration method for negative models with goal states to

illustrate how this variant works. The value update rule for negative models under the

MERβββ objective is

vt+1(s) = max
a∈As

∑

s′∈S

P (s′|s, a)[r(s, a, s′) + β(s, a, s′)vt(s′)],

110

where β(s, a, s′) < 1. To use the pseudo-discount factor transformation, we replace β(s, a, s′)

with γr(s,a,s′), and r(s, a, s′) with 0:

vt+1(s) = max
a∈As

∑

s′∈S

P (s′|s, a)[r(s, a, s′)+β(s, a, s′) vt(s′)]

y

y

vt+1
exp (s) = max

a∈As

∑

s′∈S

P (s′|s, a)[0 + γr(s,a,s′) vt
exp(s′)]

= max
a∈As

∑

s′∈S

P (s′|s, a)γr(s,a,s′)vt
exp(s′).

Then we obtain the value update rule for negative models under the MEUexp objective

but without the initial values, since the MERβββ version of value iteration converges for any

initial values as long as β(s, a, s′) < 1 for all transitions. This is not the case for the MEUexp

objective. This problem can be easily solved since we can require v0(s) = 0 in addition and

then replace 0 with ι. Since the MERβββ version of value iteration does not deal with goal

states separately, we need to have special treatments for goal states, which is simple in this

example and has been taken care of by setting the initial values to ι. This example also

shows that we need to be careful when using the transformation of algorithms, and it is

necessary to formally prove the correctness of methods obtained using the transformation

of algorithms.

Notice that the system of optimality equations for the MERβ objective is a special case

of that for the MERβββ objective where β(s, a, s′) = β. We can therefore also start with the

MERβ objective, which is used by most of the efficient AI planners for which we seek risk-

sensitive generalizations, and obtain a version of the planning algorithm under the MERβββ

objective. But caution is needed to place the discount factors β at the right places. A rule

of thumb is to make sure the pseudo-discount factors γr(s,a,s′) make sense in the context,

for example, to make sure the summation indices are in the proper places.

3.4.3 Short Summary

These two variants are almost the same if the probabilities are given explicitly as to be shown

in Section 3.5 for LAO*, an important search-based method. But when the probabilities

are given implicitly, one variant can be more suitable than the other. The intuition is that

111

the pseudo-probability transformation is more suitable for implicit probabilities that are

temporally extended, resulting from temporal abstraction, while the pseudo-discount factor

transformation is more suitable for factored MDPs, resulting from state abstraction. We

will discuss them in more detail in Section 3.6 and Section 3.7.

I emphasize that these transformations of algorithms are only nominal, in the sense that

they provide hints about how to adapt MER methods to solve problems under the MEUexp

objective. We often need independent proofs of the correctness of the resulting methods.

Usually this can also involve identifying conditions under which the transformed algorithms

are valid. Fortunately, the proofs for the original MER algorithms often provide helpful

ideas about how to construct new proofs and how to identify such conditions.

The transformation of algorithms is used to transform DT planners for large-scale plan-

ning problems, and the resulting methods can be proved to be correct. This approach

therefore overcomes the limitation of the previous representation transformation approach.

The following sections provide further evidence for the applicability of this approach.

3.5 Explicit Probabilities: The LAO* Example

In this section, we use the LAO* method as an example to show that for algorithms using

explicit probabilities, either variant of the transformation can be used. We first analyze

the original MER version of LAO* and identify the parts that need to be transformed, then

present the transformed method and show its correctness. This will also be the pattern

when we discuss other methods for solving large-scale MDPs under the MEUexp objective.

The LAO* method (Hansen and Zilberstein, 1998, 1999a, 2001) uses heuristic search to

solve problems for which Condition 3.5 (Strictly Negative Model) holds, that is, problems

with goal states and strictly negative rewards. It can also be combined with structural

dynamic programming methods to solve factored MDPs (Feng and Hansen, 2002; Hansen

et al., 2002). In this section, we first consider the extension of LAO* to solve flat MDPs

under the MEUexp objective. In Section 3.7.3, we consider the extension of LAO* to solve

factored MDPs.

112

LAO* (Hansen and Zilberstein, 2001) is an offline search method that generalizes the

AO* method for searching AND-OR graphs (Nilsson, 1980). MDPs can be viewed as AND-

OR graphs, where the states are OR nodes and the actions are AND nodes. For an OR

node, the solution depends on exactly one child, which is the max operation in the optimality

equations for MDPs. For an AND node, the solution depends on all children, which is the

expectation over all possible outcomes in the optimality equations for MDPs.

The benefit of LAO* is that we only need to focus on states that can be reached in

the process of seeking the solution, thus avoiding enumerating the complete state space.

Another benefit is that we can use heuristic values to speed up planning. Heuristic values

are upper bounds of the optimal value functions. For the original risk-neutral LAO*, the

heuristic values h(s) are given such that 0 ≥ h(s) ≥ v∗(s).

We use the painted blocks domain to illustrate how LAO* works (see Figure 1.6). Recall

that we do not need to distinguish the blocks except for their colors. Hence we can represent

the states of a painted blocks problem using the following representation. Use B and W to

represent blocks in black and white, respectively. A tower of blocks is represented by a

string of B and W so that the first letter of the string corresponds to the bottom block

and the last letter of the string corresponds to the top block. For example, the tower in

the goal configuration can be represented as the string BWB. A state, consisting of multiple

towers, then is a set of strings. Therefore, the initial configuration in this example can

be represented as {WBB,WW}. In this representation, the goal configuration corresponds to

seven goal states: {BWB,BB}, {BWB,BW}, {BWB,WB}, {BWB,WW}, {BWB,B,B}, {BWB,B,W}, and

{BWB,W,W}. There are 162 states for a five-block problem in this representation. We will

show that fewer states are considered in the solution process using LAO* than using plain

dynamic programming methods such as policy iteration or value iteration.

3.5.1 LAO* Search

LAO* performs dynamic programming and heuristic search alternately. The heuristic search

is guided by the values and partial policies obtained in dynamic programming, while dy-

namic programming is restricted to relevant states obtained in the heuristic search.

113

{WBB,WW}/-4
−1/1.0

{WB,WW,B}/-3

−1/0.5

{BW,WB,W}/-2

−
1
/
0
.5

{WB,B,W,W}/-2

−1/0.5

{BWB,W,W}/0

−
1
/
0
.5

{BW,B,W,W}/-2

−
1
/
0
.5

−1/0.5

E = B

F = D

Z

(a) Backward Search: Before Policy Iteration

{WBB,WW}/-4

{WW,B,B,W}/-2

−1/1.0

{WB,WW,B}/-3

−1/0.5

{WWB,B,W}/-2

−
1
/
0
.5

{BW,WB,W}/-2

{WB,B,W,W}/-3

{B,B,W,W,W}/-2

−
1
/
0
.5

−1/0.5

{BWB,W,W}/0

−
1
/
0
.5

{BW,B,W,W}/-2

−
1
/
0
.5

−1/0.5

B

E

F

(b) Forward Search: After Policy Iteration

Figure 3.5: Backward and forward searches in LAO*

We illustrate the search parts of LAO* in Figure 3.5. We assume that the MDP model

of the problem M is represented implicitly. LAO* maintains the explicit graph E that is a

submodel of M , and the currently best solution graph B that is a subgraph of E. In our

example, we assume that at the beginning of an iteration, E = B and contains four states:

{WBB,WW}, {WB,WW,B}, {BW,WB,W}, and {BW,B,W,W}, as shown in Figure 3.5(a). We also

show the current best policy π using dashed arrows and the resulting state transitions in

thick arrows. It so happens that we do not use any painting action in π. We also label the

states with their current values.

Similar to other heuristic search methods like A* or AO*, LAO* maintains F , a set of

fringe states that are to be expanded. In fact, we determine F by following the current best

policy. Therefore in our example, F contains a single state {WB,B,W,W}, labeled with its

114

heuristic value. The state {BWB,W,W} can also be reached by π, but it is a goal state and

will not be expanded in the future. Therefore, we exclude goal states from F .

Next, we choose the single state from F to expand. Since expanding a state can cause

the values of its ancestors to change, LAO* performs a backward search to determine a set

Z, which contains the state just expanded and all of its ancestor states in the explicit graph

E. Only states in Z can change their values. We do not need to include other states since

their values cannot be affected by the expansion.

Dynamic programming then is performed only on Z, and consequently, only states in

Z can possibly change their current best actions. The details of dynamic programming are

not illustrated since there are too many actions and possible resulting states. However,

the result of dynamic programming is shown in Figure 3.5(b). We can see that state

{WB,B,W,W}, which was a fringe state before dynamic programming and had no action

assignment, is assigned the current best action to move the black block on the white block

to the table. Moreover, the current best action for state {WB,WW,B} also changed.

After the dynamic programming operation, LAO* performs a forward search to deter-

mine the new current best solution graph B. The forward search starts with the initial state

{WBB,WW}, and follows the current best policy. As the result of the search, B is changed to

contain only states {WBB,WW} and {WB,WW,B}. The search also determines the set of fringe

states F , which is the set of states that are not in E, but can be reached from B by following

the current best policy.

Algorithm 3.1 (LAOStarPI) shows a version of LAO* that formulates the above procedure

and uses policy iteration as the dynamic programming method, while value iteration can

also be used with subtle differences in the termination condition for value iteration (Hansen

and Zilberstein, 2001). We represent the subgraphs E and B with their respective sets of

states. The algorithm starts with no states in the explicit graph E (Line 7), and gradually

expands the explicit graph by adding states that can be reached using the currently best

policy. The set of fringe states F contains states that are not in E, but can be reached from

a state in B within one action following the currently best policy π (with the exception

when LAO* starts, where B is empty and F is the set of initial states). In each iteration,

115

Algorithm 3.1 LAO* with Policy Iteration

π = LAOStarPI(M,S0, G, h)
Input:

• M = (S, A, P, r), an MDP model; • S0, a set of initial states;
• G, a set of goal states, S0 ∩ G = ∅; • h, a heuristic function;

Output:

• π, an optimal partial policy, implemented as a set of state-action pairs;
Local:

• v, the value function; • B, the currently best solution graph;
• E, the explicit subgraph; • F , the fringe states;
• D, the subset of fringe states to expand; • Z, the relevant states whose values are updated;

1: for all s ∈ G do

2: v(s)← 0;
3: end for

4: for all s ∈ S0 do

5: v(s)← h(s);
6: end for

7: E ← ∅; B ← ∅; π ← ∅; F ← S0;
8: repeat

9: select D ⊆ F ;
10: for all s ∈ ∂D \ E do

11: v(s)← h(s);
12: end for

13: E ← E ∪D;
14: Z ← BackwardSearch(M,D, π);
15: v, π ← PolicyIterationRestricted(M,Z, v);
16: B,F ← ForwardSearch(M,S0, π, E);
17: F ← F \G;
18: until F = ∅;

Line 9 first selects D, a subset of the fringe states F . Line 13 expands the explicit graph E

with D. We need to initialize in Line 10 the values of states in ∂D \ E, where ∂D consists

of states that are not in D, but can be reached from a state in D by performing one action.

Policy iteration (PolicyIterationRestricted, Line 15) is then restricted to Z, the set including

only newly expanded states D and their ancestors that are in the best solution graph B.

The set Z is identified using BackwardSearch in Line 14. At last, Line 17 uses the updated

values to identify the new currently best solution graph in E as well as the new fringe states

F through ForwardSearch. The process repeats until F is empty.

The forward and backward search procedures, which are very similar, are included in

Algorithm 3.2. These procedures use PolicyImage and PolicyPreImage respectively, where

PolicyImage(source, π) is the set of states that can be reached from a state in source in one

action following policy π, and PolicyPreImage(target, π) is the set of states from which a

state in target can be reached in one action following policy π. One way of implementing

116

Algorithm 3.2 Forward and Backward Search Procedures in LAO*

B,F = ForwardSearch(M,S0 , π,E)

1: B ← S0;
2: F ← ∅;
3: temp← B;
4: while temp 6= ∅ do

5: temp← PolicyImage(temp, π);
6: F ← F ∪ (temp \ E);
7: temp← (temp ∩ E) \B;
8: B ← B ∪ temp;
9: end while

Z = BackwardSearch(M,D, π)

1: Z ← D;
2: temp← Z;
3: while temp 6= ∅ do

4: temp← PolicyPreImage(temp, π) \ Z;
5: Z ← Z ∪ temp;
6: end while

target = PolicyImage(source,π)

1: target← ∅;
2: for all s ∈ source do

3: target← target ∪ succ(s, π);
4: end for

source = PolicyPreImage(target,π)

1: source← ∅;
2: for all s ∈ target do

3: source← source ∪ pred(s, π);
4: end for

PolicyImage and PolicyPreImage is also shown in Algorithm 3.2. In this implementation, we

assume the partial policy π is represented as the set of all possible transitions it specifies. We

define succ(s, π) = succ(s, π(s)) and s′ ∈ pred(s, π) ⇐⇒ s ∈ succ(s′, π). We assume that

the representation of π allows for efficient calculation of the sets succ(s, π) and pred(s, π).

Table 3.1 shows the complete trace of (the search part of) LAO*. The search starts from

the initial state S0, which only includes {WBB,WW} in the example. We assume the planning

objective is MER (see Section 3.5.2). We use a heuristic that is obtained by solving a

deterministic relaxation of the problem where the best cases will take place (Bonet, 2002).

For example, the heuristic value for state {WBB,WW} is −3, since in the best case, a goal state

can be reached with three moving actions. The table shows the values of relevant variables

at the end of the main loop (Line 18) of Algorithm 3.1 (LAOStarPI). For simplicity, we only

117

Table 3.1: Trace of LAO* for the painted-blocks problem
D = {s} ∂D \ E (new states only) Z E B with π F

0 ∅ ∅ {WBB,WW}

1 {WBB,WW} {WBBW,W}/-4 {BBB,WW}/-3 {WBB,BW}/-1
{WBB,WB}/-3 {WBB,W,W}/-3

{WBW,WW}/-5 {WWB,WB}/-3 {WWB,WW}/-3
{WB,WW,B}/-2

{WBB,WW} {WBB,WW}/-3 {WBB,WW}->{WB,WW,B} {WB,WW,B}

2 {WB,WW,B} {WBW,B,W}/-2 {WWB,B,W}/-2
{BB,WW,B}/-2 {BB,WW,W}/-3
{BW,WB,B}/-1 {BW,WB,W}/-1
{WB,WB,B}/-3 {WB,WW,W}/-2
{WB,B,W,W}/-2 {WW,WW,B}/-4

{WW,B,B,W}/-2

{WBB,WW}
{WB,WW,B}

{WBB,WW}/-3.5 {WB,WW,B}/-2.5 {WBB,WW}->{WB,WW,B}
{WB,WW,B}->{BW,WB,W}

{BW,WB,W}
{WB,B,W,W}

3 {BW,WB,W} {BWW,WB}/-2 {WBW,BW}/-2
{BB,BW,W}/-1 {BB,WB,W}/-3
{BW,WW,W}/-4 {BW,B,W,W}/-1

{WBB,WW}
{BW,WB,W}
{WB,WW,B}

{WBB,WW}/-3.75 {BW,WB,W}/-1.5
{WB,WW,B}/-2.75

{WBB,WW}->{WB,WW,B}
{BW,WB,W}->{BWB,W,W}
{WB,WW,B}->{BW,WB,W}

{BW,B,W,W}
{WB,B,W,W}

4 {BW,B,W,W} {BWW,B,W}/-2 {BB,B,W,W}/-2
{BW,BW,W}/-2 {BW,WW,B}/-1

{BW,B,B,W}/-2 {BW,W,W,W}/-4
{WW,B,W,W}/-4 {B,B,W,W,W}/-2

{WBB,WW}
{BW,WB,W}
{BW,B,W,W}
{WB,WW,B}

{WBB,WW}/-4 {BW,WB,W}/-2
{BW,B,W,W}/-2 {WB,WW,B}/-3

{WBB,WW}->{WB,WW,B}
{BW,WB,W}->{BWB,W,W}
{BW,B,W,W}->{BWB,W,W}
{WB,WW,B}->{BW,WB,W}

{WB,B,W,W}

5 {WB,B,W,W} {BB,W,W,W}/-3 {WB,WB,W}/-3
{WB,B,B,W}/-2 {WB,W,W,W}/-5

{WBB,WW}
{WB,WW,B}
{WB,B,W,W}

{WBB,WW}/-4 {BW,WB,W}/-2
{BW,B,W,W}/-2 {WB,WW,B}/-3

{WB,B,W,W}/-3

{WBB,WW}->{WB,WW,B}
{WB,WW,B}->{WWB,B,W}

{WWB,B,W}
{WW,B,B,W}

6 {WWB,B,W} {WWBB,W}/-3 {WWBW,B}/-2
{WBB,B,W}/-2 {WWB,BW}/-1
{WWB,B,B}/-3 {WWB,W,W}/-3

{WWW,B,W}/-5

{WBB,WW}
{WWB,B,W}
{WB,WW,B}

{WBB,WW}/-4 {WWB,B,W}/-3
{BW,WB,W}/-2 {BW,B,W,W}/-2
{WB,WW,B}/-3 {WB,B,W,W}/-3

{WBB,WW}->{WB,WW,B}
{WB,WW,B}->{WW,B,B,W}

{WW,B,B,W}

7 {WW,B,B,W} {WWW,B,B}/-2 {WW,B,B,B}/-2 {WBB,WW}
{WB,WW,B}
{WW,B,B,W}

{WBB,WW}/-4 {WWB,B,W}/-3
{BW,WB,W}/-2 {BW,B,W,W}/-2

{WB,WW,B}/-3.5 {WB,B,W,W}/-3
{WW,B,B,W}/-3

{WBB,WW}->{WBB,BW} {WBB,BW}

8 {WBB,BW} {WBBW,B}/-2 {BBB,BW}/-1 {WBB,BB}/-4 {WBB,BW}
{WBB,WW}

{WBB,BW}/-1.5 {WBB,WW}/-4
{WWB,B,W}/-3 {BW,WB,W}/-2

{BW,B,W,W}/-2 {WB,WW,B}/-3.5
{WB,B,W,W}/-3 {WW,B,B,W}/-3

{WBB,WW}->{WBB,W,W} {WBB,W,W}

9 {WBB,W,W} {BBB,W,W}/-3 {WBW,W,W}/-5 {WBB,WW}
{WBB,W,W}

{WBB,BW}/-1.5 {WBB,WW}/-4.25
{WBB,W,W}/-4 {WWB,B,W}/-3
{BW,WB,W}/-2 {BW,B,W,W}/-2

{WB,WW,B}/-3.5 {WB,B,W,W}/-3
{WW,B,B,W}/-3

{WBB,WW}->{WWB,WB}
{WB,WW,B}->{WBW,B,W}

{WB,B,W,W}->{B,B,W,W,W}

{WBW,B,W}
{WWB,WB}

{B,B,W,W,W}

10 {WBW,B,W} {WBWB,W}/-3 {WBWW,B}/-3
{BBW,B,W}/-2 {WBW,WB}/-4

{WBW,B,B}/-2

{WBB,WW}
{WBW,B,W}
{WB,WW,B}

{WBB,BW}/-1.5 {WBB,WW}/-4.25
{WBB,W,W}/-4 {WBW,B,W}/-3.5
{WWB,B,W}/-3 {BW,WB,W}/-2

{BW,B,W,W}/-2 {WB,WW,B}/-3.5
{WB,B,W,W}/-3 {WW,B,B,W}/-3

{WBB,WW}->{WWB,WB}
{BW,WB,W}->{BWB,W,W}
{BW,B,W,W}->{BWB,W,W}
{WB,WW,B}->{BW,WB,W}

{WB,B,W,W}->{B,B,W,W,W}

{WWB,WB}
{B,B,W,W,W}

11 {WWB,WB} {WWB,BB}/-3 {WWW,WB}/-5 {WBB,WW}
{WWB,WB}

{WBB,BW}/-1.5 {WBB,WW}/-4.25
{WBB,W,W}/-4 {WBW,B,W}/-3.5
{WWB,WB}/-3 {WWB,B,W}/-3

{BW,WB,W}/-2 {BW,B,W,W}/-2
{WB,WW,B}/-3.5 {WB,B,W,W}/-3

{WW,B,B,W}/-3

{WBB,WW}->{WWB,WB}
{WWB,WB}->{BWB,WB}

{BW,WB,W}->{BWB,W,W}
{BW,B,W,W}->{BWB,W,W}
{WB,WW,B}->{BW,WB,W}

{WB,B,W,W}->{B,B,W,W,W}

{B,B,W,W,W}

12 {B,B,W,W,W} {B,B,B,W,W}/-2 {B,W,W,W,W}/-5 {WBB,WW}
{WBB,W,W}
{WBW,B,W}
{WB,WW,B}
{WB,B,W,W}
{B,B,W,W,W}

{WBB,BW}/-1.5 {WBB,WW}/-4.5
{WBB,W,W}/-4.5 {WBW,B,W}/-4
{WWB,WB}/-3 {WWB,B,W}/-3

{BW,WB,W}/-2 {BW,B,W,W}/-2
{WB,WW,B}/-4 {WB,B,W,W}/-4

{WW,B,B,W}/-3 {B,B,W,W,W}/-4

{WBB,WW}->{WWB,WB}
{WWB,WB}->{BWB,WB}

{BW,WB,W}->{BWB,W,W}
{BW,B,W,W}->{BWB,W,W}
{WB,WW,B}->{BW,WB,W}
{WB,B,W,W}->{BW,WB,W}

∅

expand one state s (D = {s}) in each iteration. The column labeled as ∂D \ E shows

only new states that have not been visited before. The resulting optimal policy is shown in

Figure 3.6.

Heuristics play an important role in LAO*. A good heuristic function can speed up

planning. For our painted-blocks example, we need only 12 state expansions to obtain an

optimal policy using the heuristic obtained from a deterministic relaxation. In contrast, if

we use only the zero heuristic function, 52 state expansions are needed. However, in either

case, LAO* visits only a small portion of the complete state space, which has 162 states.

118

Algorithm 3.3 Policy Iteration with a Restricted Domain under the MER Objective

v, π = PolicyIterationRestricted(M,Z, v)
Input:

• M = (S, A, P, r), a finite MDP model;
• Z ⊂ S, the subset of states where the policy will be improved;
• v, the current values, only those values on ∂Z are used;

Output:

• v, the currently best values; • π, a currently best partial policy;

1: initialize π0 to be an arbitrary SD “proper” policy;
2: t← 0;
3: repeat

4: solve for vt(s) from the system of equations

vt(s) =
∑

s′∈Z∪∂Z

P (s′|s, πt(s))
[
r(s, πt(s), s′) + vt(s′)

]
, s ∈ Z;

5: for all s ∈ Z do

6: select πt+1(s) ∈ arg max
a∈As

∑

s′∈Z∪∂Z

P (s′|s, a)
[
r(s, a, s′) + vt(s′)

]
,

setting πt+1(s) = πt(s) if possible;
7: end for

8: t← t+ 1;
9: until πt = πt−1;

10: π ← πt; v ← vt−1;

3.5.2 Risk-Neutral LAO*

The policy iteration procedure with a restricted domain is detailed in Algorithm 3.3

(PolicyIterationRestricted). It is based on the following system of optimality equations:

v(s) = max
a∈As

∑

s′∈Z∪∂Z

P (s′|s, a)[r(s, a, s′) + v(s′)], s ∈ Z. (3.20)

The procedure relies on the values of the boundary states of Z, denoted as ∂Z, which are

states that are not in Z but can be reached by performing one action from a state in Z.

{WBB,WW}/-4.5

−1/0.5

−
1
/
0
.5

{WWB,WB}/-3

{WB,WW,B}/-4

−1/0.5

−3/1.0

{BWB,WB}/0

{BW,WB,W}/-2

−
1
/
0
.5

{WB,B,W,W}/-4

−
1
/
0
.5

−1/0.5

−1/0.5

{BWB,W,W}/0

−
1
/
0
.5

{BW,B,W,W}/-2

−
1
/
0
.5

−1/0.5

Figure 3.6: An optimal plan obtained by LAO* under the MER objective

119

We update the values and current best actions of the states in Z. An alternative view is

that we can consider states in S \Z as goal states, but the “goal” states in ∂Z have values

specified by the current value function v instead of 0. With this view, we require that the

initial policy π0 is proper, in the sense that π0 will eventually lead to a state outside of Z,

which is possible because we assume all rewards are strictly negative.

LAO* uses values in several ways: first, the values of states are initialized based on the

heuristic function when these states are added to E; second, the policy iteration method

restricted to Z uses the current values of ∂Z to determine the values of states in Z; and

third, the forward search for best solution graphs is based on the values indirectly through

the currently best known policy. Since the first usage relies on the heuristic function and

the third usage does not change the values, only the policy iteration part is relevant to the

transformation of algorithms when we extend LAO* to the MEUexp objective.

3.5.3 Risk-Sensitive LAO*

Based on the MER version of LAO*, we can apply the pseudo-probability transformation,

which replaces P (s′|s, π(s)) with P (s′|s, π(s))γr(s,π(s),s′) and r(s, π(s), s′) with 0 in Poli-

cyIterationRestricted. The resulting value iteration procedure is shown in Algorithm 3.4

(PolicyIterationExpRestricted), whose correctness is immediate based on the following sys-

tem of optimality equations:

vexp(s) = max
a∈As

∑

s′∈Z∪∂Z

P (s′|s, a)γr(s,a,s′)vexp(s′), s ∈ Z. (3.21)

In Algorithm 3.4 (PolicyIterationExpRestricted), the differences from PolicyIterationRestricted

are highlighted using boxes. Notice that we need to start with a proper policy with finite val-

ues. If we replace PolicyIterationRestricted with PolicyIterationExpRestricted in Algorithm 3.1

(LAOStarPI) (and the heuristic function h(·) with a version suitable for the MEUexp ob-

jective, to be discussed shortly), we obtain an MEUexp version of LAO*, referred to as

LAO*Exp.

The pseudo-discount factor transformation can also be used to obtain the same MEUexp

version of policy iteration on a restricted domain (PolicyIterationExpRestricted) if we start

with an MERβ version of LAO*, which is described in (Hansen and Zilberstein, 1999b).

120

Algorithm 3.4 Policy Iteration with a Restricted Domain under the MEUexp Objective

vexp, π = PolicyIterationExpRestricted(M,Z, vexp , γ)

Input:

• M = (S, A, P, r), a finite MDP model;
• Z ⊂ S, the subset of states where the policy will be improved;
• vexp, the current values, only those values on ∂Z are used;
• γ, a risk parameter, γ > 0, γ 6= 1;

Output:

• vexp, the currently best values; • π, a currently best partial policy;

1: initialize π0 to be an arbitrary SD proper policy with finite values;
2: t← 0;
3: repeat

4: solve for vt
exp(s) from the system of equations

vt
exp(s) =

∑

s′∈Z∪∂Z

P (s′|s, πt(s))γr(s,πt(s),s′)vt
exp(s

′), s ∈ Z;

5: for all s ∈ Z do

6: select πt+1(s) ∈ arg max
a∈As

∑

s′∈Z∪∂Z

P (s′|s, a)γr(s,a,s′)vt
exp(s′),

setting πt+1(s) = πt(s) if possible;

7: end for

8: t← t+ 1;
9: until πt = πt−1;

10: π ← πt; vexp ← vt−1
exp ;

Algorithm 3.5 Policy Iteration with a Restricted Domain under the MERβ Objective

vβ, π = PolicyIterationDiscountedRestricted(M,Z, vβ , β)

Input:

• M = (S, A, P, r), a finite MDP model;
• Z ⊂ S, the subset of states where the policy will be improved;
• vβ , the current values, only those values on ∂Z are used;
• β, a discount factor, 0 < β < 1;

Output:

• vβ , the currently best values; • π, a currently best partial policy;

1: initialize π0 to be an arbitrary SD policy;
2: t← 0;
3: repeat

4: solve for vt
β(s) from the system of equations

vt
β(s) =

∑

s′∈Z∪∂Z

P (s′|s, πt(s))[r(s, π(s), s′) + βvt
β(s′)], s ∈ Z;

5: for all s ∈ Z do

6: select πt+1(s) ∈ arg max
a∈As

∑

s′∈Z∪∂Z

P (s′|s, a)[r(s, a, s′) + βvt
β(s′)],

setting πt+1(s) = πt(s) if possible;
7: end for

8: t← t+ 1;
9: until πt = πt−1;

10: π ← πt; vβ ← vt−1
β ;

121

The MERβ version of LAO* differs from the MER version in that it does not require the

set of goal states to be non-empty, and uses a version of policy iteration as shown in Algo-

rithm 3.5 (PolicyIterationDiscountedRestricted) that can start with an arbitrary SD policy.

It is easy to see that if replacing r(s, a, s′) with 0 and β with γr(s,a,s′), we basically obtain

Algorithm 3.4 (PolicyIterationExpRestricted). But we need to require the initial policy to

have more properties (Line 1 in PolicyIterationExpRestricted). Therefore, the two variants

of the transformation are equivalent for algorithms using explicit probabilities.

The heuristic function is also important for LAO*Exp. For an MEUexp version, the

heuristic function should be chosen such that ι = Uexp(0) ≥ hexp(s) ≥ v∗exp(s). Since in many

applications the heuristic function for the MER objective h(s) is derived from a deterministic

problem, as we did in Section 3.5.2, we can often use hexp(s) = Uexp(h(s)) = ιγh(s).

The correctness and finiteness of LAO*Exp can be proved in the same way as LAO*

(Hansen and Zilberstein, 2001). First, we notice that at any point of time, it holds that

vexp(s) ≥ v∗exp(s) for all s ∈ S. This can be shown by induction. Initially, for any state s

in the explicit graph E, vexp(s) = hexp(s) ≥ v∗exp(s). At any time, suppose it holds for all

s ∈ E that vexp(s) ≥ v∗exp(s). In the next iteration, the value of a state s ∈ E is either

unchanged (if s /∈ Z), or its new value is

vexp(s) = max
a∈As

∑

s′∈Z∪∂Z

P (s′|s, a)γr(s,a,s′)vexp(s′)

≥ max
a∈As

∑

s′∈Z∪∂Z

P (s′|s, a)γr(s,a,s′)v∗exp(s′) = v∗exp(s),

where the inequality follows from the induction hypothesis, and the last equality follows

from the optimality equation. Second, the algorithm will eventually find a solution graph

without fringe states since the model is finite. Last, the correctness of policy iteration

on a restricted domain follows directly from the results for models with goal states (see

Section 3.2.2). If the agent is risk-seeking, there always exists an optimal policy with finite

values. If the agent is risk-averse, with Test3, the online checking for Condition 3.2 we

discussed in Section 3.2.3, LAO*Exp terminates within a finite time. We summarize the

above discussion in the following theorem.

122

{WBB,WW}/−γ−6

−3/1.0

{BBB,WW}/−γ−3

−3/1.0

{BWB,WW}/-1

(a) Risk-Averse Agent (γ = 0.6)

{WBB,WW}/γ−1(2γ − 1)−2

−1/1.0

{WB,WW,B}/(2γ − 1)−2

−1/0.5

{BW,WB,W}/(2γ − 1)−1

−
1
/
0
.5

{WB,B,W,W}/(2γ − 1)−2

−
1
/
0
.5

−1/0.5

−1/0.5

{BWB,W,W}/1

−
1
/
0
.5

{BW,B,W,W}/(2γ − 1)−1

−
1
/
0
.5

−1/0.5

(b) Risk-Seeking Agent (γ = 3.0)

Figure 3.7: Optimal risk-sensitive plans for the painted-blocks problem

Theorem 3.7. Assume that Condition 2.1 and Condition 3.5 hold. LAO*Exp (with Test3

if the agent is risk-averse) terminates within a finite time. If the inital states have finite

values, it terminates with a proper partial SD policy that is optimal for the initial states;

otherwise, it outputs “infinite values”.

Using LAO*Exp, we can obtain optimal risk-sensitive policies for the painted-blocks

problem. For a risk-averse agent with γ = 0.6, an optimal policy uses only painting actions,

as shown in Figure 3.7(a), since the actions are deterministic. For a risk-seeking agent with

γ = 3, an optimal policy uses only moving actions, as shown in Figure 3.7(b), since the

total reward is the smallest in the best case. In fact, for all γ ∈
(

0,
√

5−1
2

)

, the policy shown

in Figure 3.7(a) is optimal; for all γ ∈
(√

5+3
2 ,∞

)

, the policy shown in Figure 3.7(b) is

optimal; and for all γ ∈
(√

5−1
2 ,

√
5+3
2

)

, the policy shown in Figure 3.6 is optimal.

3.6 Pseudo-Probability Transformation and Temporally

Extended Probabilities

Some planning methods, such as those using temporal abstraction, involve temporally ex-

tended probabilities, that is, transition probabilities involving multiple sequentially per-

formed actions. Usually only one-step transition probabilities are explicitly given, and the

temporally extended probabilities are implicitly given through a reasoning process. In this

section, we show that the pseudo-probability transformation is more suitable in this case.

123

As examples of temporally extended probabilities, we first discuss in Section 3.6.1 a

sensor planning method that uses action sequences, and then discuss in Section 3.6.2 plan-

ning with simple options that are partial SD policies. Section 3.6.3 then briefly discusses

options as a general model for temporally extended actions, and suggests that methods

using options can be transformed to take constant risk attitudes into account.

3.6.1 Pseudo-Probabilities from Action Sequences

We first provide a result concerning transition probabilities under fixed action sequences,

which plays an important role in the sensor-planning problem to be discussed next.

To simplify the notation, we assume in this section that As = A for all states without

loss of generality. Further, we define A1 = A, An+1 = An×A, and A∞ =
∞⋃

n=1
An. Then A∞

is the countable set of all action sequences of finite length. Note that A∞ is different from

A∞, which is the uncountable set of action sequences of an infinite length. For all actions

a ∈ A and all action sequences α ∈ A∞, the multi-step transition probability P (s′|s, αa)

can be defined recursively as

P (s′|s, αa) =
∑

s′′∈S

P (s′′|s, α)P (s′|s′′, a). (3.22)

The probability P (·|s, α) represents the state distribution after performing the action se-

quence α starting at state s. We also use |α| to indicate the length of the action sequence α.

We have the following simple result that follows from the Markovian property of single-step

transition probabilities.

Lemma 3.8. For all states s, s′ ∈ S, all actions a ∈ A, and all action sequences α ∈ A∞,

we have

P (s′|s, aα) =
∑

s′′∈S

P (s′′|s, a)P (s′|s′′, α).

Proof. By induction on the length of α. If α = a′ for some a′ ∈ A, the result holds by definition

Eq. (3.22)

P (s′|s, aa′) =
∑

s′′∈S

P (s′′|s, a)P (s′|s′′, a′).

124

Suppose the result holds for α = α′a′. Consider the action sequence aα,

P (s′|s, aα) = P (s′|s, aα′a′)

=
∑

s′′′∈S

P (s′′′|s, aα′)P (s′|s′′′, a′) ⊲ By definition of P (s′|s, aα′a′), see Eq. (3.22)

=
∑

s′′′∈S

(
∑

s′′∈S

P (s′′|s, a)P (s′′′|s′′, α′)

)

P (s′|s′′′, a′)

=
∑

s′′′∈S

∑

s′′∈S

P (s′′|s, a)P (s′′′|s′′, α′)P (s′|s′′′, a′)

=
∑

s′′∈S

∑

s′′′∈S

P (s′′|s, a)P (s′′′|s′′, α′)P (s′|s′′′, a′)

=
∑

s′′∈S

P (s′′|s, a)
∑

s′′′∈S

P (s′′′|s′′, α′)P (s′|s′′′, a′)

=
∑

s′′∈S

P (s′′|s, a)P (s′|s′′, α′a′) ⊲ By definition of P (s′|s′′, α′a′), see Eq. (3.22)

=
∑

s′′∈S

P (s′′|s, a)P (s′|s′′, α).

Therefore, the result holds for all α.

Corollary 3.9. For all states s, s′ ∈ S, and all action sequences α = α1α2 where α1, α2 ∈

A∞, we have

P (s′|s, α) =
∑

s′′∈S

P (s′′|s, α1)P (s′|s′′, α2).

Proof. Use an induction argument on the length of α1 similar to that above.

The pseudo-probability transformation then allows us to define multi-step pseudo-

probabilities P̄ (s′|s, αa) for all actions a ∈ A and all action sequences α ∈ A∞ as follows:

P̄ (s′|s, a) = P (s′|s, a)γr(s,a,s′), (3.23)

P̄ (s′|s, αa) =
∑

s′′∈S

P̄ (s′′|s, α)P̄ (s′|s′′, a). (3.24)

Moreover, the following results can be seen as obtained through the transformation from

Lemma 3.8 and Corollary 3.9.

Lemma 3.10. For all states s, s′ ∈ S, all actions a ∈ A, and all action sequences α ∈ A∞,

we have

P̄ (s′|s, aα) =
∑

s′′∈S

P̄ (s′′|s, a)P̄ (s′|s′′, α).

125

Proof. The proof of Lemma 3.8 applies if all appearances of P are replaced with P̄ .

Corollary 3.11. For all states s, s′ ∈ S and all action sequences α = α1α2 where α1, α2 ∈

A∞, we have

P̄ (s′|s, α) =
∑

s′′∈S

P̄ (s′′|s, α1)P̄ (s′|s′′, α2).

In other words, we can generalize the pseudo-probability transformation to include multi-

step probabilities such that P (s′|s, α) is replaced with P̄ (s′|s, α). The following theorem

provides an intuitive meaning for the pseudo-probabilities.

Theorem 3.12. For all states s, s′ ∈ S and all action sequences α ∈ A∞, we have

P̄ (s′|s, α) = Es,α

γ

|α|−1P
t=0

rt

∣
∣
∣
∣
∣
∣

s|α| = s′

 · P (s′|s, α).

Proof. By induction. If α = a for some a ∈ A, then by definition

P̄ (s′|s, a) = P (s′|s, a)γr(s,a,s′) = Es,a [γr0 | s1 = s′] · P (s′|s, a).

Suppose the result holds for α. Recall that wt =
t−1∑

τ=0
rτ . Consider the action sequence αa where

a ∈ A. We have

Es,αa
[
γw|α|+1 | s|α|+1 = s′

]

= Es,αa
s′′

[
Es,αa

[
γw|α|+1 | s|α|+1 = s′, s|α| = s′′

]∣
∣ s|α|+1 = s′

]

= Es,αa
s′′

[

Es,αa
[

γw|α| · γr(s′′,a,s′)
∣
∣
∣ s|α|+1 = s′, s|α| = s′′

]∣
∣
∣ s|α|+1 = s′

]

= Es,αa
s′′

[

Es,α
[
γw|α| | s|α| = s′′

]
· γr(s′′,a,s′)

∣
∣
∣ s|α|+1 = s′

]

=
∑

s′′∈S

P (s|α| = s′′|s, αa, s|α|+1 = s′)Es,α
[
γw|α| | s|α| = s′′

]
· γr(s′′,a,s′)

Therefore,

Es,αa
[
γw|α|+1 | s|α|+1 = s′

]
· P (s′|s, αa)

= Es,αa
[
γw|α|+1 | s|α|+1 = s′

]
· P (s|α|+1 = s′|s, αa)

=
∑

s′′∈S

P (s|α| = s′′|s, αa, s|α|+1 = s′)Es,α
[
γw|α| | s|α| = s′′

]
· γr(s′′,a,s′) · P (s|α|+1 = s′|s, αa)

=
∑

s′′∈S

P (s|α| = s′′, s|α|+1 = s′|s, αa)Es,α
[
γw|α| | s|α| = s′′

]
· γr(s′′,a,s′)

=
∑

s′′∈S

P (s|α| = s′′|s, αa)P (s|α|+1 = s′|s, αa, s|α| = s′′)Es,α
[
γw|α| | s|α| = s′′

]
· γr(s′′,a,s′)

126

=
∑

s′′∈S

P (s′′|s, α)P (s′|s′′, a)Es,α
[
γw|α| | s|α| = s′′

]
· γr(s′′,a,s′)

=
∑

s′′∈S

Es,α
[
γw|α| | s|α| = s′′

]
P (s′′|s, α) · γr(s′′,a,s′)P (s′|s′′, a)

=
∑

s′′∈S

P̄ (s′′|s, α) · P̄ (s′|s′′, a) = P̄ (s′|s, αa).

Therefore, the result holds for all action sequences α ∈ A∞.

With the above results, we now consider transforming the sensor-planning method of

(Hansen, 1994, 1997) to an MEUexp version. The sensor-planning task is modeled as an

MDP with observation actions.

3.6.1.1 MDPs with Observation Actions

In this section, we consider a sensor-planning problem, which was originally solved for risk-

neutral planning objectives (Hansen, 1994, 1997). We show that the idea from Hansen’s

method can be used to solve the problem under the MEUexp objective (Koenig and Liu,

1999). In this section, we emphasize that the problem can be solved using a nominal

transformation so that the original planning algorithm can be easily reused. Therefore,

after formulating the problem below, we first present the original planning algorithm, and

then discuss how the problem can be solved under the MEUexp objective with a correctness

proof.

The sensor-planning problem is to determine when to perform costly observation actions

(sensing) to obtain complete information about the current state. In MDP models, we

assume that the agent knows its current state all the time. In many applications, the agent

may need to perform an observation action to get information about its current state, and

these actions can be costly. The sensor-planning problem is modeled as an MDP model with

observation actions, which we refer to as an MDPwO (MDP with Observations) model. In

an MDPwO model, the agent needs to choose whether to perform observation actions, which

can give complete information about its current state after a possible state transition. If no

observation actions are performed, the agent has no complete information about its current

state, and can only infer its current state probabilistically from its previous completely-

known state and the actions taken thereafter. If the problem has goal states, we assume

127

1 2 3

A

B

C

D

E

EEO

1 2 3

A

B

C

D

E

EO

SO

EO

NO

(a) Less Frequent Sensing (b) More Frequent Sensing

Figure 3.8: Segments of two possible sensing plans

that the agent can only stop acting when it knows that its current state is a goal state. Or

equivalently, we can consider that the goal states are connected to a virtual goal state, and

the agent needs to perform a “stop” action in a goal state to enter the virtual goal state

and stop acting. In non-goal states, the “stop” action results in self-looping.

Since we assumed that only observation actions can provide additional information, we

require that the action sets are state independent As = A. Otherwise the agent has some

information about its current state. We also assume that there is a set of observation actions

Ao ⊆ A. If Ao = A, the MDPwO model is reduced to a regular MDP model. Therefore

in the following, we assume that Ao ⊂ A. We emphasize that the observation actions may

also involve state transitions, but the agent will know its exact state after the transition

finishes.

An MDPwO can be reformulated as an MDP with an augmented action space A = A′∞×

Ao, where A′ = A \ Ao. According to Lemma 3.8, the multi-step transition probabilities

P (s′|s, α) preserve the Markovian property for all α ∈ A. In other words, instead of single

actions, we consider action sequences ending with a single observation action, which gives

complete information about the current state. Therefore, we can represent a policy as a

mapping from states to such action sequences.

We use the robot navigation problem to explain sensor planning. Suppose the robot

needs to perform an observation action O, which has a cost of 0.2. Figure 3.8 shows segments

128

of two possible sensing plans. For the left sensing plan, if the robot is in state C1, the plan

assigns the action sequence EEO, meaning that the robot moves east twice before it senses its

current state. Therefore, the robot can be in any of the five locations in the third column,

and thus may enter muddy terrain. In contrast, the sensing plan to the right performs the

observation action after each movement action. For such a plan, the robot can be in any

of the T-shaped set of five locations outlined in Figure 3.8(b) after two movement actions.

Therefore, the robot avoids entering muddy terrain, but at the cost of an extra observation

action and the possibility of returning to C1. Intuitively, the more risk-averse the robot is,

the more often it should sense. With different risk attitudes, there should be qualitatively

different optimal policies.

MDPwOs are a special class of Partially Observable MDPs (POMDPs). In POMDP

problems, the agent in general cannot know exactly what state it is in. Instead, the agent

can only get observations that depend probabilistically on the current state. Different from

MDPwOs, these observations often do not provide complete information about the agent’s

current state. The agent needs to infer which state it is in based on the observation and

action history. It is known that the belief state plays an important role for solving POMDPs.

A belief state is a probability distribution over all states in the state space, indicating the

probabilities of being in a particular state.

General POMDPs are computationally expensive to solve. But for MDPwOs, there

exists an efficient method if all rewards are strictly negative, and if the agent needs to reach

a goal state. The method uses a combination of heuristic search and policy iteration to

solve an MDPwO under risk-neutral planning objectives (Hansen, 1994, 1997). Different

from LAO*, which searches in the state space, this method searches for each state in the

action space A, which is infinite.

3.6.1.2 Maximize Expected Total Rewards

Since we reformulate an MDPwO as an MDP with an augmented action space, Hansen’s

method for the MER objective can be viewed as performing policy iteration where the plan

improvement step uses heuristic search to find the best action sequence in A, based on the

129

current values. However, the original treatment did not make this connection explicit. We

use the reformulation to clarify how our transformation approach works.

Hansen (1997) showed that for the MER objective, the optimal values satisfy the follow-

ing optimality equation

v∗(s) = 0, s ∈ G, (3.25)

v∗(s) = max
α∈A

Es,α

|α|−1
∑

t=0

rt + v∗
(
s|α|
)

= max
α∈A

Es,α

|α|−1
∑

t=0

rt

+
∑

s′∈S

P (s′|s, α)v∗(s′)

, s ∈ S \G. (3.26)

Strictly speaking, the maximum in the optimality equation should be replaced by a supre-

mum, since it is possible that the supremum cannot be achieved by any finite sequence. But

for the MER objective when all rewards are strictly negative, it is optimal for the agent to

sense within a finite number of steps, otherwise the optimal values will be negative infinity.

Hansen (1994, 1997) solved the above system of optimality equations using policy itera-

tion. However, the policy improvement step for policy iteration needs to find an improving

action sequence in A, an infinite action space. Hansen (1997) showed that the policy im-

provement step can be implemented using best-first search. For all states s ∈ S and all

action sequences α ∈ A ∪A′
∞, define

f s(α) = Es,α

|α|−1
∑

t=0

rt + v
(
s|α|
)

 .

Here we also consider action sequences in A′
∞ since they will appear in the process of the

best-first search process. Suppose the current values are v(s) for all states s ∈ S. We need

to find an action sequence α ∈ A such that f s(α) > v(s) if possible. A key observation in

(Hansen, 1997) is that we can decompose the f -values into two parts: for all states s ∈ S

and all action sequences α ∈ A ∪A′
∞,

f s(α) = gs(α) + hs(α),

130

where

gs(α) = Es,α

|α|−1
∑

t=0

rt

 ,

hs(α) = Es,α
[
v
(
s|α|
)]

=
∑

s′∈S

P (s′|s, α)v(s′).

Moreover, the g-values can be calculated recursively as follows

gs(a) = Es,a[r0] =
∑

s′∈S

P (s′|s, a)r(s, a, s′),

gs(αa) = Es,αa

|α|
∑

t=0

rt

 = Es,αa

|α|−1
∑

t=0

rt + r|α|

= Es,αa

|α|−1
∑

t=0

rt

+ Es,αa
[
r|α|
]

= gs(α) + Es,αa
[
r|α|
]
.

Since

Es,αa
[
r|α|
]

= Es,αa
s′′

[
Es,αa

[
r|α|
∣
∣ s|α| = s′′

]]
= Es,α

s′′

[
∑

s′∈S

P (s′|s′′, a)r(s′′, a, s′)
]

=
∑

s′′∈S

P (s′′|s, α)
∑

s′∈S

P (s′|s′′, a)r(s′′, a, s′),

we have

gs(αa) = gs(α) +
∑

s′′∈S

P (s′′|s, α)
∑

s′∈S

P (s′|s′′, a)r(s′′, a, s′). (3.27)

Similar to the decomposition of the g- and h-values in heuristic search methods such as A*,

gs(α) is the expected reward received for executing the action sequence α starting in state

s, and hs(α) is an estimate of the expected reward that will be received until stopping in a

goal state by performing α and then following the current policy.

The decomposition of the g- and h-values makes it possible to use heuristic search

methods such as A*. The algorithm using A* search for plan improvement is shown as

Algorithm 3.6 (AStarPolicyImprovement). The search starts with an empty action sequence,

denoted as ε. Each node in the search graph corresponds to an action sequence. A node is

expanded by adding one more action to the sequence, so the children nodes of the current

node are of the same prefix and differ only in the last action. Therefore, the search graph

131

Algorithm 3.6 Policy Improvement Using Heuristic Search under the MER Objective

α, f = AStarPolicyImprovement(M,v, s)
Input:

• M = (S, A, P, r), an MDPwO model; • v, a value function;
• s, a state where the policy will be improved;

Output:

• α, an action sequence that maximally improves the value of s; • f , the value fs(α);
Local:

• OPEN, a priority queue;

1: g(ε)← 0; α← ε;
2: for all s′ ∈ S do

3: P (s′|s, ε)← 0;
4: end for

5: P (s|s, ε)← 1;
6: repeat

7: for all a ∈ A do

8: for all s′ ∈ S do

9: P (s′|s, αa)←
∑

s′′∈S

P (s′′|s, α)P (s′|s′′, a);

10: end for

11: g(αa)← g(α) +
∑

s′′∈S

P (s′′|s, α)
∑

s′∈S

P (s′|s′′, a)r(s′′, a, s′);

12: h(αa)←
∑

s′∈S

P (s′|s, αa)v(s′);

13: f(αa)← g(αa) + h(αa);
14: Insert(OPEN, αa, f(αa));
15: end for

16: α← Pop(OPEN);
17: until α ends with an observation action;
18: f ← f(α);

actually has a tree structure. In the process of the search, we need to keep track of the

g-values and multi-step transition probabilities, which are calculated based on Eq. (3.22)

since A∪A′
∞ ⊂ A∞. This information is stored together with the node. OPEN is a priority

queue, the Insert operation puts an element into the queue along with its f -value as the key,

and the Pop operation removes the element with the largest f -value. Since the search graph

is of a tree structure, we do not need to check if the priority queue has duplicate nodes. The

search terminates when an observation action is used. In fact, since the priority queue has

a decreasing order and all rewards are strictly negative, A* search results in a maximally

improved f -value, that is, f s(α) = max
α′∈A

f s(α′), where α is the result from the search. Other

choices of the search method are possible, as long as they result in f s(α) > v(s) if possible

(Hansen, 1997).

132

Algorithm 3.7 Policy Iteration for MDPwO under the MER Objective

π = PolicyIterationMDPwO(M)
Input:

• M = (S, A, P, r), an MDPwO model;
Output:

• π, an optimal policy;

1: Start with an arbitrary policy π0;
2: t← 0;
3: repeat

4: Solve the system of linear equations
v(s) = 0, s ∈ G
v(s) = gs(πt(s)) +

∑

s′∈S

P (s′|s, πt(s))v(s′), s ∈ S \G

5: for all s ∈ S \G do

6: α, f ← AStarPolicyImprovement(M, v, s);
7: if f > v(s) then

8: πt+1(s)← α;
9: end if

10: end for

11: t← t+ 1;
12: until πt = πt−1;
13: π ← πt;

The heuristic search-based policy improvement step then is incorporated into the policy

iteration procedure shown in Algorithm 3.7 (PolicyIterationMDPwO). Notice that the policy

evaluation equations use gs-values to simplify the notation. The correctness of the algorithm

was shown in (Hansen, 1997).

3.6.1.3 Maximize Expected Exponential Utility of Total Rewards

We now use the pseudo-probability transformation approach to obtain the MEUexp version

of the sensor planner. Recall that for this transformation, we need to start with an algorithm

for the MER objective. The key components in Hansen’s method involving probabilities are

the definition and decomposition of the f -values as well as the policy evaluation equations.

We list the relationships among f, g, h-values as follows:

gs(a) =
∑

s′∈S

P (s′|s, a)r(s, a, s′)

gs(αa) = gs(α) +
∑

s′′∈S

P (s′′|s, α)
∑

s′∈S

P (s′|s′′, a)r(s′′, a, s′)

hs(α) =
∑

s′∈S

P (s′|s, α)v(s′)

133

f s(α) = gs(α) + hs(α).

Applying the transformation, we obtain

gs
exp(a) = 0

gs
exp(αa) = gs

exp(α) = 0

hs
exp(α) =

∑

s′∈S

P̄ (s′|s, α)vexp(s′)

f s
exp(α) = gs

exp(α) + hs
exp(α) =

∑

s′∈S

P̄ (s′|s, α)vexp(s′).

They are actually the right formulas for the search of improving action sequences under

the MEUexp objective, although without any formal justification. Moreover, the policy

evaluation equations for the MER objective are

v(s) = 0, s ∈ G

v(s) = gs(πt(s)) +
∑

s′∈S

P (s′|s, πt(s))v(s′), s ∈ S \G.

Applying the transformation, we obtain

vexp(s) = ι, s ∈ G

vexp(s) = gs
exp(πt(s)) +

∑

s′∈S

P̄ (s′|s, πt(s))vexp(s′)

=
∑

s′∈S

P̄ (s′|s, πt(s))vexp(s′), s ∈ S \G.

The search and policy iteration algorithms are transformed into Algorithm 3.8

(AStarPolicyImprovementExp) and Algorithm 3.9 (PolicyIterationExpMDPwO), respectively,

where the differences are highlighted in boxes.

However, the transformation itself does not prove the correctness of the resulting algo-

rithms. We now provide such a proof. For the MEUexp objective, the optimal values need

to satisfy the following optimality equation

v∗exp(s) = ι, s ∈ G (3.28)

134

Algorithm 3.8 Policy Improvement Using Heuristic Search under the MEUexp Objective

α, f = AStarPolicyImprovementExp(M,γ, vexp , s)

Input:

• M = (S, A, P, r), an MDPwO model; • γ, a risk parameter, γ > 0, γ 6= 1;
• vexp, a value function; • s, a state where the policy will be improved;

Output:

• α, an action sequence that maximally improves the value of s; • f , the value fs
exp(α);

Local:

• OPEN, a priority queue;

1: fexp(ε)← vexp(s); α← ε;
2: for all s′ ∈ S do

3: P̄ (s′|s, ε)← 0;
4: end for

5: P̄ (s|s, ε)← 1;
6: repeat

7: for all a ∈ A do

8: for all s′ ∈ S do

9: P̄ (s′|s, αa)←
∑

s′′∈S

P̄ (s′′|s, α)P (s′|s′′, a)γr(s′′,a,s′);

10: end for

11: fexp(αa)←
∑

s′∈S

P̄ (s′|s, αa)vexp(s′);

12: Insert(OPEN, αa, fexp(αa));
13: end for

14: α← Pop(OPEN);
15: until α ends with an observation action;
16: f ← fexp(α);

v∗exp(s) = max
α∈A

Es,α

γ

|α|−1P
t=0

rt

· v∗exp

(
s|α|
)

= max
α∈A

Es,α

|α|−1
∏

t=0

γrt · v∗exp

(
s|α|
)

 , s ∈ S \G. (3.29)

Similar to the previous section, the policy improvement step of policy iteration needs

to find an action sequence in A that improves the current value if possible. Suppose the

current values are vexp(s) for all s ∈ S. We need to find an action sequence α ∈ A such

that f s
exp(α) > vexp(s) if possible, where we define for all action sequences α ∈ A ∪A′

∞,

f s
exp(α) = Es,α

|α|−1
∏

t=0

γrt

 · vexp

(
s|α|
)

 .

The following theorem shows that fexp satisfies the property suggested by the pseudo-

probability transformation.

135

Algorithm 3.9 Policy Iteration for MDPwO under the MEUexp Objective

π = PolicyIterationExpMDPwO(M,γ, vexp, s)

Input:

• M = (S, A, P, r), an MDP model; • γ, a risk parameter, γ > 0, γ 6= 1;
• vexp, a value function;
• s, a state for which an action sequence which maximally improves its value is seeking;

Output:

• π, an optimal policy;

1: Start with an arbitrary policy π0 whose values are finite;
2: t← 0;
3: repeat

4: Solve the system of linear equations
vexp(s) = ι, s ∈ G,
vexp(s) =

∑

s′∈S

P̄ (s′|s, πt(s))vexp(s′), s ∈ S \G,

5: for all s ∈ S \G do

6: α, f ← AStarPolicyImprovementExp(M,γ, vexp, s);

7: if f > vexp(s) then

8: πt+1(s)← α;
9: end if

10: end for

11: t← t+ 1;
12: until πt = πt−1;
13: π ← πt;

Theorem 3.13. For all states s ∈ S and all action sequences α ∈ A ∪A′
∞, we have

f s
exp(α) =

∑

s′∈S

P̄ (s′|s, α)vexp(s′).

Proof. By induction on the length of α. If α = a for some a ∈ A,

fs
exp(a) = Es,a[γr0vexp(s1)] =

∑

s′∈S

P (s′|s, a)γr(s,a,s′)vexp(s′) =
∑

s′∈S

P̄ (s′|s, a)vexp(s′).

Suppose the result holds for α. Then for all actions a ∈ A,

fs
exp(aα) = Es,aα

|α|
∏

t=0

γrtvexp

(
s|α|+1

)

 = Es,aα
s′′

Es,aα

|α|
∏

t=0

γrtvexp

(
s|α|+1

)

∣
∣
∣
∣
∣
∣

s1 = s′′

= Es,aα
s′′

γr0 · Es′′,α

|α|
∏

t=1

γrtvexp

(
s|α|+1

)

= Es,aα
s′′

[

γr0fs′′

exp(α)
]

= Es,aα
s′′

[

γr0

∑

s′∈S

P̄ (s′|s′′, α)vexp(s′)

]

=
∑

s′′∈S

P (s′′|s, a)
[

γr(s,a,s′′)
∑

s′∈S

P̄ (s′|s′′, α)vexp(s′)

]

=
∑

s′′∈S

P̄ (s′′|s, a)
∑

s′∈S

P̄ (s′|s′′, α)vexp(s′) =
∑

s′′∈S

∑

s′∈S

P̄ (s′′|s, a)P̄ (s′|s′′, α)vexp(s′)

136

=
∑

s′∈S

∑

s′′∈S

P̄ (s′′|s, a)P̄ (s′|s′′, α)vexp(s′) =
∑

s′∈S

(
∑

s′′∈S

P̄ (s′′|s, a)P̄ (s′|s′′, α)

)

vexp(s
′)

=
∑

s′∈S

P̄ (s′|s, aα)vexp(s′).

Therefore, the result holds.

This theorem makes it possible to use best-first search. However, we cannot split the

fexp-values into two parts. Algorithm 3.8 (AStarPolicyImprovementExp) is the transformed

algorithm, which does not resemble A* any more, but remains a best-first search. The

search behaves very similarly to Algorithm 3.6 (AStarPolicyImprovement). The difference is

that we instead keep track of the P̄ values and no g- nor h-values are needed. The heuristic

search-based policy improvement step then is incorporated into the policy iteration proce-

dure shown in Algorithm 3.9 (PolicyIterationExpMDPwO). The policy iteration procedure is

correct since there are goal states and all rewards are strictly negative (see Section 3.2).

From the theory of policy iteration, it is sufficient to have the following result concerning

improvements in a single step (Patek, 2001).

Theorem 3.14. If the current policy π is suboptimal, then there exists at least one state

s such that Algorithm 3.8 (AStarPolicyImprovementExp) terminates with an action sequence

α ∈ A such that

f s
exp(α) > vπ

exp(s).

Proof. Since π is suboptimal, there exists a non-empty set of states for which there exist action

sequences that improve the values. We prove the theorem by contradiction. Suppose that Algo-

rithm 3.8 (AStarPolicyImprovementExp) cannot find any of these improving action sequences. Let

the action sequence α = a1 · · ·ak ∈ A (at state s) be the shortest action sequence for all states that

cannot be found by Algorithm 3.8 (AStarPolicyImprovementExp), but

fs
exp(α) > vπ

exp(s).

First, we show that if Algorithm 3.8 (AStarPolicyImprovementExp) terminates for s (with an

action sequence α∗ 6= α), then there is a proper prefix α0 = a1 · · · ai (1 ≤ i < k) of α that is in

OPEN, that is, α0 has not been expanded. Notice that a1 was put in OPEN at the beginning of the

algorithm, and there must be a descendant of a1 that is in OPEN since a1 has an infinite number

137

of descendants. If there is no proper prefix of α in such action sequences, it must be the case that

all proper prefixes of α have been expanded, specifically, a1 · · ·ak−1 has been expanded. But in this

case, α itself must have been added to OPEN according to the algorithm, and fs
exp(α) has been

calculated, which is greater than vπ
exp(s). Then we must have fs

exp(α
∗) ≥ fs

exp(α) > vπ
exp(s), and

α∗ is an improvement. But this contradicts the assumption that an improvement cannot be found

by executing Algorithm 3.8 (AStarPolicyImprovementExp) on s. Therefore, we obtain that there is a

proper prefix α0 = a1 · · · ai (1 ≤ i < k) of α that is in OPEN.

In other words, there exists a proper prefix α0 such that α = α0α′, and α0 is in OPEN. Since the

fs
exp values are monotonically nonincreasing for negative models, the value fs

exp(α
0) is less than or

equal to the value found by Algorithm 3.8 (AStarPolicyImprovementExp), which in turn is less than

or equal to vπ
exp(s). So, we have

fs
exp(α

0) ≤ vπ
exp(s) < fs

exp(α).

Expanding both sides, we have

∑

s′∈S

P̄ (s′|s, α0)vπ
exp(s′) = fs

exp(α
0) < fs

exp(α) =
∑

s′′∈S

P̄ (s′′|s, α)vπ
exp(s′′)

=
∑

s′′∈S

(
∑

s′∈S

P̄ (s′|s, α0)P̄ (s′′|s′, α′)

)

vπ
exp(s

′′)

=
∑

s′′∈S

(
∑

s′∈S

P̄ (s′|s, α0)P̄ (s′′|s′, α′)vπ
exp(s′′)

)

=
∑

s′∈S

(
∑

s′′∈S

P̄ (s′|s, α0)P̄ (s′′|s′, α′)vπ
exp(s′′)

)

=
∑

s′∈S

P̄ (s′|s, α0)

(
∑

s′′∈S

P̄ (s′′|s′, α′)vπ
exp(s′′)

)

=
∑

s′∈S

P̄ (s′|s, α0)fs′

exp(α
′).

Therefore, it must be the case that there exists at least one state s′ for which vπ
exp(s

′) < fs′

exp(α
′),

otherwise the above inequality does not hold. But this contradicts that α is the shortest action

sequence of this property since α′ is a proper subsequence of α. Therefore, the theorem holds.

We can restore the separation of the g- and h-values if the rewards depend only on the

actions, that is, r(s, a, s′) = r(a). This is common in planning problems. In this case, we

have from Theorem 3.12

P̄ (s′|s, α) = P (s′|s, α)γr(α)

138

where the reward function of a sequence is defined recursively as r(αa) = r(α) + r(a).

Consequently, we have

f s
exp(α) =

∑

s′∈S

P̄ (s′|s, α)vexp(s′) = γr(α)
∑

s′∈S

P (s′|s, α)vexp(s′).

Consider

f̂ s(α) = U−1
exp(f s

exp(α)) = logγ

(
ιf s

exp(α)
)

= r(α) + logγ

(

ι
∑

s′∈S

P (s′|s, α)vexp(s′)

)

,

which is a monotonic transformation of f s
exp(α). Consequently, if we use f̂ s instead of f s

exp

in the search, the ordering of elements in the priority queue does not change. Therefore, if

we define

ĝs(α) = r(α),

ĥs(α) = logγ

(

ι
∑

s′∈S

P (s′|s, α)vexp(s′)

)

,

we will be able to use A* search again to perform policy improvement. The correctness for

this special case is a corollary of Theorem 3.14, but has been proved in a different way in

(Koenig and Liu, 1999).

The correctness of the complete algorithm follows from Theorem 3.14 and the theory of

policy iteration (Patek, 2001).

Theorem 3.15. Assume that Condition 2.1 (Finite Model) and Condition 3.5 (Strictly

Negative Model) hold. If there exists a sensor policy with finite values, then Algorithm 3.9

(PolicyIterationExpMDPwO) finds an optimal sensor policy within a finite time.

Table 3.2 shows optimal sensing policies for two different values of γ. Cells whose action

sequences are not used for getting from the start cell (C1) to the goal cell (J1) are left blank.

We can see that the risk-averse robot tends to sense more frequently than the risk-seeking

robot, as we anticipated. Figure 3.9 shows how often the robots visit each cell during two

million runs for three different values of γ, corresponding to the values used in Table 3.2.

Here, darker colors indicate a larger number of visits. Two qualitatively different behaviors

are observed from these results:

139

Table 3.2: Optimal risk-sensitive sensing policies

(a) γ = 0.86 (risk-averse)
1 2 3 4 5 6 7 8 9 10 11

A SSSO

B SEO SEO SEO SEO SEO SO SSO

C EO EO EO EO EO EO SEO SO SO WSO

D NEO NEO NEO EEEO EEO EO ESO SO WSO WWSO

E EESO ESO SO WSO

F SSSO SO WSO

G SSO SO WSO

H SSWO SSWO SO WSO WO

I SO SWO SWO SWO SWO SWO SWO SWO WO WWO WWWO

J goal WO WO WO WO WO WO WO NWO

K NO NWO NWO NWO NWO NWO NWO NWO NWWO

L NNWO NNWO NNWO

(b) γ = 1.40 (risk-seeking)
1 2 3 4 5 6 7 8 9 10 11

A SSEEEO SSEEO SSEO SSEO SSSO SSSO

B SEEEEO SEEO SEEO SEO SSO SSO SSSSSSSWO

C EEEEEEESO EEEESO EEESO EESO SO SO SSSSSSWO

D EEEEEEESO EEEEEESO EEEEESO EEEESO EEESO EESO ESO SSSSSWO SSSSSWO WSSO WWSSO

E NNEEEEO NEEEEEO NEEEEO NEEEO NEEO EESSSO ESSSO SSSSWO SSSSWO WSSO WWSSO

F SSSSO SSSSO SSSSO SSSSWO SSSSWWO EESSO ESSSO SSSWO SSSWO WSSO WWSO

G SSSO SSSO SSSO SSSWO SSSWWO SSSWWWO SSSWWWWO SSWO SSWO WSO WWSO

H SSO SSO SSWO SSWWO SSWWO SSWWWO SSWWWWO SSWWWWWO SWO WWO WWWO

I SO SO SWO SWWO SWWWO SWWWWO SWWWWWO SWWWWWWO WO WWO WWWO

J goal WO WWO WWWO WWWWO WWWWWO WWWWWWO WWWWWWWO WWWWWWWWO WWWWWWWWWO WWWO

K NO NO NWO WWWO WWWWO WWWWWO WWWWWWO WWWWWWWO WWWWWWWWO

L NNO NNO NNWO NWWO NWWWO NWWWWO NWWWWWO NWWWWWWO NWWWWWWWO

1 2 3 4 5 6 7 8 9 10 11

A

B

C

D

E

F

G

H

I

J

K

L

1 2 3 4 5 6 7 8 9 10 11

A

B

C

D

E

F

G

H

I

J

K

L

1 2 3 4 5 6 7 8 9 10 11

A

B

C

D

E

F

G

H

I

J

K

L

(a) Risk-Averse (γ = 0.86) (b) Risk-Neutral (c) Risk-Seeking (γ = 1.40)

Figure 3.9: State-visit frequencies of sensing plans

140

Table 3.3: Planning complexity

γ = 0.86 γ → 1 γ = 1.40

Node expansions 2,071 2,815 5,808

Time (ms) per node expansion 4.6 2.0 5.2

• The figure shows that a more risk-averse robot is more likely to stay on the road and

close to the nominal path, which is possible due to the increased sensing frequency.

By staying on the road, the robot is likely able to avoid the large costs for getting

into the mud, which is the worst-case outcome of an action. However, the worst-case

outcome of a policy is to cycle forever and not to be able to achieve the goal cell, thus

results in an infinite worst-case cost. Consequently, if a robot is “overly” risk-averse,

the expected utility of any plan is negative infinity since it weights the worst-case

outcomes more, thus the robot cannot decide how to act in the environment. In our

example, this happens when γ is decreased to around 0.80.

• On the other hand, the figure shows that risk-seeking robots do not even attempt

to stay in the center of the road all the time. For example, the robot can save two

moving actions in the best-case if it stays to the west of the north-south part of the

road rather than moving to its center. In general, smaller sensing frequencies and

attempts to cut the corners decrease the probability that the robots stay on the road

but also decrease the plan-execution cost in the best case. In fact, the action sequences

of the start cell get longer and longer as the robots become more risk-seeking until

the action sequence is able to move the robots to the goal cell if they are really lucky.

Table 3.3 shows that our sensor planner calculates the optimal sensing policies effi-

ciently, albeit, with some overhead. The number of node expansions depends on the sensing

frequency. It increases as the sensing frequency of the optimal sensing policies decreases,

because the search trees then need to get searched much deeper (the search depth increases

with the number of moving actions between sensing actions). Our sensor planner has a

slight run-time disadvantage per node expansion compared to the original sensor planner,

because it has to calculate exponentials and logarithms to avoid numerical overflow and

141

underflow, and its heuristic search method cannot calculate the heuristic values quite as

efficiently as the original sensor planner.

3.6.1.4 Short Summary

We have shown that the pseudo-probability transformation can be applied to a sensor

planning method (Hansen, 1994, 1997) to obtain a risk-sensitive version of the planner. We

also showed that the correctness of the resulting planner needs to be proved separately. The

optimal sensing plans obtained from the transformed planner are qualitatively different from

an risk-neutral optimal plan, which further confirms that risk attitudes can have a significant

influence in planning and thus are worth studying. We further showed that the efficiency

of the transformed method is comparable to that of the original risk-neutral one.

3.6.2 Pseudo-Probabilities from Simple Options

Another kind of temporally extended probabilities relates to hierarchical methods, or meth-

ods using temporal abstraction. These methods were originally developed for reinforcement

learning problems (Sutton et al., 1999b), but can be adapted to solve planning problems

(Hauskrecht et al., 1998). Instead of finding optimal policies, these methods try to find

good policies fast using domain knowledge. We analyze a simple version of such methods

in this section using simple options.4

A simple option o = (Io, πo, To) is a 3-tuple consisting of a set of initial states Io, a

partial SD policy πo : S p⇀ A, and a set of termination states To. For the robot navigation

example, we can have a simple option that traverses the top horizontal path, as shown in

Figure 3.10, where the set Io is highlighted with green dots and the set To with red dashes.

The simple option o can be initiated if the agent is in a state s ∈ Io. The agent then follows

πo until it reaches and terminates in a termination state s′ ∈ To. Notice that πo is a partial

policy, that is, πo(s) is only defined for a subset of states So ⊂ S. Obviously, Io ⊆ So.

We require that the agent performs at least one action before it stops in a termination

state. Therefore, it is possible to have Io ∩ To 6= ∅. We assume that a simple option will

4They are called simple to distinguish them from the more general definition of options to be given in
Section 3.6.3.

142

1 2 3 4 5 6 7 8 9 10 11

A

B

C

D

E

F

G

H

I

J

K

L

s

g

Figure 3.10: A simple option for traversing the top horizontal path

terminate with probability one. For later convenience, we define O to be the set of all

simple options, and Os to be the set of simple options that one can initiate in state s, that

is, Os = {o s ∈ Io, o ∈ O}.

In this section, we show that under the MER and MEUexp objectives, simple options

are similar to regular actions, and thus can be considered as macro actions. Section 3.6.2.1

discusses how planning can be done using simple options. Section 3.6.2.2 discusses one way

of obtaining simple options.

3.6.2.1 Hierarchical Planning with Simple Options

It is known that for the MER objective, simple options can be used as macro actions to

speed up planning (Precup et al., 1997; Hauskrecht et al., 1998). We will show that simple

options can be treated as regular actions, and solution methods such as value iteration and

policy iteration can be used to solve problems using simple options.

An action in MDPs is fully specified by the states in which it can be performed, the

transition probabilities, and the rewards associated with the state transitions. In fact, a

143

regular action is also a simple option where the set of termination states is the state space S.

For this reason, we sometimes refer to the regular actions as primitive actions or primitive

options.

A simple option o is a temporally extended action or a macro action ao, since we can

define the three components of an action for option o. The set of states in which the macro

action ao can be performed is Io. The transition probabilities P (s′|s, ao) are the temporally

extended transition probabilities P (s′|s, o). For the simple option o, its temporally extended

transition probabilities are defined as: for all states s ∈ So,

P (s′|s, o) =

∞∑

t=1

Pt(s
′|s, o), s′ ∈ To

0, otherwise,

(3.30)

where Pt(s
′|s, o) is the probability that the agent terminates in state s′ ∈ To after t epochs

under the control of the simple option o while the current state is s ∈ So. Notice that we

do not require that s ∈ Io, instead s can be any state that could be entered after the simple

option o is initiated. For all simple options o ∈ O, all states s ∈ So, and all termination

states s′ ∈ To, these probabilities can be calculated recursively as

P1(s
′|s, o) = P (s′|s, πo(s)),

Pt(s
′|s, o) =

∑

s′′∈S\To

P (s′′|s, πo(s))Pt−1(s
′|s′′, o), t ≥ 2.

From the definition and the assumption that an option always terminates with probability

one, it follows that
∑

s′∈S

P (s′|s, o) = 1.

Therefore, P (·|s, o) is a well-defined probability distribution. For a termination state s′ ∈ To,

the probabilities P (s′|s, o) satisfy the following relationship

P (s′|s, o) = P (s′|s, πo(s)) +
∑

s′′∈S\To

P (s′′|s, πo(s))P (s′|s′′, o), s ∈ So.

Since the definition of P (s′|s, o) Eq. (3.30) involves an infinite sum, this relationship allows

us to determine the transition probabilities for the simple option o by solving the above

144

system of linear equations. For the simple option shown in Figure 3.10, we can obtain the

transition probabilities as shown in Table 3.4(a), where the rows indicate states in Io and

the columns indicate states in To.

Planning can be done using simple options only if for any simple option o ∈ O, there

exists another simple option o′ ∈ O such that To ⊆ Io′ , that is, these two simple options

can be “connected” without encountering a state for which no simple option is available.

It is often the case that
⋃

o∈O
Io is much smaller than S and thus the state space is reduced,

which is one reason that simple options can speed up planning. On the other hand, if the

above condition does not hold, we can always use O and A together. Since simple options

provide long-term effects, it is the second reason that simple options can speed up planning,

as long as their behaviors are similar to “raw” optimal policies over states for which they

are defined, and they can be detrimental otherwise (Hauskrecht et al., 1998).

3.6.2.1.1 The Risk-Neutral Case

The reward function for ao, however, depends on the planning objective. For the MER

objective, the reward function for action ao satisfies

r(s, ao, s′) = Es,o

[
τ−1∑

t=0

rt

∣
∣
∣
∣
∣
sτ = s′

]

,

where τ ≥ 1 indicates the random time at which a termination state is entered. This re-

quirement follows from the discussion of a proper reward model in Section 2.3. To determine

r(s, ao, s′), we have

r(s, ao, s′) = Es,o

[
τ−1∑

t=0

rt

∣
∣
∣
∣
∣
sτ = s′

]

= Es,o

[

r0 +
τ−1∑

t=1

rt

∣
∣
∣
∣
∣
sτ = s′

]

= Es,o
s′′

[

Es,o

[

r0 +

τ−1∑

t=1

rt

∣
∣
∣
∣
∣
s1 = s′′, sτ = s′

]∣
∣
∣
∣
∣
sτ = s′

]

= Es,o
s′′

[

r(s, πo(s), s
′) + Es,o

[

r0 +

τ−1∑

t=1

rt

∣
∣
∣
∣
∣
s1 = s′′ 6= s′, sτ = s′

]∣
∣
∣
∣
∣
sτ = s′

]

= r(s, πo(s), s
′) + Es,o

s′′

[

Es,o

[

r0 +

τ−1∑

t=1

rt

∣
∣
∣
∣
∣
s1 = s′′ 6= s′, sτ = s′

]∣
∣
∣
∣
∣
sτ = s′

]

= r(s, πo(s), s
′) +

∑

s′′∈So\To

P (s′′|s, o, sτ = s′)[r(s, πo(s), s
′′) + r(s′′, ao, s′)],

145

Table 3.4: Transition probabilities and rewards under the MER objective

B7 C7 D7

A1 0.184 0.632 0.184

B1 0.184 0.632 0.184

C1 0.184 0.632 0.184

D1 0.184 0.632 0.184

E1 0.184 0.632 0.184

B7 C7 D7

A1 9.54609 9.82567 9.54609

B1 8.77008 9.04967 8.77008

C1 8.05009 8.32967 8.05009

D1 8.77008 9.04967 8.77008

E1 9.54609 9.82567 9.54609

(a) Transition Probabilities (b) Equivalent Rewards

and

P (s′′|s, o, sτ = s′) =
P (s′′, sτ = s′|s, o)
P (sτ = s′|s, o) =

P (sτ = s′|s, o, s1 = s′′)P (s1 = s′′|s, o)
P (s′|s, o)

= P (s′′|s, πo(s))
P (s′|s′′, o)
P (s′|s, o) .

Consequently, the reward function for ao can be obtained by solving the system of

equations for each termination state s′ ∈ To,

r(s, ao, s′) = r(s, πo(s), s
′)

+
∑

s′′∈So\To

P (s′′|s, πo(s))
P (s′|s′′, o)
P (s′|s, o) [r(s, πo(s), s

′′) + r(s′′, ao, s′)], s ∈ So.

For simplicity, we will refer to r(s, ao, s′) simply as r(s, o, s′). For the simple option from

Figure 3.10, we can obtain the equivalent rewards as shown in Table 3.4(b).

Precup et al. (1997) showed that simple options can be used as regular actions if the

transition probabilities P (s′|s, o) and the equivalent reward function r(s, o, s′) are known,

and value iteration and policy iteration can be used to solve an MDP with simple options.

Therefore, MER planners that use simple options first compute the temporally extended

transition probabilities P (s′|s, o) and the reward function r(s, o, s′), and then use value

iteration or policy iteration with simple options to solve the problem. For the robot naviga-

tion example, suppose that the available simple options are shown in Figure 3.11. Then we

can obtain an “optimal” policy using only options as shown in Figure 3.12, where the ex-

pected total reward for the initial state is −29.60, which is slightly lower than that (−28.33)

for the optimal policy under the MER objective in Figure 1.10(a). However, value iteration

using only options converges after 6 iterations, while it takes 44 iterations to converge using

only primitive actions.

146

1 2 3 4 5 6 7 8 9 10 11

A

B

C

D

E

F

G

H

I

J

K

L

s

g

1 2 3 4 5 6 7 8 9 10 11

A

B

C

D

E

F

G

H

I

J

K

L

s

g

1 2 3 4 5 6 7 8 9 10 11

A

B

C

D

E

F

G

H

I

J

K

L

s

g

(a) T53 (b) T55 (c) TD43
1 2 3 4 5 6 7 8 9 10 11

A

B

C

D

E

F

G

H

I

J

K

L

s

g

1 2 3 4 5 6 7 8 9 10 11

A

B

C

D

E

F

G

H

I

J

K

L

s

g

1 2 3 4 5 6 7 8 9 10 11

A

B

C

D

E

F

G

H

I

J

K

L

s

g

(d) TD45 (e) D53 (f) D55
1 2 3 4 5 6 7 8 9 10 11

A

B

C

D

E

F

G

H

I

J

K

L

s

g

1 2 3 4 5 6 7 8 9 10 11

A

B

C

D

E

F

G

H

I

J

K

L

s

g

1 2 3 4 5 6 7 8 9 10 11

A

B

C

D

E

F

G

H

I

J

K

L

s

g

(g) DB43 (h) DB45 (i) B51

Figure 3.11: Available options

147

1 2 3 4 5 6 7 8 9 10 11

A

B

C

D

E

F

G

H

I

J

K

L

T55

TD43

TD43

TD43

TD43

D55 D55 D55 D55

DB43 DB43 DB43 DB43B51

B51

B51

B51

g

Figure 3.12: An “optimal” policy under the MER objective using simple options only

To obtain P (s′|s, o) and r(s, o, s′), we take a direct approach by solving systems of linear

equations. This approach was also taken in (Hauskrecht et al., 1998), while in (Precup

et al., 1997), it is assumed that P (s′|s, o) and r(s, o, s′) are provided along with the simple

option o. This process can be viewed as a way of compiling partial policies into actions.

Parr (1998) considered a similar task. Our approach differs from his in that his method

expresses the values of states in Io as a linear combination of values of states in To, and

thus is an implicit representation of the macro action model. We instead prefer an explicit

representation of macro actions in terms of transition probabilities and reward functions.

With our representation, the pseudo-probability transformation can be applied to obtain a

risk-sensitive version of the planning methods.

Higher-level options can be constructed from lower-level options in the same fashion.

We thus can have a hierarchy of options that can be used to speed up planning. MAXQ

(Dietterich, 2000) and HAM (Parr, 1998), for example, use hierarchies constructed in this

way to speed up reinforcement-learning tasks.

3.6.2.1.2 The Risk-Sensitive Case

Now we consider how simple options can be used for the MEUexp objective. The main differ-

ence is that the reward function needs to be defined differently according to the discussion

of the reward model in Section 3.2. We first apply the pseudo-probability transformation

148

and then show the relationship of the results and the macro MDP. Based on the pseudo-

probability transformation, we obtain the pseudo-probabilities as: for all states s ∈ So,

P̄ (s′|s, o) =

∞∑

t=1

P̄t(s
′|s, o), s′ ∈ To

0, otherwise,

(3.31)

where for all simple options o ∈ O, all states s ∈ So, and all termination states s′ ∈ To,

P̄1(s
′|s, o) = P̄ (s′|s, πo(s)) = P (s′|s, πo(s))γ

r(s,πo(s),s′),

P̄t(s
′|s, o) =

∑

s′′∈S\To

P̄ (s′′|s, πo(s))P̄t−1(s
′|s′′, o)

=
∑

s′′∈S\To

P (s′′|s, πo(s))γ
r(s,πo(s),s′′)P̄t−1(s

′|s′′, o), t ≥ 2.

Next, we show that the pseudo-probabilities satisfy the following relationship, which is

consistent with our discussion in Section 3.2 of what a proper reward model under the

MEUexp objective is.

Theorem 3.16. For all states s ∈ S, all simple options o ∈ O, and all termination states

s′ ∈ To, it holds that

P̄ (s′|s, o) = Es,o

γ

τ−1P
t=0

rt

∣
∣
∣
∣
∣
∣

sτ = s′

 · P (s′|s, o) = Es,o
[
γwτ | sτ = s′

]
· P (s′|s, o).

According to the above theorem and the discussions in Section 3.2, the equivalent re-

wards for option o under the MEUexp objective can be defined as

r(s, o, s′) = logγ
P̄ (s′|s, o)
P (s′|s, o) . (3.32)

Proof. We have that

Es,o [γwτ | sτ = s′] =

∞∑

t=1

Es,o [γwτ | sτ = s′, τ = t]P (τ = t|s, o, sτ = s′),

and

Es,o [γwτ | sτ = s′] · P (s′|s, o) = Es,o [γwτ | sτ = s′] · P (sτ = s′|s, o)

=
∞∑

t=1

Es,o [γwτ | sτ = s′, τ = t] · P (sτ = s′, τ = t|s, o)

149

=

∞∑

t=1

Es,o [γwτ | sτ = s′, τ = t] · Pt(s
′|s, o).

Therefore, it is sufficient to show that

P̄t(s
′|s, o) = Es,o [γwτ | sτ = s′, τ = t] · Pt(s

′|s, o).

We prove this by induction. When t = 1, the result holds by definition. Suppose that the result

holds for t ≥ 1. Then

Es,o [γwτ | sτ = s′, τ = t+ 1]

=
∑

s′′∈S\To

Es,o [γwτ | sτ = s′, τ = t+ 1, s1 = s′′] · P s,o(s1 = s′′|sτ = s′, τ = t+ 1)

=
∑

s′′∈S\To

Es,o [γr0γw1,τ | sτ = s′, τ = t+ 1, s1 = s′′] · P s,o(s1 = s′′|sτ = s′, τ = t+ 1)

=
∑

s′′∈S\To

γr(s,πo(s),s′′)Es′′,o [γwτ′ | sτ ′ = s′, τ ′ = t] · P s,o(s1 = s′′|sτ = s′, τ = t+ 1),

where w1,τ = wτ − w1 = wτ − r0 and τ ′ = τ − 1 is the random termination time of o starting from

s′′. Since

P s,o(s1 = s′′|sτ = s′, τ = t+ 1) = P (s1 = s′′|sτ = s′, τ = t+ 1, s, o),

we have

Es,o [γwτ | sτ = s′, τ = t+ 1] · Pt+1(s
′|s, o)

= Es,o [γwτ | sτ = s′, τ = t+ 1] · P (sτ = s′, τ = t+ 1|s, o)

=
∑

s′′∈S\To

γr(s,πo(s),s′′)Es′′,o [γwτ′ | sτ ′ = s′, τ ′ = t] · P s,o(s1 = s′′|sτ = s′, τ = t+ 1)

· P (sτ = s′, τ = t+ 1|s, o)

=
∑

s′′∈S\To

γr(s,πo(s),s′′)Es′′,o [γwτ′ | sτ ′ = s′, τ ′ = t] · P (s1 = s′′, sτ = s′, τ = t+ 1|s, o)

=
∑

s′′∈S\To

γr(s,πo(s),s′′)Es′′,o [γwτ′ | sτ ′ = s′, τ ′ = t] · P (s1 = s′′|s, o)P (sτ = s′, τ = t+ 1|s1 = s′′, o)

=
∑

s′′∈S\To

γr(s,πo(s),s′′)P (s1 = s′′|s, o)Es′′,o [γwτ′ | sτ ′ = s′, τ ′ = t] · P (sτ = s′, τ = t+ 1|s1 = s′′, o)

=
∑

s′′∈S\To

γr(s,πo(s),s′′)P (s1 = s′′|s, o) ·Es′′,o [γwτ′ | sτ ′ = s′, τ ′ = t] · P (sτ ′ = s′, τ ′ = t|s′′, o)

=
∑

s′′∈S\To

P̄ (s′′|s, πo(s))P̄t(s
′|s′′, o) = P̄t+1(s

′|s, o)

Therefore, the result holds.

150

Table 3.5: Pseudo-probabilities and rewards under the MEUexp objective

B7 C7 D7

A1 42.7766 144.4910 42.7766

B1 28.1012 94.9203 28.1012

C1 18.9841 64.1243 18.9841

D1 28.1012 94.9203 28.1012

E1 42.7766 144.4910 42.7766

B7 C7 D7

A1 10.66670 10.63390 10.66670

B1 9.84413 9.81138 9.84413

C1 9.07632 9.04357 9.07632

D1 9.84413 9.81138 9.84413

E1 10.66670 10.63390 10.66670

(a) Pseudo-Probabilities: Risk-Averse (b) Equivalent Rewards: Risk-Averse

B7 C7 D7

A1 0.000443096 0.00154651 0.000443096

B1 0.000716679 0.00250130 0.000716679

C1 0.001119490 0.00390722 0.001119490

D1 0.000716679 0.00250130 0.000716679

E1 0.000443096 0.00154651 0.000443096

B7 C7 D7

A1 8.69787 8.67476 8.69787

B1 8.00416 7.98110 8.00416

C1 7.36071 7.33764 7.36071

D1 8.00416 7.98110 8.00416

E1 8.69787 8.67476 8.69787

(c) Pseudo-Probabilities: Risk-Seeking (d) Equivalent Rewards: Risk-Seeking

Moreover, we can calculate the pseudo-probabilities in a way similar to regular proba-

bilities by solving the following system of equations.

Theorem 3.17. For all simple options o ∈ O, all states s ∈ So, and all termination states

s′ ∈ To, it holds that

P̄ (s′|s, o) = P̄ (s′|s, πo(s)) +
∑

s′′ /∈To

P̄ (s′′|s, πo(s))P̄ (s′|s′′, o). (3.33)

Proof. We have

∑

s′′ /∈To

P̄ (s′′|s, πo(s))P̄ (s′|s′′, o) =
∑

s′′ /∈To

P̄ (s′′|s, πo(s))

∞∑

t=1

P̄t(s
′|s′′, o)

=

∞∑

t=1

∑

s′′ /∈To

P̄ (s′′|s, πo(s))P̄t(s
′|s′′, o)

=

∞∑

t=1

P̄t+1(s
′|s, o) = P̄ (s′|s, o)− P̄1(s

′|s, o).

Therefore the result holds.

Consider the simple option shown in Figure 3.10. If γ = 0.6 (risk-averse), we can obtain

the pseudo-probabilities as shown in Table 3.5(a), which correspond to the equivalent reward

function shown in Table 3.5(b) defined by Eq. (3.32). If γ = 2.0 (risk-seeking), we can obtain

the pseudo-probabilities as shown in Table 3.5(b), which correspond to the equivalent reward

function shown in Table 3.5(c) defined by Eq. (3.32). Comparing to the risk-neutral case

151

1 2 3 4 5 6 7 8 9 10 11

A

B

C

D

E

F

G

H

I

J

K

L

T53

TD43

TD43

TD43

D53 D53 D53

DB43 DB43 DB43

B51

B51

B51

g

1 2 3 4 5 6 7 8 9 10 11

A

B

C

D

E

F

G

H

I

J

K

L

T55

TD45

TD45

TD45

TD45

D55 D55 D55 D55 D55

DB45 DB45 DB45 DB45B51

B51

B51

B51

B51

g

(a) Risk-Averse (b) Risk-Seeking

Figure 3.13: “Optimal” policies under the MEUexp objective using simple options only

Table 3.4(b), we can see that the equivalent rewards are higher for risk-averse agents, and

lower for risk-seeking agents.

MER planners using simple options can be transformed into MEUexp planners with the

pseudo-probability transformation. Notice that for the MEUexp planner, we only need to

solve one system of equations for P̄ (s′|s, o), instead of two systems of equations as in the

MER case. If we use the set of options from Figure 3.11, the resulting policies are shown

in Figure 3.13(a) and Figure 3.13(b), corresponding to the cases γ = 0.6 and γ = 2.0,

respectively.

However, there remains a minor issue for using simple options under the MEUexp objec-

tive. It is possible that the infinite summation in Eq. (3.31) does not converge to a finite

value. In this case, the system of equations Eq. (3.33) does not have a finite solution. Since

we consider only negative or positive models, infinite pseudo-probabilities can arise if the

model is strictly negative and the agent is risk-averse, or if the model is positive and the

agent is risk-seeking. This is not a problem, though. In the former case, a policy using the

simple option cannot be optimal or ǫ-optimal for any given ǫ, therefore this simple option

can be safely ignored. In the latter case, a policy using the simple option would also result

in positive infinite values, which however contradicts Condition 3.4 (Positive Model with

Finite Exponential Utilities).

152

We can also use the online testing for policies with infinite values described in Sec-

tion 3.2.3 to obtain a complete algorithm that obtains a good policy using only simple

options if existing and terminates with “infinite values” if no such policy has finite

values.

3.6.2.2 Determination of Simple Options

In hierarchical planning, the hierarchy of abstract actions (simple options) encodes prior

knowledge about the planning problem. Often simple options may not be fully specified.

Instead, only the initial set and termination set are given. To make the distinction, we call a

pair of the initial set and the termination set a simple pre-option. Such scenarios have been

discussed in different contexts (Dean and Lin, 1995; Hauskrecht et al., 1998; Dietterich,

2000).

In this case, we still use o = (Io, To) to indicate a simple pre-option, where the partial

policy is not yet defined. We can often determine a region of influence of the option So such

that the resulting option can only possibly visit states in So, while it is also possible that

some states in So will not be visited, but the states in So will help to determine the simple

option. In this sense, So is slightly different from the same notation used in Section 3.6.2.1.

We first consider the simple case where the hierarchy has only two levels. The high level

uses only options, and the low level uses only primitive actions. Under the MER objective,

the optimality equations for the high level that uses only options are

v(s) = 0, s ∈ G,

v(s) = max
o∈Os

∑

s′∈S

P (s′|s, o)[r(s, o, s′) + v(s′)], s /∈ G,

where Os is the set of all possible options that are consistent with the description of the

pre-options. For the low level that uses primitive actions, the optimality equations are

vo(s) = v(s), s ∈ To

vo(s) = max
a∈As

succ(s,a)⊆So

∑

s′∈S

P (s′|s, a)[r(s, a, s′) + vo(s′)], s ∈ So \ To.

153

In order to solve the problem and determine the options at the same time, the planner

alternates between the low level and the high level until it converges. We refer to this

method as hierarchical dynamic programming.

We can apply this method to the robot navigation example. Suppose that we have a set

of pre-options that have the same Io and To sets as the simple options shown in Figure 3.11.

Then the MER version of hierarchical dynamic programming determines a set of options

shown in Figure 3.14 and an “optimal” policy using these options shown in Figure 3.15.

The resulting options improve the original definition in Figure 3.11, and the resulting policy

achieves an expected reward of −28.36, which is very close to the optimal value −28.33.

Notice that it is possible that some of the termination states will not be entered when the

algorithm terminates, which indicates that hierarchical dynamic programming improves the

initial “guessing” of pre-options needed for solving the problem. For example, state A7 is

not entered in option T55′, neither is state E11 in option D55′.

As we have mentioned earlier, options can be organized in a hierarchy, where higher level

options use lower level options. A policy that satisfies these systems of optimality equa-

tions simultaneously is called recursively optimal (Dietterich, 2000). Although a recursively

optimal policy may not be optimal, it is often a good approximation. The above method

for two levels of options and primitive actions can be generalized to a hierarchy of options,

where the computation starts at the bottom of the hierarchy and proceeds bottom-up.

Under the MEUexp objective, we have the following system of optimality equations

vexp(s) = ι, s ∈ G,

vexp(s) = max
o∈Os

∑

s′∈S

P̄ (s′|s, o)vexp(s′), s /∈ G,

and

vo
exp(s) = vexp(s), s ∈ To,

vo
exp(s) = max

a∈As

succ(s,a)⊆So

∑

s′∈S

P̄ (s′|s, a)vo
exp(s′), s ∈ So \ To.

154

1 2 3 4 5 6 7 8 9 10 11

A

B

C

D

E

F

G

H

I

J

K

L

s

g

1 2 3 4 5 6 7 8 9 10 11

A

B

C

D

E

F

G

H

I

J

K

L

s

g

1 2 3 4 5 6 7 8 9 10 11

A

B

C

D

E

F

G

H

I

J

K

L

s

g

(a) T53′ (b) T55′ (c) TD43′

1 2 3 4 5 6 7 8 9 10 11

A

B

C

D

E

F

G

H

I

J

K

L

s

g

1 2 3 4 5 6 7 8 9 10 11

A

B

C

D

E

F

G

H

I

J

K

L

s

g

1 2 3 4 5 6 7 8 9 10 11

A

B

C

D

E

F

G

H

I

J

K

L

s

g

(d) TD45′ (e) D53′ (f) D55′

1 2 3 4 5 6 7 8 9 10 11

A

B

C

D

E

F

G

H

I

J

K

L

s

g

1 2 3 4 5 6 7 8 9 10 11

A

B

C

D

E

F

G

H

I

J

K

L

s

g

1 2 3 4 5 6 7 8 9 10 11

A

B

C

D

E

F

G

H

I

J

K

L

s

g

(g) DB43′ (h) DB45′ (i) B51′

Figure 3.14: Options obtained from pre-options using hierarchical dynamic programming

155

1 2 3 4 5 6 7 8 9 10 11

A

B

C

D

E

F

G

H

I

J

K

L

T55′

TD43′

TD43′

TD43′

D55′ D55′ D55′ D55′

DB43′ DB43′ DB43′B51′

B51′

B51′

B51′

g

Figure 3.15: An “optimal” policy under the MER objective using hierarchical dynamic
programming

Using the pseudo-probability transformation, we can obtain an MEUexp version of the hier-

archical dynamic programming algorithm that solves this system of optimality equations,

as long as there exists a recursively optimal policy with finite values.

For a risk-averse agent (γ = 0.6), Figure 3.16 shows the options obtained through the

MEUexp version of hierarchical dynamic programming and Figure 3.17 shows the recursively

optimal policy using these options. Figure 3.18 and Figure 3.19 show the results for a risk-

seeking agent (γ = 2.0).

3.6.3 Options as Temporally Extended Actions

Options (Sutton et al., 1999b; Precup, 2000) are a general model of temporal abstractions

for MDP models. Both action sequences and simple options are special cases of options.

Options have been used in both DT planning and reinforcement learning to speed up plan-

ning or learning (Precup, 2000). Moreover, many other DT planning and reinforcement

learning methods can be viewed as special cases of options, such as state space decompo-

sition methods (Dean and Lin, 1995), HAM (hierarchies of abstract machines) (Parr and

Russell, 1998; Parr, 1998), and MAXQ (Dietterich, 2000).

An option is a partial policy with a set of initial states and a stochastic termination

condition. An option can be initiated in an initial state. Once initiated, it follows the partial

156

1 2 3 4 5 6 7 8 9 10 11

A

B

C

D

E

F

G

H

I

J

K

L

s

g

1 2 3 4 5 6 7 8 9 10 11

A

B

C

D

E

F

G

H

I

J

K

L

s

g

1 2 3 4 5 6 7 8 9 10 11

A

B

C

D

E

F

G

H

I

J

K

L

s

g

(a) T53′′ (b) T55′′ (c) TD43′′

1 2 3 4 5 6 7 8 9 10 11

A

B

C

D

E

F

G

H

I

J

K

L

s

g

1 2 3 4 5 6 7 8 9 10 11

A

B

C

D

E

F

G

H

I

J

K

L

s

g

1 2 3 4 5 6 7 8 9 10 11

A

B

C

D

E

F

G

H

I

J

K

L

s

g

(d) TD45′′ (e) D53′′ (f) D55′′

1 2 3 4 5 6 7 8 9 10 11

A

B

C

D

E

F

G

H

I

J

K

L

s

g

1 2 3 4 5 6 7 8 9 10 11

A

B

C

D

E

F

G

H

I

J

K

L

s

g

1 2 3 4 5 6 7 8 9 10 11

A

B

C

D

E

F

G

H

I

J

K

L

s

g

(g) DB43′′ (h) DB45′′ (i) B51′′

Figure 3.16: Options obtained from pre-options for a risk-averse agent using hierarchical
dynamic programming

157

1 2 3 4 5 6 7 8 9 10 11

A

B

C

D

E

F

G

H

I

J

K

L

T55′′

TD43′′

TD43′′

TD43′′

D55′′ D55′′ D55′′ D55′′

DB43′′ DB43′′ DB43′′B51′′

B51′′

B51′′

B51′′

g

Figure 3.17: An “optimal” policy under the MEUexp objective for a risk-averse agent using
hierarchical dynamic programming

policy until the termination condition holds. Therefore, an option can also be viewed as a

temporally extended action, whose state transition probabilities are derived from the partial

policy and the termination condition.

To formally define options, we need the concept of partial histories. A partial history

h(t) = (s(0), a(0), . . . , s(t)) is the sequence of all states and actions of length 2t+ 1 such that

there exists hT = (s0, a0, . . . , sT) ∈ HT where T ≥ t and h(t) is a suffix of hT , that is,

sT−t+k = s(k) and aT−t+k = a(k) for all 0 ≤ k < t as well as sT = s(t). In other words, it is

hT = (s0, a0, . . . , sT−t−1, aT−t−1, sT−t, aT−t, . . . , sT
︸ ︷︷ ︸

h(t)

).

The partial history h(0) = (s(0)) can be simplified to s(0). We denote the set of all partial

histories of all lengths as (H).

An option (Precup, 2000) o : (H) p⇀ P(A ∪ {aτ}) is a mapping from partial policies to

probability distributions over all actions and a special action aτ that denotes the termination

of the option, and o(h(t), a) denotes the probability of performing action a when the partial

history since o was initiated is h(t). In other words, an option is a partial-history-dependent

policy. We also require that o(s, aτ) can only be zero or one: o(s, aτ) = 1 means that

o cannot be initiated in state s, and o(s, aτ) = 0 means that o can be initiated in state

s. Once o is initiated, the agent follows the probabilities o(h(h), a) to choose an action

158

1 2 3 4 5 6 7 8 9 10 11

A

B

C

D

E

F

G

H

I

J

K

L

s

g

1 2 3 4 5 6 7 8 9 10 11

A

B

C

D

E

F

G

H

I

J

K

L

s

g

1 2 3 4 5 6 7 8 9 10 11

A

B

C

D

E

F

G

H

I

J

K

L

s

g

(a) T53′′′ (b) T55′′′ (c) TD43′′′

1 2 3 4 5 6 7 8 9 10 11

A

B

C

D

E

F

G

H

I

J

K

L

s

g

1 2 3 4 5 6 7 8 9 10 11

A

B

C

D

E

F

G

H

I

J

K

L

s

g

1 2 3 4 5 6 7 8 9 10 11

A

B

C

D

E

F

G

H

I

J

K

L

s

g

(d) TD45′′′ (e) D53′′′ (f) D55′′′

1 2 3 4 5 6 7 8 9 10 11

A

B

C

D

E

F

G

H

I

J

K

L

s

g

1 2 3 4 5 6 7 8 9 10 11

A

B

C

D

E

F

G

H

I

J

K

L

s

g

1 2 3 4 5 6 7 8 9 10 11

A

B

C

D

E

F

G

H

I

J

K

L

s

g

(g) DB43′′′ (h) DB45′′′ (i) B51′′′

Figure 3.18: Options obtained from pre-options for a risk-seeking agent using hierarchical
dynamic programming

159

1 2 3 4 5 6 7 8 9 10 11

A

B

C

D

E

F

G

H

I

J

K

L

T55′′′

TD45′′′

TD45′′′

TD45′′′

D55′′′ D55′′′ D55′′′ D55′′′

DB45′′′DB45′′′DB45′′′B51′′′

B51′′′

B51′′′

B51′′′

g

Figure 3.19: An “optimal” policy under the MEUexp objective for a risk-seeking agent using
hierarchical dynamic programming

to perform, and the option is terminated when the termination action aτ is chosen. For

planning problems with goal states, it is therefore reasonable to continue to assume that

options terminate with probability one.

An action sequence is an option that terminates after a fixed number of actions, and

the choice of actions is deterministic for each decision epoch. A simple option is an option

where the partial-history-dependent policy is stationary and the termination condition is a

set of termination states.

Options are also similar to regular actions. Recall that a regular action is fully specified

by the states in which it can be performed, the transition probabilities, and the rewards

associated with the state transitions. We have mentioned that the set of states in which an

option can be initiated is determined by the values of o(s, aτ), which can only be zero or one.

An option o also defines transition probability distributions P (·|s, o) over the state space,

such that P (s′|s, o) is the probability of terminating in state s′ when option o was initiated

in state s. On the other hand, the total reward received from the initiation of an option

until the termination of the option is not a function of the initial state, the termination

state, and the option itself. The total rewards rather form a probability distribution. For

the MER objective, we can define the reward function as r(s, o, s′) = Es,o[w(τ)|s(τ) = s′],

according to our discussion of a proper reward model for the MER objective in Section 2.3,

160

where τ is the random variable indicating the number of decision epochs before the op-

tion terminates. For the MEUexp objective, we can instead define the reward function as

r(s, o, s′) = logγ E
s,o[γw(τ) |s(τ) = s′], according to our discussion in Section 3.2. Then we

can treat options as regular actions, and an MDP with options is equivalent to another

MDP, whose exact definition is dependent on the planning objective, namely, either the

MER objective or the MEUexp objective.

With the above construction of transition probabilities and the reward function, we can

define pseudo-probabilities for options as

P̄ (s′|s, o) = P (s′|s, o)γr(s,o,s′) = P (s′|s, o)Es,o

γ

τ−1P
t=0

r(t)

∣
∣
∣
∣
∣
∣

s(τ) = s′

= P (s′|s, o)Es,o
[
γw(τ) | s(τ) = s′

]
. (3.34)

The pseudo-probability transformation then replaces probabilities P (s′|s, o) with pseudo-

probabilities P̄ (s′|s, o). For specific forms of options, it is often more convenient to determine

the relationship between the transition probabilities for the option P (s′|s, o) and the tran-

sition probabilities for primitive actions P (s′|s, a), and replace P (s′|s, a) with P̄ (s′|s, a) in

this relationship to obtain a definition for P̄ (s′|s, o). Then we need to prove that the defin-

ition satisfies Eq. (3.34). This is exactly what we did for action sequences in Section 3.6.1

and for simple options in Section 3.6.2.

3.6.4 Pseudo-Discount Factor Transformation?

The question remains whether we can also use the pseudo-discount factor transformation

to obtain the same generalization. Recall that in the simplest case of the pseudo-discount

factor transformation, we need to replace β(s, a, s′) with γr(s,a,s′). Now we consider options,

so we need to replace β(s, o, s′) with γr(s,o,s′). However, the transition from s to s′ that

resulted from an option does not correspond to a single value r(s, o, s′), but a distribution of

possible rewards collected along the way. Therefore, a direct transformation is not possible.

But in fact, as mentioned in Section 3.2, the reward model r(s, a, s′) is just a simplification of

a complete reward model where the rewards follow a nondegenerate distribution. Therefore,

we could start with an MDP solution method under the MERβ objective using such a general

161

reward definition, find the correspondences, and do the transformation accordingly. This is

overly complex for our purpose.

3.7 Pseudo-Discount Factor Transformation and Factored

Probabilities

Factored probabilities in factored MDPs are another common type of implicitly represented

probabilities. For planners using factored probabilities, I suggest the pseudo-discount factor

transformation, since it is inconvenient to use the pseudo-probability transformation (see

Section 3.7.1.2). In this section, I show that the pseudo-discount factor transformation

can be conveniently applied to structural dynamic programming methods such as SPUDD

(Hoey et al., 1999).

Section 3.7.1 introduces the factored representation of MDPs, and Section 3.7.2 discusses

the SPUDD method for the MERβ objective. In Section 3.7.2.4, we discuss how to apply

the pseudo-discount factor transformation to plan for the MEUexp objective. We also use

the painted-blocks problem to illustrate how the SPUDD method works.

3.7.1 Factored Representation of MDPs

In this section, we first give a brief overview of the factored representation of MDPs. A

factored MDP is based on the factored representation of states. In AI planning problems, it

is common to represent states using a set of n features, or factors5 X = {X1,X2, . . . ,Xn}

such that S = ΩX1 ×ΩX2 × · · · ×ΩXn , where ΩXi
is the set of possible values of the factor

Xi for i = 1, 2, . . . , n. Consequently, a state is represented as a vector of factor values

s = (x1, x2, . . . , xn), where xi ∈ ΩXi
for i = 1, 2, . . . , n. Therefore, a factored representation

does not need to enumerate all states, but only needs to enumerate the factors and the

values for each factor. In contrast, we refer to the representation that enumerates all states

as the flat representation.

For factored MDPs, it is often assumed that the action set is the same for all states,

that is, As = A for all s ∈ S, and all actions can be enumerated. Hence for each action,

5We use the following notational convention: X ,Y,Z for collections of sets of factors; X , Y , Z for sets
of factors; X, Y, Z for individual factors; x, y, z for values of factors; and x,y, z for vectors of such values.
These symbols can also have subscripts, which are always in a regular math font.

162

A A′

B B′

C C ′

D D′

E E′

F F ′

(a) A simple 2TBN

A A′

B B′

C C ′

D D′

E E′

F F ′

(b) A 2TBN with a synchronic arc

A B′ P (A′|A,B′; a)

T T 0.9

T F 0.5

F T 0.0

F F 0.5

A B C P (B′|A,B,C; a)

T T T 0.9

T T F 0.9

T F T 0.9

T F F 0.1

F T T 1.0

F T F 1.0

F F T 0.0

F F F 0.0

B C D P (C′|B,C,D; a)

T T T 0.9

T T F 0.0

T F T 0.0

T F F 0.1

F T T 0.5

F T F 0.0

F F T 0.5

F F F 0.0

B C P (D′|B,C; a)

T T 0.8

T F 1.0

F T 0.8

F F 0.0

(c) Factored CPTs for the 2TBN in (b)

Figure 3.20: 2-time dynamic Bayesian networks

163

we can specify the transition probabilities between any pair of states. Using the factored

representation, the transition probabilities of actions can then be represented as 2-stage

temporal Bayesian networks (2TBNs) (Dean and Kanazawa, 1989; Boutilier et al., 1999).

Figure 3.20 shows some examples of 2TBNs. A 2TBN is a directed acyclic graph (dag)

consisting of two layers of nodes, where the first layer consists of factors at the current time

(denoted as Xi), and the second layer consists of the factors at the next time (denoted as

X ′
i). Because of the 1-1 correspondence between nodes and factors, we refer to the nodes

simply as factors. Since we assume that the current state is always observable, all current-

time factors are observable and it is sufficient that only the next-time factors have parents.

For the next-time factor X ′
i, we use ΠΠΠ ′

i to denote the set of its parent factors. For simple

2TBNs, there are only directed arcs from the first layer to the second layer, implying the

next-time factors are uncorrelated (Boutilier et al., 1999). It is, however, common for the

next-time factors to be correlated. In this case, we need to have directed arcs among nodes

in the second layer. Such arcs are called synchronic (Boutilier et al., 1999). Figure 3.20(a)

is a simple 2TBN and Figure 3.20(b) is a 2TBN with a synchronic arc B′ → A′. In both

networks, the nodes concerning factors E and F are linked with dashed lines, indicating

that these factors are not affected by the corresponding action. Such factors can often be

omitted in the 2TBN representation.

For a given action a, instead of explicitly representing the transition probabilities as

P (s′|s, a) = P (x′1, x
′
2, . . . , x

′
n|x1, x2, . . . , xn; a),6 we have a set of factored conditional proba-

bility tables (CPTs) P
(
X ′

i

∣
∣ΠΠΠ ′

i(a), a
)
, where ΠΠΠ ′

i(a) indicates the set of parent nodes of X ′
i in

the 2TBN for action a. The collection of all factored CPTs form an implicit representation

of the transition probabilities, since from the theory of Bayesian networks (Pearl, 1988), it

holds that

P (s′|s, a) = P (x′1, x
′
2, . . . , x

′
n|x1, x2, . . . , xn; a) =

n∏

i=1

P
(
x′i
∣
∣π′

i(a), a
)
, (3.35)

where π′
i(a) indicates a vector of values for ΠΠΠ ′

i(a). Figure 3.20(c) shows the factored CPTs

for the 2TBN shown in Figure 3.20(b). In the example, we assume the variables have

6For probabilities and reward functions involving values of factors, we use semicolons in the notation to
distinguish the values of factors and the action.

164

binary values: T(rue) and F(alse). Following the convention of Bayesian networks, we do

not list probabilities such as P (¬A′|A,B′; a) since P (¬A′|A,B′; a) = 1−P (A′|A,B′; a). The

unaffected factors E and F are not shown, since the respective factored CPTs are identity

transition probability tables, that is, P (E′|E; a) = 1 if and only if E′ = E, for example.

Since an action often only affects a small number of factors, the number of factors in

ΠΠΠ ′
i(a), na, is often much smaller than the number of all factors n. Therefore for each

action, the number of total entries in all relevant CPTs (for example, 2na if the values

are binary) is much smaller than the number of total entries in a complete enumeration

of the transition probability table (for example, 2n if the values are binary). Therefore,

the factored representation avoids enumerating the state space, thus is (approximately)

logarithmically more compact than the flat representation (Boutilier et al., 1999).

To summarize, a factored MDP M is a 4-tuple (X, A, P, r), where

• X = {X1,X2, . . . ,Xn} is the set of factors such that S = ΩX1 × ΩX2 × · · · × ΩXn ;

• A is the common action space for all states;

• P is the set of factored CPTs P
(
Xi

∣
∣ΠΠΠ ′

i(a), a
)

for all i = 1, 2, . . . , n and all a ∈ A;

• r is a reward function r(x1, x2, . . . , xn; a;x′1, x
′
2, . . . , x

′
n) for all a ∈ A and all xi, x

′
i ∈

ΩXi
where i = 1, 2, . . . , n.7

Existing algorithms for factored MDPs use the reward model r(s, a) since they are planning

under risk-neutral objectives. We instead use the reward model r(s, a, s′) as required by

the MEUexp objectives. Therefore, we modify the original MER algorithms to reflect this

change.

3.7.1.1 The Painted-Blocks Example

The painted-blocks problem can have a feature-based representation known as the proba-

bilistic STRIPS operators (PSO) representation (Fikes and Nilsson, 1971; Boutilier et al.,

7The reward function may also have compact representations, for example, using ADDs (Hoey et al.,
1999) or linear functions (Koller and Parr, 2000). These representations are quite different and there is no
known unified representation. For now, we use this generic format to avoid unnecessary details.

165

1999). In this representation, however, we need to distinguish individual blocks by naming

them. For each blocks, there are several features, and for each feature, there are a finite

number of possible values. More concretely, for each block X, we have the following features

(predicates):

• (X on Y), where Y is either table or another block different from X,8

• (X clear YN), where YN is either yes or no, and

• (X color C), where C is either black or white.

For a problem with n blocks, there are 3n factors in this representation. Figure 3.21 shows

the named version of the problem from Figure 1.6, where the names of blocks are shown for

the initial state, but not for the goal state, which would require enumerating 60 (= 5×4×3)

different configurations, so we do not label the blocks. However, it is worth noting that

not all combinations of values form a valid state in the original problem, since these factors

are correlated. For example, the following combination is not a valid state for the problem

from Figure 3.21

((A_on B) (A_clear yes) (A_color black)

(B_on table) (B_clear yes) (B_color white)

(C_on B) (C_clear yes) (C_color black)

(D_on E) (D_clear yes) (D_color white)

(E_on D) (E_clear yes) (E_color white)),

since two blocks cannot be on top of the same block, and a block is clear if and only if no

other block is on top of it. We refer to such combinations as invalid states.

The description of an action consists of a precondition list and a set of possible outcomes

associated with their respective probabilities, where an outcome is a list of predicates that

change values. If no predicates change their values in an outcome, this outcome can be

omitted, and its probability is the complement of the sum of all other outcomes (see action

8Traditionally, the blocks-world problem is represented with a X on table predicate with binary values
yes and no. Here we combine the “on-table” and “on-block” predicates into a single predicate with multiple
values, in order to make the representation compact for illustration purposes.

166

A

B

C

D

E

Figure 3.21: The named version of the painted-blocks problem from Figure 1.6

(move_X_from_Y_to_Z)

pre: ((X_on Y) (X_clear yes) (Y_clear no) (Z_clear yes))

outcome: (0.5 (X_on Z) (Y_clear yes) (Z_clear no))

(0.5 (X_on table) (Y_clear yes))

(move_X_from_table_to_Z)

pre: ((X_on table) (X_clear yes) (Z_clear yes))

outcome: (0.5 (X_on Z) (Z_clear no))

(move_X_from_Y_to_table)

pre: ((X_on Y) (X_clear yes) (Y_clear no))

outcome: (1.0 (X_on table) (Y_clear yes))

(paint_X_C)

pre: ()

outcome: (1.0 (X_color C))

Figure 3.22: Actions for the painted-blocks problem

move X from table to Z in Figure 3.22). The complete description of all possible actions

for the painted-blocks problem is shown in Figure 3.22.9 For this problem, X, Y, and Z can

be any of A, B, C, D, or E, as long as there is no duplication.

Boutilier et al. (1999) discussed the equivalence of the PSO and 2TBN representations,

and showed how to convert the 2TBN representation to the PSO representation. We now

use the painted-blocks domain to show how to convert the PSO representation to the 2TBN

representation, and then in Section 3.7.3 show how to solve painted-blocks problems using

the 2TBN representation.

Since a 2TBN represents the transition probabilities for all states but a PSO uses a

precondition list to restrict its applicability in different states, we need to extend the defin-

ition of a PSO action to states where it is not applicable. We simply define that the action

9We include (Y clear no) in the preconditions for actions move X from Y to Z and
move X from Y to table, since (X on Y) implies (Y clear no) in a valid state. Without (Y clear

no), these actions are also applicable to invalid states. We include this predicate for clarity, but the
algorithms still work without it, since the agent cannot enter an invalid state anyway.

167

results in self-looping in those states. We also define the immediate rewards for self-loops

to be a pure cost (−1, for example), so that self-looping results in an infinite total cost and

thus this action will not be preferred in planning.

We now illustrate the conversion using action move X from Y to Z. First, those factors

not appearing in the precondition or outcome lists are irrelevant, and their values will

not be changed. Therefore, we only need to consider factors X on, X clear, Y clear, and

Z clear. Since the factors in each outcome are correlated, we need to use 2TBNs with

synchronic arcs. We can consider a hypothetical next-time node Outcome, whose values

are the different outcomes (success and failure for action move X from Y to Z) plus a

special value inapplicable. The 2TBN has links from all factors in the precondition

list to the hypothetical Outcome node, and then links from node Outcome to real next-

time factors that appear in the outcome list, namely, X on, Y clear, and Z clear. The

structure of the 2TBN is illustrated in Figure 3.23, where there are also arcs directly from

the current-time factors to the next-time factors for a reason to be discussed next. The

CPT for node Outcome is straightforward: if the precondition is not satisfied, the value

is inapplicable with certainty; otherwise, the value can be any of the outcomes with its

respective probability. The CPTs for nodes in the outcome lists are also simple: if the

value for Outcome is inapplicable, the next-time factors do not change values; otherwise,

a next-time factor changes its value deterministically according to the outcome it belongs to

(or it does not change value if an outcome does not include it). More concretely, the CPTs

for action move X from Y to Z are shown in Table 3.6, where the action move X from Y to Z

and irrelevant factors and values are omitted to be concise. Notice that in order to model

“unchanged values”, we need to include values of current-time nodes in the CPTs for next-

time nodes. The resulting 2TBN has an additional next-time node Outcome, and thus has

synchronic arcs starting from node Outcome.

We can also eliminate the hypothetical next-time node Outcome in the 2TBN, which re-

duces the complexity of the internal representations of the planning methods to be discussed

next. Suppose that we use the order of the “real” next-time nodes shown in Figure 3.23

168

X on

X clear

Y clear

Z clear

Outcome

X on′

Y clear′

Z clear′

Figure 3.23: Convert move X from Y to Z from a PSO representation to a 2TBN represen-
tation

Table 3.6: CPTs for move X from Y to Z with the Outcome node

P (Outcome| · · ·)
X on X clear Y clear Z clear

success failure inapplicable

Y yes no yes 0.5 0.5 0.0

all other combinations 0.0 0.0 1.0

P (X on′| · · ·)
X on X clear Y clear Z clear Outcome

table Z · · ·
Y yes no yes success 0.0 1.0 0.0

Y yes no yes failure 1.0 0.0 0.0

all other combinations
1.0 if X on = X on′

0.0 if X on 6= X on′

P (Y clear′| · · ·)
X on X clear Y clear Z clear Outcome

yes no

Y yes no yes success 1.0 0.0

Y yes no yes failure 1.0 0.0

all other combinations
1.0 if Y clear = Y clear′

0.0 if Y clear 6= Y clear′

P (Z clear′| · · ·)
X on X clear Y clear Z clear Outcome

yes no

Y yes no yes success 0.0 1.0

Y yes no yes failure 1.0 0.0

all other combinations
1.0 if Z clear = Z clear′

0.0 if Z clear 6= Z clear′

169

from top to bottom. Notice that we have

P
(
X on′, Y clear′, Z clear′

∣
∣ X on, X clear, Y clear, Z clear

)

= P
(
X on′

∣
∣ X on, X clear, Y clear, Z clear

)

· P
(
Y clear′

∣
∣ X on, X clear, Y clear, Z clear, X on′

)

· P
(
Z clear′

∣
∣ X on, X clear, Y clear, Z clear, X on′, Y clear′

)
.

That is, eliminating Outcome introduces direct correlations among next-time factors X on’,

Y clear’, and Y clear’. Let ΩOutcome = {success, failure} and Ω′
Outcome = ΩOutcome ∪

{inapplicable}. According to Figure 3.23, it holds that

P (X on′|X on, X clear, Y clear, Z clear)

=
∑

o∈Ω′
Outcome

P (X on′, o|X on, X clear, Y clear, Z clear)

=
∑

o∈Ω′
Outcome

P (X on′|X on, X clear, Y clear, Z clear, o) · P (o|X on, X clear, Y clear, Z clear)

=
∑

o∈ΩOutcome

P (X on′|X on, X clear, Y clear, Z clear, o) · P (o|X on, X clear, Y clear, Z clear)

+ P (X on′|X on, X clear, Y clear, Z clear, inapplicable)

· P (inapplicable|X on, X clear, Y clear, Z clear).

If the values of the current-time features are such that the precondition holds, then it holds

that

P (inapplicable|X on, X clear, Y clear, Z clear) = 0,

and

P (X on′|X on, X clear, Y clear, Z clear)

=
∑

o∈ΩOutcome

P (X on′|X on, X clear, Y clear, Z clear, o) · P (o|X on, X clear, Y clear, Z clear)

=
∑

o∈ΩOutcome

χ(X on′ ∈ o) · P (o|X on, X clear, Y clear, Z clear),

where o also indicates the set of value assignments for the corresponding outcome and

χ(A) =

1, A is True

0, A is False

170

for a predicate A. Otherwise, it holds that for all o ∈ ΩOutcome,

P (o|X on, X clear, Y clear, Z clear) = 0.

It also holds that

P (inapplicable|X on, X clear, Y clear, Z clear) = 1

and

P (X on′|X on, X clear, Y clear, Z clear, inapplicable) = χ(X on′ = X on).

Therefore, it holds that

P (X on′|X on, X clear, Y clear, Z clear) = χ(X on′ = X on).

Similarly, we have

P (Y clear′|X on, X clear, Y clear, Z clear, X on′)

=
∑

o∈Ω′
Outcome

P (Y clear′, o|X on, X clear, Y clear, Z clear, X on′)

=
∑

o∈Ω′
Outcome

P (Y clear′|X on, X clear, Y clear, Z clear, X on′, o)

· P (o|X on, X clear, Y clear, Z clear, X on′)

=
∑

o∈Ω′
Outcome

P (Y clear′|X on, X clear, Y clear, Z clear, o)

· P (o, X on′|X on, X clear, Y clear, Z clear)

P (X on′|X on, X clear, Y clear, Z clear)

=
∑

o∈Ω′
Outcome

P (Y clear′|X on, X clear, Y clear, Z clear, o)

· P (X on′|X on, X clear, Y clear, Z clear, o) · P (o|X on, X clear, Y clear, Z clear)

P (X on′|X on, X clear, Y clear, Z clear)
.

If the values of the current-time features are such that the precondition holds, then it holds

that

P (Y clear′|X on, X clear, Y clear, Z clear, X on′)

=
∑

o∈ΩOutcome

P (Y clear′|X on, X clear, Y clear, Z clear, o)

· P (X on′|X on, X clear, Y clear, Z clear, o) · P (o|X on, X clear, Y clear, Z clear)

P (X on′|X on, X clear, Y clear, Z clear)

171

=
1

P (X on′|X on, X clear, Y clear, Z clear)

·
∑

o∈ΩOutcome

χ(Y clear′ ∈ o) · χ(X on′ ∈ o) · P (o|X on, X clear, Y clear, Z clear)

=

∑

o∈ΩOutcome

χ(X on′, Y clear′ ∈ o) · P (o|X on, X clear, Y clear, Z clear)

∑

o∈ΩOutcome

χ(X on′ ∈ o) · P (o|X on, X clear, Y clear, Z clear)
.

Otherwise, it holds that

P (Y clear′|X on, X clear, Y clear, Z clear, X on′)

=
χ(Y clear′ = Y clear) · χ(X on′ = X on)

P (X on′|X on, X clear, Y clear, Z clear)
= χ(Y clear′ = Y clear).

We also have

P (Z clear′|X on, X clear, Y clear, Z clear, X on′, Y clear′)

=
∑

o∈Ω′
Outcome

P (Z clear′, o|X on, X clear, Y clear, Z clear, X on′, Y clear′)

=
∑

o∈Ω′
Outcome

P (Z clear′|X on, X clear, Y clear, Z clear, X on′, Y clear′, o)

· P (o|X on, X clear, Y clear, Z clear, X on′, Y clear′)

=
∑

o∈Ω′
Outcome

P (Z clear′|X on, X clear, Y clear, Z clear, o)

· P (o, X on′, Y clear′|X on, X clear, Y clear, Z clear)

P (X on′, Y clear′|X on, X clear, Y clear, Z clear)

=
∑

o∈Ω′
Outcome

P (Z clear′|X on, X clear, Y clear, Z clear, o)

· P (X on′, Y clear′|X on, X clear, Y clear, Z clear, o) · P (o|X on, X clear, Y clear, Z clear)

P (X on′, Y clear′|X on, X clear, Y clear, Z clear)
.

If the values of the current-time features are such that the precondition holds, then it holds

that

P (Z clear′|X on, X clear, Y clear, Z clear, X on′, Y clear′)

=
∑

o∈Ω′
Outcome

P (Z clear′|X on, X clear, Y clear, Z clear, o)

· P (X on′, Y clear′|X on, X clear, Y clear, Z clear, o) · P (o|X on, X clear, Y clear, Z clear)

P (X on′, Y clear′|X on, X clear, Y clear, Z clear)

=
1

P (X on′, Y clear′|X on, X clear, Y clear, Z clear)

·
∑

o∈ΩOutcome

χ(Z clear′ ∈ o) · χ(X on′, Y clear′ ∈ o) · P (o|X on, X clear, Y clear, Z clear)

172

Table 3.7: CPTs for move X from Y to Z without the Outcome node

P (X on′| · · ·)
X on X clear Y clear Z clear

table Z · · ·
Y yes no yes 0.5 0.5 0.0

all other combinations
1.0 if X on = X on′

0.0 if X on 6= X on′

P (Y clear′| · · ·)
X on X clear Y clear Z clear X on′

yes no

Y yes no yes table 1.0 0.0

Y yes no yes Z 1.0 0.0

all other combinations
1.0 if Y clear = Y clear′

0.0 if Y clear 6= Y clear′

P (Z clear′| · · ·)
X on X clear Y clear Z clear X on′ Y clear′

yes no

Y yes no yes table yes 1.0 0.0

Y yes no yes Z yes 0.0 1.0

all other combinations
1.0 if Z clear = Z clear′

0.0 if Z clear 6= Z clear′

=

∑

o∈ΩOutcome

χ(X on′, Y clear′, Z clear′ ∈ o) · P (o|X on, X clear, Y clear, Z clear)

∑

o∈ΩOutcome

χ(X on′, Y clear′ ∈ o) · P (o|X on, X clear, Y clear, Z clear)
.

Otherwise, it holds that

P (Z clear′|X on, X clear, Y clear, Z clear, X on′, Y clear′)

=
χ(Z clear′ = Z clear) · χ(X on′ = X on, Y clear′ = Y clear)

P (X on′, Y clear′|X on, X clear, Y clear, Z clear)

= χ(Z clear′ = Z clear).

The above procedure is similar to eliminating node Outcome in the bucket elimination

method (Dechter, 1996) with node Outcome having the highest index. The resulting 2TBN

and CPTs will depend upon the ordering of the node in the bucket elimination procedure.

Using this procedure, we can obtain 2TBNs representing actions for the painted-blocks

domain, as shown in Figure 3.24, where only the features for relevant blocks are included

to reduce the sizes of the networks. Notice that the resulting 2TBNs also have synchronic

arcs to model the correlations of the next-time factors. The CPTs are shown in Table 3.7.

173

X on

X clear

X color

Y on

Y clear

Y color

Z on

Z clear

Z color

X on′

X clear′

X color′

Y on′

Y clear′

Y color′

Z on′

Z clear′

Z color′

X on

X clear

X color

Y on

Y clear

Y color

X on′

X clear′

X color′

Y on′

Y clear′

Y color′

(b) move X from Y to table

X on

X clear

X color

X on′

X clear′

X color′

(a) move X from Y to Z (c) paint X C

Figure 3.24: 2TBN representation for actions of the painted-blocks domain

174

3.7.1.2 Difficulties with the Pseudo-Probability Transformation for Factored MDPs

For factored MDPs, the transition probabilities are represented implicitly as

P (s′|s, a) =
n∏

i=1

P
(
x′i
∣
∣π′

i(a), a
)
.

In the pseudo-probability transformation, the probabilities P (s′|s, a) are replaced with

the pseudo-probabilities P̄ (s′|s, a) = P (s′|s, a)γr(s,a,s′). Therefore, if we use the pseudo-

probability transformation, the pseudo-probabilities for factored MDPs should be

P̄ (s′|s, a) = P (s′|s, a)γr(s,a,s′) = γr(s,a,s′)
n∏

i=1

P
(
x′i
∣
∣π′

i(a), a
)
. (3.36)

However, there are two reasons why the pseudo-probability transformation is inconve-

nient for factored MDPs. First, planners using factored probabilities often manipulate im-

plicit transition probabilities P
(
x′i
∣
∣π′

i(a), a
)

instead of explicit transition probabilities. Thus

it is often difficult, if not impossible, to define implicit pseudo-probabilities in a meaningful

way. In other words, the pseudo-probability transformation cannot deal with the factor

γr(s,a,s′) in Eq. (3.36) directly. Second, planners using factored probabilities often perform

some probabilistic reasoning, which may not be valid for pseudo-probabilities. Therefore,

the pseudo-probability transformation is not suitable for planners using factored probabili-

ties. On the other hand, the pseudo-discount factor transformation is more manageable for

factored MDPs, as we will show for SPUDD.

3.7.2 SPUDD

The SPUDD (Stochastic Planning Using Decision Diagrams) method (Hoey et al., 1999) is

a generalization of the value iteration method for factored MDPs using algebraic decision

diagrams. It is able to solve large-scale problems represented as factored MDPs, and has

been generalized to approximate planning (St. Aubin et al., 2000) and POMDPs (Hansen

and Feng, 2000; Feng and Hansen, 2001). It has also been combined with heuristic search

to solve much larger problems when the initial state is given (Feng and Hansen, 2002).

In this section, we first review the algebraic decision diagram (ADD) representation used

by SPUDD in Section 3.7.2.1. Section 3.7.2.2 presents SPUDD in a reformulation exclusively

175

P (A′|A,B′; a) P (B′|A,B,C; a) P (C′|B,C,D; a) P (D′|B,C; a) r(A,B,C,D; a)

A

B′

0.0

0.5

0.9

A

B B

C

0.00.10.9 1.0

B B

C

D D D

0.0 0.10.50.9

B

C

0.0

0.8

1.0

A

B

C0.0

5.0 10.0

Figure 3.25: The ADD representation of factored CPTs from Figure 3.20(c) and the reward
function

using ADD operations. This reformulation makes it easier to understand the SPUDD

method, while the original formulation directly manipulates the ADD data structure and

has many details irrelevant to our discussion. Section 3.7.2.3 discusses two extensions of

SPUDD, in order to solve our painted-block example. One extension extends its applicability

to 2TBNs with synchronic arcs, and the other one improves its efficiency.

3.7.2.1 Algebraic Decision Diagram Representation of Factored MDPs

It is possible to represent factored MDPs even more compactly using decision trees (Boutilier

et al., 1995, 2000) or algebraic decision diagrams (ADDs) (Hoey et al., 1999). Since de-

cision trees are special cases of ADDs and also less compact than ADDs, we focus on the

representation using ADDs in our discussion. An ADD is a directed acyclic graph whose

internal nodes are factors and whose leaf nodes are real numbers (Bahar et al., 1993). An

internal node has branches that correspond to its possible values. In general, an ADD rep-

resents a real-valued function on a finite discrete domain.10 Figure 3.25 illustrates the ADD

representation for the factored CPTs from Figure 3.20(c). Since all factors are binary in

the example, the branches with a T value are drawn in solid lines and those with an F value

in dashed lines. The reward function can also be represented in the same way, also shown

in Figure 3.25. Here we assume that the reward function does not depend on the next-time

10Strictly speaking, ADDs only represent real-valued functions of boolean or binary variables. But in
SPUDD 2.0 and later distributions, ADDs are also used for variables of an arbitrary but finite number of
values. This is done by using ⌈log K⌉ boolean proxy variables for each variable, where K is the number
of distinct values of the original variable. In the resulting ADDs, there can be spurious branches that do
not correspond to meaningful values of the original variables. The values of these branches are set to zero,
and all ADD operations that are relevant to dynamic programming can be carried out without altering the
results.

176

A on′

A on A onA on A on A on

A clear

B clear

C clear

0.00.5 1.0

tab
le

B
C D

E

C,D,E

B

table
t
a
b
l
e
,
C
,
D
,
E

B

t
a
b
l
e
,
D
,
E

B
C

t
a
b
l
e
,
B
,
C
,
E

D

ta
bl
e,
B,
C,
D

E

yes

no

yes

no

yes

no

B clear′

A on′ A on′

A on A on

A clear A clear

B clear B clearB clear B clear

C clear C clear

0.01.0

yes no

t
a
b
l
e
,
C B

,
D
,
E

table,C,D,E

B

yes

no

noyes

yes no

yes no

t
a
b
l
e
,
C

B
,
D
,
E

ta
bl
e,
C,
D,
E

B

yes

no

no yes

no
yes

yesno

C clear′

B clear′

A on′

A on

A clear

B clear

C clear C clear

0.01.0

noyes

yes no

C

table,B,D,E

B

table,C,D,E

yes
no

no

yes

yes
no no

yes

(a) P (A on′| · · ·) (a) P (B clear′| · · ·) (a) P (C clear′| · · ·)

Figure 3.26: The ADD representation of factored CPTs for action move A from B to C

state, and use the simpler notation r(A,B,C,D; a). When necessary, we use subscripts to

distinguish the domain of the function represented as an ADD. For example, the reward

function can be denoted as r{A,B,C,D}(·, a). Here we use · to emphasize that r is a function.

When the function takes more than one argument, we use more dots such as : and
... , and

use matching dots to indicate the same arguments in different functions.

The ADD representation of CPTs is also applicable to the painted-blocks problem. As

an example, the CPTs for action move A from B to C are converted to ADDs shown in

Figure 3.26.

An ADD can be manipulated using ADD operations. Standard ADD operations are

provided in ADD packages.11 A binary decision diagram (BDD) is a 0-1 valued ADD for

representing boolean functions (1 is True and 0 is False). There are a set of operations

specialized for BDDs. A BDD is also used to represent a set of states S by representing its

characteristic function χS , that is, s ∈ S if and only if χS(s) = T. For our purpose, the

relevant ADD and BDD operations include:

11We use the CUDD package (Somenzi, 2004).

177

• Change of variables:12 let fX(·) be an ADD on X, and Y be a set of variables of the

same cardinality as X such that X ∩ Y = ∅ and ΩX = ΩY ,

gY (:) = fX(·)[X/Y] if and only if g(y) = f(x),

where x = (x1, x2, . . . , xn) and y = (y1, y2, . . . , yn) are values of variables X and Y

respectively, and xi = yi for all i = 1, 2, . . . , n.

• Function composition:13 let fX(·) be an ADD on X, Xi ∈X, and gX(·) be an ADD

on X whose values are in ΩXi
,

hX(·) = fX(·)[Xi → gX(·)] if and only if

h(x) = f(x1, x2, . . . , xi−1, g(x), xi+1, . . . , xn),

where x = (x1, x2, . . . , xn).

• Function inversion:14 let fX(·) be an ADD on X, and y ∈ R,

AX = f−1
X (y) if and only if x ∈ AX ⇔ f(x) = y,

where AX is a set represented as a BDD.

• Vector addition/subtraction/multiplication/maximization:15 let fX(·), gX(·) be

ADDs on X,

hX(·) = fX(·) ⊚ gX(·) if and only if h(x) = f(x) ◦ g(x),

where ⊚ is one of ⊕,⊖,⊙,> and ◦ is one of +,−, ·,∨, respectively. The ∨ operator is

defined as a ∨ b = max(a, b).

12Implemented as Cudd addSwapVariables in the CUDD package.
13Implemented as Cudd addCompose in the CUDD package.
14Implemented as Cudd addBddInterval in the CUDD package with the interval containing only a single

value.
15Implemented as Cudd addPlus/Cudd addMinus/Cudd addTimes/Cudd addMaximum in the CUDD package,

respectively.

178

• Generalized matrix multiplication:16 let fX,Y (·, :) and gY ,Z(:,
...) be ADDs on X ∪ Y

and Y ∪Z respectively, where X ∩ Y = Y ∩Z = ∅,

hX,Z(·, ...) = fX,Y (·, :) ⊗Y gY ,Z(:,
...) if and only if h(x,z) =

∑

y∈ΩY

f(x,y)g(y,z).

If further X ∩Z = ∅, this operation is a regular matrix multiplication, where f is a

|ΩX| × |ΩY | matrix, g is a |ΩY | × |ΩZ| matrix, and h is a |ΩX| × |ΩZ| matrix. It

is also worth noting that X and Z can be empty sets, in which case the operation

is reduced to a vector-matrix multiplication or a vector-vector multiplication (inner

product).

• If-Then-Else (ITE):17 let gX(·) and hX(·) be ADDs and fX(·) be a BDD,

kX(·) = ite
(
fX(·), gX(·), hX(·)

)
if and only if k(x) =

g(x), if f(x),

h(x), if ¬f(x).

• Existential abstraction (or relational product):18 let fX,Y and gX,Y be two BDDs,

hX = fX,Y ⋊⋉Y gX,Y if and only if hX(x) = ∃y∈ΩY

(
fX,Y (x,y) ∧ gX,Y (x,y)

)
.

The result is also a BDD.

3.7.2.2 The SPUDD Method

The original SPUDD method (Hoey et al., 1999) only deals with simple 2TBNs, where all

next-time factors are uncorrelated. SPUDD uses carefully designed operators from ADD

packages (Somenzi, 2004) to perform dynamic programming operations, and these operators

can be interpreted as performing regression operations analogous to classical AI planning

(Boutilier et al., 2000). These operators make it possible that value functions and poli-

cies can also be compactly represented as ADDs, so that the value iteration steps can be

16Implemented as Cudd addMatrixMultiply and Cudd addTimesPlus in the CUDD package. They use
different methods, and neither dominates the other in terms of time complexity. But for SPUDD,
Cudd addMatrixMultiply is faster empirically.

17Implemented as Cudd addIte in the CUDD package.
18Implemented as Cudd bddExistAbstract in the CUDD package.

179

performed repeatedly until the termination condition is met. In this section, we reformu-

late the original SPUDD using standard ADD operations exclusively. This reformulation

helps us to extend the applicability of SPUDD and improve its efficiency, as to be shown in

Section 3.7.2.3.

To take advantage of ADD operations, SPUDD splits the value update step into two

steps with the help of q-functions. A q-function is similar to a value function but is a

mapping from state-action pairs to real numbers. The SPUDD value update rule with

q-functions for the MERβ objective is:

vt(s) = 0, s ∈ G,

vt(s) = max
a∈A

qt(s, a), s ∈ S \G,

qt(s, a) =
∑

s′∈S

P (s′|s, a)
(
r(s, a, s′) + βvt−1(s′)

)
, s ∈ S \G, a ∈ A, (3.37)

where β ∈ (0, 1) is the discount factor.

A direct translation of the above procedure using ADDs is simple. We first multiply the

factored CPTs together for each action to obtain the complete transition probability table

PX,X′(: |·, a) =

n⊙

i=1

P
(
X ′

i

∣
∣ΠΠΠ ′

i(a), a
)
,

then use ADD operations to perform the value-update rule Eq. (3.37), where the expectation

is realized using the generalized matrix multiplication operator:

qX(·, a) = PX,X′(: |·, a)⊗X′

(

rX,X′(·, a, :) ⊕
(
β ⊙ vX′(:)

))

.

Although this algorithm is very intuitive and also quite efficient in running time, it of-

ten suffers from its memory consumption since the complete transition probability tables

PX,X′(: |·, a) can grow exponentially in the number of factors in the worst case.

The basic SPUDD method tries to solve the memory consumption problem by using

factored CPTs directly without using the complete transition probability tables. The key

computation in the value update rule is
∑

s′∈S

P (s′|s, a)f(s, s′), where f is a function of s and

180

s′. For factored MDPs, this computation can be rewritten as

∑

s′∈S

P (s′|s, a)f(s, s′)

=
∑

x′
1∈ΩX1

x′
2∈ΩX2...

x′
n∈ΩXn

P (x′1, x
′
2, . . . , x

′
n|x1, x2, . . . , xn; a)f(x1, x2, . . . , xn;x′1, x

′
2, . . . , x

′
n)

=
∑

x′
1∈ΩX1

∑

x′
2∈ΩX2

· · ·
∑

x′
n∈ΩXn

n∏

i=1

P
(
x′i
∣
∣π′

i(a), a
)
f(x1, x2, . . . , xn;x′1, x

′
2, . . . , x

′
n)

=
∑

x′
1∈ΩX1

P
(
x′1
∣
∣π′

1(a), a
) ∑

x′
2∈ΩX2

P
(
x′2
∣
∣π′

2(a), a
)
· · ·

·
∑

x′
n∈ΩXn

P
(
x′n
∣
∣π′

n(a), a
)
f(x1, x2, . . . , xn;x′1, x

′
2, . . . , x

′
n). (3.38)

SPUDD performs this computation by eliminating next-time factors one by one. Let X ′
1,i =

{X ′
1,X

′
2, . . . ,X

′
i}. Then we have X ′

1,n = X ′. Let fn = fn
X,X′ such that

fn(x1, x2, . . . , xn;x′1, x
′
2, . . . , x

′
n) = r(s, a, s′) + βv(s′)

= r(x1, x2, . . . , xn; a;x′1, x
′
2, . . . , x

′
n) + βvt−1(x′1, x

′
2, . . . , x

′
n),

and let f i−1 = f i−1
X,X′

1,i−1
such that

f i−1(x1, x2, . . . , xn;x′1, x
′
2, . . . , x

′
i−1)

=
∑

x′
i∈ΩXi

P
(
x′i
∣
∣π′

i(a), a
)
· f i(x1, x2, . . . , xn;x′1, x

′
2, . . . , x

′
i). (3.39)

Notice that f i depends on factors X∪X ′
1,i, but f i−1 only depends on factors X∪X ′

1,i−1, that

is, the factor X ′
i has been eliminated. This is possible because we assume that the 2TBN

is simple, therefore ΠΠΠ ′
i(a) is a subset of X and contains no next-time factors. According to

Eq. (3.38), we obtain f0 = f0
X where

f0(x1, x2, . . . , xn) =
∑

s′∈S

P (s′|s, a)
(
r(s, a, s′) + βvt−1(s′)

)
= qt(s, a).

The computation in Eq. (3.39) is performed using the generalized matrix multiplication:19

f i−1 = f i−1
X,X′

1,i−1
= P

(
X ′

i

∣
∣ΠΠΠ ′

i(a), a
)
⊗{X′

i} f
i
X,X′

1,i
. (3.40)

19The original SPUDD code did not use the built-in operators from the CUDD package, but implemented
this operation in a different way, which is less efficient.

181

Algorithm 3.10 SPUDD under the MER Objective

v, π = SPUDD(M,G,Y, β, ǫ)
Input:

• M = (X, A, P, r), a factored MDP model; • G, a set of goal states represented as a BDD;
• Y , partitions of X into groups, one partition for each action;
• β, a discount factor, 0 < β < 1; • ǫ, an accuracy parameter, ǫ > 0;

Output:

• π, an ǫ-optimal policy; • v, an ǫ-optimal value function;
Local:

• f , intermediate ADDs;

1: for all a ∈ A do

2: for all Y ∈ Y(a) do

3: P
(
Y ′
∣
∣ΠΠΠ ′

Y (a), a
)
← 1;

4: for all X ∈ Y do

5: P
(
Y ′
∣
∣ΠΠΠ ′

Y (a), a
)
← P

(
Y ′
∣
∣ΠΠΠ ′

Y (a), a
)
⊙ P

(
X ′
∣
∣ΠΠΠ ′

X(a), a
)
;

6: end for

7: end for

8: end for

9: vX(·)← 0;
10: repeat

11: v′X(·)← vX(·);
12: vX′ (:)← vX(·)[X/X ′];
13: vX(·)← −∞;
14: for all a ∈ A do

15: f ← rX,X′ (·, a, :)⊕ (β ⊙ vX′(:));
16: for all Y ∈ Y(a) do

17: f ← P
(
Y ′
∣
∣ΠΠΠ ′

Y (a), a
)
⊗Y ′ f ;

18: end for

19: qX(·, a)← ite(G, f, 0);
20: vX(·)← vX(·) > qX(·, a);
21: end for

22: until
∥
∥vX(·)⊖ v′X(·)

∥
∥ ≤ ǫ;

23: obtain π by choosing the maximizing actions;

In fact, we can eliminate the next-time factors in any order since they are uncorrelated.

This allows us to group some factors together to make more efficient use of memory as the

full version of SPUDD does.

The direct generalization of value iteration is more time efficient but consumes more

memory, and the basic SPUDD is more memory efficient but consumes more time. The full

version of SPUDD provides a tradeoff between the two extremes by grouping factors and

using partially combined transition probability tables. For a given action a, we partition the

set of factors into m groups Y(a) = {Y1(a),Y2(a), . . . ,Ym(a)}. Then we can compute the

probability P
(
Y ′∣∣ΠΠΠ ′

Y (a), a
)

for Y ∈ Y(a), where ΠΠΠ ′
Y (a) =

⋃

X∈Y

ΠΠΠ ′
X(a). We next eliminate

Y ′
j (a)’s one by one as in the basic SPUDD method.

182

The full version of SPUDD is shown as Algorithm 3.10 (SPUDD).20 Lines 1–8 precompute

the partially combined transition probability tables, and Lines 9–22 are the value iteration

procedure. Line 12 performs the change of variable operation to prepare the next-time value

function for Line 15. The q-functions are computed in Lines 15–19 following Eq. (3.40).

The same termination condition as that for a naive value iteration applies (Line 22, which

uses the values saved in Line 11). The policy can be retrieved from the value functions

(Line 23) by checking for which action(s), the corresponding q-values agree with the value

function.

3.7.2.3 Extensions to the Original SPUDD

In this section, we consider two extensions of the original SPUDD to deal with synchronic

arcs and to improve the efficiency of planning.

The first extension extends the capability of SPUDD to deal with synchronic arcs.

Such an extension has been considered for structural dynamic programming methods using

decision trees (Boutilier, 1997; Boutilier et al., 2000), but their algorithm is much more

complicated since it manipulates the decision trees directly and the main ideas are clouded

by details. Our extension uses a similar idea, but benefits from using standard ADD opera-

tions, and the resulting algorithm is much simpler. This extension is necessary for us to solve

the painted-blocks example, since the predicates in the same outcome list are correlated (see

Figure 3.24).

Synchronic arcs in 2TBNs introduce dependencies among next-time factors, and repre-

sent correlated action effects. In other words, the second layer of a 2TBN forms a non-trivial

dag by itself. We refer to this dag as the next-time dag. In this case, we cannot eliminate

factors in an arbitrary order. The reason is as follows. Suppose that the action a is given.

We have an intermediate result f that depends on factors X ∪Y ′ ∪{Z ′} where Z /∈ Y and

Y ⊂X, and we are going to eliminate factor Z ′ whose parents ΠΠΠ ′
Z include other next-time

factors, say ΠΠΠ ′
Z = ΠΠΠ1 ∪ΠΠΠ ′

2 where ΠΠΠ1 ⊆X and ΠΠΠ ′
2 ⊆X ′. The elimination can be done in

20In the original implementation, SPUDD uses a parameter BIGADD as the limit of the sizes of ADDs
representing P

�
Y ′

��ΠΠΠ ′
Y (a), a

�
. Our formulation here is more general and more flexible.

183

a way similar to Eq. (3.39) as

∑

z′∈ΩZ

P
(
z′
∣
∣π′

Z , a
)
f(x,y′, z′) =

∑

z′∈ΩZ

P
(
z′
∣
∣π1,π

′
2; a
)
f(x,y′, z′),

where π1 and π′
2 are vectors of values for factors ΠΠΠ1 and ΠΠΠ ′

2, respectively. However, if

ΠΠΠ ′
2 * Y , then the result will not be a function of X and Y ′ only, but also a function of

ΠΠΠ ′
2. In other words, new next-time factors can be introduced when eliminating a factor.

Thus if handled improperly, some factors need to be eliminated more than once. Consider

the 2TBN in Figure 3.20(b) as an example. If we eliminate B′ before A′, then eliminating

A′ will reintroduce B′, which needs to be eliminated again.

Fortunately, we can eliminate the next-time factors in some specific orders that will

not lead to multiple elimination. This is because the next-time dag is acyclic, and we can

eliminate factors in the reverse direction of the arcs in the dag. If we eliminate factors one

by one, this can be achieved by reordering the factors in an order that is the reverse of

a topological sort of next-time factors in the next-time dag. Equivalently, we can always

choose a leaf factor from the next-time dag, and remove the eliminated factor from the dag

once the choice is made. For the above example, the factor A′ must be eliminated before

B′, while other factors C ′ and D′ can be eliminated before, after, or interleaved with A′

and B′. If we also want to eliminate factors in groups as in the full version of SPUDD,

the grouping must not introduce loops. This can be done by always grouping consecutive

factors in a topological sort of the next-time dag, and elimination of groups also proceeds

in this order. For the same example as above, we can eliminate the group {A′, B′} before

or after the group {C ′,D′}, or eliminate the group {A′,D′} before the group {B′, C ′}, but

cannot eliminate the group {B′, C ′} before the group {A′,D′}. Moreover, the algorithm

that deals with synchronic arcs is the same as Algorithm 3.10 (SPUDD) except that the

groups Y(a) are ordered properly for each action a.

The second extension makes the dynamic programming operations more efficient, by

taking advantage of identity transition probability tables, which indicate that the value of a

factor is unchanged. This case is exemplified by the E and F factors in Figure 3.20. These

factors appear in the 2TBN only for dealing with the frame problem, namely, which factors

184

are not affected by the action (McCarthy and Hayes, 1969). However, the original SPUDD

does not identify such factors associated with identity transition probability tables, which

however can be exploited to improve its efficiency. If a factor X is not affected by the action

a, then ΠΠΠ ′
X(a) = {X} and the associated CPT is P (X ′|X,a) = 1 if and only if X ′ = X.

Therefore, the factor elimination Eq. (3.39) is reduced to a simple composition operation

f ′ = P (X ′|X,a)⊗X′ f = f [X ′ → X]

and, if f does not involve X, a change of variable operation

f ′ = P (X ′|X,a) ⊗X′ f = f [X ′/X].

Both operations are cheaper than a generalized matrix multiplication. The latter operation

is more efficient than the former one, and multiple changes of variables can be performed

together in one operation. It is also more efficient to perform the former operation on a

smaller ADD than on a bigger ADD, which implies that we should process unaffected factors

before dealing with other factors.

3.7.2.4 SPUDD for Maximizing Expected Exponential Utility of Total Rewards

For the MEUexp objective, a variant of the value-update rule is as follows, which can

be viewed as obtained through the pseudo-discount factor transformation (or the pseudo-

probability transformation since they are equivalent for explicit probabilities):

vt
exp(s) = ι, s ∈ G, (3.41)

vt
exp(s) = max

a∈As

qt
exp(s, a), s ∈ S \G, (3.42)

qt
exp(s, a) =

∑

s′∈S

P (s′|s, a)γr(s,a,s′)vt−1
exp (s′), s ∈ S \G, a ∈ A. (3.43)

If we define fn as

fn(x1, x2, . . . , xn;x′1, x
′
2, . . . , x

′
n) = γr(s,a,s′)vt−1

exp (s′)

= γr(x1,x2,...,xn;a;x′
1,x′

2,...,x′
n)vt−1

exp (x′1, x
′
2, . . . , x

′
n),

and compute f i for all i = 0, 1, . . . , n− 1 as in Eq. (3.39), then it follows that

f0(x1, x2, . . . , xn) =
∑

s′∈S

γr(s,a,s′)vt−1
exp (s′) = qt

exp(s, a).

185

Algorithm 3.11 SPUDD under the MEUexp Objective

v, π = SPUDDExp(M,G,Y, γ, ǫ)
Input:

• M = (X, A, P, r), a factored MDP model; • G, a set of goal states represented as a BDD;
• Y , partitions of X into groups, one partition for each action and Y(a) contains ma groups;
• γ, a risk parameter, γ > 0, γ 6= 1; • ǫ, an accuracy parameter, ǫ > 0;

Output:

• π, an ǫ-optimal policy; • v, an ǫ-optimal value function;
Local:

• f , intermediate ADDs;

1: for all a ∈ A do

2: for all Y ∈ Y(a) do

3: P
(
Y ′
∣
∣ΠΠΠ ′

Y (a), a
)
← 1;

4: for all X ∈ Y do

5: P
(
Y ′
∣
∣ΠΠΠ ′

Y (a), a
)
← P

(
Y ′
∣
∣ΠΠΠ ′

Y (a), a
)
⊙ P

(
X ′
∣
∣ΠΠΠ ′

X(a), a
)
;

6: end for

7: end for

8: end for

9: vX(·)← ι;

10: repeat

11: v′X(·)← vX(·);
12: vX′ (:)← vX(·)[X/X ′];
13: vX(·)← −∞;
14: for all a ∈ A do

15: f ← γr
X,X′(·,a,:) ⊙ vX′(:);

16: for all Y ∈ Y(a) do

17: f ← P
(
Y ′
∣
∣ΠΠΠ ′

Y (a), a
)
⊗Y ′ f ;

18: end for

19: qX(·, a)← ite(G, f, ι);

20: vX(·)← vX(·) > qX(·, a);
21: end for

22: until
∥
∥vX(·)⊖ v′X(·)

∥
∥ ≤ ǫ;

23: obtain π by choosing the maximizing actions;

Therefore, the factor elimination procedure from the previous section, including using

groups of factors, can be used for the MEUexp objective without change, except for a dif-

ferent set of initial values. This is exactly what the pseudo-discount factor transformation

does. It is clearer to show how this transformation works using ADD operators:

fn
X,X′ = rX,X′(·, a, :) ⊕

(
β ⊙ vX′(:)

)

y

y

y

fn
X,X′ = 0 ⊕

(
γrX ,X ′(·,a,:) ⊙ vX′(:)

)

The transformed algorithm is shown in Algorithm 3.11 (SPUDDExp) and the transformed

parts are highlighted. Notice that we also need to transform the initial values (Line 9) and

the values of the goal states (Line 19).

186

The correctness of SPUDDExp is immediate since it is value iteration using ADDs. We

can also use the online testing mechanism described in Section 3.2.3, as least in principle,

to test the finiteness conditions Condition 3.2 and Condition 3.4. There are methods for

calculating the strongly connected components (Xie and Beerel, 2000), and the spectral

radius computation can be carried out using ADDs directly since it only requires arithmetic

operations. To summarize, we have the following theorem.

Theorem 3.18. Assume that Condition 2.1 (Finite Model) holds and that one of Con-

dition 2.7 (Positive Model) and Condition 3.5 (Strictly Negative Model) holds. Then the

values from SPUDDExp (with online testing if needed) converges to the optimal values if

the optimal values are finite, and the method outputs “infinite values” otherwise.

3.7.2.5 SPUDD and Painted-Blocks Problems

SPUDD, however, cannot be used directly to solve painted-blocks problems represented in

2TBNs and ADDs due to invalid states. Recall that we extend the definition of actions

so that they result in self-loops if they are not applicable. For invalid states, no action

is applicable, and their total rewards are always negative infinity. However, solving the

problem under either the MER or the MEUexp objective requires the optimal values to be

finite, otherwise SPUDD does not terminate.

There are several approaches that can deal with this problem. The first approach is to

redefine the actions for invalid states so that they have finite values. For invalid states, we

can define the transition probabilities of actions arbitrarily since they cannot be reached

anyway. Therefore it is possible to define actions in invalid states so that the next-time

states are valid. For example, we can define actions for invalid states in painted-blocks

problems so that they always result in the state where all blocks are on the table. However,

this approach requires problem-specific definitions of actions, and it is therefore difficult to

automate such definitions. The second approach is to figure out what states are valid and

only perform dynamic programming on valid states. This can be done by a breadth-first

search starting with the initial states, applying all actions and including the resulting states

to the set of valid states, until the set of valid states does not change. In principle, we need

187

to represent a boolean function that defines the boundary of valid states and invalid states.

The problem with this approach is that the boolean function can be quite complex and thus

is time consuming to obtain and to use in dynamic programming. The third approach is a

search approach starting from the initial states and only including states when necessary.

We take this approach and discuss the details in the following section.

3.7.3 Risk-Sensitive Symbolic LAO*

The SPUDD method can be combined with LAO* to solve even larger factored MDPs ef-

ficiently (Feng and Hansen, 2002). We refer to this method as symbolic LAO*. In this

method, both the search and dynamic programming steps of LAO* are implemented using

decision diagrams (ADDs or BDDs). In particular, the dynamic programming step is imple-

mented using a version of SPUDD on a restricted domain. Since we have shown that both

LAO* and SPUDD can be generalized to the MEUexp objective using the pseudo-discount

factor transformation, so is the symbolic LAO* method. We thus do not repeat the original

MER version of the method, but present the MEUexp version directly.

Symbolic LAO*Exp uses a variant of LAO*Exp with two differences to the one we have

discussed in Section 3.5. The first one is the dynamic programming method. Since we

will use SPUDD, which is a value iteration method, the termination condition for LAO*

is changed to be also based on the approximation error to the optimal values. The second

difference is the search. As we discussed before, the search part of LAO* does not update the

values, therefore remains the same for both the MER and MEUexp objectives. However, the

search can benefit from using BDDs, which can represent sets of states, and BDD operations.

To facilitate the search using BDDs, we expand all fringe states at once in the forward

search. These two differences lead to the variant of LAO*Exp shown in Algorithm 3.12

(LAOStarSPUDD).

The forward search is performed in the same way as in the original LAO*, except that all

operations are done using BDDs and BDD operations (Feng and Hansen, 2002). The search

procedure is shown in Algorithm 3.13 (ForwardBackwardSearchBDD). We use Sa
π to indicate

the set of states for which the current policy π dictates to execute action a. These sets are

188

Algorithm 3.12 LAO* for Factored MDPs Using SPUDD

π = LAOStarSPUDD(M,S0, G, h, ǫ)
Input:

• M = (X, A, P, r), a factored MDP model; • S0, a set of initial states;
• G, a set of goal states, S0 ∩ G = ∅; • h, a heuristic function;
• ǫ, an accuracy parameter, ǫ > 0;

Output:

• π, an ǫ-optimal partial policy;
Local:

• v, the value function; • B, the currently best solution graph;
• E, the explicit subgraph; • F , the fringe states;
• Z, the relevant states whose values are updated;
• δ, the error from SPUDDRestricted;

1: vX(·)← hX(·);
2: E ← ∅; B ← ∅; π ← ∅; F ← S0; Z ← F ;
3: repeat

4: E ← E ∪ F ;
5: v, π, δ ← SPUDDExpRestricted(M,Z, v);
6: B,F, Z ← ForwardBackwardSearchBDD(M,S0, π, E);
7: F ← F \G;
8: until F = ∅ and δ ≤ ǫ;

used in Line 9 to determine what states the agent can result in under the current policy,

using the Image procedure, which is implemented using existential abstraction. The Image

procedure, also shown in Algorithm 3.13 (ForwardBackwardSearchBDD), calculates the image

of a given set of states after executing an action, that is, the set of states that are reachable

by executing an action from a state in the given set. In order to perform this calculation,

we obtain for all actions a ∈ A and all states s, s′ ∈ S, the boolean transition function

T (s, a, s′) from the transition probability table P (s′|s, a) such that T (s, a, s′) = T if and

only if P (s′|s, a) > 0. The calculation itself is performed using the existential abstraction

operator ⋊⋉ from the ADD package. We need to change variables so that the result represents

a set of states at the current time.

The backward search is performed similarly.21 It is combined with forward search since

we need to initialize the policy with backward indices using Sa
π (Line 16). The backward

search uses the PreImage procedure instead, which is also implemented using existential

abstraction.

SPUDDExp on a restricted domain is shown in Algorithm 3.14 (SPUDDExpRestricted).

This is possible by using a mask (the current best solution graph B) to restrict the set of

21Feng and Hansen (2002) mistakenly claimed that the backward search step can be omitted and Z = B.

189

Algorithm 3.13 Search in LAO* Using BDDs

B,F,Z = ForwardBackwardSearchBDD(M,S0 , π,E)
Input:

• M = (X, A, P, r), a factored MDP model; • S0, a set of initial states;
• π, an currently best partial policy; • E, the explicit subgraph;

Output:

• B, the set of states in the best solution graph; • F , the fringe states;
• Z, the set of states on which to perform dynamic programming;

Local:

• from, source states; • to, target states;

1: for all a ∈ A do

2: Sa
π ← π−1(a);

3: end for

4: B ← S0;
5: from← B;
6: while from 6= ∅ do

7: to← ∅;
8: for all a ∈ A do

9: to← to ∪ Image
(
from ∩ Sa

π, T (·, a, :)
)
;

10: end for

11: F ← F ∪ (to \ E);
12: from← (to ∩ E) \B;
13: B ← B ∪ from;
14: end while

15: for all a ∈ A do

16: T a
π ← Image(Sa

π, T (·, a, :));
17: end for

18: Z ← F ;
19: to← Z;
20: while to 6= ∅ do

21: from← ∅;
22: for all a ∈ A do

23: from← from ∪ PreImage
(
to ∩ T a

π , T (·, a, :)
)
;

24: end for

25: to← from \ Z;
26: Z ← Z ∪ to;
27: end while

target = Image(source, T)

1: target←
(
source ⋊⋉X TX,X′ (·, :)

)
[X ′/X];

source = PreImage(target, T)

1: source←
(
target[X/X ′] ⋊⋉X′ TX,X′(·, :)

)
;

190

Algorithm 3.14 SPUDDExp with a Restricted Domain for LAO*Exp

vexp, π, δ = SPUDDExpRestricted(M,Z,G, vexp, γ, ǫ)

Input:

• M = (X, A, P, r), a factored MDP model; • Z, the set of states where the policy will be improved;
• G, a set of goal states; • vexp, the currently best value function;
• γ, a risk parameter, γ > 0, γ 6= 1; • ǫ, a desired accuracy, ǫ > 0;

Output:

• vexp, the improved value function; • π, an improved partial policy;
• δ, the error;

Local:

• qexp, the q-function;

1: vZ(·)← ite
(
Z, vX(·), 0

)
;

2: vZ̄(·)← ite
(
S \ Z, vX(·), 0

)
;

3: Z ′ ← ∅;
4: for all a ∈ A do

5: Z ′ ← Z ′ ∪ Image
(
Z, T (·, a, :)

)
;

6: end for

7: Z ′
1 ← Z ′ ∩ Z; Z ′

2 ← Z ′ \ Z;
8: Z ′ ← Z ′[X/X ′];
9: PZ,Z′ (: |·, a)← ite

(
Z ∪ Z ′, PX,X′ (: |·, a), 0

)
;

10: rZ,Z′ (·, a, :)← ite
(
Z ∪ Z ′, rX,X′ (·, a, :), 0

)
;

11: repeat

12: v′Z(·)← vZ(·);
13: v′Z′(:)← ite

(

Z ′
1, v

′
Z(·), ite

(
Z ′

2, vZ̄(·), 0
))

[X/X ′];

14: vZ(·)← −∞;
15: for all a ∈ A do

16: qZ(·, a)← PZ,Z′ (: |·, a)⊗X′

(
γrZ,Z′(·,a,:) ⊙ v′Z′(:)

)
;

17: vZ(·)← vZ(·) > qZ(·, a);
18: end for

19: δ ← ‖vZ(·)⊖ v′Z(·)‖;
20: until the termination condition is met;
21: obtain π by choosing the maximizing actions for states in Z;
22: vX(·)← ite

(
Z, vZ(·), vZ̄(·)

)
;

states that perform dynamic programming updates (Feng and Hansen, 2002). In general,

the restriction of a function f(x) on a set Z is

fZ(x) =

f(x), x ∈ Z

undefined, x /∈ Z.

Therefore, the restriction of f on Z can be computed as fZ = ite(Z, f,undefined) using

the ADD operator ite. In our implementation, it is convenient to use zero in place of the

undefined value. Since a policy is represented as an ADD with integer values as indices to

actions, −1 is used to denote an undefined action, which is needed for a partial policy.

For simplicity, we use the complete transition probability tables for all actions, repre-

sented as ADDs. Lines 1–2 separate the value function for those in Z and those not in Z

191

A

B

C

D

E

-4.5

−1/0.5

−
1
/
0
.5

A

B

D

E

C

-3

A

B

C D

E

-4

−1/0.5

−3/1.0 A

B

D

E

C

0

A

B

C

E

D

-2

−
1
/
0
.5

A

B

C D E

-4

A

B

C

D

E

-2

−
1
/
0
.5

−1/0.5

−1/0.5

A C

E

B

D

0

−
1
/
0
.5

A B C

E

D

-2

−
1
/
0
.5 −1/0.5

−1/0.5

A C

D

B

E

0

−
1
/
0
.5

A B C

D

E

-2

−
1
/
0
.5 −1/0.5

(a) Risk-Neutral Agent

A

B

C

D

E

−γ−6

−3/1.0 A

B

C

D

E

−γ−3

−3/1.0 A

B

C

D

E

-1

(b) Risk-Averse Agent (γ = 0.6)

A

B

C

D

E

γ−1(2γ − 1)−2

−1/1.0 A

B

C D

E

(2γ − 1)−2

−1/0.5

A

B

C

E

D

(2γ − 1)−1

−
1
/
0
.5

A

B

C D E

(2γ − 1)−2

A

B

C

D

E

(2γ − 1)−1

−
1
/
0
.5

−1/0.5

−1/0.5

A C

E

B

D

1

−
1
/
0
.5

A B C

E

D

(2γ − 1)−1

−
1
/
0
.5 −1/0.5

−1/0.5

A C

D

B

E

1

−
1
/
0
.5

A B C

D

E

(2γ − 1)−1

−
1
/
0
.5 −1/0.5

(c) Risk-Seeking Agent (γ = 3.0)

Figure 3.27: Optimal plans for the factored version of painted-blocks problem

192

since only values of states in Z will be changed. Next in Lines 3–6, we compute Z ′, the

set of possible next-time states starting from a state in Z by executing an action. Line 7

partitions Z ′ into Z ′
1, the part inside Z, and Z ′

2, the part outside Z. Line 9 and Line 10

then calculate the restriction of the transition probability table and the reward function to

the relevant states. The main loop is Lines 11–20, which is very similar to Algorithm 3.11

(SPUDDExp) except that all operations are performed on a restricted domain and Line 13

is needed to prepare for the next-time values needed in Line 16. Finally, Line 21 obtains

the greedy policy for states in Z based on their values and Line 22 merges the two partial

value functions.

The correctness of symbolic LAO*Exp follows directly from LAO*Exp and SPUDDExp.

Theorem 3.19. Assume that Condition 2.1 (Finite Model) and Condition 3.5 (Strictly

Negative Model) hold. Then values of the initial states from symbolic LAO* (with online

testing if needed) converges to the optimal values if the optimal values of the initial states

are finite, and the method outputs “infinite values” otherwise.

We apply symbolic LAO* and LAO*Exp to the painted-blocks problem, with the exten-

sions discussed in Section 3.7.2.3. The resulting policies are shown in Figure 3.27. They are

virtually the same as those obtained using LAO* or LAO*Exp with the flat representation

(see Figure 3.6 and Figure 3.7). The only difference is that now the blocks are labeled with

names. We break ties in favor of the action “working” on a block whose name is alphabet-

ically smaller, which hence results in more states in the best solution graph than LAO* or

LAO*Exp with the flat representation (see Section 3.5).

3.8 Summary

In this chapter, we discussed risk-sensitive planning with exponential utility functions, which

model constant risk attitudes. The basic properties for planning under the MEUexp ob-

jective have been developed in the operation research community. We therefore took a

transformation-of-algorithms approach to solving large-scale planning problems by reusing

ideas from decision-theoretic planning under a risk-neutral planning objective. Search,

temporal abstraction, and state abstraction are three main symbolic strategies for solving

193

large-scale problem in decision-theoretic planning under a risk-neutral objective. Using the

transformation-of-algorithms approach, we showed that risk-neutral planners using any of

these strategies can be transformed into risk-sensitive planners, and only small changes are

made to the original algorithms. In particular, methods using temporal and state abstrac-

tions are transformed using the pseudo-probability and the pseudo-discount factor variants,

respectively. We obtained risk-sensitive versions of several planners using the transforma-

tion and compared the resulting policies under risk-averse, risk-neutral, and risk-seeking

objectives.

194

CHAPTER IV

GENERAL RISK-SENSITIVE UTILITY FUNCTIONS

In this chapter, we consider risk-sensitive planning objectives with general risk-sensitive

utility functions. Exponential utility functions, as discussed in Chapter 3, are convenient to

use, but cannot model all types of risk attitudes, for example, the risk attitude of a person

who buys insurance and lottery tickets at the same time. Therefore, we need planning

objectives and methods that deal with more general risk attitudes.

In general, a risk-sensitive utility function is a nonlinear real-valued function. We take a

state-augmentation approach, and convert a problem under the MEU objective to a problem

under the MER objective and reuse existing results from operations research for problems

under the MER objective. However, the augmented state space is infinite in general, and we

develop methods that deal with infinite state spaces, which is done using functional value

functions and approximations.

In this chapter, we consider finite models and general risk-sensitive utility functions

under the following monotonicity condition.

Condition 4.1 (Nondecreasing Utility Function). The utility function U(·) is nondecreas-

ing.

We show that finite horizon problems can be solved using a backward induction proce-

dure (Section 4.2). For infinite horizon problems, we show that the optimal values can be

approximated using value iteration if the utility function is asymptotically constant, linear,

or exponential (Section 4.3). As an application of the results for MDPs with general utility

functions, we also present an exact method for solving infinite horizon problems with one-

switch utility functions (Section 4.4). We demonstrate how these methods work using the

painted-blocks problem as an example.

195

4.1 Introduction

It is more difficult to solve risk-sensitive problems in general because the problem may

not be decomposable any longer. For the purpose of dynamic programming, a problem is

decomposable if we have a function fU(·, ·) for a nonlinear utility function U(·) such that

for all random variables x and y,

E[U(x + y)] = E
[

fU

(
x, E[U(y)]

)]

.

In this way, a multi-stage reward process can be evaluated using a backward induction

procedure: the expected utility of the total reward can be obtained by first evaluating

the future expected utility of the total reward starting at the next decision epoch, and

then combining the immediate reward with the future expected utility using the combing

function fU .

The identity utility function is decomposable, since we have the complete decomposition

(see Section 2.3)

f(x, y) = x+ y, and E[x + y] = E
[
x +E[y]

]
= E[x] + E[y];

and the exponential utility functions are also decomposable, since we have the partial de-

composition (see Section 3.2)

fexp(x, y) = γx · y, and E[Uexp(x + y)] = E
[
γx ·E[Uexp(y)]

]
.

However, in general, we cannot find such a function fU for an arbitrary utility function

U satisfying Condition 4.1 (Nondecreasing Utility Function). Therefore, we must use a

different approach to solving problems with general risk-sensitive utility functions. We

take a state-augmentation approach and reduce a risk-sensitive problem to a risk-neutral

problem with an augmented state space, to which existing results from the operations

research literature can be applied.

196

4.2 Finite Horizon

This section considers finite horizon problems as the basis for dealing with infinite horizon

problems, which are our true interest. This objective is denoted as MEUT following the

convention established in Table 2.1.

4.2.1 Basic Properties

First, we consider some basic properties under the MEUT objective directly and establish

the existence of an HD-optimal policy. This step is necessary to ensure that our state-

augmentation approach can obtain an optimal policy.

The optimal values exist and are finite for finite horizon problems. For a given policy, the

values exist and are finite for all states since there are only a finite number of trajectories.

The optimal values exist since the values exists for all policies. The optimal values are finite

since the total rewards are bounded and thus the expected utilities of the total reward for

all policies are bounded as well.

To develop the optimality equations, we first consider the policy evaluation equations

for a given policy. Define the expected utility of the total reward at decision epoch t given

a history ht ∈ Ht for a policy π ∈ Π as

vπ,t
U,T (ht) = Eht,π

[

U

(
T−1∑

τ=0

rτ

)]

= Eht,π [U (wT)] .

Notice that at epoch t, the part of the trajectory (at, st+1, . . . , sT) remains a random vari-

able. It follows that vπ
U,T (s) = vπ,0

U,T (s) for all states s ∈ S. We thus have the following

theorem about the policy evaluation equations.

Theorem 4.1. Let π = (d0, d1, . . . , dT−1) ∈ Π. The values vπ,t
U,T (ht) satisfy

vπ,T
U,T (hT) = U

(
T−1∑

τ=0

rτ

)

= U(wT), hT ∈ HT ,

vπ,t
U,T (ht) =

∑

a∈Ast

dt(ht, a)
∑

s′∈S

P (s′|st, a)v
π,t+1
U,T

(
ht ◦ (a, s′)

)
, ht ∈ Ht, 0 ≤ t < T,

where the last component of ht is st.

Proof. Since no decision is made at t = T , the reward sequence is uniquely determined by hT and

the expectation can be dropped. Therefore, the results hold for t = T by definition.

197

We show by induction that the results hold for t < T . Suppose the result holds for t+ 1. Then

we have

vπ,t
U,T (ht) = Eht,π[U(wT)] = Eht,π

at,st+1
[U(wT)]

= Eht,π
at,st+1

[
Eht,π [U(wT)| at = a, st+1 = s′]

]

= Eht,π
a,s′

[

Eht◦(a,s′),π [U(wT)]
]

= Eht,π
a,s′

[

vπ,t+1
U,T

(
ht ◦ (a, s′)

)]

=
∑

a∈Ast

dt(ht, a)
∑

s′∈S

P (s′|st, a)v
π,t+1
U,T

(
ht ◦ (a, s′)

)
.

Therefore, the result holds for all 0 ≤ t ≤ T .

Now we define

v∗,tU,T (ht) = sup
π∈Π

vπ,t
U,T (ht),

and it follows that v∗U,T (s) = v∗,0U,T (s) for all states s ∈ S. The optimality equations describe

the relationship among the v∗,tU,T values.

Theorem 4.2. The values v∗,tU,T (ht) are the unique solution of the optimality equations

v∗,tU,T (hT) = U

(
T−1∑

τ=0

rτ

)

= U(wT), hT ∈ HT

v∗,tU,T (ht) = max
a∈Ast

∑

s′∈S

P (s′|st, a)v
∗,t+1
U,T

(
ht ◦ (a, s′)

)
, ht ∈ Ht, 0 ≤ t < T,

where the last component of ht is st.

Proof. Suppose we have a solution vt
U,T (ht) to the optimality equations. We show that vt

U,T (ht) =

v∗,t
U,T (ht) for all histories ht ∈ Ht and all t with 0 ≤ t ≤ T .

Since no decision is made at t = T , vT
U,T (hT) = vπ,T

U,T (hT) for all histories hT ∈ HT and all

policies π ∈ Π. Therefore, vT
U,T (hT) = v∗,T

U,T (hT) for all histories hT ∈ HT .

For t < T , we first show that vt
U,T (ht) ≥ v∗,t

U,T (ht) and then that vt
U,T (ht) ≤ v∗,t

U,T (ht) for all

histories ht ∈ Ht.

We prove the first part by induction. We have shown the case for t = T . Suppose the result

holds for t+ 1. Let π = (d0, d1, . . . , dT−1) ∈ Π be an arbitrary policy. Then

vt
U,T (ht) = max

a∈Ast

∑

s′∈S

P (s′|st, a)v
t+1
U,T

(
ht ◦ (a, s′)

)

≥ max
a∈Ast

∑

s′∈S

P (s′|st, a)v
∗,t+1
U,T

(
ht ◦ (a, s′)

)

198

≥ max
a∈Ast

∑

s′∈S

P (s′|st, a)v
π,t+1
U,T

(
ht ◦ (a, s′)

)

≥
∑

a∈Ast

dt(ht, a)
∑

s′∈S

P (s′|st, a)v
π,t+1
U,T

(
ht ◦ (a, s′)

)
= vπ,t

U,T (ht).

Since π is arbitrary, we have

vt
U,T (ht) ≥ sup

π∈Π
vπ,t

U,T (ht) = v∗,t
U,T (ht).

For the second part of the proof, consider an HD policy π′ = (d′0, d
′
1, · · · , d′T−1) ∈ ΠHD such that

vt
U,T (ht) =

∑

s′∈S

P (s′|st, d
′
t(st))v

t+1
U,T

(
ht ◦ (d′t(st), s

′)
)
,

which is possible since A is finite. Therefore

vt
U,T (ht) = vπ′,t

U,T (ht) ≤ v∗,t
U,T (ht).

Therefore, the values v∗,t
U,T (ht) are the unique solution to the optimality equations.

The above results also show that there exists an HD-optimal policy. We can also compute

an HD-optimal policy based on the optimality equations. However, the computation is

impractical since one needs to enumerate all possible histories of length up to 2T + 1. In

the following sections, we instead use the state-augmentation approach to study additional

structures of optimal policies and practical computational procedures.

4.2.2 Augmenting the State Space

We can restore the decomposability of the planning problem by augmenting the original

state space with the accumulated rewards. Then we can still apply a backward induction

procedure to determine an optimal policy.

Let

R = {0} ∪
{
r(s, a, s′) P (s′|s, a) > 0, s, s′ ∈ S, a ∈ As

}

and

W 0 = {0}, W t+1 =
{
r + w r ∈ R,w ∈W t

}
, W = W∞ =

∞⋃

t=0

W t.

We refer to the elements of W t as wealth levels. Since 0 ∈ R, we have W t ⊆ W t+1 for all

t ∈ N. Obviously, W includes the total rewards of all possible trajectories of a T -horizon

199

problem, including those trajectories terminating at a goal state (if any) in less than T

steps.

We augment the state space with W , and denote all concepts concerning the augmented

model by symbols enclosed in 〈〉. Notice that the augmentation depends on the utility

function. More specifically, the reward function and the values of the augmented model

depend on the utility function. Therefore, we use the notation 〈〈〈r|U 〉〉〉 and 〈〈〈v|U 〉〉〉 to specify the

utility function for the rewards and values, respectively.

• The state space is 〈〈〈S〉〉〉 = S ×W , and the set of goal states is 〈〈〈G〉〉〉 = G×W .

• The action space is 〈〈〈A〉〉〉 = A, and for each augmented state 〈〈〈s〉〉〉 = (s,w) ∈ 〈〈〈S〉〉〉, the set

of available actions is 〈〈〈A〉〉〉〈〈〈s〉〉〉 = A〈〈〈s〉〉〉 = As. For this reason, we use a, A〈〈〈s〉〉〉, and A for the

augmented model.

• The transition probabilities are defined for all a ∈ A as:

〈〈〈P 〉〉〉(〈〈〈s〉〉〉′|〈〈〈s〉〉〉, a) =

P (s′|s, a), 〈〈〈s〉〉〉 = (s,w), 〈〈〈s〉〉〉′ =
(
s′, w + r(s, a, s′)

)
,

0, otherwise.

• The reward function is defined as

〈〈〈r|U 〉〉〉(〈〈〈s〉〉〉, a, 〈〈〈s〉〉〉′) = U(w′)− U(w)

where 〈〈〈s〉〉〉 = (s,w) and 〈〈〈s〉〉〉′ = (s′, w′) for all valid transitions (〈〈〈s〉〉〉, a, 〈〈〈s〉〉〉′), that is, for

all augmented states 〈〈〈s〉〉〉, 〈〈〈s〉〉〉′ ∈ 〈〈〈S〉〉〉, and all actions a ∈ A〈〈〈s〉〉〉 such that 〈〈〈P 〉〉〉(〈〈〈s〉〉〉′|〈〈〈s〉〉〉, a) =

P (s′|s, a) > 0.

Then we can have the usual definitions of histories, decision rules, and policies, all of which

we denote with symbols enclosed in 〈〉, as 〈〈〈h〉〉〉t, 〈〈〈d〉〉〉t, and 〈〈〈π〉〉〉, respectively. For succinctness,

we use the notation 〈〈〈v|U 〉〉〉(〈〈〈s〉〉〉) = 〈〈〈v|U 〉〉〉(s,w) instead of 〈〈〈v|U 〉〉〉
(
(s,w)

)
.

In fact, for a finite horizon problem, it is sufficient to consider all wealth levels in W t

for each 0 ≤ t ≤ T , but we use the set W to avoid time-dependent state spaces, which are

cumbersome to deal with, since otherwise we need to define the augmented state space at

epoch t to be S ×W t.

200

Therefore, we are considering MDPs with countably infinite state spaces, but the set

of available actions for each state remains finite, that is, Condition 2.2 (Countable States)

holds for the augmented model. For clarity, we refer to the states of the original model as

world states.

Next, we show that there exists a 1-1 mapping between a history of the original model

and a class of equivalent histories of the augmented model, and use this result to show

that the MEUT objective for the original problem is equivalent to the MERT objective for

the augmented problem. The 1-1 mapping is established by the following two lemmata.

The proofs of these lemmata benefit from our definition of history (see Section 2.2.1). The

equivalence has been observed earlier, for example, in (White, 1987), but was not formalized.

The incorrect results in (Bouakiz and Kebir, 1995; White, 1993) can be attributed to the

lack of a formalization for a similar state-augmentation approach, as pointed out in (Wu

and Lin, 1999).1

Lemma 4.3. For any wealth level w ∈ W , and for any history of the original model,

ht = (s0, a0, s1, . . . , st) ∈ Ht, the sequence 〈〈〈h〉〉〉t = (〈〈〈s〉〉〉0, a0, 〈〈〈s〉〉〉1, . . . , 〈〈〈s〉〉〉t) is a history of the

augmented model, where

〈〈〈s〉〉〉k = (sk, w̃k) =

(

sk, w +
k−1∑

τ=0

r(sτ , aτ , sτ+1)

)

= (sk, w + wk), 0 ≤ k ≤ t. (4.1)

Proof. By induction. Since H0 = S and 〈〈〈H〉〉〉0 = 〈〈〈S〉〉〉 = S ×W , the result is immediate for t = 0.

Suppose the result holds for some t ≥ 0. For any history

ht+1 = ht ◦ (at, st+1) = (s0, a0, s1, . . . , st, at, st+1) ∈ Ht+1,

the induction hypothesis implies that for all w ∈ W , there exists a history 〈〈〈h〉〉〉t ∈ 〈〈〈H〉〉〉t corresponding

to ht, and its last element is

〈〈〈s〉〉〉t = (st, w̃t) =

(

st, w +

t−1∑

τ=0

r(sτ , aτ , sτ+1)

)

∈ 〈〈〈S〉〉〉.

Consider

〈〈〈h〉〉〉t+1 = 〈〈〈h〉〉〉t ◦
(
at, 〈〈〈s〉〉〉t+1

)
= 〈〈〈h〉〉〉t ◦ (at, (st+1, w̃t+1)) = 〈〈〈h〉〉〉t ◦

(
at, (st+1, w̃t + r(st, at, st+1))

)
.

1See Section 2.4.2 for more details.

201

Since w̃t ∈W , we have w̃t+1 = w̃t + r(st, at, st+1) ∈ W . Since ht+1 ∈ Ht+1 by assumption, we have

at ∈ Ast
and P (st+1|st, at) > 0. Therefore,

at ∈ Ast
= 〈〈〈A〉〉〉(st,w̃t) = 〈〈〈A〉〉〉〈〈〈s〉〉〉t

,

and

〈〈〈P 〉〉〉(〈〈〈s〉〉〉t+1|〈〈〈s〉〉〉t, at) = 〈〈〈P 〉〉〉
(
(st+1, w̃t+1)

∣
∣(st, w̃t), at

)
= P (st+1|st, at) > 0,

so 〈〈〈h〉〉〉t+1 ∈ 〈〈〈H〉〉〉t+1.

Lemma 4.4. For any history of the augmented model, 〈〈〈h〉〉〉t = (〈〈〈s〉〉〉0, a0, 〈〈〈s〉〉〉1, . . . , 〈〈〈s〉〉〉t) ∈ 〈〈〈H〉〉〉t

where 〈〈〈s〉〉〉k = (sk, w̃k) for all 0 ≤ k ≤ t, there exists w ∈W such that

w̃k = w +

k−1∑

τ=0

r(sτ , aτ , sτ+1) = w + wk, 0 ≤ k ≤ t, (4.2)

and the sequence ht = (s0, a0, s1, . . . , st) is a history of the original model.

Proof. By induction. The result is obvious for t = 0.

Suppose it holds for some t ≥ 0. For 〈〈〈h〉〉〉t+1 = 〈〈〈h〉〉〉t ◦
(
at, 〈〈〈s〉〉〉t+1

)
∈ 〈〈〈H〉〉〉t+1, the induction hypothesis

implies that the last element of 〈〈〈h〉〉〉t, 〈〈〈s〉〉〉t can be written as (st, w + wt), and there exists a history

ht ∈ Ht corresponding to 〈〈〈h〉〉〉t, whose last element is st.

Consider ht+1 = ht ◦ (at, st+1). Since 〈〈〈h〉〉〉t+1 ∈ 〈〈〈H〉〉〉t+1, we have

at ∈ 〈〈〈A〉〉〉〈〈〈s〉〉〉t
= Ast

and 〈〈〈P 〉〉〉(〈〈〈s〉〉〉t+1|〈〈〈s〉〉〉t, at) > 0,

which implies

P (st+1|st, at) = 〈〈〈P 〉〉〉(〈〈〈s〉〉〉t+1|〈〈〈s〉〉〉t, at) > 0,

and

w̃t+1 = w̃t + r(st, at, st+1) = w + wt + r(st, at, st+1) = w + wt+1 = w +

t∑

τ=0

r(sτ , aτ , sτ+1).

From at ∈ Ast
and P (st+1|st, at) > 0, it follows that ht+1 ∈ Ht+1.

These two lemmata establish a 1-1 mapping between a history of the original model and

a set of histories of the augmented model with the same sequence of world states and actions

(but with different initial w). Define φw : H 7→ 〈〈〈H〉〉〉 to be the mapping from a history of

the original model to the corresponding history of the augmented model with initial wealth

level w according to Lemma 4.3, and define ψ : 〈〈〈H〉〉〉 7→ H to be the mapping from a history

202

of the augmented model to the corresponding history of the original model according to

Lemma 4.4. We summarize these observations in the following theorem.

Theorem 4.5. For the functions ψ and φw defined as above, we have

a. For all histories h ∈ Ht of the original model and all wealth levels w ∈ W , it holds that

h = ψ(φw(h)); and

b. For all augmented histories 〈〈〈h〉〉〉 ∈ 〈〈〈H〉〉〉t, there exists a wealth level w ∈ W such that

〈〈〈h〉〉〉 = φw

(
ψ(〈〈〈h〉〉〉)

)
.

We can then have a similar correspondence result for policies. For any policy in the

original model, π = (d0, d1, . . . , dT−1) ∈ ΠHR, we define a policy of the augmented model,

Ψ(π) = (〈〈〈d〉〉〉0, 〈〈〈d〉〉〉1, . . . , 〈〈〈d〉〉〉T−1) ∈ 〈〈〈Π〉〉〉HR, such that for all augmented histories 〈〈〈h〉〉〉 ∈ 〈〈〈H〉〉〉t,

〈〈〈d〉〉〉t(〈〈〈h〉〉〉, a) = dt

(
ψ(〈〈〈h〉〉〉), a

)
.

For any augmented policy 〈〈〈π〉〉〉 = (〈〈〈d〉〉〉0, 〈〈〈d〉〉〉1, . . . , 〈〈〈d〉〉〉T−1) ∈ 〈〈〈Π〉〉〉HR, we define a policy in the

original model, Φw(〈〈〈π〉〉〉) = (d0, d1, . . . , dT−1) ∈ ΠHR, such that for all histories h ∈ Ht,

dt(h, a) = 〈〈〈d〉〉〉t
(
φw(h), a

)
.

Notice that Ψ and Φw are mappings in the opposite direction to that of ψ and φw. It follows

from the definitions that Φ0(Ψ(π)) = π. But in general, it does not hold that there exists

w such that Ψ(Φw(〈〈〈π〉〉〉)) = 〈〈〈π〉〉〉.

The following theorem further relates the values and policies for the original model and

the augmented model.

Theorem 4.6. For each policy of the original model π ∈ ΠHR, we have for all states s ∈ S,

〈〈〈v|U 〉〉〉
Ψ(π)
T (s,w) = Es,π

[

U

(

w +
T−1∑

t=0

rt

)]

− U(w) = Es,π[U(w + wT)]− U(w). (4.3)

It immediately follows from the theorem that

vπ
U,T (s) = 〈〈〈v|U 〉〉〉

Ψ(π)
T (s, 0) + U(0), s ∈ S. (4.4)

203

This formula relates the risk-sensitive values for the original model and the risk-neutral

values for the augmented model.

We can consider U(w + w′) a utility function of w′ obtained by shifting U(w′) to the

left by w. It is convenient to denote this utility function as U≪w. Therefore,

vπ
U≪w,T (s) = Es,π[U(w +wT)],

and the result from Theorem 4.6 can be simplified to

vπ
U≪w,T (s) = 〈〈〈v|U 〉〉〉

Ψ(π)
T (s,w) + U(w), s ∈ S.

Proof. First, we show that the two policies induce the same random processes of world states and

actions with initial states s and (s, w) respectively. It is sufficient to show that for all wealth levels

w ∈W , all trajectories h ∈ HT , all states s ∈ S, and all policies π ∈ Π, it holds that

〈〈〈P 〉〉〉(s,w),Ψ(π)
(
φw(h)

)
= P s,π(h).

Let π = (d0, d1, . . . , dT−1) and Ψ(π) = (〈〈〈d〉〉〉0, 〈〈〈d〉〉〉1, . . . , 〈〈〈d〉〉〉T−1). Also let h = (s0 = s, a0, s1, a1, . . . , sT),

φw(h) = (〈〈〈s〉〉〉0, a0, 〈〈〈s〉〉〉1, a1, . . . , 〈〈〈s〉〉〉T), and 〈〈〈h〉〉〉t = φw(ht). According to Eq. (2.4), Theorem 4.5(a), and

the definitions of the augmented model and Ψ(π), it holds that for all t,

〈〈〈d〉〉〉t(〈〈〈h〉〉〉t, a) = dt(ψ(〈〈〈h〉〉〉t), a) = dt(ψ(φw(ht)), a) = dt(ht, a),

and thus

〈〈〈P 〉〉〉(s,w),Ψ(π)
(
φw(h)

)
= 〈〈〈P 〉〉〉(s,w),Ψ(π)(〈〈〈s〉〉〉0, a0, 〈〈〈s〉〉〉1, a1, . . . , 〈〈〈s〉〉〉T)

= 〈〈〈d〉〉〉0(〈〈〈s〉〉〉0, a0)〈〈〈P 〉〉〉(〈〈〈s〉〉〉1|〈〈〈s〉〉〉0, a0)〈〈〈d〉〉〉1(〈〈〈h〉〉〉1, a1)〈〈〈P 〉〉〉(〈〈〈s〉〉〉2|〈〈〈s〉〉〉1, a1) · · · 〈〈〈d〉〉〉T−1(〈〈〈h〉〉〉T−1, aT−1)〈〈〈P 〉〉〉(〈〈〈s〉〉〉T |〈〈〈s〉〉〉T−1, aT−1)

= d0(s0, a0)P (s1|s0, a0)d1(h1, a1)P (s2|s1, a1) · · · dT−1(hT−1, aT−1)P (sT |sT−1, aT−1)

= P s,π(s0, a0, s1, a1, . . . , sT) = P s,π(h).

Next, we show the equivalence of values. Suppose it holds that 〈〈〈s〉〉〉t = (st, w̃t) for all 0 ≤ t ≤ T .

We have

〈〈〈v|U 〉〉〉
Ψ(π)
T (s, w) = E(s,w),Ψ(π)

[
T−1∑

t=0

〈〈〈r|U 〉〉〉t

]

= E(s,w),Ψ(π)

[
T−1∑

t=0

(U(w̃t+1)− U(w̃t))

]

= E(s,w),Ψ(π)

[
T∑

t=1

U(w̃t)−
T−1∑

t=0

U(w̃t)

]

= E(s,w),Ψ(π)
[
U(w̃T)− U(w̃0)

]

= E(s,w),Ψ(π) [U(w + wT)− U(w)]

204

= Es,π[U(w + wT)]− U(w),

where the last equality is due to the fact that both policies produce the same random process of

world states and actions.

Theorem 4.7. For each policy of the augmented model 〈〈〈π〉〉〉 ∈ 〈〈〈Π〉〉〉HR and each w ∈ W , it

holds that

v
Φw(〈〈〈π〉〉〉)
U≪w,T (s) = 〈〈〈v|U 〉〉〉

〈〈〈π〉〉〉

T (s,w) + U(w), s ∈ S. (4.5)

It then follows that

v
Φ0(〈〈〈π〉〉〉)
U,T (s) = 〈〈〈v|U 〉〉〉

〈〈〈π〉〉〉

T (s, 0) + U(0), s ∈ S.

Proof. Similar to the proof of Theorem 4.6. We first have that the two policies induce the same

random processes of world states and actions with initial states s and (s, w) respectively. It is

sufficient to show that for all wealth levels w ∈W , all trajectories 〈〈〈h〉〉〉 ∈ 〈〈〈H〉〉〉T , all states 〈〈〈s〉〉〉 = (s, w) ∈
〈〈〈S〉〉〉, and all policies 〈〈〈π〉〉〉 ∈ 〈〈〈Π〉〉〉, it holds that

〈〈〈P 〉〉〉(s,w),〈〈〈π〉〉〉(〈〈〈h〉〉〉) = P s,Φw(〈〈〈π〉〉〉)(ψ(〈〈〈h〉〉〉)).

Let 〈〈〈π〉〉〉 = (〈〈〈d〉〉〉0, 〈〈〈d〉〉〉1, . . . , 〈〈〈d〉〉〉T−1) and Φw(〈〈〈π〉〉〉) = (d0, d1, . . . , dT−1). Also let 〈〈〈s〉〉〉0 = (s, w), 〈〈〈h〉〉〉 =

(〈〈〈s〉〉〉0, a0, 〈〈〈s〉〉〉1, a1, . . . , 〈〈〈s〉〉〉T), ψ(〈〈〈h〉〉〉) = (s0, a0, s1, a1, . . . , sT), and ψ(〈〈〈h〉〉〉t) = ht. According to Eq. (2.4),

Theorem 4.5(b), and the definition of Φw(〈〈〈π〉〉〉), it holds that for all t,

dt(ht, a) = 〈〈〈d〉〉〉t(φw(ht), a) = 〈〈〈d〉〉〉t(φw(ψ(〈〈〈h〉〉〉t)), a) = 〈〈〈d〉〉〉t(〈〈〈h〉〉〉t, a),

and thus

P s,Φw(〈〈〈π〉〉〉)(ψ(〈〈〈h〉〉〉)) = P s,Φw(〈〈〈π〉〉〉)(s0, a0, s1, a1, . . . , sT)

= d0(s0, a0)P (s1|s0, a0)d1(h1, a1)P (s2|s1, a1) · · · dT−1(hT−1, aT−1)P (sT |sT−1, aT−1)

= 〈〈〈d〉〉〉0(〈〈〈s〉〉〉0, a0)〈〈〈P 〉〉〉(〈〈〈s〉〉〉1|〈〈〈s〉〉〉0, a0)〈〈〈d〉〉〉1(〈〈〈h〉〉〉1, a1)〈〈〈P 〉〉〉(〈〈〈s〉〉〉2|〈〈〈s〉〉〉1, a1) · · · 〈〈〈d〉〉〉T−1(〈〈〈h〉〉〉T−1, aT−1)〈〈〈P 〉〉〉(〈〈〈s〉〉〉T |〈〈〈s〉〉〉T−1, aT−1)

= 〈〈〈P 〉〉〉(s,w),〈〈〈π〉〉〉(〈〈〈h〉〉〉).

Next, we show the equivalence of values. Suppose it holds that 〈〈〈s〉〉〉t = (st, w̃t) for all 0 ≤ t ≤ T .

We have

〈〈〈v|U 〉〉〉
〈〈〈π〉〉〉

T (s, w) = E(s,w),〈〈〈π〉〉〉

[
T−1∑

t=0

〈〈〈r|U 〉〉〉t

]

= E(s,w),〈〈〈π〉〉〉

[
T−1∑

t=0

(U(w̃t+1)− U(w̃t))

]

205

= E(s,w),〈〈〈π〉〉〉

[
T∑

t=1

U(w̃t)−
T−1∑

t=0

U(w̃t)

]

= E(s,w),〈〈〈π〉〉〉
[
U(w̃T)− U(w̃0)

]

= E(s,w),〈〈〈π〉〉〉 [U(w + wT)− U(w)]

= Es,Φw(〈〈〈π〉〉〉)[U(w + wT)]− U(w),

where the last equality is due to the fact that both policies produce the same random process of

world states and actions.

4.2.3 Basic Properties Revisited

We now consider the basic properties for solving finite horizon risk-sensitive problems, based

on the equivalence results and results for risk-neutral problems with a countable number

of states. Now we can obtain the existence of optimal policies with more structure. The

augmented models also allow us to adopt a functional interpretation of the value function.

Since the augmented model satisfies Condition 2.2 (Countable States), the results from

Section 2.3.1 apply. The optimal values under the risk-neutral objective 〈〈〈v〉〉〉∗T (〈〈〈s〉〉〉) exist and

are finite for all augmented states. Moreover, there exists an MD-optimal policy 〈〈〈π〉〉〉∗T for

the augmented model, and such a policy can be obtained using the backward induction

procedure, at least in principle.

We now show that Φ0(〈〈〈π〉〉〉
∗
T) is also an optimal policy for the problem under the MEUT

objective. Since we have shown in Section 4.2.1 that there exists an HD-optimal policy π∗T

under the MEUT objective, we have

v∗U,T (s) = v
π∗

T

U,T (s) = 〈〈〈v|U 〉〉〉
Ψ(π∗

T
)

T (s, 0) + U(0) ⊲ Theorem 4.6

≤ 〈〈〈v|U 〉〉〉∗T (s, 0) + U(0) = 〈〈〈v|U 〉〉〉
〈〈〈π〉〉〉∗

T

T (s, 0) + U(0) = v
Φ0(〈〈〈π〉〉〉∗

T
)

U,T (s). ⊲ Theorem 4.7

Therefore Φ0(〈〈〈π〉〉〉
∗
T) is also an optimal policy under the MEU objective.

In terms of the original model, the optimal policy under MEUT is no longer Markovian,

but history-dependent. But the dependency on the history is only through the accumulated

reward w. To distinguish such a policy from a usual HD policy, we call it an augmented-MD

policy, or an aMD policy. If an aMD policy is optimal, we call it an aMD-optimal policy.

Based on the augmented model and the equivalence of optimal values, we can obtain a

more practical backward induction procedure. A close examination of the augmented model

206

Algorithm 4.1 Backward Induction under the MEUT Objective

〈〈〈v|U 〉〉〉∗T = BackwardInductionUtility(M,T,U)

Input:

• M = (S, A, P, r), a finite MDP model; • T , a planning horizon;
• U , a utility function;

Output:

• 〈〈〈v|U 〉〉〉∗
T

, the optimal values for the augmented model;

1: t← T ;
2: for all s ∈ S do

3: for all w ∈ WT do

4: 〈〈〈v|U 〉〉〉
∗,t
T (s, w)← 0;

5: end for

6: end for

7: for t← T − 1 downto 0 do

8: for all s ∈ S do

9: for all w ∈ W t do

10: 〈〈〈v|U 〉〉〉
∗,t
T (s, w)←
max
a∈As

∑

s′∈S

P (s′|s, a)
[

U(w + r(s, a, s′))− U(w) + 〈〈〈v|U 〉〉〉
∗,t+1
T

(
s′, w + r(s, a, s′)

)
]

;

11: end for

12: end for

13: end for

reveals that we need to care only about W t at epoch t when doing backward induction,

rather than the whole set of wealth levels W .2 The reason is that we only care about

augmented states of the form (s, 0) at t = 0. Therefore, the backward induction procedure

for a general utility function is shown in Algorithm 4.1 (BackwardInductionUtility). Since

there are only a finite number of elements in W t for all t with 0 ≤ t ≤ T , the procedure can

be carried out. For practical reasons, we do not try to extract the policy explicitly, rather

we keep the value functions and act greedily. This is especially convenient when we use the

functional interpretation of the procedure (see below) and use approximations.

White (1987) presented another augmented model with a reward function which can

take non-zero values only for the penultimate epoch. Based on his augmented model, he

presented the plan evaluation and optimality equations without proofs. He also presented

a slightly different backward induction procedure. Although both his and our methods

result in the same values and optimal policies for finite horizon problems, our version can

be extended to infinite horizon problems (see Section 4.3.4).

2Here we use W t rather than W for computational purposes only. This usage is different from the earlier
argument that we need W to avoid nonstationary state spaces, when we deal with equivalence results.

207

4.2.4 Functions as Values

In the augmented models, augmented states with the same world state and different wealth

levels share the same transition probability distributions, so the backward induction up-

dates for these augmented states are similar. This allows for another interpretation of the

backward induction procedure for the augmented model. We can consider the value func-

tions to be mappings from a world state to a real-valued function of wealth levels, instead

of from an augmented state, that is, a world state and a wealth level, to a real number.

Suppose a value function for the augmented model is 〈〈〈v|U 〉〉〉 : S ×W 7→ R. We define

VU (s,w) = 〈〈〈v|U 〉〉〉(s,w) + U(w).

Then we can consider VU as a functional value function VU : S 7→ (W 7→ R), and VU (s, ·)

denotes the functional value function of the state s.

Therefore, the backward induction procedure for the augmented model can be rewritten

using functional value functions so that it can be seen as a standard backward induc-

tion procedure for the original model, where the values of states are now real-valued func-

tions. The procedure can be simplified into a functional form as shown in Algorithm 4.2

(BackwardInductionUtilityFunctional). In this procedure, the dynamic programming oper-

ations can be carried out by operations on functions. For example, the value function

VU (s,w+ r) can be obtained by shifting the value function VU (s,w) to the left by r, which

we denote as VU (s, ·) ≪ r in a functional form. The value update rule (Line 7) can be

verified as follows:

V ∗,t
U,T (s,w) = 〈〈〈v|U 〉〉〉

∗,t
T (s,w) + U(w)

= max
a∈As

∑

s′∈S

P (s′|s, a)
[

U(w + r(s, a, s′))− U(w) + 〈〈〈v|U 〉〉〉
∗,t+1
T

(
s′, w + r(s, a, s′)

)
]

+ U(w)

= max
a∈As

∑

s′∈S

P (s′|s, a)
[

U(w + r(s, a, s′)) + 〈〈〈v|U 〉〉〉
∗,t+1
T

(
s′, w + r(s, a, s′)

)
]

= max
a∈As

∑

s′∈S

P (s′|s, a) · V ∗,t+1
U,T (s′, w + r(s, a, s′)).

208

Algorithm 4.2 Backward Induction under the MEUT Objective: Functional Form

VT = BackwardInductionUtilityFunctional(M,T,U)
Input:

• M = (S, A, P, r), a finite MDP model; • T , a planning horizon;
• U , a utility function;

Output:

• V ∗
T , the functional optimal value function;

1: t← T ;
2: for all s ∈ S do

3: V ∗,t
U,T (s, ·)← U(·);

4: end for

5: for t← T − 1 downto 0 do

6: for all s ∈ S do

7: V ∗,t
U,T (s, ·)← max

a∈As

∑

s′∈S

P (s′|s, a) · V ∗,t+1
U,T (s′, ·) ≪ r(s, a, s′);

8: end for

9: end for

4.2.5 Approximations

This reformulation provides an opportunity to approximate the optimal values with a more

efficient procedure. Although the backward induction procedure for the finite horizon ex-

pected utility objectives only considers the relevant wealth levels at the different decision

epochs, the complexity of maintaining all wealth levels is still too high. Suppose that the

number of distinct non-zero reward values is n = |R \ {0}|. In the worst case, the number

of wealth levels to be considered at epoch t for the MEUT objective is
∣
∣W t

∣
∣ =

(
t+n

t

)
, which

is the number of combinations for selecting t items from n + 1 classes allowing repetition.

This can be illustrated as follows. Suppose the distinct values in R are 0, r1, r2, . . . , rn.

W 1 = R has elements

0, r1, r2, . . . , rn;

W 2 has elements

0, r1, r2, . . . , rn,

2r1, r1 + r2, . . . , r1 + rn,

2r2, . . . , r2 + rn,

. . .
...

2rn;

209

W 3 has elements

0, r1, r2, . . . , rn,

2r1, r1 + r2, . . . , r1 + rn,

2r2, . . . , r2 + rn,

. . .
...

2rn;

3r1, 2r1 + r2, . . . , 2r1 + rn,

r1 + 2r2, . . . , r1 + r2 + rn,

. . .
...

r1 + 2rn,

3r2, . . . , 2r2 + rn,

. . .
...

r2 + 2rn,

. . .
...

3rn;

and so on. Thus, the complexity of representing W t explicitly to perform backward induc-

tion is
(t+n

t

)
= (t+n)···(t+1)

n! = O(tn), an n-th order polynomial in t, and thus computationally

impractical if n is big. Therefore, some kind of approximation is desirable. It is possible

that some of the elements in W t can be obtained in more than one way. For example, if

two rewards ri and rj are reducible, that is, there exists a pair of non-zero integers a and

b, such that ari = brj, then ari and brj determine the same element in W t if t ≥ lcm(a, b),

where lcm(a, b) is the least common multiplier of a and b. In this case, our counting
(t+n

t

)

is an overestimation. But it is not the case if the ri’s are irreducible, for example, the set of

rewards R = {0,−1,−
√

2,−
√

3,−
√

5}. Therefore, this is a potential problem for efficiency

and some kind of approximation of the value function is desirable.

For the approximation, we proceed by using the functional interpretation of the back-

ward induction procedure for the finite horizon expected utility objectives, develop upper

and lower bounds of the value functions, characterize the error of the greedy policy using

the approximate value functions, and, as an example, use piecewise linear (PWL) functions

as the tool for approximation.

210

The functional interpretation of values allows us to approximate the values efficiently, if

the functional value functions can be approximated efficiently with, for example, piecewise

linear functions. This is often the case since utility functions are usually rather smooth.

We first approximate the true utility function, and then show that if we use a good ap-

proximation of the utility function in Algorithm 4.2 (BackwardInductionUtilityFunctional),

the resulting value functions are also good approximations of the true value functions. We

have the following results to show that the approximation error is not amplified through

the backward induction procedure. The first two parts are special cases of the third part,

but we list them explicitly since they are often more convenient to use.

Lemma 4.8. Let U be a utility function.3

a. Suppose for a given error ǫ > 0, we have an upper approximation U such that U(·) ≤

U(·) ≤ U(·)+ ǫ. Then, for all states s ∈ S and all t with 0 ≤ t ≤ T , we have V ∗,t
U,T (s, ·) ≤

V ∗,t
U,T

(s, ·) ≤ V ∗,t
U,T (s, ·) + ǫ.

b. Suppose for a given error ǫ > 0, we have a lower approximation U such that U(·) −

ǫ ≤ U(·) ≤ U(·). Then, for all states s ∈ S and all t with 0 ≤ t ≤ T , we have

V ∗,t
U,T (s, ·) − ǫ ≤ V ∗,t

U,T (s, ·) ≤ V ∗,t
U,T (s, ·).

c. Suppose for given errors ǫ, ǫ > 0, we have an approximation U such that U(·)−ǫ ≤ U(·) ≤

U(·) + ǫ. Then, for all states s ∈ S and all t with 0 ≤ t ≤ T , we have V ∗,t
U,T (s, ·) − ǫ ≤

V ∗,t
U,T (s, ·) ≤ V ∗,t

U,T (s, ·) + ǫ.

Proof. We only need to prove the result for part (c), since parts (a) and (b) are special cases of

part (c). The proof is by (backward) induction on t. The result holds trivially for t = T . Suppose

it holds for t+ 1. We now show that it also holds for t. For all s ∈ S and w ∈W , we have

V ∗,t
U,T (s, w) = max

a∈As

∑

s′∈S

P (s′|s, a)V ∗,t+1
U,T (s′, w + r(s, a, s′))

≤ max
a∈As

∑

s′∈S

P (s′|s, a)
(

V ∗,t+1
U,T (s′, w + r(s, a, s′)) + ǫ

)

3In this lemma and the following theorem, the results hold without Condition 4.1 (Nondecreasing Utility
Function). In fact, we do not need Condition 4.1 for finite horizon problems. However, Condition 4.1 is
needed for infinite horizon problems for the existence of values (see Section 4.3 and Chapter 5).

211

=

(

max
a∈As

∑

s′∈S

P (s′|s, a)V ∗,t+1
U,T (s′, w + r(s, a, s′))

)

+ ǫ = V ∗,t
U,T (s, w) + ǫ.

and

V ∗,t
U,T (s, w) = max

a∈As

∑

s′∈S

P (s′|s, a)V ∗,t+1
U,T (s′, w + r(s, a, s′))

≥ max
a∈As

∑

s′∈S

P (s′|s, a)
(

V ∗,t+1
U,T (s′, w + r(s, a, s′))− ǫ

)

=

(

max
a∈As

∑

s′∈S

P (s′|s, a)V ∗,t+1
U,T (s′, w + r(s, a, s′))

)

− ǫ

= V ∗,t
U,T (s, w)− ǫ.

Therefore, the result holds.

Next, we show that if we use the greedy policy based on these approximations, the error

bounds of the value function are proportional to the planning horizon.

Theorem 4.9. Let U be a utility function.

a. Suppose for a given error ǫ > 0, we have an upper approximation U such that U(·) ≤

U(·) ≤ U(·)+ ǫ, and let 〈〈〈π〉〉〉∗ be an optimal augmented policy based on U . Then V ∗
U,T (s)−

ǫT ≤ V 〈〈〈π〉〉〉∗

U,T (s) ≤ V ∗
U,T (s).

b. Suppose for a given error ǫ > 0, we have a lower approximation U such that U(·)− ǫ ≤

U(·) ≤ U(·), and let 〈〈〈π〉〉〉∗ be an optimal augmented policy based on U . Then V ∗
U,T (s)−ǫT ≤

V
〈〈〈π〉〉〉∗

U,T (s) ≤ V ∗
U,T (s).

c. Suppose for given errors ǫ, ǫ > 0, we have an approximation U such that U(·)−ǫ ≤ U(·) ≤

U(·) + ǫ, and let 〈〈〈π〉〉〉∗ be an optimal augmented policy based on U . Then V ∗
U,T (s)− ǫT ≤

V 〈〈〈π〉〉〉∗

U,T (s) ≤ V ∗
U,T (s), where ǫ = ǫ+ ǫ.

Proof. We prove the result for part (c). Parts (a) and (b) are special cases of part (c). Let 〈〈〈π〉〉〉∗ =

(〈〈〈d〉〉〉0, 〈〈〈d〉〉〉1, . . . , 〈〈〈d〉〉〉T−1). We prove by induction that for 0 ≤ t ≤ T , V ∗,t
U,T (s, w)−ǫ(T −t) ≤ V 〈〈〈π〉〉〉

∗,t
U,T (s, w)

for all s ∈ S and all w ∈ W . Then the theorem holds by letting t = 0. The above result holds for

t = T , since V
〈〈〈π〉〉〉

∗,T
U,T (s, w) = V ∗,T

U,T (s, w) = U(w) for all s ∈ S and all w ∈ WT . Suppose it holds for

0 < t ≤ T . For any s ∈ S and any w ∈ W , we have

V
〈〈〈π〉〉〉

∗,t−1
U,T (s, w)

212

=
∑

s′

P (s′|s, 〈〈〈d〉〉〉t−1(s, w))V
〈〈〈π〉〉〉

∗,t
U,T (s′, w + r(s, 〈〈〈d〉〉〉t−1(s, w), s′))

≥
∑

s′

P (s′|s, 〈〈〈d〉〉〉t−1(s, w))
(

V ∗,t
U,T (s′, w + r(s, 〈〈〈d〉〉〉t−1(s, w), s′))− ǫ(T − t)

)

=

(
∑

s′

P (s′|s, 〈〈〈d〉〉〉t−1(s, w))V ∗,t
U,T (s′, w + r(s, 〈〈〈d〉〉〉t−1(s, w), s′))

)

− ǫ(T − t)

≥
(
∑

s′

P (s′|s, 〈〈〈d〉〉〉t−1(s, w))
(

V ∗,t
U,T (s′, w + r(s, 〈〈〈d〉〉〉t−1(s, w), s′))− ǫ

)
)

− ǫ(T − t) ⊲ Lemma 4.8(c)

=

(
∑

s′

P (s′|s, 〈〈〈d〉〉〉t−1(s, w))V ∗,t
U,T (s′, w + r(s, 〈〈〈d〉〉〉t−1(s, w), s′))

)

− ǫ− ǫ(T − t)

= V ∗,t−1
U,T (s, w)− (ǫ+ ǫ(T − t)) ⊲ 〈〈〈π〉〉〉

∗ is optimal for the utility function U

≥
(

V ∗,t−1
U,T (s, w) − ǫ

)

− (ǫ+ ǫ(T − t)) ⊲ Lemma 4.8(c)

= V ∗,t−1
U,T (s, w)− ǫ(T − t+ 1) = V ∗,t−1

U,T (s, w)− ǫ(T − (t− 1)).

Therefore, the result holds.

4.2.6 Piecewise Linear Approximations

The above results do not assume a particular form of approximation of the functional value

functions. In this section, we show how the approximation can be done using (continuous)

piecewise linear (PWL) approximations. Two reasons make PWL functions attractive.

First, PWL functions have a finite representation, and the class of PWL functions is closed

under the dynamic programming operations, which only includes scaling, shifting, addition,

and maximization. Second, PWL functions can approximate any continuous function, so

they can be used to approximate the optimal value functions with arbitrary continuous

utility functions. In the following, we first define PWL functions formally, then show how

utility functions can be approximated with PWL functions, and next show that dynamic

programming updates can also be done efficiently using PWL functions.

Since we consider finite horizon problems, only a finite part of the utility function

matters. A PWL function defined on a finite interval can be represented as a finite sequence

of points sorted by their wealth levels,

(w1, u1), (w2, u2), . . . , (wℓ, uℓ)

213

where ℓ is the number of points, and the following conditions apply:

w1 < w2 < · · · < wℓ, u1 ≤ u2 ≤ · · · ≤ uℓ.

The points (wi, ui) are called breakpoints. The above representation defines a PWL function

as follows

fPWL(w) =
ui+1 − ui

wi+1 − wi
(w − wi) + ui, wi ≤ w ≤ wi+1.

The initial upper and lower approximations of the original utility function can be done

as follows. We approximate U(w) on the finite interval [w1, wℓ], which can be chosen based

on W T where T is the planning horizon for the problem to be solved. If the utility function

is smooth and convex/concave on a given interval, we can use the sandwich method to

approximate its upper and lower bounds within any given error, where the error decreases

quadratically with the number of line segments, and the upper and lower approximations

are monotonically nondecreasing as long as so is the original function (Rote, 1992). Usually,

we can identify a finite number of smooth convex/concave segments of the utility function,

so we can apply the sandwich method separately to each segment. The sandwich method for

a smooth convex function is illustrated in Figure 4.1. The method proceeds in a recursive

fashion. As shown in the figure, the thick curve is the function to be approximated, and

we want to approximate it over the interval [Aw, Bw]. The first upper approximation is

the chord AB obtained by connecting the two endpoints of the graph of the function. The

first lower approximation consists of two line segments AC and BC, which are parts of

the tangent lines at both endpoints. If the approximation error is too big, we recursively

apply the procedure to the two subintervals [Aw, Cw] and [Cw, Bw], which are separated

by the w-coordinate of the intersection point C from the lower approximation ACB. For

example, the second upper approximation is given by AD and DB, and the second lower

approximation is given by AE, EF and FB, where ED and DF are joined together since

both are on the same line. Notice that the two endpoints A and B are on the resulting

PWL functions.

If it is not easy to find the convex/concave segments of the utility function, an alternative

approach is to use the method described in (Liu et al., 1999). For a general continuous

214

w

U

A

B

Aw Bw

C

Cw

D

E

F

Figure 4.1: The sandwich method

function f , they argue that usually there exists a number p > 1, such that

g(x) =
[

f(x
1
p)
]p

is a convex function. Next, the sandwich method can be applied to g to obtain g±, the

upper and lower approximations of g. Then the functions obtained by applying the following

transformation to g± are upper and lower approximations of f :

f±(x) = [g±(xp)]
1
p

Each of f± is a piecewise concave function, and can be approximated by applying the

sandwich method once more.

We now demonstrate how to perform dynamic programming using PWL functions. Re-

call that the dynamic programming involves four types of basic operations: scaling, shifting,

addition, and maximization. Scaling and shifting are operations involving a PWL function

and a real number. They can be done by performing scaling or shifting on the breakpoints of

the PWL function. Suppose that a PWL function f(·) is represented as a list of breakpoints

(w1, u1), (w2, u2), . . . , (wℓ, uℓ).

215

Then the PWL function k · f(·) is obtained as

(w1, ku1), (w2, ku2), . . . , (wℓ, kuℓ),

and the PWL function f(·) ≪ r is obtained as

(w1 − r, u1), (w2 − r, u2), . . . , (wℓ − r, uℓ).

Addition and maximization are operations involving two PWL functions. We can perform

these actions in two steps. Suppose we have another PWL function g(·) (with ℓ′ breakpoints)

represented as

(ŵ1, û1), (ŵ2, û2), . . . , (ŵℓ′ , ûℓ′).

The first step is to merge the w values of the two PWL functions into a single list of w

values (removing duplications) and compute their respective u values at these w values.

Therefore, this step does not change the functions presented as PWL functions, but makes

them represented with the same number of breakpoints. Suppose that this number is m.

The second step then is to obtain the desired result. Suppose that after the first step, f(·)

and g(·) are represented as

(w̄1, u1
f), (w̄2, u2

f), . . . , (w̄m, um
f)

and

(w̄1, u1
g), (w̄

2, u2
g), . . . , (w̄

m, um
g)

respectively. Then the function f(·) + g(·) is obtained as

(w̄1, u1
f + u1

g), (w̄
2, u2

f + u2
g), . . . , (w̄

m, um
f + um

g).

The function max
(
f(·), g(·)

)
is a little bit more complicated, since new breakpoints may

be needed. Consider a segment over the interval [w̄i, w̄i+1]. Then on this interval, there are

two possibilities. In the first case, one function dominates the other, and thus the maximum

of the two functions is just the dominating function. In the second case, neither function

dominates the other, and thus the two segments intersect. Then we need to add one more

breakpoint and the result is the two segments that are connected at the breakpoint. For the

efficiency of the maximization operation, an additional step is needed to remove unnecessary

breakpoints and thus merge some subintervals into larger ones.

216

4.3 Infinite Horizon

In this section, we consider infinite horizon planning objectives derived from general risk-

sensitive utility functions. We still use the state-augmentation approach. However, addi-

tional conditions are needed for this approach to be applicable. Therefore, we focus on

positive and negative models in this section. Also for positive and negative models, we can

develop computational methods to approximate the optimal values and optimal policies.

We first present the augmented model and discuss the necessity of existence conditions.

Then we focus on positive and negative models in the later part of the section, and discuss

a generalization of value iteration for the MEU objective.

4.3.1 The Augmented Model

For the MEU objective, we still use the state-augmentation approach. The augmented model

is exactly the same as in the finite horizon case.

We expect a straightforward generalization of the results from the finite horizon case so

that we still have the equivalence results. The equivalence results for histories are immediate,

since the results from the finite horizon case, Lemma 4.3 and Lemma 4.4, still apply. We

continue to use φw to denote the mapping from a history of the original model to the

corresponding history of the augmented model with initial wealth level w, and ψ to denote

the mapping from a history of the augmented model to the corresponding history of the

original model. We also use Ψ to denote the related mapping from Π to 〈〈〈Π〉〉〉, and Φw to

denote the related mappings from 〈〈〈Π〉〉〉 to Π.

The following theorem relates the values and policies for the original model and the

augmented model.

Theorem 4.10. For each policy of the original model π ∈ ΠHR, suppose the values vπ
U≪w(s)

exist for all states s ∈ S and all wealth levels w ∈ W . Then the augmented values

〈〈〈v|U 〉〉〉Ψ(π)(s,w) exist for all states s ∈ S and all wealth levels w ∈W , and

〈〈〈v|U 〉〉〉Ψ(π)(s,w) = vπ
U≪w(s)− U(w), s ∈ S. (4.6)

217

It immediately follows from the theorem that if all the values exist, then

vπ
U (s) = 〈〈〈v|U 〉〉〉Ψ(π)(s, 0) + U(0), s ∈ S. (4.7)

Proof. The results follow from Theorem 4.6 by letting T approach infinity.

Theorem 4.11. For each policy of the augmented model 〈〈〈π〉〉〉 ∈ 〈〈〈Π〉〉〉HR, if the augmented

values 〈〈〈v|U 〉〉〉
〈〈〈π〉〉〉(s,w) exist for all states s ∈ S and the given wealth level w, then

v
Φw(〈〈〈π〉〉〉)
U≪w (s) = 〈〈〈v|U 〉〉〉

〈〈〈π〉〉〉(s,w) + U(w), s ∈ S. (4.8)

In particular, when the condition holds for w = 0, we have

v
Φ0(〈〈〈π〉〉〉)
U (s) = 〈〈〈v|U 〉〉〉

〈〈〈π〉〉〉(s, 0) + U(0), s ∈ S.

Proof. The results follow from Theorem 4.7 by letting T approach infinity.

It is important to ensure that for all augmented policies 〈〈〈π〉〉〉 ∈ 〈〈〈Π〉〉〉, all states s ∈ S, and all

wealth levels w ∈ W , the augmented values 〈〈〈v|U 〉〉〉
〈〈〈π〉〉〉(s,w) exist, so that we can apply results

for countable state space models under the risk-neutral planning objective. This condition

is equivalent to the the following one: for all policies π ∈ Π, all states s ∈ S, and all wealth

levels w ∈ W , the values vπ
U≪w(s) exist. This condition is a stronger requirement than the

one that for all policies π ∈ Π and all states s ∈ S, the values vπ
U (s) exist. In other words,

it is possible that vπ
U (s) exists but vπ

U≪w(s) does not exist for some w ∈W .

A simple example is the model in Figure 2.2 when using the following utility function

U(w) =

w + 1, w < −1,

0, −1 ≤ w ≤ 1,

w − 1, w > 1.

For this example, R = {1, 0,−1} and thus W = Z. We have shown that starting from

state s1, the agent receives accumulated rewards 1 when the decision epoch is odd and 0

when the decision epoch is even. Since U(1) = U(0) = 0, the value of s1 exists under

the only policy π and vπ
U (s1) = 0. Similarly, starting from state s2, the agent receives

accumulated rewards −1 and 0 when the decision epoch is odd and even, respectively.

218

Therefore, vπ
U (s2) = 0. On the other hand, when w = 1, the value vπ

U≪w(s1) does not exist

since U(w + 1) = U(2) = 1 6= U(w + 0) = U(1) = 0, but vπ
U≪w(s2) = 0. Similarly, when

w = −1, the value vπ
U≪w(s2) does not exist but vπ

U≪w(s1) = 0; when w 6= 1, 0,−1, neither

value exists.

4.3.2 Existence and Finiteness of Optimal Values

In the rest of this chapter, we focus on negative and positive models, since we can develop

computational methods for solving such problems under the MEU objective.

For negative and positive models, the expected utility of the total reward always exists,

since the accumulated reward is monotonic with respect to the number of decision epochs.

Moreover, the exponential utility functions are bounds for utility functions with which the

risk-sensitive values are finite.

We first show that the values of the original model are finite, then we show that the

values of the augmented model are also finite. Therefore, we can use methods for the

augmented model to solve the original problem. We first consider negative models and then

positive models.

Theorem 4.12. Suppose Condition 2.1 (Finite Model), Condition 2.5 (Negative Model)

and Condition 4.1 (Nondecreasing Utility Function) hold.

a. If Condition 3.2 (Negative Model with Finite Exponential Utilities) holds for some policy

π ∈ Π and some γ where 0 < γ < 1, and if the utility function U satisfies U(w) = O(γw)

as w → −∞, then for this policy π and all states s ∈ S, the values vπ
U (s) are finite.

Therefore, for all states s ∈ S, the optimal values v∗U (s) are finite.

b. If Condition 2.6 (Negative Model with Finite Expected Rewards) holds for some policy

π ∈ Π, and if the utility function U satisfies U(w) = O(w) as w → −∞, then for this

policy π and all states s ∈ S, the values vπ
U (s) are finite. Therefore, for all states s ∈ S,

the optimal values v∗U (s) are finite.

219

Proof. a. If U(w) = O(γw) as w → −∞ then there exist C > 0 and D > 0 such that for all w ≤ 0,

U(w) ≥ −Cγw −D. Therefore, for this special policy π, all states s ∈ S and all finite T ,

U(0) ≥ vπ
U,T (s) = Es,π

[

U

(
T−1∑

t=0

rt

)]

= Es,π[U(wT)] ≥ Es,π [−CγwT −D] = Cvπ
exp,T (s)−D.

Thus,

U(0) ≥ vπ
U (s) = lim

T→∞
vπ

U,T (s) ≥ lim
T→∞

(
Cvπ

exp,T (s)−D
)

= Cvπ
exp(s)−D > −∞.

We also have

U(0) ≥ v∗U (s) = sup
π′∈Π

vπ′

U (s) ≥ vπ
U (s) ≥ Cvπ

exp(s)−D > −∞.

Therefore, the result holds.

b. If U(w) = O(w) as w → −∞ then there exist C > 0 and D > 0 such that for all w ≤ 0,

U(w) ≥ Cw −D. Therefore, for this special policy π, all states s ∈ S and all finite T ,

U(0) ≥ vπ
U,T (s) = Es,π

[

U

(
T−1∑

t=0

rt

)]

= Es,π[U(wT)] ≥ Es,π [CwT −D] = Cvπ
T (s)−D.

Thus,

U(0) ≥ vπ
U (s) = lim

T→∞
vπ

U,T (s) ≥ lim
T→∞

(Cvπ
T (s)−D) = Cvπ(s)−D > −∞.

We also have

U(0) ≥ v∗U (s) = sup
π′∈Π

vπ′

U (s) ≥ vπ
U (s) ≥ Cvπ(s)−D > −∞.

Therefore, the result holds.

Corollary 4.13. Suppose Condition 2.1 (Finite Model), Condition 2.5 (Negative Model)

and Condition 4.1 (Nondecreasing Utility Function) hold.

a. If Condition 3.2 (Negative Model with Finite Exponential Utilities) holds for some policy

π ∈ Π and some γ where 0 < γ < 1, and if the utility function U satisfies U(w) = O(γw)

as w → −∞, then for this policy π, all states s ∈ S, and all wealth levels w′ ∈ W , the

values vπ
U≪w′(s) are finite. Therefore, for all states s ∈ S, the optimal values v∗U≪w′(s)

are finite.

b. If Condition 2.6 (Negative Model with Finite Expected Rewards) holds for some policy

π ∈ Π, and if the utility function U satisfies U(w) = O(w) as w → −∞, then for this

policy π, all states s ∈ S, and all wealth levels w′ ∈ W , the values vπ
U≪w′(s) are finite.

Therefore, for all states s ∈ S, the optimal values v∗U≪w′(s) are finite.

220

Proof. For the first part, it is sufficient to show that for all w′ ∈ W , (U≪w′)(w) = O(γw), which

holds since

(U≪w′)(w) = U(w + w′) = O(γw+w′

) = O(γw′ · γw) = O(γw),

and then Theorem 4.12 applies. The second part is similar.

For positive models, we can obtain similar results.

Theorem 4.14. Suppose Condition 2.1 (Finite Model), Condition 2.7 (Positive Model),

and Condition 4.1 (Nondecreasing Utility Function) hold.

a. If Condition 3.4 (Positive Model with Finite Exponential Utilities) holds for some γ

where γ > 1, and if the utility function U satisfies U(w) = O(γw) as w → ∞, then for

all policies π ∈ Π and all states s ∈ S, the values vπ
U (s) are finite. Therefore, for all

states s ∈ S, the optimal values v∗U (s) are finite.

b. If Condition 2.8 (Positive Model with Finite Expected Rewards) holds, and if the utility

function U satisfies U(w) = O(w) as w →∞, then for all policies π ∈ Π and all states

s ∈ S, the values vπ
U (s) are finite. Therefore, for all states s ∈ S, the optimal values

v∗U (s) are finite.

Proof. a. If U(w) = O(γw) as w → ∞ then there exist C > 0 and D > 0 such that for all w ≥ 0,

U(w) ≤ Cγw +D. Therefore, for all policies π ∈ Π, all states s ∈ S and all finite T ,

U(0) ≤ vπ
U,T (s) = Es,π

[

U

(
T−1∑

t=0

rt

)]

= Es,π[U(wT)] ≤ Es,π [CγwT +D] = Cvπ
exp,T (s) +D.

Thus,

U(0) ≤ vπ
U (s) = lim

T→∞
vπ

U,T (s) ≤ lim
T→∞

(
Cvπ

exp,T (s) +D
)

= Cvπ
exp(s) +D <∞.

Since Condition 3.4 implies for all states s ∈ S, the values v∗exp(s) are finite, we have

U(0) ≤ v∗U (s) = sup
π∈Π

vπ
U (s) ≤ sup

π∈Π

(
Cvπ

exp(s) +D
)

= Cv∗exp(s) +D < +∞.

Therefore, the result holds.

b. If U(w) = O(w) as w → ∞ then there exist C > 0 and D > 0 such that for all w ≥ 0,

U(w) ≤ Cw +D. Therefore, for all policies π ∈ Π, all states s ∈ S and all finite T ,

U(0) ≤ vπ
U,T (s) = Es,π

[

U

(
T−1∑

t=0

rt

)]

= Es,π[U(wT)] ≤ Es,π [CwT +D] = Cvπ
T (s) +D.

221

Thus,

U(0) ≤ vπ
U (s) = lim

T→∞
vπ

U,T (s) ≤ lim
T→∞

(Cvπ
T (s) +D) = Cvπ(s) +D <∞.

Since Condition 2.8 (Positive Model with Finite Expected Rewards) implies for all states s ∈ S,

the values v∗(s) are finite, we have

U(0) ≤ v∗U (s) = sup
π∈Π

vπ
U (s) ≤ sup

π∈Π
(Cvπ(s) +D) = Cv∗(s) +D < +∞.

Therefore, the result holds.

Corollary 4.15. Suppose Condition 2.1 (Finite Model), Condition 2.7 (Positive Model),

and Condition 4.1 (Nondecreasing Utility Function) hold.

a. If Condition 3.4 (Positive Model with Finite Exponential Utilities) holds for some γ

where γ > 1, and if the utility function U satisfies U(w) = O(γw) as w → ∞, then for

all policies π ∈ Π, all states s ∈ S, and all wealth levels w′ ∈ W , the values vπ
U≪w′(s)

are finite. Therefore, for all states s ∈ S, the optimal values v∗U≪w′(s) are finite.

b. If Condition 2.8 (Positive Model with Finite Expected Rewards) holds, and if the utility

function U satisfies U(w) = O(w) as w → ∞, then for all policies π ∈ Π, all states

s ∈ S, and all wealth levels w′ ∈ W , the values vπ
U≪w′(s) are finite. Therefore, for all

states s ∈ S, the optimal values v∗U≪w′(s) are finite.

Proof. The same as that for Corollary 4.13.

Therefore, under the conditions of Corollary 4.13 and Corollary 4.15, all values with the

utility function U≪w with w ∈ W in the original model are finite, and thus all values in

the augmented model are finite. Therefore, the equivalence results from Theorem 4.10 and

Theorem 4.11 holds.

4.3.3 Existence of Optimal Policies

For negative models, it follows from the theory for negative models under the MER ob-

jective that there exists an SD-optimal policy for the augmented model under the MER

objective, since 〈〈〈S〉〉〉 is countable and A is finite (Theorem 7.3.6 in Puterman, 1994, also see

Section 2.3.3). Therefore, there exists an aSD-optimal policy for the original model under

the MEU objective.

222

For positive models, however, it is uncertain whether there exists an SD-optimal policy.

The results for positive models under the MER objective imply that for any ǫ > 0, there

exists an MD policy 〈〈〈π〉〉〉 for the augmented model under the MER objective such that for all

〈〈〈s〉〉〉 ∈ 〈〈〈S〉〉〉, 〈〈〈v|U 〉〉〉〈〈〈π〉〉〉(〈〈〈s〉〉〉) ≥ (1− ǫ)〈〈〈v|U 〉〉〉∗(〈〈〈s〉〉〉) (Theorem 7.2.7 in Puterman, 1994).

4.3.4 Value Iteration and Approximation

The value iteration procedure can be used to approximate the optimal values for the aug-

mented models under the MER objective, that is, the optimal values for the original model

under the MEU objective.

We can use a functional form of value iteration, since value iteration can be viewed as

a generalization of backward induction for infinite horizon problems. The original value

update rule for the augmented model is

〈〈〈v|U 〉〉〉t+1(〈〈〈s〉〉〉) = max
a∈As

∑

〈〈〈s〉〉〉′∈〈〈〈S〉〉〉

〈〈〈P 〉〉〉(〈〈〈s〉〉〉′|〈〈〈s〉〉〉, a)
[
〈〈〈r|U 〉〉〉(〈〈〈s〉〉〉, a, 〈〈〈s〉〉〉′) + 〈〈〈v|U 〉〉〉t(〈〈〈s〉〉〉′)

]

= max
a∈As

∑

s′∈S

P (s′|s, a)
[
U(w + r(s, a, s′))− U(w) + 〈〈〈v|U 〉〉〉t(s′, w + r(s, a, s′))

]
.

Similar to the finite horizon case, we can define VU (s,w) = 〈〈〈v|U 〉〉〉(s,w)+U(w), and the value

update rule then is

V t+1
U (s, ·) = max

a∈As

∑

s′∈S

P (s′|s, a)V t
U (s′, ·) ≪ r(s, a, s′),

and the initial values should be V 0(s, ·) = U(·). The value iteration procedure is shown in

Algorithm 4.3 (ValueIterationUtilityFunctional). From the results for negative and positive

models with countable state spaces, it follows that value iteration converges to the optimal

values (Puterman, 1994, see also Section 2.3.3.2).

As we have shown in Section 4.2, we need approximations to deal with the augmented

state space since it is infinite. The following result shows that the approximation error of

the value functions does not increase as value iteration proceeds. This result is similar to

that in the finite horizon case, and the proof is the same as that of Lemma 4.8 after a

substitution of variables.

223

Algorithm 4.3 Value Iteration under the MEU Objective: Functional Form

V = ValueIterationUtilityFunctional(M,U)
Input:

• M = (S, A, P, r), a finite MDP model; • U , a utility function;
Output:

• V , a functional value function;

1: t← 0;
2: for all s ∈ S do

3: V t
U (s, ·)← U(·);

4: end for

5: repeat

6: for all s ∈ S do

7: V t+1
U (s, ·)← max

a∈As

∑

s′∈S

P (s′|s, a) · V t
U (s′, ·) ≪ r(s, a, s′);

8: end for

9: until
∥
∥V t+1

U − V t
U

∥
∥ is sufficiently small;

Theorem 4.16. Let U be a utility function, and V t
U be the value function at step t of value

iteration.

a. Suppose for a given error ǫ > 0, we have an upper approximation U such that U(·) ≤

U(·) ≤ U(·) + ǫ. Then, for all states s ∈ S and all t ∈ N, we have V t
U (s, ·) ≤ V t

U
(s, ·) ≤

V t
U (s, ·) + ǫ.

b. Suppose for a given error ǫ > 0, we have a lower approximation U such that U(·)− ǫ ≤

U(·) ≤ U(·). Then, for all states s ∈ S and all t ∈ N, we have V t
U (s, ·) − ǫ ≤ V t

U (s, ·) ≤

V t
U (s, ·).

c. Suppose for given errors ǫ, ǫ > 0, we have an approximation U such that U(·) − ǫ ≤

U(·) ≤ U(·) + ǫ. Then, for all states s ∈ S and all t ∈ N, we have V t
U (s, ·) − ǫ ≤

V t
U (s, ·) ≤ V t

U (s, ·) + ǫ.

However, in order to use the PWL approximations, we need a method that can deal with

functional value functions on an infinite interval. We show that this can be done for utility

functions that are asymptotically constant, linear, or exponential. We next use negative

models to demonstrate how to perform value iteration using a finite representation if such

utility functions are used. The methods for positive models are similar. For negative models,

we only need to consider the part of the utility function on the negative real half-line. We

consider both the upper and lower approximations, since there are noticeable differences.

224

For each approximation, there are different ways of dealing with the infinite interval, and

what we present here is just one possibility.

4.3.4.1 Asymptotically Constant Utility Functions

A utility function U(w) is asymptotically constant as w → −∞ if there exists a constant

U−, such that

lim
w→−∞

U(w) = U−.

According to Condition 4.1 (Nondecreasing Utility Function), the utility function U(·) is

monotonically nondecreasing in the wealth level. Therefore, we have U− ≤ U(w) for all w.

First, we consider a lower approximation U(·) of U(·), as illustrated in Figure 4.2. Then

for a given error ǫ > 0, we can determine w ≤ 0 such that for all w ≤ w, it holds that

U(w) − ǫ

2
≤ U− ≤ U(w).

We now show that we only need to represent value functions on the interval [w, 0], since the

model is negative. On the infinite interval (−∞, w], we can approximate U(·) from below

with an error no greater than
ǫ

2
using the constant U−, as illustrated by the dashed segment

in Figure 4.2(a). On the finite interval [w, 0], we can approximate U(·) from below with error

ǫ

2
using the methods described in Section 4.2.6, denoted as U ǫ

2
(·) where U ǫ

2
(w) = U(w)

and U ǫ
2
(0) = U(0) such that for all w ∈ [w, 0], it holds that

U(w) − ǫ

2
≤ U ǫ

2
(w) ≤ U(w).

This part is illustrated in Figure 4.2(a) by solid lines.

However, there can be a discontinuity at w if we simply put these two lower approxima-

tions together. This discontinuity can be removed by shifting U ǫ
2
(·) downward by U(w)−U−.

Notice that U(w)− ǫ

2
≤ U− ≤ U(w). Then for all w ∈ [w, 0], it holds that

U(w)− ǫ ≤ U(w) + U− − U(w)− ǫ

2
≤ U ǫ

2
(w) + U− − U(w) ≤ U(w) + U− − U(w) ≤ U(w).

Therefore, the overall lower approximation is for all w ≤ 0,

U(w) =

U−, w ∈ (−∞, w],

U ǫ
2
(w) − U(w) + U−, w ∈ [w, 0],

225

w

U

(0, 0)

w

U−

ǫ
2

ǫ
2

(a) Approximating the Two Parts

w

U

(0, 0)

w

U−

ǫ

(b) Removing Discontinuity

w

U

(0, 0)

w w + r

U−

(c) Patching after Shifting

Figure 4.2: Lower PWL approximation for asymptotically constant utility functions

226

and the approximation error is at most ǫ. The complete lower PWL approximation is shown

in Figure 4.2(b). It is monotonically nondecreasing and continuous due to our construction

and properties of the methods in Section 4.2.6.

When using the value iteration procedure, we explicitly represent the functional value

functions only on the finite interval [w, 0], and the functional value functions on the infinite

part (−∞, w] can be represented implicitly. Theorem 4.16 shows that the approximation

error does not increase as value iteration proceeds. So we only need to consider how to

perform value iteration with the initial lower bound approximation U(·).

Now we consider how to perform value iteration. Suppose that the lower bound value

function at step t is V t
U (s, ·) for all states s ∈ S, and that it is represented explicitly on

[w, 0]. We first show that for all t ∈ N, all s ∈ S, and all w ∈ (−∞, w], it holds that

V t
U (s,w) = U−.

This claim holds trivially for t = 0. Suppose it holds for t. Consider the case for t+ 1. For

all s ∈ S and all w ∈ (−∞, w], we have

V t+1
U (s,w) = max

a∈As

∑

s′∈S

P (s′|s, a)V t
U (s′, w + r(s, a, s′))

= max
a∈As

∑

s′∈S

P (s′|s, a)U− ⊲ r(s, a, s′) ≤ 0 and induction hypothesis

= U−.

Therefore, we can always use U− as a lower approximation of the part of the value function

on (−∞, w].

The key operation in the functional version of value iteration is the shifting operation.

Since the model is negative, the ≪ operation shifts the functional value functions to the

right, or shifts them to the left by a negative amount. For simplicity, let V = V t
U (s, ·) be

the PWL value function that is represented explicitly only on [w, 0]. If we shift V to the left

by an amount r < 0 (or equivalently, to the right by |r|), we obtain a PWL function V≪r

that is explicitly represented on [w − r,−r]. We can trim V≪r to [w − r, 0], but we also

need to determine its value on the gap of the interval [w,w− r] to make the approximation

explicit. The value on this part is simply U− because of the result we just showed. The

227

w

U

(0, 0)w

U−

ǫ

(a) Approximating the Two Parts

w

U

(0, 0)

w w + r

U−

(b) Patching after Shifting

Figure 4.3: Upper PWL approximation for asymptotically constant utility functions

shifting and patching are illustrated in Figure 4.2(c), where the red lines are functions after

shifting and the green segment is the patch.

Now we consider an upper approximation U(·) of U(·), as shown in Figure 4.3. Similar

to the lower approximation, for a given error ǫ > 0, we can determine w such that for all

w ≤ w, it holds that

U− ≤ U(w) ≤ U(w) ≤ U− + ǫ ≤ U(w) + ǫ.

228

Then on the finite interval [w, 0], we can approximate U(·) from above with error ǫ, denoted

as U ǫ(·) where U ǫ(w) = U(w) and U ǫ(0) = U(0), such that for all w ∈ [w, 0], it holds that

U(w) ≤ U ǫ(w) ≤ U(w) + ǫ.

Therefore, the overall upper approximation is for all w ≤ 0,

U(w) =

U(w), w ∈ (−∞, w],

U ǫ(w), w ∈ [w, 0],

and the approximation error is at most ǫ, as illustrated in Figure 4.3(a). The complete

upper PWL approximation has to be monotonically nondecreasing and continuous, which

holds due to our construction.

Similarly, we can perform value iteration with the upper PWL approximation. An

argument similar to the case of the lower approximation shows that for all t ∈ N, all s ∈ S,

and all w ∈ (−∞, w], it holds that V t
U
(s,w) = U(w), and thus we can patch the gap with

U(w) in the same way as in the case of the lower approximation, as shown in Figure 4.3(b).

4.3.4.2 Asymptotically Linear Utility Functions

A utility function is asymptotically linear as w → −∞ if there exists k− > 0 and b− such

that

lim
w→−∞

(
U(w)− k−w

)
= b−.

Here we assume k− > 0 since otherwise the utility function is reduced to an asymptotically

constant utility function.

We consider a lower approximation U(·) to U(·), as illustrated in Figure 4.4. Similar to

the case of asymptotically constant utility functions, for a given approximation error ǫ, we

first determine w < 0 such that for all w ≤ w,

k−w + b− −
ǫ

4
≤ U(w) ≤ k−w + b− +

ǫ

4
.

Then it follows that

U(w)− ǫ

2
≤ k−w + b− −

ǫ

4
≤ U(w).

229

w

U

(0, 0)

w

ǫ
4

ǫ
2

(a) Approximating the Two Parts

w

U

(0, 0)

w

ǫ

(b) Removing Discontinuity

w

U

(0, 0)

w w + r

(c) Patching after Shifting

Figure 4.4: Lower PWL approximation for asymptotically linear utility functions

230

Therefore, we can use the linear function k−w+b−−
ǫ

4
to approximate U(w) from below on

the infinite interval (−∞, w], and the approximation has an error of at most
ǫ

2
. This part

is illustrated by the dashed segment in Figure 4.4(a). We can also approximate U(w) on

the finite interval [w, 0] by an error of at most
ǫ

2
, denoted as U ǫ

2
(·) where U ǫ

2
(w) = U(w)

and U ǫ
2
(0) = U(0) such that for all w ∈ [w, 0], it holds that

U(w) − ǫ

2
≤ U ǫ

2
(w) ≤ U(w).

This part is illustrated by solid lines in Figure 4.4(a). Again, if we put these two lower

approximations together, there can be a discontinuity at w. These problems can be easily

remedied by shifting U ǫ
2
(·) downwards by U(w)− k−w− b− +

ǫ

4
. Then for all w ∈ [w, 0], it

holds that

U(w)− ǫ ≤ U ǫ
2
(w)− U(w) + k−w + b− −

ǫ

4
≤ U(w),

since U(w)−k−w−b−+
ǫ

4
≤ ǫ

2
. Therefore, the overall lower approximation is for all w ≤ 0,

U(w) =

k−w + b− −
ǫ

4
, w ∈ (−∞, w],

U ǫ
2
(w) − U(w) + k−w + b− −

ǫ

4
, w ∈ [w, 0],

and the approximation error is at most ǫ. The complete approximation is shown in Fig-

ure 4.4(b).

We can perform value iteration with U(·) as the initial value function. First, we consider

the infinite interval (−∞, w]. We show that for all t ∈ N, all s ∈ S, and all w ∈ (−∞, w], it

holds that

V t
U (s,w) = k−w + k−v

t(s) + b− −
ǫ

4
,

where v0(s) = 0 and

vt(s) = max
a∈As

∑

s′∈S

P (s′|s, a)[r(s, a, s′) + vt−1(s′)].

The result holds trivially for t = 0. Suppose it holds for t. Consider the case for t+ 1. For

all s ∈ S and all w ∈ (−∞, w], we have

V t+1
U (s,w) = max

a∈As

∑

s′∈S

P (s′|s, a)V t
U (s′, w + r(s, a, s′))

231

= max
a∈As

∑

s′∈S

P (s′|s, a)
(

k−(w + r(s, a, s′)) + k−v
t(s′) + b− −

ǫ

4

)

= k−w + k−

(

max
a∈As

∑

s′∈S

P (s′|s, a)(r(s, a, s′) + vt(s′))

)

+ b− −
ǫ

4

= k−w + k−v
t+1(s) + b− −

ǫ

4
.

Therefore, the result holds. From Section 2.3.3, we see that vt(s) is the sequence of values

under the MER objective obtained using value iteration on the original problem with 0 as

the initial values.

We next consider the shifting operation. We know from the previous section that

we need to patch the gap of the value function on the interval [w,w − r] where r <

0. The above result shows that for step t and state s, we only need to add a seg-

ment to the PWL function representing the current value function, and this segment con-

nects
(

w, k−w + k−r + k−v
t(s) + b− −

ǫ

4

)

and
(

w − r, k−w + k−v
t(s) + b− −

ǫ

4

)

on the

w-U plane. The shifting and patching are illustrated in Figure 4.4(c), where the red lines

are functions after shifting and the green segment is the patch.

Now we consider an upper approximation U(·) of U(·), as illustrated in Figure 4.5. For

a given error ǫ > 0, we can determine w such that for all w ≤ w, it holds that

k−w + b− −
ǫ

2
≤ U(w) ≤ k−w + b− +

ǫ

2
.

Then it follows that

U(w) ≤ k−w + b− +
ǫ

2
≤ U(w) + ǫ.

Therefore, we can use the linear function k−w+ b− +
ǫ

2
to approximate U(w) for above on

the infinite interval (−∞, w], and the approximation has an error of at most ǫ. We can also

approximate U(w) on the finite interval [w, 0] by an error of at most ǫ , denoted as U ǫ(·)

where U ǫ(w) = U(w) and U ǫ(0) = U(0) such that for all w ∈ [w, 0], it holds that

U(w) ≤ U ǫ(w) ≤ U(w) + ǫ.

If we put these two upper approximations together, there can be a discontinuity at w

and the result can also be nonmonotonic, as shown in Figure 4.5(a). These problems

232

w

U

(0, 0)w

ǫ

(a) Approximating the Two Parts

w

U

(0, 0)w

ǫ

(b) Removing Discontinuity

w

U

(0, 0)

w w + r

(c) Patching after Shifting

Figure 4.5: Upper PWL approximation for asymptotically linear utility functions

233

can be solved by adjusting the upper approximation on the finite interval [w, 0] to be

max
(

k−w + b− +
ǫ

2
, U ǫ(·)

)

. The resulting PWL function still has an error of at most ǫ,

since U(·) is nondecreasing and k−w + b− +
ǫ

2
≤ U(w) + ǫ. Therefore, the overall upper

approximation is for all w ≤ 0,

U(w) =

k−w + b− +
ǫ

2
, w ∈ (−∞, w],

max
(

k−w + b− +
ǫ

2
, U ǫ(w)

)

, w ∈ [w, 0],

and the approximation error is at most ǫ. The complete approximation is illustated in

Figure 4.5(b).

Value iteration can be performed with the upper approximation U(·). An argument

similar to the case of the lower approximation shows that for all t ∈ N, all s ∈ S, and all

w ∈ (−∞, w], it holds that V t
U
(s,w) = k−w+ k−v

t(s) + b− +
ǫ

2
, and we can thus patch the

gap with U(w) in the same way as in the case of the lower approximation, as illustrated in

Figure 4.5(c).

4.3.4.3 Asymptotically Exponential Utility Functions

A utility function is asymptotically exponential as w → −∞ if there exists 0 < γ < 1,

k− > 0 and b− such that

lim
w→∞

(
U(w) + k−γ

w
)

= b−.

Here we assume that k− > 0 and 0 < γ < 1 since otherwise it is reduced to the case of

asymptotically constant utility functions.

The initial lower and upper approximations for asymptotically exponential utility func-

tions are almost exactly the same as those for asymptotically linear utility functions. There-

fore, we do not include separate illustrations.

We consider a lower approximation U(·) to U(·). Similar to the above, for a given

approximation error ǫ, we first determine w < 0 such that for all w ≤ w,

−k−γw + b− −
ǫ

4
≤ U(w) ≤ −k−γw + b− +

ǫ

4
.

Then it follows that

U(w)− ǫ

2
≤ −k−γw + b− −

ǫ

4
≤ U(w).

234

Therefore, we can use the exponential function −k−γw + b−−
ǫ

4
to approximate U(w) from

below on the infinite interval (−∞, w], and the approximation has an error of at most
ǫ

2
. We

can also approximate U(w) on the finite interval [w, 0] by an error of at most
ǫ

2
, denoted

as U ǫ
2
(·) where U ǫ

2
(w) = U(w) and U ǫ

2
(0) = U(0) such that for all w ∈ [w, 0], it holds that

U(w) − ǫ

2
≤ U ǫ

2
(w) ≤ U(w).

Again, if we put these two lower approximations together, there can be a discontinuity at

w and the result can also be nonmonotonic. These problems can be easily remedied by

shifting U ǫ
2
(·) downwards by U(w) + k−γ

w − b− +
ǫ

4
. Then for all w ∈ [w, 0], it holds that

U(w)− ǫ ≤ U ǫ
2
(w)− U(w)− k−γw + b− −

ǫ

4
≤ U(w),

since U(w) + k−γ
w − b− +

ǫ

4
≤ ǫ

2
. Therefore, the overall lower approximation is for all

w ≤ 0,

U(w) =

−k−γw + b− −
ǫ

4
, w ∈ (−∞, w],

U ǫ
2
(w)− U(w)− k−γw + b− −

ǫ

4
, w ∈ [w, 0],

and the approximation error is at most ǫ.

We can perform value iteration with U(·) as the initial value function. We first show

that for all t ∈ N, all s ∈ S, and all w ∈ (−∞, w], it holds that

V t
U (s,w) = k−v

t
exp(s)γw + b− −

ǫ

4
,

where v0
exp(s) = ι = −1 and

vt
exp(s) = max

a∈As

∑

s′∈S

P (s′|s, a)γr(s,a,s′)vt−1
exp (s′).

It holds trivially for t = 0. Suppose it holds for t. Consider the case for t+ 1. For all s ∈ S

and all w ∈ (−∞, w], we have

V t+1
U (s,w) = max

a∈As

∑

s′∈S

P (s′|s, a)V t
U (s′, w + r(s, a, s′))

= max
a∈As

∑

s′∈S

P (s′|s, a)
(

k−v
t
exp(s′)γw+r(s,a,s′) + b− −

ǫ

4

)

235

= k−

(

max
a∈As

∑

s′∈S

P (s′|s, a)γr(s,a,s′)vt
exp(s′)

)

γw + b− −
ǫ

4

= k−v
t+1
exp (s)γw + b− −

ǫ

4
.

Therefore, the result holds. From Section 3.2, the values vt
exp(s) are the sequence of values

under the MEUexp objective obtained using value iteration on the original problem with

Uexp(0) = −1 as the initial values.

We next consider the shifting operation. We know from the previous sections that we

need to patch the gap of the value function on the interval [w,w − r] where r < 0. The

above result shows that for step t and state s, we only need to add a segment to the lower

approximation representing the current value function, and the segment is an exponential

function passing points
(

w, k−v
t
exp(s)γw+r + b− −

ǫ

4

)

and
(

w − r, k−vt
exp(s)γw + b− −

ǫ

4

)

on the w-U plane.

There remains a problem for the value iteration procedure: the value function for the

newly patched interval [w,w−r] is an exponential rather than a linear function. Thus after

the patching, the explicit part of the functional value function is no longer a PWL function.

There are two solutions to this problem. The first one is to approximate this exponential

segment on this interval using the sandwich method. Since this approximation introduces

additional error, we need to budget our error allocation differently for the initial lower

approximation to the original utility function. More specifically, we need to budget less

error for the infinite part of the approximation to leave room for the additional errors from

the patching. Since we consider negative models, the functional value function can only be

shifted to the right. Therefore, the newly introduced error will not affect the error on the

interval [w − r, 0].

The second solution is to work directly with the mixed exponential and linear segments of

the approximation. The benefit of this solution is that no additional error will be introduced.

Because of the weighted summation operation of the value update rule, we need to deal with

piecewise functions, each of which is the summation of an exponential and a linear function.

Now we briefly discuss this approach. There are a lot of similarities to the case of PWL

functions. A minor difference from the case of PWL functions is that we represent the

236

piecewise one-switch functions using three parameters, corresponding to the coefficients of

the linear, exponential, and constant terms, respectively. Suppose that the three parameters

are C,D,E. They represent a function Cw+Dγw +E, referred to as one-switch functions,

since they are related to planning with one-switch utility functions (see Section 4.4). Similar

to the PWL case, we only need to consider scaling, shifting, addition, and maximization over

a fixed interval. With the triple parameter representation, scaling, shifting, and addition

can be done in the same way as PWL functions. The maximization operation is slightly

different. Similar to the PWL case, the maximization operation for two piecewise one-switch

functions can also be reduced to the maximization operation for two one-switch functions

on a finite interval. There can be (at most) two intersections for two one-switch functions

on a finite interval. The maximization operation then need to take this possibility into

account. An illustration of this approach is shown in Section 4.3.5.2.

An upper approximation can be obtained in a similar way to that for asymptotically

linear utility functions. For a given error ǫ > 0, we can determine w such that for all w ≤ w,

it holds that

−k−γw + b− −
ǫ

2
≤ U(w) ≤ −k−γw + b− +

ǫ

2
.

Then it follows that

U(w) ≤ −k−γw + b− +
ǫ

2
≤ U(w) + ǫ.

Therefore, we can use the exponential function −k−γw + b− +
ǫ

2
to approximate U(w) from

above on the infinite interval (−∞, w], and the approximation has an error of at most ǫ. We

can also approximate U(w) on the finite interval [w, 0] with an error of at most ǫ, denoted

as U ǫ(·) where U ǫ(w) = U(w) and U ǫ(0) = U(0) such that for all w ∈ [w, 0], it holds that

U(w) ≤ U ǫ(w) ≤ U(w) + ǫ.

If we put these two upper approximations together, there can be a discontinuity at w

and the result can also be nonmonotonic. These problems can be solved by adjusting the

upper approximation on the finite interval [w, 0] to be max
(

−k−γw + b− +
ǫ

2
, U ǫ(·)

)

. The

resulting PWL function still has an error of at most ǫ, since U(·) is nondecreasing and

237

−k−γw + b− +
ǫ

2
≤ U(w) + ǫ. Therefore, the overall upper approximation is for all w ≤ 0,

U(w) =

−k−γw + b− +
ǫ

2
, w ∈ (−∞, w],

max
(

−k−γw + b− +
ǫ

2
, U ǫ(w)

)

, w ∈ [w, 0],

and the approximation error is at most ǫ.

Value iteration can be performed with the upper approximation U(·). An argument

similar to the case of the lower approximation shows that for all t ∈ N, all s ∈ S, and all

w ∈ (−∞, w], it holds that V t
U
(s,w) = −k−vt

expγ
w + b− +

ǫ

2
, and thus we can patch the gap

with U(w) in the same way as in the case of the lower approximation.

4.3.5 Example: Deadline Utility Functions

We now illustrate value iteration with functional value functions using deadline utility

functions and the painted-blocks problem. Deadline utility functions express the preference

that completing the task by the given deadline is preferred over not completing the task by

the deadline, and completing the task by the deadline with a higher probability is preferred

over completing the task by the deadline with a lower probability (Haddawy and Hanks,

1992).

Deadlines can be hard or soft. With a hard deadline, it is useless to complete the task

after the deadline. With a soft deadline, the utility of completing the task after the deadline

decreases gradually. We demonstrate how the functional version of value iteration can be

used to solve planning problems with both hard and soft deadlines, using a painted-blocks

problem with a different initial state, while the rest of the problem is unchanged from

Chapter 1. With the new initial state, we are able to show that there are different optimal

policies with different utility functions. The new initial state is shown in Figure 4.6, which

also shows the goal configuration for convenience. This example is also used later with

one-switch utility functions (see Section 4.4.3). Recall that each action takes some time to

perform, and thus the planning problem is modeled as a negative model.

238

Figure 4.6: A painted-blocks problem for general risk-sensitive utility functions

w

U

(0, 0)

1

d w

U

(0, 0)

1

d
d−ǫ

Figure 4.7: A hard deadline utility function and its modification for value iteration

4.3.5.1 Hard Deadlines

A hard deadline can be modeled as a step function. If the deadline is d < 0, the hard-

deadline utility function is

Uhdl(w) =

1, w ≥ d,

0, w < d.

This is a PWL function except that there is a discontinuity. In our earlier discussion,

we assumed that the PWL functions be continuous. We can remove the discontinuity by

modifying the utility function slightly. Let ǫ > 0 be a small number such that (d−ǫ, d)∩W =

∅. Then we can use the modified hard-deadline utility function

Uhdl′(w) =

1, w ≥ d,

1
ǫ (x− d) + 1, d− ǫ ≥ w < d,

0, w < d− ǫ.

and for all w ∈W , Uhdl(w) = Uhdl′(w).

With a hard deadline function, the value of a state for a policy is also the probability of

reaching the goal state before the deadline starting from this state under the control of this

policy. Obviously, there exists a policy that can complete the task with a total cost of 7

(a total reward of −7): remove the top block of the tower of four blocks and paint the two

bottom blocks of the tower. Table 4.1 lists the different optimal values for different values

of d obtained by using value iteration with functional value functions.

239

Table 4.1: Optimal values (probabilities of success) with hard deadlines

d [0,−2) [−2,−3) [−3,−4) [−4,−5) [−5,−6) [−6,−7) [−7,−∞)

v∗hdl 0 0.25 0.5 0.6875 0.8125 0.890625 1.0

w

U

−1−2−3−4 0

0.5

1.0

w

U

−1−2−3−4 0

0.5

1.0

(a) {WBBW,B} and {WBB,B,W} (b) {WBB,BW} and {BW,WB,B}

Figure 4.8: Optimal functional value functions of relevant states for the hard deadline
utility function

Now we look at the results for d = −5 in more detail. We first consider the functional

value functions, then retrieve an SD-optimal policy for the augmented model, and lastly ob-

tain an aSD-optimal policy for the original model. We consider only relevant states starting

from the initial state, since not all states are involved in the optimal policy for the original

model.4 For goal states, the functional value function is always Uhdl(·). The functional

value functions for states relevant to the initial state {WBBW,B} are shown in Figure 4.8.

Based on the value functions, we can retrieve an optimal policy for the augmented model,

as shown in Figure 4.9. The actions are optimal under particular conditions, which are also

shown in the figure. Notice that these conditions do not cover all possible w ∈ W . If the

agent is in a state and its accumulated wealth is not covered by the condition, any action is

optimal since no goal state can be reached within the deadline. Thus such conditions and

actions are omitted.

To obtain an optimal policy for the original model, we only need to restrict the optimal

policy for the augmented model to those wealth levels that can be achieved starting from

the initial state and an initial wealth of zero. This can be done using a forward search.

In this way, a corresponding optimal policy for the original model is shown in Figure 4.10,

where the difference is that the action for state {WBBW,B} does not require a condition, since

4Strictly speaking, not all states are involved in the “interesting” part of the optimal policy. If the total
reward is less than d, any action is optimal, and thus all states are involved. But states and actions involved
this way are the “boring” part of the policy.

240

{WBBW,B}

−1/0.5

w
≥

−
3

{WBB,BW}

−
1
/
0
.5

{WBB,B,W}

−
1
/
0
.5

−1/0.5

w ≥ −3

w
≥

−
4

−1/0.5

{BWB,WB}

−
1
/
0
.5

{BW,WB,B}

−
1
/
0
.5

w ≥ −4

−1/0.5

Figure 4.9: An SD-optimal policy for the augmented model with the hard deadline utility
function

{WBBW,B}

−1/0.5

{WBB,BW}

−
1
/
0
.5

{WBB,B,W}

−
1
/
0
.5

−1/0.5

w ≥ −3

w
≥

−
4

−1/0.5

{BWB,WB}

−
1
/
0
.5

{BW,WB,B}

−
1
/
0
.5

w ≥ −4

−1/0.5

Figure 4.10: The aSD-optimal policy for the original model with the hard deadline utility
function

241

w

U

(0, 0)

1

dd′

Figure 4.11: Linearly soft deadline utility function

the initial wealth level is zero. The optimal policy indicates that the agent keeps trying

moving actions until it is impossible to reach a goal state within the deadline.

4.3.5.2 Soft Deadlines

For the hard deadline utility function, any action is equally good (or bad) if no goal state

can be reached within the deadline. It is often desirable for the agent to complete the task

even if the deadline is missed. Soft deadline utility functions can be used to achieve this

effect. For soft deadline utility functions, the utility decreases gradually if the deadline is

missed. Common types of soft deadline utility functions include linearly and exponentially

soft deadline utility functions.

4.3.5.2.1 Linearly Soft Deadlines

A linearly soft deadline utility function is defined as

Usdl-l(w) =

1, w ≥ d,

w − d′
d− d′ , w < d,

so that Usdl-l(d
′) = 0, as shown in Figure 4.11. This function is a PWL function and value

iteration can be directly applied.

For illustration purposes, we are interested in a linearly soft deadline utility function

with which the optimal policy is qualitatively different from the case of a hard deadline

utility function, and also different from the case of a linear utility function. This is the case

if we let d = −6.75 and d′ = −7.75. The functional value functions are also PWL functions,

as shown in Figure 4.12. The breakpoints of the value functions are listed in Table 4.2. The

leftmost part of the value functions is always a linear function with a slope of 1.0.

242

w

U

−1−2−3−4−5−6 0

0.5

1.0

−0.5

−1.0

−1.5

−2.0

−2.5

w

U

−1−2−3−4−5

−6

0

0.5

1.0

−0.5

−1.0

−1.5

−2.0

−2.5

(a) {WBBW,B} (b) {WBB,BW}

w

U

−1−2−3−4−5−6 0

0.5

1.0

−0.5

−1.0

−1.5

−2.0

−2.5

w

U

−1−2−3−4−5

−6

0

0.5

1.0

−0.5

−1.0

−1.5

−2.0

−2.5

(c) {WBB,B,W} (d) {BW,WB,B}

w

U

−1−2−3−4−5

−6

0

0.5

1.0

−0.5

−1.0

−1.5

−2.0

−2.5

w

U

−1−2−3−4

−5

−6 0

0.5

1.0

−0.5

−1.0

−1.5

−2.0

−2.5

(e) {BBB,BW} (f) {BBB,B,W}

Figure 4.12: Optimal functional value functions of relevant states for the linearly soft
deadline utility function

Table 4.2: Breakpoints of the value functions from Figure 4.12

{WBBW,B}
(−4.75, −1.00)

(−3.75, −0.25)

(−2.75, 0.25)

(−1.75, 0.56)

(−0.75, 0.75)

(−0.06, 0.83)

(0.00, 0.86)

{WBB,BW}
(−5.75, 0.00)

(−4.75, 0.50)

(−3.75, 0.75)

(−2.75, 0.86)

(−1.75, 0.94)

(−0.78, 0.97)

(−0.75, 1.00)

(0.00, 1.00)

{WBB,B,W}
(−4.75, −1.00)

(−3.75, −0.25)

(−2.75, 0.25)

(−1.75, 0.56)

(−1.06, 0.69)

(−0.75, 1.00)

(0.00, 1.00)

{BW,WB,B}
(−5.75, 0.00)

(−4.75, 0.50)

(−3.75, 0.75)

(−2.75, 0.86)

(−1.75, 0.94)

(−0.75, 0.97)

(0.00, 0.98)

{BBB,BW}
(−5.75, 0.00)

(−4.75, 0.50)

(−4.08, 0.67)

(−3.75, 1.00)

(0.00, 1.00)

{BBB,B,W}
(−3.75, 1.00)

(0.00, 1.00)

243

{WBBW,B}

−1/0.5

{WBB,BW}

{BBB,BW}

−
3
/
1
.0

w = 0

−
1
/
0
.5

{WBB,B,W}

{BBB,B,W}

−
3
/
1
.0

w ≥ −1

−
1
/
0
.5

−1/0.5

w ≤ −2

w
≤

−
1

−1/0.5

−3/1.0

{BWB,BW}

{BWB,WB}

−
1
/
0
.5

{BW,WB,B}

−
1
/
0
.5

−1/0.5

−3/1.0

{BWB,B,W}

Figure 4.13: An SD-optimal policy for the augmented model with the linearly soft deadline
utility function

{WBBW,B}

−1/0.5

{WBB,BW}

−
1
/
0
.5

{WBB,B,W}

{BBB,B,W}

−
3
/
1
.0

−1/0.5

{BWB,WB}

−
1
/
0
.5

{BW,WB,B}

−
1
/
0
.5

−1/0.5

−3/1.0

{BWB,B,W}

Figure 4.14: The aSD-optimal policy for the original model with the linearly soft deadline
utility function

244

{WBBW,B}

−1/0.5

{WBB,BW}

−
1
/
0
.5

{WBB,B,W}

−
1
/
0
.5

−1/0.5

−1/0.5

{BWB,WB}

−
1
/
0
.5

{BW,WB,B}

−
1
/
0
.5

−1/0.5

Figure 4.15: The SD-optimal policy for the original model with a linear utility function

w

U

(0, 0)

1

d

d′

Figure 4.16: Exponentially soft deadline utility function

Based on the value functions, we can retrieve an optimal policy for the augmented

model, as shown in Figure 4.13. The corresponding optimal policy for the original model,

as shown in Figure 4.14, is simpler, since unnecessary branches, for example, w = 0 in state

{WBB,BW} and w ≤ −2 in state {WBB,B,W}, can be removed. Following the optimal policy,

the agent tries moving actions until a goal state is reached, but if the first moving action

({WBBW,B} → {WBB,BW}) fails, the agent switches to the painting strategy. The resulting

policy also differs from the optimal policy with a linear utility function, which uses only

moving actions, as shown in Figure 4.15.

Since the linearly soft deadline utility function has a tail that is a linear utility function,

the optimal policies with these two utility functions are related. This relationship is best

explained by comparing the SD-optimal policy for the augmented model under the MEU

model and the SD-optimal policy under the MER model. When w is large enough in

magnitude, the SD-optimal policy for the augmented model is reduced to the SD-optimal

policy under the MER model. All the differences between these two policies are due to the

nonlinear part of the utility function, which takes effect when w is small in magnitude.

245

w

U

−1

−2

−3−4−5−6 0

2.0

−4.0

−8.0

−12.0

−16.0

−20.0

w

U

−1−2−3−4

−5

−6 0

2.0

−4.0

−8.0

−12.0

−16.0

−20.0

(a) {WBBW,B} (b) {WBB,BW}

w

U

−1−2−3−4−5−6 0

2.0

−4.0

−8.0

−12.0

−16.0

−20.0

w

U

−1−2−3−4

−5

−6 0

2.0

−4.0

−8.0

−12.0

−16.0

−20.0

(c) {WBB,B,W} (d) {BW,WB,B}

w

U

−1−2−3−4−5−6 0

2.0

−4.0

−8.0

−12.0

−16.0

−20.0

(e) {BBB,BW} and {BBB,B,W}

Figure 4.17: Optimal functional value functions of relevant states for the exponentially soft
deadline utility function

Table 4.3: Breakpoints of the value functions from Figure 4.17

{WBBW,B}
−0.9734

(−4.90, −9.40)

(−3.90, −4.79)

(−2.90, −2.10)

(−1.90, −0.52)

(−0.90, 0.41)

(−0.03, 0.90)

(0.00, 0.92)

{WBB,BW}
−0.2210

(−5.90, −2.00)

(−4.90, −0.50)

(−3.90, 0.25)

(−2.90, 0.63)

(−1.90, 0.81)

(−1.03, 0.90)

(−0.90, 1.00)

(0.00, 1.00)

{WBB,B,W}
−0.9472

(−0.90, 1.00)

(0.00, 1.00)

{BW,WB,B}
−0.2210

(−5.90, −2.00)

(−4.90, −0.50)

(−3.90, 0.25)

(−2.90, 0.63)

(−1.90, 0.81)

(−0.90, 0.91)

(0.00, 0.95)

{BBB,BW}
{BBB,B,W}
−0.2046

(−3.90, 1.00)

(0.00, 1.00)

246

{WBBW,B}

−1/0.5

{WBB,BW}

{BBB,BW}

−
3
/
1
.0

w ≥ −1

−
1
/
0
.5

{WBB,B,W}

{BBB,B,W}

−
3
/
1
.0

w
≤

−
2

−1/0.5

−3/1.0

{BWB,BW}

{BWB,WB}

−
1
/
0
.5

{BW,WB,B}

−
1
/
0
.5

−1/0.5

−3/1.0

{BWB,B,W}

Figure 4.18: An SD-optimal policy for the augmented model with the exponentially soft
deadline utility function

{WBBW,B}

−1/0.5

{WBB,BW}

{BBB,BW}

−
3
/
1
.0

−
1
/
0
.5

{WBB,B,W}

{BBB,B,W}

−
3
/
1
.0

−3/1.0

{BWB,BW}

−3/1.0

{BWB,B,W}

Figure 4.19: The aSD-optimal policy for the original model with the exponentially soft
deadline utility function

247

{WBBW,B}

−1/0.5

{WBB,BW}

−
1
/
0
.5

{WBB,B,W}

{BBB,B,W}

−
3
/
1
.0

−1/0.5

{BWB,WB}

−
1
/
0
.5

{BW,WB,B}

−
1
/
0
.5

−1/0.5

−3/1.0

{BWB,B,W}

Figure 4.20: The SD-optimal policy for the original model with an exponential utility
function

4.3.5.2.2 Exponentially Soft Deadlines

An exponentially soft deadline utility function is defined as

Usdl-e(w) =

1, w ≥ d,

γw − γd′

γd − γd′
, w < d,

so that Usdl-e(d
′) = 0, as shown in Figure 4.16. The utility function is not a PWL function,

but is asymptotically exponential. We therefore use the method outlined in Section 4.3.4.3,

using piecewise mixed exponential and linear functions (in fact, the linear term always has

a zero coefficient).

Again, we are interested in an exponentially soft deadline utility function with which

the optimal policy is qualitatively different from the case of a hard deadline utility function,

and also different from the case of an exponential utility function with the same γ. This

is the case if we let γ = 0.60, d = −6.90, and d′ = −7.90. The functional value functions

are piecewise exponential, as shown in Figure 4.17. The breakpoints of the value functions

are listed in Table 4.3. The numbers listed on the top are the coefficient of the exponential

terms for the leftmost segment.

Based on the value functions, we can retrieve an optimal policy for the augmented model,

as shown in Figure 4.18. The corresponding optimal policy for the original model is shown

248

w

U

(0, 0)

1

−1

d

d′d′′

Figure 4.21: Mixed soft deadline utility function

in Figure 4.19, where unnecessary branches, for example, w ≤ −2 in state {WBB,BW}, are

removed. Following the optimal policy, the agent uses only painting actions. The resulting

policy also differs from the optimal policy with an exponential utility function with the

same γ, which uses both painting and moving actions, as shown in Figure 4.20.

Similar to linearly soft deadline utility functions, the optimal policy with the exponen-

tially soft deadline utility function is related to that with an exponential utility function.

When w is large enough in magnitude, the SD-optimal policy for the augmented model is

reduced to the SD-optimal policy under the MEUexp model. All the differences between

these two policies are due to the non-exponential part of the utility function, which takes

effect when w is small in magnitude.

4.3.5.2.3 Mixed Soft Deadlines

We consider a mixed soft deadline utility function, defined as

Usdl-e-l(w) =

1, w ≥ d,

w − d′
d− d′ , d′ ≤ w < d,

γw−d′′ + (d′′ − d′) ln γ − 1

(d− d′) ln γ
, w < d′′,

so that Usdl-e-l(d
′) = 0 and the exponential and linear functions have the same tangent direc-

tion at d′′, as shown in Figure 4.21. This utility function is also asymptotically exponential,

and we continue to use the piecewise mixture of exponential and linear functions in value

iteration.

We show that the optimal policy is different from the cases of linearly and exponentially

(with the same γ) soft deadline utility functions. This is the case if we let γ = 0.60,

249

w

U

−1−2

−3−4

−5−6−7−8−9 0

2.0

−4.0

−8.0

−12.0

−16.0

−20.0

−24.0

−28.0

−32.0

w

U

−1−2−3−4−5

−6

−7−8−9 0

2.0

−4.0

−8.0

−12.0

−16.0

−20.0

−24.0

−28.0

−32.0

(a) {WBBW,B} (b) {WBB,BW}

w

U
−1−2−3−4

−5−6−7−8−9 0

2.0

−4.0

−8.0

−12.0

−16.0

−20.0

−24.0

−28.0

−32.0

w

U

−1−2−3−4−5

−6

−7−8−9 0

2.0

−4.0

−8.0

−12.0

−16.0

−20.0

−24.0

−28.0

−32.0

(c) {WBB,B,W} (d) {BW,WB,B} and {BB,BW,B}

w

U

−1−2−3−4−5

−6

−7−8−9 0

2.0

−4.0

−8.0

−12.0

−16.0

−20.0

−24.0

−28.0

−32.0

w

U

−1−2−3−4−5

−6

−7−8−9 0

2.0

−4.0

−8.0

−12.0

−16.0

−20.0

−24.0

−28.0

−32.0

(e) {BBB,BW} (f) {BBB,B,W}

Figure 4.22: Optimal functional value functions of relevant states for the mixed soft dead-
line utility function

250

{WBBW,B}

−1/0.5

{WBB,BW}

{BBB,BW}

−
3
/
1
.0

w = 0

{BB,BW,B}

−
1
/
0
.5

−8 ≤ w ≤ −4

−
1
/
0
.5
{WBB,B,W}

−
1
/
0
.5

−1/0.5

−6 ≤ w ≤ −1

{BBB,B,W}

−
3
/
1
.0

w ≤ −7 w = 0

w
≤

−
1

−1/0.5

−3/1.0

w
≤

−
9

w
≥

−
3

{BWB,BB}

−1/0.5

−1/0.5

−1/0.5

{BWB,BW}

{BWB,WB}

−
1
/
0
.5

{BW,WB,B}

−
1
/
0
.5

−1/0.5

−3/1.0

{BWB,B,W}

Figure 4.23: An SD-optimal policy for the augmented model with the mixed soft deadline
utility function

{WBBW,B}

−1/0.5

{WBB,BW}

−
1
/
0
.5

{WBB,B,W}

−
1
/
0
.5

−1/0.5

−6 ≤ w ≤ −1

{BBB,B,W}

−
3
/
1
.0

w ≤ −7

−1/0.5

{BWB,WB}

−
1
/
0
.5

{BW,WB,B}

−
1
/
0
.5

−1/0.5

−3/1.0

{BWB,B,W}

Figure 4.24: The aSD-optimal policy for the original model with the mixed soft deadline
utility function

251

Table 4.4: Breakpoints of the value functions from Figure 4.22

{WBBW,B}
−0.2020

(−8.50, −16.57)

−0.1956

(−7.50, −10.30)

−0.1903

(−6.50, −6.42)

−0.1859

(−5.72, −4.39)

−0.1807

(−5.50, −3.89)

−0.1733

(−4.72, −2.41)

−0.1690

(−4.50, −2.04)

−0.1598

(−3.72, −1.07)

−0.1562

(−3.50, −0.81)

−0.1460

(−2.72, −0.21)

−0.1429

(−2.50, −0.05)

−0.1323

(−1.72, 0.30)

−0.1298

(−1.50, 0.40)

−0.1191

(−0.72, 0.61)

−0.1170

(−0.50, 0.66)

−0.1067

(0.00, 0.74)

{WBB,BW}
−0.04584

(−9.50, −6.92)

−0.03820

(−8.50, −4.46)

−0.03184

(−7.50, −2.73)

−0.02653

(−6.50, −1.36)

−0.02211

(−5.50, −0.18)

−0.01842

(−4.50, 0.41)

−0.01535

(−3.50, 0.70)

−0.01279

(−2.50, 0.85)

−0.01066

(−1.50, 0.93)

−0.00888

(−0.54, 0.96)

0.0000

(−0.50, 1.00)

0.0000

(0.00, 1.00)

{WBB,B,W}
−0.1965

(−6.72, −7.14)

−0.1903

(−6.50, −6.42)

−0.1859

(−5.72, −4.39)

−0.1807

(−5.50, −3.89)

−0.1733

(−4.72, −2.41)

−0.1690

(−4.50, −2.04)

−0.1598

(−3.72, −1.07)

−0.1562

(−3.50, −0.81)

−0.1460

(−2.72, −0.21)

−0.1429

(−2.50, −0.05)

−0.1323

(−1.72, 0.30)

−0.1298

(−1.50, 0.40)

−0.1191

(−0.95, 0.55)

0.0000

(−0.50, 1.00)

0.0000

(0.00, 1.00)

{BW,WB,B}
{BB,BW,B}
−0.04584

(−9.50, −6.92)

−0.03820

(−8.50, −4.46)

−0.03184

(−7.50, −2.73)

−0.02653

(−6.50, −1.36)

−0.02211

(−5.50, −0.18)

−0.01842

(−4.50, 0.41)

−0.01535

(−3.50, 0.70)

−0.01279

(−2.50, 0.85)

−0.01066

(−1.50, 0.93)

−0.00888

(−0.50, 0.96)

−0.00740

(0.00, 0.97)

{BBB,BW}
−0.04245

(−8.09, −3.69)

−0.03184

(−7.50, −2.73)

−0.02653

(−6.50, −1.36)

−0.02211

(−5.50, −0.18)

−0.01842

(−4.50, 0.41)

−0.01535

(−3.91, 0.59)

0.0000

(−3.50, 1.00)

0.0000

(0.00, 1.00)

{BBB,B,W}
−0.04245

(−7.50, −3.00)

0.0000

(−3.50, 1.00)

0.0000

(0.00, 1.00)

d = −6.50, d′ = −7.50, and d′′ = −10.50. The functional value functions are shown in

Figure 4.22. The breakpoints of the value functions are listed in Table 4.4, and we also

include the coefficients of the exponential terms between breakpoints so that the piecewise

mixtures can be reconstructed.

Based on the value functions, we can retrieve an optimal policy for the augmented

model, as shown in Figure 4.23. The corresponding optimal policy for the original model

is shown in Figure 4.24. Following the optimal policy, the agent tries the moving strategy

several times before switching to the painting strategy. The resulting policy differs from

the optimal policies with linearly and exponentially soft utility functions.

4.4 One-Switch Utility Functions

Since they have constant risk measures, exponential utility functions are convenient to use,

but are not powerful enough to model risk attitudes that change with the wealth level.

Such variable risk attitudes are realistic though. For example, if Bill Gates were faced with

the lotteries given in Table 1.1 now, he would probably choose the one with the higher

252

expected value, while he would have probably chosen the other one when he just started his

company. Bell (1988) and Bell and Fishburn (2001) discussed a class of utility functions,

called one-switch utility functions, which can model such changes. These functions capture

the intuition that human risk attitude changes smoothly when the level of wealth is changed.

An agent obeys the one-switch rule if, for every pair of lotteries for which the preference

is not independent of the wealth level, there exists a threshold wealth level above which

one lottery is preferred, and below which the other is preferred. In other words, as the

wealth level increases, the preference between two lotteries can switch at most once. On

the other hand, the linear and exponential utility functions can be called zero-switch utility

functions, since they represent constant risk attitudes where the decisions do not depend

on the wealth level of the decision maker.

Bell (1988) and Bell and Fishburn (2001) argued that most people are risk-averse when

they have a small amount of money, and become more and more risk-neutral when they get

richer and richer. If they also conform to the one-switch rule, Bell (1988) proved that the

only class of utility functions satisfying these conditions is

Uone(w) = Cw −Dγw, C,D > 0, 0 < γ < 1. (4.9)

Farquhar and Nakamura (1987) obtained utility functions of the same form starting with a

property called the constant exchange risk property.

From the form of the utility function, we can expect that results for linear and exponen-

tial utility functions will play an important role for solving problems with one-switch utility

functions. In this section, we use results from linear, exponential, and general risk-sensitive

utility functions to discuss risk-sensitive planning with one-switch utility functions. Follow-

ing the notation convention from Section 2.2.2.4, we use the subscript one to denote variables

related to the MEU objective with a one-switch utility function. We also use the subscript

one≪w to denote variables related to “shifted” one-switch utility functions Uone≪w, which we

refer to as one-switch functions for later convenience (see also Section 4.3.4.3). One-switch

functions are linear combinations of exponential, linear, and constant functions.

253

4.4.1 Finite Horizon

As we know from the results for general risk-sensitive utility functions, an optimal policy

needs to be augmented-MD. In other words, we need to consider the augmented states

(s,w). We therefore need to consider the (augmented) optimal values for all augmented

states.

For a given policy 〈〈〈π〉〉〉 ∈ 〈〈〈Π〉〉〉, we define the expected utility of the total reward over a

finite horizon with initial state s as

V 〈〈〈π〉〉〉

one,T (s,w) = 〈〈〈v|one〉〉〉
〈〈〈π〉〉〉

one,T (s,w) + Uone(w) = v
Φw(〈〈〈π〉〉〉)
one≪w,T (s)

= Es,Φw(〈〈〈π〉〉〉) [Uone(w + wT)] = Es,Φw(〈〈〈π〉〉〉) [Cw + CwT −DγwγwT]

= Cw + CEs,Φw(〈〈〈π〉〉〉) [wT] +DγwEs,Φw(〈〈〈π〉〉〉) [−γwT]

= Cw + Cv
Φw(〈〈〈π〉〉〉)
T (s) +Dγwv

Φw(〈〈〈π〉〉〉)
exp,T (s).

Therefore, the values under the MEUone objective are related to the values under the MER

objective and the values under the MEUexp objective. This relationship can be used to

develop computational procedures for planning with one-switch utility functions.

We now consider the backward induction procedure for the MEUone,T objective. The

basic procedure is the same as Algorithm 4.2 (BackwardInductionUtilityFunctional), but we

do not need approximations, and can obtain the optimal values and an aMD-optimal policy.

This is possible due to two reasons. First, we can represent the functional value functions

using piecewise one-switch functions; and second, the set of piecewise one-switch functions

is closed under dynamic programming operations. To understand this, we show that for all

0 ≤ t ≤ T and all states s ∈ S, the optimal functional value functions can be represented

as

V ∗,t
one,T (s,w) = Cw + a piecewise exponential function,

where each segment of the piecewise exponential function has the form Cv+Dγwvexp with

parameters v and vexp. We first notice that the claim holds for T since

V ∗,T
one,T (s,w) = Uone(w) = Cw −Dγw.

254

Suppose the claim holds for t and for all s ∈ S

V ∗,t
one,T (s,w) = Cw + V ′(s,w),

where for each s ∈ S, V ′(s,w) is a piecewise exponential function. Consider epoch t − 1.

We have

V ∗,t−1
one,T (s,w) = max

a∈As

∑

s′∈S

P (s′|s, a)V ∗,t
one,T (s′, w + r(s, a, s′))

= max
a∈As

∑

s′∈S

P (s′|s, a)
(
C(w + r(s, a, s′)) + V ′(s′, w + r(s, a, s′))

)

= max
a∈As

∑

s′∈S

P (s′|s, a)
(
Cw + Cr(s, a, s′) + V ′(s′, w + r(s, a, s′))

)

= max
a∈As

(

Cw +
∑

s′∈S

P (s′|s, a)
(
Cr(s, a, s′) + V ′(s′, w + r(s, a, s′))

)

)

= Cw + max
a∈As

∑

s′∈S

P (s′|s, a)
(
Cr(s, a, s′) + V ′(s′, w + r(s, a, s′))

)
.

The second term is also a piecewise exponential function since the set of piecewise expo-

nential functions is closed under shifting, scaling, summation, and maximum operations.

Therefore, the claim holds.

From the above derivation, we can see that only two values are needed for each segment

(or interval on the real-line): the constant term, and the coefficient of the exponential term.

The coefficient for the linear term is always C. For each state and each decision epoch,

we only need to store these pairs of values along with the interval they are associated

with. Therefore, we can perform the backward induction procedure with a finite number of

segments since T is finite, where the operations on piecewise one-switch functions can be

carried out as we discussed in Section 4.3.4.3. In fact, the operations can be simplified since

the linear coefficients are always C and thus can be omitted. Especially for the maximum

operation of two exponential segments, there is at most one intersection. An optimal aMD

policy can be retrieved by acting greedily.

255

4.4.2 Infinite Horizon: Limiting Cases

If the MER values and MEUexp values exist, then the MEUone values also exist. We have

the following relationship for these values:

V 〈〈〈π〉〉〉

one(s,w) = lim
T→∞

V 〈〈〈π〉〉〉

one,T (s,w) = lim
T→∞

(

Cw + Cv
Φw(〈〈〈π〉〉〉)
T (s) +Dγwv

Φw(〈〈〈π〉〉〉)
exp,T (s)

)

= Cw + CvΦw(〈〈〈π〉〉〉)(s) +DγwvΦw(〈〈〈π〉〉〉)
exp (s). (4.10)

We have the following result about the limiting cases for the optimal values.

Lemma 4.17. We have

a. lim
w→∞

(V ∗
one(s,w)− Cw) = Cv∗(s);

b. lim
w→−∞

V ∗
one(s,w)γ−w = Dv∗exp(s).

Proof. a. Let 〈〈〈π〉〉〉∗one be an optimal policy for the augmented model. Then

V ∗
one(s, w)− Cw = V

〈〈〈π〉〉〉
∗
one

one (s, w)− Cw = CvΦw(〈〈〈π〉〉〉
∗
one)(s) +Dγwv

Φw(〈〈〈π〉〉〉
∗
one)

exp (s)

≤ Cv∗(s) +Dγwv∗exp(s),

and

lim sup
w→∞

(V ∗
one(s, w)− Cw) ≤ lim

w→∞

(
Cv∗(s) +Dγwv∗exp(s)

)
= Cv∗(s).

On the other hand, assume that π∗ is an SD-optimal policy under the MER objective. We have

V ∗
one(s, w) − Cw ≥ V Ψ(π∗)(s, w) − Cw = CvΦw(Ψ(π∗))(s) +DγwvΦw(Ψ(π∗))

exp (s)

= Cvπ∗

(s) +Dγwvπ∗

exp(s) = Cv∗(s) +Dγwvπ∗

exp(s),

and

lim inf
w→∞

(V ∗
one(s, w) − Cw) ≥ lim

w→∞

(

Cv∗(s) +Dγwvπ∗

exp(s)
)

= Cv∗(s).

Therefore the result holds.

b. Let 〈〈〈π〉〉〉∗one be an optimal policy for the augmented model. Then

V ∗
one(s, w)γ−w = V

〈〈〈π〉〉〉
∗
one

one (s, w)γ−w = Cwγ−w + CvΦw(〈〈〈π〉〉〉
∗
one)(s)γ−w +Dv

Φw(〈〈〈π〉〉〉
∗
one)

exp (s)

≤ Cwγ−w + Cv∗(s)γ−w +Dv∗exp(s),

and

lim sup
w→∞

V ∗
one(s, w)γ−w ≤ lim

w→∞

(
Cwγ−w + Cv∗(s)γ−w +Dv∗exp(s)

)
= Dv∗exp(s).

256

On the other hand, assume that π∗
exp is an SD-optimal policy under the MEUexp objective. We

have

V ∗
one(s, w)γ−w ≥ V Ψ(π∗

exp)(s, w)γ−w = Cwγ−w + CvΦw(Ψ(π∗
exp))(s)γ−w +Dv

Φw(Ψ(π∗
exp))

exp (s)

= Cwγ−w + Cvπ∗
exp(s)γ−w +Dv

π∗
exp

exp (s) = Cwγ−w + Cvπ∗
exp(s)γ−w +Dv∗exp(s),

and

lim inf
w→∞

V ∗
one(s, w)γ−w ≥ lim

w→∞

(

Cwγ−w + Cvπ∗
exp(s)γ−w +Dv∗exp(s)

)

= Dv∗exp(s).

Therefore the result holds.

We next discuss properties for positive and negative models.

4.4.3 Infinite Horizon: Negative Models

For negative models, greedy policies are optimal. Define the MEUexp-optimal action set for

a state s ∈ S as

A∗
exp(s) = arg max

a∈As

∑

s′∈S

P (s′|s, a)γr(s,a,s′)v∗exp(s′).

We can determine a wealth level w, below which the optimal policy can be chosen to be the

same as an SD-optimal policy under the MEUexp objective.

We first show that there exists an SD-policy π∗∗exp such that its value under the MER

objective satisfies

vπ∗∗
exp(s) ≥ vπ∗

exp(s), s ∈ S,

for all π∗exp such that v
π∗
exp

exp (s) = v∗exp(s). Consider an auxiliary MDP where the action sets

are restricted to A∗
exp(s) for each state s ∈ S. Then an SD-optimal policy under the MER

objective for the auxiliary model is such a policy. Let

v∗∗(s) = vπ∗∗
exp(s), s ∈ S.

We have

v∗∗(s) = max
a∈A∗

exp(s)

∑

s′∈S

P (s′|s, a)[r(s, a, s′) + v∗∗(s′)], s ∈ S.

257

Let

A∗∗
exp(s) = arg max

a∈A∗
exp(s)

∑

s′∈S

P (s′|s, a)[r(s, a, s′) + v∗∗(s′)], s ∈ S.

We also define

q∗exp(s, a) =
∑

s′∈S

P (s′|s, a)γr(s,a,s′)v∗exp(s′), s ∈ S, a ∈ As,

and

q∗∗(s, a) =
∑

s′∈S

P (s′|s, a)[r(s, a, s′) + v∗∗(s′)], s ∈ S, a ∈ As.

Theorem 4.18. Suppose Condition 2.1 (Finite Model) and Condition 2.5 (Negative Model)

hold. Also assume the agent has a one-switch utility function. Let

w = min
s∈S

min
a∈As\A∗

exp(s)
logγ max

(

1,
C

D
· q

∗∗(s, a)− v∗∗(s)
v∗exp(s)− q∗exp(s, a)

)

.

Then for w ≤ w, it holds that V ∗
one(s,w) = V

Ψ(π∗∗
exp)

one (s) for all states s ∈ S.

Proof. We have v∗exp(s) = max
a∈As

q∗exp(s, a). Let

ǫ′ = min
s∈S

(

v∗exp(s)− max
a∈As\A∗

exp(s)
q∗exp(s, a)

)

, ǫ = min(1, ǫ′),

where we follow the convention that max
a∈∅

q∗exp(s, a) = −∞. Therefore, ǫ > 0.

Since lim
w→−∞

V ∗
one(s, w)γ−w = Dv∗exp(s) and there are only a finite number of states, there exists

w0 such that for all w ≤ w0 and all states s ∈ S,

Dv∗exp(s)− V ∗
one(s, w)γ−w ≤ D

2
ǫ. (4.11)

Since there exists an SD-optimal policy 〈〈〈π〉〉〉∗one for the augmented model, it holds that for all

states s ∈ S and all wealth levels w ∈ W ,

V ∗
one(s, w) = V

〈〈〈π〉〉〉
∗
one

one (s, w) = Cw + CvΦw(〈〈〈π〉〉〉
∗
one)(s) +Dγwv

Φw(〈〈〈π〉〉〉
∗
one)

exp (s).

To simplify the notation, let ϕw = Φw(〈〈〈π〉〉〉∗one) be the aSD policy corresponding to the SD-optimal

augmented policy with an initial wealth level w. The above formula can then be rewritten as

V ∗
one(s, w) = Cw + Cvϕw (s) +Dγwvϕw

exp(s).

258

Notice that ϕw is an HD policy in the original model. Let ϕw = (d0, d1, . . . , dt, . . .). We now show

that if w ≤ w0, for all states s ∈ S, it holds that d0(s) ∈ A∗
exp(s) . Suppose otherwise: there exists

s′ ∈ S, such that a′ = d0(s
′) /∈ A∗

exp(s
′). Then we have

vϕw

exp(s′) =
∑

s′′∈S

P (s′′|s′, a′)γr(s′,a′,s′′)vθ(ϕw)
exp (s′′)

where θ(ϕw) = (d1, d2, . . . , dt, . . .) is the policy obtained by shifting the decision rules of ϕw one

epoch earlier. Therefore, we have

vϕw

exp(s
′) =

∑

s′′∈S

P (s′′|s′, a′)γr(s′,a′,s′′)vθ(ϕw)
exp (s′′)

≤
∑

s′′∈S

P (s′′|s′, a′)γr(s′,a′,s′′)v∗exp(s
′′) = q∗exp(s

′, a′).

Since we consider negative models, it holds that w ≤ 0 and vϕw(s′) ≤ 0. Therefore,

V ∗
one(s

′, w) = Cw + Cvϕw(s′) +Dγwvϕw

exp(s
′) ≤ Dγwvϕw

exp(s′) ≤ Dγwq∗exp(s′, a′).

But in this case,

Dv∗exp(s
′)− V ∗

one(s
′, w)γ−w ≥ D

(
v∗exp(s

′)− q∗exp(s
′, a′)

)
≥ Dǫ,

which contradicts Eq. (4.11). Since the model is negative, we still have w ≤ w0 after d0 is applied,

and thus the same argument works for all dt with t ≥ 0. Therefore, it holds that for all w ≤ w0 and

all states s ∈ S, (ϕw)t(s) ∈ A∗
exp(s).

Since the model is negative, if the current-time accumulated reward is w ≤ w0, any further action

will result in a next-time accumulated reward of w′ ≤ w ≤ w0 and a next-time state s′, in which

case for the reason we just showed, an action from A∗
exp(s′) is still optimal for the MEUone objective.

In other words, it holds that for all w ≤ w0, all t ∈ N, and all states s ∈ S, dt(s) ∈ A∗
exp(s). Or

equivalently, ϕw is an MEUexp optimal policy.

Since vϕw
exp(s) = v∗exp(s), we have vϕw(s) ≤ vπ∗∗

exp(s) by the definition of π∗∗
exp. Therefore,

V ∗
one(s, w) = Cw + Cvϕw (s) +Dγwvϕw

exp(s)

≤ Cw + Cvπ∗∗
exp(s) +Dγwv∗exp(s) = V

Ψ(π∗∗
exp)

one (s, w).

Thus, V ∗
one(s, w) = V

Ψ(π∗∗
exp)

one (s, w) for w ≤ w0.

To determine w, consider the leftmost part of the optimal functional value function. For w ≤ w0

and all a ∈ As \A∗∗
exp(s), it holds that

Cw + Cv∗∗(s) +Dγwv∗exp(s) ≥ Cw + Cq∗∗(s, a) +Dγwq∗exp(s, a)

259

Cv∗∗(s) +Dγwv∗exp(s) ≥ Cq∗∗(s, a) +Dγwq∗exp(s, a)

Dγw(v∗exp(s)− q∗exp(s, a)) ≥ C(q∗∗(s, a)− v∗∗(s)).

As w increases, the left-hand side decreases and the right-hand side is a constant and eventually the

left-hand side can be less than the right-hand side. Therefore, a candidate for the wealth level w is

the switching point that the direction of the above inequality is reversed.

For all actions a ∈ As, we have v∗exp(s) ≥ q∗exp(s, a) by definition. Therefore, for an action

a ∈ A∗
exp(s)\A∗∗

exp(s), such a reversion is impossible since v∗∗(s) > q∗∗(s, a) and v∗exp(s) = q∗exp(s, a).

Now we consider an action a ∈ As \ A∗
exp(s). If v∗∗(s) ≥ q∗∗(s, a), it is impossible to choose the

action a. If v∗exp(s) > q∗exp(s, a) and v∗∗(s) < q∗∗(s, a), then we choose a if

Cw + Cv∗∗(s) +Dγwv∗exp(s) < Cw + Cq∗∗(s, a) +Dγwq∗exp(s, a)

Dγw
(
v∗exp(s)− q∗exp(s, a)

)
< C (q∗∗(s, a)− v∗∗(s))

γw <
C

D
· q

∗∗(s, a)− v∗∗(s)
v∗exp(s)− q∗exp(s, a)

w > logγ

(
C

D
· q

∗∗(s, a)− v∗∗(s)
v∗exp(s)− q∗exp(s, a)

)

.

Therefore, a candidate for w due to state s is

min
a∈As\A∗

exp(s)
logγ max

(

1,
C

D
· q

∗∗(s, a)− v∗∗(s)
v∗exp(s)− q∗exp(s, a)

)

.

We included 1 to make sure this value is nonpositive. Overall, w is chosen so that such a switching

cannot happen for all states s ∈ S if w < w, and there is at least one state for which the switching

happens if w > w.

We have shown that when w(< 0) is sufficiently large in magnitude, an optimal policy

chooses actions from A∗∗
exp(s) for all states s ∈ S. Since the model is negative, there are

only a finite number of different w ∈ [w, 0], and we only need to consider a finite number of

aSD policies.

4.4.3.1 Value Iteration

We can continue to the use the functional version of value iteration to solve problems un-

der the MEUone objective. If we start with a one-switch utility function, the functional

value functions V t
one(s, ·) obtained in each step are piecewise one-switch, since the dynamic

programming operations convert piecewise one-switch functions to piecewise one-switch

260

functions. Therefore, we can represent the functional value functions with a finite represen-

tation, where three parameters are used for each segment of the piecewise one-switch value

function.

4.4.3.2 Backward Induction

Since the model is negative and the optimal functional value functions are piecewise one-

switch, we can use a procedure similar to backward induction to retrieve an optimal policy.

The procedure is shown in Algorithm 4.4 (BackwardInductionOneSwitchNegative).

Since we know that the optimal functional value function is piecewise one-switch for each

state, we can represent the value function with a list of tuples (wi(s), vi(s), vi
exp(s), ai(s))

ordered in wi for i = 1, 2, . . . , n. We refer to this list as VAList, which is accessed using the

procedure GetValues. GetValues(VAList, s, w) retrieves the i-th tuple from the list for state

s such that wi(s) < w ≤ wi+1(s). We maintain the following property in the backward

induction procedure: for each w ∈ (wi(s), wi+1(s)], we have V ∗
one(s,w) = Cw + Cvi(s) +

Dγwvi
exp(s), and the action to perform is ai(s).

According to Theorem 4.18, for each state s, we can set w0(s) = −∞, v0(s) = v∗∗(s),

v0
exp(s) = v∗exp(s), and a0(s) = π∗∗exp(s). They represent the values and policy for w ≤ w.

Lines 1–4 perform this initialization.

Lines 5–14 calculates w according to Theorem 4.18. At the same time, the algorithm

also initializes the priority queue PQ to be used later. These lines take care of the leftmost

infinite intervals of the optimal value function.

Consider a state s and an interval (wi(s), wi(s) + δ] for a small δ > 0. Assume that

for all w ∈ (wi(s), wi(s) + δ], all actions a ∈ As, and all states s′ ∈ succ(s, a), there

exists js′ such that w + r(s, a, s′) ∈ (wjs′ (s′), wjs′+1(s′)] and the related optimal values

and actions are determined. We need to determine the values vi(s) and vi
exp(s) for the

interval (wi(s), wi(s) + δ]. This can be done by checking the optimality equations for s and

w ∈ (wi(s), wi(s) + δ]. The optimality equation is

V ∗
one(s,w) = max

a∈As

Q∗
one(s,w, a)

261

Algorithm 4.4 Backward Induction for Negative Models under the MEUone Objective

VAList = BackwardInductionOneSwitchNegative(M,γ,C,D)
Input:

• M = (S, A, P, r), a finite MDP model;
• γ, C, D, parameters of the one-switch utility function, 0 < γ < 1, C > 0, D > 0;

Output:

• VAList, the list representing the optimal value function and an optimal policy;
Local:

• PQ, a priority queue;

1: determine v∗exp, v
∗∗, and π∗∗

exp;
2: for all s ∈ S do

3: AddList(VAList, s,−∞, v∗∗(s), v∗exp(s), π∗∗
exp(s));

4: end for

5: for all s ∈ S do

6: for all a ∈ As do

7: qi(s, a), qi
exp(s, a)← 0;

8: for all s′ ∈ succ(s, a) do

9: qi(s, a)← qi(s, a) + P (s′|s, a)[r(s, a, s′) + v∗∗(s′)];
10: qi

exp(s, a)← qi
exp(s, a) + P (s′|s, a)γr(s,a,s′)v∗exp(s′);

11: end for

12: InsertSwitchingPointNegative(PQ, s,−∞, v∗∗(s), v∗exp(s), qi(s, a), qi
exp(s, a));

13: end for

14: end for

15: repeat

16: s, wi ← ExtractMin(PQ);
17: V i

one ← −∞;
18: for all a ∈ As do

19: qi(s, a), qi
exp(s, a)← 0;

20: for all s′ ∈ succ(s, a) do

21: vj(s′), vj
exp(s′)← GetValues(VAList, s′, wi + r(s, a, s′));

22: qi(s, a)← qi(s, a) + P (s′|s, a)[r(s, a, s′) + vj(s′)];
23: qi

exp(s, a)← qi
exp(s, a) + P (s′|s, a)γr(s,a,s′)vj

exp(s′);
24: end for

25: Qi
one(s, a)← Cwi + Cqi(s, a) +Dγwi

qi
exp(s, a);

26: if Qi
one(s, a) > V i

one or (Qi
one(s, a) = V i

one and qi
exp(s, a) < vi

exp) then

27: V i
one ← Qi

one(s, a);
28: ai, vi, vi

exp ← a, qi(s, a), qi
exp(s, a);

29: end if

30: end for

31: AddList(VAList, s, wi, vi, vi
exp, a

i);
32: for all a ∈ As do

33: InsertSwitchingPointNegative(PQ, s, wi, vi, vi
exp, q

i(s, a), qi
exp(s, a));

34: end for

35: for all a ∈ A do

36: for all s′ ∈ pred(s, a) do

37: InsertNegative(PQ, s′, wi − r(s, a, s′));
38: end for

39: end for

40: until IsEmpty(PQ);

262

Algorithm 4.5 Calculate and Insert the Switching Point for Negative Models

InsertSwitchingPointNegative(PQ, s, w, v, vexp, q, qexp)

1: if vexp 6= qexp then

2: temp← q − v
vexp − qexp

;

3: if temp > 0 then

4: ŵ ← logγ

(
C
D · temp

)
;

5: if ŵ > w then

6: InsertNegative(PQ, s, ŵ);
7: end if

8: end if

9: end if

where

Q∗
one(s,w, a) =

∑

s′∈S

P (s′|s, a)V ∗
one(s

′, w + r(s, a, s′))

=
∑

s′∈S

P (s′|s, a)
(

C(w + r(s, a, s′)) +Cvjs′ (s′) +Dγw+r(s,a,s′)v
js′
exp(s′)

)

= Cw + C
∑

s′∈S

P (s′|s, a)[r(s, a, s′) + vjs′ (s′)] +Dγw
∑

s′∈S

P (s′|s, a)γr(s,a,s′)v
js′
exp(s′).

Since the utility function and thus the value functions are continuous in w, we can determine

the best action ai for this small interval using the value wi(s) wherever w appears. Then

we have

vi(s) =
∑

s′∈S

P (s′|s, ai)[r(s, ai, s′) + vjs′ (s′)]

and

vi
exp(s) =

∑

s′∈S

P (s′|s, ai)γr(s,ai,s′)v
js′
exp(s′).

These calculations are done on Lines 17–31.

Now we consider how far to the right the interval (wi(s), wi(s) + δ] can extend, and

thus determine wi+1(s). It is sufficient to consider the switching point ŵ to prefer an action

a 6= ai over ai, provided that for all s′ and all w ∈ (wi(s), ŵ], it holds that w+ r(s, a′, s′) ∈

(wjs′ (s′), wjs′+1(s′)]. Similar to the proof of Theorem 4.18, the action ai is preferred over

another action a 6= ai as long as

Cw + Cvi(s) +Dγwvi
exp(s) ≥ Cw + Cqi(s, a) +Dγwqi

exp(s, a)

Cvi(s) +Dγwvi
exp(s) ≥ Cqi(s, a) +Dγwqi

exp(s, a).

263

Algorithm 4.6 Customized Insertion Operation for Algorithm 4.4

InsertNegative(PQ, s, w)

1: if w < 0 then

2: if IsMember(PQ, s) then

3: if GetKey(PQ, s) > w then

4: DecreaseKey(PQ, s, w);
5: end if

6: else

7: Insert(PQ, s, w);
8: end if

9: end if

where

qi(s, a) =
∑

s′∈S

P (s′|s, a)[r(s, a, s′) + vjs′ (s′)]

and

qi
exp(s, a) =

∑

s′∈S

P (s′|s, a)γr(s,a,s′)v
js′
exp(s′).

Since ai is optimal for w close to wi(s), it is impossible to have vi(s) < qi(s, a) and vi
exp(s) <

qi
exp(s, a). If vi(s) ≥ qi(s, a) and vi

exp(s) ≥ qi
exp(s, a), then ai is always preferred over a.

Otherwise, the switching point to prefer a over ai is

ŵ = logγ

(
C

D
· qi(s, a)− vi(s)

vi
exp(s)− qi

exp(s, a)

)

.

Then the switching point to prefer an action other than ai can be determined by con-

sidering all actions in As, and it is also the value for wi+1(s). The switching points are

calculated on Lines 32–34. We actually determine all potential switching points where an-

other action is preferred over the current one, but the closest one will be determined by the

priority queue PQ (see below). Notice that we still need to make sure that w+ r(s, a, s′) ∈

(wjs′ (s′), wjs′+1(s′)] for all w ∈ (wi(s), ŵ]. We guarantee this by adding potential switching

points for those w values that lead to known switching points, that is, w values such that

w+ r(s, a, s′) is a switching point for some states s, s′ and action a. These switching points

are taken into account on Lines 35–39.

Since we need to determine the optimal values and actions for (wjs′ (s′), wjs′+1(s′)] before

we determine those for (wi(s), wi+1(s)], we need to proceed in the order of increasing w.

Therefore, we use a priority queue PQ that stores pairs (s,w) where w is used as the key,

264

w

U

−0.5−1−1.5−2−2.5 0

−10.0

−20.0

−30.0

−40.0

−50.0

w

U

−0.5−1−1.5−2−2.5 0

−10.0

−20.0

−30.0

−40.0

−50.0

(a) {WBBW,B} (b) {WBB,BW} and {BW,WB,B}

w

U

−0.5−1−1.5−2−2.5 0

−10.0

−20.0

−30.0

−40.0

−50.0

w

U

−0.5−1−1.5−2−2.5 0

−10.0

−20.0

−30.0

−40.0

−50.0

(c) {WBB,B,W} (d) {BBB,B,W}

Figure 4.25: Optimal functional value functions of relevant states for the one-switch utility
function

Table 4.5: Segments of the value functions from Figure 4.25

{WBBW,B}
−22.03 −5.00

(−1.38, −28.61)

−22.52 −4.50

(−0.38, −18.52)

−22.94 −4.25

(0.00, −15.72)

{WBB,BW}
−5.00 −2.00

(0.00, −4.50)

{WBB,B,W}
{BW,WB,B}

−21.43 −6.00

(−2.38, −44.43)

−22.03 −5.00

(−1.38, −28.61)

−22.52 −4.50

(−0.38, −18.52)

−22.94 −4.25

(0.00, −15.72)

{BBB,BW}
−4.63 −3.00

(0.00, −5.31)

and a smaller value has a higher priority. The InsertNegative operation is a customized

version of a regular insertion operation for priority queues and shown in Algorithm 4.6

(InsertNegative). The ExtractMin operation removes the entry with the smallest key and

returns it. The backward induction procedure terminates when the queue is empty.

Using the algorithm, we can obtain an SD-optimal policy for the augmented model for

the painted-blocks problem in Figure 4.6. The policy is also aSD-optimal for the original

model, as shown in Figure 4.26. We also obtain the value functions for the relevant states, as

shown in Figure 4.25. The vexp and v values of the segments of the value functions are shown

in Table 4.5, together with the switching points, where the first columns are vexp values,

the second columns are v values, and the switching points are enclosed in parenthesis.

265

{WBBW,B}

−1/0.5

{WBB,BW}

−
1
/
0
.5

{WBB,B,W}

{BBB,B,W}

−
1
/
0
.5

−1/0.5

−2≤w≤−1

−
3
/
1
.0

w ≤ −3

−1/0.5

{BWB,WB}

−
1
/
0
.5

{BW,WB,B}

−3/1.0

{BWB,B,W}

−
1
/
0
.5

−1/0.5

Figure 4.26: An aSD-optimal policy for the one-switch utility function

4.4.4 Infinite Horizon: Positive Models

Define the MER-optimal action set for a state s ∈ S as

A∗(s) = arg max
a∈As

P (s′|s, a)[r(s, a, s′) + v∗(s′)].

We can determine a wealth level w, above which the optimal policy can be chosen to be the

same as an SD-optimal under the MER objective.

We first show that there exists an SD-policy π∗∗ such that its value under the MEUexp

objective satisfies

vπ∗∗

exp (s) ≥ vπ∗

exp(s), s ∈ S,

for all π∗ such that vπ∗
(s) = v∗(s). Consider an auxiliary MDP where the action sets are

restricted to A∗(s) for each state s ∈ S. Then an SD-optimal policy under the MEUexp

objective for the auxiliary model is such a policy. Let

v∗∗exp(s) = vπ∗∗

exp (s), s ∈ S.

We have

v∗∗exp(s) = max
a∈A∗(s)

P (s′|s, a)γr(s,a,s′)v∗∗exp(s′), s ∈ S.

266

Let

A∗∗(s) = arg max
a∈A∗(s)

P (s′|s, a)γr(s,a,s′)v∗∗exp(s′), s ∈ S.

We also define

q∗(s, a) =
∑

s′∈S

P (s′|s, a)[r(s, a, s′) + v∗(s′)], s ∈ S, a ∈ As.

and

q∗∗exp(s, a) =
∑

s′∈S

P (s′|s, a)γr(s,a,s′)v∗∗exp(s′), s ∈ S, a ∈ As.

Theorem 4.19. Suppose Condition 2.1 (Finite Model) and Condition 2.7 (Positive Model)

hold. Also assume the agent has a one-switch utility function. Let

w = max
s∈S

max
a∈As\A∗(s)

logγ max

(

1,
C

D
· v∗(s)− q∗(s, a)
q∗∗exp(s, a)− v∗∗exp(s)

)

.

Then for w ≥ w, it holds that V ∗
one(s,w) = V

Ψ(π∗∗)
one (s) for all states s ∈ S.

Proof. We have v∗(s) = max
a∈As

q∗(s, a). Let

ǫ′ = min
s∈S

(

v∗(s)− max
a∈As\A∗(s)

q∗(s, a)

)

, ǫ = min(1, ǫ′),

where we follow the convention that max
a∈∅

q∗(s, a) = −∞. Therefore, ǫ > 0.

Since lim
w→∞

V ∗
one(s, w) − Cw = Cv∗(s) and there are only a finite number of states, there exists

w0 such that for all w ≥ w0 and all states s ∈ S,

Cw + Cv∗(s)− V ∗
one(s, w) ≤ C

2
ǫ. (4.12)

Since there exists an SD-optimal policy 〈〈〈π〉〉〉∗one for the augmented model, it holds that for all

states s ∈ S and all wealth levels w ∈ W ,

V ∗
one(s, w) = V

〈〈〈π〉〉〉
∗
one

one (s, w) = Cw + CvΦw(〈〈〈π〉〉〉
∗
one)(s) +Dγwv

Φw(〈〈〈π〉〉〉
∗
one)

exp (s).

To simplify the notation, let ϕw = Φw(〈〈〈π〉〉〉∗one) be the aSD policy corresponding to the SD-optimal

augmented policy with an initial wealth level w. The above formula can then be rewritten as

V ∗
one(s, w) = Cw + Cvϕw (s) +Dγwvϕw

exp(s).

Notice that ϕw is an HD policy in the original model. Let ϕw = (d0, d1, . . . , dt, . . .). We now show

when w ≥ w0, for all states s ∈ S, it holds that d0(s) ∈ A∗(s). Suppose otherwise: there exists

s′ ∈ S, such that a′ = (ϕw)0(s
′) /∈ A∗(s′). Then we have

vϕw(s′) =
∑

s′′∈S

P (s′′|s′, a′)[r(s′, a′, s′′) + vθ(ϕw)(s′′)]

267

where θ(ϕw) = (d1, d2, . . . , dt, . . .) is the policy obtained by shifting the decision rules of ϕw one

epoch earlier. Therefore, we have

vϕw(s′) =
∑

s′′∈S

P (s′′|s′, a′)[r(s′, a′, s′′) + vθ(ϕw)(s′′)]

≤
∑

s′′∈S

P (s′′|s′, a′)[r(s′, a′, s′′) + v∗(s′′)] = q∗(s′, a′).

Since 0 < γ < 1, it holds that vϕw
exp(s

′) ≤ 0. Therefore

V ∗
one(s

′, w) = Cw + Cvϕw (s′) +Dγwvϕw

exp(s′) ≤ Cw + Cvϕw(s′) ≤ Cw + Cq∗(s′, a′).

But in this case,

Cw + Cv∗(s′)− V ∗
one(s

′, w) ≥ C
(
v∗(s′)− q∗(s′, a′)

)
≥ Cǫ,

which contradicts Eq. (4.12). Since the model is positive, we still have w ≥ w0 after d0 is applied,

and thus the same argument works for all dt with t ≥ 0. Therefore, it holds that for all w ≥ w0 and

all states s ∈ S, (ϕw)t(s) ∈ A∗(s).

Since the model is positive, if the current-time accumulated reward is w ≥ w0, any further action

will result in a next-time accumulated reward of w′ ≥ w ≥ w0 and a next-time state s′, in which

case for the reason we just showed, an action from A∗(s′) is still optimal for the MEUone objective.

In other words, it holds that for all w ≥ w0, all t ∈ N, and all states s ∈ S, dt(s) ∈ A∗(s). Or

equivalently, ϕw is an MEUexp optimal policy.

Since vϕw(s) = v∗(s), we have vϕw
exp(s) ≤ vπ∗∗

exp (s) by the definition of π∗∗. Therefore,

V ∗
one(s, w) = Cw + Cvϕw (s) +Dγwvϕw

exp(s)

≤ Cw + Cv∗(s) +Dγwvπ∗∗

exp (s) = V Ψ(π∗∗)
one (s, w).

Thus, V ∗
one(s, w) = V

Ψ(π∗∗)
one (s, w) for w ≥ w0.

To determine w, consider the rightmost part of the optimal functional value function, for which

we must have for all a ∈ As \A∗∗(s), it holds that

Cw + Cv∗(s) +Dγwv∗∗exp(s) ≥ Cw + Cq∗(s, a) +Dγwq∗∗exp(s, a)

Cv∗(s) +Dγwv∗∗exp(s) ≥ Cq∗(s, a) +Dγwq∗∗exp(s, a)

C(v∗(s)− q∗(s, a)) ≥ Dγw(q∗∗exp(s, a)− v∗∗exp(s)).

As w decreases, the right-hand side increases and the left-hand side is a constant and eventually the

right-hand side can be greater than the left-hand side. Therefore, a candidate for the wealth level

w is the switching point that the direction of the above inequality is reversed.

268

For all actions a ∈ As, we have v∗(s) ≥ q∗(s, a) by definition. Therefore, for an action a ∈

A∗(s) \ A∗∗(s), such a reversion is impossible since v∗∗exp(s) > q∗∗exp(s, a) and v∗(s) = q∗(s, a). Now

we consider an action a ∈ As \A∗(s). If v∗∗exp(s) ≥ q∗∗exp(s, a), it is impossible to choose the action a.

If v∗(s) > q∗(s, a) and v∗∗exp(s) < q∗∗exp(s, a), then we choose a if

Cw + Cv∗(s) +Dγwv∗∗exp(s) < Cw + Cq∗(s, a) +Dγwq∗∗exp(s, a)

C
(
v∗(s)− q∗(s, a)

)
< Dγw

(
q∗∗exp(s, a)− v∗∗exp(s)

)

γw >
C

D

v∗(s)− q∗(s, a)
q∗∗exp(s, a)− v∗∗exp(s)

w < logγ

(
C

D

v∗(s)− q∗(s, a)
q∗∗exp(s, a)− v∗∗exp(s)

)

.

Therefore, a candidate for w due to the state s is

max
a∈As\A∗

exp(s)
logγ min

(

1,
C

D
· q

∗∗(s, a)− v∗∗(s)
v∗exp(s)− q∗exp(s, a)

)

.

We included 1 to make sure this value is nonnegative. Overall, w is chosen so that such a switching

cannot happen for all states s ∈ S if w > w, and there is at least one state for which the switching

happens if w < w.

We have shown that when w is sufficiently large, an optimal policy chooses actions from

A∗∗(s) for all states s ∈ S. Since there are only a finite number of different w ∈ [0, w], we

only need to consider a finite number of aSD policies.

4.4.4.1 Value Iteration

We can also use value iteration to solve MDPs under the MEUone objective, and the algo-

rithm is exactly the same as that for negative models.

4.4.4.2 Backward Induction

Since the model is positive and the optimal functional value functions are piecewise one-

switch, we can use a procedure similar to backward induction to retrieve an optimal policy.

The procedure is shown in Algorithm 4.7 (BackwardInductionOneSwitchPositive).

Since we know that the optimal functional value function is piecewise one-switch for each

state, we can represent the value function with a list of tuples (wi(s), vi(s), vi
exp(s), ai(s))

ordered in wi for i = 1, 2, . . . , n. We refer to this list as VAList, which is accessed using the

procedure GetValues. GetValues(VAList, s, w) retrieves the i-th tuple from the list for state

269

s such that wi+1(s) ≤ w < wi(s). We maintain the following property in the backward

induction procedure: for each w ∈ [wi+1(s), wi(s)), we have V ∗
one(s,w) = Cw + Cvi(s) +

Dγwvi
exp(s), and the action to perform is ai(s).

According to Theorem 4.19, for each state s, we can set w0(s) = ∞, v0(s) = v∗(s),

v0
exp(s) = v∗∗exp(s), and a0(s) = π∗∗(s). They represent the values and policy for w ≥ w.

Lines 1–4 perform this initialization.

Lines 5–14 calculates w according to Theorem 4.19. At the same time, the algorithm

also initializes the priority queue PQ to be used later. These lines take care of the leftmost

infinite intervals of the optimal value function.

Consider a state s and an interval [wi(s) − δ, wi(s)) for a small δ > 0. Assume that

for all w ∈ [wi(s) − δ, wi(s)), all actions a ∈ As, and all states s′ ∈ succ(s, a), there

exists js′ such that w + r(s, a, s′) ∈ [wjs′+1(s′), wjs′+1(s′)) and the related optimal values

and actions are determined. We need to determine the values vi(s) and vi
exp(s) for the

interval [wi(s)− δ, wi(s)). This can be done by checking the optimality equations for s and

w ∈ [wi(s)− δ, wi(s)). The optimality equation is

V ∗
one(s,w) = max

a∈As

Q∗
one(s,w, a)

where

Q∗
one(s,w, a) =

∑

s′∈S

P (s′|s, a)V ∗
one(s

′, w + r(s, a, s′))

=
∑

s′∈S

P (s′|s, a)
(

C(w + r(s, a, s′)) +Cvjs′ (s′) +Dγw+r(s,a,s′)v
js′
exp(s′)

)

= Cw + C
∑

s′∈S

P (s′|s, a)[r(s, a, s′) + vjs′ (s′)] +Dγw
∑

s′∈S

P (s′|s, a)γr(s,a,s′)v
js′
exp(s′).

Since the utility function and thus the value functions are continuous in w, we can determine

the best action ai for this small interval using the value wi(s) wherever w appears. Then

we have

vi(s) =
∑

s′∈S

P (s′|s, ai)[r(s, ai, s′) + vjs′ (s′)]

and

vi
exp(s) =

∑

s′∈S

P (s′|s, ai)γr(s,ai,s′)v
js′
exp(s′).

270

Algorithm 4.7 Backward Induction for Positive Models under the MEUone Objective

VAList = BackwardInductionOneSwitchPositive(M,γ,C,D)
Input:

• M = (S, A, P, r), a finite MDP model;
• γ, C, D, parameters of the one-switch utility function, 0 < γ < 1, C > 0, D > 0;

Output:

• VAList, the list representing the optimal value function and an optimal policy;
Local:

• PQ, a priority queue;

1: determine v∗, v∗∗exp, and π∗∗;
2: for all s ∈ S do

3: AddList(VAList, s,∞, v∗(s), v∗∗exp(s), π
∗∗(s));

4: end for

5: for all s ∈ S do

6: for all a ∈ As do

7: qi(s, a), qi
exp(s, a)← 0;

8: for all s′ ∈ succ(s, a) do

9: qi(s, a)← qi(s, a) + P (s′|s, a)[r(s, a, s′) + v∗(s′)];
10: qi

exp(s, a)← qi
exp(s, a) + P (s′|s, a)γr(s,a,s′)v∗∗exp(s′);

11: end for

12: InsertSwitchingPointPositive(PQ, s,−∞, v∗(s), v∗∗exp(s), qi(s, a), qi
exp(s, a));

13: end for

14: end for

15: repeat

16: s, wi ← ExtractMax(PQ);
17: V i

one ←∞;
18: for all a ∈ As do

19: qi(s, a), qi
exp(s, a)← 0;

20: for all s′ ∈ succ(s, a) do

21: vj(s′), vj
exp(s′)← GetValues(VAList, s′, wi + r(s, a, s′));

22: qi(s, a)← qi(s, a) + P (s′|s, a)[r(s, a, s′) + vj(s′)];
23: qi

exp(s, a)← qi
exp(s, a) + P (s′|s, a)γr(s,a,s′)vj

exp(s′);
24: end for

25: Qi
one(s, a)← Cwi + Cqi(s, a) +Dγwi

qi
exp(s, a);

26: if Qi
one(s, a) > V i

one or (Qi
one(s, a) = V i

one and qi
exp(s, a) < vi

exp) then

27: V i
one ← Qi

one(s, a);
28: ai, vi, vi

exp ← a, qi(s, a), qi
exp(s, a);

29: end if

30: end for

31: AddList(VAList, s, wi, vi, vi
exp, a

i);
32: for all a ∈ As do

33: InsertSwitchingPointPositive(PQ, s, wi, vi, vi
exp, q

i(s, a), qi
exp(s, a));

34: end for

35: for all a ∈ A do

36: for all s′ ∈ pred(s, a) do

37: InsertPositive(PQ, s′, wi − r(s, a, s′));
38: end for

39: end for

40: until IsEmpty(PQ);

271

Algorithm 4.8 Calculate and Insert the Switching Point for Positive Models

InsertSwitchingPointPositive(PQ, s, w, v, vexp, q, qexp)

1: if vexp 6= qexp then

2: temp← q − v
vexp − qexp

;

3: if temp > 0 then

4: ŵ ← logγ

(
C
D · temp

)
;

5: if ŵ < w then

6: InsertPositive(PQ, s, ŵ);
7: end if

8: end if

9: end if

These calculations are done on Lines 17–31.

Now we consider how far to the left the interval [wi(s)− δ, wi(s)) can extend, and thus

determine wi+1(s). It is sufficient to consider the switching point ŵ to prefer an action

a 6= ai over ai, provided that for all s′ and all w ∈ [ŵ, wi(s)), it holds that w+ r(s, a′, s′) ∈

[wjs′+1(s′), wjs′ (s′)). Similar to the proof of Theorem 4.19, the action ai is preferred over

another action a 6= ai as long as

Cw + Cvi(s) +Dγwvi
exp(s) ≥ Cw + Cqi(s, a) +Dγwqi

exp(s, a)

Cvi(s) +Dγwvi
exp(s) ≥ Cqi(s, a) +Dγwqi

exp(s, a).

where

qi(s, a) =
∑

s′∈S

P (s′|s, a)[r(s, a, s′) + vjs′ (s′)]

and

qi
exp(s, a) =

∑

s′∈S

P (s′|s, a)γr(s,a,s′)v
js′
exp(s′).

Since ai is optimal for w close to wi(s), it is impossible to have vi(s) < qi(s, a) and vi
exp(s) <

qi
exp(s, a). If vi(s) ≥ qi(s, a) and vi

exp(s) ≥ qi
exp(s, a), then ai is always preferred over a.

Otherwise, the switching point to prefer a over ai is

ŵ = logγ

(
C

D
· vi(s)− qi(s, a)

qi
exp(s, a)− vi

exp(s)

)

.

Then the switching point to prefer an action other than ai can be determined by con-

sidering all actions in As, and it is also the value for wi+1(s). The switching points are

272

Algorithm 4.9 Customized Insertion Operation for Algorithm 4.7

InsertPositive(PQ, s, w)

1: if w > 0 then

2: if IsMember(PQ, s) then

3: if GetKey(PQ, s) < w then

4: IncreaseKey(PQ, s, w);
5: end if

6: else

7: Insert(PQ, s, w);
8: end if

9: end if

calculated on Lines 32–34. We actually determine all potential switching points where an-

other action is preferred over the current one, but the closest one will be determined by the

priority queue PQ (see below). Notice that we still need to make sure that w+ r(s, a, s′) ∈

[wjs′+1(s′), wjs′ (s′)) for all w ∈ [ŵ, wi(s)). We guarantee this by adding potential switching

points for those w values that lead to known switching points, that is, w values such that

w+ r(s, a, s′) is a switching point for some states s, s′ and action a. These switching points

are taken into account on Lines 35–39.

Since we need to determine the optimal values and actions for [wjs′+1(s′), wjs′ (s′)) before

we determine those for [wi+1(s), wi(s)), we need to proceed in the order of decreasing w.

Therefore, we use a priority queue PQ that stores pairs (s,w) where w is used as the key, and

a larger value has a higher priority. The InsertPositive operation is a customized version of a

regular insertion operation for priority queues and shown in Algorithm 4.9 (InsertPositive).

The ExtractMax operation removes the entry with the largest key and returns it. The

backward induction procedure terminates when the queue is empty.

4.5 Summary

In this chapter, we studied risk-sensitive planning with general utility functions. We took a

state-augmentation approach, and showed that we can obtain aMD-optimal policies for finite

horizon problems and approximate optimal values for infinite horizon problems with value

iteration. We used deadline utility functions and a painted-blocks problem to demonstrate

how this approach works. We showed the resulting functional value functions and greedy

policies. We also obtained an exact algorithm for planning with one-switch utility functions,

273

based on the results for linear, exponential, and general utility functions. We further showed

the resulting value functions and the optimal policy for the painted-blocks problem, obtained

using the exact algorithm.

274

CHAPTER V

PROBLEMS WITH ARBITRARY REWARDS

In this chapter, we consider risk-sensitive planning problems with arbitrary rewards. We

study existence and finiteness conditions for the optimal values. Such conditions depend on

properties of the utility function as well as the particular MDP model. These conditions

are the prerequisites for the development of properties and computational procedures for

problems with arbitrary rewards.

Recall that the value of a state s ∈ S under a policy π ∈ Π is defined as

vπ
U (s) = lim

T→∞
vπ
U,T (s) = lim

T→∞
Es,π

[

U

(
T−1∑

t=0

rt

)]

. (5.1)

The value exists if the finite horizon values converge on the extended real line, that is, to a

finite value, positive infinity, or negative infinity. We therefore study the behavior of finite

horizon values vπ
U,T (s) as T approaches infinity.

In this chapter, we develop conditions under which the values exist for stationary policies.

We also conjecture that under these sets of conditions, the values exist for all policies, and

thus the optimal values exist for all policies. We then provide conditions under which the

optimal values are finite, provided that the conjectures hold.

5.1 Results for the MER Objective

In general, MDPs can have both positive and negative (as well as zero) rewards. For the

limit in Eq. (5.1) to exist, it is necessary that the finite horizon values vπ
U,T (s) do not oscillate

as T increases. This condition turns out to be related to the existence condition of values

under the MER objective.

For an MDP with arbitrary rewards, the existence and finiteness conditions of values

under the MER objective are associated with the positive and negative parts of the model.

Following (Puterman, 1994), we define the positive part of a real number r to be r+ =

275

s1 s2

+1/1.0

−1/1.0

s1 s2

+1/1.0

0/1.0

s1 s2

0/1.0

−1/1.0

(a) (b) (c)

Figure 5.1: The example MDP from Figure 2.2 and its positive and negative parts

s1 s2

+2/1.0

−1/1.0

Figure 5.2: An example MDP with well-defined values but excluded by Condition 5.1

max(r, 0) and its negative part to be r− = min(r, 0). We then obtain the positive part

of an MDP by replacing every reward of the MDP with its positive part. We use v+π(s)

to denote the values of the positive part of an MDP under policy π ∈ Π under the MER

objective, and v+∗(s) to denote the optimal values of the positive part of the MDP under

the MER objective. We define the negative part of an MDP and the values under the MER

objective v−π(s) and v−∗(s) in an analogous way. For later convenience, let

r+max = max
P (s′|s,a)>0

r+(s, a, s′), r−min = min
P (s′|s,a)>0

r−(s, a, s′), rmax = max
(
r+max,−r−min

)
.

The following condition is sufficient for the MER values to exist for all policies (Puter-

man, 1994).

Condition 5.1 (One-Sided Finite Expected Rewards). For all policies π ∈ Π and all states

s ∈ S, at least one of v+π(s) and v−π(s) is finite.

Condition 5.1 is more general than Condition 2.5 (Negative Model) or Condition 2.7

(Positive Model), since, for example, Condition 2.5 implies that for all policies π ∈ Π and

all states s ∈ S, v+π(s) = 0. In fact, Condition 5.1 is the weakest condition that we

use in this chapter. Under this condition, for all policies π ∈ Π and all states s ∈ S,

the risk-neutral value vπ(s) can be decomposed into the positive and negative parts as

vπ(s) = v+π(s) + v−π(s) (Puterman, 1994). Also under the same condition, for all states

s ∈ S, the optimal value v∗(s) exists, but it is not guaranteed to be finite (Puterman, 1994).

276

The MDPs in Figure 5.1(a) (also shown in Figure 2.2) and Figure 5.2 illustrate Condi-

tion 5.1. The MDP in Figure 5.1(a) does not satisfy Condition 5.1. The values of its states

do not exist under its only policy π, as we have argued earlier. The positive and negative

parts are shown in Figure 5.1(b) and Figure 5.1(c), respectively. Then, it is easy to see

that v+π(s1) = ∞ and v−π(s1) = −∞, which violates Condition 5.1 and illustrates that

Condition 5.1 indeed rules out MDPs whose values do not exist under all policies.

The MDP in Figure 5.2 is another MDP that does not satisfy Condition 5.1. The values

of its states, however, exist under its only policy π′. For example, an agent that starts in

state s1 receives the following sequence of rewards: +2,−1,+2,−1, . . . , and consequently

the following sequence of total rewards: +2,+1,+3,+2,+4,+3, . . . , which converges toward

positive infinity. Thus, the limit in Eq. (5.1) exists under π′, and the value of state s1 thus

exists as well under π′. However, it is easy to see that v+π′
(s1) = ∞ and v−π′

(s1) =

−∞, which violates Condition 5.1 and demonstrates that Condition 5.1 is not a necessary

condition for the values to exist under all policies.

According to our earlier discussion in Section 2.1, the optimal values need to be finite

to do meaningful planning. For the optimal values to be finite, a set of conditions stronger

than Condition 5.1 is needed. The following conditions are well-known in the literature

(Feinberg, 2002).

Condition 5.2 (Finite Positive-Part Expected Rewards). For all policies π ∈ Π and all

states s ∈ S, the value v+π(s) is finite.

Condition 5.3 (Finite Negative-Part Expected Rewards). There exists a policy π ∈ Π

such that for all states s ∈ S, the value v−π(s) is finite.

If Condition 5.2 and Condition 5.3 hold, the optimal values are finite (Feinberg, 2002).

If Condition 2.1 (Finite Model) holds, the optimal values are finite even if Π is replaced

with ΠSD in Condition 5.2 and Condition 5.3, since there exists an SD-optimal policy under

the MER objective (Puterman, 1994). In the rest of this chapter, we always assume that

Condition 2.1 holds.

277

5.1.1 Structural Implications

Condition 5.1 (One-Sided Finite Expected Rewards) not only ensures the existence of values

of states under all policies, but also has implications on the reward structure of the MDP.

These structural implications make it interesting to consider Condition 5.1 when discussing

risk-sensitive planning objectives in general.

Our main interest is on SR policies in this chapter. For a given SR policy π, the model

is reduced to a Markov chain and the states can be classified into recurrent states and

transient states. Let Rπ denote the set of recurrent states under π. The set Rπ can be

partitioned into disjoint recurrent classes, denoted as Rπ
i where i ∈ Iπ and Iπ is the index

set for recurrent classes under policy π. That is, if i, j ∈ Iπ but i 6= j, then Rπ
i ∩ Rπ

j = ∅;

and
⋃

i∈Iπ

Rπ
i = Rπ. Furthermore, for all states s ∈ Rπ

i and all states s′ ∈ Rπ
j with i 6= j,

P s,π(st = s′) = 0 for all epochs t.

For SR policies, we have the following results concerning recurrent states.

Lemma 5.1. Assume that Condition 2.1 (Finite Model) and Condition 5.1 (One-Sided

Finite Expected Rewards) hold. Let π be an SR policy, and Rπ
i be a recurrent class under

π. For any state s that is recurrent under π, let Aπ(s) ⊆ A denote the set of actions

whose probability is positive under the probability distribution π(s, ·). Then exactly one of

the following cases holds.

a. For all states s ∈ Rπ
i , vπ(s) = 0, and for all actions a ∈ Aπ(s) and all states s′ ∈ S with

P (s′|s, a) > 0, r(s, a, s′) = 0.

b. For all states s ∈ Rπ
i , vπ(s) = ∞, and for all actions a ∈ Aπ(s) and all states s′ ∈ S

with P (s′|s, a) > 0, r(s, a, s′) ≥ 0. Moreover, there exists a transition (s, a, s′) in the

recurrent class Rπ
i such that P (s′|s, a) > 0 and r(s, a, s′) > 0.

c. For all states s ∈ Rπ
i , vπ(s) = −∞, and for all actions a ∈ Aπ(s) and all states s′ ∈ S

with P (s′|s, a) > 0, r(s, a, s′) ≤ 0. Moreover, there exists a transition (s, a, s′) in the

recurrent class Rπ
i such that P (s′|s, a) > 0 and r(s, a, s′) < 0.

278

Proof. Notice that once the agent enters the recurrent class Rπ
i , it cannot reach any state outside of

Rπ
i . Therefore without loss of generality, we can assume that the MDP consists of a single recurrent

class and no transient states.

We first show that under Condition 5.1, the rewards are either all nonnegative or all nonpositive

for all valid transitions. Suppose otherwise: there exist a valid transition (s̄, ā, s̄′) with a positive

reward r(s̄, ā, s̄′) > 0 and a valid transition (s̃, ã, s̃′) with a negative reward r(s̃, ã, s̃′) < 0. Then

for the positive part of the model, the transition (s̄, ā, s̄′) can occur infinitely many times with a

positive probability, thus receiving the positive reward r(s̄, ā, s̄′) infinitely many times. Therefore,

v+π(s) =∞ for all states s. Similarly, we obtain that v−π(s) = −∞ for all state s, which contradicts

Condition 5.1.

Therefore, part (a) follows when only zero rewards are possible. Part (b) follows when there

exists a positive reward, and part (c) follows when there exists a negative reward.

According to Lemma 5.1, the index set Iπ can be further divided into three disjoint

classes Iπ
0 , I

π
+, I

π
−, such that for all recurrent classes Rπ

i under π,

• if i ∈ Iπ
0 , then for all states s ∈ Rπ

i , vπ(s) = 0;

• if i ∈ Iπ
+, then for all states s ∈ Rπ

i , vπ(s) =∞; and

• if i ∈ Iπ
−, then for all states s ∈ Rπ

i , vπ(s) = −∞.

We refer to these recurrent classes as zero, positive, and negative, respectively. Moreover, we

use a superscript s to indicate the subset of indices of recurrent classes that can be reached

from the state s, that is, we use notations Is,π, Is,π
0 , Is,π

+ , Is,π
− . We also use Rs,π ⊆ Rπ to

denote the set of recurrent states that are reachable from state s under π.

The transient states can be similarly classified into three types according to the recurrent

classes they can enter. We denote the set of transient states that can be reached from a

state s under policy π as T s,π. The following lemma states this classification for all states.

Lemma 5.2. Assume that Condition 2.1 (Finite Model) and Condition 5.1 (One-Sided

Finite Expected Rewards) hold. Let π be an SR policy, and s be a state.

a. If vπ(s) is finite, then for any s′ that is reachable from s, vπ(s′) is finite. In particular,

if s′ is recurrent, then vπ(s′) = 0.

279

s1 s2 0/1.0 s1 s2 +1/1.0 s1 s2 −1/1.0

(a) (b) (c)

s1

s2

s3

0/1.0

+1/1.0

s1

s2

s3

0/1.0

−1/1.0

s1

s2

s3

+1/1.0

−1/1.0

(d) (e) (f)

s1

s2

s3

s4

s5

+1/1.0

0/1.0

−1/1.0

(g)

Figure 5.3: Example MDPs that illustrate Lemma 5.2

b. If vπ(s) =∞, then for any s′ that is reachable from s under π, vπ(s′) =∞ or vπ(s′) is

finite. In particular, if s′ is recurrent, then vπ(s′) =∞ or vπ(s′) = 0.

c. If vπ(s) = −∞, then for any s′ that is reachable from s under π, vπ(s′) = −∞ or vπ(s′)

is finite. In particular, if s′ is recurrent, then vπ(s′) = −∞ or vπ(s′) = 0.

Proof. We prove this result by contradiction. Notice that the values exist for all policies and all

states under Condition 5.1.

For part (a), suppose otherwise: vπ(s) is finite, and there exists s′′ ∈ T s,π ∪ Rs,π such that

vπ(s′′) = ∞ or vπ(s′′) = −∞. If vπ(s′′) = ∞, then it must be that v+π(s′′) = ∞ and v−π(s′′) is

finite. But in this case, it follows that v+π(s) =∞ since there is a positive probability p to reach s′′

from s under π, and thus v+π
T (s) ≥ pv+π

T (s′′) for all T ∈ N. Then it follows from Condition 5.1 that

v−π(s) is finite and vπ(s) = v+π(s)+ v−π(s) = +∞, which contradicts our assumption that vπ(s) is

finite. Therefore vπ(s′′) 6=∞. Similarly, we have vπ(s′′) 6= −∞. Therefore, the result holds if vπ(s)

is finite.

Parts (b) and (c) are similar.

280

Lemma 5.2 is illustrated in Figure 5.3. In the simplest case, the agent can only reach

one recurrent class under an SR policy, and only zero, positive, or negative rewards are

received in recurrent states, as illustrated by Figure 5.3(a), Figure 5.3(b), and Figure 5.3(c),

respectively. It is possible to reach more than one recurrent classes starting from the

same state under an SR policy (Figure 5.3(d) or Figure 5.3(e)), but these recurrent classes

cannot contain both positive and negative ones at the same time, therefore the case shown

in Figure 5.3(f) is excluded by Condition 5.1. There can be both positive and negative

recurrent classes at the same time, but they can only be reached starting from different

states, as shown in Figure 5.3(g).

5.2 A Template for the Proofs of Existence Results

To show that the limit of vπ
U,T (s) as T approaches infinity exists, we consider the accumu-

lated rewards before and after the agent enters a recurrent state separately.

Let τ be the random variable indicating the epoch of entering Rπ, that is, sτ ∈ Rπ and

sτ−1 /∈ Rπ if s0 = s /∈ Rπ, and τ = 0 otherwise. It is necessary to distinguish the horizon

when considering finite horizon problems. The reason is as follows. Consider horizons T1

and T2 where T1 6= T2. The random variable τ for the T1-horizon problem can take values

from 0 to T1, while the random variable τ for the T2-horizon problem can take values from

0 to T2. To avoid confusion, we use τ(T1) and τ(T2) to denote the two random variables,

respectively. By τ alone, we mean the random variable in an infinite horizon problem. Also

let wτ and wτ(T) be the total rewards up to τ and τ(T), respectively.

The finite horizon values can be decomposed as follows:

vπ
U,T (s) = Es,π

[

U

(
T−1∑

t=0

rt

)]

= Es,π [U(wT)]

= Es,π[U(wT)|sT /∈ Rπ] · P s,π(sT /∈ Rπ) + Es,π[U(wT)|sT ∈ Rπ] · P s,π(sT ∈ Rπ)

= Es,π[U(wT)|sT /∈ Rπ] · P s,π(sT /∈ Rπ)

+ Es,π[U(wτ(T))|sT ∈ Rπ] · P s,π(sT ∈ Rπ)

+ Es,π[U(wT)− U(wτ(T))|sT ∈ Rπ] · P s,π(sT ∈ Rπ). (5.2)

281

The first term is the contribution of those trajectories not entering a recurrent state, the

second term is the contribution of those parts of the trajectories up to the point when

a recurrent state is entered, and the third term is the contribution of those parts of the

trajectories after a recurrent state is entered. Therefore, the value vπ
U (s) exists if the limit

of each term as T →∞ exists.

We first consider the third term since it is the only term related to the behavior after a

recurrent state is entered. This term can be decomposed further according to Lemma 5.2.

Es,π[U(wT)− U(wτ(T))|sT ∈ Rπ] · P s,π(sT ∈ Rπ)

=
∑

i∈Iπ

Es,π[U(wT)− U(wτ(T))|sT ∈ Rπ
i] · P s,π(sT ∈ Rπ

i)

=
∑

i∈Iπ
0

Es,π[U(wT)− U(wτ(T))|sT ∈ Rπ
i] · P s,π(sT ∈ Rπ

i)

+
∑

i∈Iπ
+

Es,π[U(wT)− U(wτ(T))|sT ∈ Rπ
i] · P s,π(sT ∈ Rπ

i)

+
∑

i∈Iπ
−

Es,π[U(wT)− U(wτ(T))|sT ∈ Rπ
i] · P s,π(sT ∈ Rπ

i),

where at most one of Iπ
+ and Iπ

− can be non-empty.

If i ∈ Iπ
0 , only zero rewards are possible after a recurrent state is entered. Therefore,

wT = wτ(T) and Es,π[U(wT)− U(wτ(T))|sT ∈ Rπ
i] · P s,π(sT ∈ Rπ

i) = 0.

If i ∈ Iπ
+, only nonnegative rewards are possible after a recurrent state is entered.

Therefore, wT ≥ wτ(T). We have

Es,π[U(wT)− U(wτ(T))|sT ∈ Rπ
i] · P s,π(sT ∈ Rπ

i)

=

T∑

t=1

Es,π[U(wT)− U(wt)|sT ∈ Rπ
i , st−1 /∈ Rπ, st ∈ Rπ

i] · P s,π(sT ∈ Rπ
i , st−1 /∈ Rπ, st ∈ Rπ

i)

=

T∑

t=1

Es,π[U(wT)− U(wt)|st−1 /∈ Rπ, st ∈ Rπ
i] · P s,π(st−1 /∈ Rπ, st ∈ Rπ

i).

For a fixed t, the value Es,π[U(wT)−U(wt)|st−1 /∈ Rπ, st ∈ Rπ
i] ·P s,π(st−1 /∈ Rπ, st ∈ Rπ

i) is

monotonically nondecreasing with T . Consequently, the value Es,π[U(wT)−U(wτ(T))|sT ∈

Rπ
i] · P s,π(sT ∈ Rπ

i) is also monotonically nondecreasing with T since each term is nonneg-

ative and monotonically nondecreasing with T . Again, its limit as T →∞ exists (the limit

282

may be positive infinity). If the utility function is bounded from above, the limit is finite;

otherwise, the limit is positive infinity.

If i ∈ Iπ
−, the limit also exists for a reason similar to the case of i ∈ Iπ

+ (but the limit

can be negative infinity, instead). If the utility function is bounded from below, the limit

is finite; otherwise, the limit is negative infinity.

Therefore, the limit of the summation of these terms over i ∈ Iπ also exists. We

summarize the above discussion in the following lemma.

Lemma 5.3. Assume that Condition 2.1 (Finite Model) and Condition 5.1 (One-Sided

Finite Expected Rewards) hold. For all policies π ∈ Π and all states s ∈ S, the following

limit

lim
T→∞

Es,π[U(wT)− U(wτ(T))|sT ∈ Rπ] · P s,π(sT ∈ Rπ)

exists. Moreover, if vπ(s) is finite, the limit is zero; if vπ(s) =∞, the limit is finite if the

utility function is bounded from above, and positive infinity otherwise; and if vπ(s) = −∞,

the limit is finite if the utility function is bounded from below, and negative infinity otherwise.

In the rest of this chapter, we consider the limits of the first two terms of Eq. (5.2) under

different sets of conditions. Under these conditions, we also identify whether the third term

is finite or infinite, therefore fully specify the existence and finiteness properties of the value

vπ
U (s). In fact, we try to establish that under these different conditions, if the first term

converges to zero as T → ∞ then the second term converges to a finite value, and if the

first term converges to a finite number different from zero or infinity then the second term

converges to infinity.

For the risk-neutral utility function (and equivalently, identity or linear utility functions),

the following result holds.

Lemma 5.4. Assume that Condition 2.1 (Finite Model) and Condition 5.1 (One-Sided

Finite Expected Rewards) hold. It holds that

lim
T→∞

Es,π[wT |sT /∈ Rπ] · P s,π(sT /∈ Rπ) = 0

283

and the limit

lim
T→∞

Es,π[wτ(T)|sT ∈ Rπ] · P s,π(sT ∈ Rπ)

is finite.

Proof. First notice that it is well-known (Kemeny and Snell, 1960) that there exists a ∈ (0,+∞)

and ρ ∈ (0, 1) such that

P s,π(sT /∈ Rπ) ≤ aρT .

Since |wT | ≤ rmaxT , we have

∣
∣
∣
∣
Es,π[wT |sT /∈ Rπ] · P s,π(sT /∈ Rπ)

∣
∣
∣
∣
=

∣
∣
∣
∣
Es,π [wT |sT /∈ Rπ]

∣
∣
∣
∣
· P s,π(sT /∈ Rπ)

≤ rmaxT · P s,π(sT /∈ Rπ) ≤ rmaxT · aρT = armaxTρ
T .

Since lim
T→∞

TρT = 0, it follows that

lim
T→∞

Es,π[wT |sT /∈ Rπ] · P s,π(sT /∈ Rπ) = 0.

For the second part of the lemma, we have the following decomposition

Es,π[wτ(T)|sT ∈ Rπ] · P s,π(sT ∈ Rπ)

=

T∑

t=1

Es,π[wt|sT ∈ Rπ, st−1 /∈ Rπ, st ∈ Rπ] · P s,π(sT ∈ Rπ, st−1 /∈ Rπ, st ∈ Rπ)

=

T∑

t=1

Es,π[wt|st−1 /∈ Rπ, st ∈ Rπ] · P s,π(st−1 /∈ Rπ, st ∈ Rπ).

Therefore,

lim
T→∞

Es,π[wτ(T)|sT ∈ Rπ] · P s,π(sT ∈ Rπ)

=

∞∑

t=1

Es,π[wt|st−1 /∈ Rπ, st ∈ Rπ] · P s,π(st−1 /∈ Rπ, st ∈ Rπ). (5.3)

For each term of the above summation, we have

∣
∣
∣
∣
Es,π[wt|st−1 /∈ Rπ, st ∈ Rπ] · P s,π(st−1 /∈ Rπ, st ∈ Rπ)

∣
∣
∣
∣

=

∣
∣
∣
∣
Es,π [wt|st−1 /∈ Rπ, st ∈ Rπ]

∣
∣
∣
∣
· P s,π(st−1 /∈ Rπ, st ∈ Rπ)

≤ rmaxt · P s,π(st−1 /∈ Rπ, st ∈ Rπ) ≤ rmaxt · P s,π(st−1 /∈ Rπ) ≤ rmaxt · aρt−1 =
armax

ρ
· tρt.

Since
∞∑

t=1
tρt =

ρ

(1− ρ)2 , the limit in Eq. (5.3) exists and is finite.

284

In the next section, we discuss exponential utility functions. Linear and exponential

utility functions are “landmarks” in the sense that the existence and finiteness properties

of MDPs with general risk-sensitive utility functions are characterized by the existence

and finiteness properties of these MDPs with linear or exponential utility functions that

dominate these utility functions in the sense of the big O notation.

5.3 Exponential Utility Functions

We discuss convex and concave exponential utility functions separately for MDPs with

both positive and negative rewards. Similar to the risk-neutral case, we also need to refer

to the values of the positive and negative parts. We use v+π
exp(s) to denote the values of the

positive part of an MDP with exponential utility functions under policy π ∈ Π and v+∗
exp(s)

to denote the optimal values of the positive part. We define the values v−π
exp(s) and v−∗

exp(s)

in an analogous way.

In general, Condition 5.1 (One-Sided Finite Expected Rewards) is not sufficient to ensure

the existence of values for a given policy under the MEUexp objective. We need to have

stronger conditions for the existence of values. To show an example illustrating the necessity

of stronger conditions, we first need the following lemma for finite horizon values.

Lemma 5.5. Assume that Condition 2.1 (Finite Model) holds. For a given π ∈ ΠSR, let

Dπ be a matrix whose (s, s′)-entry is

Dπ(s, s′) =
∑

a∈As

π(s, a)P (s′|s, a)γr(s,a,s′).

Let DT
π indicate the T -th power of Dπ. Then the (s, s′)-entry of DT

π is

DT
π (s, s′) = Es,π[γwT |sT = s′] · P s,π(sT = s′).

The finite horizon values can then be calculated as

vπ
exp,T (s) = ι ·

∑

s′∈S

DT
π (s, s′).

Proof. We prove the result by induction. Suppose T = 1. For all s′ ∈ S, we have

Es,π [γwT | sT = s′] · P s,π(sT = s′)

= Es,π
a

[
Es,π [γwT | sT = s′, aT−1 = a]

∣
∣sT = s′

]
· P s,π(sT = s′)

285

= Es,π
a

[

γr(s,a,s′)
∣
∣
∣ sT = s′

]

· P s,π(sT = s′)

=
∑

a∈As

π(s, a)P (s′|s, a)γr(s,a,s′).

Therefore, the result holds for T = 1.

Suppose T ≥ 1 and the result holds. We now show that the result then also holds for T + 1. We

have

Es,π [γwT+1 | sT+1 = s′] · P s,π(sT+1 = s′)

= Es,π
s′′,a [Es,π [γwT+1 | sT+1 = s′, sT = s′′, aT = a]| sT+1 = s′] · P s,π(sT+1 = s′)

= Es,π
s′′,a

[

Es,π
[

γwT · γr(s′′,a,s′)
∣
∣
∣ sT+1 = s′, sT = s′′, aT = a

]∣
∣
∣ sT+1 = s′

]

· P s,π(sT+1 = s′)

= Es,π
s′′,a

[

Es,π [γwT | sT = s′′] · γr(s′′,a,s′)
∣
∣
∣ sT+1 = s′

]

· P s,π(sT+1 = s′)

=
∑

s′′∈S

∑

a∈As′′

P s,π(sT = s′′) · π(s′′, a)P (s′|s′′, a) · Es,π [γwT | sT = s′′] · γr(s′′,a,s′)

=
∑

s′′∈S

P s,π(sT = s′′) · Es,π [γwT | sT = s′′] ·
∑

a∈As′′

π(s′′, a)P (s′|s′′, a)γr(s′′,a,s′)

=
∑

s′′∈S

DT
π (s, s′′) ·Dπ(s′′, s′) = DT+1

π (s, s′).

Therefore, the result holds.

Now we present an example that satisfies Condition 5.1 (One-Sided Finite Expected

Rewards), but the values do not exist. Suppose the utility function is U(w) = −
(

1
2

)w
. The

example MDP is shown in Figure 5.4(a), which has only one policy π. Condition 5.1 holds

since only positive rewards are received in s3, which is the only recurrent state in this MDP.

According to Lemma 5.5, the values can be obtained by calculating the powers of

Dπ =

0 1 1

1 0 1
2

0 0 1
2

.

We can verify that

DT
π =

1
2(1 + (−1)T) 1

2(1− (−1)T) 3
2 − 1

6 (−1)T − 4
3

(
1
2

)T

1
2(1− (−1)T) 1

2(1 + (−1)T) 3
2 + 1

6 (−1)T − 5
3

(
1
2

)T

0 0
(

1
2

)T

.

286

s1

s2

s3

−
1/0.5

0/
0.
5

−
1/0.5

−
1/

0.
5

+1/1.0

s1

s2

s3

+
1/0.5

0/
0.
5

+
1/0.5

+
1/

0.
5

−1/1.0

(a) Concave Exponential Utility Function (b) Convex Exponential Utility Function

0 2 4 6 8 10 12 14 16 18 20
−3

−2.5

−2

−1.5

−1

−0.5

0

T

V
a
lu

e
s

v
exp,T

π
(s

1
)

v
exp,T

π
(s

2
)

v
exp,T

π
(s

3
)

(c) The First 20 Finite-Horizon Values

Figure 5.4: MDPs satisfying Condition 5.1 but without expected utilities

287

The finite horizon values then are

vπ
exp,T (s1) = −5

2
+

1

6
(−1)T +

4

3

(
1

2

)T

,

vπ
exp,T (s2) = −5

2
− 1

6
(−1)T +

5

3

(
1

2

)T

,

vπ
exp,T (s3) = −

(
1

2

)T

.

Therefore, the limit does not exist for s1 or s2. We plot the first 20 finite horizon values in

Figure 5.4(c). With the same Dπ matrix, we also have an example for the convex utility

function U(w) = 2w, as shown in Figure 5.4(b).

The conditions that can eliminate the above case are different for concave and convex

exponential utility functions. Before considering them separately, we now present some

results that hold for both concave and convex exponential utility functions. These results

are the basis of our proofs for the existence of values under the MEUexp objective.

As we discussed earlier in Section 5.2, we need to consider the contributions of the parts

of trajectories up to the point when a recurrent state is entered. First, we can calculate

such contributions for any given finite horizon according to the following lemma, in a way

similar to Lemma 5.5.

Lemma 5.6. Assume that Condition 2.1 (Finite Model) holds. For a given π ∈ ΠSR, let

D̂π be a matrix whose (s, s′)-entry is

D̂π(s, s′) =

∑

a∈As

π(s, a)P (s′|s, a)γr(s,a,s′), s /∈ Rπ;

1, s = s′, s ∈ Rπ;

0, s 6= s′, s ∈ Rπ.

Let D̂T
π indicate the T -th power of D̂π. Then the (s, s′)-entry of D̂T

π is

D̂T
π (s, s′) =

Es,π [γwT |sT = s′] · P s,π(sT = s′), s, s′ /∈ Rπ;

Es,π
[
γwτ(T) |sτ(T) = s′

]
· P s,π(sτ(T) = s′), s /∈ Rπ, s′ ∈ Rπ;

1, s = s′, s ∈ Rπ;

0, s 6= s′, s ∈ Rπ.

288

Proof. Notice that we can order the states such that D̂π can be written as

D̂π =

Aπ Bπ

0 1

where 1 is an identity matrix and 0 is a zero matrix. The top half submatrix corresponds to transient

states s ∈ T π and the bottom half submatrix corresponds to recurrent states s ∈ Rπ. Thus we have

D̂T
π =

AT
π AT−1

π Bπ + · · ·+Bπ

0 1

 =

AT
π

(
T−1∑

t=0

At
π

)

·Bπ

0 1

Therefore, if s ∈ Rπ, the result holds.

Moreover, if s /∈ Rπ and s′ /∈ Rπ, Lemma 5.5 shows that the result holds.

Next, we prove by induction that if s /∈ Rπ and s′ ∈ Rπ, the result also holds. Suppose T = 1.

It then must be the case that τ(T) = 1. Therefore, the result also follows from Lemma 5.5.

Suppose that the result holds for T ≥ 1. We now show that the result also holds for T + 1.

Notice that when the current decision epoch is T , we have

D̂T
π (s, s′) = Es,π

[
γwτ(T) | sτ(T) = s′

]
· P s,π(sτ(T) = s′)

=
T∑

t=1

Es,π [γwt | st = s′, st−1 /∈ Rπ] · P s,π(st = s′, st−1 /∈ Rπ). (5.4)

Therefore, when the current decision epoch is T + 1, we have

Es,π
[
γwτ(T+1) | sτ(T+1) = s′

]
· P s,π(sτ(T+1) = s′)

=

T+1∑

t=1

Es,π [γwt | st = s′, st−1 /∈ Rπ] · P s,π(st = s′, st−1 /∈ Rπ)

= D̂T
π (s, s′) + Es,π

[
γT+1

∣
∣ sT+1 = s′, sT /∈ Rπ

]
· P s,π(sT+1 = s′, sT /∈ Rπ). (5.5)

Hence we have

Es,π
[
γT+1

∣
∣ sT+1 = s′, sT /∈ Rπ

]
· P s,π(sT+1 = s′, sT /∈ Rπ)

= Es,π
s′′,a

[
Es,π

[
γT+1

∣
∣ sT+1 = s′, sT /∈ Rπ, sT = s′′, aT = a

]∣
∣ sT+1 = s′, sT /∈ Rπ

]

· P s,π(sT+1 = s′, sT /∈ Rπ)

= Es,π
s′′,a

[

Es,π
[

γT · γr(s′′,a,s′)
∣
∣
∣ sT+1 = s′, sT /∈ Rπ, sT = s′′, aT = a

]∣
∣
∣ sT+1 = s′, sT /∈ Rπ

]

· P s,π(sT+1 = s′, sT /∈ Rπ)

= Es,π
s′′,a

[

Es,π
[
γT
∣
∣ sT = s′′

]
· γr(s′′,a,s′)

∣
∣
∣ sT+1 = s′, sT /∈ Rπ

]

· P s,π(sT+1 = s′, sT /∈ Rπ)

289

=
∑

s′′ /∈Rπ

∑

a∈As′′

P s,π(sT = s′′) · π(s′′, a)P s,π(s′|s′′, a) · Es,π [γwT | sT = s′′] · γr(s′′,a,s′)

=
∑

s′′ /∈Rπ

P s,π(sT = s′′) · Es,π [γwT | sT = s′′] ·
∑

a∈As′′

π(s′′, a)P s,π(s′|s′′, a)γr(s′′,a,s′)

=
∑

s′′ /∈Rπ

D̂T
π (s, s′′) · D̂π(s′′, s′).

Since D̂π(s′′, s′) = 1 if s′′ = s′ and D̂π(s′′, s′) = 0 if s′′ 6= s′, it holds that

Es,π
[
γwτ(T+1) | sτ(T+1) = s′

]
· P s,π(sτ(T+1) = s′)

= D̂T
π (s, s′) + Es,π

[
γT+1

∣
∣ sT+1 = s′, sT /∈ Rπ

]
· P s,π(sT+1 = s′, sT /∈ Rπ)

= D̂T
π (s, s′) +

∑

s′′ /∈Rπ

D̂T
π (s, s′′) · D̂π(s′′, s′)

=
∑

s′′∈S

D̂T
π (s, s′′) · D̂π(s′′, s′) = D̂T+1

π (s, s′),

Therefore, the result holds for all T .

Next, we have the following results concerning the first two terms of Eq. (5.2). These

results are analogous to Lemma 5.4, the result for linear utility functions.

Define D̂s,π, the restriction of D̂π to s, as

D̂s,π(s′, s′′) =

D̂π(s′, s′′), s′ ∈ Rs,π ∪ T s,π;

0, otherwise.

Lemma 5.6 also holds for all s′, s′′ ∈ Rs,π ∪ T s,π since other states are irrelevant.

Lemma 5.7. Assume that Condition 2.1 (Finite Model) holds. Let π ∈ ΠSR. For all

s /∈ Rπ,

lim
T→∞

Es,π [γwT | sT /∈ Rπ] · P s,π(sT /∈ Rπ) = 0

if and only if the limit

lim
T→∞

Es,π [γwτ(T) | sT ∈ Rπ] · P s,π(sT ∈ Rπ)

exists and is finite.

Proof. Notice that for all s /∈ Rπ,

Es,π [γwT | sT /∈ Rπ] · P s,π(sT /∈ Rπ) =
∑

s′∈T s,π

Es,π [γwT | sT = s′] · P s,π(sT = s′)

290

=
∑

s′∈T s,π

D̂T
s,π(s, s′)

and

Es,π [γwτ(T) | sT ∈ Rπ] · P s,π(sT ∈ Rπ) =
∑

s′∈Rs,π

Es,π [γwτ(T) | sT = s′] · P s,π(sT = s′)

=
∑

s′∈Rs,π

D̂T
s,π(s, s′).

We therefore consider the matrix D̂s,π. We can order the states such that

D̂s,π =

0 0 0

0 As,π Bs,π

0 0 1

where 1 is an identity matrix, and 0 is a zero matrix, and

D̂T
s,π =

0 0 0

0 AT
s,π AT−1

s,π · Bs,π + · · ·+Bs,π

0 0 1

=

0 0 0

0 AT
s,π

(
T−1∑

t=0

At
s,π

)

· Bs,π

0 0 1

. (5.6)

For the matrix As,π, there exists a matrix Es,π such that

As,π = Es,πJs,πE
−1
s,π,

where Js,π is the Jordan canonical form with Jordan blocks Ji of sizes ni for i = 1, 2, . . . ,m

Js,π =

J1

J2

. . .

Jm

and for each i = 1, 2, . . . ,m, Ji =
(
λi

)
if ni = 1, and

Ji =

λi 1

λi
. . .

. . . 1

λi

291

if ni > 1. We ignore zero elements in these matrices by convention. Moreover, it holds that

AT
s,π = Es,πJ

T
s,πE

−1
s,π = Es,π

JT
1

JT
2

. . .

JT
m

E−1
s,π ,

where for each i = 1, 2, . . . ,m, JT
i =

(
λT

i

)
if ni = 1, and

JT
i =

λT
i TλT−1

i · · · T !
(T−ni+1)!λ

T−ni+1
i

λT
i

. . . T !
(T−ni+2)!λ

T−ni+2
i

. . . TλT−1
i

λT
i

if ni > 1. Therefore, the (s, s′) element of AT
s,π , where s′ ∈ T s,π, is a linear combination of entries

in JT
i as follows

D̂T
s,π(s, s′) =

m∑

i=1

ni−1∑

j=0

as′

ij ·
T !

(T − j)! · λ
T−j
i , (5.7)

where we use the convention that 1
(−n)! = 0 for all n = 1, 2,

Now we consider the first part of the result. Since

Es,π [γwT | sT /∈ Rπ] · P s,π(sT /∈ Rπ) =
∑

s′∈T s,π

D̂T
s,π(s, s′)

and each term is positive,

lim
T→∞

Es,π [γwT | sT /∈ Rπ] · P s,π(sT /∈ Rπ) = 0

if and only if for all s′ ∈ T s,π,

lim
T→∞

D̂T
s,π(s, s′) = 0. (5.8)

Then according to Eq. (5.7), the above limit converges to zero as T →∞ if and only if for all i, j

|λi| < 1 or as′

ij = 0. (5.9)

In this case, for s′′ ∈ Rs,π, according to Eq. (5.6), it holds that

D̂T
s,π(s, s′′) =

∑

s′∈T s,π

(
T−1∑

t=0

D̂t
s,π(s, s′)

)

· D̂s,π(s′, s′′)

=
∑

s′∈T s,π

T−1∑

t=0

m∑

i=1

ni−1∑

j=0

as′

ij ·
t!

(t− j)! · λ
t−j
i

 · D̂s,π(s′, s′′)

292

=
∑

s′∈T s,π

m∑

i=1

ni−1∑

j=0

as′

ij ·
T−1∑

t=0

t!

(t− j)! · λ
t−j
i

 · D̂s,π(s′, s′′). (5.10)

Notice that for each j, we can obtain

T−1∑

t=0

tjλt
i = pj(T)λT

i + Cj ,

where pj(T) is a j-th order polynomial of T and Cj is a constant, by repeatedly taking derivatives

and multiplying by λi starting with
T−1∑

t=0

λt
i =

1− λT
i

1− λi
.

Then it follows from Eq. (5.9) that the limit of Eq. (5.10) as T →∞ is finite, and thus the following

limit

lim
T→∞

Es,π [γwτ(T) | sT ∈ Rπ] · P s,π(sT ∈ Rπ)

is finite.

Conversely, that the above limit as T →∞ is finite implies that for each s′′, the limit of Eq. (5.10)

as T →∞ is finite, which holds if and only if Eq. (5.9) holds. Then it follows that Eq. (5.8) holds,

and thus

lim
T→∞

Es,π [γwT | sT /∈ Rπ] · P s,π(sT /∈ Rπ) = 0.

Lemma 5.8. Assume that Condition 2.1 (Finite Model) holds. Let π ∈ ΠSR. For all

s /∈ Rπ,

lim sup
T→∞

Es,π [γwT | sT /∈ Rπ] · P s,π(sT /∈ Rπ) > 0,

if and only if

lim
T→∞

Es,π [γwτ(T) | sT ∈ Rπ] · P s,π(sT ∈ Rπ) = +∞.

Proof. Notice that

Es,π [γwT | sT /∈ Rπ] · P s,π(sT /∈ Rπ) =
∑

s′∈T s,π

Es,π [γwT | sT = s′] · P s,π(sT = s′)

=
∑

s′∈T s,π

D̂T
s,π(s, s′)

and

Es,π [γwτ(T) | sT ∈ Rπ] · P s,π(sT ∈ Rπ)

=

T∑

t=1

Es,π [γwt | sT ∈ Rπ, st−1 /∈ Rπ, st ∈ Rπ] · P s,π(sT ∈ Rπ, st−1 /∈ Rπ, st ∈ Rπ)

293

=

T∑

t=1

Es,π [γwt | st−1 /∈ Rπ, st ∈ Rπ] · P s,π(st−1 /∈ Rπ, st ∈ Rπ)

=

T∑

t=1

∑

s′∈T s,π

∑

s′′∈Rs,π

Es,π [γwt | st−1 = s′, st = s′′] · P s,π(st−1 = s′, st = s′′).

We have

Es,π [γwt | st−1 = s′, st = s′′] · P s,π(st−1 = s′, st = s′′)

=
∑

ht∈Ht

st−1=s′

st=s′′

P s,π(ht)γ
wt

=
∑

ht−1∈Ht−1

st−1=s′

∑

a∈As′

P s,π(ht−1)P
s,π(st = s′′, at = a|st−1 = s′)γwt−1γr(s′,a,s′′)

=
∑

ht−1∈Ht−1

st−1=s′

P s,π(ht−1)γ
wt−1 ·

∑

a∈As′

π(s′, a)P (s′′|s′, a)γr(s′,a,s′′).

Let

K =

γr+
max 0 < γ < 1

γr−
min γ > 1.

It then holds that

Es,π [γwt | st−1 = s′, st = s′′] · P s,π(st−1 = s′, st = s′′)

=
∑

ht−1∈Ht−1

st−1=s′

P s,π(ht−1)γ
wt−1 ·

∑

a∈As′

π(s′, a)P (s′′|s′, a)γr(s′,a,s′′)

≥
∑

ht−1∈Ht−1

st−1=s′

P s,π(ht−1)γ
wt−1 ·

∑

a∈As′

π(s′, a)P (s′′|s′, a)K

= Es,π [γwt−1 | st−1 = s′] · P s,π(st−1 = s′) ·
∑

a∈As′

π(s′, a)P (s′′|s′, a)K

= D̂t−1
s,π (s, s′)K

∑

a∈As′

π(s′, a)P (s′′|s′, a).

Therefore, it holds that

Es,π [γwτ(T) | sT ∈ Rπ] · P s,π(sT ∈ Rπ)

=

T∑

t=1

∑

s′∈T s,π

∑

s′′∈Rs,π

Es,π [γwt | st−1 = s′, st = s′′] · P s,π(st−1 = s′, st = s′′)

≥
T∑

t=1

∑

s′∈T s,π

∑

s′′∈Rs,π

D̂t−1
s,π (s, s′)K

∑

a∈As′

π(s′, a)P (s′′|s′, a)

294

=

T∑

t=1

∑

s′∈T s,π

D̂t−1
s,π (s, s′)K

∑

a∈As′

π(s′, a)
∑

s′′∈Rs,π

P (s′′|s′, a)

=

T∑

t=1

∑

s′∈T s,π

D̂t−1
s,π (s, s′)K

= K
T∑

t=1

Es,π [γwt−1 | st−1 /∈ Rπ] · P s,π(st−1 /∈ Rπ).

Since

lim sup
T→∞

Es,π [γwT | sT /∈ Rπ] · P s,π(sT /∈ Rπ) > 0,

there exists M > 0 such that

lim sup
T→∞

Es,π [γwT | sT /∈ Rπ] · P s,π(sT /∈ Rπ) ≥M.

Therefore, it holds that for any T0 > 0, there exists T1 > T0 such that

Es,π [γwT1 | sT1 /∈ Rπ] · P s,π(sT1 /∈ Rπ) >
M

2
.

Then we have

lim
T→∞

Es,π [γwτ(T) | sT ∈ Rπ] · P s,π(sT ∈ Rπ) ≥ K
∞∑

t=1

Es,π [γwt−1 | st−1 /∈ Rπ] · P s,π(st−1 /∈ Rπ),

and there are an infinite number of terms that are greater than M
2 in the above summation. Since

each term is nonnegative, the above limit converges to positive infinity as T →∞.

The other direction holds since otherwise the limit

lim
T→∞

Es,π [γwτ(T) | sT ∈ Rπ] · P s,π(sT ∈ Rπ)

should be finite according to Lemma 5.7.

We now can consider conditions that are sufficient for the values to exist. We need to dis-

cuss concave and convex exponential utility functions separately, since different conditions

are needed.

5.3.1 Concave Exponential Utility Functions

If the utility function is concave, 0 < γ < 1 and ι = −1. Therefore, for all policies π ∈ Π,

all states s ∈ S, and all T ∈ N, the finite horizon value vπ
exp,T (s) is negative, and the infinite

horizon value vπ
exp(s) is nonpositive if it exists.

We have seen that the value may not exist even if Condition 5.1 (One-Sided Finite

Expected Rewards) holds. We therefore propose to use the following condition instead.

295

Condition 5.4 (One-Sided Finite Expected Concave Exponential Utilities).1 For all policies

π ∈ Π and all states s ∈ S, at least one of v+π(s) and v−π
exp(s) is finite.

Condition 5.4 is stronger than Condition 5.1. They are related by the following theorem.

Theorem 5.9. Assume that Condition 2.1 (Finite Model) holds. If 0 < γ < 1, Condi-

tion 5.4 (One-Sided Finite Expected Concave Exponential Utilities) implies Condition 5.1

(One-Sided Finite Expected Rewards).

To prove Theorem 5.9, we prove the following lemma for negative models. Since the

negative part of an MDP is a negative model, that v−π
exp(s) is finite implies that v−π(s) is

also finite according to Lemma 5.10(b). Therefore, Condition 5.4 implies Condition 5.1.

Lemma 5.10. Assume that Condition 2.1 (Finite Model) and Condition 2.5 (Negative

Model) hold.

a. If Condition 3.2 (Negative Model with Finite Exponential Utilities) holds for some 0 <

γ < 1 and some policy π, then it also holds for all γ′ with γ < γ′ < 1 and the same

policy π.

b. If Condition 3.2 (Negative Model with Finite Exponential Utilities) holds for some 0 <

γ < 1 and some policy π, then Condition 2.6 (Negative Model with Finite Expected

Rewards) holds for the same policy π.

Proof. Obviously, wT ≤ 0 for all T .

a. When 0 < γ < 1 and w ≤ 0, the utility of w

Uexp(γ)(w) = ιγw = −γw

is nondecreasing with respect to γ. For all states s ∈ S, and all γ′ ∈ (γ, 1), if Condition 3.2 holds

for γ and π, then

−∞ < vπ
exp(γ)(s) = lim

T→∞
Es,π

[
Uexp(γ)(wT)

]
≤ lim

T→∞
Es,π

[
Uexp(γ′)(wT)

]
= vπ

exp(γ′)(s).

Therefore, Condition 3.2 also holds for γ′ and π.

1This phrase does not fully capture this condition. It is used just as a reminder of the condition.

296

b. It is sufficient to have, for all states s ∈ S,

lim
γ→1

U−1
exp(γ)

(

vπ
exp(γ)(s)

)

= vπ(s).

For all finite horizons T ≥ 1, we have

U−1
exp(γ)

(

vπ
exp(γ),T (s)

)

= U−1
exp(γ)

(
Es,π

[
Uexp(γ)(wT)

])
= logγ (ιEs,π [ιγwT]) = logγ E

s,π [γwT] .

Therefore,

lim
γ→1

U−1
exp(γ)

(

vπ
exp(γ),T (s)

)

= lim
γ→1

logγ E
s,π [γwT] = lim

γ→1

lnEs,π [γwT]

ln γ
= lim

γ→1

Es,π
[
wT · γwT−1

]

Es,π [γwT]

1/γ

= lim
γ→1

γEs,π
[
wT · γwT−1

]

Es,π [γwT]
= Es,π [wT] = vπ

T (s),

where we used l’Hôspital’s rule. Consequently,

lim
γ→1

U−1
exp(γ)

(

vπ
exp(γ)(s)

)

= lim
γ→1

lim
T→∞

U−1
exp(γ)

(

vπ
exp(γ),T (s)

)

= lim
T→∞

lim
γ→1

U−1
exp(γ)

(

vπ
exp(γ),T (s)

)

= lim
T→∞

vπ
T (s) = vπ(s),

where the order of limits can be changed since vπ
exp(γ)(s) is finite for all γ close to 1, which is

implied by the premise and part (a).

Condition 5.4 excludes the MDP shown in Figure 5.4(a), since it has both v+π(s1) =

v+π(s2) = +∞ and v−π
exp(s1) = v−π

exp(s2) = −∞. It follows from Lemma 5.1 that v+π(s3) =

+∞, and thus v+π(s1) = v+π(s2) = +∞. To verify that v−π
exp(s1) = v−π

exp(s2) = −∞, we

consider the matrix D−π that corresponds to the negative part of the model

D−π =

0 1 1

1 0 1
2

0 0 1

.

We can verify that

DT
−π =

1
2 (1 + (−1)T) 1

2(1− (−1)T) 1
8 − 1

8(−1)T + 3
4T

1
2 (1− (−1)T) 1

2(1 + (−1)T) −1
8 + 1

8 (−1)T + 3
4T

0 0 1

.

The finite horizon values then are

v−π
exp,T (s1) = −9

8
+

1

8
(−1)T − 3

4
T,

297

v−π
exp,T (s2) = −7

8
− 1

8
(−1)T − 3

4
T,

v−π
exp,T (s3) = −1.

Therefore, v−π
exp(s1) = v−π

exp(s2) = −∞. Thus this MDP does not satisfy Condition 5.4.

We now show that under Condition 5.4, the values under SR policies exist, as stated by

the following theorem.

Theorem 5.11. Assume that Condition 2.1 (Finite Model) and Condition 5.4 (One-Sided

Finite Expected Concave Exponential Utilities) hold, and that 0 < γ < 1. Let π be an SR

policy. Then for all states s ∈ S, the value vπ
exp(s) exists.

Proof. According to Condition 5.4 and Theorem 5.9, Condition 5.1 holds. Therefore, if s ∈ Rπ, the

results hold trivially according to Lemma 5.1.

Suppose s /∈ Rπ. Recall that the finite horizon values can be decomposed as

vπ
exp,T (s) = Es,π[−γwT]

−vπ
exp,T (s) = Es,π[γwT]

= Es,π[γwT |sT /∈ Rπ] · P s,π(sT /∈ Rπ)

+ Es,π[γwτ(T) |sT ∈ Rπ] · P s,π(sT ∈ Rπ)

+ Es,π[γwT − γwτ(T) |sT ∈ Rπ] · P s,π(sT ∈ Rπ). (5.11)

If v−π
exp(s) is finite, it also holds that v−π(s) is finite according to Lemma 5.10(b). Therefore,

−v−π
exp,T (s) = Es,π

[

γw−
T

]

= Es,π
[

γw−
T

∣
∣
∣ sT /∈ Rπ

]

· P s,π(sT /∈ Rπ) + Es,π
[

γw−
T

∣
∣
∣ sT ∈ Rπ

]

· P s,π(sT ∈ Rπ)

= Es,π
[

γw−
T

∣
∣
∣ sT /∈ Rπ

]

· P s,π(sT /∈ Rπ) + Es,π
[

γ
w−

τ(T)

∣
∣
∣ sT ∈ Rπ

]

· P s,π(sT ∈ Rπ).

Since v−π
exp(s) is finite and both terms in above are positive, the limit of the second term in above as

T →∞ is also finite. It then follows from Lemma 5.7 that

lim
T→∞

Es,π
[

γw−
T

∣
∣
∣ sT /∈ Rπ

]

· P s,π(sT /∈ Rπ) = 0.

Since 0 < γ < 1 and wT ≥ w−
T , we have

0 ≤ Es,π [γwT | sT /∈ Rπ] · P s,π(sT /∈ Rπ) ≤ Es,π
[

γw−
T

∣
∣
∣ sT /∈ Rπ

]

· P s,π(sT /∈ Rπ),

298

and thus

lim
T→∞

Es,π [γwT | sT /∈ Rπ] · P s,π(sT /∈ Rπ) = 0. (5.12)

Lemma 5.7 implies that the limit

lim
T→∞

Es,π [γwτ(T) | sT ∈ Rπ] · P s,π(sT ∈ Rπ)

exists and is finite. Therefore, the sum of the first two terms in Eq. (5.11) converges to finite values.

Since Condition 5.1 holds, we can distinguish the following cases according to Lemma 5.2.

1. Both v+π(s) and v−π
exp(s) are finite. According to Lemma 5.3, the third term in Eq. (5.11) is

zero. We have shown in above that the first two terms in Eq. (5.11) converge to finite values.

Therefore, the value vπ
exp(s) is finite.

2. v+π(s) is finite and v−π
exp(s) = −∞.

(a) v−π(s) = −∞. In this case, the third term in Eq. (5.11) approaches positive infinity

according to Lemma 5.3. Since the first two terms in Eq. (5.11) are also nonnegative, it

holds that vπ
exp(s) = −∞.

(b) v−π(s) is finite. In this case, the third term in Eq. (5.11) is zero according to Lemma 5.3

since the utility function approaches zero as w→∞. It holds that either

lim sup
T→∞

Es,π [γwT | sT /∈ Rπ] · P s,π(sT /∈ Rπ) > 0

or

lim
T→∞

Es,π [γwT | sT /∈ Rπ] · P s,π(sT /∈ Rπ) = 0.

In the first case, the second term in Eq. (5.11) approaches positive infinity according to

Lemma 5.8 and thus the value vπ
exp(s) = −∞; in the second case, the second term in

Eq. (5.11) approaches a finite value according to Lemma 5.7 and thus the value vπ
exp(s)

is finite.

3. v+π(s) = ∞ and v−π
exp(s) is finite. We have shown in above that first two terms in Eq. (5.11)

converge to finite values. According to Lemma 5.3, the third term of Eq. (5.11) converges to

a finite number since the utility function approaches zero as w → ∞. Therefore, the value

vπ
exp(s) exists and is finite.

However, it is still an open problem whether there exists an SD-optimal policy for MDPs

with both positive and negative rewards under the MEUexp objective. Therefore, the above

299

theorem is not sufficient to show that the optimal values exist. I nevertheless conjecture

that the above result also holds for all policies, therefore the optimal values exist.

Conjecture 5.1. Assume that Condition 2.1 (Finite Model) and Condition 5.4 (One-Sided

Finite Expected Concave Exponential Utilities) hold, and that 0 < γ < 1. Let π be an HR

policy. Then for all states s ∈ S, the values vπ
exp(s) exist. Consequently, for all states s ∈ S,

the optimal values v∗exp(s) exist.

For the optimal values to be finite, we use the following condition.

Condition 5.5 (Finite Negative Part Expected Exponential Utilities). There exists a policy

π such that for all states s ∈ S, the value v−π
exp(s) is finite.

Theorem 5.12. Assume that Condition 2.1 (Finite Model), Condition 5.4 (One-Sided

Finite Expected Concave Exponential Utilities), and Condition 5.5 (Finite Negative Part

Expected Exponential Utilities) hold, and that Conjecture 5.1 holds. Then for all states

s ∈ S, the optimal value v∗exp(s) is finite.

Proof. Let π be the policy for which Condition 5.5 (Finite Negative Part Expected Exponential

Utilities) holds. For all states s ∈ S, we have

vπ
exp,T (s) = Es,π

[

Uexp

(
T−1∑

t=0

rt

)]

≥ Es,π

[

Uexp

(
T−1∑

t=0

r−t

)]

= v−π
exp,T (s).

Taking the limit as T approaches infinity shows that v∗exp(s) ≥ vπ
exp(s) ≥ v−π

exp(s) > −∞.

5.3.2 Convex Exponential Utility Functions

The results and proofs for convex exponential utility functions are parallel to those for

concave exponential utility functions. Therefore, we list these results, and only provide

proofs for results that are not completely symmetric to the case of concave exponential

utility functions.

For convex exponential utility functions, γ > 1 and ι = 1. Therefore, for all policies

π ∈ Π, all states s ∈ S, and all T ∈ N, the finite horizon value vπ
exp,T (s) is positive, and the

infinite horizon value vπ
exp(s) is nonnegative if it exists.

Condition 5.6 (One-Sided Finite Expected Convex Exponential Utilities). For all policies

π ∈ Π and all states s ∈ S, at least one of v+π
exp(s) and v−π(s) is finite.

300

Condition 5.6 is stronger than Condition 5.1 (One-Sided Finite Expected Rewards).

They are related by the following theorem.

Theorem 5.13. Assume that Condition 2.1 (Finite Model) holds. If γ > 1, Condition 5.6

(One-Sided Finite Expected Convex Exponential Utilities) implies Condition 5.1 (One-Sided

Finite Expected Rewards).

Similar to the case of concave exponential utility functions, we need the following lemma

for the proof of Theorem 5.13.

Lemma 5.14. Assume that Condition 2.1 (Finite Model) and Condition 2.7 (Positive

Model) hold.

a. If Condition 3.4 (Positive Model with Finite Exponential Utilities) holds for some γ > 1,

then it also holds for all γ′ with γ > γ′ > 1.

b. If Condition 3.4 (Positive Model with Finite Exponential Utilities) holds for some γ > 1,

then Condition 2.8 (Positive Model with Finite Expected Rewards) holds.

Under Condition 5.6, the values under SR policies exist, as stated by the following

theorem.

Theorem 5.15. Assume that Condition 2.1 (Finite Model) and Condition 5.6 (One-Sided

Finite Expected Convex Exponential Utilities) hold, and that γ > 1. Let π be an SR policy.

Then for all states s ∈ S, the value vπ
exp(s) exists.

However, this theorem is not sufficient to show that the optimal values exist. I conjecture

that the result also holds for all policies, and therefore the optimal values exist.

Conjecture 5.2. Assume that Condition 2.1 (Finite Model) and Condition 5.6 (One-Sided

Finite Expected Convex Exponential Utilities) hold, and that γ > 1. Let π be an HR policy.

Then for all states s ∈ S, the value vπ
exp(s) exists. Therefore, for all states s ∈ S, the

optimal value v∗exp(s) exists.

Conjecture 5.2 (with risk parameter γ) in fact is equivalent to Conjecture 5.1 (with

risk parameter γ−1). We can replace r(s, a, s′) with r′(s, a, s′) = −r(s, a, s′) and thus

301

r+(s, a, s′) with r′+(s, a, s′) = −r−(s, a, s′) and r−(s, a, s′) with r′−(s, a, s′) = −r+(s, a, s′).

Consequently, Conjecture 5.2 is reduced to Conjecture 5.1.

For the optimal values to be finite, it is necessary to have the following condition, which

obviously implies Condition 5.6.

Condition 5.7 (Finite Positive Part Expected Exponential Utilities). For all policies π ∈ Π

and all states s ∈ S, v+π
exp(s) is finite.

Theorem 5.16. Assume that Condition 2.1 (Finite Model), Condition 5.6 (One-Sided

Finite Expected Convex Exponential Utilities), and Conjecture 5.2 hold. Then for all states

s ∈ S, the optimal value v∗exp(s) is finite.

Proof. Condition 5.7 (Finite Positive Part Expected Exponential Utilities) implies that for all states

s ∈ S, v+∗
exp(s) is finite. Furthermore, for all policies π ∈ Π and all states s ∈ S,

vπ
exp,T (s) = Es,π

[

Uexp

(
T−1∑

t=0

rt

)]

≤ Es,π

[

Uexp

(
T−1∑

t=1

r+t

)]

= v+π
exp,T (s).

Taking the limit as T approaches infinity shows that vπ
exp(s) ≤ v+π

exp(s) < ∞. Therefore, v∗exp(s) ≤

v+∗
exp(s) <∞.

5.4 General Risk-Sensitive Utility Functions

We consider general risk-sensitive utility functions in this section. The conditions to ensure

the existence and finiteness of values can be classified into two classes. The first class

includes conditions on the utility functions, and the second class includes conditions on the

MDP models. The conditions in each class range from the most general ones to the most

restrictive ones. Each set of conditions to be presented below is a combination of conditions

from each class.

The most general condition for utility functions is Condition 4.1 (Nondecreasing Utility

Function), and the most general condition for MDPs is Condition 5.1 (One-Sided Finite

Expected Rewards).

5.4.1 Bounded Utility Functions

We now consider the case where the utility functions are bounded, which is the most re-

strictive condition for utility functions. In this case, vπ
U,T (s) is bounded as T approaches

302

infinity but the limit might not exist since the values can oscillate. Theorem 5.17 provides

a condition that guarantees the existence of values for stationary policies.

Condition 5.8 (Bounded Utility Function). The utility function is bounded, that is,

lim
w→−∞

U(w) = U− and lim
w→∞

U(w) = U+ where U+ 6= U− are finite.2

Theorem 5.17. Assume that Condition 4.1 (Nondecreasing Utility Function), Condi-

tion 5.8 (Bounded Utility Function), Condition 2.1 (Finite Model), and Condition 5.1

(One-Sided Finite Expected Rewards) hold. Let π be an SR policy. Then for all states

s ∈ S, vπ
U (s) exists and is bounded.

Proof. Following the discussion in Section 5.2, we decompose the finite horizon values as

vπ
U,T (s) = Es,π [U(wT)]

= Es,π[U(wT)|sT /∈ Rπ] · P s,π(sT /∈ Rπ)

+ Es,π[U(wτ(T))|sT ∈ Rπ] · P s,π(sT ∈ Rπ)

+ Es,π[U(wT)− U(wτ(T))|sT ∈ Rπ] · P s,π(sT ∈ Rπ). (5.13)

Now we consider the first term. Since by definition,

lim
T→∞

P s,π(sT /∈ Rπ) = 0,

and
∣
∣
∣Es,π[U(wT)|sT /∈ Rπ]

∣
∣
∣ ≤ max

(∣
∣U+

∣
∣ ,
∣
∣U−

∣
∣
)
,

we have

lim
T→∞

Es,π[U(wT)|sT /∈ Rπ] · P s,π(sT /∈ Rπ) = 0.

For the second term, we have

Es,π[U(wτ(T))|sT ∈ Rπ] · P s,π(sT ∈ Rπ)

=

T∑

t=1

Es,π [U(wt)|st ∈ Rπ, st−1 /∈ Rπ, sT ∈ Rπ] · P s,π(st ∈ Rπ, st−1 /∈ Rπ, sT ∈ Rπ)

=

T∑

t=1

Es,π [U(wt)|st ∈ Rπ, st−1 /∈ Rπ] · P s,π(st ∈ Rπ, st−1 /∈ Rπ).

Therefore,

∣
∣
∣Es,π[U(wτ(T))|sT ∈ Rπ] · P s,π(sT ∈ Rπ)

∣
∣
∣

2If U+ = U−, it follows that U(w) ≡ U , which is a boring utility function.

303

≤
T∑

t=1

Es,π
[∣
∣U(wt)

∣
∣

∣
∣
∣st ∈ Rπ, st−1 /∈ Rπ

]

· P s,π(st ∈ Rπ, st−1 /∈ Rπ)

≤
T∑

t=1

max
(∣
∣U+

∣
∣ ,
∣
∣U−

∣
∣
)
· P s,π(st ∈ Rπ, st−1 /∈ Rπ)

= max
(∣
∣U+

∣
∣ ,
∣
∣U−

∣
∣
)
·

T∑

t=1

P s,π(st ∈ Rπ, st−1 /∈ Rπ)

= max
(∣
∣U+

∣
∣ ,
∣
∣U−

∣
∣
)
· P s,π(sT ∈ Rπ).

Since

lim
T→∞

P s,π(sT ∈ Rπ) = 1,

it follows that the limit

lim
T→∞

Es,π[U(wτ(T))|sT ∈ Rπ] · P s,π(sT ∈ Rπ)

converges to a finite value.

We also know from Lemma 5.3 that the third term converges to a finite value as T → ∞.

Therefore, vπ
U (s) exists and is finite.

We have seen in Chapter 4 that the optimal policy can be history-dependent for risk-

sensitive planning with general utility functions, so the above theorem is not sufficient for

the optimal values to exist. I conjecture that the above result also holds for all policies,

therefore the optimal values exist. Since the utility function is bounded, the optimal values

are also finite, provided the conjecture holds.

Conjecture 5.3. Assume that Condition 4.1 (Nondecreasing Utility Function), Condi-

tion 5.8 (Bounded Utility Function), Condition 2.1 (Finite Model), and Condition 5.1

(One-Sided Finite Expected Rewards) hold. Let π be an HR policy. Then for all states

s ∈ S, vπ
U (s) exists and is bounded. Therefore, for all states s ∈ S, v∗U (s) exists and is

finite.

5.4.2 Linearly Bounded Utility Functions

Next, we consider the case where the utility functions are bounded by linear functions.

Condition 5.9 (Linearly Bounded Utility Function). The utility function is linearly

bounded, that is, U(w) = O(w) as w→∞ and as w → −∞.

304

The utility function U(w) = O(w) implies that there exists positive numbers C and D

such that U(w) ≤ Cw +D when w > 0 and U(w) ≥ Cw −D when w < 0.

The following theorem shows that the values exist for SR policies under conditions that

are, in part, similar to those for the MER objective.

Theorem 5.18. Assume that Condition 4.1 (Nondecreasing Utility Function), Condi-

tion 5.9 (Linearly Bounded Utility Function), Condition 2.1 (Finite Model), and Condi-

tion 5.1 (One-Sided Finite Expected Rewards) hold. Let π be an SR policy. Then for all

states s ∈ S, vπ
U (s) exists.

Proof. Following the discussion in Section 5.2, we decompose the finite horizon values as

vπ
U,T (s) = Es,π [U(wT)]

= Es,π[U(wT)|sT /∈ Rπ] · P s,π(sT /∈ Rπ)

+ Es,π[U(wτ(T))|sT ∈ Rπ] · P s,π(sT ∈ Rπ)

+ Es,π[U(wT)− U(wτ(T))|sT ∈ Rπ] · P s,π(sT ∈ Rπ). (5.14)

Consider the first term in Eq. (5.14). By definition, we have

lim
T→∞

P s,π(sT /∈ Rπ) = 0.

We also have

Cw−
T −D ≤ U(w−

T) ≤ U(wT) ≤ U(w+
T) ≤ Cw+

T +D,

and thus

∣
∣
∣Es,π[U(wT)|sT /∈ Rπ]

∣
∣
∣ ≤ Cmax

(
Es,π[w+

T |sT /∈ Rπ],−Es,π[w−
T |sT /∈ Rπ]

)
+D.

Therefore, we have

∣
∣
∣Es,π[U(wT)|sT /∈ Rπ] · P s,π(sT /∈ Rπ)

∣
∣
∣

≤ Cmax
(
Es,π[w+

T |sT /∈ Rπ],−Es,π[w−
T |sT /∈ Rπ]

)
· P s,π(sT /∈ Rπ) +D · P s,π(sT /∈ Rπ).

Since for linear utility functions, it follows from Lemma 5.4 that

lim
T→∞

Es,π[w+
T |sT /∈ Rπ] · P s,π(sT /∈ Rπ) = 0,

lim
T→∞

Es,π[w−
T |sT /∈ Rπ] · P s,π(sT /∈ Rπ) = 0,

305

and we also have

lim
T→∞

P s,π(sT /∈ Rπ) = 0,

it follows that

lim
T→∞

Es,π[U(wT)|sT /∈ Rπ] · P s,π(sT /∈ Rπ) = 0.

For the second term in Eq. (5.14), we have

Es,π[U(wτ(T))|sT ∈ Rπ] · P s,π(sT ∈ Rπ)

=

T∑

t=1

Es,π [U(wt)|st ∈ Rπ, st−1 /∈ Rπ, sT ∈ Rπ] · P s,π(st ∈ Rπ, st−1 /∈ Rπ, sT ∈ Rπ)

=

T∑

t=1

Es,π [U(wt)|st ∈ Rπ, st−1 /∈ Rπ] · P s,π(st ∈ Rπ, st−1 /∈ Rπ). (5.15)

Therefore,

∣
∣
∣Es,π[U(wτ(T))|sT ∈ Rπ] · P s,π(sT ∈ Rπ)

∣
∣
∣

≤
T∑

t=1

Es,π
[∣
∣U(wt)

∣
∣

∣
∣
∣st ∈ Rπ, st−1 /∈ Rπ

]

· P s,π(st ∈ Rπ, st−1 /∈ Rπ)

≤
T∑

t=1

(

Cmax
(
Es,π [w+

t |st ∈ Rπ, st−1 /∈ Rπ],

− Es,π[w−
t |st ∈ Rπ, st−1 /∈ Rπ]

)
+D

)

· P s,π(st ∈ Rπ, st−1 ∈ Rπ)

= Cmax

(T∑

t=1

Es,π[w+
t |st ∈ Rπ, st−1 /∈ Rπ] · P s,π(st ∈ Rπ, st−1 /∈ Rπ),

−
T∑

t=1

Es,π[w−
t |st ∈ Rπ, st−1 /∈ Rπ] · P s,π(st ∈ Rπ, st−1 /∈ Rπ)

)

+D ·
T∑

t=1

P s,π(st ∈ Rπ, st−1 /∈ Rπ)

= Cmax
(

Es,π[w+
τ(T)|sT ∈ Rπ] · P s,π(sT ∈ Rπ),−Es,π[w−

τ(T)|sT ∈ Rπ] · P s,π(sT ∈ Rπ)
)

+D · P s,π(sT ∈ Rπ).

Since

lim
T→∞

P s,π(sT ∈ Rπ) = 1,

and the limits

lim
T→∞

Es,π[w+
τ(T)|sT ∈ Rπ] · P s,π(sT ∈ Rπ) and lim

T→∞
Es,π[w−

τ(T)|sT ∈ Rπ] · P s,π(sT ∈ Rπ)

exist and are finite according to Lemma 5.4, it follows that the summation in Eq. (5.15) converges

absolutely as T →∞. Therefore, the limit

lim
T→∞

Es,π[U(wτ(T))|sT ∈ Rπ] · P s,π(sT ∈ Rπ)

306

exists and is finite.

We also know from Lemma 5.3 that the third term in Eq. (5.14) converges. Therefore, vπ
U (s)

exists. To be more specific, we have

• if vπ(s) is finite, then the third term in Eq. (5.14) converges to zero and vπ
U (s) is finite;

• if vπ(s) =∞ and the utility function is bounded from above, then the third term in Eq. (5.14)

converges to a finite number and vπ
U (s) is also finite;

• if vπ(s) = ∞ and the utility function is unbounded from above, then the third term in

Eq. (5.14) converges to positive infinity and vπ
U (s) =∞;

• if vπ(s) = −∞ and the utility function is bounded from below, then the third term in Eq. (5.14)

converges to a finite number and vπ
U (s) is also finite; and

• if vπ(s) = −∞ and the utility function is unbounded from below, then the third term in

Eq. (5.14) converges to negative infinity and vπ
U (s) = −∞.

Again, the above theorem is not sufficient for the optimal values to exist. I conjecture

the following result holds.

Conjecture 5.4. Assume that Condition 4.1 (Nondecreasing Utility Function), Condi-

tion 5.9 (Linearly Bounded Utility Function), Condition 2.1 (Finite Model), and Condi-

tion 5.1 (One-Sided Finite Expected Rewards) hold. Let π be an HR policy. Then for all

states s ∈ S, vπ
U (s) exists. Therefore, for all states s ∈ S, v∗U (s) exists.

Theorem 5.19. Assume that Condition 2.1 (Finite Model), Condition 5.2 (Finite Positive-

Part Expected Rewards), Condition 5.3 (Finite Negative-Part Expected Rewards), Condi-

tion 5.9 (Linearly Bounded Utility Function), and Conjecture 5.4 hold. Then the optimal

values are finite.

Proof. For any given policy π, we have for all states s and all T ∈ N,

vπ
U,T (s) ≤ v+π

U,T (s) ≤ Cv+π
T (s) +D.

Therefore, it follows from Condition 5.2 and Condition 5.9 that

lim sup
T→∞

vπ
U,T (s) ≤ lim

T→∞

(

Cv+π
T (s) +D

)

≤ Cv+π(s) +D ≤ Cv+∗(s) +D.

307

Since π is arbitrary, it holds that

v∗U (s) ≤ Cv+∗(s) +D <∞.

Suppose Condition 5.3 holds for policy π′. We have for all states s ∈ S,

vπ′

U,T (s) ≥ v−π′

U,T (s) ≥ Cv−π′

T (s)−D.

Therefore, it holds that

v∗U (s) ≥ lim inf
T→∞

vπ′

U,T (s) ≥ lim
T→∞

(

Cv−π′

T (s)−D
)

= Cv−π′

(s)−D > −∞.

That is, the optimal values are finite.

5.4.3 Exponentially Bounded Utility Functions

We consider exponentially bounded utility functions in this section.

Condition 5.10 (Exponentially Bounded Utility Function). The utility function is expo-

nentially bounded, that is, U(w) = O(γw
+) as w →∞ where γ+ > 1, and U(w) = O(γw

−) as

w → −∞ where 0 < γ− < 1.

Condition 5.10 is equivalent to the following condition: there exists C > 0 and D > 0

such that U(w) ≤ Cγw
+ +D if w > 0 and U(w) ≥ −Cγw

− −D if w < 0.

For such utility functions, the following condition is sufficient for the existence and

finiteness of values for SR policies, as stated in Theorem 5.20.

Condition 5.11 (Finite Expected Exponential Utilities). For all policies π ∈ Π and all

states s ∈ S, v+π
exp(γ+)(s) and v−π

exp(γ−)(s) are finite, where γ+ > 1 and 0 < γ− < 1 are the

risk parameters from Condition 5.10.

Theorem 5.20. Assume that Condition 4.1 (Nondecreasing Utility Function), Condi-

tion 5.10 (Exponentially Bounded Utility Function), Condition 2.1 (Finite Model), and Con-

dition 5.11 (Finite Expected Exponential Utilities) hold. Then for all SR policies π ∈ ΠSR

and all states s ∈ S, the value vπ
U (s) exists.

Proof. Following the discussion in Section 5.2, we decompose the finite horizon values as

vπ
U,T (s) = Es,π [U(wT)]

308

= Es,π[U(wT)|sT /∈ Rπ] · P s,π(sT /∈ Rπ)

+ Es,π[U(wτ(T))|sT ∈ Rπ] · P s,π(sT ∈ Rπ)

+ Es,π[U(wT)− U(wτ(T))|sT ∈ Rπ] · P s,π(sT ∈ Rπ). (5.16)

Since v+π
exp(γ+)(s) is finite, it also hold that v+π(s) is finite according to Theorem 5.13. Therefore,

v+π
exp(γ+),T (s) = Es,π

[

γ
w+

T

+

]

= Es,π
[

γ
w+

T

+

∣
∣
∣ sT /∈ Rπ

]

· P s,π(sT /∈ Rπ) + Es,π
[

γ
w+

T

+

∣
∣
∣ sT ∈ Rπ

]

· P s,π(sT ∈ Rπ)

= Es,π
[

γ
w+

T

+

∣
∣
∣ sT /∈ Rπ

]

· P s,π(sT /∈ Rπ) + Es,π

[

γ
w+

τ(T)

+

∣
∣
∣
∣
sT ∈ Rπ

]

· P s,π(sT ∈ Rπ).

It then follows from Lemma 5.7 that

lim
T→∞

Es,π
[

γ
w+

T

+

∣
∣
∣ sT /∈ Rπ

]

· P s,π(sT /∈ Rπ) = 0

and the following limit exists and is finite

lim
T→∞

Es,π

[

γ
w+

τ(T)

+

∣
∣
∣
∣
sT ∈ Rπ

]

· P s,π(sT ∈ Rπ) = v+π
exp(γ+)(s). (5.17)

Since U(w) ≤ Cγw
+ +D for w ≥ 0 and wT ≤ w+

T , we have

Es,π [U(wT)| sT /∈ Rπ] · P s,π(sT /∈ Rπ) ≤ Es,π
[
U(w+

T)
∣
∣ sT /∈ Rπ

]
· P s,π(sT /∈ Rπ)

≤ Es,π
[

Cγ
w+

T

+ +D
∣
∣
∣ sT /∈ Rπ

]

· P s,π(sT /∈ Rπ).

and thus

lim sup
T→∞

Es,π [U(wT)| sT /∈ Rπ] · P s,π(sT /∈ Rπ)

≤ lim
T→∞

Es,π
[

Cγ
w+

T

+ +D
∣
∣
∣ sT /∈ Rπ

]

· P s,π(sT /∈ Rπ)

= C lim
T→∞

Es,π
[

γ
w+

T

+

∣
∣
∣ sT /∈ Rπ

]

· P s,π(sT /∈ Rπ) +D lim
T→∞

P s,π(sT /∈ Rπ) = 0. (5.18)

Similarly, since v−π
exp(γ−)(s) is finite, it also hold that v−π(s) is finite according to Theorem 5.9.

Therefore,

v−π
exp(γ−),T (s) = Es,π

[

γ
w−

T

−

]

= Es,π
[

γ
w−

T

−

∣
∣
∣ sT /∈ Rπ

]

· P s,π(sT /∈ Rπ) + Es,π
[

γ
w−

T

−

∣
∣
∣ sT ∈ Rπ

]

· P s,π(sT ∈ Rπ)

= Es,π
[

γ
w−

T

−

∣
∣
∣ sT /∈ Rπ

]

· P s,π(sT /∈ Rπ) + Es,π

[

γ
w−

τ(T)

−

∣
∣
∣
∣
sT ∈ Rπ

]

· P s,π(sT ∈ Rπ).

It then follows from Lemma 5.7 that

lim
T→∞

Es,π
[

γ
w−

T

−

∣
∣
∣ sT /∈ Rπ

]

· P s,π(sT /∈ Rπ) = 0

309

and the following limit exists and is finite

lim
T→∞

Es,π

[

γ
w−

τ(T)

−

∣
∣
∣
∣
sT ∈ Rπ

]

· P s,π(sT ∈ Rπ) = v−π
exp(γ−)(s). (5.19)

Since U(w) ≥ −Cγw
− −D for w ≤ 0 and wT ≥ w−

T , we have

Es,π [U(wT)| sT /∈ Rπ] · P s,π(sT /∈ Rπ) ≥ Es,π
[
U(w−

T)
∣
∣ sT /∈ Rπ

]
· P s,π(sT /∈ Rπ)

≥ Es,π
[

−Cγw−
T

− −D
∣
∣
∣ sT /∈ Rπ

]

· P s,π(sT /∈ Rπ).

and thus

lim inf
T→∞

Es,π [U(wT)| sT /∈ Rπ] · P s,π(sT /∈ Rπ)

≥ lim
T→∞

Es,π
[

−Cγw−
T

− −D
∣
∣
∣ sT /∈ Rπ

]

· P s,π(sT /∈ Rπ)

= −C lim
T→∞

Es,π
[

γ
w−

T

−

∣
∣
∣ sT /∈ Rπ

]

· P s,π(sT /∈ Rπ)−D lim
T→∞

P s,π(sT /∈ Rπ) = 0. (5.20)

Then it follows from Eq. (5.18) and Eq. (5.20) that the first term in Eq. (5.16) is

lim
T→∞

Es,π [U(wT)| sT /∈ Rπ] · P s,π(sT /∈ Rπ) = 0.

To consider the second term in Eq. (5.16), we use the following decomposition,

Es,π[U(wτ(T))|sT ∈ Rπ] · P s,π(sT ∈ Rπ)

=
T∑

t=1

Es,π [U(wt)|st ∈ Rπ, st−1 /∈ Rπ, sT ∈ Rπ] · P s,π(st ∈ Rπ, st−1 /∈ Rπ, sT ∈ Rπ)

=

T∑

t=1

Es,π [U(wt)|st ∈ Rπ, st−1 /∈ Rπ] · P s,π(st ∈ Rπ, st−1 /∈ Rπ).

Therefore,

∣
∣
∣Es,π [U(wτ(T))|sT ∈ Rπ] · P s,π(sT ∈ Rπ)

∣
∣
∣

≤
T∑

t=1

Es,π
[∣
∣U(wt)

∣
∣

∣
∣
∣st ∈ Rπ, st−1 /∈ Rπ

]

· P s,π(st ∈ Rπ, st−1 /∈ Rπ)

≤
T∑

t=1

(

Cmax
(
Es,π

[

γ
w+

t

+

∣
∣
∣ st ∈ Rπ, st−1 /∈ Rπ

]

,

Es,π
[

γ
w−

t

−

∣
∣
∣ st ∈ Rπ, st−1 /∈ Rπ

])
+D

)

· P s,π(st ∈ Rπ, st−1 ∈ Rπ)

= Cmax

(T∑

t=1

Es,π
[

γ
w+

t

+

∣
∣
∣ st ∈ Rπ, st−1 /∈ Rπ

]

· P s,π(st ∈ Rπ, st−1 /∈ Rπ),

T∑

t=1

Es,π
[

γ
w−

t

−

∣
∣
∣ st ∈ Rπ, st−1 /∈ Rπ

]

· P s,π(st ∈ Rπ, st−1 /∈ Rπ)

)

310

+D ·
T∑

t=1

P s,π(st ∈ Rπ, st−1 /∈ Rπ) ⊲ both γ
w

+
t

+ and γ
w

−
t

− are positive

= Cmax
(

Es,π

[

γ
w+

τ(T)

+

∣
∣
∣
∣
sT ∈ Rπ

]

· P s,π(sT ∈ Rπ), Es,π

[

γ
w−

τ(T)

−

∣
∣
∣
∣
sT ∈ Rπ

]

· P s,π(sT ∈ Rπ)
)

+D · P s,π(sT ∈ Rπ). (5.21)

Since

lim
T→∞

P s,π(sT ∈ Rπ) = 1,

it follows from Eq. (5.17), Eq. (5.19), and Eq. (5.21) that the quantity

Es,π[U(wτ(T))|sT ∈ Rπ] · P s,π(sT ∈ Rπ)

converges absolutely as T →∞, and therefore the second term in Eq. (5.16) converges as T →∞.

According to Condition 5.11 (Finite Expected Exponential Utilities), Theorem 5.9, and Theo-

rem 5.13, Condition 5.1 (One-Sided Finite Expected Rewards) holds. Then according to Lemma 5.3,

the third term in Eq. (5.16) is zero.

Therefore, the value vπ
U (s) is finite.

Condition 5.11, however, is too restrictive, and may exclude interesting problems with

improper policies, for example. Alternatively, an analogy to the case of linearly bounded

utility functions suggests that we consider the following weaker condition.

Condition 5.12 (One-Sided Finite Expected Exponential Utilities). For all policies π ∈ Π

and all states s ∈ S, at least one of v+π
exp(γ+)(s) and v−π

exp(γ−)(s) is finite, where γ+ > 1 and

0 < γ− < 1 are the risk parameters from Condition 5.10.

I conjecture that the values for all policies and the optimal values exist under this

condition. However, it is even unclear how to show that the result holds for stationary

policies.

Conjecture 5.5. Assume that Condition 4.1 (Nondecreasing Utility Function), Condi-

tion 5.10 (Exponentially Bounded Utility Function), Condition 2.1 (Finite Model), and

Condition 5.12 (One-Sided Finite Expected Exponential Utilities) hold. Then for all poli-

cies π ∈ Π and all states s ∈ S, the value vπ
U (s) exists. Therefore, for all states s ∈ S, the

optimal value v∗U (s) exists.

311

5.4.4 Bounded Total Rewards and Arbitrary Utility Functions

We next consider the case where the total reward is bounded from below or above. We

use Hs,π
T to denote the set of trajectories with finite horizon T starting from s ∈ S under

policy π ∈ Π. We define w(hT) =
T−1∑

t=0
rt for hT ∈ Hs,π

T , where rt is the t-th reward along

the trajectory hT . We also define the maximum finite horizon total reward as

vπ
max,T (s) = max

hT∈Hs,π
T

w(hT)

and the minimum finite horizon total reward as

vπ
min,T (s) = min

hT∈Hs,π
T

w(hT).

The maximum total reward (over an infinite horizon) then is

vπ
max(s) = lim

T→∞
vπ
max,T (s)

and the minimum total reward is

vπ
min(s) = lim

T→∞
vπ
min,T (s).

Notice that v+π
max(s) and v−π

min(s) are always well-defined since the maximum and mini-

mum finite horizon values are monotonic in T . We therefore consider the following condition.

Condition 5.13 (One-Sided Finite Total Reward). For all policies π ∈ Π and all states

s ∈ S, at least one of v+π
max(s) and v−π

min(s) is finite.

Theorem 5.21. Assume that Condition 2.1 (Finite Model) holds. Condition 5.13 (One-

Sided Finite Total Reward) implies Condition 5.1 (One-Sided Finite Expected Rewards).

Proof. We show that v+π
max(s) is finite implies that v+π(s) is finite. For all finite horizon T , it holds

that

v+π
max,T (s) ≥ v+π

T (s).

Therefore,

v+π
max(s) = lim

T→∞
v+π
max,T (s) ≥ lim

T→∞
v+π

T (s) = v+π(s).

Similarly, it holds that v−π
min(s) is finite implies that v−π(s) is finite. Therefore the result holds.

312

Lemma 5.22. Assume that Condition 2.1 (Finite Model) holds.

a. If v+π
max(s) is finite, then for all valid transitions (s, a, s′) where r(s, a, s′) > 0, it holds

that for all t ≥ 1, P s′,π(st = s) = 0.

b. If v−π
min(s) is finite, then for all valid transitions (s, a, s′) where r(s, a, s′) < 0, it holds

that for all t ≥ 1, P s′,π(st = s) = 0.

Proof. We prove part (a), and part (b) is similar. Suppose otherwise: there exists t0 ≥ 1 and

P s′,π(st0 = s) > 0. Then for all integer n ≥ 1, the probability of visiting s for n times is positive,

and thus receive a total positive part reward of at least nr(s, a, s′), which is greater than v+π
max(s) if

n is sufficiently large. Therefore the result holds.

Theorem 5.23. Assume that Condition 4.1 (Nondecreasing Utility Function), Condi-

tion 2.1 (Finite Model), and Condition 5.13 (One-Sided Finite Total Reward) hold. Then

for all policies π ∈ Π and all states s ∈ S, the value vπ
U (s) exists.

Proof. We consider the following different cases.

1. Suppose both v+π
max(s) and v−π

min(s) are finite. In this case, it holds that

v−π
min(s) ≤ v−π

min,T (s) ≤ vπ
min,T (s) ≤ wT ≤ vπ

max,T (s) ≤ v+π
max,T (s) ≤ v+π

max(s).

According to Lemma 5.22, only transitions with zero rewards can be taken more than once.

Since there are only a finite number of non-zero rewards, the total rewards for all trajectories

are bounded and there are only a finite number of possible total rewards. Therefore, the

risk-sensitive value for a state is an expectation over a finite set, and thus always exists.

2. Suppose v+π
max(s) is finite and v−π

min(s) = −∞. It follows from Lemma 5.22 that transitions

with positive rewards can only be taken at most once, or equivalently, there are only a finite

number of transitions with positive rewards in any trajectory under π. Consider the augmented

model as defined in Section 4.3.1. Recall that we define 〈〈〈r|U 〉〉〉(〈〈〈s〉〉〉, a, 〈〈〈s〉〉〉) = U(w′)−U(w), where

〈〈〈s〉〉〉 = (s, w) and 〈〈〈s〉〉〉′ = (s′, w′) where w,w′ ∈ W , and the transition (〈〈〈s〉〉〉, a, 〈〈〈s〉〉〉′) is possible if

and only if w′ = w + r(s, a, s′) and P (s′|s, a) > 0. Since U is monotonically nondecreasing,

a transition in the original model with r(s, a, s′) > 0 corresponds to a set of transitions in

the augmented model with 〈〈〈r|U 〉〉〉(〈〈〈s〉〉〉, a, 〈〈〈s〉〉〉′) ≥ 0 where 〈〈〈s〉〉〉 = (s, w) and 〈〈〈s〉〉〉′ = (s′, w + r(s, a, s′))

for all w ∈ W and vice versa. Since there are only a finite number of transitions with

313

positive rewards in any trajectory under π in the original model and the original model and

the augmented model induce the same random process of world states and actions under π

and Ψ(π), starting from s and 〈〈〈s〉〉〉 = (s, w) where w ∈ W , respectively, there are also only

a finite number of transitions with positive rewards in any trajectory under Ψ(π) in the

augmented model. It then follows that 〈〈〈v|U 〉〉〉
+Ψ(π)
max (s, w) is also finite for all w ∈ W . That is,

the augmented model is essentially negative under π (Hinderer, 1970, see below), and therefore

〈〈〈v|U 〉〉〉Ψ(π)(s, w) exists for all w ∈W (may be infinity). Then it follows from Theorem 4.11 that

vπ
U (s) = v

Φ0(Ψ(π))
U (s) = 〈〈〈v|U 〉〉〉Ψ(π)(s, 0) + U(0) exists.

3. Suppose v+π
max(s) =∞ and v−π

min(s) is finite. This case is similar to the previous case.

However, for the optimal values to be finite, we need the following pair of stronger

conditions.

Condition 5.14 (Finite Total Positive Part Reward). For all policies π ∈ Π and all states

s ∈ S, the values v+π
max(s) are finite.

Condition 5.15 (Finite Total Negative Part Reward). There exists a policy π ∈ Π such

that for all states s ∈ S, it holds that the values v−π
min(s) are finite.

MDPs satisfying Condition 5.14 are also referred to as essentially negative models in

the literature (Hinderer, 1970), since all, except for a finite number, of rewards along a

trajectory are negative (or zero). Similarly, MDPs satisfying the following condition, which

is stronger than Condition 5.15, are known as essentially positive models (Hinderer, 1970).

Condition 5.16 (All Finite Total Negative Part Reward). For all policies π ∈ Π and all

states s ∈ S, the values v−π
min(s) are finite.

Condition 5.14 and Condition 5.15 (even Condition 5.16) are, for example, satisfied for

acyclic MDPs if plan execution ends in absorbing states but are satisfied for some cyclic

MDPs as well.

Let v+∗
max(s) = sup

π∈Π
v+π
max(s). We have for all states s ∈ S,

v+∗
max(s) = max

a∈As

max
s′∈S

[
r+(s, a, s′) + v+∗

max(s
′)
]
.

Under Condition 5.14 (Finite Total Positive Part Reward), the values v+∗
max(s) are finite

since v+∗
max(s) is at most (N − 1)rmax where N is the number of states.

314

Theorem 5.24. Assume that Condition 4.1 (Nondecreasing Utility Function), Condi-

tion 2.1 (Finite Model), Condition 5.14 (Finite Total Positive Part Reward), and Con-

dition 5.15 (Finite Total Negative Part Reward) hold. Then the optimal values v∗U (s) exist

and are finite.

Proof. The optimal values exist since according to Theorem 5.23, the values vπ
U (s) exist for all

policies under Condition 5.14.

To show that the optimal values are finite, first we notice that under Condition 5.14, for all

policies π ∈ Π, all states s ∈ S, and all T ∈ N, it holds that

vπ
U,T (s) = Es,π[U(wT)] ≤ U(v+π

max,T (s)),

since wT ≤ v+π
max,T (s). Since vπ

U (s) exists according to Theorem 5.23, it holds that

vπ
U (s) = lim

T→∞
vπ

U,T (s) ≤ lim
T→∞

U(v+π
max,T (s)) = U(v+π

max(s)) ≤ U(v+∗
max(s)).

Since π is arbitrary, it holds that

v∗U (s) ≤ U(v+∗
max(s)) <∞.

Next, suppose that Condition 5.15 (Finite Total Negative Part Reward) holds for policy π. Then it

holds that

vπ
U,T (s) ≥ U(v−π

min,T (s)).

Therefore,

v∗U (s) ≥ vπ
U (s) = lim

T→∞
vπ

U,T (s) ≥ lim
T→∞

U(v−π
min,T (s)) = U(v−π

max(s)) > −∞.

5.5 Summary

In this chapter, we studied conditions for the existence and finiteness of optimal values.

We identified that linear and exponential utility functions can be viewed as “landmarks” to

characterize the properties of other risk-sensitive utility functions. Moreover, we developed

two classes of conditions on the utility functions and on the MDP models, and each class

covers a full spectrum of conditions. We proved the existence of values for stationary policies

under proper combinations of these conditions (at least one from each class). We also

conjectured that these combinations of conditions also ensure the existence and finiteness

of optimal values.

315

CHAPTER VI

CONCLUSION AND FUTURE WORK

6.1 Summary

In this thesis, I studied risk-sensitive planning objectives in decision-theoretical planning.

Following the MEU principle, risk-sensitive planning objectives incorporate the risk atti-

tudes of human decision makers into planning, and thus overcome some of the shortcomings

of risk-neutral planning objectives, which are the focus of current decision-theoretic planning

research. Instead of starting from scratch, ideas from decision-theoretic planning under the

MER objective can be adapted to decision-theoretic planning under risk-sensitive planning

objectives. Using Markov decision processes as the formal model, I established theoretical

properties and developed efficient algorithms that make this possible. I demonstrated that

optimal plans under a risk-sensitive objective are different from those under a risk-neutral

objective, and that such plans can be constructed efficiently.

Chapter 3 studied risk-sensitive planning with exponential utility functions, which model

constant risk attitudes. I showed that existing decision-theoretic planners can be trans-

formed to take into account constant risk attitudes. The transformed algorithms bear

visual resemblance to the original algorithms but special conditions are needed to ensure

their validity. Moreover, different versions of the transformation are needed if the transition

probabilities are implicitly given: the pseudo-probability transformation for temporally ex-

tended probabilities and the pseudo-discount factor transformation for probabilities given in

a factored form. I showed that the main symbolic strategies in decision-theoretic planning

for solving large-scale planning problems can still be used for risk-sensitive planning with

constant risk attitudes, and the risk-sensitive versions of algorithms using such strategies

can be obtained using the transformation and its variants to transform their risk-neutral

counterparts.

316

Chapter 4 studied risk-sensitive planning with more general utility functions, which

model variable risk attitudes. Using a state-augmentation approach, I showed that a func-

tional interpretation of value functions and piecewise linear approximation methods can be

used to solve planning problems efficiently, based on backward induction (for finite planning

horizons) and value iteration (for infinite planning horizons and asymptotically constant,

linear, or exponential utility functions). For one-switch utility functions, I also obtained an

exact method similar to backward induction, based on results for planning with general,

exponential, and linear utility functions.

Chapter 5 studied risk-sensitive planning with arbitrary rewards, while Chapter 3 and

Chapter 4 considered risk-sensitive planning with negative and positive models. For prob-

lems with arbitrary rewards, the theoretical foundation is incomplete. In this chapter, I

proposed different sets of conditions that form a spectrum and showed that under these

conditions, the values of stationary policies exist and are finite. I also conjectured that

under these conditions, the values of all policies and thus the optimal values exist and are

finite.

6.2 Future Work: Short Term

This thesis developed theories and algorithms for risk-sensitive planning. The treatment is,

however, far from complete. Here we list some possibilities for future research.

6.2.1 Theoretical Results

The convergence rates of the algorithms we presented in this thesis, especially those based

on value iteration, are unknown. Although we know that these methods converge to the

optimal values or an optimal policy, and even that methods for exponential utility functions

converge at a geometric rate, it is not clear how close the results are to the optimal ones.

Recent results for the MER objective (Bonet, 2002) suggest that the convergence rate can

be estimated by examining how the values change over time.

For planning with arbitrary rewards, we need to investigate the conjectures for the

existence and finiteness of the optimal values. The concepts of recurrent and transient

states need to be extended for the induced random processes under a general HR-policy.

317

6.2.2 Solution Methods

In Chapter 3, we applied the transformation approach to methods using symbolic strategies

such as heuristic search, temporal abstraction, and state abstraction. Another class of

methods for large-scale problems have numerical strategies such as function approximators

and direct policy search. It is worthwhile considering methods that use numerical strategies,

since they can be more efficient for some types of problems than symbolic strategies. The

main challenge is to show under what conditions such methods converge.

In Chapter 4, we considered value iteration using functional value functions. I anticipate

that functional value functions can also be used in methods for large-scale problems with a

symbolic strategy, therefore extending the applicability of the state-augmentation approach.

The main difficulty is how to manage the complexity of functional value functions.

6.2.3 Extensions

Utility functions are elicited from human decision makers to be used by autonomous agents

acting on their behalf. It is often the case that we can determine the form of utility functions,

but only with imprecise parameters. In this case, a research topic is to study the sensitivity

of optimal plans with respect to these imprecise parameters, and to develop methods for

planning with imprecise utility functions.

Reinforcement learning is the problem for an agent to learn how to act by acting in

the environment and receiving feedbacks. Using MDPs as the formal model, reinforcement

learning methods can be viewed as online versions of planning methods, and do not assume

that the dynamics of the agent’s interaction with its environment is known. On the other

hand, the current state is often only partially known in real-world planning problems. Such

problems are captured by partially observable MDP (POMDP) models. Extensions for

reinforcement learning and POMDPs under MEU objectives therefore constitute one more

step towards solving real-world planning problems.

318

6.3 Future Work: Long Term

In the long term, I am interested in building autonomous agents that are able to act intel-

ligently and provide valuable services to people in a complex environment involving uncer-

tainty while taking into account the preference structures of their human users. Besides risk

attitudes, there are other aspects that affect the preference structures of human users, such

as the tradeoff among multiple types of rewards, and the requirement of achieving goals.

In real applications, the decision maker often trades off different resources, such as

product quality and cost in business situations, or energy and time for robot navigation on

Mars. Executing actions then results in reward tuples. In this case, preference structures

can usually be captured by multi-attribute utility functions, and the planning objective is

to maximize the expected multi-attribute utility.

Many planning problems require the agent to achieve some desired goal, which can be

predefined goal states or temporally extended goals. Goals are very important in classical

AI planning but not in decision-theoretic planning, since the latter uses rewards exclusively

in its planning objectives. Although in some problems, the rewards can be assigned so

that a plan maximizing the expected reward (or utility) also achieves the goal. But this

is not the case in general. On the other hand, people often prefer a plan that guarantees

goal achievement if only a small amount of the expected reward (or utility) is sacrificed.

Therefore we need a more thorough study of planning tasks that require goal achievements.

All these aspects, and likely more, need to be taken into consideration when building

usable planning systems including decision support systems for real-world applications such

as e-commerce or planetary rovers. This thesis takes a first step towards building such plan-

ning systems by integrating ideas from artificial intelligence planning, operations research,

and utility theory. Our results showed that it is promising that complex human prefer-

ence structures, such as risk attitudes, can be incorporated into decision-theoretic planning

without compromising too much of their efficiency.

319

REFERENCES

Ávila-Godoy, Guadalupe; Brau, Agustin; and Fernández-Gaucherand, Emmanuel, 1997.
Controlled Markov chains with discounted risk-sensitive criteria: Applications to machine
replacement. In Proceedings of the 36th Conference on Decision and Control (CDC-97).

Ávila-Godoy, Micaela Guadalupe, 1999. Controlled Markov Chains with Exponential Risk-
Sensitive Criteria: Modularity, Structured Policies and Applications. Ph.D. thesis, De-
partment of Mathematics, University of Arizona.

Bahar, R. Iris; Frohm, Erica A.; Gaona, Charles M.; Hachtel, Gary D.; Macii, Enrico; Pardo,
Abelardo; and Somenzi, Fabio, 1993. Algebraic decision diagrams and their applications.
In Proceedings of the 1993 IEEE/ACM International Conference on Computer-Aided
Design (ICCAD-93), pages 188–191.

Barberá, Salvador; Hammond, Peter J.; and Seidl, Christian, eds., 1998. Handbook of Utility
Theory, Volume 1: Principles. Kluwer Academic Publishers.

Barto, Andrew G.; Bradtke, Steven J.; and Singh, Satinder P., 1995. Learning to act using
real-time dynamic programming. Artificial Intelligence, 72:81–138.

Baxter, Jonathan and Bartlett, Peter L., 2001. Infinite-horizon policy-gradient estimation.
Journal of Artificial Intelligence Research, 15:319–350.

Baxter, Jonathan; Bartlett, Peter L.; and Weaver, Lex, 2001. Experiments with infinite-
horizon, policy-gradient estimation. Journal of Artificial Intelligence Research, 15:351–
381.

Bell, David E., 1988. One-switch utility functions and a measure of risk. Management
Science, 34(12):1416–1424.

Bell, David E. and Fishburn, Peter C., 2001. Strong one-switch utility. Management Science,
47(4):601–604.

Bell, David E.; Raiffa, Howard; and Tversky, Amos, eds., 1988. Decision Making: Descrip-
tive, Normative, and Prescriptive Interactions. Cambridge University Press.

Bertsekas, Dimitri P., 2001. Dynamic Programming and Optimal Control , volume 2. Athena
Scientific, 2nd edition.

Bertsekas, Dimitri P. and Tsitsiklis, John N., 1991. An analysis of stochastic shortest path
problems. Mathematics of Operations Research, 16(3):580–595.

Bertsekas, Dimitri P. and Tsitsiklis, John N., 1996. Neuro-Dynamic Programming . Athena
Scientific.

Blythe, Jim, 1997. Planning under Uncertainty in Dynamic Domains. Ph.D. thesis, School
of Computer Science, Carnegie Mellon University.

Blythe, Jim, 1999. Decision-theoretic planning. AI Magazine, 20(2):37–54.

320

Bonet, Blai, 2002. Stochastic shortest-path problems and real-time DP: New theoretical
results. Available from the Web.

Bonet, Blai and Geffner, Héctor, 2001. Heuristic search planner: 2.0. AI Magazine,
22(3):77–80.

Bonet, Blai and Geffner, Héctor, 2002. Solving stochastic shortest-path problems with
RTDP. Technical report, Department of Computer Science, University of California at
Los Angeles.

Bonet, Blai and Geffner, Héctor, 2003a. Faster heuristic search algorithms for planning
with uncertainty and full feedback. In Proceedings of the Eighteenth International Joint
Conference on Artificial Intelligence (IJCAI-03), pages 1233–1238.

Bonet, Blai and Geffner, Héctor, 2003b. Labeled RTDP: Improving the convergence of real-
time dynamic programming. In Proceedings of the Thirteenth International Conference
on Automated Planning and Scheduling (ICAPS-03), pages 12–21.

Bouakiz, Mokrane, 1985. Risk-Sensitivity in Stochastic Optimization with Applications.
Ph.D. thesis, School of Industrial and Systems Engineering, Georgia Institute of Tech-
nology.

Bouakiz, Mokrane and Kebir, Youcef, 1995. Target-level criterion in Markov decision
processes. Journal of Optimization Theory and Applications, 86(1):1–15.

Boutilier, Craig, 1997. Correlated action effects in decision theoretic regression. In Pro-
ceedings of the Thirteenth Annual Conference on Uncertainty in Artificial Intelligence
(UAI-97), pages 30–37.

Boutilier, Craig; Dean, Thomas; and Hanks, Steve, 1999. Decision-theoretic planning:
Structural assumptions and computational leverage. Journal of Artificial Intelligence
Research, 11:1–94.

Boutilier, Craig and Dearden, Richard, 1996. Approximating value trees in structured
dynamic programming. In Proceedings of the Thirteenth International Conference on
Machine Learning (ICML-96).

Boutilier, Craig; Dearden, Richard; and Goldszmidt, Moisés, 1995. Exploiting structure in
policy construction. In Proceedings of the Fourteenth International Joint Conference on
Artificial Intelligence (IJCAI-95).

Boutilier, Craig; Dearden, Richard; and Goldszmidt, Moisés, 2000. Stochastic dynamic
programming with factored representations. Artificial Intelligence, 121:49–107.

Brau-Rojas, Agustin, 1999. Controlled Markov Chains with Risk-Sensitive Average Cost
Criterion. Ph.D. thesis, Department of Mathematics, University of Arizona.

Cavazos-Cadena, Rolando and Fernández-Gaucherand, Emmanuel, 1999. Controlled
Markov chains with risk-sensitive criteria: Average cost, optimality equations, and opti-
mal solutions. Mathematics Methods of Operations Research, 49:299–324.

Cavazos-Cadena, Rolando and Montes-de-Oca, Raúl, 2000a. Nearly optimal policies in
risk-sensitive positive dynamic programming on discrete spaces. Mathematics Methods of
Operations Research, 52:133–167.

321

Cavazos-Cadena, Rolando and Montes-de-Oca, Raúl, 2000b. Optimal stationary policies in
risk-sensitive dynamic programs with finite state space and nonnegative rewards. Appli-
cationes Mathematicae, 27(2):167–185.

Chawla, Jay P., 2000. Optimal Risk Sensitive Control of Semi-Markov Decision Processes.
Ph.D. thesis, Institute of Systems Research, University of Maryland at College Park.

Chung, Kun-Jen and Sobel, Matthew J., 1987. Discounted MDP’s: Distribution func-
tions and exponential utility maximization. SIAM Journal of Control and Optimization,
35(1):49–62.

Cohn, Paul R.; Greenberg, Michael L.; Hart, David M.; and Howe, Adele E., 1989. Trial
by fire: Understanding the design requirements for agents in complex environments. AI
Magazine, 10(3):32–48.

Coraluppi, Stefano P. and Marcus, Steven I., 1996. Risk-sensitive control of Markov decision
processes. In Proceedings of the 30th Annual Conference on Information Sciences and
Systems (CISS-96), pages 934–939.

Corman, Thomas H.; Leiserson, Charles E.; and Rivest, Ronald L., 1990. Introduction to
Algorithms. The MIT Press.

Corner, James L. and Corner, Patricia D., 1995. Characteristics of decisions in decision
analysis practice. The Journal of Operational Research Society , 46:304–314.

Dean, Thomas; Kaelbling, Leslie Pack; Kirman, Jak; and Nicholson, Ann, 1995. Planning
under time constraints in stochastic domains. Artificial Intelligence, 76(1-2):35–74.

Dean, Thomas and Kanazawa, Keiji, 1989. A model for reasoning about persistence and
causation. Computational Intelligence, 5:142–150.

Dean, Thomas and Lin, Shieu-Hong, 1995. Decomposition techniques for planning in sto-
chastic domains. In Proceedings of the Fourteenth International Joint Conference on
Artificial Intelligence (IJCAI-95).

Dechter, Rina, 1996. Bucket elimination: A unifying framework for probabilistic inference.
In Proceedings of the Twelfth Annual Conference on Uncertainty in Artificial Intelligence
(UAI-96), pages 211–219.

Denardo, Eric V. and Rothblum, Uriel G., 1979. Optimal stopping, exponential utility, and
linear programming. Mathematical Programming , 16:228–244.

di Masi, Giovanni B. and Stettner, Lukasz, 1999. Risk-sensitive control of discrete-time
Markov processes with infinite horizon. SIAM Journal of Control and Optimization,
38(1):61–78.

Dietterich, Thomas G., 2000. Hierarchical reinforcement learning with the MAXQ value
function decomposition. Journal of Artificial Intelligence Research, 13:227–303.

Dolgov, Dmitri and Durfee, Edmund, 2004. Approximate probabilistic constraints and risk-
sensitive optimization criteria in Markov decision processes. In Proceedings of the Eighth
International Symposium on Artificial Intelligence and Mathematics. Fort Lauderdale,
FL.

322

Eagle, James Norfleet, II, 1975. A Utility Criterion for the Markov Decision Process. Ph.D.
thesis, Department of Engineering-Economic Systems,Stanford University.

Fainberg [sic], Eugene A., 1982. Controlled Markov processed with arbitrary numerical
criteria. Theory of Probability and its Applications, 27(3):486–503.

Farquhar, Peter H. and Nakamura, Yutaka, 1987. Constant exchange risk properties. Op-
erations Research, 35(2):206–214.

Feinberg, Eugene A., 2002. Total reward criteria. In Eugene A. Feinberg and Adam Shwartz,
eds., Handbook of Markov Decision Processes: Methods and Applications, chapter 6, pages
173–208. Kluwer.

Feinberg, Eugene A. and Shwartz, Adam, eds., 2002. Handbook of Markov Decision
Processes: Methods and Applications. Kluwer.

Feng, Zhengzhu and Hansen, Eric A., 2001. Approximate planning for factored POMDPs.
In Proceedings of the Sixth European Conference on Planning (ECP-01).

Feng, Zhengzhu and Hansen, Eric A., 2002. Symbolic heuristic search for factored markov
decision processes. In Proceedings of the Eighteenth National Conference on Artificial
Intelligence (AAAI-02).

Feng, Zhengzhu; Hansen, Eric A.; and Zilberstein, Shlomo, 2003. Symbolic generalization
for on-line planning. In Proceedings of the Eighteenth Annual Conference on Uncertainty
in Artificial Intelligence (UAI-03), pages 209–216.

Fern, Alan; Yoon, SungWook; and Givan, Robert, 2003. Approximate policy iteration
with a policy language bias. In Advances in Neural Information Processing Systems 16
(NIPS-03).

Fikes, Richard E. and Nilsson, Nils J., 1971. STRIPS: A new approach to the application
of theorem proving to problem solving. Artificial Intelligence, 2:189–208.

Fishburn, Peter C., 1967. Bounded expected utility. The Annals of Mathematical Statistics,
38(4):1054–1060.

Fishburn, Peter C., 1970. Utility Theory for Decision Making . John Wiley & Sons.

Fishburn, Peter C., 1975. Unbounded expected utility. The Annals of Statistics, 3(4):884–
896.

French, Simon, 1986. Decision Theory: An Introduction to the Mathematics of Rationality .
Prentice Hall.

Friedman, Milton and Savage, Leonard J., 1948. The utility analysis of choices involving
risk. The Journal of Political Economy , 56(4):279–304.

Givan, Robert; Dean, Thomas; and Greig, Matthew, 2003. Equivalence notions and model
minimization in Markov decision processes. Artificial Intelligence, 147:163–223.

Givan, Robert; Leach, Sonia; and Dean, Thomas, 2000. Bounded-parameter Markov deci-
sion processes. Artificial Intelligence, 122(1-2):71–109.

323

Goodwin, Richard T.; Akkiraju, Rama; and Wu, Frederick, 2002. A decision-support
system for quote-generation. In Proceedings of the Fourteenth Conference on Innovative
Applications of Artificial Intelligence (IAAI-02), pages 830–837.

Guestrin, Carlos; Koller, Daphne; and Parr, Ronald, 2001. Max-norm projections for fac-
tored MDPs. In Proceedings of the Seventeenth International Joint Conference on Arti-
ficial Intelligence (IJCAI-01), pages 673–680.

Guestrin, Carlos; Koller, Daphne; Parr, Ronald; and Venkataraman, Shobha, 2003. Effi-
cient solution algorithms for factored MDPs. Journal of Artificial Intelligence Research,
19:399–468.

Haddawy, Peter and Hanks, Steve, 1992. Representations for decision-theoretic planning:
Utility functions for deadline goals. In Proceedings of the Third International Conference
on Principles of Knowledge Representation and Reasoning (KR-92), pages 71–82.

Hansen, Eric A., 1994. Cost-effective sensing during plan execution. In Proceedings of the
Twelfth National Conference on Artificial Intelligence (AAAI-94), pages 1029–1035.

Hansen, Eric A., 1997. Markov decision processes with observation costs. Technical Report
97-01, Department of Computer Science, University of Massachusetts at Amherst.

Hansen, Eric A. and Feng, Zhengzhu, 2000. Dynamic programming for POMDPs using a
factored state representation. In Proceedings of the Fifth International Conference on
Artificial Intelligence Planning and Scheduling (AIPS-00), pages 130–139.

Hansen, Eric A.; Zhou, Rong; and Feng, Zhengzhu, 2002. Symbolic heuristic search using
decision diagrams. In Proceedings of the Fifth International Symposium on Abstraction,
Reformulation and Approximation (SARA-02).

Hansen, Eric A. and Zilberstein, Shlomo, 1998. Heuristic search in cyclic AND/OR graphs.
In Proceedings of the Fifteenth National Conference on Artificial Intelligence (AAAI-98),
pages 412–418.

Hansen, Eric A. and Zilberstein, Shlomo, 1999a. A heuristic search algorithm for Markov
decision problems. In Proceedings of Bar-Ilan Symposium on the Foundation of Artificial
Intelligence.

Hansen, Eric A. and Zilberstein, Shlomo, 1999b. Solving Markov decision problems us-
ing heuristic search. In Proceedings of AAAI Spring Symposium on Search Techniques
from Problem Solving under Uncertainty and Incomplete Information, March, Stanford,
California.

Hansen, Eric A. and Zilberstein, Shlomo, 2001. LAO*: A heuristic search algorithm that
finds solutions with loops. Artificial Intelligence, 129:35–62.

Hart, Peter E.; Nilsson, Nils J.; and Raphael, Bertram, 1968. A formal basis for the heuristic
determination of minimum cost paths in graphs. IEEE Transactions on Systems Science
and Cybernetics, 4(2):100–107.

Hartfiel, Darald J., 2002. Nonhomogeneous Matrix Products. World Scientific.

324

Harvey, Charles, 1995. Proportional discounting of future costs and benefits. Mathematics
of Operations Research, 20(2):381–399.

Hauskrecht, Milos; Meuleau, Nicolas; Kaelbling, Leslie Pack; Dean, Thomas; and Boutilier,
Craig, 1998. Hierarchical solution of Markov decision processes using macro-actions. In
Proceedings of the Fourteenth Annual Conference on Uncertainty in Artificial Intelligence
(UAI-98).

Hernández-Hernández, Daniel and Marcus, Steven I., 1996. Risk-sensitive control of Markov
processes in countable state space. Systems and Control Letters, 29:147–155.

Hernández-Hernández, Daniel and Marcus, Steven I., 1999. Existence of risk-sensitive op-
timal stationary policies for controlled Markov processes. Applied Mathematics and Op-
timization, 40(3):273–285.

Hill, Theodore P. and Pestien, Victor C., 1987. The existence of good Markov strategies
for decision processes with general payoffs. Stochastic Processes and their Applications,
24:61–76.

Hinderer, Karl, 1970. Foundations of Non-Stationary Dynamic Programming with Discrete
Time Parameter . Springer-Verlag.

Hoey, Jesse; St. Aubin, Robert; Hu, Alan J.; and Boutilier, Craig, 1999. SPUDD: Stochastic
planning using decision diagrams. In Proceedings of the Fifteenth Annual Conference on
Uncertainty in Artificial Intelligence (UAI-99), pages 279–288.

Hoffman, Jörg and Nebel, Bernhard, 2001. The FF planning system: Fast plan generation
through heuristic search. Journal of Artificial Intelligence Research, 14:253–302.

Howard, Ronald A. and Matheson, James E., 1972. Risk-sensitive markov decision processes.
Management Science, 18(7):356–369.

Jaquette, Stratton C., 1973. Markov decision processes with a new optimality criterion:
Discrete time. The Annals of Statistics, 1(3):496–505.

Jaquette, Stratton C., 1976. A utility criterion for Markov decision processes. Management
Science, 23(1):43–49.

Jia, Zhongxiao, 1998. Generalized block Lanczos methods for large unsymmetric eigenprob-
lems. Numerische Mathematik , 80:239–266.

Kadota, Yoshinobu; Kurano, Masami; and Yasuda, Masami, 1994. Discounted Markov
decision processes with general utility functions. In Proceedings of the Third Conference of
the Association of Asian-Pacific Operational Research Societies (APORS) within IFORS,
July 26–29, 1994, Fukuoka, Japan, pages 330–337.

Kadota, Yoshinobu; Kurano, Masami; and Yasuda, Masami, 1998a. On the general utility
of discounted Markov decision processes. The International Transactions in Operational
Research, 5(1):27–34.

Kadota, Yoshinobu; Kurano, Masami; and Yasuda, Masami, 1998b. Stopped decision
processes in conjuction with general utility. In Proceedings of the 7th International Con-
ference on Stochastic Programming .

325

Kaelbling, Lelie Pack; Littman, Michael L.; and Moore, Andrew W., 1996. Reinforcement
learning: A survey. Journal of Artificial Intelligence Research, 4:237–285.

Kahneman, Daniel; Slovic, Paul; and Tversky, Amos, eds., 1982. Judgement under Uncer-
tainty: Heuristics and Biases. Cambridge University Press.

Kearns, Michael; Mansour, Yishay; and Ng, Andrew Y., 2002. A sparse sampling algorithm
for near-optimal planning in large Markov decision processes. Machine Learning , 49(2-
3):193–208.

Keeney, Ralph L. and Raiffa, Howard, 1976. Decisions with Multiple Objectives: Preferences
and Value Tradeoffs. John Wiley & Sons.

Kemeny, John G. and Snell, James Laurie, 1960. Finite Markov Chains. D. Van Nostrand
Company.

Kemeny, John G.; Snell, James Laurie; and Knapp, Anthony W., 1976. Denumerable
Markov Chains. Springer-Verlag, 2nd edition.

Kennan, John, 1981. The existence of expected utility maximizing decisions when utility is
unbounded. Econometrica, 49(1):215–218.

Kerr, Andrew L., 1999. Utility maximising stochastic dynamic programming: An overview.
In Proceedings of the 34th Annual Conference of the Operational Research Society of New
Zealand (ORSNZ-99), December 10-11, Hamilton, New Zealand .

Köbberling, Veronika, 2002. Preference foundations for difference representations. Technical
report, METEOR, Maastricht University, The Netherlands.

Koenig, Sven, 1992. Optimal Probabilistic and Decision-Theoretic Planning Using Markov-
ian Decision Theory . Master’s thesis, Department of Electrical Engineering and Com-
puter Science, University of California at Berkeley.

Koenig, Sven, 1997. Goal-Directed Acting with Incomplete Information. Ph.D. thesis, School
of Computer Science, Carnegie Mellon University.

Koenig, Sven and Liu, Yaxin, 1999. Sensor planning with non-linear utility functions. In
Proceedings of the Fifth European Conference on Planning (ECP-99), pages 265–277.

Koenig, Sven and Liu, Yaxin, 2002. The interaction of representations and planning ob-
jectives for decision-theoretic planning tasks. Journal of Experimental and Theoretical
Artificial Intelligence, 14(4):303–326.

Koenig, Sven and Simmons, Reid G., 1994a. How to make reactive planners risk-sensitive
(without altering anything). In Proceedings of the Second International Conference on
Artificial Intelligence Planning Systems (AIPS-94), pages 293–298.

Koenig, Sven and Simmons, Reid G., 1994b. Risk-sensitive planning with probabilistic
decision graphs. In Proceedings of the Fourth International Conference on Principles of
Knowledge Representation and Reasoning (KR-94), pages 2301–2308.

Koller, Daphne and Parr, Ronald, 1999. Computing factored value functions for policies
in structured MDPs. In Proceedings of the Sixteenth International Joint Conference on
Artificial Intelligence (IJCAI-99), pages 1332–1339.

326

Koller, Daphne and Parr, Ronald, 2000. Policy iteration for factored MDPs. In Proceedings
of the Sixteenth Annual Conference on Uncertainty in Artificial Intelligence (UAI-00),
pages 326–334.

Korf, Richard E., 1987. Planning as search: A quantitative approach. Artificial Intelligence,
33(1):65–88.

Korf, Richard E., 1990. Real-time heuristic search. Artificial Intelligence, 42(3):189–212.

Kreps, David M., 1977a. Decision problems with expected utility criteria, I: Upper and
lower convergent utility. Mathematics of Operations Research, 2(1):45–53.

Kreps, David M., 1977b. Decision problems with expected utility criteria, II: Stationarity.
Mathematics of Operations Research, 2(3):266–274.

Kreps, David M., 1978. Decision problems with expected utility criteria, III: Upper and
lower transience. SIAM Journal of Control and Optimization, 16(3):420–428.

Laibson, David I., 1994. Hyperbolic Discounting and Consumption. Ph.D. thesis, Depart-
ment of Economics, Massachusetts Institute of Technology.

Liu, Yan-Qun; Teo, Kok-Lay; and Yang, Xiao-Qi, 1999. Approximation methods for non-
convex curves. European Journal of Operational Research, 117:125–135.

Marcus, Steven I.; Fernández-Gaucherand, Emmanual; Hernández-Hernandez, Daniel;
Coraluppi, Stefano; and Fard, Pedram, 1997. Risk sensitive Markov decision processes.
In Christopher I. Byrnes; Biswa Nath Datta; Clyde F. Martin; and David S. Gilliam,
eds., Systems and Control in the Twenty-First Century , pages 263–279. Birkhäuser.

McCarthy, John and Hayes, Patrick J., 1969. Some philosophical problems from the stand-
point of artificial intelligence. In Bernald Meltzer and Donald Michie, eds., Machine
Intelligence, pages 463–502. Edinburgh University Press.

Müller, Alfred, 2000. Expected utility maximization of optimal stopping problems. European
Journal of Operational Research, 12:101–114.

Murthy, Sesh; Akkiraju, Rama; Goodwin, Richard; Keskinocak, Pinar; Rachlin, John; Wu,
Frederick; Kumaran, Santhosh; Yeh, James; Fuhrer, Robert; Aggarwal, Alok; Sturzen-
becker, Martin; Jayaraman, Ranga; and Daigle, Bob, 1999. Cooperative multi-objective
decision-support for the paper industry. Interface, 29(5):5–30.

Nau, Dana S.; Cao, Yue; Lotem, Amnon; and Muñoz-Avila, Héctor, 1999. SHOP: Simple hi-
erarchical ordered planner. In Proceedings of the Sixteenth International Joint Conference
on Artificial Intelligence (IJCAI-99), pages 968–973.

Ng, Andrew Y. and Jordan, Michael I., 2000. PEGASUS: A policy search method for large
MDPs and POMDPs. In Proceedings of the Sixteenth Annual Conference on Uncertainty
in Artificial Intelligence (UAI-00).

Nilsson, Nils J., 1980. Principles of Artificial Intelligence. Morgan Kaufman.

Ohtsubo, Yoshio and Toyonaga, Kenji, 2002. Optimal policy for minimizing risk models in
Markov decision processes. Journal of Mathematical Analysis and Applications, 271:66–
81.

327

Parr, Ronald, 1998. Hierarchical Control and Learning for Markov Decision Processes.
Ph.D. thesis, Department of Electrical Engineering and Computer Science, University of
California at Berkeley.

Parr, Ronald and Russell, Stuart, 1998. Reinforcement learning with hierarchies of ma-
chines. In Advances in Neural Information Processing Systems 11 (NIPS-98), pages
1043–1049.

Patek, Stephen D., 2001. On terminating Markov decision processes with a risk averse
objective function. Automatica, 37(9):1379–1386.

Patrascu, Relu; Poupart, Pascal; Schuurmans, Dale; Boutilier, Craig; and Guestrin, Carlos,
2002. Greedy linear value function approximation for factored Markov decision processes.
In Proceedings of the Eighteenth National Conference on Artificial Intelligence (AAAI-
02).

Pearl, Judea, 1988. Probabilistic Reasoning in Intelligent Systems. Morgan-Kaufmann.

Pednault, Edwin P.D., 1989. ADL: Exploring the middle ground between STRIPS and the
situation calculus. In Proceedings of the First International Conference on Principles of
Knowledge Representation and Reasoning (KR-89), pages 324–332.

Pell, Barney; Bernard, Douglas; Chien, Steve; Gat, Erann; Muscettola, Nicola; Nayak,
P. Pandurang; Wagner, Michael; and Williams, Brian, 1998. An autonomous spacecraft
agent prototype. Autonomous Robotics, 5:1–27.

Porteus, Evan L., 1975. On the optimality of structured policies in countable stage decision
processes. Management Science, 22(2):148–157.

Poupart, Pascal; Boutilier, Craig; Schuurmans, Dale; and Patrascu, Relu, 2002. Piecewise
linear value function approximation for factored MDPs. In Proceedings of the Eighteenth
National Conference on Artificial Intelligence (AAAI-02).

Pratt, John W., 1964. Risk aversion in the small and in the large. Econometrica, 32(1-
2):122–136.

Precup, Doina, 2000. Temporal Abstraction in Reinforcement Learning . Ph.D. thesis, De-
partment of Computer Science, University of Massachusetts at Amherst.

Precup, Doina; Sutton, Richard S.; and Singh, Satinder, 1997. Planning with closed-
loop macro actions. In Working Notes of the AAAI Fall Symposium on Model-Directed
Autonomous Systems, pages 70–76. Cambridge, MA.

Puterman, Martin L., 1994. Markov Decision Processes: Discrete Stochastic Dynamic
Programming . John Wiley & Sons.

Rote, Günter, 1992. The convergence rate of the sandwich algorithm for approximating
convex functions. Computing , 48:337–361.

Russell, Stuart J. and Novig, Peter, 2002. Artificial Intelligence: A Modern Approach.
Prentice Hall, 2nd edition.

328

Schäl, Manfred, 1981. Utility functions and optimal policies in sequential decision prob-
lems. In Otto Moeschlin and Diethard Pallaschke, eds., Game Theory and Mathematical
Economics, pages 357–365. North-Holland Publishing Company.

Seneta, Eugene, 1981. Non-Negative Matrices and Markov Chains. Springer-Verlag.

Simmons, Reid; Krotkov, Eric; Chrisman, Lonnie; Cozman, Fabio; Goodwin, Richard;
Hebert, Martial; Katragadda, Lalitesh; Koenig, Sven; Krishnaswamy, Gita; Shinoda,
Yoshikazu; Whittaker, William; and Klarer, Paul, 1995. Experience with rover navigation
for lunar-like terrains. In Proceedings of the 1995 IEEE/RSJ International Conference
on Intelligent Robots and Systems (IROS-95), pages 441–446.

Simon, Herbert A., 1947. Administrative Behavior . MacMillan.

Somenzi, Fabio, 2004. CUDD: CU decision diagram package, Release 2.4.0.
http://vlsi.colorado.edu/~fabio/CUDD/cuddIntro.html.

Sondik, Edward J., 1971. The Optimal Control of Partially Observable Markov Processes.
Ph.D. thesis, Stanford University.

St. Aubin, Robert; Hoey, Jesse; and Boutilier, Craig, 2000. APRICODD: Approximate pol-
icy construction using decision diagrams. In Advances in Neural Information Processing
Systems 13 (NIPS-00).

Sutton, Richard S. and Barto, Andrew G., 1998. Reinforcement Learning: An Introduction.
The MIT Press.

Sutton, Richard S.; McAllester, David; Singh, Satinder; and Mansour, Yishay, 1999a. Policy
gradient methods for reinforcement learning with function approximation. In Advances
in Neural Information Processing Systems 12 (NIPS-99), pages 1057–1063.

Sutton, Richard S.; Precup, Doina; and Singh, Satinder P., 1999b. Between MDPs and
semi-MDPs: A framework for temporal abstraction in reinforcement learning. Artificial
Intelligence, 112:181–211.

Tate, Austin, 1977. Generating project networks. In Proceedings of the Fifth International
Joint Conference on Artificial Intelligence (IJCAI-77), pages 888–893.

van de Kuilen, Gijs and Wakker, Peter P., 2004. Learning in the Allais paradox. Working
paper, CREED, Department of Economics, University of Amsterdam, The Netherlands.

von Neumann, John and Morgenstern, Oskar, 1944. Theory of Games and Economic Be-
havior . Princeton University Press.

White, Douglas John, 1987. Utility, probabilistic constraints, mean and variance of dis-
counted rewards in Markov decision processes. OR Spektrum, 9:13–22.

White, Douglas John, 1993. Minimising a threshold probability in discounted Markov
decision processes. Journal of Mathematical Analysis and Applications, 173(634-646):634–
646.

329

Whittle, Peter, 1996. Why discount? The rationale of discounting in optimisation prob-
lems. In Chris C. Heyde; Yuri V. Prohorov; Ronald Pyke; and Svetlosar T. Rachev, eds.,
Athens Conference on Applied Probability and Time Series, Volume 1: Applied Probabil-
ity , volume 114 of Lecture Notes in Statistics, pages 354–360. Springer-Verlag.

Wu, Congbin and Lin, Yuanlie, 1999. Minimizing risk models in Markov decision processes
with policies depending on target values. Journal of Mathematical Analysis and Applica-
tions, 231:47–67.

Xie, Aiguo and Beerel, Peter A., 2000. Implicit enumeration of strongly connected compo-
nents and an application to formal verification. IEEE Transactions on Computer-Aided
Design of Integrated Circuits and Systems, 19:1225–1230.

Yu, Stella X.; Lin, Yuanlie; and Yan, Pingfan, 1998. Optimization models for the first
arrival target distribution function in discrete time. Journal of Mathematical Analysis
and Applications, 225:193–223.

Zilberstein, Shlomo; Washington, Richard; Bernstein, Daniel S.; and Mouaddib, Abdel-
Illah, 2002. Decision-theoretic control of planetary rovers. In Michael Beetz; Joachim
Hertzberg; Malik Ghallab; and Martha E. Pollack, eds., Advances in Plan-Based Control
of Robotic Agents, volume 2466 of Lecture Notes in Computer Science, pages 270–289.
Springer.

330

