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Abstract

Path planning is the problem of finding a sequence of waypoints that an agent can follow
through a continuous environment to reach its goal location while avoiding obstacles. A
typical approach to solving the path-planning problem in many real-world applications is
to discretize the configuration space of the agent into a graph, that can then be searched
for a path from a given start vertex to a given goal vertex. The choice of discretization
depends mostly on the agent, the environment, and the application. For instance, one
can use road networks for navigation systems, grid graphs for video games, or state
lattices for agents with kinematic constraints. In some applications of path planning,
the environment is static and known in advance, allowing one to analyze its associated
graph in a preprocessing phase to generate auxiliary information, which can then be used
to answer path-planning queries faster. A number of preprocessing-based path-planning
algorithms have been developed that speed up path-planning queries by several orders of
magnitude on road networks. These algorithms are applicable to any graph and provably
efficient on graphs that have small highway dimensions, such as road networks. Grid
graphs, on the other hand, have larger highway dimensions than road networks. When
some of these algorithms are applied to grid graphs, the speed-up is smaller, and the
memory requirements, relative to the original graph, are higher.

State lattices and grid graphs (which are instances of state lattices) have other proper-
ties that can be exploited, which can be collectively referred to as their freespace-structure.
Translation invariance of freespace distances and freespace-canonical paths: On state lat-
tices constructed on obstacle-free and infinitely extending environments, called freespace
state lattices, translating shortest paths by changing the x- or y-coordinates of all their
vertices by the same integral amount produces shortest paths, and translating canonical
paths produces canonical paths. Octile property: On freespace grid graphs, shortest paths
consist of moves in at most two directions, a diagonal one and an associated cardinal one.
The hypothesis of this dissertation is as follows: One can develop preprocessing-based
path-planning algorithms for state lattices and grid graphs that exploit their freespace
structure to improve the query-time/memory/path-suboptimality Pareto frontier of the
state-of-the-art algorithms.

To validate this hypothesis: (1) We introduce the subgoal graph framework, a frame-
work that can be specialized to exploit structure in different types of graphs through the
use of a reachability relation. We introduce a hierarchical variant of subgoal graphs, called
N -level subgoal graphs, and a suboptimal but complete variant of subgoal graphs, called
strongly connected subgoal graphs. (2) We apply the subgoal graph framework to state
lattices by using variants of freespace-reachability as the reachability relation. We exper-
imentally demonstrate that answering queries using strongly connected subgoal graphs
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constructed with respect to variants of freespace-reachability achieves dominating query-
time/path-suboptimality trade-offs compared to answering queries using strongly con-
nected subgoal graphs constructed with respect to bounded-distance-reachability; and non-
dominated query-time/path-suboptimality trade-offs compared to weighted A* searches.
(3) We apply the subgoal graph framework to grid graphs by using safe-freespace-reach-
ability as the reachability relation. We show that jump-point search, an online path-
planning algorithm that also exploits structure in grid graphs, can be understood as a
search over a subgoal graph constructed on the direction-extended canonical grid graph.
We show that contraction hierarchies, a preprocessing-based path-planning algorithm that
has been developed for road networks with a non-dominated query-time/memory trade-
off in the Grid-Based Path-Planning Competition, can be augmented to exploit structure
in grid graphs by augmenting it with reachability relations in various ways. We exper-
imentally demonstrate that answering queries using contraction hierarchies constructed
on subgoal graphs achieves a dominating query-time/memory trade-off compared to sev-
eral state-of-the-art path-planning algorithms on grid graphs, and can answer queries
2.42 times faster than single-row compression, the fastest entry in the Grid-Based Path-
Planning Competition, while requiring 139.06 times less memory.
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Chapter 1

Introduction

Path planning is the problem of finding a sequence of waypoints that an agent can follow
through a continuous environment to reach its goal location while avoiding obstacles. A
typical approach to solving the path-planning problem in many real-world applications is
to discretize the configuration space of the agent into a graph, that can then be searched
for a path from a given start vertex to a given goal vertex. The choice of discretization
depends mostly on the agent, the environment, and the application. For instance, one
can use road networks for navigation systems, grid graphs for video games, or state
lattices for agents with kinematic constraints. In some applications of path planning,
the environment is static and known in advance, allowing one to analyze its associated
graph in a preprocessing phase to generate auxiliary information, which can then be used
to answer path-planning queries faster. A number of preprocessing-based path-planning
algorithms have been developed that speed up path-planning queries by several orders of
magnitude on road networks. These algorithms are applicable to any graph and provably
efficient on graphs that have small highway dimensions, such as road networks. Grid
graphs, on the other hand, have larger highway dimensions than road networks. When
some of these algorithms are applied to grid graphs, the speed-up is smaller, and the
memory requirements, relative to the original graph, are higher.

State lattices and grid graphs (which are instances of state lattices) have other proper-
ties that can be exploited, which can be collectively referred to as their freespace-structure.
Translation invariance of freespace distances and freespace-canonical paths: On state lat-
tices constructed on obstacle-free and infinitely extending environments, called freespace
state lattices, translating shortest paths by changing the x- or y-coordinates of all their
vertices by the same integral amount produces shortest paths, and translating canonical
paths produces canonical paths. Octile property: On freespace grid graphs, shortest paths
consist of moves in at most two directions, a diagonal one and an associated cardinal one.
The hypothesis of this dissertation is as follows: One can develop preprocessing-based
path-planning algorithms for state lattices and grid graphs that exploit their freespace
structure to improve the query-time/memory/path-suboptimality Pareto frontier of the
state-of-the-art algorithms.

To validate this hypothesis:
(1) We introduce subgoal graphs, which are overlay graphs that can be specialized to

different types of graphs to exploit their structure. Similar to overlay graphs, subgoal
graphs can be used to answer shortest-path queries in three phases, by first connecting
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the given start and goal vertices to them, searching the resulting query subgoal graphs for
shortest paths, and finally refining these paths by replacing their edges with corresponding
shortest paths on the original graphs. Unlike overlay graphs, all edges of (query) subgoal
graphs satisfy a binary relation R defined over pairs of vertices, called a reachability
relation. Subgoal graphs can thus be specialized to different types of graphs by first
capturing their structures with reachability relations, and then exploiting them in various
ways, such as using specialized algorithms to perform connection and refinement. We
introduce a hierarchical variant of subgoal graphs, called N -level subgoal graphs, and
discuss their relationship to contraction hierarchies. We also introduce a suboptimal but
complete variant of subgoal graphs, called strongly connected subgoal graphs.

(2) We prove the translation invariance of freespace distances and freespace-canonical
paths on state lattices and show that it can be exploited to efficiently compute and com-
pactly store freespace information, such as distances or shortest path trees on freespace
state lattices. We introduce freespace-reachability and canonical-freespace-reachability as
reachability relations to capture the pairs of vertices on state lattices between which the
freespace information is “accurate”, and introduce efficient connection and refinement
operations that exploit this freespace information. We experimentally show that subgoal
graphs constructed with respect to various reachability relations on state lattices can be
used to answer path queries faster than A* searches on state lattices, but only by a small
factor. We experimentally show that answering queries using strongly connected sub-
goal graphs constructed with respect to freespace-reachability and canonical-freespace-
reachability have dominating query-time/path-suboptimality trade-offs compared to an-
swering queries using strongly connected subgoal graphs constructed with respect to
bounded-distance-reachability, and a non-dominated query-time/path-suboptimality trade-
off compared to weighted A* searches with various heuristics.

(3) We show that the Octile property of freespace grid graphs can be exploited to
(a) construct small subgoal graphs with respect to freespace reachability that use only
the convex corners of unblocked cells on grid graphs as vertices, (b) perform connection
efficiently during queries by using precomputed clearance values, and (c) perform pre-
processing in time linear in the size of the underlying grid. We show that jump-point
search, an online path-planning algorithm that also exploits structure in grid graphs, can
be understood as a search over a subgoal graph constructed on the direction-extended
canonical grid graph. We show that contraction hierarchies, a preprocessing-based path-
planning algorithm that has been developed for road networks with an undominated
query-time/memory trade-off in the Grid-Based Path-Planning Competition, can be aug-
mented to exploit structure in grid graphs by augmenting it with reachability relations
in various ways. We experimentally demonstrate that answering queries using contrac-
tion hierarchies constructed on subgoal graphs achieves a dominating query-time/memory
trade-off compared to several state-of-the-art path-planning algorithms on grid graphs,
and can answer queries 2.42 times faster than single-row compression, the fastest entry in
the Grid-Based Path-Planning Competition, while requiring 139.06 times less memory.

Our work on using subgoal graphs to exploit freespace structure in state lattices and
grid graphs has resulted in preprocessing-based path-planning algorithms that achieve
non-dominated query-time/path-suboptimality trade-offs on state lattices and non-dom-
inated query-time/memory trade-offs on grid graphs. At the time of the publication
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of this dissertation, subgoal graphs on grid graphs have been applied to moving target
search (Nussbaum & Yorukcu, 2015), adapted to 2k-neighbor grid graphs (Hormazábal,
Dı́az, Hernández, & Baier, 2017), and used for planning high-level paths for agents ma-
neuvering in continuous and uncertain environments (Zeng, Qin, Hu, Hu, & Yin, 2019).
The clearance-based scanning that we use during the connection phases of queries an-
swered using subgoal graphs on grid graphs has been adapted and used in preprocessing-
based variants of jump-point search, previously an online path-planning algorithm on grid
graphs (Harabor, Grastien, et al., 2014; Rabin & Sturtevant, 2016).

1.1 Problem Definition

In this section, we formally define the path-planning problem and provide a brief overview
on preprocessing-based path planning. These subjects are covered in more depth in
Chapter 2.

1.1.1 Graphs and Paths

A graph is a tuple G = (V,E, c), where V is a set of vertices, E ⊆ V ×V is a set of edges,
and c : E → R>0 is a function that assigns a positive length to each edge. G is undirected
if and only if, for every (u, v) ∈ E, there exists (v, u) ∈ E with c(u, v) = c(v, u), and
directed otherwise. An edge (u, v) ∈ E is an out-edge of u and an in-edge of v. For any
edge (u, v), v is a successor of u, and u is a predecessor of v.

A path on G is a sequence of vertices π = 〈p0, . . . , pk〉 such that, ∀i ∈ {1, . . . , k},
(pi−1, pi) ∈ E. p0, . . . , pk are the vertices and (p0, p1), . . . , (pk−1, pk) are the edges of π.
The length of π, l(π), is the sum of its edge lengths, that is, l(π) =

∑
i∈{1,...,k} c(pi−1, pi).

We refer to π as an s-t path if v0 = s and vk = t. Given two paths π1 = 〈u0, . . . , um〉
and π2 = 〈v0, . . . , vn〉 with um = v0, we denote their concatenation as the path π1 · π2 =
〈u0, . . . , um = v0, . . . vn〉.

An s-t path on G is a shortest path if and only if no other s-t path π′ exists on G
such that l(π′) < l(π). The s-t distance on G, dG(s, t) is the length of a shortest s-t path
on G. An s-t path π is w-suboptimal if and only if l(π) ≤ wdG(s, t), and optimal if and
only if it is a shortest path.

1.1.2 The Path-Planning Problem

Path planning is the problem of finding a sequence of waypoints that an agent can follow
through a continuous environment to reach its goal location while avoiding obstacles. In
this dissertation, we consider the discrete version of the path-planning problem. Namely,
we assume that the configuration space of the agent is discretized into a graph G =
(V,E, c), and that we want to find an s-t path on G from a given start vertex s ∈ V to
a given goal vertex t ∈ V . Throughout this dissertation, we use G to denote the graph
on which we perform path planning. We refer to s and t as the query vertices, and the
problem of finding an s-t path on G as an s-t path query.

A solution to an s-t path query, a path π, is optimal if and only if π is a shortest s-t
path on G, w-suboptimal (bounded suboptimal) if and only if π is a w-suboptimal s-t
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path on G, and feasible if and only if π is an s-t path on G. A path-planning algorithm
is optimal if and only if it is guaranteed to find an optimal solution (for every s, t ∈ V ),
w-suboptimal if and only if it is guaranteed to find a w-suboptimal solution, and complete
if and only if it is guaranteed to find a feasible solution.

We refer to the problem of finding the s-t distance on G as an s-t distance query. We
collectively refer to s-t path and distance queries as s-t queries, or simply as queries if
the specific s and t are irrelevant.

1.1.3 State Lattices and Grid Graphs

In this dissertation, we are interested in solving the path-planning problem on two specific
types of graphs, namely state lattices and grid graphs.

State lattices are constructed by systematically discretizing the environment into a
grid of square cells, discretizing various features about the state of an agent, such as its
orientation or velocity, into a finite set of integers, and discretizing the motions available
to the agent into a finite set of motion primitives (Pivtoraiko & Kelly, 2005b; Likhachev
& Ferguson, 2009; Kushleyev & Likhachev, 2009). State lattices are typically used for
planning paths for agents with kinematic constraints. In this dissertation, we consider
state lattices that discretize the location and the orientation of the agent. That is, each
vertex specifies the x- and y-coordinates of the location of the agent on the grid and the
orientation θ of the agent. We describe state lattices in more detail in Sections 2.1.2 and
4.2.

Grid graphs can be considered as state lattices that discretize only the location of
the agent (that is, each vertex specifies only the x- and y-coordinates of the location
of the agent on the grid). They are typically constructed with respect to eight motion
primitives, each corresponding to a straight-line motion in one of the four cardinal or four
diagonal directions. We describe grid graphs in more detail in Sections 2.1.3 and 5.2.

Freespace state lattices and grid graphs are state lattices or grid graphs that are con-
structed by assuming that the environment is obstacle-free and infinitely extending. The
systematicity in the construction of state lattices and grid graphs gives rise to certain
properties on freespace state lattices and grid graphs, which we refer to as their freespace
structure. Namely, on freespace state lattices, translating shortest paths by changing the
x- or y-coordinates of all their vertices by the same integral amount produces other short-
est paths, and translating canonical shortest paths (that is, shortest paths that are the
lexically smallest between the vertices they connect, with respect to a canonical ordering
on the primitives) produces other canonical shortest paths. We refer to this property as
the translation invariance of freespace distances and freespace-canonical paths, and prove
that it holds for state lattices in Sections 4.4.2 and 4.5.2. On freespace grid graphs, which
are arguably more “structured” than freespace state lattices, shortest paths consist of
moves in at most two directions, a diagonal one and an associate cardinal one. We refer
to this property as the Octile property, and describe it in further detail in Section 5.3.1.

1.1.4 Assumptions

We make the following assumptions on G = (V,E, c).
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Assumption 1.1. |V | <∞.

Assumption 1.2. G is strongly connected (for every s, t ∈ V , d(s, t) <∞).

Assumption 1.3. Every edge (u, v) ∈ E is the unique shortest u-v path on G.

We make these assumptions to simplify our definitions and proofs, and think that they
are reasonable assumptions to make in many applications of the path-planning problem.
Assumption 1.1 is automatically satisfied for state lattices and grid graphs if the underly-
ing grid (the environment) is finite. Assumption 1.2 can be satisfied by assuming that G
corresponds to the largest strongly connected component of a given state lattice or grid
graph, and can be useful to make in practice if one does not want the agent to move into a
vertex from which other vertices become inaccessible. Assumption 1.3 can be satisfied by
removing edges (u, v) from G that are not unique shortest u-v paths, without increasing
distances on G.

1.1.5 Preprocessing-Based Path Planning

Preprocessing-based path-planning algorithms are a class of path-planning algorithms
that operate in two phases: In a preprocessing phase, they analyze G and compute aux-
iliary information about G. In a query phase, they find s-t paths (or distances) quickly
by using the auxiliary information. In this dissertation, we use the following criteria to
compare preprocessing-based path-planning algorithms. Preprocessing time: The time
it takes to compute auxiliary information about G. Memory: The memory required to
store auxiliary information about G. Query time: The time it takes to find an s-t path
on G. Path suboptimality: The ratio of the lengths of s-t paths found compared to the
lengths of shortest s-t paths.

A preprocessing-based path-planning algorithm with shorter query times is not neces-
sarily “better” than another one with longer query times but shorter preprocessing times.
For instance, if a specific application can only accommodate short preprocessing times,
it might not be able to use the former algorithm but use the latter one instead, despite
its longer query times. In this dissertation, we therefore compare preprocessing-based
path-planning algorithms with respect to their trade-offs. An Algorithm A dominates
an Algorithm B with respect to the trade-off of N different criteria if and only if Algo-
rithm A is strictly better than Algorithm B with respect to one of the N criteria, and
better than or equal to with respect to the other N − 1 criteria. An Algorithm A is
non-dominated by a set of K algorithms (with respect to the trade-off of N different
criteria) if and only if none of the K algorithms dominate Algorithm A (with respect to
the trade-off of N different criteria). Among a set of algorithms, the subset of algorithms
with non-dominated trade-offs (with respect to the trade-off of N different criteria) forms
the Pareto frontier of that set. We say that an Algorithm A improves the Pareto frontier
of a set of algorithms if and only if including Algorithm A to the set changes the Pareto
frontier of the set. That is, if and only if no algorithm in the set dominates Algorithm A
or has a trade-off equivalent to that of Algorithm A.

Observe that, to show that an algorithm improves the Pareto frontier of a set of
algorithms with respect to the trade off of N different criteria, it is sufficient to show that
it improves the Pareto frontier with respect to only M of the N different criteria. For
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instance, we can show that an Algorithm A improves the query-time/memory trade-off
of a set of K algorithms by simply showing that Algorithm A has shorter query times
than any of the K algorithms. In this dissertation, we therefore compare the trade-
offs of algorithms with respect to two criteria at a time, for simplicity. We compare
optimal algorithms with respect to their query-time/memory trade-offs, but also report
their preprocessing times. We compare suboptimal algorithms with respect to their query-
time/path-suboptimality trade-offs, but also report their preprocessing times and memory
requirements.

We provide a detailed description of the limitations of applications of preprocessing-
based path-planning as well as an extensive overview of related work in Section 2.3.

1.1.6 Applications and Related Work

Preprocessing-based path-planning algorithms have been studied extensively on road net-
works, with possible applications in GPS navigation devices and web services, such as
Google Maps, that represent real-life road networks as graphs and find shortest paths on
them to provide driving directions to their users. Transit node routing (Bast, Funke, &
Matijević, 2006; Arz, Luxen, & Sanders, 2013) and hub labeling (Abraham, Fiat, Gold-
berg, & Werneck, 2010; Abraham, Delling, Goldberg, & Werneck, 2011, 2012) can answer
distance queries 6–7 orders of magnitude faster than Dijkstra searches, by precomputing
distances between some pairs of vertices on the road network and answering distance
queries with a small number of distance look-ups. Contraction hierarchies (Geisberger,
Sanders, Schultes, & Delling, 2008; Geisberger, 2008) can answer distance or path queries
4–5 orders of magnitude faster than Dijkstra searches and use little extra memory, by
forming a hierarchy among the vertices of a graph and performing searches over the hierar-
chy that ignore “unimportant” vertices. All three of these algorithms are non-dominated
with respect to their query-time/memory trade-offs on road networks (Sommer, 2014)
and are applicable to any graph. Abraham et al. show that many preprocessing-based
path-planning algorithms that have been developed on road networks, including contrac-
tion hierarchies, transit node routing, and hub labeling, are provably efficient on graphs
with small highway dimensions, such as road networks (Abraham et al., 2010). We pro-
vide a more detailed overview of preprocessing-based path-planning algorithms on road
networks in Section 2.3.2 and describe highway dimension in Section 3.3.3.

Preprocessing-based path-planning algorithms have been studied less extensively on
grid graphs, which are often used in video games or robotics. Video games are a suit-
able application for preprocessing-based path planning (Sturtevant & Geisberger, 2010)
since path planning is performed frequently and thus needs to be fast. Furthermore,
path planning in video games typically ignores other agents (Reynolds, 1999), which can
help maintain the validity of the preprocessed auxiliary information. Jump-point search
(Harabor & Grastien, 2011) is an online (that is, does not perform preprocessing) path-
planning algorithm on grid graphs that uses canonical orderings, (partial) orderings on the
moves available to the agent, in order to designate, among multiple symmetric paths that
consist of the same set of moves executed in different orders, some as canonical paths.
Namely, jump-point search uses the diagonal-first canonical ordering to designate the
canonical paths as those paths where no cardinal-to-diagonal turn can be replaced with
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a diagonal-to-cardinal turn. Jump-point search only explores canonical paths, prunes
successors of expanded vertices that produce non-canonical paths, and, if an expanded
vertex has a single unpruned successor, immediately expands the successor. Recursively
expanding vertices with single unpruned successors allows jump-point search to perform
“jumps” in the grid graph, significantly reducing the number of insertions and removals
in its OPEN list. Jump point search has been adapted to use preprocessing to perform
jumps faster (Harabor et al., 2014; Traish, Tulip, & Moore, 2016), and has been com-
bined with bounding boxes to further improve its pruning (Rabin & Sturtevant, 2016).
Single-row compression (Strasser, Botea, & Harabor, 2015; Botea, Strasser, & Harabor,
2015) computes all-pairs next-move tables, compresses them by combining multiple en-
tries that share the same next move, and answers path queries with a series of next-move
look-ups. Both jump point search and single-row compression have non-dominated query-
time/memory trade-offs in the most recent Grid-Based Path-Planning Competition held
in 2014 (Sturtevant, Traish, Tulip, Uras, Koenig, Strasser, Botea, Harabor, & Rabin,
2015), with jump point search having the lowest memory requirements and single-row
compression having the shortest query times. The other two entries in the competition
with non-dominated query-time/memory trade-offs are contraction hierarchies and our
entry, N -level subgoal graphs. We provide a more detailed overview of preprocessing-
based path-planning algorithms on grid graphs in Section 2.3.3.

State lattices are a relatively recent method of discretizing configuration spaces, and
research on state lattices has focused mostly on the generation of motion primitives that
are sparse yet representative of the motions available to the agent and the development
of heuristics on state lattices (Pivtoraiko & Kelly, 2005b; Likhachev & Ferguson, 2009;
Kushleyev & Likhachev, 2009). State lattices have been successfully used in the winning
entry in the DARPA Urban Challenge for self-driving cars, Boss from Carnegie Mellon
University, for navigation in unstructured and cluttered environments such as parking
lots (as opposed to following lanes of roads) (Urmson, Anhalt, Bagnell, Baker, Bittner,
Clark, Dolan, Duggins, Galatali, Geyer, et al., 2008). We think that navigation in parking
lots is also a suitable application for preprocessing-based path planning since parking lots
are mostly static or change in predictable ways. We explain this motivating application,
as well as a motivating application on grid graphs, in more detail in Section 2.3.1.

1.2 Hypothesis

Preprocessing-based path-planning algorithms that achieve non-dominated query-time/
memory trade-offs on road networks have been shown to exploit their hierarchical struc-
ture and small highway dimensions (Abraham et al., 2010). State lattices and grid graphs,
on the other hand, have larger highway dimensions than road networks (Abraham et al.,
2010) and, when some of these algorithms are applied to grid graphs, they achieve smaller
speed-ups relative to Dijkstra searches and require more memory relative to the size of
the original graph. However, state lattices and grid graphs have other properties that
can be exploited, namely, their freespace structure. The hypothesis of this dissertation is
therefore as follows:

One can develop preprocessing-based path-planning algorithms for state lattices and grid
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graphs that exploit their freespace structure to improve the query-time/memory/path-sub-
optimality Pareto frontier of the state-of-the-art algorithms.

1.3 Contributions

We make the following contributions in this dissertation to validate its hypothesis: In
Chapter 3, we introduce the subgoal graph framework, which can be specialized to exploit
structure in different types of graphs through the use of a reachability relation. We intro-
duce a hierarchical variant of subgoal graphs, called N -level subgoal graphs, and a subop-
timal but complete variant of subgoal graphs, called strongly connected subgoal graphs.
In Chapter 4, we apply the subgoal graph framework to state lattices by using vari-
ants of freespace-reachability as reachability relations. We experimentally demonstrate
that answering queries using strongly connected subgoal graphs constructed with re-
spect to variants of freespace-reachability have dominating query-time/path-suboptimality
trade-offs compared to those constructed with respect to bounded-distance-reachability
and a non-dominated query-time/path-suboptimality trade-off compared to weighted A*
searches. In Chapter 5, we apply the subgoal graph framework to grid graphs by using
safe-freespace-reachability as the reachability relation. We discuss the similarities and
differences between subgoal graphs and jump-point search, and N -level subgoal graphs
and contraction hierarchies. We experimentally demonstrate that answering queries us-
ing contraction hierarchies constructed on subgoal graphs achieves a dominating query-
time/memory trade-off compared to several state-of-the-art path-planning algorithms on
grid graphs.

We now provide a more detailed summary of these contributions.

1.3.1 The Subgoal Graph Framework

We introduce the subgoal graph framework, which can be specialized to exploit structure
in different types of graphs through the use of a reachability relation. The subgoal graph
framework can be considered as the theoretical foundation of this dissertation, and pro-
vides us with the means to exploit freespace structure in state lattices and grid graphs.
Specifically:

• We use overlay graphs (Holzer, Schulz, & Wagner, 2009) as the basis of the subgoal
graph framework, which are graphs that correctly represent distances between a
subset of the vertices of G, using the minimum set of shortcut edges to do so
(that is, removing any shortcut edge (u, v) increases the u-v distance on the overlay
graph). Overlay graphs have been used (either explicitly or implicitly) by various
preprocessing-based path-planning algorithms, such as transit node routing. We
introduce the three-phase Connect-Search-Refine algorithm, that can answer path
queries optimally using overlay graphs: During the connection phase, it connects
the start and goal vertices to the overlay graph to form a query overlay graph.
During the search phase, it searches the query overlay graph for a shortest path
between the start and goal vertices. During the refinement phase, it replaces the
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edges of the path found on the query overlay graph with corresponding shortest
paths on G.

We introduce a variant of overlay graphs, called extended overlay graphs, which
can be considered as the combination of all possible extensions of an overlay graph
into different query overlay graphs, and prove that the Connect-Search-Refine al-
gorithm finds shortest paths. We show that vertex contractions, an operation used
for constructing contraction hierarchies, can be used to construct overlay graphs
and introduce a variant, called heavy contractions, that can be used to construct
extended overlay graphs.

• We introduce reachability relations as binary relations defined over pairs of vertices
of G. Reachability relations can be used to distinguish those pairs of vertices of G
between which a certain property holds. For instance, a reachability relation can be
used to distinguish those pairs of vertices between which the distance is less than a
given bound, or between which shortest paths can be computed efficiently.

• We define subgoal graphs as overlay graphs constructed with respect to a specific
reachability relation: For every pair of start and goal vertices, all edges of the corre-
sponding query subgoal graph are guaranteed to connect pairs of vertices that satisfy
the given reachability relation. Therefore, connection phases of queries answered
using subgoal graphs only add edges between vertices that satisfy the reachabil-
ity relation, and refinement phases only find shortest paths between vertices that
satisfy the reachability relation. We define the subgoal graph framework as a frame-
work that can be specialized to different types of graphs by choosing a reachability
relation and developing efficient connection and refinement algorithms that exploit
structure in that type of graph (for instance, the freespace structure in state lattices
and grid graphs). We introduce a variant of heavy contractions, called heavy R con-
tractions, and show that they can be used to construct subgoal graphs with respect
to a specific reachability relation. We introduce bounded-distance-reachability as a
reachability relation that distinguishes those pairs of vertices on G between which
the distance is no more than a given bound, and show that, on graphs with small
highway dimensions, it is possible to construct “locally sparse” subgoal graphs with
respect to bounded-distance-reachability.

• We introduce N -level overlay and subgoal graphs, which can be constructed as
a sequence of overlay or subgoal graphs, each one constructed on the previous
one. We show that contraction hierarchies can be considered as an instance of
N -level overlay graphs, and introduce a variant of contraction hierarchies, called
R contraction hierarchies, whose edges connect only pairs of vertices that satisfy
a given reachability relation R. We discuss how each of these hierarchies can be
constructed by using a different variant of the vertex contraction operation, and
discuss how each one can be searched for shortest paths by using bidirectional
searches.

• We introduce strongly connected subgoal graphs, which can be used to answer path
queries with the Connect-Search-Refine algorithm, but without the guarantee of
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finding shortest paths. We introduce a simple and efficient algorithm for construct-
ing strongly connected subgoal graphs with respect to a given reachability relation.

1.3.2 Exploiting the Freespace Structure of State Lattices

We apply the subgoal graph framework to state lattices by introducing freespace-reach-
ability and canonical-freespace-reachability as reachability relations and developing con-
nection and refinement algorithms for them that exploit the freespace structure of state
lattices. Specifically:

• We introduce freespace state lattices as state lattices constructed on an obstacle-free
and infinitely extending environment. We prove that translating shortest paths on
freespace state lattices by offsetting the x- or y-coordinates of their vertices by the
same amount produces shortest paths. We call this property the translation invari-
ance of freespace distances, and show that it allows for the efficient computation
and compact storage of pairwise distances on freespace state lattices. We introduce
freespace-reachability as a reachability relation on state lattices, which distinguishes
those pairs of vertices on state lattices between which the freespace distance is ac-
curate. We introduce a connection algorithm that can identify freespace-reachable
vertices from a given vertex efficiently, by performing a depth-first search that uses
freespace distances to guarantee that it only explores shortest paths on the state
lattice. We introduce a refinement algorithm that can find shortest paths between
pairs of freespace-reachable vertices efficiently, by using freespace distances as a
perfect heuristic.

• We enforce a canonical ordering on motion primitives that uniquely designates,
among multiple shortest paths between two vertices on the corresponding freespace
state lattice, one as the freespace-canonical path and ensures that all freespace-
canonical paths that originate or terminate at a vertex are guaranteed to form
a tree. We prove that translating freespace-canonical paths on freespace state lat-
tices produces other freespace-canonical paths. We call this property the translation
invariance of freespace-canonical paths, and show that it allows for the efficient com-
putation and compact storage of pairwise freespace-canonical paths. We introduce
canonical-freespace-reachability as a reachability relation on state lattices, which
distinguishes those pairs of vertices on state lattices between which the canonical-
freespace path is unblocked. We introduce a connection algorithm that can identify
canonical-freespace-reachable vertices from a given vertex efficiently, by performing
a depth-first search without duplicate detection that generates only those successors
of expanded vertices that extend a freespace-canonical path into another freespace-
canonical path. We introduce a refinement algorithm that can find shortest paths
between pairs of canonical-freespace-reachable vertices efficiently, by simply gener-
ating the freespace-canonical path between them.

• We experimentally demonstrate that answering queries using subgoal graphs con-
structed with respect to bounded-distance reachability, freespace-reachability, or
canonical-freespace-reachability have similar query times that are only slightly short-
er (by a factor of ∼2) than A* search times on state lattices. We conjecture that
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state lattices may have large highway dimensions, based on our theoretical result
that it is possible to construct locally-sparse bounded-distance reachability subgoal
graphs on graphs with small highway dimensions.

• We experimentally demonstrate that answering queries using strongly connected
subgoal graphs constructed with respect to freespace-reachability or canonical-
freespace-reachability have dominating query-time/path-suboptimality trade-offs com-
pared to answering queries using strongly connected subgoal graphs constructed
with respect to bounded-distance-reachability and a non-dominated query-time/
path-suboptimality trade-off compared to weighted A* searches with various heuris-
tics.

1.3.3 Exploiting the Freespace Structure of Grid Graphs

We apply the subgoal graph framework to grid graphs by introducing safe-freespace-
reachability as a reachability relation and developing connection and refinement algo-
rithms for safe-freespace-reachability that exploit the freespace structure of grid graphs.
We discuss the similarities and differences between subgoal graphs and jump-point search,
and N -level subgoal graphs and contraction hierarchies. Specifically:

• We introduce safe-freespace-reachability as a reachability relation, which distin-
guishes those pairs of vertices on grid graphs between which all shortest freespace
paths are unblocked. We show that subgoal graphs can be constructed on grid
graphs with respect to safe-freespace-reachability by using the convex corners of
blocked cells as subgoals. We introduce a connection algorithm for safe-freespace-
reachability which uses precomputed clearance values to efficiently scan the grid
for convex corners of blocked cells that are safe-freespace-reachable from a given
vertex. We prove that this algorithm can be used to construct subgoal graphs in
time linear in the size of the underlying grid.

• We introduce direction-extended canonical grid graphs, whose vertices correspond
to pairings of cells with the eight cardinal and diagonal directions, and whose edges
ensure that all paths on direction-extended canonical grid graphs are diagonal-
first and taut. We show that jump-point search can be understood as a search
on a subgoal graph that is constructed with respect to freespace-reachability on
the direction-extended canonical grid graph. We introduce a variant of jump-point
search that explicitly constructs this subgoal graph, which we call the jump-point
graph.

• We experimentally evaluate how the query-time/memory trade-off of answering
queries using contraction hierarchies changes when we augment contraction hier-
archies on grid graphs with reachability relations in three different ways: 1) We
show that constructing contraction hierarchies on subgoal graphs or jump-point
graphs can decrease both query times and memory requirements. 2) We show
that restricting the edges of contraction hierarchies to be freespace- or canonical-
freespace-reachable can significantly decrease memory requirements but, on random
and room maps, significantly increases query times. 3) We show that refining those
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shortcut edges that satisfy a reachability relation with an appropriate refinement
algorithm that exploits the freespace structure of grid graphs can decrease query
times. Our results also show that answering queries using a combination of con-
traction hierarchies and subgoal graphs achieves a dominating query-time/memory
trade-off compared to answering queries using a combination of contraction hier-
archies and jump-point graphs. However, we currently do not understand well the
combination of contraction hierarchies and jump-point graphs, and cannot rule out
the possibility that combining them in a different way achieves better results.

• We compare answering queries using variants and combinations of subgoal graphs,
jump-point graphs, and contraction hierarchies, with the state-of-the-art path-
planning algorithms on grid graphs that have been evaluated in the Grid-Based
Path-Planning Competition, by performing experiments using the same benchmarks
and normalizing our results. Our results suggest that answering queries using con-
traction hierarchies on subgoal graphs and performing freespace-based refinement is
2.34 times faster than single-row compression, the fastest entry in the Grid-Based
Path-Planning Competition, while requiring 139.06 times less memory.

At the time of the publication of this dissertation, subgoal graphs on grid graphs
have been applied to moving target search (Nussbaum & Yorukcu, 2015), adapted to 2k-
neighbor grid graphs (Hormazábal et al., 2017), and used for planning high-level paths
for agents maneuvering in continuous and uncertain environments (Zeng et al., 2019).
The clearance-based scanning that we use during the connection phases of queries an-
swered using subgoal graphs on grid graphs have been adapted and used in preprocessing-
based variants of jump-point search, previously an online path-planning algorithm on grid
graphs (Harabor et al., 2014; Rabin & Sturtevant, 2016).

1.4 Dissertation Structure

This dissertation is structured as follows: In Chapter 2, we provide an in-depth overview
of path planning. In Chapter 3, we introduce the subgoal graph framework. In Chapter 4,
we apply the subgoal graph framework to state lattices by using freespace-reachability
and canonical-freespace reachability as reachability relations. In Chapter 5, we apply
the subgoal graph framework to grid graphs by using safe-freespace-reachability as the
reachability relation, introduce a variant of jump-point search that uses subgoal graphs,
and augment contraction hierarchies with reachability relations. In Chapter 6, we sum-
marize the contributions made in this dissertation. Tables 1.1 and 1.3 summarize the
terminology that we use throughout this dissertation. Table 1.2 summarize the types of
overlay and subgoal graphs discussed in this dissertation.
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Terminology Description Ref.

G = (V,E, c) The graph on which we want to find paths
s, t Typically used for the start and goal vertices
u, v, n, p Typically used for vertices
S, T Typically used for sets of vertices S ⊆ T ⊆ V
GS Overlay graph D3.3
GS,T Extended overlay graph D3.4
GL N -level overlay graph D3.12

π Typically used for paths
l(π) Length of π
d(s, t) s-t distance on G

n @ π ≡ n covers π n is an internal vertex of π
(that is, excluding the first and last vertices on π)

D3.1

n @ (s, t) n @ a shortest s-t path on G D3.1
S @ π ∃n ∈ S such that n @ π D3.1
S @ (s, t) ∃n ∈ S such that n @ (s, t) D3.1

R Typically used for a reachability relation R ⊆ V ×V D3.7
DS Direct-reachability with respect to S D3.2
RS Direct-R-reachability with respect to S S3.3.1
RA⇒B(DA⇒B

S , RA⇒BS ) R-reachable pairs in A×B ⊆ V × V D3.2
RA→B(DA→B

S , RA→BS ) R-reachable pairs (u, v) in A × B ⊆ V × V where
u 6= v

D3.2

BDb Bounded-distance reachability with bound b
((s, t) ∈ BDb iff d(s, t) ≤ b))

S3.3.1

Table 1.1: Terminology used for arbitrary graphs. The references (Ref.) specify the
definition (D) or the section (S) that introduce the terminology.
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Graph Description Ref.

Overlay graph (GS) Contains an edge (u, v) if and only if u, v ∈ S, S 6@ (u, v), and u 6= v D3.3
Extended overlay graph (GS,T ) Contains an edge (u, v) if and only if u, v ∈ T , S 6@ (u, v), and u 6= v D3.4
R subgoal graph An overlay graph with R-reachable edges only (S is an R-SPC on G) D3.9

N -level overlay graph (GL) Sequence of extended overlay graphs GSi+1,Si where Si is the set of vertices
with level i or higher according to the level function L

D3.12

R N -level subgoal graph N -level overlay graph with R-reachable edges only D3.14
R contraction hierarchy R N -level subgoal graph with no same-level edges except at the highest level D3.14
Contraction hierarchy N -level overlay graph with no same-level edges D3.14

R strongly connected subgoal graph A strongly connected graph with vertex set S where, ∀n ∈ V , ∃u, v ∈ S with
(u, n) ∈ R and (n, v) ∈ R

D3.15

Table 1.2: Types of overlay and subgoal graphs. The references (Ref.) specify the definition that introduce the type of graph.
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Terminology Description Ref.

G, M, LG,M Grid G ⊆ Z2, set of primitives M, state lattice LG,M induced by M on G S4.2
~m Typically used for a primitive

Z2 Freespace grid D4.1
F = LZ2,M Freespace state lattice D4.1
freespace path A path on F D4.1
freespace-shortest path A shortest path on F D4.1
freespace-canonical path For some s and t, the lexically smallest freespace-shortest s-t path D4.4

s+ ~m = t ~m induces the edge (s, t) S4.2
s+ (x, y) = t Translating s by (x, y) results in t S4.4.2
π + (x, y) = π′ Translating π by (x, y) results in π′ S4.4.2

F, Fb F = freespace-reachability, Fb = F ∩ BDb
(s, t) ∈ F if and only if a freespace-shortest s-t path is unblocked on G

D4.2

CF, CFb CF = canonical-freespace-reachability, CFb = CF ∩ BDb
(s, t) ∈ CF if and only if the freespace-canonical s-t path is unblocked on G

D4.5

SF Safe-freespace-reachability
(s, t) ∈ SF if and only if all freespace-shortest s-t paths are unblocked on G

D5.1

~c, ~d, ~v Typically used for a move in a cardinal, diagonal, or any direction S5.2
~v1 ⊥ ~v2 ~v1 and ~v2 are perpendicular S5.2

~c1 + ~c2 = ~d d is a combination of ~c1 and ~c2 S5.2
s+ ~v × k = t t is reached by moving k steps in direction ~v from s S5.2

taut path A path whose two-edge subpaths are shortest paths on G S5.2
freespace-taut path A path whose two-edge subpaths are shortest paths on F S5.2
freespace-diagonal-first path Shortest path on F where diagonal moves appear before cardinal ones S5.2
freespace-cardinal-first path Shortest path on F where cardinal moves appear before diagonal ones S5.2
locally-diagonal-first path Taut path on G where no cardinal-to-diagonal turn can be replaced with a diagonal-

to-cardinal turn
S5.4.1

Table 1.3: Terminology, state lattices and grid graphs. The references (Ref.) specify the definition (D) or the section (S) that
introduce the terminology.15



Chapter 2

Path Planning

The motion-planning problem is the problem of finding a continuous motion that an agent
can follow in a continuous environment to reach a goal configuration, while avoiding the
obstacles in the environment. Finding exact solutions to this problem while taking into ac-
count the kinematic constraints of the agent has been shown to be PSPACE-hard (Canny,
1988) and not practical for real-world applications (Choset, Lynch, Hutchinson, Kantor,
Burgard, Kavraki, & Thrun, 2005). The path planning problem can be considered to be a
simplified version of the motion-planning problem that discretizes the configuration space
of the agent into a graph that can be searched for paths. The path-planning problem can
be solved in time polynomial in the size of the graph by using search algorithms such as
A*. In this chapter, we provide an overview of the path-planning problem.

This chapter is organized as follows: In Section 2.1, we discuss three types of graphs
that can be generated by discretizing configuration spaces of agents, namely state lattices,
grid graphs, and road networks. In Section 2.2, we discuss algorithms commonly used for
searching graphs for paths. In Section 2.3, we discuss preprocessing-based path planning,
its limitations, applications, and related work.

2.1 Discretizing Configuration Spaces into Graphs

In this section, we discuss three types of graphs that can be generated by discretizing
the configuration space of an agent. We first formally define the concepts of environ-
ments, agents, and configuration spaces, and then discuss how configuration spaces can
be systematically discretized into state lattices, grid graphs, or road networks.

2.1.1 Environments, Agents, and Configuration Spaces

An environment (work space) is a k-dimensional Euclidean space defined by the shapes
of its boundary and the obstacles contained within that boundary. An agent operating in
this environment can be defined by the shapes of its components, their kinematics (how
they move with respect to each other and the environment), and kinematic constraints
(the constraints on their movements, for instance, acceleration constraints, turning radii,
or speed limits). The configuration of the agent in the environment may include its lo-
cation in the environment, as well as other features of the agent, such as its orientation,
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Figure 2.1: Environment and configuration space of a translating agent. Red rectangle: A
translating agent (whose orientation is fixed). Black dot: The reference point on the agent
to identify its location in the environment. Black lines: Boundary of the environment.
Dark gray areas: Obstacles in the environment. Light gray areas: Inflation of obstacles to
account for the configuration space treating the agent as a point rather than a rectangle.
That is, the agent’s footprint does not intersect with the obstacles or the boundary of the
environment if and only if its reference point is within the white area. Image downloaded
from https://en.wikipedia.org/wiki/Motion_planning.

joint angles, and velocity. The configuration space of the agent is the set of all possi-
ble configurations of the agent in the environment. A motion is a continuous curve in
the configuration space. Motions that can be executed by the agent without violating
its kinematic constraints are called kinematically feasible, and motions that avoid colli-
sions with the boundary of the environment or the obstacles within that boundary are
called collision-free. Motions that are both kinematically feasible and collision-free are
called feasible. Motion planning is the problem of finding a feasible motion between two
configurations in the configuration space of an agent.

Figure 2.1 shows an environment and its corresponding configuration space for a
translating agent (that is, an agent that is only able to change its location but not its
orientation) with a rectangular footprint. In this example, the environment and the
configuration space are both 2-dimensional. Each point in the configuration space corre-
sponds to a location for the agent with respect to the reference point on the bottom-left
corner of its footprint. That is, in the configuration space, the agent is treated as a point
rather than a rectangle, and obstacles are “inflated” to account for the “shrinking” of the
agent into a point.

In this dissertation, we consider the path-planning problem as the discretized (and
therefore simplified) version of the motion-planning problem, where the configuration
space of the agent is discretized into a graph. Vertices of the resulting graph correspond
to (sets of) configurations, and edges correspond to feasible motions that connect these
configurations.
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Figure 2.2: A video game environment represented as a grid. Image taken as a screenshot
from the game Age of Empires II.

2.1.2 State Lattices

State lattices are constructed by discretizing the configuration space of an agent into a
graph, where the environment is discretized into a grid, various features of the configura-
tion of the agent are discretized into a finite set of integers, and the motions available to
the agent are discretized into a finite set of motion primitives (Pivtoraiko & Kelly, 2005b;
Likhachev & Ferguson, 2009; Kushleyev & Likhachev, 2009). We now describe each of
these discretizations.

Grids are regular tessellations of n-dimensional Euclidean spaces. Regular triangles,
squares, or hexagons can be used to tessellate 2-dimensional (2D) Euclidean spaces, and
n-dimensional cubes can be used to tessellate n-dimensional Euclidean spaces. In this
dissertation, we only consider tessellations of 2D environments using squares, and simply
use the term grid to refer to this tessellation and cell to refer to each square in the
tessellation. When a grid is overlaid on a 2D environment, cells that intersect with
obstacles are called blocked cells, and cells that do not intersect with obstacles are called
unblocked cells. Figure 2.2 shows an example from the video game Age of Empires II,
which uses grids to represent environments. The cells that contain the town center, trees,
or bushes are blocked and cannot be traversed by the agents.

The vertices of state lattices are called states (configurations), which correspond
to “evenly spaced” discrete points in the configuration space of the agent. For an n-
dimensional configuration space of an agent operating in a k-dimensional environment,
each state in the corresponding state lattice is specified by n integers: The first k integers
describe the location of (the reference point of) the agent on the grid, and the remaining
integers describe other discretized features of the configuration of the agent, such as its
orientation, velocity, or joint angles.

The edges of state lattices correspond to feasible motions between the states they
connect, and are constructed with respect to a given set of motion primitives (primitives,
for short). Each primitive represents a kinematically feasible motion for the agent, and
may induce multiple edges in the state lattice. There are multiple factors that determine
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Figure 2.3: Primitives used for the Boss entry in the DARPA Urban Challenge. The red
triangle shows the current location and orientation of the agent. Each blue triangle shows
a location and orientation that can be reached by executing a motion primitive.

whether a primitive induces a particular edge (u, v) in the state lattice: 1) State u satisfies
the “preconditions” of the primitive, which are defined over the discretized features of the
configuration of the agent except for its location. For instance, a primitive that moves
the agent in a straight line in a particular direction might be applicable only at those
states where the agent is facing in that particular direction. 2) Executing the primitive
from state u results in a collision-free motion. 3) Executing the primitive from state u
results in state v.

Figure 2.3 shows the set of primitives that was used in Carnegie Mellon University’s
entry in the DARPA Urban Challenge (Urmson et al., 2008). There are 32 discrete
orientations for the agent, and the figure shows all primitives available to the agent when
it is facing East. Executing a primitive can change both the location and orientation of
the agent. If the environment contains obstacles (the grid contains blocked cells), the
agent might not be able to execute some of these primitives, namely those that result in
a collision.

The systematic discretization of configuration spaces using a small set of primitives
gives rise to structure in state lattices. Namely, state lattices typically have many trans-
lationally symmetric edges (since each primitive can induce multiple edges in the state
lattice) and, therefore, many translationally symmetric paths (since paths are combina-
tions of primitives). We describe this structure in further detail in Chapter 4 and discuss
how it can be exploited to speed up path planning on state lattices.

2.1.3 Grid Graphs

Grid graphs can be considered to be instances of state lattices where states describe only
the discretized locations of the agent, and primitives have no preconditions. The vertices
of grid graphs are typically placed at the corners or centers of unblocked cells, and the
primitives typically allow the agent to move in straight lines on the grid. That is, grid
graphs typically do not consider the kinematic constraints of the agent, for instance, by
allowing the agent to instantaneously turn in place. They are typically used in video
games or when planning paths for holonomic robots.
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A B C

(a) A grid graph. Dashed lines
correspond to corner-cutting moves

and are not included in the grid graph.

(b) Shortest paths on grid graphs with no
blocked cells consist of moves in at most
two directions: A diagonal one and an

associated cardinal one.

Figure 2.4: Grid graphs.

The Grid-Based Path-Planning Competition defines grid graphs as follows: 1) The
vertices are placed at the centers of unblocked cells. 2) The agent can move between
cardinally or diagonally adjacent unblocked cells, but is not allowed to “cut corners”.
That is, it cannot move in a diagonal direction unless it can also move in both associated
cardinal directions. 3) Cardinal moves cost 1, and diagonal moves cost

√
2. Figure 2.4a

shows an example of a grid graph. Corner-cutting diagonal moves are shown as dashed
lines and are not represented as edges in the grid graph. For instance, the diagonal move
from A1 to B2 is a corner-cutting move since the agent cannot move from A1 to B1. In
this dissertation, we also use 4-neighbor grid graphs to illustrate the operations of our
algorithms. A 4-neighbor grid graph is a grid graph without any edges that correspond
to diagonal moves.

Since grid graphs are instances of state lattices, they inherit the structural properties
of state lattices. However, since grid graphs are “very specific” instances of state lattices,
they have other properties that are not necessarily present in an arbitrary state lattice.
Namely, on a grid with no blocked cells, shortest paths consist of moves in at most two
directions, namely a diagonal one and an associated cardinal one. Figure 2.4b shows
an example. We refer to this property as the “Octile property”, which is used in the
literature to efficiently calculate “Octile distances”, that is, distances between vertices
assuming that the grid contains no blocked cells. We describe the Octile property of grid
graphs in further detail in Chapter 5 and discuss how it can be exploited to speed up
path planning on grid graphs.

2.1.4 Road Networks

Road networks can be used to represent how roads are connected within a city, country,
or continent. Their edges typically represent road segments, and their vertices typically
represent points of intersection of these road segments. Edge lengths typically represent
either the length of the road segment (travel-distance metric) or the expected time to
traverse the road segment by taking into account the type of the road segment and traffic
(travel-time metric). Figure 2.5 shows the international European E-road network, where
green lines represent road segments, and red lines represent borders between countries.
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Figure 2.5: International E-road network. Image downloaded from https://en.

wikipedia.org/wiki/International_E-road_network

Road networks that are used in real-world applications, such as GPS navigation de-
vices or Google Maps, are typically very large since they not only represent highways
between cities, but also the roads within cities. For instance, the USA road network
used in the 9th DIMACS implementation challenge has 24 million vertices and 58 mil-
lion edges (Demetrescu, Goldberg, & Johnson, 2009). However, these road networks
also have a hierarchical structure (Kalapala, Sanwalani, Clauset, & Moore, 2006). For
instance, paths between two locations in different cities can typically be found by consid-
ering only the highway network and the roads within those two cities; whereas the roads
within other cities can be considered as “unimportant” and be ignored. As we discuss in
Section 2.3.2, path-planning algorithms that operate on road networks typically exploit
the hierarchical structure of road networks in order to achieve very short query times.

2.2 Search Algorithms

In this section, we first describe a common framework for search algorithms and discuss its
properties, and then describe some well-known search algorithms within this framework.

2.2.1 A Common Framework for Search Algorithms

Given a graphG, a start vertex s, and a goal vertex t, a search algorithm can be considered
to be a systematic exploration of paths on G until an s-t path is found. Initially, the
set of explored paths contains only the trivial s-s path 〈s〉. This set is then grown by
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Algorithm 1 Search

Input: A graph G, a start vertex s, and a goal vertex t.
Output: An s-t path π on G.

1: // Initialize
2: OPEN = {s}
3: CLOSED = ∅
4: for all u ∈ V do
5: parent(u)← undefined

6: // Grow search tree
7: while SelectNodeToExpand(OPEN) 6= t do
8: u← SelectNodeToExpand(OPEN)
9: OPEN← OPEN \ {u}

10: CLOSED← CLOSED ∪ {u}
11: for all successors v of u do
12: if v 6∈ OPEN ∪ CLOSED then
13: OPEN← OPEN ∪ {u}
14: parent(v)← u
15: else if v ∈ OPEN ∧ ShouldUpdateParent(v, u) then
16: parent(v)← u

17: // Extract path
18: π ← 〈t〉
19: u← t
20: while u 6= s do
21: π ← 〈parent(u), u〉 · π
22: u← parent(u)

23: return π

extending an s-u path in the set with a successor v of u to generate an s-v path, until a
(shortest) s-t path is generated.

Algorithm 1 outlines a common framework for search algorithms, which differs from
the “sketch” of search algorithms outlined above as follows: Algorithm 1 organizes the
set of paths explored by the search into a search tree that maintains at most one copy
of each vertex of G, uses expansions to extend an s-u path in the search tree into s-v
paths for all successors v of u, and never expands a vertex more than once. We now
discuss Algorithm 1 in more detail. We note that, since we assume that G is finite and is
guaranteed to contain an s-t path for any s, t ∈ V (Assumptions 1.1 and 1.2), Algorithm 1
does not consider the possibility that it might not be able to find an s-t path.

• Search tree: Algorithm 1 compactly represents the set of paths generated during
the search as a search tree. Each node n in the search tree is labeled with a vertex
L(n) ∈ V , the root node is labeled with the start vertex s, and each edge from a
node n to a child node m corresponds to an edge (L(n), L(m)) ∈ E. Therefore, any
path from the root node to a node n in the search tree corresponds to an s-L(n)
path on G.
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Although it is possible to have different nodes n and m in the search tree with
the same label L(n) = L(m), Algorithm 1 avoids such duplicate nodes in its search
tree, since they can negatively effect search times (Taylor & Korf, 1993). Since
Algorithm 1 avoids duplicate nodes, each node in its search tree has a unique label.
For simplicity, we refer to a vertex and the node it uniquely corresponds to with
the same name (that is, L(n) = n ∈ V ), and use the term vertex for both unless
it results in ambiguity. Algorithm 1 maintains its search tree by maintaining a
parent for every vertex except for the root vertex s (lines 4–5, 14, and 16). Since
Algorithm 1 maintains a single parent for each vertex, each vertex can appear in the
search tree at most once and, therefore, the search tree maintained by Algorithm 1
cannot have duplicate vertices.

• Expansions, OPEN and CLOSED lists, and duplicate detection: Algo-
rithm 1 initializes the search tree to only contain s as its root (lines 4–5) and then
grows it by repeatedly expanding vertices from the search tree (lines 6–16). It main-
tains two lists: The CLOSED list contains exactly the vertices in the search tree
that have already been expanded, and the OPEN list contains exactly the vertices
in the search tree that have not been expanded. Initially, the OPEN list contains
only the start vertex s (line 2) and the CLOSED list is empty (line 3). Algorithm 1
always chooses the next vertex u to expand from the OPEN list (line 8), which
removes u from the OPEN list (line 9) and places it in the CLOSED list (line 10).
When a vertex u is expanded, for each successor v of u, Algorithm 1 considers ex-
tending the current s-u path in the search tree into an s-v path by using the edge
(u, v) (lines 11–16): If v does not appear the search tree, it is added to the search
tree as a child of u (lines 12–14). Otherwise, v is not added to the search tree for a
second time to avoid duplication, and Algorithm 1 decides whether to update the
current parent of v to u (lines 15–16).

• Termination and completeness guarantees: Algorithm 1 expands each vertex
at most once: Each vertex is inserted into the OPEN list at most once, namely when
it is first added to the search tree (line 13), and then removed from the OPEN list
if it is expanded (line 9). Since G is finite (Assumption 1.1), and since Algorithm 1
expands each vertex at most once, it is guaranteed to expand a finite number of
vertices. Furthermore, since an s-t path exists on G (Assumption 1.2), Algorithm 1
is guaranteed to select t for expansion at some point: Suppose that Algorithm 1
does not select t for expansion and, during the execution of line 7, OPEN = ∅. Let
π = 〈v0, . . . , vk〉 be any s-t path. Since vk = t is not selected for expansion, vk−1
could not have been selected for expansion either because, otherwise, vk = t would
have been added to OPEN. We can recursively apply this argument to deduce
that v0 = s could not have been selected for expansion. However, this results
in a contradiction, since Algorithm 1 always selects v0 = s as the first vertex to
expand (lines 2 and 8). Therefore, Algorithm 1 must select t for expansion before
terminating.

• Implementation and complexity: Since Algorithm 1 expands each vertex at
most once and, therefore, evaluates each edge at most once, it executes lines 8–10
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at most O(|V |) times and lines 12–16 at most O(|E|) times. That is, it performs at
most O(V ) insertions into and removals from the OPEN list, O(V ) insertions into
the CLOSED list, O(E) checks to see if a vertex is in the OPEN or CLOSED lists,
and O(E) decisions whether to update the parent of a vertex. Algorithm 1 can be
implemented to execute each of these operations in O(1) time, for a total of O(E)
runtime, using O(V ) memory, by maintaining the CLOSED list as a hash table,
and maintaining the OPEN list as a queue or a stack.

The search algorithms that we describe in the remainder of this section mainly follow
the framework we have outlined in Algorithm 1, and differ in how they select the next
vertex to expand from the OPEN list (line 8), how they decide to update the parents of
vertices v when multiple s-v path are found during the search (line 15), and whether they
also perform a simultaneous search backwards from the goal, using predecessors rather
than successors of expanded vertices. We discuss how their implementations differ from
the one outlined above and how these differences affect their runtimes in their respective
sections.

2.2.2 Breadth-First and Depth-First Searches

Breadth-first and depth-first searches select the next vertex to expand from the OPEN list
as a vertex with the minimum or maximum depth in the search tree, respectively. Neither
search updates the parents of vertices except when the vertices are first added to the search
tree. Both searches can be implemented to run in O(|E|) time and use O(|V |) memory,
as discussed in Section 2.2.1, by implementing the OPEN list of breadth-first search as
a (first-in, first-out) queue and implementing the OPEN list of depth-first search as a
stack (first-in, last-out queue). Neither breadth-first nor depth-first search is guaranteed
to find shortest paths. However, breadth-first search is guaranteed to find minimum-hop
paths (that is, paths with the smallest number of edges), and can therefore be used to
find shortest paths on graphs where all edges have the same length. In this dissertation,
we are mainly interested in breadth-first and depth-first searches for developing efficient
connection and refinement algorithms for our reachability relations, since they allow for
O(1) time insertions into and removals from the OPEN list.

2.2.3 Dijkstra Search

Dijkstra search, also known as Dijkstra’s algorithm or uniform-cost search, selects the next
vertex to expand from the OPEN list as the vertex with the minimum tentative distance
(g-value) from the start vertex, and is guaranteed to find shortest paths (Dijkstra, 1959).
Dijkstra search is the basis for the rest of the search algorithms that we discuss in this
section, as well as the basis for many of the preprocessing-based path-planning algorithms
that we discuss in the next section.

Dijkstra search maintains a g-value g(u) for every vertex u, such that, at any point
during the search, g(u) is equal to the s-u-distance in the search tree (or, if no such path
exists, g(u) = ∞). Initially, g(s) = 0, and g(u) = ∞ for all u 6= s. When a vertex u is
expanded, for each successor v of u, Dijkstra search checks whether g(u) + c(u, v) < g(v),
that is, if the g-value of v can be decreased by using the current s-u path and the
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(a) Dijkstra search. (b) Bidirectional Dijkstra search.

(c) A* search. (d) Weighted A* search (w = 2).

Figure 2.6: Search trees and paths found by various search algorithms on a grid graph.
Start and goal vertices are shown as blue and red disks, respectively. Vertices in the
OPEN and CLOSED lists are shown as gray and green disks, respectively. The path
found by the algorithm is shown as a red line.

edge (u, v). If so, g(v) is updated to g(u) + c(u, v) and the parent of v is updated to u.
Dijkstra search maintains the invariant that, whenever a vertex u is selected for expansion,
g(u) = d(s, u). Therefore, when the goal vertex t is selected for expansion, g(t) = d(s, t),
and the search tree contains a shortest s-t path. Figure 2.6a shows the search tree of a
Dijkstra search on a grid graph after it has found a shortest s-t path.

In the worst case, Dijkstra search performs O(|E|) decrease-key operations (decrease
the g-value of a vertex), and O(|V |) extract-min operations (remove a vertex with the
minimum g-value from OPEN). Using a binary heap implementation of the OPEN list,
which supports O(log|V |) decrease-key and extract-min operations, Dijkstra search runs
in O(|E|log|V |) time. Using a Fibonacci heap implementation of the OPEN list, which
supports amortized O(1) decrease-key and O(log|V |) extract-min operations (Fredman
& Tarjan, 1987), Dijkstra search runs in O(|E|+ |V |log|V |) time.

2.2.4 Bidirectional Dijkstra Search

Bidirectional Dijkstra search simultaneously runs a (forward) Dijkstra search from the
start vertex and a backward Dijkstra search from the goal vertex, and terminates when
the two searches “meet” at a vertex u, that is, when u is selected for expansion by both
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searches. The s-u path is extracted from the forward search and the u-t path is extracted
from the backward search, which are then combined into an s-t path which is guaranteed
to be a shortest path. Figure 2.6b shows the search trees of a bidirectional Dijkstra search
on a grid graph after it has found a shortest s-t path.

Bidirectional Dijkstra searches typically either alternate between expanding vertices
in the forward and backward searches, or expand a vertex from the search whose radius is
smaller, where the radius of a Dijkstra search is equal to the smallest g-value of a vertex
in its OPEN list. A vertex is expanded at most once in bidirectional Dijkstra searches,
either by the forward search or the backward search, since the search terminates when a
vertex is about to be expanded for a second time.

The main reason to use a bidirectional Dijkstra search over a (unidirectional) Dijkstra
search is that it typically expands fewer vertices. Whereas a Dijkstra search from s to t
expands vertices with distances of at most d(s, t) from s, a bidirectional Dijkstra search
that meets at a vertex u expands vertices with distances of at most d(s, u) from s on G,
and vertices with distances of at most d(u, t) from t on the reverse graph of G.

2.2.5 A* Search

A* search (Hart, Nilsson, & Raphael, 1968) extends Dijkstra search by using a heuristic
h to “guide” the search towards the goal vertex.

A heuristic is a function h : V × V → [0,∞) that estimates the distance between any
two vertices on G. h is admissible if and only if it never overestimates distances on G,
that is, for any u, v ∈ V , it holds that h(u, v) ≤ d(u, v). h is consistent if and only if 1)
for any t ∈ V , h(t, t) = 0, and 2) the heuristic distances obey the triangle inequality, that
is, for any (u, v) ∈ E and t ∈ V , it holds that h(u, t) ≤ c(u, v) + h(v, t). A* searches use
a heuristic to estimate the distances of vertices to goal vertices only. Therefore, if a goal
vertex t is available, we use h(u) as a shorthand for h(u, t) if doing so does not result in
ambiguity.

A* search chooses the next vertex to expand from the OPEN list as the vertex u
with the smallest f -value f(u) = g(u) + h(u). If h is admissible but not consistent,
A* search might need to expand some vertices more than once to be guaranteed to find
shortest paths, which is disallowed in our framework. If h is consistent, then A* search is
guaranteed to find shortest paths, and is optimally efficient when doing so. That is, no
optimal unidirectional search algorithm that uses h can expand fewer vertices than A*
(modulo tie-breaking) (Pearl, 1985). Figure 2.6c shows the search tree of an A* search
using Octile distances as a consistent heuristic on a grid graph, after it has found a
shortest s-t path.

If a consistent heuristic h1 is no less informed than a consistent heuristic h2 (that
is, for any u, h1(u) ≥ h2(u)), then an A* search that uses h1 is guaranteed to expand
no more vertices than an A* search using h2 (modulo tie-breaking). Dijkstra search
can be considered as an A* search that uses the least informed heuristic, namely the
zero-heuristic h0, where, for any u, t ∈ V , h0(u, t) = 0.
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2.2.6 Weighted A* Search

Weighted A* search (Pohl, 1970) extends A* search by using a parameter w ≥ 1 to weigh
the contribution of the heuristic to the f -values of vertices. Weighted A* search selects
the next vertex to expand from the OPEN list as the vertex u with the minimum f -value
f(u) = g(u) + wh(u). If h is consistent, weighted A* search is guaranteed to find a w-
suboptimal path. Increasing the value of w makes the search more “greedy”, by steering
it more aggressively towards the goal, which usually results in fewer expansions but also
the search finding longer paths. Figure 2.6d shows the search tree of a weighted A* search
with w = 2 using Octile distances as a consistent heuristic on a grid graph, after it has
found a w-suboptimal s-t path.

2.3 Preprocessing-Based Path Planning

Preprocessing-based path-planning algorithms analyze G in a preprocessing phase to gen-
erate auxiliary data, which can then be used to answer s-t queries faster in a query
phase. In this section, we discuss the limitations and applications of preprocessing-based
path-planning algorithms and discuss related work.

2.3.1 Limitations and Applications

Consider a preprocessing-based path-planning algorithm that precomputes the next ver-
tex u along a shortest s-t path for all pairs of vertices s and t. This computation can be
done in O(|V |3) time using the Floyd-Warshall algorithm (Floyd, 1962; Warshall, 1962),
and the auxiliary data can be stored using O(|V |2) memory. An s-t query can then be
answered in time linear in the number of edges along an s-t path. Although the query
phase of this algorithm runs in the minimum possible time to output a complete path
description, its preprocessing time and memory requirements can be limiting factors in its
applicability to real-world problems. For instance, it could require hours of preprocessing
time and terabytes of storage for a graph with 1 million vertices. This example high-
lights the first limitation for preprocessing-based path-planning algorithms, namely their
preprocessing time and memory requirements. Different applications can accommodate
algorithms with different amounts of preprocessing time and memory requirements, and
therefore, a preprocessing-based path-planning algorithm with shorter query times is not
necessarily better than another one with shorter preprocessing times or smaller memory
requirements.

Another limitation of preprocessing-based path-planning algorithms is that, in many
real-world applications of path planning, the environment is not static. Changes in the
environment, such as other agents moving in the environment and acting as obstacles,
might invalidate the auxiliary data computed during preprocessing. Although recom-
puting the data might be feasible for some applications (for instance, if there is time
before the next query and preprocessing is sufficiently fast), “repairing” the data can be
faster. For instance, repairing a pairwise distance matrix when a single edge is added
or removed from the graph is asymptotically faster than recompuing it (Demetrescu &
Italiano, 2004).
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Despite their limitations, preprocessing-based path-planning algorithms can be used
to speed up path planning by several orders of magnitude for applications that can accom-
modate their preprocessing times and memory requirements. Below, we provide example
applications for preprocessing-based path-planning algorithms that operate on road net-
works, grid graphs, or state lattices.

• Road networks: With the increasing popularity of GPS navigation devices, find-
ing shortest routes within or between cities has become an increasingly popular
application of path planning using road networks. Web services such as Google
Maps answer thousands of queries per second on continental scale networks, where
both the unidirectional and bidirectional versions of Dijkstra searches require sev-
eral seconds to find a shortest path (Sommer, 2014). Using preprocessing-based
path-planning can reduce query times to microseconds on road networks (Sommer,
2014) and these services can afford to store large amounts of auxiliary data in or-
der to decrease the load on their servers by significantly improving query times.
Although travel-times can to change throughout the day due to traffic, the overall
structure of the road network mostly remains the same, allowing a two-step pre-
processing approach that first preprocesses the road network without information
on edge lengths, and then using a customization phase that adjusts the auxiliary
data when information on edge lengths are available (Dibbelt, Strasser, & Wagner,
2014; Delling, Goldberg, Pajor, & Werneck, 2015).

• Grid graphs: Grid graphs have been used in many video games (such as StarCraft,
Baldur’s Gate, Age of Empires II, Warcraft III, Dragon Age: Origins, Dawn of War),
where paths for agents need to be calculated within milliseconds due to real-time
constraints. This can be particularly challenging for real-time strategy games such
as StarCraft or Age of Empires II, which can have multiple players in the game
each controlling up to 200 units. Furthermore, path planning often needs to share
CPU time with other processes that run within the game, and can also be used
as a subroutine by higher-level AI systems that make strategic decisions on how
to move the units. To meet these demands, path-planning systems in video games
often make compromises on solution quality (that is, the lengths of paths returned
by path planning). Preprocessing-based path planning can be used as an alternative
in order to achieve short query times (Sturtevant & Geisberger, 2010).

Although video game maps are rarely static due to many agents moving around
in the environment, these agents are typically ignored during path planning. The
reason for this is two-fold: First, in order to avoid other agents whose current paths
are known, path planning needs to consider them as moving obstacles, which re-
quires a time component to be added to searches, making them slower. Second,
even if a plan is found that avoids other agents’ paths, the other agents’ paths can
frequently change, which can invalidate the current agent’s path. A common prac-
tice to address this problem is to simply ignore other agents during path planning
and use steering algorithms to avoid collisions with other agents (Reynolds, 1999),
which can significantly reduce, or completely eliminate, the frequency of updates to
the data calculated during preprocessing.
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• State lattices: State lattices have been used for path planning for autonomous
vehicles such as aerial vehicles (Thakur, Likhachev, Keller, Kumar, Dobrokhodov,
Jones, Wurz, & Kaminer, 2013), automobiles (Likhachev & Ferguson, 2009), boats
(Svec, Shah, Bertaska, Alvarez, Sinisterra, Von Ellenrieder, Dhanak, & Gupta,
2013), and all terrain vehicles (Pivtoraiko & Kelly, 2005a). Navigating autonomous
vehicles through cluttered environments such as parking lots require complex ma-
neuvers that need to be planned and executed very efficiently, even at human driv-
ing speeds (∼15 mph) (Likhachev & Ferguson, 2009). Therefore, similar to video
games, path-planning systems for autonomous vehicles often make compromises on
solution quality, for instance, by using weighted A* searches, in order to achieve
real-time performance (Likhachev & Ferguson, 2009). However, unlike video games,
these compromises often have real-world consequences, such as increased fuel con-
sumption. Using preprocessing-based path-planning could help achieve a better
query-time/solution-length trade-off to mitigate these consequences, or simply to
meet the demands for the real-time nature of the application.

The winning entry in the DARPA Urban challenge for self-driving cars, the Boss
vehicle from Carnegie Mellon University, uses state lattices for path-planning in
parking lots (Urmson et al., 2008). Given the imminent popularity of self-driving
cars, it is not far-fetched to imagine automated parking lots that need to efficiently
navigate cars in and out of the parking lot. We consider this as a possible applica-
tion for preprocessing-based path planning. Although unoccupied parking spaces
can become occupied and vice versa, preprocessing could assume that all of the
parking spaces are occupied and that a single parking space (the target) would be
considered to be unoccupied during queries. Although this precludes the vehicle
from following shorter paths through unoccupied parking spaces, it might be unde-
sirable for vehicles to follow such paths to begin with, both due to safety reasons and
because, ideally, one would like to park the vehicle at the closest available parking
space which can be accessed without going through other available parking spaces.

2.3.2 Related Work: Road Networks

Path planning on road networks has recently attracted a considerable amount of inter-
est in the research community, with the increasing popularity of GPS navigation devices
and web services such as Google Maps that allow users to plan shortest routes within or
between cities. Over the past two decades, a number of algorithms have been developed
and a competition was held for preprocessing road networks (Demetrescu et al., 2009).
These algorithms can be used to answer distance queries optimally, and most of them
can also be used to answer path queries optimally. Although these algorithms are ap-
plicable to any type of graph, they typically achieve greater speed-ups on road networks
compared to other types of graphs, such as grid graphs (Abraham et al., 2010). The
survey article of Bast, Delling, Goldberg, Müller-Hannemann, Pajor, Sanders, Wagner,
and Werneck groups these algorithms into five categories, based on the techniques that
they use (Bast et al., 2016). Below, we provide an overview of preprocessing-based path-
planning algorithms developed for road networks, by grouping them into the same five
categories.
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• Goal-directed techniques: Algorithms that use goal-directed techniques use the
position of the goal vertex to prune vertices from searches. A very simple example of
this technique is employed by A* search, which uses a heuristic to avoid expanding
vertices that are “sufficiently distant” from the goal vertex. Although Euclidean
distance (straight-line distance) or geodesic distance (distance on the surface of a
sphere) can approximate distances on road networks pretty accurately under the
travel-distance metric, heuristics based on these distances are much less informed
under the travel-time metric (Goldberg & Harrelson, 2005).

As we have discussed in Section 2.2.5, using more informed heuristics in A* searches
may result in fewer expansions and thus faster searches. True-distance heuristics
use precomputed distances on G to more accurately estimate heuristic distances
during searches. One such example of a true-distance heuristic is the landmark
heuristic (also known as the differential heuristic) (Goldberg & Harrelson, 2005).
During preprocessing, distances from every vertex to a small set of landmark vertices
L ⊆ V are calculated and stored using O(|L||V |) memory. During searches, the
heuristic distance from a vertex s to a vertex t with respect to a landmark l is then
calculated as hl(s, t) = |d(s, l) − d(t, l)|, and the heuristic distance with respect to
all landmarks L is calculated as hL(s, t) = maxl∈L hl(s, t). An A* search that uses
the landmark heuristic is called the ALT (A*, landmarks, and triangle inequality)
algorithm. We discuss more variants of true-distance heuristics in the context of
grid graphs in Section 2.3.3.

Another technique for goal-directed pruning is to label each edge (u, v) with a set
of vertices L(u, v) during preprocessing such that, for any vertex t ∈ V , t ∈ L(u, v)
if and only if (u, v) can appear as the first edge along a shortest u-t path. During
queries, any edge (u, v) whose label does not contain the goal vertex t can be safely
pruned from the search since it cannot be part of a shortest path to the goal. Com-
puting and storing exact labels for each edge can be costly, however, as it requires
an all-pairs shortest paths computation and O(|V ||E|) memory for storing the la-
bels. Therefore, the two algorithms that we describe next instead use approximate
labels, which overestimate the labels for each edge to guarantee optimality. Geomet-
ric containers (Schulz, Wagner, & Weihe, 2000; Wagner, Willhalm, & Zaroliagis,
2005) annotate each edge (u, v) with a region described by a geometric container,
such as a bounding box, that contains all t ∈ L(u, v). Arc flags (Lauther, 2004;
Hilger, Köhler, Möhring, & Schilling, 2009) partition V into disjoint sets V1, . . . , Vk
that have similar numbers of vertices and small boundaries. Each edge (u, v) is then
annotated with k bits where the ith bit is set if and only if L(u, v) contains at least
one vertex from Vi.

• Separator techniques: Algorithms that use separator techniques exploit the fact
that road networks tend to have small separators (Eppstein & Goodrich, 2008;
Delling, Goldberg, Razenshteyn, & Werneck, 2011). A vertex separator of G is a set
of vertices S ⊂ V whose removal decomposes G into multiple disjoint components,
which preferably contain similar numbers of vertices. An edge separator of G is
defined similarly, except that edges are removed to decompose G. Figure 2.7(a)
shows a vertex separator of a 4-neighbor grid graph.
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Figure 2.7: An overlay graph constructed from a vertex separator.

Schulz et al. use vertex separators to identify a set of “important” vertices S ⊆ V
and add shortcut edges between them to create an overlay graph GS that preserves
distances between vertices in S (Schulz et al., 2000). Figure 2.7(b) shows an over-
lay graph constructed from a vertex separator on a 4-neighbor grid graph. During
queries, searches consider only the overlay graph and the components that con-
tain the start and goal vertices, ignoring the rest of the vertices. This approach
can be extended to multiple levels, by creating overlay graphs on top of previous
ones (Schulz, Wagner, & Zaroliagis, 2002; Holzer et al., 2009), or by adding many
more shortcut edges to the graph during preprocessing (Delling, Holzer, Müller,
Schulz, & Wagner, 2009), which allows searches to ignore even more vertices. Other
variants exists that use edge separators to construct the overlay graphs (Jung &
Pramanik, 2002; Delling et al., 2015).

In this dissertation, we use overlay graphs as the basis of our subgoal graph frame-
work. However, we do not require their vertices to be vertex separators, and we
answer queries using them with the Connect-Search-Refine algorithm that first con-
nects the start and goal vertices to them, then searches the resulting query overlay
graph for a shortest path, and finally refines this path into a path on G by replacing
its edges with corresponding shortest paths on G. We describe overlay graphs and
how the subgoal framework uses them in greater detail in Chapter 3.

• Hierarchical techniques: Algorithms that use hierarchical techniques do not
necessarily use hierarchies themselves, but exploit the inherent hierarchy of road
networks to prune vertices from searches. Sufficiently long shortest paths eventually
use one of a very small number of important road segments, such as highways. Once
the search is “far away” from the start and goal vertices, it might be possible for
it to consider only these important road segments and ignore the “less important”
parts of the graph.
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(a) A contraction hierarchy constructed on a grid graph. Vertices are colored on a scale from
yellow (low level) to red (high level), and higher-level vertices are placed higher on the grid.

(b) Search trees of a bidirectional search on the contraction hierarchy from (a). Both frontiers
explore the hierarchy in the “up” direction.

Figure 2.8: Contraction hierarchies.

One of the earlier algorithms that exploit this intuition is based on the notion of
reach (Gutman, 2004). Intuitively, a vertex with a short reach is relevant only for
queries over short distances, whereas a vertex with a long reach can be relevant for
queries over longer distances. Specifically, the reach of a vertex u with respect to
a shortest s-t path π that contains u is calculated as min(d(s, u), d(u, t)), and the
(global) reach of u, r(u), is calculated as the maximum reach of u with respect to
any shortest path that contains u. During preprocessing, the reach of every vertex
is precomputed and stored. During an s-t query, u can be safely pruned from the
search if it can be determined that r(u) < min(d(s, u), d(u, t)). However, it might
be difficult to determine d(s, u) or d(u, t) during queries. One possible method
to use the notion of reach to prune vertices from searches is to answer queries
using a bidirectional Dijkstra search: If u has been expanded in the forward or
backward search, its g-value in that search is equal to d(s, u) or d(u, t), respectively.
If u has not been expanded by the forward or backward search, the current radius
of the forward or backward search provides a lower bound on d(s, u) and d(u, t),
respectively, which can be used to prune u from the search. Adding shortcut edges
to G has been shown to reduce the reaches of most vertices, speeding up both
preprocessing and queries (Goldberg, Kaplan, & Werneck, 2009).

Another technique for exploiting the hierarchical structure of road networks is to ac-
tually construct hierarchies on road networks to capture their structure. Earlier ex-
amples of algorithms that use hierarchies include multi-level overlay graphs (Schulz
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et al., 2002; Holzer et al., 2009), highway hierarchies (Sanders & Schultes, 2005,
2006) and highway-node routing (Schultes & Sanders, 2007). Answering queries
using contraction hierarchies (Geisberger et al., 2008; Geisberger, 2008) builds on
ideas from these earlier algorithms, but is faster and conceptually simpler than its
predecessors. Contraction hierarchies are constructed by assigning levels to the
vertices of G and adding shortcut edges between them to guarantee that, between
any two vertices s, t ∈ V , the contraction hierarchy contains an up-down path, a
path that visits vertices first in increasing then in decreasing orders of levels, with
length d(s, t). During queries, contraction hierarchies can be searched with a mod-
ified bidirectional Dijkstra search where the forward search constructs the up-part
and the backward search constructs the down-part of a shortest up-down s-t path.
That is, both searches search “upward” in the hierarchy, ignoring any vertices that
cannot be reached from the start vertex with an up path or cannot reach the goal
vertex with a down path, respectively. Figure 2.8a shows an example of a contrac-
tion hierarchy constructed on a grid graph, and Figure 2.8b shows the search trees
of the bidirectional Dijkstra search over this contraction hierarchy. Essentially, con-
traction hierarchies can capture the hierarchical structure of road networks so that
searches over them can avoid generating the “less important” (lower-level) vertices
when expanding the “more important” (higher-level) vertices.

The name “contraction” hierarchy comes from the fact that contraction hierarchies
are constructed by contracting the vertices of G one by one, that is, removing ver-
tices from G and adding shortcut edges to preserve shortest paths between the
remaining vertices. The contraction order plays an important role in determin-
ing the memory requirements and the preprocessing and query times of answering
queries using contraction hierarchies, and is usually determined heuristically. We
describe the contraction operation in greater detail in Section 3.2.6, the construction
of contraction hierarchies in Section 3.4.3.3, and the modified bidirectional Dijkstra
search that can be used to search contraction hierarchies in Section 3.4.4.

Answering queries using contraction hierarchies is one of three algorithms in Som-
mer’s survey that has a non-dominated query-time/memory trade-off on road net-
works (Sommer, 2014), along with transit-node routing and hub labeling that we
describe next. On the Western Europe road network with 18 million vertices and
42 million edges, queries can be answered using different variants of contraction
hierarchies in 9–900 microseconds, using 100–600 megabytes of memory.1 In com-
parison, variants of transit-node routing and hub labeling can answer queries within
0.2–4 microseconds, but require 1.8–18 gigabytes of memory. Furthermore, answer-
ing queries using contraction hierarchies has a non-dominated query-time/memory
trade-off in the Grid-Based Path-Planning Competition. We experimentally demon-
strate in Chapter 5 that answering queries on grid graphs by using a combina-
tion of subgoal graphs and contraction hierarchies achieves a dominating query-
time/memory trade-off compared to answering queries using contraction hierarchies
only.

1We estimate these values from Figure 4 in the survey.
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• Bounded-hop techniques: Algorithms that use bounded-hop techniques add
“virtual” shortcut edges to G to ensure that, between any two vertices, there exists
a shortest path with no more than a fixed number of hops (edges). For instance,
using pairwise distances can be considered as adding virtual shortcut edges between
all pairs of vertices so that there exists a shortest path with at most one hop between
any two vertices. Distance queries can then be answered in constant time by simply
looking up the length of the corresponding 1-hop path in the pairwise distance
table. Algorithms that we describe in this category add a much smaller number
of virtual shortcut edges to guarantee that a shortest path with at most two or
three hops exists between any two vertices. They can answer distance queries with
only a small number of table lookups, avoiding search altogether, and arguably have
more reasonable query-time/memory trade-offs compared to using pairwise distance
tables.

Hub labeling (Abraham et al., 2011, 2012) can be considered a 2-hop technique.
During preprocessing, each vertex u is labeled with a set of vertices L(u), called
the hubs of u, along with their distances from u. These labels satisfy the property
that, for any s, t ∈ V , a shortest s-t path contains a vertex u ∈ L(s) ∩ L(t). s-t
distance queries can then be answered by scanning the labels of s and t for the
vertex u that minimizes d(s, u)+d(u, t). By sorting the labels of each vertex during
preprocessing, these scans can be performed during queries in time linear in the size
of the labels, by using an operation that is similar to the merging of two ordered
lists. For directed graphs, hub-labeling distinguishes between forward labels Lf (u)
and backward labels Lb(u) for each vertex u, and uses Lf (s) and Lb(t) to answer
s-t distance queries. Hub labeling can also be used to answer s-t path queries, by
recursively replacing the pair (s, t) with the pairs (s, u) and (u, t) for the vertex
u ∈ Lf (s)∩Lb(t) that minimizes d(s, u)+d(u, t), until all pairs correspond to edges
of G.

Transit-node routing (Bast et al., 2006; Arz et al., 2013) can be considered a 3-hop
technique. During preprocessing, pairwise distances between a small set of transit
nodes T ⊆ V and distances from every vertex u to their access nodes A(u) ⊆ T
are computed and stored. A transit node v ∈ T is an access node of a vertex
u ∈ V \ T if and only if no shortest u-v path on G passes through another transit
node. (Similar to hub labeling, transit node routing distinguishes between forward
and backward transit nodes on directed graphs, which we omit from our description
for brevity). During an s-t distance query, transit-node routing first tries to prove
that a shortest s-t path on G passes through a transit node, by using a locality filter,
which is typically implemented by partitioning V into cells and checking whether s
and t belong to different cells. If so, the query is treated as a long-distance query
and is answered by identifying the vertices u ∈ A(s) and v ∈ A(t) that minimize
the sum d(s, u) + d(u, v) + d(v, t). Otherwise, the query is treated as a local query
and is answered by using a different algorithm, for instance, by using contraction
hierarchies.

Transit-node routing can be considered as implicitly using the overlay graph GT of
transit nodes. Rather than storing the overlay graph, transit-node routing stores
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pairwise distances on GT to avoid searches. Rather than identifying the edges that
connect query vertices to the overlay graph, transit-node routing stores those edges
implicitly as access nodes. However, it does not store pairwise distances between
vertices in V \ T and, therefore, has to treat some queries as local queries, when
the extension of the overlay graph with the query vertices does not contain a path
that corresponds to a shortest s-t path on G.

• Combinations: The algorithms in this category combine techniques from the pre-
vious categories. REAL (Goldberg et al., 2009) combines reach with landmarks, by
using the landmark heuristic to provide better lower-bounds for reach-based prun-
ing. Core-ALT (Bauer, Delling, Sanders, Schieferdecker, Schultes, & Wagner, 2010;
Delling & Nannicini, 2012) combines overlay graphs and landmarks, by computing
landmark distances only for the vertices in the overlay graph. ReachFlags (Bauer
et al., 2010) combines reach, arc flags, and overlay graphs, by computing an overlay
graph that contains only vertices with sufficiently high reaches, and computing arc
flags only for edges in the overlay graph. CHASE (Bauer et al., 2010) combines
contraction hierarchies with arc flags, and computes arc flags only for edges between
vertices with high levels in the hierarchy. TNR-AF (Bauer et al., 2010) combines
transit-node routing with arc flags to reduce the number of distance look-ups.

Most of the algorithms that we have described in this section are applicable to any
type of graph, but work especially well on road networks, which typically have small
graph separators (Eppstein & Goodrich, 2008; Delling et al., 2011) and small highway
dimensions (Abraham et al., 2010). We describe the notion of highway dimension in
Section 3.3.3. Bast et al. remark that “proving better running time bounds than those
of Dijkstra’s algorithm is unlikely for general graphs; in fact, there are inputs for which
most algorithms are ineffective” (Bast et al., 2016). Abraham et al. show that, on
undirected graphs with highway dimension h and diameter D, after running a polynomial-
time preprocessing routine, queries can be answered using contraction hierarchies or reach
in O((h log h logD)2) time, hub labeling in O(h log h logD) time, and long-range transit-
node routing in O(h2) time (Abraham et al., 2010).

2.3.3 Related Work: Grid Graphs

Preprocessing-based path-planning algorithms have been studied less extensively on grid
graphs than road networks. However, developments on road networks and the recent
Grid-Based Path-Planning Competition (Sturtevant, 2012b) have spurred interest in the
area over the past decade. Preprocessing-based path-planning algorithms on grid graphs
typically use different techniques from their counterparts on road networks, due to the
different structures and applications of grid graphs compared to road networks. Following
Bast et al.’s example, we group preprocessing-based path-planning algorithms on grid
graphs into several categories based on the techniques that they use.

• Abstraction techniques: Algorithms that use abstraction techniques construct
an abstract graph G′ of G whose vertices are either a subset of the vertices of G
or represent groups of vertices of G. Unlike overlay graphs, abstract graphs do not
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necessarily preserve distances on G. Therefore, abstract graphs can typically be
constructed with fewer edges than overlay graphs, but cannot necessarily be used
to find shortest paths.

Hierarchical path-finding A* (HPA*) (Botea, Müller, & Schaeffer, 2004) partitions
the vertices of G into clusters by using larger grid cells and selects, for each adjacent
pair of clusters, a single edge (u, v) ∈ E that connects them on G. These edges
are called inter-edges, and their endpoints form the set of vertices S of the abstract
graph. HPA* also adds intra-edges that connect vertices in S within the same
cluster through shortest paths. That is, the abstract graph it uses can be considered
to be multiple overlay graphs, one for each cluster, that are connected to each
other through inter-edges. The abstract graph is then used as an overlay graph
to answer queries, using the Connect-Search-Refine algorithm. However, since the
abstract graph does not necessarily represent distances on G correctly, HPA* is not
guaranteed to find shortest paths. HPA* can be extended to use multiple levels of
abstraction, each level of abstraction created by using larger grid cells to generate
larger clusters.

Partial refinement A* (PRA*) (Sturtevant & Buro, 2005) uses a hierarchical ab-
straction, where the lowest level of the hierarchy corresponds to G, and the vertices
at higher levels of the hierarchy correspond to groups of vertices at lower levels.
Specifically, when generating the (i + 1)st level of the hierarchy, the vertices in
the ith level are grouped into disjoint cliques of size at most 4. Each such clique
becomes a vertex at level i + 1. An edge (U, V ) is added to the (i + 1)st level of
abstraction if and only if, for some u ∈ U and v ∈ V , an edge (u, v) exists at the
ith level of abstraction. The length of (U, V ) is determined by calculating x- and y-
coordinates for U and V by averaging the x- and y-coordinates of their constituent
vertices, and then using these coordinates to determine the Euclidean (straight-line)
distance between them. The preprocessing ends once the highest level contains a
single vertex. During an s-t query, PRA* performs an A* search at every level of
the hierarchy, starting at the highest level, from the abstract vertex S that contains
s to the abstract vertex T that contains t. The path Πi found at level i is then
used to constrain the search at level i−1. Specifically, any vertex at level i−1 that
is not contained in a higher-level vertex U that appears on Πi is pruned from the
search. Since the distances are not preserved in higher-level abstractions, PRA*
is not guaranteed to find shortest paths. In order to find short paths in practice,
PRA* can perform searches starting at a lower level of the hierarchy, which is de-
termined heuristically as level bl/2c, where l is the lowest level of the hierarchy that
groups s and t into the same vertex.

Finally, the path-planning algorithm used in the video game Dragon Age: Origins
uses abstractions (Sturtevant & Geisberger, 2010). During preprocessing, the grid is
divided into clusters (sectors), similar to HPA*. Each cluster is further subdivided
into regions that correspond to different connected components within the cluster.
The abstract graph contains a single representative vertex from each region, and
edges between the representative vertices of adjacent regions. Similar to HPA*, the

36



abstract graph is used as an overlay graph to answer queries, and can be extended
with additional levels of abstraction.

• Dead-end techniques: Algorithms that use dead-end techniques identify regions
(subsets of vertices) of G that are relevant only for searches between some pairs of
start and goal vertices. These regions can be considered to be dead-ends for searches
between other pairs of start and goal vertices and therefore be safely pruned.

Dead-end heuristics (Björnsson & Halldórsson, 2006) decompose G into smaller
components and construct a component graph of G. s-t queries are answered by
first performing a depth-first search on the component graph, between the compo-
nents S and T that contain the start and goal vertices, respectively, to identify the
components that appear on some S-T path on the component graph. All other com-
ponents are labeled as dead-ends, and are pruned from the subsequent A* search
on G.

Another idea for identifying dead-ends is based on the notion of swamps (Pochter,
Zohar, Rosenschein, & Felner, 2010). A swamp is a set of vertices S whose removal
from the graph does not change the distances between the remaining vertices. A set
of (disjoint) swamps is called a modular swamp if and only if the union of any subset
of them forms a swamp. During queries, the (individual) swamps (in a modular
swamp) that do not contain the start or the goal vertex can be safely pruned from
the search. Pochter et al. observe that some sets of vertices S′ that are not swamps
may become swamps if another set of vertices S is removed from the graph. They
introduce swamp hierarchies to exploit this observation, in order to prune more
vertices during searches. For brevity, we omit a more detailed description of swamp
hierarchies.

• True-distance heuristics: Algorithms that use true-distance heuristics store pre-
computed (true) distances between some pairs of vertices, which are then used to
calculate well-informed heuristic distances during A* searches. One such exam-
ple of a true-distance heuristic is the landmark heuristic that we have discussed
in Section 2.3.2, which is referred to as the differential heuristic by the heuristic
search community (Sturtevant, Felner, Barrer, Schaeffer, & Burch, 2009). Canonical
heuristics (Sturtevant et al., 2009) and compressed differential heuristics (Golden-
berg, Sturtevant, Felner, & Schaeffer, 2011) can be considered to be variants of
differential heuristics, where distances to only a small subset of (instead of all) the
landmarks are stored for each vertex.

Another class of true-distance heuristics are calculated by summing up true dis-
tances, rather than subtracting them. These calculations can be considered to be
similar to the calculations made by the algorithms that use bounded-hop techniques
discussed in Section 2.3.2. Gateway heuristics (Björnsson & Halldórsson, 2006) are
calculated by decomposing G into smaller components and constructing a compo-
nent graph of G, similar to dead-end heuristics. During preprocessing, pairwise
distances are computed and stored between gateways, which correspond to bound-
aries between adjacent components. During queries, the heuristic distance between
two vertices s and t is calculated by identifying gateways Gs and Gt associated
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with the components containing s and t, respectively, that minimizes the value of
the expression h(s,Gs) + d(Gs, Gt) + h(Gt, t), where h(u,Gu) = h(Gu, u) is equal
to the minimum Octile distance between the vertex u and a vertex in the gateway
Gu. Border heuristics (Felner, Sturtevant, & Schaeffer, 2009) are calculated us-
ing a similar idea, but use pairwise distances between the components, instead of
between gateways. Portal heuristics (Goldenberg, Felner, Sturtevant, & Schaeffer,
2010) are also calculated using a similar idea, but use pairwise distances between
the individual vertices in gateways, called portals. Although the ideas behind the
calculation of these different heuristic distances are similar, they are calculated by
using different decompositions of G into components. These differences are beyond
the scope of this overview.

The calculation of portal heuristics can be considered to be implicitly using an over-
lay graph of the set of portals. Similar to the vertices of overlay graphs constructed
on road networks (Schulz et al., 2002; Holzer et al., 2009), the set of portals also
form vertex separators of G. Similar to transit-node routing, portal heuristics use
pairwise distances on the overlay graph. Goldenberg et al. propose a portal-based
search algorithm that simply uses the components that contain the start and goal
vertices plus the portal distance between these components. This algorithm is very
similar to transit-node routing, except that the access nodes of vertices are not
precomputed but identified during queries.

• First-move compression techniques: Algorithms that use first-move compres-
sion techniques compress first-move tables. First-move tables are similar to pairwise-
distance tables, except that each entry (s, t) in a first-move table specifies the first
move, an edge (s, u), along a shortest s-t path on G. First-move tables can be used
to find shortest s-t paths by repeatedly following first moves from s to t. Although
first-move tables and pairwise-distance tables have the same number of O(|V |2) en-
tries, each entry in a first-move table can be stored using only dlog be bits, where b
is the maximum out-degree of a vertex of G. On an 8-neighbor grid graph, since the
maximum out-degree of a vertex is 8, each entry in a first-move table can be stored
using 3 bits. The algorithms that we describe in this category compress first-move
tables by grouping together entries that specify the same first move.

Copa (Botea, 2011; Botea & Harabor, 2013) compresses first-move tables by ex-
ploiting the observation that vertices that are “close together” on the grid graph
can typically be reached from a vertex s with the same first move. During prepro-
cessing, for each vertex s ∈ V , the grid is divided into non-overlapping rectangles
such that the vertices contained in each rectangle can be reached from s with the
same first move. During queries, the first move along an s-t path can be determined
by iterating over the rectangles computed for s to find the rectangle that contains
t. Copa also uses more sophisticated compression schemes, such as storing the most
frequent first move for each vertex s as the default first move from s, and computing
the rectangles for s accordingly.

Single-row compression (SRC) (Strasser et al., 2015; Botea et al., 2015) orders the
columns (which correspond to goal vertices) of first-move tables so that their rows
(which correspond to start vertices) contain consecutive entries with the same first
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Figure 2.9: Overlay graph of rectangular symmetry reduction on a 4-neighbor grid
graph. Vertices of the overlay graph are placed at the cells at the boundaries of the
rectangles. The overlay graph also contains edges between adjacent cells, which are
not shown. Image downloaded from https://harablog.wordpress.com/2011/09/01/

rectangular-symmetry-reduction/ .

move, and stores each row compactly by representing consecutive entries with the
same next move as intervals. During queries, it can determine the first move along
an s-t path by performing a binary search over the sequence of intervals stored for
row s to find the interval that contains t. SRC identifies an ordering of columns
in first-move tables heuristically as the order of vertices expanded by a depth-first
search from a random vertex of G. If more than one possible first move exists from
s to t, SRC picks the one that helps to minimize the size of the compressed table.
An extension of SRC is multi-row compression (MRC), which also groups rows that
have similar intervals, and stores their shared intervals only once. During queries, it
can determine the first move along an s-t path by performing two binary searches,
one over the sequence of shared intervals and one over the sequence of individual
intervals stored for row s, to find the interval that contains t.

• Symmetry reduction techniques: Unlike road networks, grid graphs typically
contain multiple shortest paths between two vertices. Algorithms that use symme-
try reduction techniques try to avoid exploring all but one of these shortest paths.

Rectangular symmetry reduction (RSR) (Harabor, Botea, & Kilby, 2011), although
not described as such in the literature, uses overlay graphs to reduce symmetries on
grid graphs. During preprocessing, RSR decomposes the grid into non-overlapping
rectangular areas that do not contain blocked cells. Interior vertices of the rectan-
gles are removed from the graph, and shortcut edges are added between boundary
vertices to preserve shortest paths between them. This is equivalent to generating
an overlay graph using vertex separators, where the removal of the boundary ver-
tices of rectangles decomposes the grid graph into multiple disjoint (rectangular)
components. Figure 2.9 shows an example of RSR’s overlay graph on a 4-neighbor
grid graph. Observe that not all paths on the grid graph are represented in RSR’s
overlay graph. For instance, the interiors of rectangles can only be traversed by
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Figure 2.10: Operation of jump-point search.

going in a straight line, disallowing turns. During queries, RSR uses the Connect-
Search-Refine algorithm, where the connection phases simply connect the start and
goal vertices to the boundaries of the rectangles that respectively contain them, and
the refinement phases simply replace shortcut edges with corresponding paths that
are guaranteed to move in straight lines. That is, the connection and refinement
phases of RSR exploit the fact that each rectangle can be considered as “freespace”
(since the rectangles do not contain blocked cells). The subgoal graphs that we
construct on grid graphs exploit a similar intuition, except that their vertices are
placed at the corners of blocked cells and query vertices are connected to them using
a different procedure.

Jump-point search (JPS) (Harabor & Grastien, 2011) is an online (as opposed to
preprocessing-based) path-planning algorithm on grid graphs. Sturtevant and Ra-
bin break down JPS into three components; namely an A* search, a canonical
ordering, and a successor generation (jumping) policy (Sturtevant & Rabin, 2016).

Canonical orderings are (partial) orderings on the actions available to an agent. JPS
uses the diagonal-first canonical ordering: A path is said to be diagonal-first if and
only if all its 2-edge subpaths are shortest paths and no cardinal-to-diagonal turn
on the path can be replaced with a diagonal-to-cardinal turn. JPS explores only
diagonal-first paths, using three simple rules. The first two rules are as follows: 1)
When expanding a vertex that is reached with a diagonal move, generate only those
three successors that can be reached with moves in the same diagonal direction or
its two associated cardinal directions. 2) When expanding a vertex that is reached
with a cardinal move, generate only the successor that can be reached with a move
in the same cardinal direction. Observe that these two rules are sufficient to explore
all diagonal-first shortest paths that originate at a vertex on a grid with no blocked
cells, as shown in Figure 2.10a. However, on grids with blocked cells, these two
rules might fail to reach some of the vertices. Figure 2.10b shows an example where
these two rules are insufficient to reach C5 from C2. To address this issue, JPS
uses a third rule: 3) Also generate the forced neighbors of expanded vertices, that
is, successors v of u where the only shortest path from the parent of u to v passes
through u. For instance, in Figure 2.10b, C5 is a forced neighbor of B5 because the
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only shortest path from the parent B4 of B5 to C5 is 〈B4, B5, C5〉. With these
three rules, JPS is guaranteed to find shortest paths (Harabor & Grastien, 2011).
Sturtevant and Rabin refer to A* search with these three rules as canonical A*
search, and report that it runs ∼2 times faster than A* search on grid graphs used
in the video game Dragon Age: Origins.

JPS extends canonical A* search with a jumping policy, which allows JPS to gen-
erate and expand only the eponymous jump points (plus the start and goal ver-
tices). When the start vertex is expanded, JPS uses the first two rules described
above to efficiently scan the grid, but does not use the third rule to generate forced
neighbors. Instead, it marks those vertices with forced neighbors as jump points,
annotates them with the direction from which they are reached, and inserts them
into the OPEN list. When JPS expands a jump point, it performs a similar scan of
the grid, using the direction of the jump point to limit the directions of its scans.
Figure 2.10b shows an example, where JPS expands C2 by scanning the grid (black
lines) and generates (B5, Right) as a jump point successor of C2. When JPS ex-
pands (B5, Right), it performs a similar scan (red lines) but only in two directions.
Sturtevant and Rabin report that JPS runs ∼1.4 faster than canonical A* search
on grid graphs used in the video game Dragon Age: Origins.

The subgoal graphs that we construct on grid graphs share several similarities with
JPS. Namely, the vertices of our subgoal graphs are placed at convex corner cells,
which are also the cells that JPS places jump points at. Furthermore, our connection
algorithm explores diagonal-first paths, similar to JPS’s scans of the grid. Our
connection algorithm uses clearance values to perform these scans efficiently, which
have been used in preprocessing-based variants of JPS (Harabor et al., 2014; Traish
et al., 2016; Rabin & Sturtevant, 2016). We explore the similarities and differences
between subgoal graphs on grid graphs and JPS in more detail in Section 5.4, where
we show that JPS can be understood as a search over a jump-point graph, which
is a subgoal graph constructed on the direction-extended canonical grid graph. We
also experimentally evaluate algorithms that use subgoal graphs, jump-point graphs,
and their combinations with contraction hierarchies in Section 5.5. We also compare
these algorithms with several variants of JPS that have been evaluated in the Grid-
Based Path-Planning Competition. Among these JPS variants, JPS+BB (Rabin
& Sturtevant, 2016) combines JPS with bounding boxes (that is, the geometric
containers discussed in Section 2.3.2), and achieves query times that are slightly
longer than SRC query times, the shortest query times in the Grid-Based Path-
Planning Competition, but uses significantly less memory.

2.4 Conclusions

In this chapter, we have introduced state lattices, grid graphs, and road networks as
graphs generated by discretizing configuration spaces of agents, provided an overview of
search algorithms that can be used to find paths on graphs, discussed the limitations and
applications of preprocessing-based path planning, and discussed related work on road
networks and grid graphs. We have not discussed related work on state lattices since, to
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the best of our knowledge, no preprocessing-based path-planning algorithm exists that is
specialized for state lattices. Our discussion of related work highlighted several algorithms
that implicitly or explicitly use overlay graphs, which are also used by the subgoal graph
framework that we introduce in the next chapter.
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Chapter 3

The Subgoal Graph Framework

In this chapter, we introduce the subgoal graph framework by augmenting overlay graphs
with reachability relations, extend this framework to hierarchies of subgoal graphs, called
N -level subgoal graphs, and introduce a suboptimal but complete variant, called strongly
connected subgoal graphs. We apply this framework to state lattices and grid graphs in
Chapters 4 and 5, respectively.

This chapter is organized as follows. In Section 3.1, we motivate augmenting overlay
graphs with reachability relations. In Section 3.2, we describe overlay graphs as they
appear in the literature, introduce the three-phase Connect-Search-Refine algorithm to
answer path queries using overlay graphs, discuss the relationship between overlay graphs
and vertex contractions, and introduce extended overlay graphs and heavy contractions.
In Section 3.3, we introduce the subgoal graph framework by augmenting overlay graphs
with reachability relations, introduce bounded-distance reachability as a reachability re-
lation, and prove that “locally sparse” subgoal graphs can be constructed with respect
to bounded-distance reachability on graphs with small highway dimensions, introduce
heavy R contractions that can be used for constructing subgoal graphs, and introduce an
alternative method for constructing subgoal graphs. In Section 3.4, we introduce N -level
overlay and subgoal graphs, discuss their relationship with contraction hierarchies, and
introduce R contraction hierarchies by augmenting contraction hierarchies with reacha-
bility relations. In Section 3.5, we introduce strongly connected subgoal graphs, that can
be used to answer path queries suboptimally, and introduce an algorithm for constructing
them. In Section 3.6, we summarize our theoretical results.

3.1 Introduction

Several preprocessing-based path-planning algorithms on road networks and grid graphs
use overlay graphs, either explicitly or implicitly, as discussed in Sections 2.3.2 and 2.3.3.
An overlay graph of G is a graph GS that contains only a subset S ⊆ V of the vertices
of G. The edges of an overlay graph are the minimum set of edges required to ensure
that, for every s, t ∈ S, dG(s, t) = dGS

(s, t). Overlay graphs can be used to answer s-t
path queries optimally by using the three-phase Connect-Search-Refine algorithm: In the
connection phase, s and t are connected to the overlay graph to form the query overlay
graph. In the search phase, the query overlay graph is searched for a shortest s-t path Π.
In the refinement phase, edges of Π are replaced with corresponding shortest paths on G.

43



The “benefit” of using overlay graphs is that they are typically smaller than G, and
thus searches on them are faster. The “cost” of using overlay graphs is that one has
to perform connection and refinement. Different algorithms that employ overlay graphs
“pay” this cost in different ways. For instance, Schulz et al.’s overlay graphs (Schulz et al.,
2000) and portal-based search pay the cost for connection by performing “local searches”
during the connection phase. Transit-node routing, on the other hand, pays the cost for
connection by precomputing and storing access nodes for every vertex and using a different
path-planning algorithm to answer “local queries”. Transit-node routing and Schulz
et al.’s overlay graphs do not pay the cost for refinement and settle for answering distance
queries only, whereas portal-based search pays the cost for refinement by performing A*
searches between consecutive vertices on Π. Rectangular symmetry reduction arguably
pays a much smaller cost for connection and refinement, by exploiting a rectangular
decomposition of the underlying grid graph to perform these procedures more efficiently.

Subgoal graphs are overlay graphs that are constructed with respect to a reachability
relation R, with the aim of finding a good trade-off between the cost and benefit of using
overlay graphs. Intuitively, R is a list of pairs of vertices between which query subgoal
(overlay) graphs are allowed to have edges. Although this requirement constrains how
subgoal graphs can be constructed, and thus may result in longer search times, it can also
result in shorter connection and refinement times since the connection phases of queries
answered using subgoal graphs can operate under the assumption that they only need to
identify edges that satisfy R, and the refinement phases can operate under the assumption
that they only need to find shortest paths between vertices that satisfy R.

Schulz et al.’s overlay graphs, portal-based search, and rectangular symmetry reduc-
tion exploit this idea to various degrees, by constraining the vertices of their overlay graphs
to be vertex separators of G. The vertex separators define disjoint connected components
in G and, during connection, only the connected components that contain the start and
goal vertices are considered. Rectangular symmetry reduction further requires that each
connected component corresponds to a rectangular area of unblocked cells in the underly-
ing grid, avoiding search altogether during connection. Subgoal graphs can be considered
to be a generalization of these ideas into a framework that can be specialized to different
types of graphs by choosing a reachability relation. For instance, Schulz et al.’s overlay
graphs, portal-based search, and rectangular symmetry reduction can be considered to be
instantiations of this framework, where the reachability relation distinguishes those pairs
of vertices that belong to the same connected component with respect to some vertex
separator of G.

The subgoal graph framework provides us with the means to exploit the freespace
structure of grid graphs and state lattices, by capturing it with a reachability relation
and exploiting it with efficient connection and refinement algorithms, as we discuss in
Chapters 4 and 5.

3.2 Overlay Graphs

In this section, we discuss overlay and extended overlay graphs, how they can be con-
structed, and how they can be used to answer path queries optimally.
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This section is organized as follows. In Sections 3.2.1 and 3.2.2, we establish concepts
such as covering, direct-reachability, overlay graphs, and extended overlay graphs, which
serve as a theoretical foundation for several data structures and algorithms that we discuss
in this dissertation. Our definition of overlay graphs is equivalent to the definition by
Holzer et al., and our definition of extended overlay graphs is inspired by, but slightly
differ from, their definition of extended multi-level overlay graphs (Holzer et al., 2009).
In Section 3.2.3, we prove the optimality and minimality of overlay and extended overlay
graphs. In Section 3.2.4, we introduce the three-phase Connect-Search-Refine algorithm
to answer path queries optimally using overlay graphs, and discuss how it differs from
the approach used by Holzer et al.. In Section 3.2.5, we describe the Overlay-Connect
algorithm as it appears in the literature (Holzer et al., 2009), and discuss its variants.
The Overlay-Connect algorithm can be used for constructing the edges of overlay graphs
or for connecting the start and goal vertices to the overlay graph when answering path
queries. In Section 3.2.6, we describe “vertex contractions”, which appear in the literature
(Geisberger et al., 2008) and are used for constructing contraction hierarchies, and show
that they can be used to construct overlay graphs as well. We also introduce a variant,
called “heavy contractions”, for constructing extended overlay graphs.

3.2.1 Overlay Graphs

An overlay graph GS is a graph that preserves the distances between a set of vertices
S ⊆ V (that is, for every s, t ∈ S, dGS

(s, t) = dG(s, t)), using the minimum set of
shortcut edges (that is, edges that do not necessarily appear in G). Consider the example
in Figure 3.11: Figure 3.1a shows S ⊆ V in red, and Figure 3.1b shows a clique of S,
where the length of each edge (u, v) in the clique is equal to the u-v distance on G.
This clique preserves the distances between vertices in S but has redundant edges, that
is, edges whose removal from the clique does not change the distances on the clique.
For instance, the edge (D1, F10) has the same length as the path 〈D1, B4, B8, F10〉.
Therefore, removing the edge from the clique does not change the D1-F10 distance on the
clique. Removing all redundant edges from the clique results in an overlay graph, which
has no redundant edges, as shown in Figure 3.1(c).

The (non-redundant) edges of overlay graphs can be characterized as direct-reachable:
A pair of vertices (or, equivalently, an edge) (s, t) ∈ V ×V is direct-reachable with respect
to S ⊆ V (equivalently, t is direct-reachable from s with respect to S) if and only if no
shortest s-t path on G passes through an intermediate vertex n ∈ S. Every edge (s, t)
in the clique of S that is not direct-reachable is redundant, since, if a shortest s-t path
on G passes through an intermediate vertex n ∈ S, then the path 〈s, n, t〉 is an alternate
shortest s-t path in the clique. Figure 3.1d shows an example where B8 is not direct-
reachable from D1 (with respect to S) since a shortest D1-B8 path on G passes through
B4 ∈ S. Therefore, (B8, D1) is redundant and thus excluded from the overlay graph of
S.

1Although the techniques we discuss in this chapter are applicable to any directed graph, we use four-
neighbor grid graphs as G in our examples since they are easy to visualize. The length of any edge (u, v)
is equal to the u-v distance on G.
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(a) A 4-neighbor center grid graph with
unit-length edges. S ⊆ V = red vertices.
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(c) The overlay graph GS preserves the
distances between vertices in S using the

minimum set of shortcut edges.
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(d) (D1, B8) is not included in GS because B4
∈ S covers a shortest D1-B8 path on G.

Figure 3.1: An overlay graph constructed on a 4-neighbor grid graph (G). The length of
each shortcut edge (u, v) is equal the u-v distance on G.

In the remainder of this section, we formally define direct-reachability and overlay
graphs, using the concept of covering: A vertex n covers an s-t path π if and only if n is
a vertex of π with n 6∈ {s, t} (Holzer et al., 2009). Definition 3.1 extends the definition
of “covering” by Holzer et al..

Definition 3.1 (Covering a path/pair of vertices). A vertex n covers a path π = 〈p0, . . . , pk〉
if and only if n ∈ {p1, . . . , pk−1}. A vertex n covers a pair of vertices (s, t) ∈ V × V if
and only if n covers at least one shortest s-t path on G.

A set of vertices S ⊆ V covers π if and only if, there exists n ∈ S such that n covers
π. A set of vertices S ⊆ V covers (s, t) if and only if, there exists n ∈ S such that n
covers (s, t).

“Covering” is a fundamental concept in this dissertation which we frequently use in
our theorems. We thus introduce the symbol “@” to denote that a vertex or set of vertices
covers a path or a pair of vertices. Table 3.1 summarizes our notation for “covering” and
highlights some of the equivalences in our definitions. Namely, Definition 3.2 defines
direct-reachability in terms of covering, and Lemma 3.1 proves that n @ (s, t) if and only
if d(s, t) = d(s, n) + d(n, t) and n 6∈ {s, t}.
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Notation Meaning Equivalent meaning

n @ π n covers π n ∈ π and n 6∈ {s, t}, where π is an s-t path
n @ (s, t) n @ a shortest s-t path on G d(s, t) = d(s, n) + d(n, t) and n 6∈ {s, t}
S @ π ∃n ∈ S such that n @ π
S @ (s, t) ∃n ∈ S such that n @ (s, t)
n 6@ π n does not cover π
n 6@ (s, t) n does not cover (s, t)
S 6@ π ∀n ∈ S, n 6@ π
S 6@ (s, t) ∀n ∈ S, n 6@ (s, t) (s, t) ∈ DV⇒V

S

Table 3.1: Covering notation.

Definition 3.2 (Direct-reachability). Let S ⊆ V . A pair of vertices (or an edge) (s, t) is
direct-reachable with respect to S (equivalently, t is direct-reachable from s with respect
to S) if and only if S 6@ (s, t).

We denote the set of all pairs of vertices in V ×V that are direct-reachable with respect
to S as the set DS. Let A ⊆ V and B ⊆ V . We denote the set of all pairs of vertices in
A×B that are direct-reachable with respect to S as the set DA⇒B

S ⊆ A×B. We denote
the set of all pairs of vertices in A×B that are direct-reachable with respect to S, except
for pairs of the form (a, a), as the set DA→B

S ⊆ A×B. That is:
DS = DV⇒V

S = {(a, b) ∈ V × V : S 6@ (a, b)},
DA⇒B
S = {(a, b) ∈ A×B : S 6@ (a, b)}, and

DA→B
S = {(a, b) ∈ A×B : S 6@ (a, b) and a 6= b}.

Definition 3.3 formally defines an overlay graph GS induced by a set of vertices S ⊆ V ,
and is equivalent to the definition of an overlay graph by Holzer et al. (Holzer et al., 2009).

Definition 3.3 (Overlay graph). The overlay graph induced by S ⊆ V on G is the graph
GS = (S,E′, c′), where:

1. E′ = DS→S
S = {(u, v) ∈ S × S : S 6@ (u, v) and u 6= v}

2. ∀(u, v) ∈ E′, c′(u, v) = dG(u, v)

Observe that, by Assumption 1.3, G does not contain any redundant edges and can
therefore be considered as the overlay graph GV = G induced by the set of vertices V .

We now prove that, for every n, s, t ∈ V , n @ (s, t) if and only if d(s, t) = d(s, n) +
d(n, t) and n 6∈ {s, t}, which we use in Section 3.2.3 to prove the minimality and optimality
of overlay graphs.

Lemma 3.1. For every n, s, t ∈ V , n @ (s, t) if and only if d(s, t) = d(s, n) + d(n, t) and
n 6∈ {s, t}.

Proof.

1. If n @ (s, t), then d(s, t) = d(s, n) + d(n, t) and n 6∈ {s, t}:

1.1. Assume n @ (s, t).
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1.2. There exists π = 〈p0, . . . pk〉 such that π is a shortest s-t path on G and n @ π
(Definition 3.1, since n @ (s, t)).

1.3. n = pi for some 0 < i < k (Definition 3.1, since n @ π).

1.4. Let π1 = 〈p0, . . . , pi〉, π2 = 〈pi, . . . , pk〉 with π = π1 ·π2 and l(π) = l(π1)+l(π2).

1.5. l(π) = d(s, t) (since π is a shortest s-t path).

1.6. l(π1) = d(s, n) (otherwise, π is not a shortest path).

1.7. l(π2) = d(n, t) (otherwise, π is not a shortest path).

1.8. d(s, t) = d(s, n) + d(n, t) (since l(π) = l(π1) + l(π2)).

1.9. n 6∈ {s, t} (Definition 3.1, since n @ π).

2. If d(s, t) = d(s, n) + d(n, t) and n 6∈ {s, t}, then n @ (s, t):

2.1. Assume d(s, t) = d(s, n) + d(n, t).

2.2. Assume n 6∈ {s, t}.
2.3. Let π1 be a shortest s-n path on G with l(π1) = d(s, n).

2.4. Let π2 be a shortest n-t path on G with l(π2) = d(n, t).

2.5. Let π = π1 · π2 with l(π) = l(π1) + l(π2).

2.6. l(π) = l(π1) + l(π2) = d(s, n) + d(n, t) = d(s, t).

2.7. π is a shortest s-t path on G (since l(π) = d(s, t)).

2.8. n @ π (Definition 3.1, since n ∈ π, n 6= s, and n 6= t).

2.9. n @ (s, t) (Definition 3.1, since n @ π and π is a shortest s-t path on G).

3.2.2 Extended Overlay Graphs

Extended overlay graphs can be considered to be overlay graphs that are “extended”
with additional vertices. These “extensions” add the necessary set of edges to preserve
distances between the “extended” set of vertices, but never remove any of the existing
edges. Therefore, extended overlay graphs may contain redundant edges. However, as we
prove in Section 3.2.3, extended overlay graphs have the minimum set of edges necessary
to preserve overlay distances between their vertices. We use extended overlay graphs
for three different purposes in this dissertation: (1) When connecting start and goal
vertices to overlay graphs during queries, we only add new edges to the overlay graph
but never remove existing edges. Therefore, query overlay graphs can be considered to
be extended overlay graphs (Section 3.2.4). (2) We use extended overlay graphs to prove
that all possible extensions of subgoal graphs into query subgoal graphs use only edges
that satisfy a reachability relation (Section 3.3.2). (3) We use extended overlay graphs
as building blocks for constructing N -level overlay (and subgoal) graphs (Sections 3.4.1).

More formally, for every S ⊆ T ⊆ V , the extended overlay graph GS,T (GS extended
with T \ S) is a graph that contains all edges that can appear in an overlay graph GU ,
for every U with S ⊆ U ⊆ T . Whereas the set of edges of an overlay graph GS is
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(d) Extended overlay graph GS,T .

Figure 3.2: Overlay and extended overlay graphs on a 4-neighbor grid graph. The length
of each shortcut edge (u, v) is equal the u-v distance on G.

characterized by the relation DS→S
S , the set of edges of an extended overlay graph GS,T

is characterized by the relation DT→T
S . Therefore, for every S ⊆ V , GS,S = GS , and

GV,V = GV = G. Definition 3.4 formally defines extended overlay graphs.

Definition 3.4 (Extended overlay graph). The extended overlay graph induced by S ⊆
T ⊆ V on G is the graph GS = (T,E′, c′), where:

1. E′ = DT→T
S = {(u, v) ∈ T × T : u 6= v and S 6@ (u, v)} and

2. ∀(u, v) ∈ E′, c′(u, v) = d(u, v).

Figure 3.2 shows an example. When extending the overlay graph GS (Figure 3.2a)
with the vertices s and t, edges that appear in GS∪{s,t} (or in GS∪{s} or GS∪{t}) but not
in GS are added to GS , resulting in the extended overlay graph GS,S∪{s,t} (Figures 3.2b
and Figures 3.2c). Figure 3.2d shows an example where GS,S∪{s,t} is extended with three
additional vertices. None of the extensions remove any existing edges.

By definition, GS,T contains a superset of the edges of GT (that is, DT→T
S ⊇ DT→T

T

since T ⊇ S). Therefore, similar to GT , GS,T preserves distances between the vertices
in T , but does not necessarily have the minimum set of edges to do so. However, as we
prove in the next section, GS,T has the minimum set of edges necessary to guarantee that,
for every s, t ∈ T , at least one shortest s-t path π on GS,T is an overlay path, that is, a
path that only uses vertices in S ∪ {s, t}. Definition 3.5 formally defines overlay paths
and overlay distances on extended overlay graphs.
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Definition 3.5 (Overlay path/distance). An s-t path π = 〈p0, . . . , pn〉 on GS,T is an over-
lay s-t path on GS,T if and only if p1, . . . , pn−1 ∈ S. The s-t overlay distance dOGS,T

(s, t)
on GS,T is the length of a shortest overlay s-t path on GS,T .

As we prove in the next section, for every s, t ∈ T , dOGS,T
(s, t) = dGS,T

(s, t) = d(s, t).

Therefore, we use the notation “dO” only in the next section for proving this theorem,
and simply use the notation “d” to represent (overlay) distances on (extended) overlay
graphs throughout the dissertation.

Our definition of extended overlay graphs is influenced by the definition of extended
multi-level overlay graphs by Holzer et al. (Holzer et al., 2009), and can be considered to
be a slight variation of their “extended 2-level overlay graphs”. Namely, in our definition,
we allow an extended overlay graph GS,T to have edges between two vertices in T . Their
definition of “extended 2-level overlay graphs” excludes such edges unless they are edges
that already appear in G. As a result, N -level overlay (and subgoal) graphs, which
we define as hierarchies of extended overlay graphs in Section 3.4.1, are different from
extended multi-level overlay graphs, have different theoretical properties, and are searched
using different search algorithms. A detailed discussion of these differences is beyond the
scope of this dissertation since we do not consider N -level overlay (and subgoal) graphs
as a main contribution of this dissertation (as we discuss in Section 5.5.11, there are other
hierarchies that offer better query-time/memory trade-offs than N -level subgoal graphs).

3.2.3 Optimality and Minimality of Extended Overlay Graphs

We now prove the optimality and minimality of extended overlay graphs. The optimal-
ity of extended overlay graphs means that, for every GS,T and s, t ∈ T , dOGS,T

(s, t) =

dGS,T
(s, t) = d(s, t). The minimality of extended overlay graphs means that extended

overlay graphs have the minimum set of edges necessary to guarantee their optimality.
By the equivalence GS,S = GS , and the fact that every path on GS,S is an overlay path,
these results extend to overlay graphs as well.

We first start with a useful lemma that proves that, for every s, t ∈ T , an overlay s-t
path π exists on GS,T with l(π) = dG(s, t).

Lemma 3.2. For every s, t ∈ T , there exists an overlay s-t path π on GS,T with l(π) =
d(s, t).

Proof. We prove the lemma assuming that s 6= t. Otherwise, π = 〈s〉 trivially satisfies
the lemma.
Let P = GenerateShortestOverlayPath be a procedure that is defined as follows:

1: π ← 〈s, t〉
2: while There exist (u, v) ∈ π and n ∈ S such that n @ (u, v) do
3: Replace (u, v) in π with 〈u, n, v〉
4: return π

We prove that P is guaranteed to return an overlay s-t path on GS,T with length d(s, t):

1. Let k ∈ N be the number of times that line 2 is executed.

2. Let πi be the value of π the ith time that line 2 is executed.
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3. For every (u, v) ∈ πi, u 6= v (proof by induction on i = 1, . . . , k):

3.1. (base case) π1 = 〈s, t〉 and s 6= t.

3.2. (induction step) Each time line 2 is executed, n 6∈ {u, v} (Definition 3.1, since
n @ (u, v)).

4. L(πi) =
∑

(u,v)∈π d(u, v) = d(s, t) (proof by induction on i = 1, . . . , k):

4.1. (base case) L(π1) = d(s, t) (since π1 = 〈s, t〉).
4.2. (induction step) L(πi) = L(πi−1) = d(s, t):

4.2.1. L(πi−1) = d(s, t) (induction hypothesis).

4.2.2. d(u, v) = d(u, n) + d(n, v) (Lemma 3.1, since n @ (u, v)).

4.2.3. L(πi) = L(πi−1)− d(u, v) + d(u, n) + d(n, v) = L(πi−1).

5. P terminates (k <∞):

5.1. Let ε > 0 be the minimum edge length in G.

5.2. ∀i = 1, . . . , k, i ≤ d(s, t)/ε:

5.2.1. πi has i+ 1 edges (since π1 has 1 and each iteration adds one more edge).

5.2.2. ∀(u, v) ∈ π, d(u, v) ≥ ε (since u 6= v).

5.2.3. L(πi) ≥ iε (since πi has i edges).

5.2.4. d(s, t) ≥ iε (since L(πi) = d(s, t)).

5.2.5. d(s, t)/ε ≥ i.
5.3. k is bounded (since, ∀i = 1, . . . , k, i is bounded).

6. πk is an overlay s-t path with length d(s, t):

6.1. ∀(u, v) ∈ πk, S 6@ (u, v) (Definition 3.1, since the condition on line 2 of Gener-
ateShortestOverlayPath fails for πk).

6.2. ∀(u, v) ∈ πk, (u, v) ∈ E′ (Definition 3.4, since S 6@ (u, v)).

6.3. Therefore, πk is an s-t path on GS,T .

6.4. πk is an overlay path (Definition 3.5, since every intermediate vertex n ∈ S).

6.5. ∀(u, v) ∈ E′, c′(u, v) = d(u, v) (Definition 3.4).

6.6. l(π) =
∑

(u,v)∈π c
′(u, v) =

∑
(u,v)∈π d(u, v) = L(π) = d(s, t).

Theorem 3.3 (Optimality). For every s, t ∈ T , dOGS,T
(s, t) = dGS,T

(s, t) = d(s, t).

Proof.

1. Let GS,T = (T,E′, c′).

2. Let s, t ∈ T .
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3. dOGS,T
(s, t) ≥ d(s, t) and dGS,T

(s, t) ≥ d(s, t) (since, by Definition 3.4, ∀(u, v) ∈ E′,
c′(u, v) = d(u, v)).

4. dOGS,T
(s, t) ≤ d(s, t) and dGS,T

(s, t) ≤ d(s, t) (since, by Lemma 3.2, there exists an

overlay s-t path π on GS,T with l(π) = d(s, t)).

To prove the minimality of extended overlay graphs, we first prove two useful lemmata.
Lemma 3.4 extends Definition 3.1 to extended overlay graphs. Namely, Definition 3.1
states that, for every n, s, t ∈ V , n @ (s, t) if and only if there exists a shortest s-t path
π on G such that n @ π. Lemma 3.4 proves that, for every n ∈ S and s, t ∈ T , n @ (s, t)
if and only if there exists a shortest overlay s-t path π on GS,T with n @ π. Lemma 3.5
proves that edges of extended overlay graphs are unique shortest overlay paths.

Lemma 3.4. For every n ∈ S and s, t ∈ T , n @ (s, t) if and only if there is a shortest
overlay s-t path π on GS,T with n @ π.

Proof.

1. Let n ∈ S.

2. Let s, t ∈ T .

3. If n @ (s, t), then there exists a shortest overlay s-t path π on GS,T with n @ π:

3.1. Assume n @ (s, t).

3.2. Let π1 be a shortest overlay s-n path on GS,T with l(π1) = d(s, n). Such π1
exists (Lemma 3.2, since s, n ∈ T ).

3.3. Let π2 be a shortest overlay n-t path on GS,T with l(π2) = d(n, t). Such π2
exists (Lemma 3.2, since n, t ∈ T ).

3.4. Let π = π1 · π2 with l(π) = l(π1) + l(π2) = d(s, n) + d(n, t).

3.5. π is an overlay path on GS,T (Definition 3.5, since π1 is an overlay s-n path,
π2 is an overlay n-t path, π = π1 · π2, and n ∈ S).

3.6. l(π) = d(s, n) + d(n, t) = d(s, t) (Lemma 3.1, since n @ (s, t)).

3.7. π is a shortest s-t path on GS,T (since l(π) = d(s, t)).

3.8. n 6∈ {s, t} (Lemma 3.1, since n @ (s, t)).

3.9. n @ π. (Definition 3.1, since n 6∈ {s, t} and n ∈ π).

4. If there exists a shortest overlay s-t path π on GS,T with n @ π, then n @ (s, t):

4.1. Assume π = 〈p0, . . . pk〉 is a shortest overlay s-t path on GS,T .

4.2. Assume n @ π.

4.3. n = pi for some 0 < i < k (Definition 3.1, since n @ π).

4.4. Let π1 = 〈p0, . . . , pi〉, π2 = 〈pi, . . . , pk〉 with π = π1 ·π2 and l(π) = l(π1)+l(π2).

4.5. l(π) = d(s, t) (Theorem 3.3, since π is a shortest s-t path on GS,T ).
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4.6. l(π1) = d(s, n) (otherwise, π is not a shortest path on GS,T ).

4.7. l(π2) = d(n, t) (otherwise, π is not a shortest path on GS,T ).

4.8. d(s, t) = d(s, n) + d(n, t).

4.9. n 6∈ {s, t} (Definition 3.1, since n @ π, which is an s-t path).

4.10. n @ (s, t) (Lemma 3.1, since d(s, t) = d(s, n) + d(n, t) and n 6∈ {s, t}).

Lemma 3.5. Every edge (u, v) of GS,T is the unique shortest overlay u-v path on GS,T .

Proof.

1. Let GS,T = (T,E′, c′).

2. Let (u, v) ∈ E′.

3. 〈u, v〉 is a shortest overlay u-v path on GS,T :

3.1. l(〈u, v〉) = c′(u, v) = d(u, v) (Definition 3.4, since (u, v) ∈ E).

3.2. 〈u, v〉 is an overlay path (Definition 3.5, since 〈u, v〉 has no internal vertices).

3.3. 〈u, v〉 is a shortest path (Theorem 3.3, since l(〈u, v〉) = d(u, v)).

4. If π is a shortest overlay u-v path on GS,T , then π = 〈u, v〉:

4.1. Assume π = 〈p0, . . . , pk〉 is a shortest overlay u-v path on GS,T .

4.2. Assume (for contradiction) π 6= 〈u, v〉.
4.3. u 6= v (Definition 3.4, since (u, v) ∈ E′).
4.4. k ≥ 2 (since u 6= v and π 6= 〈u, v〉).
4.5. p1 6∈ {u, v} (Since u = p0 and v = pk with k ≥ 2).

4.6. p1 ∈ S (Definition 3.5, since π is an overlay path).

4.7. p1 @ π (Definition 3.1, since p1 ∈ π and p1 6∈ {u, v}).
4.8. p1 @ (u, v) (Lemma 3.4, since p1 @ π and π is a shortest overlay u-v path).

4.9. (u, v) 6∈ E′ (Definition 3.4, since p1 @ (u, v) and p1 ∈ S).

4.10. ⊥ ((u, v) ∈ E′ and (u, v) 6∈ E′).

Theorem 3.6. An extended overlay graph GS,T has the minimum set of edges to ensure
that, for every s, t ∈ T , an overlay s-t path π with l(π) = d(s, t) exists on GS,T .

Proof. Since every edge (u, v) is the unique shortest overlay u-v path onGS,T (Lemma 3.5),
removing (u, v) increases the length of a shortest overlay u-v path on GS,T .
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3.2.4 Answering Queries Using Overlay Graphs

As we have shown in the previous section, for every s, t ∈ V and S ⊆ V , an s-t path π
exists on the extended overlay graph GS,S∪{s,t} (Theorem 3.3). In order to find an s-t
path on G using the overlay graph GS , it is thus sufficient to extend GS to GS,S∪{s,t}, find
a shortest s-t path π on GS,S∪{s,t}, and then replace the edges of π with corresponding
shortest paths on G. Every edge of the form (u, s) or (t, u) can never appear on a shortest
s-t path on GS,S∪{s,t}. Therefore, we can instead extend GS into an s-t query overlay
graph. More formally, the edges of GS,S∪{s,t} are characterized by the relation:

D
S∪{s,t}→S∪{s,t}
S = DS→S

S ∪Ds→S∪{t}
S ∪DS∪{t}→s

S ∪Dt→S∪{s}
S ∪DS∪{s}→t

S .

Since the edges in D
S∪{t}→s
S ∪Dt→S∪{s}

S can never appear on a shortest s-t path, they
can be left out from the s-t query overlay graph, whose edges can then be characterized
by the relation:

DS→S
S ∪Ds→S∪{t}

S ∪DS∪{s}→t
S .

Definition 3.6 formally defines the s-t query overlay graph Gs,tS .

Definition 3.6 (s-t query overlay graph). Let GS = (S,E′, c′) be an overlay graph. The
s-t query overlay graph is the graph Gs,tS = (S ∪ {s, t}, E′′, c′′) such that:

1. E→ = D
s→S∪{t}
S = {(s, u) : u ∈ S ∪ {t}, S 6@ (s, u), and u 6= s};

2. E← = D
S∪{s}→t
S = {(u, t) : u ∈ S ∪ {s}, S 6@ (u, t), and u 6= t};

3. E′′ = E′ ∪ E→ ∪ E←; and

4. ∀(u, v) ∈ E′′, c′′(u, v) = d(s, t).

In this dissertation, we consider a three-phase approach to answering s-t path queries
using overlay graphs, called the Connect-Search-Refine algorithm. We describe its three
phases below, but formally define it in Section 3.3.4 in the context of subgoal graphs.
Our description assumes that we are using an overlay graph GS . Figure 3.3 shows an
example of the operation of the Connect-Search-Refine algorithm.

• Connection phase: In the connection phase, GS is extended to the s-t query
overlay graph Gs,tS . The connection phase can be implemented as two searches on

G, one in the forward direction from s to identify E→ = D
s→S∪{t}
S and one in

the backward direction from t to identify E← = D
S∪{s}→t
S . These searches should

correctly determine the lengths of edges in E→ and E←. We discuss how they can
be performed in the next section and discuss variants that are allowed to identify
a superset of the required edges for connection. An alternative to performing these
searches during the connection phases of queries is performing them during the
preprocessing phase and caching the results, essentially storing GS,V rather than
GS . However, this might incur a memory overhead that is impractical for most
real-world applications. Transit-node routing, for instance, uses a similar strategy
but avoids storing edges between vertices in V \S and uses local queries to identify
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(d) Refinement phase: Replace edges of π
with corresponding shortest paths on G.

Figure 3.3: Answering queries using the Connect-Search-Refine algorithm and overlay
graphs.

them (Antsfeld, Harabor, Kilby, Walsh, et al., 2012). Speeding up the connection
phase without an impractical memory overhead is one of the main motivations
for augmenting overlay graphs with reachability relations. We discuss connection
algorithms for our subgoal graphs that are specialized to exploit structure in state
lattices and grids in Chapters 4 and 5, respectively.

• Search phase: In the search phase, Gs,tS is searched for a shortest s-t path π,
typically by using an A* search or a bidirectional Dijkstra search. By Theorem 3.3,
l(π) = d(s, t). This result holds even if the connection phase is allowed to identify
supersets of E→ and E←, as long as the length of each redundant edge (u, v) is
greater than or equal to d(u, v). The search phase can be sped up by further
preprocessing the overlay graph, for instance, by using an N -level overlay graph or
a contraction hierarchy (Section 3.4).

• Refinement phase: In the refinement phase, each edge (u, v) ∈ π is replaced with
a shortest u-v path on G. This can be achieved by performing an A* search on
G for each such edge, or by performing these searches during preprocessing and
caching the results. To the best of our knowledge, none of the preprocessing-based
path-planning algorithms that use overlay graphs perform such caching, and instead
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use A* searches (portal-based search), use a special refinement algorithm (rectan-
gular symmetry reduction), or skip the refinement phase and settle for answering
distance queries only (transit node routing). We discuss refinement algorithms for
our subgoal graphs that are specialized to exploit structure in state lattices and
grids in Chapters 4 and 5, respectively. The refinement phase is not necessary
when answering distance queries rather than path queries.

Holzer et al. use a slightly different approach to answering queries using overlay
graphs, that essentially combines the connection and search phases (Holzer et al., 2009):
Their s-t query overlay graph corresponds to the overlay graph plus the connected com-
ponents that contain s and t (induced by S, selected as a vertex separator of G), or
simply a single connected component if it contains both s and t. This combination of the
connection and search phases can be beneficial in some cases, for instance, by allowing
the “connection phase” to terminate early if the “search phase” finds a solution. How-
ever, this argument only applies to a small set of queries, namely, when the s-t distance
is smaller than the radius of the connected components that contain s and t. The sepa-
ration of the two phases, on the other hand, allows us to have different implementations
for the two phases, which is the case for the connection algorithms that we introduce in
this dissertation.

3.2.5 Identifying Direct-Reachable Edges from a Source Vertex

In this section, we describe three variants of an algorithm called Overlay-Connect. Given
a source vertex s, a set of vertices S that can cover paths, and a target set of vertices
T , Overlay-Connect can identify the set of edges Ds→T

S , along with their correct lengths
(as distances on G). Overlay-Connect can be used during preprocessing to construct the
edges of GS given S (by running it for every s ∈ S to identify Ds→S

S ), or during the
connection phases of queries to connect the start and goal vertices to GS (to connect the
goal vertex, Overlay-Connect is run on the reverse graph of G, unless G is undirected).
The “conservative” variant of Overlay-Connect (Algorithm 2) appears in the literature as
a method for constructing the edges of overlay graphs (Schultes & Sanders, 2007; Holzer
et al., 2009). It is exact, that is, guaranteed to return Ds→T

S along with the correct length
of each edge. The “aggressive” and “stall-on-demand” variants of Overlay-Connect are
approximate, that is, they may return a superset of Ds→T

S , but correctly identify the
length of each edge (s, u) ∈ Ds→T

S and never underestimate the lengths of redundant
edges they return. These variants were first described in the context of highway-node
routing (Schultes & Sanders, 2007), which answers queries using multiple levels of overlay
graphs, and can be considered as a predecessor of contraction hierarchies.

• Conservative variant: This variant can be understood as a modified Dijkstra
search that performs additional bookkeeping to identify whether each expanded
vertex u is direct-reachable from s (with respect to S). It can identify Ds→T

S

exactly, and is therefore called the “conservative” variant. Its differences from a
Dijkstra search are highlighted in blue in Algorithm 2.

Recall that a Dijkstra search expands a vertex u only after expanding all vertices
v with d(s, v) < d(s, u). In other words, a Dijkstra search expands a vertex u only
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Algorithm 2 Overlay-Connect (Conservative)

Blue text: Modifications to Dijkstra’s algorithm.
Input: G = (V,E, c), start vertex s, covering vertices S ⊆ V , target vertices T ⊆ V
Output: Edges E+ = Ds→T

S , edge lengths c+ as distances on G
1: E+ ← ∅
2: for all n ∈ V do
3: g(n)←∞
4: covered(n)← false

5: OPEN ← {s}
6: CLOSED ← {}
7: g(s)← 0
8: while OPEN contains a vertex u with covered(u) = false do
9: u← vertex with minimum g-value in OPEN

10: Move u from OPEN to CLOSED
11: if covered(u) = false and u ∈ T \ {s} then
12: Add (s, u) to E+ with c+ = g(u)

13: for all successors v of u such that v 6∈ CLOSED do
14: if g(u) + c(u, v) < g(v) then . A strictly shorter path to v is found
15: covered(v)← false

16: if g(u) + c(u, v) ≤ g(v) then
17: g(v)← g(u) + c(u, v)
18: OPEN ← OPEN ∪ {v}
19: if u ∈ S \ {s} or covered(u) = true then
20: covered(v) = true

21: return E+, c+

after expanding all vertices v that can cover a shortest (s, u) path (Lemma 3.1).
Algorithm 2 uses this fact to correctly propagate “covered” values for vertices: For
every vertex u, covered(u) is set to true if and only if at least one of the (tentative)
shortest s-u paths explored by the search is covered by S (lines 4, 14–15, and 19–
20). Similar to g-values, covered-values are only tentative for vertices in OPEN, but
exact for expanded vertices. Algorithm 2 terminates when all vertices in OPEN are
covered (line 8) since, if the search were to continue, any paths to vertices not yet
expanded by the search are guaranteed to be covered. An edge is added to E+ for
every expanded vertex u ∈ T that is not covered (lines 1 and 11–12).

Schultes and Sanders point out that, in this variant, “if the shortest-path tree
contains one path that is not covered for a long time, the tree can get very big even
though other branches might have been covered very early” (Schultes & Sanders,
2007). Figure 3.4b shows an example where S 6@ (A5, D2), causing the search
to expand vertices within a radius of 6 and generate vertices within a radius of 7
from A5 (generated but not expanded vertices are connected to the search tree with
dashed lines).
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without increasing their g-values.

Figure 3.4: Variants of the Overlay-Connect algorithm. Vertices in S are shown in red.
Black vertices are direct-reachable from s with respect to S, while orange vertices are
not.

• Aggressive variant: This variant is simply a Dijkstra search that does not expand
vertices in S \ {s}. That is, it “aggressively” prunes its search tree at vertices in
S\{s}. This pruning does not violate the correctness of this variant, since any paths
explored through a vertex in S \ {s} are, by definition, covered. Compared to the
conservative variant, this variant can avoid the overhead of maintaining “covered”
values for vertices, and can avoid expanding vertices that are “disconnected” from
s if S were to be removed from G. Figure 3.4c shows an example, where the search,
unlike the conservative variant, does not explore beyond C7 and B8 due to its
aggressive pruning.

Schultes and Sanders point out that the drawback of this approach is that the
search might continue “around” the vertices in S and, in the worst case, explore the
whole graph without the early termination of the conservative approach (Schultes
& Sanders, 2007). That is, the search is guaranteed to expand every vertex u
that is not “disconnected” from s if S were to be removed from G. For instance,
in Figure 3.4c, removing S separates G into two components, and the aggressive
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variant expands all vertices in the component that contains s. As a result: (1) It
is no longer guaranteed that, for every expanded vertex u, the shortest s-u path in
the search tree is a shortest path on G. For instance, in Figure 3.4c, A1 is reached
with a path of length 8, where d(A5,A1) = 4. (2) The aggressive variant is not
exact. For instance, in Figure 3.4, if the aggressive variant were used to identify
Ds⇒S
S , it would identify (A5,B8) as an edge, even though A6 @ (A5,B8).

• Stall-on-demand variant: This variant tries to address the problem of the ag-
gressive variant by “stalling” the search (that is, not expanding a vertex) not just
at vertices in S but also at vertices whose parents can be changed to a stalled
vertex without increasing their g-values. Similar to the aggressive variant, the stall-
on-demand variant does not expand vertices in S, but marks them as “stalled”
instead. Similar to how the conservative variant propagates “covered” values, the
stall-on-demand variant “lazily” propagates “stalled” values. That is, since a stalled
vertex is not expanded, the fact that it is stalled is not communicated to its suc-
cessors. Instead, whenever a vertex n is selected for expansion, a stall-on-demand
check is performed to see if it can be stalled: n is stalled if and only if n has a
predecessor p such that p is stalled and g(p) + c(p, n) ≤ g(n). If n is stalled due to
a stalled predecessor p, its g-value is updated to g(p) + c(p, n).

Figure 3.4d shows an example. A6 is stalled when it is selected for expansion
because A6 ∈ S. When the search selects B6 for expansion, the search checks if B6
can be stalled by scanning its predecessors. Since its predecessor A6 is stalled and
since g(A6) + c(A6,B6) = 1 + 1 ≤ g(B6) = 2, the search stalls B6 as well. As a
result, the search avoids exploring beyond A6 and B6, unlike both the aggressive and
conservative variants. Similarly, E4 is stalled because E4 ∈ S. This stalling is then
propagated to E3, E2, and E1, as each of these vertices are selected for expansion
and “demand” to be stalled. The stalling does not violate the correctness of this
variant since the stalling check for a vertex n essentially verifies either that n is
reached with a suboptimal path or that an equal length path can be found that
passes through a vertex in S (through a chain of stalled vertices).

Although the stall-on-demand variant can mitigate the problem of the aggressive
variant, it is not guaranteed to eliminate the problem completely. For instance, in
Figure 3.4d, similar to the aggressive variant, the stall-on-demand variant expands
B1 with g(B1) = 7. Unlike the aggressive variant, the g-value of A1 is updated
to 4 (from 8) when A1 is stalled by A2. Although the stall-on-demand variant
expands no more vertices than the aggressive variant, each expansion involves a
stalling check that scans the predecessors of the vertex selected for expansion.

Stall-on-demand is a technique that appears in various forms and contexts in the
literature (Schultes & Sanders, 2007; Geisberger et al., 2008). The version that
we have described is adapted from the contraction hierarchy implementation in the
Grid-based Path-Planning Competition, which we discuss further in Section 3.4.4.2.
It is similar to the stall-on-demand technique described by (Geisberger et al., 2008),
which additionally performs a breadth-first search from a stalled vertex when its
g-value is updated. The breadth-first search is run only on the search tree of
the Dijkstra search in an attempt to correct g-values and stall more vertices. For
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instance, in Figure 3.4d, when A1 is stalled by A2, its g-value is reduced from 8 to
4. A breadth-first search from A1 would also update the g-value of B1 from 7 to 5
and mark it as stalled.

The connection algorithms that we develop for our subgoal graphs on state lattices
build upon the aggressive variant of Overlay-Connect, using reachability relations (rather
than vertex separators or stall-on-demand) to “bound” the search. Our connection al-
gorithms exploit the freespace structure of state lattices to replace the Dijkstra search
with a depth-first search, and one variant avoids performing duplicate detection, result-
ing in significantly smaller average vertex-expansion times. We experimentally evaluate
the three variants of Overlay-Connect on state lattices in Chapter 4, for a reachability
relation that does not exploit the freespace structure of state lattices.

3.2.6 Contractions and Heavy Contractions

As discussed in the previous section, the edges of overlay graphs and extended overlay
graphs can be constructed with the Overlay-Connect algorithm. In this section, we
describe a different method for constructing their edges with vertex contractions; an
operation that is used for constructing contraction hierarchies (Geisberger et al., 2008).
The aim of this section is to understand vertex contractions in the context of (extended)
overlay graphs and introduce a variant, called heavy contractions, to lay the groundwork
for the variants of vertex contractions that we develop in Sections 3.3.5 and 3.4.2, which
can be used to construct (N -level) subgoal graphs and augment contraction hierarchies
with reachability relations, respectively. Algorithm 3 outlines the Contract (black and
blue text) and HeavyContract (black and red text) operations.

Algorithm 3 Contract and HeavyContract

Blue text: Only for Contract.
Red text: Only for HeavyContract.

Input: Overlay graph GS = (S,E′, c′) / Extended overlay graph GS,T = (T,E′, c′),
vertex n ∈ S to remove from S

Output: Overlay graph GS\{n} / Extended overlay graph GS\{n},T
1: E+ ← ∅
2: for all (p, n) ∈ E′ do
3: for all (n, s) ∈ E′ do
4: d← length of a shortest p-s overlay path that does not pass through n
5: if d > c′(p, n) + c′(n, s) then
6: E+ := E+ ∪ {(p, s)}
7: c′(p, s) = c′(p, n) + c′(n, s)

8: E− = {(u, v) ∈ E′ : u = n or v = n}
9: return GS\{n},T = (S \ {n}, T , (E′ ∪ E+) \ E−, c′)

• Contract: Contracting a vertex n from a graph removes it from the graph and
adds the minimum set of shortcut edges to preserve the distances between the
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remaining vertices. Contracting a vertex n ∈ S from an overlay graph GS creates
the overlay graph GS\{n}, as we prove at the end of this section (Theorem 3.9). To
contract a vertex n ∈ S from GS , the Contract operation performs a witness search
from every predecessor p to every successor s of n, to determine whether the path
〈p, n, s〉 is the unique shortest p-s path on GS (lines 2–5). This search is typically
performed by removing (the incident edges of) n from GS and performing a p-s
search on the remaining graph. If the p-s distance increases, that is, if a witness
path of length equal to l(〈p, n, s〉) is not found, the shortcut edge (p, s) is added with
length l(〈p, n, s〉) to preserve the p-s distance on GS\{n} (lines 1, 6, 7, 9). After all
necessary shortcut edges have been identified, n is removed from the graph along
with its incident edges (lines 8–9).

Figure 3.5 shows an example of the Contract operation on an undirected graph. D3
has three neighbors in GS (Figure 3.5a), namely D1, B4, and F5. To contract D3
from GS , the Contract operation performs three witness searches for all pairings of
these three vertices (if GS were a directed graph, six witness searches would be per-
formed). The witness search for a D1-B4 path that does not pass through D3 finds
the path 〈D1, F1, F5, B4〉 with length 11, which is greater than l(〈D1,D3,B4〉) = 5,
verifying that 〈D1,D3,B4〉 is the unique shortest D1-B4 path on GS . Therefore, the
shortcut edge D1-B4 is added to GS\{D3} with length 5 (Figure 3.5b). The witness
search for a D1-F5 path that does not pass through D3 finds the path 〈D1, F1, F5〉
with length 6, which is smaller than or equal to l(〈D1, D3, F5〉) = 6. Therefore, the
shortcut edge (D1,F5) is not necessary to preserve the D1-F5 distance on GS\{D3}.
The edge (B4, F5) already appears in GS as the unique shortest B4-F5 path and is
not added to the graph for a second time.

The Contract operation can be used to generate the overlay graph GS from G, by
starting with the overlay graph GV = G and repeatedly contracting all vertices
n ∈ V \ S.

• HeavyContract: Heavy contracting a vertex n ∈ S from the extended overlay
graph GS,T creates the extended overlay graph GS\{n},T . The HeavyContract op-
eration differs from the Contract operation in two ways: (1) Recall that, for every
s, t ∈ T , an extended overlay graph GS,T is guaranteed to contain an s-t overlay
path π with l(π) = d(s, t). Therefore, when heavy contracting a vertex n ∈ S
from GS,T , for every predecessor p and successor s of n, the shortcut edge (s, p) is
required if and only if 〈p, n, s〉 is the unique shortest overlay path on GS,T . As a
result, witness searches in heavy contractions look for shortest overlay paths rather
than shortest paths (line 4). (2) Since heavy contracting n from GS,T removes it
only from S but not from T , its incident edges are not discarded (lines 8–9).

Figure 3.5 shows an example. Similar to contracting D3 from GS , heavy contract-
ing D3 from GS,S = GS requires three witness searches and adds the shortcut edge
(D1,B4). However, it does not discard the edges incident to D3 (Figure 3.5c). In
the resulting graph GS\{D3},S , B4 has one additional neighbor, D3, as opposed to
the graph GS\{D3} that results from contracting D3 from GS . Therefore, heavy
contracting B4 from GS\{D3},S (Figure 3.5e) requires more witness searches than
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results in GS\{D3,B4},S .

Figure 3.5: Using contractions and heavy contractions to generate overlay and extended
overlay graphs, respectively.

62



contracting B4 from GS\{D3} (Figure 3.5d), and results in the additional short-
cut edge (D3,B8). Heavy contracting B4 from GS\{D3},S adds the shortcut edge
(D1,B8), similar to contracting B4 from GS\{D3}. Even though an alternate short-
est D1-B8 path π = 〈D1, D3, B8〉 exists, it is not an overlay path (since D3 @ π
but D3 6∈ S \ {D3}) and therefore ignored by the witness search.

The HeavyContract operation can be used to generate the extended overlay graph
GS,T from the overlay graph GT , by starting with the extended overlay graph
GT,T = GT and repeatedly heavy contracting all vertices n ∈ T \ S. Since heavy
contractions do not discard existing edges but may add new ones, repeatedly heavy
contracting vertices from GT,T typically increases the average number of predeces-
sors and successors of other vertices. As a result, subsequent heavy contractions
typically require witness searches between a greater number of predecessor-successor
pairs and identify more shortcut edges than contractions would do after repeatedly
contracting (rather than heavy contracting) a number of vertices from GT = GT,T ,
which we think justifies the term “heavy” to describe this variant of contractions.

We now prove that contractions and heavy contractions can be used to construct
overlay and extended overlay graphs, respectively. In Lemma 3.7, we prove that an edge
(u, v) appears in the extended overlay graph GS\{n},T but not in GS,T if and only if
〈u, n, v〉 is the unique shortest overlay u-v path on GS,T . That is, we characterize the
edges that should be added when heavy contracting n from GS,T as those edges (u, v)
where 〈u, n, v〉 is the unique shortest overlay u-v path on GS,T . In Lemma 3.8, we prove
that heavy contractions correctly determine those edges. In Theorem 3.9, we combine
the two lemmata to prove that heavy-contacting n ∈ S from GS,T results in GS\{n},T . In
Corollary 3.10, we use Theorem 3.9 to show that contracting n ∈ S from GS results in
GS\{n}.

Lemma 3.7. For every n ∈ S and u, v ∈ T , 〈u, n, v〉 is the unique shortest overlay u-v
path on GS,T if and only if n @ (u, v) and S \ {n} 6@ (u, v).

Proof.

1. Let GS,T = (T,E′, c′).

2. Let u, v ∈ T .

3. Let n ∈ S.

4. If n @ (u, v) and S \ {n} 6@ (u, v), then 〈u, n, v〉 is the unique shortest overlay u-v
path on GS,T :

4.1. Assume that n @ (u, v).

4.2. Assume that S \ {n} 6@ (u, v).

4.3. Let π = 〈p0, . . . , pk〉 be a shortest overlay u-v path on GS,T with n @ π. Such
π exists (Lemma 3.4, since n @ (u, v) with n ∈ S and u, v ∈ T ).

4.4. π 6= 〈u, v〉:
4.4.1. (u, v) 6∈ E′ (Definition 3.4, since n @ (u, v)).
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4.5. S \{n} 6@ π (Lemma 3.4, since S \{n} 6@ (u, v) with S \{n} ⊂ S and u, v ∈ T ).

4.6. p1, . . . , pk−1 6∈ S \ {n} (Definition 3.1, since S \ {n} 6@ π).

4.7. p1, . . . , pk−1 ∈ S (Definition 3.5, since π is an overlay path).

4.8. p1, . . . , pk−1 ∈ {n} (since p1, . . . , pk−1 ∈ S and p1, . . . , pk−1 6∈ S \ {n}).
4.9. π = 〈u, n, v〉 (since π 6= 〈u, v〉 and p1, . . . , pk−1 ∈ {n}).

5. If π = 〈u, n, v〉 is the unique shortest overlay u-v path on GS,T , then n @ (u, v)

5.1. Assume that π = 〈u, n, v〉 is the unique shortest overlay u-v path on GS,T .

5.2. n @ π (Definition 3.1, since n ∈ π and n 6∈ {u, v}).
5.3. n @ (u, v) (Lemma 3.4, since n @ π and π is a shortest overlay u-v path on

GS,T ).

6. If π = 〈u, n, v〉 is the unique shortest overlay u-v path on GS,T , then S\{n} 6@ (u, v):

6.1. Assume that π = 〈u, n, v〉 is the unique shortest overlay u-v path on GS,T .

6.2. Assume (for contradiction) that there exists w ∈ S \ {n} such that w @ (u, v).

6.3. Let π′ be a shortest overlay u-v path on GS,T with w @ π′. Such π′ exists
(Lemma 3.4, since w @ (u, v) with w ∈ S and u, v ∈ T ).

6.4. π′ 6= π (since w 6= n and w @ π′).

6.5. ⊥ (π is the unique shortest overlay path and π′ 6= π is a shortest overlay path).

Lemma 3.8. After heavy contracting a vertex n ∈ S using Algorithm 3, for every u, v ∈
T , it holds that (u, v) ∈ E+ if and only if 〈u, n, v〉 was the unique shortest overlay u-v
path on GS,T .

Proof. Let u, v ∈ T and n ∈ S.

1. If 〈u, n, v〉 is the unique shortest overlay u-v path, then (u, v) ∈ E+:

1.1. (u, n), (n, v) ∈ E′ (since (u, n, v) is a path).

1.2. Lines 4–6 will be executed with p = u and s = v (since (u, n), (n, v) ∈ E′).
1.3. On line 4, d > d(u, v) = c′(u, n) + c′(n, v) (since 〈u, n, v〉 is the unique shortest

overlay u-v path on GS,T ).

1.4. Therefore, the check on line 5 succeeds and (u, v) is added to E+.

2. If (u, v) ∈ E+, then 〈u, n, v〉 is the unique shortest overlay u-v path.

2.1. Let π = 〈p0, . . . , pk〉 be a shortest overlay u-v path.

2.2. Lines 4–6 are executed with p = u and s = v (since (u, v) ∈ E+).

2.3. The check on line 5 is successful (since (u, v) ∈ E+).

2.4. (u, n), (n, v) ∈ E′ (since lines 4–6 are executed with p = u and s = v).
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2.5. All shortest overlay u-v paths use n as an intermediate vertex (since the check
on line 5 is successful).

2.6. 〈u, n〉 and 〈n, v〉 are unique shortest overlay u-n and n-v paths, respectively
(Lemma 3.5, since (u, n), (n, v) ∈ E′).

2.7. Therefore, π = 〈u, n, v〉.

Theorem 3.9. Heavy contracting a vertex n ∈ S from GS,T returns the extended overlay
graph GS\{n},T .

Proof.

1. Let u, v ∈ T be arbitrary vertices with u 6= v.

2. Let n ∈ S.

3. (u, v) is an edge of GS\{n},T and not an edge of GS,T if and only if n @ (u, v) and
S \ {n} 6@ (u, v):

3.1. (u, v) is not an edge of GS,T if and only if S @ (u, v) (Definition 3.4).

3.2. (u, v) is an edge of GS\{n},T if and only if S \ {n} 6@ (u, v) (Definition 3.4).

3.3. If S \ {n} 6@ (u, v), then S @ (u, v) if and only if n @ (u, v) (Definition 3.1).

3.4. Therefore, (u, v) is an edge of GS\{n},T and not an edge of GS,T if and only if
n @ (u, v) and S \ {n} 6@ (u, v).

4. (u, v) ∈ E+ if and only if n @ (u, v) and S \ {n} 6@ (u, v) (Lemmata 3.7 and 3.8).

5. Therefore, (u, v) ∈ E+ if and only if (u, v) is an edge of GS\{n},T but not an edge
of GS,T .

Corollary 3.10. Contracting a vertex n from GS returns the overlay graph GS\{n}.

Proof. From Theorem 3.9, heavy contracting n ∈ S from GS,S results in GS\{n},S . Con-
tracting n from GS adds the same set of shortcut edges as heavy contracting n from GS,S
since GS = GS,S and since all paths on GS,S are overlay paths. Contracting n from GS
removes all edges incident to n, which are precisely the edges that appear in GS\{n},S but
not in GS\{n} (Definitions 3.3 and 3.4).

3.3 Subgoal Graphs

As discussed in Sections 3.1 and 3.2.5, several preprocessing-based path-planning algo-
rithms that (explicitly or implicitly) use overlay graphs to answer queries constrain the
vertices of their overlay graphs in various ways to speed up the connection and refinement
phases of their queries. Subgoal graphs can be considered to be a generalization of this
idea: Subgoal graphs are overlay graphs constructed with respect to a given reachability
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relation R, that is, a binary relation defined over the pairs of vertices V × V of G. For
every s, t ∈ V , s-t query subgoal (overlay) graphs contain only R-reachable edges, that
is, edges (u, v) ∈ R. Therefore, the connection phases of queries answered using subgoal
graphs only need to identify R-reachable edges, and the refinement phases only need to
find shortest paths between R-reachable pairs of vertices. In this dissertation, we use
subgoal graphs to exploit the freespace structure in state lattices and grid graphs, by
using a reachability relation to capture this structure and using specialized connection
and refinement algorithms during queries to exploit this structure.

This section is organized as follows. In Section 3.3.1, we formally define reachability
relations and introduce bounded-distance reachability as a reachability relation, which we
use as a running example in this chapter and as a reachability relation to compare against
on state lattices in Chapter 4. In Section 3.3.2, we formally define R shortest-path covers
and subgoal graphs, and prove that, if the vertices of a subgoal graph form an R shortest-
path cover, then every extension of this subgoal graph into a query subgoal graph contains
R-reachable edges only. In Section 3.3.3, we discuss the similarities and differences of our
definition for shortest path covers with those that appear in the literature, discuss how
they relate to the notion of highway dimension, and prove that it is possible to construct
“locally sparse” bounded-distance reachability shortest-path covers on graphs with low
highway dimensions. In Section 3.3.4, we introduce a class of algorithms that can be used
for connection and refinement during queries, called R-connect and R-refine algorithms,
and characterize how they should operate so that they can be used for finding shortest
paths. In Section 3.3.5, we introduce heavy R contractions, which can be used to construct
subgoal graphs by pruning an R shortest-path cover. In Section 3.3.6, we introduce an
alternative method of constructing subgoal graphs by growing an R shortest-path cover.

3.3.1 Reachability Relations

In this section, we formally define reachability relations, introduce notation for reachabil-
ity relations, and introduce bounded-distance reachability as a reachability relation that
we use as an example throughout the remainder of this chapter and as a reachability
relation to compare against on state lattices in Chapter 4.

As we have discussed in Section 3.2.5, Overlay-Connect can identify all direct-reachable
vertices from a given vertex s (with respect to a set of vertices S). Consider the search
tree of the aggressive variant of Overlay-Connect shown in Figure 3.6a. The furthest
direct-reachable vertices from s, B1 and C2, have a distance of 4 from s, but the ag-
gressive variant of Overlay-Connect expands many more vertices, up to a distance of 8
from s, by going “around” the vertices in S. However, if it is known that “the furthest
direct-reachable vertex from s has a distance of 4 from s”, we could augment the ag-
gressive variant of Overlay-Connect to avoid generating vertices that have a distance of
more than 4 from s (Figure 3.6b). Reachability relations allow us to represent notions
such as “distance of no more than 4 away”, so that we can construct overlay graphs with
respect to them, allowing us to implement connection and refinement algorithms that
can operate under certain assumptions, such as “every edge needed to connect a vertex
to a subgoal graph has a length of no more than 4”. Definition 3.7 formally defines
reachability relations.
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(b) Aggressive Overlay-Connect with bound 4.

Figure 3.6: Bounding the aggressive variant of Overlay-Connect by using BD4 as reach-
ability relation. Vertices in S are shown in red. Black vertices are direct-reachable from
s with respect to S, while orange vertices are not.

Definition 3.7 (R-reachability). A reachability relation is a relation R ⊆ V × V that
satisfies:

1. ∀n ∈ V , (n, n) ∈ R and

2. ∀(u, v) ∈ E, (u, v) ∈ R.

By definition, a reachability relation R includes every edge of G (that is, E ⊆ R).
As we discuss in the next section, this requirement guarantees that, for every R, we can
construct a subgoal graph on G with respect to R.

Direct-reachability with respect to a set of vertices S ⊆ V , that is, DS , can also be
considered to be a reachability relation: For each n ∈ V , (n, n) ∈ DS since no S can
cover the unique shortest n-n path 〈n〉, and, for each (u, v) ∈ E, (u, v) ∈ DS since no S
can cover the unique shortest u-v path 〈u, v〉 (Assumption 1.3).

The combination (intersection) of any two reachability relations R1 and R2 (that is,
R1∩R2) is also a reachability relation. We refer to the combination of a reachability rela-
tion R with the direct-reachability relation with respect to S as the direct-R-reachability
relation with respect to S, and denote it as RS . That is, RS = R ∩DS .

Throughout the rest of this chapter, we use bounded-distance reachability as an exam-
ple reachability relation. A vertex t is bounded-distance reachable from a vertex s if and
only if d(s, t) ≤ b for some given reachability bound b. We use the notation BDb to denote
bounded-distance reachability with bound b. For the 4-neighbor grid graphs that we use
as examples in this chapter, for every b ≥ 1, BDb is a reachability relation since, for every
edge (u, v) of the 4-neighbor grid graph, d(u, v) = 1 and, therefore, (u, v) ∈ BDb.

3.3.2 Subgoal Graphs

Suppose that we are given a reachability relation R and want to construct an overlay
graph GS such that, for every s, t ∈ V , the s-t query overlay graph Gs,tS contains R-

reachable edges only. Recall that the set of edges of any s-t query overlay graph Gs,tS
is a subset of the edges of the extended overlay graph GS,V (Definitions 3.4 and 3.6).
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(a) An overlay graph that is not a BD4
subgoal graph: S 6@ (A5,F5) and (A5,F5) 6∈
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D

A

B

C

F

E

4 5 61 2 3 107 8 9

(b) A BD4 subgoal graph. For every s, t ∈ V ,
S @ (s, t) or (s, t) ∈ BD4.

Figure 3.7: A BD4 subgoal graph and an overlay graph that is not a BD4 subgoal graph.

Therefore, if we choose an S such that the extended overlay graph GS,V has R-reachable
edges only, then we guarantee that every s-t query overlay graph Gs,tS has R-reachable
edges only. Definition 3.8 captures this “constraint” on S with the concept of an R
shortest path cover: Recall that, for every u, v ∈ V , GS,V contains an edge (u, v) if and
only if S 6@ (u, v). That is, if (u, v) 6∈ R, in order to not have the non-R-reachable edge
(u, v) in GS,V , it should hold that S @ (u, v).

Definition 3.8 (Shortest path cover). S is an R shortest-path cover (R-SPC) if and only
if, ∀s, t ∈ V , (s, t) ∈ R or S @ (s, t).

We call an overlay graph GS where S is an R-SPC an R subgoal graph or, simply, a
subgoal graph if the specific R is not important. Definition 3.9 defines subgoal graphs.

Definition 3.9 (Subgoal graph). An overlay graph GS is called an R subgoal graph if
and only if S is an R-SPC.

Figure 3.6b shows an example of a BD4 subgoal graph. The overlay graph in Fig-
ure 3.6a is not a BD4 subgoal graph although its edges are all BD4-reachable: Its set of
vertices S 6@ (A5,F5), which means that its extension into an F5-t query overlay graph
(for any t) would require the non-BD4-reachable edge (A5,F5).

Definition 3.10 defines partial R-SPCs, which can be considered as R-SPCs for only
a subset T ⊆ V of the vertices of G. We use partial R-SPCs for our definition of N -level
subgoal graphs in Section 3.4.2.

Definition 3.10 (Partial shortest path cover). S is a partial R shortest-path cover of T
((R, T )-SPC) if and only if, ∀s, t ∈ T , (s, t) ∈ R or S @ (s, t).

Lemma 3.11 follows from the definition of (R, T )-SPCs, and also holds for R-SPCs
since R-SPCs are equivalent to (R, V )-SPCs.

Lemma 3.11. If S is an (R, T )-SPC, then, for every S′ ⊇ S, R′ ⊇ R and T ′ ⊆ T , S′ is
an (R′, T ′)-SPC.
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We conclude this section by proving that an extended overlay graph GS,T has only
R-reachable edges if and only if S is an (R, T )-SPC.

Theorem 3.12. An extended overlay graph GS,T has only R-reachable edges if and only
if S is an (R, T )-SPC.

Proof.

1. Let GS,T = (T,E′, c′).

2. If S is an (R, T )-SPC, then, ∀(u, v) ∈ E′, (u, v) ∈ R:

2.1. Assume that S is an (R, T )-SPC.

2.2. Assume (for contradiction) that there exists (u, v) ∈ E′ such that (u, v) 6∈ R.

2.3. u, v ∈ T (Definition 3.4, since (u, v) ∈ E′).
2.4. (u, v) ∈ R or S @ (u, v) (Definition 3.10, since S is an (R, T )-SPC and u, v ∈

T ).

2.5. S @ (u, v) (since (u, v) 6∈ R).

2.6. (u, v) 6∈ E′ (Definition 3.4, since S @ (u, v)).

2.7. ⊥ (since (u, v) ∈ E′ and (u, v) 6∈ E′).

3. If, ∀(u, v) ∈ E′, (u, v) ∈ R, then S is an (R, T )-SPC:

3.1. Assume that, ∀(u, v) ∈ E′, (u, v) ∈ R.

3.2. Assume (for contradiction) that S is not an (R, T )-SPC.

3.3. Let s, t ∈ T , such that S 6@ (s, t) and (s, t) 6∈ R. Such (s, t) exists (Defini-
tion 3.10, since S is not an (R, T )-SPC).

3.4. s 6= t (Definition 3.7, since (s, t) 6∈ R).

3.5. (s, t) ∈ E′ (Definition 3.4, since s 6= t, s, t ∈ T , and S 6@ (s, t)).

3.6. (s, t) ∈ R (since (s, t) ∈ E′ and, ∀(u, v) ∈ E′, (u, v) ∈ R).

3.7. ⊥ (since (s, t) ∈ R and (s, t) 6∈ R).

3.3.3 Shortest-Path Covers and Highway Dimension

In this section, we relate our definition of R shortest-path covers to the definitions of
shortest-path covers that appear in the literature, and prove that it is possible to construct
locally sparse BDb shortest-path covers on graphs that have a small highway dimension.

Generally speaking, a “path cover” on G can be considered as a set of vertices S that
“cover” certain paths on G, with respect to some notion of “covering”. For instance, our
definition of an R shortest-path cover is an instantiation of this general concept of path
covers, where we aim to cover at least one shortest s-t path π for every (s, t) 6∈ R, and
define “covering” as at least one vertex n ∈ S \ {s, t} appearing as a vertex on π. An
alternative notion of “covering” allows a vertex n to “cover” a path π if it appears as
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any vertex on π (that is, including the first and last vertex of π). We refer to this notion
of covering as “loose covering”, since it is easier to “loosely cover” paths than it is to
“cover” paths, as per our Definition 3.1.

The notion of loose covering is used in the literature to define k-hop shortest-path
covers (Tao, Sheng, & Pei, 2011; Funke, Nusser, & Storandt, 2014), which loosely cover
all shortest paths with at least k vertices; k-hop all-path covers (Funke et al., 2014), which
loosely cover all paths with at least k vertices; and (r, k) shortest-path covers (Abraham
et al., 2010), which loosely cover all shortest paths π with r < l(π) ≤ 2r and are (r, k)-
sparse, as we explain later in this section. k-hop shortest-path covers have been used to
generate overlay graphs on road networks (Tao et al., 2011), and k-hop all-path covers
have been used to generate overlay graphs G′ with additional edges, such that, when
an edge length on G changes, G′ can be updated quickly by changing only the lengths
of some of its edges. (r, k)-shortest path covers have been used in conjunction with the
notion of highway dimension, to provide runtime bounds for reach, transit-node routing,
hub-labeling, and answering queries using contraction hierarchies (Abraham et al., 2010).
We now briefly describe (r, k) shortest-path covers and the notion of highway dimension
in our own terminology. 2

Let S ⊆ V , r ∈ R>0, and k ∈ Z>0. S is an r loose shortest-path cover (r-LSPC)
if and only if all shortest paths π on G with r < l(π) ≤ 2r are loosely covered by S.
S is (r, k)-sparse if and only if, for every s ∈ V , the number of vertices n ∈ S with
min(d(s, n), d(n, s)) ≤ 2r is at most k (that is, informally, the “ball of radius r” around
every vertex contains at most k vertices from S). S is an (r, k) loose shortest path cover
((r, k)-LSPC) if and only if S is an (r, k)-sparse r-LSPC. The highway dimension h of a
graph G is the smallest h ∈ Z>0, such that, for every r ∈ R>0, an (r, h)-LSPC exists on
G. Abraham et al. show that, on graphs with highway dimension h and diameter D, after
running a polynomial-time preprocessing routine, queries can be answered using contrac-
tion hierarchies or reach in O((h log h logD)2) time, hub labeling in O(h log h logD) time,
and long-range transit-node routing in O(h2) time (Abraham et al., 2010)

Observe that our definition of BDr-SPCs (that is, BDb-SPCs with b = r) is very
similar to the definition of r-LSPCs by Abraham et al.. Namely, whereas BDr-SPCs
cover at least one shortest s-t path for every s, t ∈ V with d(s, t) > r, r-LSPCs loosely
cover all shortest s-t paths π with r < L(π) ≤ 2r. The reasons for the differences are as
follows: 1) Shortest paths on road networks are typically unique, and symmetries do not
usually need to be taken into account. That is, in the case of r-LSPCs on road networks,
(loosely) covering at least one shortest path between two vertices is equivalent to covering
all shortest paths between them. Since, in this dissertation, we consider grid graphs and
state lattices that can have multiple shortest paths between the same two vertices, our
definition of BDr-SPCs specifies that covering at least one shortest path between two
vertices is sufficient. 2) We want to guarantee that query BDr subgoal graphs have BDr-
reachable edges only (or, more generally, query R subgoal graphs have R-reachable edges
only) and, therefore, require that BDr-SPCs cover paths rather than loosely cover them.
For instance, consider u, v ∈ V such that (u, v) 6∈ BDr. If the vertices of an overlay graph

2Although the definitions and theoretical results by Abraham et al. assume that G is undirected,
Abraham et al. outline how their definitions and theoretical results can be modified for directed graphs.
Our overview presents their definitions and results after applying these modifications.
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were selected as an r-LSPC rather than a BDr-SPC, then it could be the case that (u, v) is
not covered but only loosely covered (by having u or v in the r-LSPC). However, then, the
u-v query overlay graph would have the non-BDr-reachable edge (u, v) (Definition 3.6).
3) Road networks can have long edges (for instance, corresponding to ferry connections).
As a result, the definition for r-LSPCs specifies that paths with such edges do not need
to be (loosely) covered if their lengths are longer than 2r. Our definition of BDr-SPCs
does not have a similar specification since it assumes that the maximum edge length is
less than r (otherwise, BDr would not be a reachability relation, as per Definition 3.7).

The highway dimension of a graph can be considered as a measure of the “local
sparsity” of r-LSPCs that can be constructed on G, for every r. Theorem 3.13 proves
that, if G has highway dimension h, then it is possible to construct a (r − 2m,h)-sparse
BDr-SPC on G for every r > 3m, where m is the maximum edge length in G. The proof
of Theorem 3.13 relies on the fact that an (r − 2m,h)-sparse (r − 2m)-LSPC S exists
on G, which loosely covers all shortest paths π′ of length r − 2m < l(π′) ≤ 2r − 4m.
Theorem 3.13 proves that every shortest path π with length l(π) > r can be considered
as an extension of one such π′ with at least two edges, one added as a prefix and the
other one as a suffix to π′. Since S loosely covers π′, it therefore covers π.

Theorem 3.13. If G has highway dimension h and maximum edge length m, then, for
every r > 3m, there exists a (r − 2m,h)-sparse BDr-SPC on G.

Proof.

1. Let r > 3m.

2. Let G have highway dimension h.

3. Let S be an (r−2m,h)-sparse (r−2m)-LSPC S of G. Such S exists (since r−2m > 0
and G has highway dimension h).

4. Claim: S is a BDr-SPC of G.

5. Assume (for contradiction) that, for some s, t ∈ V , (s, t) 6∈ BDr and S 6@ (s, t).

6. Let π = 〈p0, . . . , pk〉 be a shortest s-t path.

7. l(π) = d(s, t) > r (since (s, t) 6∈ BDr).

8. d(s, p1) ≤ m and d(pk−1, t) ≤ m (since m is the maximum edge length).

9. d(p1, pk−1) = d(s, t) − d(s, p1) − d(pk−1, t) > r − 2m (since l(π) > r, d(s, p1) ≤ m
and d(pk−1, t) ≤ m).

10. Let i < k be the minimum index for which d(p1, pi) > r − 2m. Such i exists (since
d(p1, pk−1) > r − 2m).

11. d(p1, pi) ≤ 2r − 4m:

11.1. Assume (for contradiction) that d(p1, pi) > 2r − 4m.

11.2. d(p1, pi−1) = d(p1, pi)− d(pi−1, pi).
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11.3. d(p1, pi−1) > 2r − 4m− d(pi−1, pi) (since d(p1, pi) > 2r − 4m).

11.4. d(p1, pi−1) > 2r − 4m−m (since d(pi−1, pi) ≤ m).

11.5. d(p1, pi−1) > r + 3m− 4m−m (since r > 3m).

11.6. d(p1, pi−1) > r − 2m.

11.7. i− 1 is an index for which d(p1, pi−1) > r − 2m.

11.8. ⊥ (since i > i− 1 is the smallest index for which d(p1, pi) > r − 2m).

12. π′ = 〈p1, . . . , pi〉 is a shortest p1-pi path with length r − 2m < l(π′) ≤ 2r − 4m.

13. S loosely covers π′ (since S is a (r− 2m)-LSPC of G and π′ is a shortest path with
length r − 2m < l(π) ≤ 2r − 4m).

14. For some j ∈ 1, . . . , i, pj ∈ S.

15. S @ π (Definition 3.1, since, for some j ∈ 1, . . . , i, pj ∈ S, and 0 < j < k).

16. S @ (s, t).

17. ⊥ (S @ (s, t) and S 6@ (s, t)).

We refer to Theorem 3.13 in Chapter 4 to conjecture that state lattices might have
large highway dimensions, based on our experimental results for generating BDr subgoal
graphs.

3.3.4 Answering Queries Using Subgoal Graphs

R subgoal graphs can be used to answer path queries optimally in the same way that
overlay graphs can be used to answer path queries optimally, by using the Connect-
Search-Refine algorithm that we have discussed in Section 3.2.4. In this section, we
formally introduce the Connect-Search-Refine algorithm, introduce a class of algorithms,
called R-connect and R-refine algorithms, and characterize the criteria for connection and
refinement algorithms to be “correct”.

Algorithm 4 outlines the Connect-Search-Refine algorithm, which can be used to
answer path queries using R subgoal graphs. As we have discussed in Section 3.2.4, s-t
path queries can be answered using overlay (subgoal) graphs in three phases: During the
connection phase (lines 1–2), the overlay graph GS is extended to an s-t query overlay
graph Gs,tS . During the search phase (line 3), a shortest s-t path Π on Gs,tS is found, which
is guaranteed to have l(Π) = d(s, t) (as we prove in Theorem 3.14). Finally, during the
refinement phase (lines 4–7), each edge (u, v) on Π is replaced with a shortest s-t path
on G. The resulting path π is guaranteed to be a shortest s-t path on G (as we prove in
Theorem 3.14).

Since all edges of R query subgoal graphs are guaranteed to be R-reachable, as dis-
cussed in Section 3.3.2, the connection phases of queries need to identify only R-reachable
edges, and the refinement phases need to find shortest paths only between R-reachable
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Algorithm 4 Connect-Search-Refine

Input: G, reachability relation R, subgoal graph GS = (S,E′, c′) with respect to R, start
vertex s, goal vertex t

Output: A shortest s-t path π on G
1: E+, c+ ← R-Connect(G, S, s, t) . Connection phase
2: G′ = (S ∪ {s, t}, E′ ∪ E+, combine(c′, c+))
3: Π← a shortest s-t path on G′ . Search phase
4: π ← 〈〉 . Refinement phase
5: for all (u, v) ∈ Π, in order do
6: π′ ← R-Refine(G, u, v)
7: π ← π · π′
8: return π

vertices. We call an algorithm that extends an R subgoal graph into an s-t query R sub-
goal graph an R-connect algorithm, and an algorithm that finds a shortest path between
R-reachable vertices an R-refine algorithm. The premise of Theorem 3.14 summarizes the
criteria for an R-connect or R-refine algorithm to be “correct”, by using “R-Connect”
(line 1) as a placeholder for any R-connect algorithm and “R-Refine” (line 6) as a place-
holder for any R-refine algorithm.

Theorem 3.14. Let GS be an R subgoal graph, s, t ∈ V be arbitrary vertices of G, and
E∗ be the set of edges that appear in Gs,tS but not in GS. Algorithm 4 finds a shortest s-t
path on G if:

1. R-Connect(G, S, s, t) returns E+, c+ such that:

1.1. E∗ ⊆ E+ ⊆ R;

1.2. ∀(u, v) ∈ E∗, c+(u, v) = d(u, v); and

1.3. ∀(u, v) ∈ E+ \ E∗, c+(u, v) ≥ d(u, v).

2. R-Refine(u, v) returns a shortest (u, v) path on G if (u, v) ∈ R.

Proof. We first prove the theorem by assuming that R-Connect identifies exactly the set of
edges E+ = E∗ (rather than a superset) that extend GS to Gs,tS , and correctly determines
their lengths as distances on G. Under this assumption, the graph G′ constructed by
Algorithm 4 (line 2) is precisely Gs,tS . By Theorem 3.3, the s-t distance on the s-t query

overlay graph Gs,tS is d(s, t). Therefore, the search phase (line 3) is guaranteed to find an

s-t path Π on G′ with length d(s, t). By Theorem 3.12, all edges of Gs,tS are R-reachable
and, by Definition 3.6, their lengths correspond to distances on G. Therefore, R-Refine
can replace every edge (u, v) on Π with a corresponding shortest path on G to generate
a shortest s-t path π on G.

We now extend this proof to the case where R-Connect may identify additional edges,
as stated in the premise of the theorem, namely the set of edges E+ \ E∗ ⊆ R such
that, for every (u, v) ∈ E+ \ E∗, c+(u, v) ≥ d(u, v). That is, G′ is formed by adding
additional edges to Gs,tS . As discussed earlier, by Theorem 3.3, the s-t distance Gs,tS is
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d(u, v). The additional edges cannot increase the s-t distance on Gs,tS . The additional

edges cannot decrease the s-t distance on Gs,tS since, for every (u, v) ∈ E+\E∗, c+(u, v) ≥
d(u, v). Therefore, the search phase is still guaranteed to find an s-t path Π on G′ with
length d(s, t). Finally, if any of the edges E+ \ E∗ appear on Π, R-refine can still find a
corresponding shortest path on G since E+ \ E∗ ⊆ R.

3.3.5 Heavy R Contractions

As discussed in Section 3.2.5, contracting a vertex n ∈ S from an overlay graph GS
results in the overlay graph GS\{n}, and heavy contracting a vertex n ∈ S from an
extended overlay graphGS,T results in the extended overlay graphGS\{n},T . Furthermore,
contractions can be used to construct overlay graphs GS by repeatedly contracting the
vertices n ∈ V \ S from G = GV , and heavy contractions can be used to construct
extended overlay graphs by repeatedly heavy contracting the vertices n ∈ T \ S from
overlay graphs GT = GT,T . In this section, we introduce heavy R contractions, which
heavy contract vertices from extended overlay graphs if and only if doing so introduces
R-reachable shortcut edges only, and show that they can be used to construct extended
overlay graphs GS,T with R-reachable edges only, or to construct minimal (R, T )-SPCs
S, that is, no S′ ⊂ S is an (R, T )-SPC.

Algorithm 5 HeavyRContract

Blue text: Modifications to heavy contractions.
Input: Extended overlay graph GS,T = (T,E′, c′) such that S is an (R, T )-SPC, reacha-

bility relation R, vertex n to remove from S
Output: Extended overlay graph GS\{n},T if S \ {n} is an (R, T )-SPC, GS,T otherwise

1: E+ ← ∅
2: for all (p, n) ∈ E′ do
3: for all (n, s) ∈ E′ do
4: d← length of a shortest p-s subgoal path that is not covered by n
5: if d > c′(p, n) + c′(n, s) then
6: if (p, s) 6∈ R then . Cannot heavy contract n
7: return GS,T
8: else
9: E+ := E+ ∪ {(p, s)}

10: c′(p, s) = c′(p, n) + c′(n, s)

11: return GS\{n},T = (S \ {n}, T, E′ ∪ E+, c′)

Heavy R contracting a vertex n ∈ S from an extended overlay graph GS,T heavy
contracts n from GS,T if and only if doing so introduces R-reachable shortcut edges
only. Algorithm 5 outlines the HeavyRContract operation, where its differences from the
HeavyContract operation are highlighted in blue. HeavyRContract first simulates heavy
contracting n from GS,T to identify the set of shortcut edges E+ that appear in GS\{n},T
but not in GS,T (lines 2–5, 9–10). If a non-R-reachable shortcut edge is identified (line 6),
n is not heavy contracted and GS,T remains unchanged (line 7). Otherwise, if all shortcut
edges in E+ are R-reachable, n is heavy contracted from GS,T as usual (lines 8, 11).
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Algorithm 6 Prune (R, T )-SPC.

Input: Overlay graph GT = (T,E′, c′) where T is a (R, T )-SPC, reachability relation R
Output: A minimal (R, T )-SPC S ⊆ T , or the extended overlay graph GS,T

1: S ← T , GS,T ← GT
2: for all n ∈ S, in some order do
3: GS,T ← HeavyRContract(GS,T , R, n)

4: return S or GS,T

Since heavy R contractions introduce R-reachable shortcut edges only, they can be
used to construct extended overlay graphs with R-reachable edges only. Specifically, given
an overlay graph GT = GT,T with R-reachable edges only, heavy R contracting all vertices
n ∈ T from GT,T generates an extended overlay graph GS,T , where the vertices in S are
exactly the vertices that did not get heavy contracted by heavy R contractions. GS,T
is guaranteed to have R-reachable edges only, and, by Lemma 3.12, S is guaranteed to
be an (R, T )-SPC. Algorithm 6 outlines this algorithm for constructing (R, T )-SPCs (or
extended overlay graphs with R-reachable edges only). We prove in Theorem 3.16 that
(R, T )-SPCs identified by Algorithm 6 are minimal (R, T )-SPCs, that is, no S′ ⊂ S exists
such that S′ is an (R, T )-SPC. We informally refer to Algorithm 6 as the pruning variant
of constructing (R, T )-SPCs, since it can start with an R-SPC S = T and repeatedly
remove (heavy contract) vertices from S while maintaining that S is an R-SPC. In the
next section, we introduce a growing variant of constructing (R, T )-SPCs, that starts with
S = ∅ and adds vertices to S until it becomes an (R, T )-SPC. Note that Algorithm 6 can
also be used to identify the vertices of R subgoal graphs as R-SPCs, by running it on
the overlay graph GV = G. In this dissertation, we use Algorithm 6 to construct subgoal
graphs on state lattices (Section 4.6.5) and to construct N -level subgoal graphs on grid
graphs (Section 5.5).

Figure 3.8 shows an example trace of Algorithm 6, where heavy R contractions are
used to generate a (minimal) BD4-SPC (that is, a (BD4, V )-SPC). Each subfigure shows
only the edges between vertices in S (that is, GS) in the extended overlay graph main-
tained by Algorithm 6. Initially, the extended overlay graph GV,V = GV = G only
contains BD4-reachable edges. Heavy BD4 contracting A1 heavy contracts A1 and adds
the R-reachable edge (B1, A2) (Figure 3.8a). Algorithm 6 proceeds to heavy BD4 con-
tract vertices in lexical order. After A1, A2, and A3 are heavy R contracted, A4 is selected
for heavy BD4 contraction (Figure 3.8b). Since heavy contracting A4 from the extended
overlay graph maintained by Algorithm 6 would introduce the non-BD4-reachable edge
(B1, A5), it is not heavy contracted (and marked red). Figures 3.8c-h show the state of
the extended overlay graph maintained by Algorithm 6 after heavy BD4 contracting all
vertices in each row.

Unlike contractions and heavy contractions, the order of heavy R contractions affects
the resulting graph, since heavy R contractions determine whether to heavy contract
a vertex based on the current state of the extended overlay graph. Figure 3.9 shows
an example of the resulting graph if the vertices are heavy R contracted in the reverse
lexical order, rather than the lexical order. We discuss heavy R contraction orders for
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(h) After heavy BD4 contracting rows A-F.

Figure 3.8: Constructing a BD4-SPC by heavy BD4 contractions. Heavy BD4 contraction
does not heavy contract the vertices shown in red, since doing so would introduce non-
BD4-reachable shortcut edges.
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Figure 3.9: R-SPCs constructed with different orderings of heavy R contractions.

constructing subgoal graphs on state lattices in Section 4.6.5 and N -level subgoal graphs
in Section 3.4.3.

We conclude this section by proving that the (R, T )-SPCs S constructed by Algo-
rithm 6 are minimal. The proof relies on the observation that, if heavy R contracting a
vertex at some point during the execution of Algorithm 6 does not heavy contract it, then
heavy R contracting it afterwards cannot heavy contract it either. That is, no vertex can
be removed from S while maintaining it being an (R, T )-SPC.

Lemma 3.15. Algorithm 5 heavy contracts n if and only if S \ {n} is an (R, T )-SPC.

Proof.

1. Heavy R contract heavy contracts n if and only if all edges of GS\{n},T are R-
reachable (Algorithm 5).

2. S \ {n} is an (R, T )-SPC if and only if all edges of GS\{n},T are R-reachable (The-
orem 3.12).

3. Therefore, heavy R contract heavy contracts n if and only if S \ {n} is an (R, T )-
SPC.

Theorem 3.16. The set of vertices S returned by Algorithm 6 is a minimal (R, T )-SPC
(that is, no S′ ⊂ S is an (R, T )-SPC).

Proof.

1. Let S be the set of vertices returned by Algorithm 6.

2. Assume (for contradiction) that there exists S′ ⊂ S such that S′ is an (R, T )-SPC.

3. Let n ∈ S \ S′. Such n exists (since S′ ⊂ S).

4. Let Sn be the value of S directly before Algorithm 6 attempts to heavy R contract
n (line 3).
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5. n was not heavy contracted (since n ∈ S).

6. Sn \ {n} is not an (R, T )-SPC (Lemma 3.15, since n was not heavy contracted).

7. S ⊆ Sn (since further heavy R contractions can only remove vertices from Sn and
not add them).

8. S′ ⊂ Sn (since S′ ⊂ S and S ⊆ Sn).

9. S′ ⊆ Sn \ {n} (since S′ ⊂ Sn, n ∈ Sn, and n 6∈ S′).

10. Sn \ {n} is an (R, T )-SPC (Lemma 3.11, since S′ ⊆ Sn \ {n} and S′ is an (R, T )-
SPC).

11. ⊥ (since Sn \ {n} is an (R, T )-SPC and Sn \ {n} is not an (R, T )-SPC).

3.3.6 Incrementally Constructing an R-SPC

In this section, we discuss an alternative variant, called the growing variant, for con-
structing (R, T )-SPCs. Unlike the pruning variant, that starts with S = T and removes
vertices from S while maintaining that S is an (R, T )-SPC, the growing variant starts
with S = ∅ and adds vertices to S until it becomes an (R, T )-SPC. While the growing
variant does not guarantee the minimality of S, it typically constructs (R, T )-SPCs faster
than the pruning variant. We use this variant for constructing subgoal graphs on state
lattices (Section 4.6.5).

Algorithm 7 Grow (R, T )-SPC

Input: Overlay graph GT = (T,E′, c′) where T is a (R, T )-SPC, reachability relation R
Output: An (R, T )-SPC S ⊆ T

1: S ← ∅
2: for all s ∈ T , in some order do
3: F ← IdentifyFringeVertices(GT , s, S)
4: S ← S∪ IdentifyCoveringSubgoals(GT , s, F )

5: return S

Algorithm 7 outlines the growing variant of constructing an (R, T )-SPC S. Recall
that an (R, T )-SPC S guarantees that, for every s, t ∈ T , if (s, t) 6∈ R, then S @ (s, t)
(Definition 3.10). To ensure that the set S of vertices it identifies is an (R, T )-SPC,
Algorithm 7 starts with S = ∅ (line 1) and, for each s ∈ T (line 2), adds vertices to S so
that, for every t ∈ T , if (s, t) 6∈ R, then S @ (s, t) (lines 3–4).

We first describe a hypothetical algorithm that performs this operation (lines 3–4): A
modified Dijkstra search could be run from s on G to identify the set A of vertices t ∈ T
such that (s, t) 6∈ R and S 6@ (s, t), where the Dijkstra search maintains “covered” values,
similar to the conservative variant of Direct-Connect (Algorithm 2), and terminates when
its OPEN list is empty. Then, a set of vertices S′ could be added to S to cover, for each
t ∈ A, at least one shortest s-t path on G. S′ could be identified heuristically, for instance
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Figure 3.10: Incrementally constructing a BD4-SPC. Red vertices: S. Yellow vertices:
Direct-BD4-reachable from s. Orange vertices: A shortest path from s is covered by S.
Blue vertices: Fringe vertex of s. Black vertices: Not generated by the search to identify
fringe vertices of S.

by greedily selecting a vertex in the search tree rooted at s that covers shortest paths
from s to most vertices in A.

Algorithm 7 performs this operation (lines 3–4) similarly to the hypothetical algorithm
we have outlined above, but terminates its Dijkstra search early, after identifying the set
F of fringe vertices of s (line 3), and identifies S′ based on F instead of A (line 4). The
set of fringe vertices of s (with respect to the current contents of S) is the set of vertices
F ⊆ A such that, for every t ∈ F , A 6@ (s, t). For every vertex t ∈ A \ F , at least one
shortest s-t path is covered by a vertex n ∈ F (otherwise, t ∈ F ). Therefore, adding
subgoals to S to cover shortest paths to fringe vertices F is sufficient for covering shortest
paths to all vertices in A, and, consequently, it is sufficient to identify F instead of A,
and sufficient for identifying S′ to cover shortest paths from s to vertices in F rather
than to vertices in A. The Dijkstra search of the hypothetical algorithm that we have
outlined above can be terminated early, after generating F , when its OPEN list contains
only vertices that are “covered” (by the current contents of S) or not R-reachable from
s. At this point, any vertex t that is not generated by the Dijkstra search cannot be a
fringe vertex of s, since all shortest s-t paths on G are covered by at least one vertex in
the OPEN list: either by a vertex that is already “covered”, in which case t would also be
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“covered” and thus t 6∈ A ⊇ F ; or by a vertex that is in A, in which case t 6∈ F . F can then
be determined as those vertices t in the search tree of the Dijkstra search such that: 1) t
is not marked as “covered”, 2) t is not R-reachable from s, and 3) the parent of t cannot
be set, without changing the g-value of t, to a vertex that is not marked as “covered” and
not R-reachable from s. We discuss how S′ is selected from F in Section 4.6.5, when we
use Algorithm 7 to construct subgoal graphs on state lattices.

Figure 3.10 shows an example of the operation of Algorithm 7 for constructing a
BD4-SPC, that is, a (BD4, V )-SPC. In Figure 3.10a, S = ∅ and the Dijkstra search
from s = A1 terminates when its OPEN list contains only vertices that are not BD4-
reachable from s. Coincidentally, these vertices all become the fringe vertices of s (with
respect to S = ∅). In Figure 3.10b, A4 and D1 are (identified heuristically and) added
as subgoals to S, so that at least one shortest path from s to each of its fringe vertices is
covered. In Figure 3.10c, S = {A4, D1}, and the Dijkstra search from s = F1 terminates
when its OPEN list contains only vertices that are not BD4-reachable from s (E5) or
already covered by S (A1 and D4); and E5 is identified as the only fringe vertex of s.
In Figure 3.10d, E4 is added to S to cover a shortest s-E5 path. Algorithm 7 would
continue this process by performing a Dijkstra search from all vertices s ∈ V , eventually
constructing an S that is a BD4-SPC.

3.4 N-level Overlay and Subgoal Graphs

In this section, we introduce N -level overlay graphs that are formed by combining multi-
ple extended overlay graphs. As proven in Section 3.2.3, extended overlay graphs contain,
between every pair s and t of their vertices, an overlay s-t path with length d(s, t). In
this section, we prove that N -level overlay graphs contain, between every pair s and t of
their vertices, an arching s-t path with length d(s, t), which allows them to be searched
for arching paths efficiently by using modified bidirectional Dijkstra searches. We intro-
duce R N -level subgoal graphs as N -level overlay graphs with R-reachable edges only
that are constructed on R subgoal graphs, describe contraction hierarchies as N -level
overlay graphs without level edges, and introduce R contraction hierarchies as N -level
overlay graphs that have R-reachable edges only and level edges only between vertices
at the highest level of the hierarchy. We compare these hierarchies in more detail, both
analytically and experimentally, on grid graphs in Chapter 5.

This section is organized as follows: In Section 3.4.1, we introduce N -level overlay
graphs and arching paths, and prove that N -level overlay graphs contain, between every
pair s and t of their vertices, an arching s-t path with length d(s, t) In Section 3.4.2, we
describe contraction hierarchies as a subclass of N -level overlay graphs, and introduce R
N -level subgoal graphs and R contraction hierarchies as two other subclasses. In Sections
3.4.3 and 3.4.4, we discuss how these hierarchies can be constructed and be used to answer
path queries optimally, respectively.

3.4.1 N-Level Overlay Graphs

N -level overlay graphs are constructed by assigning levels to the vertices of an overlay
graph GS and adding extra shortcut edges to guarantee that, for every s, t ∈ S, an
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Figure 3.11: N -level overlay graphs.

arching s-t path with length d(s, t) exists on the resulting hierarchy. An overlay graph
GS1 can be considered to be a 1-level overlay graph, where every vertex n ∈ S1 has the
same level (Figure 3.11a). An extended overlay graph GS2,S1 can be considered to be a
2-level overlay graph, where the vertices in S2 can be considered to be level 2 vertices,
whereas the vertices in S1 \S2 can be considered as level 1 vertices (Figure 3.11b). Recall
that, for every s, t ∈ S1, GS2,S1 is guaranteed to contain an overlay s-t path with length
d(s, t) (Lemma 3.2) that uses only vertices in S2, with the possible exception of s and t
(Definition 3.5). Therefore, to find a shortest s-t path on GS2,S1 , one only needs to search
over overlay paths (since at least one overlay s-t path is guaranteed to be a shortest s-t
path), and can ignore any vertices in S1 \ S2 except for s and t.

We can take this idea one step further: For some S3 ⊆ S2, consider the extended
overlay graph GS3,S2 (Figure 3.11c) which, for every u, v ∈ S2, is guaranteed to contain
a u-v path with length d(u, v) that uses only vertices in S3 on GS3,S2 , with the possible
exception of u and v. The combination of GS3,S2 with GS2,S1 can be considered as a 3-level
overlay graph (Figure 3.11d), which is guaranteed to contain, for every s, t ∈ S1, an s-t
path π = 〈p0, . . . , pk〉 with l(π) = d(s, t), p0, pk ∈ S1, p1, pk−1 ∈ S2, and p2, . . . , pk−2 ∈ S3.
To find a shortest s-t path on the 3-level overlay graph, one needs to look only for such a
path, and 1) can ignore any vertices in S1 \ S2 as long as they are not s or t, and 2) can
ignore any vertices in S2 \ S3 as long as they are not s or t, or share an edge with s or t.
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More generally, an N -level overlay graph can be considered as a combination of N −1
extended overlay graphs GS1,S2 , . . . , GSN−1,SN

, for some V ⊇ S1 ⊇ · · · ⊇ SN 6= ∅, and is
guaranteed to contain, for every s, t ∈ S1, an arching s-t path with length d(s, t). We
succinctly represent the sequence of vertex sets V ⊇ S1, . . . ,⊇ SN 6= ∅ by using a level
function L, and use GL to denote an N -level overlay graph constructed with respect
to L. We formally define level functions, N -level overlay graphs, and arching paths in
Definitions 3.11, 3.12, and 3.13, respectively.

Definition 3.11 (Level function). A level function is a function L : V → Z≥0 that assigns
a non-negative level to each vertex, where max(L) = maxn∈V L(n) is the maximum level
of L. The level of a path π with respect to L is L(π) = maxn∈π L(n).

Definition 3.12 (N -Level overlay graph). Given a level function L with max(L) = N :

• ∀i = 1, . . . , N , let Si = {u ∈ V : L(u) ≥ i} be the set of level ≥ i vertices.

• Let E1 be the edges of GS1.

• ∀i = 2, . . . , N , let Ei be the edges of GSi,Si−1.

The N -level overlay graph induced by L on G is the graph GL = (S,E′, c′), where:

1. S = S1;

2. E′ = E1 ∪ · · · ∪ EN ; and

3. ∀(s, t) ∈ E′, c′(s, t) = d(s, t).

GS1 and GSN
are referred to as the base and core (graphs) of GL, respectively.

In this dissertation, we construct hierarchies (N -level overlay graphs and their sub-
classes that we introduce in the next section) GL on either the input graph G or a subgoal
graph GS . Definitions 3.11 and 3.12 allow us to distinguish between these two cases: If
GL is constructed on G, then all vertices n ∈ V are assigned a level L(n) ≥ 1. If GL is
constructed on GS , then a vertex n ∈ V is assigned a level L(n) ≥ 1 if n ∈ S, or level
L(n) = 0 otherwise. We refer to G or GS as the base (graph) of the hierarchy. We refer to
its highest level vertices and edges as core vertices and core edges, respectively. The core
vertices and edges of a hierarchy form the core (graph) of the hierarchy. By definition,
all edges in the base graph are contained in the hierarchy.

Definition 3.13 (Arching path). Given an N -level overlay graph GL = (S,E′, c′), an
edge (u, v) ∈ E′ is level if and only if L(u) = L(v), upward if and only if L(u) < L(v),
and downward if and only if L(u) > L(v).

A path π = 〈v0, . . . , vk〉 on GL is level if and only if all its edges are level, upward if
and only if all its edges are upward, downward if and only if all its edges are downward.
π is an arching path if and only if there exists 0 ≤ i ≤ j ≤ k, such that:

1. π↑ = 〈v0, . . . , vi〉 is upward;

2. π↔ = 〈vi, . . . , vj〉 is level;
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3. π↓ = 〈vj , . . . , vk〉 is downward; and

4. if L(vi) < max(L), then j = i or j = i+ 1.

π↑, π↔, π↓ are called the upward, level, and downward parts of π, respectively.

Informally, an arching path is a path that can be split into three parts: The upward
part visits vertices in ascending order of levels, the level part visits vertices only on the
same level, and the downward part visits vertices in descending order of levels. The
ascending part of an arching path must be its prefix, the descending part must be its
suffix, and the level part may contain at most one non-core edge. For instance, the path
〈D1, D2, D4, B6, D7, D10〉 on the 3-level overlay graph shown in Figure 3.11d is an
arching path, since it can be split into the upward part 〈D1, D2, D4〉, the level part
〈D4, B6, D7〉, and the downward part 〈D7,D10〉, where its level part uses core edges and,
therefore, can have any number of them. The path 〈D1, B1, A3〉 can also be split into the
upward path 〈D1〉, the level part 〈D1, B1, A3〉 and the downward part 〈A3〉. However, it
is not an arching path since its level part contains two edges between level 1 (non-core)
vertices. The path 〈F2, F4, E5〉 is not an arching path since the upward part 〈F4, E5〉 is
not its prefix.

We conclude this section by proving that, for every pair of vertices s and t in an
N -level overlay graph GL, an arching s-t path exists on GL with length d(s, t). The proof
considers the series of 1-level, . . . , N -level overlay graphs GL1 , . . . , GLN

, where the level
function Li considers vertices n with L(n) ≥ i as level i vertices; and shows, by induction,
that an arching s-t path with length d(s, t) exists on each of these hierarchies. Namely, an
arching s-t path πi+1 with length d(s, t) on GLi+1 can be constructed from an arching s-t
path with length d(s, t) on GLi , by replacing its level part with a corresponding overlay
path on the extended overlay graph that extends GLi to GLi+1 . We omit the proof that
the s-t distance on GL is no shorter than the s-t distance on G, which trivially follows
from the fact that edge lengths on GL are equal to distances on G (Definition 3.12).

Theorem 3.17. Let GL = (S,E′, c′). For every s, t ∈ S, there exists an arching s-t path
π on GL with l(π) = d(s, t).

Proof.

1. Let GL = (S,E′, c′).

2. Let s, t ∈ S.

3. For i = 1, . . . , N , let Si = {n ∈ V : L(n) ≥ i}.

4. For i = 1, . . . , N , let Li be a level function such that, ∀n ∈ V , Li(n) = max(L(n), i).

5. For i = 1, . . . , N , let Si be the statement “there exists an s-t arching path π on GLi

with l(π) = d(s, t).”

6. For i = 1, . . . , N , Si is true (by induction on i = 1, . . . , N − 1):

6.1. (Base case): S1 is true:
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6.1.1. GL1 = GS1 (Definition 3.12).

6.1.2. There exists an s-t path π on GS1 with l(π) = d(s, t) (Lemma 3.2).

6.1.3. ∀p ∈ π, L(p) ≥ 1 (since p ∈ S1).
6.1.4. ∀p ∈ π, L1(p) = 1 (since L(p) ≥ 1).

6.1.5. Therefore, π is an arching path on GL1 (Definition 3.13).

6.2. (Induction step): If Si is true, then Si+1 is true:

6.2.1. Assume Si is true.

6.2.2. Let π be an s-t arching path on GLi with l(π) = d(s, t). Such π exists
(since Si is true).

6.2.3. GLi+1 has all the edges of GLi (Definition 3.12).

6.2.4. Let π↑, π↔ = 〈p0, . . . , pj〉, π↓ be the upward, level, and downward parts
of π, respectively (Definition 3.13, since π is an arching path).

6.2.5. If j < 2 then Si+1 is true (since π is an arching path on GLi+1):

6.2.5.1. Assume j < 2.

6.2.5.2. π is a path on GLi+1 (since π is a path on GLi , and GLi+1 has all the
edges of GLi).

6.2.5.3. π is an arching path on GLi+1 (Definition 3.13, since π is a path on
GLi+1 with the upward part π↑, level part π↔ = 〈p0, . . . , pj〉 with
j < 2, and the downward part π↓).

6.2.6. If j ≥ 2, then Si+1 is true (since we can replace the level part π↔ of π
with a shortest overlay path π′ on GSi+1,Si to get an arching path π′′ on
GLi+1 with l(π′′) = d(s, t)):

6.2.6.1. Assume j ≥ 2.

6.2.6.2. Li(p0) = Li(pj) = i (Definition 3.13, since 〈p0, . . . , pj〉 is the level-part
of an arching path on GLi with j ≥ 2).

6.2.6.3. L(p0) ≥ i, L(pj) ≥ i (since Li(p0) = Li(pj) = i).

6.2.6.4. p0, pj ∈ Si (since L(p0) ≥ i, L(pj) ≥ i).
6.2.6.5. Let π′ = 〈p′0, . . . , p′k〉 be a overlay p0-pj path on GSi+1,Si with l(π) =

d(p0, pj). Such π′ exists (Lemma 3.2, since p0, pj ∈ Si).
6.2.6.6. Let π′′ = π↑ · π′ · π↓.
6.2.6.7. GLi+1 contains all the edges of GSi+1,Si (Definition 3.12).

6.2.6.8. Therefore, π′ is a path on GLi+1 .

6.2.6.9. Therefore, π′′ is a path on GLi+1 .

6.2.6.10. l(π′′) = l(π) = d(s, t) (since π′ replaces π↔ in π as a shortest p0-pj
path).

6.2.6.11. p′1, . . . , p
′
k−1 ∈ Si+1 (Definition 3.5, since π′ is an overlay path on

GSi+1,Si).

6.2.6.12. Li+1(p
′
1) = · · · = Li+1(p

′
k−1) = i+ 1 (since p′1, . . . , p

′
k−1 ∈ Si+1).

6.2.6.13. i ≤ L(p′0) and i ≤ L(p′k) (since p′0 = p0, p
′
k = pj ∈ Si).

6.2.6.14. i ≤ Li+1(p
′
0) ≤ i+ 1 and i ≤ Li+1(p

′
k) ≤ i+ 1.

6.2.6.15. π′′ is an arching path (Definition 3.13, further details omitted).
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3.4.2 Subclasses of N-Level Overlay Graphs

In this section, we describe contraction hierarchies as a subclass of N -level overlay graphs,
and introduce two new subclasses, R N -level subgoal graphs, and R contraction hierar-
chies. Definition 3.14 formally defines these three subclasses, and Figure 3.12 shows an
example.

Definition 3.14 (Contraction hierarchy, R contraction hierarchy, R N -level subgoal
graph). Let GL = (S,E′, c′) be an N -level overlay graph. Let R be a reachability relation.

• GL is a contraction hierarchy if and only if, ∀(u, v) ∈ E′, L(u) 6= L(v).

• GL is an R contraction hierarchy if and only if, ∀(u, v) ∈ E′, ((u, v) ∈ R and, if
L(u) = L(v), then L(u) = max(L)).

• GL is an R N -level subgoal graph if and only if, ∀(u, v) ∈ E′, (u, v) ∈ R.

Contraction hierarchies, as described in the literature (Geisberger et al., 2008), are
constructed by contracting the vertices of a graph one by one using the vertex contraction
operation discussed in Section 3.2.6. Shortcut edges identified by contractions are added
to the graph, and each vertex is assigned a level based on the order of contractions. We
discuss this construction scheme in more detail in Section 3.4.3. The resulting contraction
hierarchy has the property that, between every pair of vertices s and t, there exists an
up-down s-t path with length d(s, t), that is, an arching path with only the upward
and downward parts. We discuss how this property can be exploited during searches in
Section 3.4.4.2.

Observe that, if an N -level overlay graph GL = (S,E′, c′) does not have any level
edges, then it can be considered as a contraction hierarchy (Definition 3.14): For every
s, t ∈ S, there exists an arching s-t path π on GL with length d(s, t) (Theorem 3.17).
Since GL does not have level edges, π cannot have level edges and, therefore, π is an up-
down path. We therefore define contraction hierarchies as a subclass of N -level overlay
graphs, which do not contain level edges.

R N -level subgoal graphs are N -level overlay graphs constructed with respect to a
reachability relation R, and have R-reachable edges only. Since N -level overlay graphs
include all edges of their base graphs (Section 3.4.1), it is not possible to construct R
N -level overlay graphs on graphs with non-R-reachable edges. We therefore construct R
N -level subgoal graphs on R subgoal graphs in this dissertation, which are guaranteed to
have R-reachable edges only.

R contraction hierarchies can be considered to be an intermediate hierarchy between
contraction hierarchies and R N -level subgoal graphs. Similar to contraction hierarchies,
they do not have level edges between non-core vertices. Similar to R N -level subgoal
graphs, they have R-reachable edges only. We allow R contraction hierarchies to have
level edges between core vertices because it might not be possible to construct contraction
hierarchies with R-reachable edges only. We discuss this in more detail in Section 3.4.3.

3.4.3 Constructing N-Level Overlay Graphs

In this section, we discuss how N -level overlay graphs and their different subclasses can be
constructed by using different types of contractions. Namely, the (regular) contractions,
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(a) An undirected circle graph with
unit-length edges.

(b) Contraction hierarchy: Contains no level
edges, all arching paths are up-down paths.

(c) BD4 contraction hierarchy: BD4-reachable
edges only, level edges only in the core.

(d) BD4 2-level subgoal graph: BD4-reachable
edges only. (May contain level edges

anywhere in the hierarchy).

Figure 3.12: Subclasses of N -level overlay graphs. The yellow concentric circles denote
the levels of vertices, where vertices in the outermost circle have level 1.
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Shortcut edges \ Operates on (graph) Overlay Extended overlay

Can introduce non-R-reachable shortcut edges Contract Heavy contract
Introduces R-reachable shortcut edges only R contract Heavy R contract

Table 3.2: Variants of contractions.

Hierarchy Paths and edges Construction

N -level overlay graph Preserves distances in arching paths Heavy contrac-
tions

R N -level subgoal graph Preserves distances in arching paths
All edges are R-reachable

Heavy R con-
tractions

Contraction hierarchy Preserves distances in up-down paths
No level edges

Contractions

R contraction hierarchy Preserves distances in arching paths
Level edges only in the core
All edges are R-reachable

R contractions

Table 3.3: Classes of hierarchies and their associated contraction variants for constructing
them.

heavy contractions, and heavy R contractions discussed in Sections 3.2.6 and 3.3.5, and
a new type of contraction, called R contractions, that we introduce in this section.

Recall that contracting a vertex n ∈ S from an overlay graph GS produces the overlay
graph GS\{n}, and heavy contracting a vertex n ∈ S from an extended overlay graph GS,T
produces the extended overlay graph GS\{n},T (Section 3.2.6). Both contractions and
heavy contractions can introduce new shortcut edges, and contractions (but not heavy
contractions) remove incident edges of the contracted vertex from the graph. Also recall
that heavy R contracting a vertex n ∈ S from GS,T heavy contracts n from GS,T if and
only if doing so introduces R-reachable shortcut edges only (Section 3.3.5). Our new
contraction variant, called R contractions, contracts n from an overlay graph GS if and
only if doing so introduces R-reachable shortcut edges only. Table 3.2 summarizes these
four variants of contractions, which differ in whether they operate on overlay or extended
overlay graphs, and whether they introduce R-reachable shortcut edges only.

Table 3.3 summarizes the four classes of hierarchies and the type of contractions used
for constructing them. We discuss each case below. For constructing N -level overlay
graphs GL, we assume that a level function L is given, since any L uniquely defines
an N -level overlay graph. For constructing subclasses of N -level overlay graphs, we
outline construction methods for identifying level functions L that satisfy their respective
constraints.

3.4.3.1 N-Level Overlay Graphs and Heavy Contractions

Suppose that we are given a level function L and want to construct the N -level overlay
graph GL. Let Si denote the level ≥ i vertices of GL. As discussed in Section 3.4.1, GL is
a combination of the extended overlay graphs GSN ,SN−1

, . . . , GS2,S1 , and, as discussed in
Section 3.2.6, we can construct each extended overlay graph GSi+1,Si by heavy contracting
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all vertices n ∈ Si \Si+1 from the overlay graph GSi = GSi,Si . Therefore, N -level overlay
graphs can be constructed using heavy contractions.

The overlay graph GSi+1 is the core of the extended overlay graph GSi+1,Si . This
allows us to construct the constituent extended overlay graphs of GL in the following
order: First, we construct GS2,S1 from the overlay graph GS1 . Then, we construct the
extended overlay graph GS3,S2 from the core GS2 of GS2,S1 , and repeat until GSN ,SN−1

is constructed. We discuss the construction of the subclasses of N -level overlay graphs
within this framework.

3.4.3.2 R N-level Subgoal Graphs and Heavy R Contractions

Suppose that we are given a reachability relation R, and an overlay graph GS with R
reachable edges only, and we want to construct an R N -level overlay graph GL on GS .
We can use the same framework outlined above for construction, but also identify L
during the construction. As discussed in Section 3.3.5, heavy R contracting all vertices
from the overlay graph GS = GS,S results in an extended overlay graph GS′,S with only
R-reachable edges. We can use this method to identify S2 from S1, S3 from S2, and so on,
until we identify an Sk+1 with Sk+1 = Sk or Sk+1 = ∅. The sequence S1, . . . , Sk identifies
a level function L (with max(L) = k) and, since each GSi+1,Si contains only R-reachable
edges, GL is an R N -level subgoal graph.

3.4.3.3 Contraction Hierarchies and Contractions

Suppose that we are given an overlay graph GS and want to construct a contraction
hierarchy (an N -level overlay graph with no level edges) GL. It is easy to identify a level
function L such that GL is a contraction hierarchy: If no two vertices have the same
level with respect to L, then GL cannot have level edges.3 We can therefore use the level
function in the construction schema discussed for N -level overlay graphs, and construct
a contraction hierarchy using heavy contractions.

Consider the construction of the extended overlay graph GSi+1,Si using heavy contrac-
tions as discussed above. Since no two vertices have the same level with respect to L,
there is a unique level i vertex n, where Si \ Si+1 = {n}. Therefore, GSi+1,Si can be con-
structed with a single heavy contraction from GSi . As we have discussed in Section 3.2.6,
heavy contracting a single vertex n from an overlay graph performs the same witness
searches and adds the same set of shortcut edges as contracting n does. Therefore, each
heavy contraction performed during the construction of a contraction hierarchy can be
considered to be a (regular) contraction.

The level function that we have described above can be considered to be the con-
traction order, where vertices with higher levels are contracted after vertices with lower
levels. Geisberger et al. note that searches over contraction hierarchies constructed using
different contraction orders can have significantly different execution times, and suggest
various heuristics for determining good contraction orders. Although an overview of these

3As we discuss later in this section, it is not necessarily the case that each vertex in a contraction
hierarchy has a distinct level.
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heuristics is beyond the scope of this dissertation, we outline the heuristic used in the con-
traction hierarchy entry in the Grid-Based Path-Planning Competition, which determines
the next vertex n to contract from an overlay graph GSi as the vertex with the minimum
importance I(n) (Sturtevant et al., 2015). This method of determining contraction orders
is referred to as an “online” contraction order, since the contraction order is determined
during the construction of a contraction hierarchy, by updating the importance I(n) of
vertices after each contraction. The following expression summarizes the various factors
that I(n) considers when estimating the importance of vertices:

I(n) = L(n) +
|A(n)|
|D(n)|

+

∑
(u,v)∈A(n) h(u, v)∑
(u,v)∈D(n) h(u, v)

.

We now explain the various terms that appear in this expression:

• L(n) can be considered to be the “level” of n. Our suggestion of using a level
function L that assigns a unique level to each vertex can be considered to be a
simplification of how levels are assigned to vertices in contraction hierarchies. As
Definition 3.14 suggests, two vertices in a contraction hierarchy can have the same
level as long as no two vertices of the same level share an edge. A different way to
assign levels L (to distinguish it from L, that we have discussed above) to vertices
is as follows: Initially, for every vertex n, L(n) = 1. When a vertex u is contracted
from the overlay graph GSj , for every neighbor v of u in GSj , L(v) is updated to
max(L(v), L(u) + 1). This ensures that, when a vertex is contracted, its neighbors
that have already been contracted have levels strictly lower than L(n), and its
neighbors that have not yet been contracted have a level strictly higher than L(n),
thereby ensuring that the resulting contraction hierarchy has no level edges. I(n)
considers vertices with lower levels to be less “important” and suggests contracting
them first. This helps with contracting vertices more “uniformly”, which has been
shown to improve query times (Geisberger et al., 2008).

• A(n) is the set of shortcut edges added when contracting n from GSi , and D(n)
is the set of edges (or shortcut edges) removed from GSi . I(n) considers vertices
whose contraction removes more shortcut edges than it adds to be less “important”
and suggests contracting them first. This helps to add fewer shortcut edges to
contraction hierarchies, which has been shown to improve query times (Geisberger
et al., 2008). As a further benefit, the remaining “core” GSi+1 after contracting n
from GSi is likely to contain fewer edges than it would have if another vertex were
contracted, which can result in subsequent contractions requiring fewer witness
searches and, therefore, less time.

• h(u, v) is the number of edges that corresponds to a shortest u-v path on G, and is
used to denote the “hop-length” of a shortcut edge (u, v). Recall that each shortcut
edge (u, v) introduced during the contraction of a vertex m is the combination of the
edges (or shortcut edges) (u,m) and (m, v). Therefore, during the construction of
a contraction hierarchy, h(u, v) can be maintained for all edges (or shortcut edges)
as follows: For every edge (u, v) of GS , assign h(u, v) = 1. When a shortcut edge
(u, v) is introduced as a combination of the edges (or shortcut edges) (u,m) and
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(m, v), assign h(u, v) = h(u,m)+h(m, v). I(n) considers vertices whose contraction
removes shortcut edges with a higher sum of hops than it adds to be less “important”
and suggests contracting them first. This helps with contracting vertices more
uniformly, as well as helps add fewer shortcut edges to contraction hierarchies.

The contraction hierarchy entry in the Grid-Based Path-Planning Competition com-
putes I(n) for each vertex in GS (by simulating its contraction from GS) before deter-
mining the first vertex to contract and, after contracting a vertex u, recomputes I(v) for
every neighbor v of u that has not yet been contracted. This is considered to be a “com-
paratively slow but high-quality bottom-up ordering approach” (Sturtevant et al., 2015).
In our experiments on grid graphs in Section 5.5, we use this ordering for determining
the contraction orders during the construction of the other classes of hierarchies as well.

3.4.3.4 R Contraction Hierarchies and R Contractions

Suppose that we are given a reachability relation R and an overlay graph GS with R-
reachable edges only and want to construct an R contraction hierarchy GL on GS . We
can use the same construction method for constructing contraction hierarchies, but avoid
performing any contractions that introduce non-R-reachable edges (that is, performing R
contractions only), which guarantees that the resulting hierarchy has R-reachable edges
only. This hierarchy can have an “uncontracted core”, where contracting any of the
vertices from the core would introduce a non-R-reachable edge (Figure 3.12c shows an
example). When constructing R contraction hierarchies, we set the “importance” I(n) of
a vertex n to infinity if contracting it would introduce a non-R-reachable edge.

3.4.4 Answering Queries Using N-Level Overlay Graphs

N -level overlay graphs can be used to answer path queries optimally in the same way
that overlay graphs can be used to answer path queries optimally, by using the Connect-
Search-Refine algorithm discussed in Section 3.2.4. In this section, we discuss how the
start and goal vertices can be connected to hierarchies as level 0 vertices, describe the
bidirectional search algorithm used for searching contraction hierarchies for shortest up-
down paths (Geisberger et al., 2008) and how it can be extended for searching the other
hierarchies for shortest arching paths, and describe the unpacking algorithm for refining
up-down paths into paths on the base graph (Geisberger et al., 2008). Table 3.4 provides
a summary of how the search and refinement phases of answering queries differ when
using different classes of hierarchies.

3.4.4.1 Connection

As mentioned in Section 3.4.1, we construct hierarchies on subgoal graphs or G in this
dissertation. The connection phases of queries can be skipped for hierarchies constructed
on G. For hierarchies GL constructed on a subgoal graph GS , the start and goal vertices
can be connected to GL in the same way how they can be connected to GS , by using
an R-connect algorithm. If the start and goal vertices do not already appear as vertices
in GL, we assign them a level of 0, which ensures that the resulting query hierarchy has
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Hierarchy Forward search Refine

N -level overlay graph Constructs the upward and level part
Generates successors using upward and core
level edges
Generates “stalled” successors using
non-core-level edges

Unpack

R N -level subgoal graph R-refine

Contraction hierarchy Constructs the upward part
Generates successors using upward edges

Unpack

R contraction hierarchy Constructs the upward and (core) level part
Generates successors using upward and level
edges

R-refine

Table 3.4: Answering queries using different subclasses of N -level overlay graphs. All
hierarchies are searched with bidirectional Dijkstra (or A*) searches, where the backward
search constructs the downward part of an arching path.

an arching s-t path with length d(s, t). To see why this is the case, consider combining
GL with the extended overlay graph GS,V .4 By Theorem 3.17, the resulting hierarchy is
guaranteed to contain an arching s-t path π with length d(s, t). Figure 3.13c shows an
example, where t is connected to GL as a level 0 vertex.

It could be the case that π = 〈s, t〉, where the edge (s, t) is level and non-core. We
assume that the search algorithm we describe below checks for this case and returns the
solution π = 〈s, t〉 immediately, to ensure that searches over contraction hierarchies can
look for up-down paths only.

3.4.4.2 Search

The bidirectional search algorithm used for searching contraction hierarchies differs from
(regular) bidirectional Dijkstra searches in three ways: 1) The forward search uses only
upward edges and the backward search uses only downward edges, 2) the termination
criterion is different, and 3) it uses stall-on-demand. In this section, we describe these
three differences, and then discuss how the resulting search algorithm can be adapted
for searching R contraction hierarchies and N -level overlay (subgoal) graphs for shortest
arching s-t paths instead. Figure 3.13 shows an example of the operation of this algorithm
on an N -level overlay graph.

Bidirectional search with upward and downward edges: Contraction hierarchies can be
searched for shortest up-down paths by a bidirectional Dijkstra search, where the forward
search searches over upward paths that originate at the start vertex s, and the backward
search searches over downward paths that terminate at the goal vertex t. Therefore, the
forward search only generates successors v of expanded vertices u that are reachable from
u by upward edges (u, v), and the backward search only generates predecessors (that is,
successors on the inverse graph) v of expanded vertices u that reach u with downward
edges (v, u). Any vertex that is not reachable from the start vertex with an upward path
and that cannot reach the goal vertex with a downward path is thus effectively pruned

4More specifically, consider the N -level overlay graph NL′ where, for all n ∈ V , L′(n) = L(n) + 1.
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from both searches, which allows searches over contraction hierarchies to be significantly
faster than searches over their base graphs.

Termination criterion: Recall that a bidirectional Dijkstra search for an s-t path
terminates when the two searches “meet” at a vertex n, that is, when n is expanded by
both searches. However, bidirectional Dijkstra searches over contraction hierarchies that
use this termination criterion can find s-t paths with lengths greater than d(s, t), for the
following reason: Although the contraction hierarchy is guaranteed to have an up-down
s-t path with length d(s, t), it is not necessarily the case that all shortest upward or
downward paths are shortest paths themselves. It just means that there exists some apex
vertex a for which the combination of the shortest upward s-a path with the shortest
downward a-t path is a shortest s-t path. Therefore, the first time when the two searches
meet at a vertex n, it is not necessarily the case that n is the apex vertex of a shortest
up-down s-t path. To guarantee that shortest arching s-t paths are found, bidirectional
Dijkstra searches over contraction hierarchies therefore terminate when the radii (the
lowest g-value of a vertex in OPEN) of both searches are greater than or equal to the
length of the shortest s-t path found so far by the search (Geisberger et al., 2008), since
any vertices that were expanded after this point would be reached with paths that are
longer than d(s, t).

Stall-on-demand: Bidirectional Dijkstra searches over contraction hierarchies can use
the stall-on-demand technique (which we have discussed in Section 3.2.5 in the context
of the OverlayConnect algorithm) to “stall” (avoid expanding) vertices reached with sub-
optimal upward or downward paths. Stall-on-demand operates as follows in the context
of contraction hierarchies: Whenever a vertex v is selected for expansion in the forward
search, for each downward edge (u, v), the forward search checks if g(u) + d(u, v) < g(v).
If so, v is stalled and not expanded since it has a provably suboptimal g-value. Other-
wise, it is expanded as usual. That is, the forward search uses upward edges to generate
successors, but uses downward edges to perform stall-on-demand checks. Similarly, the
backward search uses upward edges to perform stall-on-demand checks.

Finding arching paths: We can adapt bidirectional Dijkstra searches for finding short-
est up-down paths over contraction hierarchies to find shortest arching paths over N -level
overlay graphs, as follows: The forward search searches over combinations of upward paths
and level paths (that is, arching paths without downward parts), whereas the backward
search searches over downwards paths (similar to how it operates on contraction hierar-
chies). Since arching paths cannot have more than a single non-core level edge (Defini-
tion 3.13), successors generated using non-core level edges are not added to OPEN, and
are used simply to check if the two searches meet. That is, they are generated as “stalled”
vertices. Searches over R contraction hierarchies can ignore this case, since they do not
have non-core level edges. Figure 3.13b shows an example, where non-core level edges
are shown in red. When F4 (level 1) is expanded, F2 (level 1) is generated as a stalled
vertex, since it is reached with a non-core level edge.
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(a) 3-level overlay graph GL. Yellow disks =
level 1 vertices, orange disks = level 2
vertices, red disks = level 3 vertices.

D

A

B

C

F

E

4 5 61 2 3 107 8 9

s

(b) Search tree of the forward search from s.
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(c) Search tree of the backward search from t
connected to GL as a level 0 vertex. Level

edges are ignored during the backward search.
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(d) Search trees of both searches meet at B6
(and D7). Vertices that are not reachable
from s with a combination of upward and

level paths and cannot reach t with a
downward path are pruned from the search.

Figure 3.13: Searching N -level overlay graphs for shortest arching paths.

3.4.4.3 Refinement

Since R N -level subgoal graphs and R contraction hierarchies have R-reachable shortcut
edges only, each shortcut edge on a shortest arching path can be replaced with cor-
responding shortest paths on G directly by using an R-refine algorithm. Contraction
hierarchies (and N -level overlay graphs), on the other hand, can have non-R-reachable
shortcut edges. If the base graph is G, these shortcut edges can be replaced with corre-
sponding shortest paths on G by unpacking them, as we describe below. If the base graph
is an R subgoal graph GS , shortcut edges can first be unpacked into shortest paths on
GS , which can then be R-refined into corresponding shortest paths on G.

Recall that each shortcut edge (u, v) introduced during the contraction of a vertex
n corresponds to a combination of two (shortcut) edges (u, n) and (n, v). Therefore,
when replacing (u, v) with a corresponding shortest path on the base graph, it can first
be replaced with the sequence of edges (u, n) (a downward edge since n is contracted
before u) and (n, v) (an upward edges since n is contracted before v), which can then
be recursively replaced with their two corresponding (shortcut) edges in the sequence,
until all edges in the sequence are edges of the base graph. This operation is called
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Figure 3.14: Unpacking a shortcut edge (green) recursively replaces it with its two asso-
ciated edges (red arrows) until the shortcut edge is replaced with a path on G (blue).

unpacking (Geisberger et al., 2008), and is illustrated in Figure 3.14. Observe that each
time a shortcut edge is replaced with two corresponding (shortcut) edges, the number
of edges in the sequence increases exactly by one. Therefore, unpacking a shortcut edge
(u, v) replaces a shortcut edge with two corresponding (shortcut) edges exactly k − 1
times, where k is the number of edges of a corresponding shortest u-v path on the base
graph.

Unpacking requires additional information to be stored for each shortcut edge. We
explain two different ways of doing this. 2-pointer unpacking requires, for each shortcut
edge (u, v), the storage of its two corresponding edges (u, n) and (n, v). Midpointer
unpacking, on the other hand, requires the storage of n instead, and can reconstruct
(u, n) and (n, v) by scanning the downward in-edges of n for the edge (u, n), and the
upward out-edges of n for the edge (n, v). Therefore, 2-pointer unpacking requires more
information to be stored for each shortcut edge, and midpointer unpacking can take longer
to execute.

3.5 Strongly-Connected Subgoal Graphs

In this section, we introduce a suboptimal variant of subgoal graphs, called strongly
connected subgoal graphs. Similar to subgoal graphs, strongly connected subgoal graphs
can be used to answer path queries using the Connect-Search-Refine algorithm discussed
in Section 3.3.4. However, the resulting path is not guaranteed to be a shortest s-t path.
In this dissertation, we use strongly connected subgoal graphs as an alternative to subgoal
graphs for answering queries on state lattices, since answering queries on state lattices
using subgoal graphs achieves only a small speed-up over A* searches on G, as we discuss
in Section 4.6.5.
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This section is organized as follows. In Section 3.5.1, we formally define strongly
connected subgoal graphs. In Section 3.5.2, we show that strongly connected subgoal
graphs can be used to find s-t paths on G for every pair of vertices s, t ∈ V , by using
the Connect-Search-Refine algorithm. In Section 3.5.3, we introduce an algorithm for
constructing strongly connected subgoal graphs.

3.5.1 Strongly-Connected Subgoal Graphs

Recall that an R subgoal graph is an overlay graph GS where S is an R-SPC on G
(Section 3.3), which can be extended, for every s, t ∈ V , into an s-t query R subgoal
graph that has only R-reachable edges (Theorem 3.12) and contains an s-t path π with
l(π) = d(s, t) (Theorem 3.3). However, the requirement that S is an R-SPC limits the set
of R subgoal graphs that can be constructed on G, which could result in many vertices
of G becoming subgoals.

Our definition of R strongly connected subgoal graphs aims to capture the minimum
requirements from a graph G′ = (S,E′, c′), such that, for every s, t ∈ V , it can be
extended into an s-t query graph that has only R-reachable edges (using an R-connect
algorithm that satisfies the criteria outlined in Section 3.3.4) and contains an s-t path π
with l(π) < ∞ (rather than l(π) = d(s, t)). Namely, we require that (1) G′ is strongly
connected (otherwise, for some s, t ∈ S, dG′(s, t) =∞), (2) for every vertex n ∈ V , there
is at least one vertex in S that is R-reachable from n and one vertex in S from which n
is R-reachable (otherwise, R-connect cannot connect n to the strongly connected subgoal
graph as a start or a goal vertex), and (3) all edges of G′ are R-reachable (otherwise,
R-refine cannot operate on the edges of G′). Definition 3.15 formally defines R strongly
connected subgoal graphs as graphs that satisfy these requirements.

Definition 3.15. A graph G′ = (S,E′, c′) is an R strongly connected subgoal graph on G
if and only if:

1. G′ is strongly connected;

2. for every s ∈ V , there exists an n ∈ S such that (s, n) ∈ R;

3. for every t ∈ V , there exists an n ∈ S such that (n, t) ∈ R; and

4. ∀(u, v) ∈ E′, (u, v) ∈ R and c′(u, v) = d(u, v).

3.5.2 Answering Queries Using Strongly-Connected Subgoal Graphs

R strongly connected subgoal graphs can be used to answer path queries in the same
way that R subgoal graphs can be used to answer path queries (except, not necessarily
optimally), by using the Connect-Search-Refine algorithm algorithm discussed in Sec-
tion 3.3.4. Theorem 3.18 shows that using an R strongly connected subgoal graph instead
of an R subgoal graph in the SG-Query algorithm (Algorithm 4) is guaranteed to return,
for every s, t ∈ V , an s-t path on G. In this dissertation, we use the same R-connect
and R-refine algorithms when answering queries using R subgoal graphs or R strongly
connected subgoal graphs. However, in general, the criteria for the “correctness” of R-
connect and R-refine algorithms are “less strict” when using them for answering queries
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using R strongly connected subgoal graphs rather than R subgoal graphs. The premise
of Theorem 3.18 outlines these “less strict” criteria.

Theorem 3.18. Let G′ = (S,E′, c′) be an R strongly connected subgoal graph and s, t ∈ V
be arbitrary vertices of G. SG-Query(G, R, G′, s, t) finds an s-t path on G if:

1. R-connect(G, S, s, t) returns E+ and c+, such that:

1.1. For some n such that (s, n) ∈ R, (s, n) ∈ E+;

1.2. For some n such that (n, t) ∈ R, (n, t) ∈ E+;

1.3. E+ ⊆ R; and

1.4. ∀(u, v) ∈ E∗, c+(u, v) <∞.

2. R-refine(u, v) returns a (u, v) path on G if (u, v) ∈ R.

Proof. Let u ∈ S such that (s, u) ∈ R and (s, u) ∈ E+ with c+(s, u) < ∞. By Defini-
tion 3.15, such u ∈ S exists with (s, u) ∈ R and, in the premise of the theorem, we assume
that R-connect identifies at least one such u (if s ∈ S, we use u = s with c+(s, u) = 0).
Similarly, let v ∈ S such that (v, t) ∈ R and (v, t) ∈ E+ with c+(v, t) < ∞. Let πu,v be
a u-v path on G′ with l(πu,v) < ∞. By Definition 3.15, such πu,v exists since u, v ∈ S
and G′ is strongly connected. Then, πs,t = 〈s, u〉 · πu,v · 〈v, t〉 is an s-t path on the s-t
query R strongly connected subgoal graph with l(πs,t) = c+(s, u)+ l(πu,v)+c+(v, t) <∞.
Therefore, the search phase is able to find some s-t path π on the s-t query R strongly
connected subgoal graph. All edges on π are guaranteed to be R-reachable since, by
Definition 3.15, G′ has only R-reachable edges and, in the premise of the theorem, we
assume that E+ ⊆ R. Therefore, the refinement phase can replace each edge (u′, v′) on
π with some u′-v′ path on G.

3.5.3 Constructing Strongly-Connected Subgoal Graphs

In this section, we introduce a two-phase algorithm for constructing R strongly connected
subgoal graphs. In the first phase, the algorithm identifies a set of access subgoals A to
ensure that every vertex n ∈ V can be connected to an R-reachable subgoal in both
the forward and backward directions. That is, for every n ∈ V , there exists u, v ∈ A
with (u, n), (n, v) ∈ R. In the second phase, the algorithm constructs a graph that
strongly-connects the access subgoals, adding extra subgoals as necessary to guarantee
that the graph has R-reachable edges only. In this dissertation, we use this algorithm
to construct strongly connected subgoal graphs on state lattices in Section 4.6.6, with
respect to various reachability relations.

3.5.3.1 Identifying Access Subgoals

Algorithm 8 outlines our algorithm for identifying access subgoals, which starts with an
empty set of access subgoals A (line 1). For every vertex n ∈ V , Algorithm 8 maintains
two flags: forward[n], which indicates whether there exists a vertex u ∈ A with (n, u) ∈ R,
and backward[n], which indicates whether there exists a vertex v ∈ A with (v, n) ∈
R. Initially, for all n ∈ V , forward[n] = backward[n] = false (lines 2–3) since A = ∅.
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Algorithm 8 IdentifyAccessSubgoals

Input: G, reachability relation R
Output: Set of subgoals A such that, for every n ∈ V , ∃u, v ∈ A with (n, u), (v, n) ∈ R

1: A← ∅
2: for all n ∈ V do
3: forward[n] ← false, backward[n] ← false

4: for all n ∈ V in some order do
5: if ¬forward[n] ∨ ¬backward[n] then
6: A← A ∪ {n}
7: for all t ∈ V : (n, t) ∈ R do
8: backward[t] ← true

9: for all s ∈ V : (s, n) ∈ R do
10: forward[t] ← true

11: return A

Algorithm 8 then iterates over all vertices n ∈ V (line 4) and adds them to A if and only
if forward[n] = false or backward[n] = false (line 5,6). That is, if n cannot be connected
to a vertex in A with an R-reachable edge in the forward or the backward direction, it
is added to A. When a vertex n is added to A, the backward flag of every vertex t with
(n, t) ∈ R and the forward flag of every vertex s with (s, n) ∈ R is set to true (lines 7–10).
In our implementation, we use a modified R-connect algorithm to quickly iterate over all
such vertices and update their flags.

Figure 3.15 shows an example for identifying access subgoals for BD4-reachability on
a 4-neighbor grid graph. Since BD4-reachability is symmetric on undirected graphs, the
example uses a single flag for each vertex n that indicates whether an access subgoal u
exists with d(n, u) = d(u, n) ≤ 4. Such vertices are shown in green, and access subgoals
are shown in red. Algorithm 8 first arbitrarily selects A6, makes it an access subgoal
since there is no access subgoal within distance 4 from it, and marks every vertex within
distance 4 from it. These vertices will not be added to the set of access subgoals. After
randomly selecting an unmarked vertex D1, Algorithm 8 similarly makes it an access
subgoal and marks all vertices within distance 4 from it. After all vertices are processed,
a total of five access subgoals have been identified, and every vertex has an access subgoal
within distance 4 from it.

3.5.3.2 Strongly Connecting Access Subgoals Using R-Reachable Edges

A straightforward method for strongly-connecting access subgoals usingR-reachable edges
only would be to first construct an overlay graph GA of access subgoals (which is guaran-
teed to be strongly connected, since G is strongly connected) and then, for each non-R-
reachable edge (u, v) that appears on GA, break it down into a sequence of R-reachable
edges (u, n1), (n1, n2), . . . , (nk, v), by adding n1, . . . , nk to the set of subgoals. Algorithm 9
outlines our algorithm for strongly connecting access subgoals using R-reachable edges,
which follows a similar idea, but aims to add as few extra subgoals as possible.
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(a) A6 is selected as an access subgoal.
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(b) D1 is selected as an access subgoal.
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(c) D10 is selected as an access subgoal.
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(d) F4 and F7 are selected as access subgoals.

Figure 3.15: Identifying access subgoals for BD4-reachability. Red vertices are access
subgoals. Green vertices can connect to a subgoal in both the forward and backward
directions.

Rather than constructing GA, Algorithm 9 instead constructs two spanning trees of
access subgoals rooted at an arbitrarily selected vertex n ∈ A (line 3), one an out-tree
(edges point away from the root) and one an in-tree (edges point toward the root), in
order to reduce the number of additional subgoals required to break down non-R-reachable
edges. The edges of these two trees are sufficient to strongly connect all access subgoals,
since the out-tree contains an n-t path for every t ∈ A and the in-tree contains an s-n path
for every s ∈ A. Therefore, for every s, t ∈ A, the s-n path in the in-tree and the n-t path
in the out-tree can be combined to form an s-t path. The out-tree and the in-tree rooted
at n can be constructed by using Prim’s algorithm (Prim, 1957), by initializing their
roots to n and repeatedly adding a vertex v ∈ A to the tree that has the minimum u-v or
v-u distance, respectively, for some u that is already in the tree. Algorithm 9 performs
this construction by using two Dijkstra searches, one in the forward direction and one
in the backward direction (lines 4–9 and 18), with the following modification: When a
vertex v ∈ A is selected for expansion, it is connected to the spanning tree (lines 10–14)
and its g-value is updated to 0 (line 15) before it is expanded. This ensures that every
vertex that is already in the spanning tree has g-value 0 (that is, it can be considered
as one of multiple start vertices of a Dijkstra search), and the g-value of the next vertex
v ∈ A selected for expansion correctly represents its distance from/to the closest vertex
u already in the spanning tree. Since G is strongly connected, these modified Dijkstra
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Algorithm 9 StronglyConnectSubgoals

Input: G, reachability relation R, access subgoals A
Output: Strongly-connected subgoal graph G′ = (S,E′, c′)

1: S ← A
2: E′ ← ∅
3: randomly select s ∈ S
4: for both the forward and backward directions do
5: for all n ∈ V do
6: g[n] ←∞, parent[n] ← undefined

7: g[s] ← 0, OPEN ← {s}
8: while OPEN 6= ∅ do
9: v ← pop the vertex with minimum g-value in OPEN

10: if v ∈ S and g(v) > 0 then
11: π ← follow parents from v to a u ∈ S
12: Reverse π if searching backward
13: S+, E+, c+ ← SplitIntoRReachable(π)
14: S ← S ∪ S+, E′ ← E′ ∪ E+, update c′ with c+

15: g[v] ← 0
16: for all n ∈ S+ do
17: g[n] ← 0, insert/update n in OPEN

18: Expand(v)

19: return G′ = (S,E′, c′)

searches are guaranteed to eventually visit every vertex v ∈ A and construct the desired
spanning trees.

Algorithm 9 interleaves the construction of the spanning trees with the breaking down
of non-R-reachable edges. That is, any time an edge (u, v) is identified as an edge of the
out- or in-tree, it is broken down into a sequence of R-reachable edges by adding more
subgoals to S (lines 13–14). The g-values of the new subgoals are also set to 0 (lines
16–17), which allows adding new vertices to the spanning trees through shorter edges if
a new subgoal is closer to them than to an access subgoal that is already in the spanning
tree. The aim of this interleaving is to allow breaking down of multiple non-R-reachable
edges by adding a single subgoal, which we discuss further in the context of an example.
In our implementation, we select the subgoals to break down a non-R-reachable edge
(u, v) by first extracting a representative u-v path π on G from the Dijkstra search (lines
11–12) and then placing the fewest number of subgoals as evenly as possible along π.

Figure 3.16 shows an example of the construction of a strongly connected BD4 subgoal
graph using Algorithm 9, using the access subgoals identified in Figure 3.15. Since G is
undirected in this example, it is sufficient to construct a single spanning tree that can be
interpreted as both the spanning out- and in-trees. Algorithm 9 randomly selects F4 ∈ A
as the root of the spanning tree and starts a Dijkstra search from F4, which selects D1
∈ A with g(D1) = 5 for expansion before any other vertex in A \ {F4}, indicating that
F4 is the access subgoal that can be connected to the spanning tree using the shortest
edge (Figure 3.16a). Since the edge (D1,F4) is not BD4-reachable, it is broken down
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(a) The spanning tree rooted at F4 is
extended with the edge (D1, F4).
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(b) E3 is added as a subgoal to break down
the non-R-reachable edge (D1, F4).
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(c) The spanning tree rooted at F4 is
extended with the edge (E3, A6).
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(d) D5 is added as a subgoal to break down
the non-R-reachable edge (E3, A6).
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(e) The spanning tree rooted at F4 is
extended with the edge (A6, F7).

D

A

B

C

F

E

4 5 61 2 3 107 8 9

(f) C6 is added as a subgoal to break down
the non-R-reachable edge (A6, F7).
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(g) The spanning tree rooted at F4 is
extended with the edge (C7,D10).
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(h) Direct-R-reachable edges are added to
reduce distances.

Figure 3.16: Strongly connecting access subgoals with BD4-reachable edges. Solid line:
R-reachable edge. Dashed line: Non-R-reachable edge.
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into the sequence of BD4-reachable edges (F4,E3) and (E3,D1), by adding a subgoal E3
(Figure 3.16b). The g-values of the access subgoal D1 and the new subgoal E3 are both
set to 0, and the Dijkstra search is resumed, eventually selecting A6 ∈ A for expansion.
Since the edge (E3, A6) required to add A6 to the spanning tree is not BD4-reachable,
a new subgoal D5 is added to break it down into the sequence of BD4-reachable edges
(E3, D5) and (D5, A6) (Figures 3.16c and 3.16d). Similarly, the non-BD4-reachable edge
(A6, F7) required for connecting F7 to the spanning tree is broken down into a sequence
of BD4-reachable edges with a new subgoal C7 (Figures 3.16e and 3.16f). Finally, D10 is
connected to the spanning tree with the BD4-reachable edge (C7, D10) (Figure 3.16g). If
Algorithm 9 did not interleave the construction of the spanning tree with the breaking-
down of non-R-reachable edges, the initial spanning tree it constructs would contain
the non-R-reachable edges (A6, F7) and (F7, D10). Breaking down these two edges
into sequences of R-reachable edges individually might require two subgoals. Instead,
Algorithm 9 identifies the single subgoal C7 in this example, which it first uses to break
down (A6, F7), and then to connect D10 to the spanning tree directly via an R-reachable
edge.

Algorithms 8 and 9 can be modified in several ways to reduce the number of subgoals
that are identified, possibly at the cost of additional preprocessing time. For instance,
in the example shown in Figure 3.16, the additional subgoal D5 alone is sufficient to
strongly connect the access subgoals D1, F4, and A6 with BD4-reachable edges, and E3 is
unnecessary. Due to its greedy nature (for constructing a spanning tree), Algorithm 9 fails
to address this issue. Furthermore, no pair of access subgoals identified by Algorithm 8 in
Figure 3.15 is BD4-reachable, which eventually leads Algorithm 9 to introduce multiple
new subgoals to ensure that they can be strongly connected with BD4-reachable edges
only.

Although minimizing the number of subgoals in R strongly connected subgoal graphs
can help to reduce the search times in queries, it can also result in queries finding longer
paths and increase the connection times in queries. A detailed analysis of different con-
struction strategies for R strongly connected subgoal graphs and the resulting query-
time/path-length trade-offs is beyond the scope of this dissertation. We use R strongly
connected subgoal graphs mainly as a means of comparing different reachability relations
on state lattices (Section 4.6.6) and assume that any improvements made to the construc-
tion of R strongly connected subgoal graphs affect the query-time/path-length trade-offs
similarly for different reachability relations. Our aim with Algorithms 8 and 9 is to find
a decent query-time/path-length trade-off to show that this is a feasible approach that
can be applied in real-world scenarios. To that end, we also add edges between all direct-
R-reachable pairs of subgoals to reduce the distances on R strongly connected subgoal
graphs, as shown in Figure 3.16h.

3.6 Conclusions

In this chapter, we have introduced the subgoal graph framework, which can be special-
ized to exploit structure in different classes of graphs, by choosing a reachability relation
that captures structure in that class of graph and developing specialized connection and
refinement algorithms that exploit this structure. We have proved that subgoal graphs
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can be used to answer path queries optimally with the Connect-Search-Refine algorithm,
and that it is possible to construct locally sparse subgoal graphs with respect to bounded-
distance reachability on graphs with small highway dimensions. We have introduced a
hierarchical variant of subgoal graphs, called N -level subgoal graphs, and introduced vari-
ants of contraction hierarchies within this framework. We have introduced a suboptimal
variant of subgoal graphs, called strongly connected subgoal graphs, that can be used to
answer path queries, but without the guarantee of optimality. We have introduced algo-
rithms for constructing subgoal graphs, N -level subgoal graphs, and strongly connected
subgoal graphs. In Chapters 4 and 5, we apply the subgoal graph framework to state
lattices and grid graphs to exploit their freespace structure.
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Chapter 4

Exploiting the Freespace Structure of State Lattices

In this chapter, we apply the subgoal graph framework to state lattices, by introduc-
ing freespace-reachability and canonical-freespace-reachability as reachability relations
to capture the freespace structure of state lattices, and developing efficient connection
and refinement algorithms that exploit this structure. Specifically, we characterize the
freespace structure of state lattices as the translation invariance of freespace distances
and freespace-canonical paths, and show that it can be exploited to efficiently compute
and compactly store freespace information, such as pairwise distances or shortest path
trees on freespace state lattices. We introduce freespace-reachability and canonical-
freespace-reachability as reachability relations to distinguish those pairs of vertices on
state lattices between which the freespace information is accurate, and develop connec-
tion and refinement algorithms for these reachability relations that use freespace infor-
mation to efficiently explore freespace-shortest and freespace-canonical paths, respec-
tively. We experimentally demonstrate that, answering queries using freespace-reacha-
bility or canonical-freespace-reachability strongly connected subgoal graphs achieves a
dominating query-time/path-suboptimality trade-off compared to answering queries using
bounded-distance-reachability strongly connected subgoal graphs, and a non-dominated
query-time/path-suboptimality trade-off compared to answering queries using weighted
A* searches on G. These results validate the hypothesis of this dissertation that one
can develop preprocessing-based path-planning algorithms for state lattices that exploit
their freespace structure to improve the query-time/memory/path-suboptimality Pareto
frontier of the state-of-the-art algorithms.

This chapter is organized as follows. In Section 4.1, we provide a detailed summary
of the main ideas that we use in this chapter. In Section 4.2, we formally define state lat-
tices and introduce notation that we use throughout this chapter. In Section 4.3, we state
our assumptions for state lattices that are necessary to satisfy our assumptions for G.
In Section 4.4, we define freespace state lattices, prove that distances on freespace state
lattices are translation invariant, introduce freespace-reachability as a reachability rela-
tion on state lattices, and introduce connection and refinement algorithms for freespace-
reachability that use precomputed freespace distances. In Section 4.5, we introduce a lex-
ical canonical ordering on freespace paths, prove that freespace-canonical paths are trans-
lation invariant, introduce canonical-freespace-reachability as a reachability relation on
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state lattices, and introduce connection and refinement algorithms for canonical-freespace-
reachability that use precomputed freespace-canonical successors, predecessors, and par-
ents. In Section 4.6, we experimentally compare different connection algorithms with
respect to their connection times, and compare answering queries using subgoal graphs
and strongly connected subgoal graphs constructed with respect to bounded-distance-
reachability, freespace-reachability, and canonical-freespace-reachability, with respect to
their query-time/path-suboptimality trade-offs. Finally, in Section 4.7, we summarize our
results.

4.1 Introduction

In Section 2.1.2, we introduced state lattices as graphs that are constructed by sys-
tematically discretizing the configuration space of an agent. In this chapter, we show
that the systematicity in the construction of state lattices gives rise to their freespace
structure, which can be captured with reachability relations and exploited with efficient
connection and refinement algorithms. In particular, we show that, on state lattices
constructed on obstacle-free and infinitely extending environments, called freespace state
lattices, translating shortest paths by changing the x- or y-coordinates of all their vertices
by the same integral amount produces other shortest paths, and translating canonical
paths produces other canonical paths. We refer to these properties as the translation
invariance of freespace distances and freespace-canonical paths, respectively.

The translation invariance of freespace distances allows for the efficient computa-
tion and compact storage of pairwise freespace distances. Freespace distances accurately
represent distances on freespace state lattices, and may accurately represent distances be-
tween some pairs of vertices on the (actual) state lattices. We define freespace-reachability
as the set of all pairs of vertices on a state lattice between which the freespace dis-
tance is accurate. When answering path queries using freespace-reachability subgoal or
strongly connected subgoal graphs, connection phases of queries need to identify only
freespace-reachable edges, and the refinement phases need to find shortest paths only
between freespace-reachable vertices. We introduce a connection algorithm for freespace-
reachability which uses a depth-first search (rather than a Dijkstra search) and uses
freespace distances to avoid expanding vertices that are not freespace-reachable from the
start vertex (or from which the goal vertex is not freespace-reachable). We introduce a
refinement algorithm for freespace-reachability which also uses a depth-first search, and
can be considered to be similar to an A* search that uses freespace distances as a perfect
heuristic.

We impose a canonical ordering on the paths on freespace state lattices, that uniquely
designates, among multiple symmetric shortest paths between two vertices, one as the
freespace-canonical path. Our canonical ordering ensures that the set of all freespace-
canonical paths that originate (or terminate) at a vertex form a tree. The translation
invariance of freespace-canonical paths allows for the efficient computation and compact
storage of these trees. We define canonical-freespace-reachability as the list of all pairs of
vertices on a state lattice between which the freespace-canonical path is unblocked. We in-
troduce a connection algorithm for canonical-freespace-reachability, which is similar to our

104



connection algorithm for freespace-reachability, but only considers a small set of freespace-
canonical successors for each expanded vertex and does not perform duplicate detection.
We introduce a refinement algorithm for canonical-freespace-reachability, which simply
returns the freespace-canonical path between two canonical-freespace-reachable vertices.

We experimentally compare various connection algorithms for various reachability re-
lations with respect to their connection times, and experimentally compare answering
queries using subgoal graphs and strongly connected subgoal graphs constructed with re-
spect to various reachability relations with respect to their query times, memory require-
ments, and path suboptimalities. Our results show that our connection algorithm for
canonical-freespace-reachability has the highest “DR-rate” (direct-R-reachable vertices
expanded per second), answering queries using subgoal graphs constructed with respect
to various reachability relations is only slightly faster than A* searches on state lattices,
and answering queries using freespace-reachability and canonical-freespace-reachability
strongly connected subgoal graphs achieves dominating query-time/path-suboptimality
trade-offs compared to answering queries using bounded-distance reachability strongly
connected subgoal graphs, and non-dominated query-time/path-suboptimality trade-offs
compared to answering queries using weighted A* searches on state lattices.

4.2 Preliminaries and Notation

As described in Section 2.1.2, state lattices are constructed by discretizing the configu-
ration spaces of agents into graphs. In this section, we formally define state lattices and
introduce notation that we use throughout this chapter.

Cell, grid, orientation, state: A cell is a pair of integers (x, y) ∈ Z2. A grid is a set of
cells G ⊆ Z2. A cell (x, y) ∈ G is unblocked (with respect to G) if (x, y) ∈ G and blocked
otherwise. A state is a tuple (x, y, θ) where (x, y) is a cell and θ ∈ Z≥0 is a non-negative
integer that indicates the orientation of the agent (or, more generally, any combination
of its discretized features).

Primitive: A (motion) primitive ~m is a tuple (θsm, θ
e
m, xm, ym, lm, Cm) such that:

θsm, θ
e
m ∈ Z≥0 are the start and end orientations of ~m; xm, ym ∈ Z are the difference

in the x- and y-coordinates, respectively, of the start and end cells of ~m; lm ∈ R>0 is
the length of ~m; and Cm ⊇ {(0, 0), (xm, ym)} is the list of cells that the footprint of the
agent intersects with when executing m from state (0, 0, θsm). ~m is kinematically feasible
to execute from state (x, y, θ) if and only if θsm = θ. ~m is collision free to execute from
(x, y, θ) (with respect to G) if and only if, for all (x, y) ∈ Cm, cell (xs + x, ys + y) is
unblocked. ~m is executable from (x, y, θ) if and only if it is kinematically feasible and
collision free to execute from (x, y, θ). Executing ~m from state s = (x, y, θsm) results in
state e = (x+ xm, y + ym, θ

e
m), denoted as s+ ~m = e.

State lattice, G: Let G be a grid and M be a set of primitives. Let OM be the set
of induced orientations of M , such that θ ∈ OM if and only if there exists ~m ∈ M with
θ = θsm or θ = θem. A state lattice is a graph LG,M = (V ′, E′, c′), defined as follows: For
each unblocked cell (x, y) ∈ G and each induced orientation θ ∈ OM, V ′ contains a vertex
that corresponds to state (x, y, θ). We use the terms state and vertex interchangeably
unless it results in ambiguity. For each vertex s ∈ V ′ and all primitives ~m ∈M executable
from s, ~m induces an edge (s, s + ~m) ∈ E′ with length c′(s, s + ~m) = lm. As we discuss
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in the next section, we assume that each edge in a state lattice is induced by a unique
primitive, and that the graph G that we use for path planning is the largest strongly
connected component of a state lattice.

Primitive path: A primitive path is a sequence of primitives ~π = 〈~m1, . . . , ~mk〉 where,
for all i = 1, . . . , k − 1, θemi

= θsmi+1
.

Path notation with primitives: Given our assumption that each edge in a state lattice
is induced by a unique primitive, it holds that, for every path π = 〈p0, . . . , pk〉 with
p0, . . . , pk ∈ V on a state lattice, there exists a unique corresponding primitive path
~π = 〈~m1, . . . , ~mk〉 with ~m1, . . . , ~mk ∈ M, such that, for all i = 1, . . . , k, pi−1 + ~mi =
pi. Throughout this chapter and the next chapter, we sometimes describe paths by
interleaving them with their primitive paths, as follows: π = 〈p0, ~m1, p1, . . . , pk−1, ~mk, pk〉.
Furthermore, we sometimes equivalently describe them by leaving out up to k−1 of their
vertices, as follows: π = 〈p0, ~m1, . . . , ~mk〉 = 〈~m1, . . . , ~mj , pj , ~mj+1, . . . ~mk〉.

Unicycle and Urban primitives: We use state lattices constructed with respect to two
different sets of primitives in this chapter, namely the Unicycle and Urban primitives.
Although we describe them in greater detail in Section 4.6.1 in the context of our exper-
imental results, we provide a brief description of them here as well, since we use them in
various figures and examples throughout this chapter. The Unicycle primitives have 16
induced orientations and 4 (kinematically feasible) primitives per orientation. All Unicy-
cle primitives for the orientation “Up” are shown in Figure 4.1a. The Urban primitives
have 32 induced orientations and between 26 to 32 primitives per orientation. All Urban
primitives for the orientation “Right” are shown in Figure 4.1b. For both the Unicycle
and Urban primitives, the length of each primitive is equal to the distance traveled by
the agent multiplied by a factor: For Unicycle primitives, backward moves are multiplied
by 5 and turns are multiplied by 2. For Urban primitives, backward moves are multiplied
by 3. All other primitives are multiplied by 1.

4.3 Assumptions

In order to ensure that G satisfies Assumptions 1.1 (G is finite), 1.2 (G is strongly
connected), and 1.3 (every edge (u, v) ∈ E is the unique shortest u-v path on G), we
define G as the largest strongly connected component of a state lattice LG,M, where G
and M are finite and M is well-behaved. Assumptions 4.1, 4.2, and 4.3 summarize our
assumptions about G, M, and how G relates to LG,M.

Assumption 4.1. G and M are finite.

Assumption 4.2. G is the largest strongly connected component of LG,M.

Assumption 4.3. M is well-behaved: For every ~m ∈ M, there is no primitive path
~π = 〈~m1, . . . , ~mk〉 such that:

1. ~m1, . . . , ~mk ∈M \ {~m};

2. θsm1
= θsm, θemk

= θem;

3. xm1 + · · ·+ xmk
= xm;
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4. ym1 + · · ·+ ymk
= ym; and

5. lm1 + · · ·+ lmn ≤ lm.

Lemma 4.1. G satisfies Assumptions 1.1, 1.2, and 1.3.

Proof.

1. Assumption 1.1: G is finite:

1.1. LG,M is finite since G and M are finite (Assumption 4.1).

1.2. G is finite since it is a component of the finite graph LG,M (Assumption 4.2).

2. Assumption 1.2: G is strongly connected (Assumption 4.2).

3. Assumption 1.3: Every edge (u, v) ∈ E is the unique shortest u-v path on G:

3.1. Let ~m be the primitive that induces the edge (u, v) in G.

3.2. Assume (for contradiction) that there exists a u-v path π = 〈p0, . . . , pk〉 6=
〈u, v〉 with l(π) ≤ c(u, v).

3.3. For i = 0, . . . , k− 1, let ~mi+1 be a primitive that induces the edge (pi, pi+1) in
G.

3.4. M is not well-behaved (Assumption 4.3, since ~m and the sequence ~m1, . . . , ~mk

violate it).

3.5. M is well-behaved (Assumption 4.3).

3.6. ⊥ (since M is well-behaved and M is not well-behaved).

4.4 Freespace Reachability

In this section, we introduce freespace state lattices as state lattices constructed on
obstacle-free and infinitely-extending environments, and freespace-shortest paths as short-
est paths on freespace state lattices. We prove the translation invariance of freespace
distances, that is, that translating freespace-shortest paths by changing the x- or y-
coordinates of all their vertices by the same integral amount produces other freespace-
shortest paths, and show that this property can be exploited to efficiently compute and
compactly store pairwise distances on freespace state lattices. We introduce freespace-
reachability as a reachability relation on state lattices as a set of pairs of vertices between
whose distance on the state lattice is equal to the distance on the freespace state lattice.
We introduce a connection algorithm for freespace-reachability, which uses a depth-first
search that uses precomputed freespace distances to explore only freespace-shortest paths
that originate (or terminate) at a given vertex. We introduce a refinement algorithm for
freespace-reachability, which uses a depth-first search that uses precomputed freespace
distances to explore only freespace-shortest paths between two vertices.
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(a) Unicycle
primitives.

(b) Urban primitives.

(c) Freespace-shortest paths up to length 50 (Unicycle).
Figure scaled up by a factor of 2.15 compared to (d).

(d) Freespace-shortest paths
up to length 50 (Urban).

Figure 4.1: Unicycle and Urban primitives and their corresponding freespace-shortest
paths up to length 50. The red triangle shows the current state. In (c) and (d), blue
triangles show states reachable from the current state with a single primitive.

This section is organized as follows. In Section 4.4.1, we introduce freespace state
lattices and discuss some of their properties. In Section 4.4.2, we prove the translation
invariance of freespace distances. In Section 4.4.3, we introduce freespace-reachability
as a reachability relation on state lattices. In Sections 4.4.4 and 4.4.5, we introduce
connection and refinement algorithms for freespace-reachability, respectively.

4.4.1 Freespace State Lattice

The freespace state lattice F is the state lattice LZ2,M, that is, the state lattice con-
structed with respect to an infinitely-extending grid with no blocked cells. Definition 4.1
formally defines freespace grids, state lattices, and paths. Figures 4.1c and 4.1d show
shortest paths of lengths up to 50 that originate at a single state on a freespace state
lattice constructed from the Unicycle and Urban primitives, respectively.

Definition 4.1 (Freespace grid, state lattices, and paths). The freespace grid is the grid
Z2 (which extends infinitely in all directions and does not contain any blocked cells). The
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(a) A shortest path on G that is
freespace-shortest.

(b) A shortest path on G that is not
freespace-shortest. The boundaries of the grid

act as obstacles, blocking a path that is
equivalent to the one shown in (a).

Figure 4.2: Shortest paths on state lattices. The relative x- and y- coordinates of the start
and goal vertices are the same in both figures, but only one of them is freespace-shortest.

freespace state lattice is the state lattice F = LZ2,M = (VF , EF , cF ). A freespace s-t path
is an s-t path on F . An s-t path (on G or F) is freespace-shortest if and only if it is a
shortest s-t path on F . The freespace s-t distance is the length of a shortest s-t path on
F , and is denoted as dF (s, t). We say that a freespace path is unblocked (on G) if and
only if it is also a path on G.

Our definition of the freespace grid is influenced by the freespace assumption, the as-
sumption that the underlying environment has no obstacles (or the corresponding grid has
no blocked cells). The freespace assumption is typically used in path planning in partially-
known environments (Zelinsky, 1992; Foux, Heymann, & Bruckstein, 1993; Stentz, 1994;
Nourbakhsh & Genesereth, 1996; Koenig & Smirnov, 1997): any region of the environ-
ment about which the agent has no information is assumed to be obstacle-free, in order
to always move the agent along a shortest, potentially unblocked, path in the environ-
ment. However, even under the freespace assumption, the environment is assumed to be
bounded (usually within a rectangle). Our definition of the freespace grid also assumes
that the environment (or the corresponding grid) extends infinitely in all directions. With-
out this assumption, the translation invariance of freespace distances that we discuss in
Section 4.4.2 does not hold.

Figure 4.2 shows an example that motivates our definition of the freespace grid as
an infinite grid, rather than the smallest rectangle of unblocked cells that contains G.
The underlying grid has a rectangle of unblocked cells, surrounded by (a boundary of)
blocked cells. The path shown in Figure 4.2(a) is the shortest possible path between
the start (blue arrow) and goal (red arrow) states: even if the rectangle of blocked cells
were infinitely extended, there would not be a shorter path. Therefore, it is a freespace-
shortest path. The orientations and relative x- and y-coordinates of the start and goal
states in Figure 4.2(b) are the same as in Figure 4.2(a). However, the shortest path
between them is longer. If the rectangle of unblocked cells is sufficiently extended in all
directions, a path equivalent to the one in Figure 4.2(a) (that is, with the same sequence
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of primitives) would be a shorter path. Therefore, the path shown in Figure 4.2(b) is not
freespace-shortest.

As we have discussed in Section 4.2, a primitive ~m may induce multiple edges in
a state lattice, namely, an edge for every state from which ~m is kinematically feasible
and collision-free to execute. The set of states from which ~m is kinematically feasible to
execute can be considered to be “regular”, in the sense that they can be characterized
easily as those states with orientation θsm. The set of states from which ~m is collision-free
to execute can be considered to be “irregular”, depending on the underlying grid G. On
freespace state lattices, the set of states from which ~m is collision-free to execute is also
“regular”: Since there are no blocked cells, every state from which ~m is kinematically
feasible to execute is also a state from which ~m is collision-free to execute. We use this
“regularity” of freespace state lattices in Section 4.4.2 to prove the translation invariance
of freespace-distances, and in Section 4.5.2 to prove the translation invariance of freespace-
canonical paths.

The freespace state lattice F = LZ2,M is a supergraph of the state lattice LG,M,
that is, LZ2,M contains a superset of the edges of LG,M, since the underlying grid Z2

of the freespace state lattice F = LZ2,M contains a superset of the unblocked cells of
the underlying grid G of LG,M. Furthermore, since G is defined as the largest strongly-
connected component of LG,M (Assumption 4.2), F = LZ2,M is also a supergraph of
G. Lemmata 4.2, 4.3, 4.4, and 4.5 follow from this observation, and allow us to use
precomputed freespace distances (or trees of freespace-shortest paths) in the connection
and refinement algorithms that we develop in this dissertation.

Lemma 4.2. Every path π on G is a path on F with the same length. For every s, t ∈ V ,
dF (s, t) ≤ d(s, t).

Proof. By Definition 4.1, since G ⊆ Z2, F = LZ2,M is a supergraph of LG,M. By Assump-
tion 4.2, LG,M is a supergraph of G. Therefore, F is a supergraph of G and contains all
edges of G with the same lengths, and all paths onG with the same lengths. Consequently,
distances on F cannot be larger than distances on G.

Lemma 4.3. A freespace-shortest s-t path π on G is a shortest s-t path on G.

Proof. Since π is freespace-shortest, by Definition 4.1, l(π) = dF (s, t). From Lemma 4.2,
dF (s, t) ≤ d(s, t). Therefore, l(π) ≤ d(s, t) and, consequently, π is a shortest s-t path on
G.

Lemma 4.4. A freespace-shortest s-t path exists on G if and only if dF (s, t) = d(s, t).

Proof. Assume that a freespace-shortest s-t path π exists on G. By Definition 4.1, l(π) =
dF (s, t), and, by Lemma 4.3, l(π) = d(s, t). Therefore, dF (s, t) = d(s, t).

Assume that dF (s, t) = d(s, t). Let π be a shortest s-t path on G with l(π) = d(s, t) =
dF (s, t). By Definition 4.1, π is freespace-shortest.

Lemma 4.5. Every subpath of a freespace-shortest path is freespace-shortest.

Proof. A freespace-shortest path is a shortest path on F (Definition 4.1). Therefore, its
subpaths are also shortest paths on F and thus are freespace-shortest.
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4.4.2 Translation Invariance of Freespace Distances

In Euclidean geometry, a translation is a transformation that moves every point of an
object by the same distance in a given direction. On state lattices, we define a translation
as changing the x- or y-coordinates of every point (state) of an object (a state, a set of
states, an edge, or a path) by the same integral amount. In this section, we prove the
translation invariance of freespace distances, that is, that translating a pair of states does
not change the distance between them on the freespace state lattice, which allows for the
efficient computation and compact storage of freespace distances.

Lemmata 4.6, 4.7, and 4.8 prove the translation invariance of edges, paths, and short-
est paths on freespace state lattices, respectively. Theorem 4.19 proves the translation
invariance of freespace distances. We use the following notation to denote translations
on state lattices: Translating a state s = (xs, ys, θs) by (x, y) (by the integers x and y)
results in the state s′ = (xs+x, ys+y, θs), which we denote as s+(x, y) = s′. Translating
a path π = 〈p0, . . . , pk〉 by (x, y) results in the path π′ = 〈p0 + (x, y), . . . , pk + (x, y)〉,
which we denote as π + (x, y) = π′.

Lemma 4.6 (Translation invariance of edges on F). Let (u, v) be an edge of F . For any
two integers x and y, let u′ = u+ (x, y) and v′ = v + (x, y). (u′, v′) is an edge of F with
cF (u, v) = cF (u′, v′).

Proof. Since ~m induces the edge (u, v) in F , it holds that u+ ~m = v and l~m = cF (u, v).
Since u′ = u+ (x, y) has the same orientation as u, ~m is kinematically feasible to execute
from u′. Since G has no blocked cells, ~m is collision-free to execute from u′. Therefore
~m is executable from u′. When ~m is executed from u′, the resulting state is u′ + ~m =
u+ (x, y) + ~m = u+ ~m+ (x, y) = v + (x, y) = v′. Therefore, ~m induces the edge (u′, v′)
in F with cF (u′, v′) = l~m = cF (u, v).

Lemma 4.7 (Translation invariance of freespace paths). Let π = 〈p0, . . . , pk〉 be a
freespace path. For any two integers x and y, let π′ = 〈p′0, . . . , p′k〉 such that, for all
i = 0, . . . , k, p′i = pi + (x, y). π′ is a freespace path with l(π′) = l(π).

Proof. For all i = 0, . . . , k − 1, since (pi, pi+1) appears on π, it is an edge of F and,
consequently, (p′i, p

′
i+1) is an edge of F with cF (p′i, p

′
i+1) = cF (pi, pi+1) (Lemma 4.6).

Therefore π′ is a path on F with length l(π) = l(π′).

Lemma 4.8 (Translation invariance of freespace-shortest paths). Let π be a freespace-
shortest path. For any two integers x and y, π′ = π + (x, y) is a freespace-shortest path.

Proof. Let s and t denote the first and last vertex on π, and let s′ and t′ denote the
first and last vertex on π′, respectively. Assume (for contradiction) that an s′-t′ path π′′

exists on F with l(π′′) < l(π′). Then π′′ + (−x,−y) is a freespace s-t path with length
l(π′′) < l(π′) = l(π) (Lemma 4.7), contradicting that π is a freespace-shortest s-t path
(Definition 4.1).

Theorem 4.9 (Translation invariance of freespace distances). Let s and t be two states.
For any two integers x and y, let s′ = s+ (x, y) and t′ = t+ (x, y). dF (s, t) = dF (s′, t′).
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Proof. Our assumption that G is strongly connected (Assumption 4.2) does not apply to
F . If dF (s, t) =∞, then dF (s′, t′) =∞ because, otherwise, a freespace s′-t′ path π′ exists
with l(π′) < ∞ and, therefore, the freespace s-t path π′ + (−x,−y) exists with length
l(π) = l(π′) < ∞ (Lemma 4.7), contradicting that F(s, t) = ∞. If dF (s, t) < ∞, then
dF (s, t) = dF (s′, t′) follows from Lemmata 4.7 and 4.8.

The translation invariance of freespace distances allows for the efficient computation
and compact storage of pairwise freespace distances. Namely, by Theorem 4.9, for every
s = (xs, ys, θs) and t = (xt, yt, θt), the freespace s-t distance is equal to the freespace
s′-t′ distance, where s′ = s + (−xs,−ys) = (0, 0, θs) and t′ = t + (−xs,−ys). That is,
computing and storing freespace distances from states (0, 0, θ), for all θ ∈ OM, is sufficient
for computing and storing pairwise freespace distances between all states that appear on
state lattices.1

4.4.3 Freespace Reachability (F-Reachability)

In order to be able to use efficiently computed and compactly stored freespace distances
during the connection and refinement phases of queries answered using subgoal graphs, we
can construct subgoal graphs with respect to freespace-reachability: A state t is freespace-
reachable from a state s if and only if a freespace-shortest s-t path is unblocked on G, or,
equivalently, if and only if dF (s, t) = d(s, t) (Lemma 4.4). Definition 4.2 formally defines
freespace-reachability as well as a variant, called bounded-freespace-reachability.

Definition 4.2. A vertex t is freespace-reachable (F-reachable) from a vertex s, denoted
by (s, t) ∈ F, if and only if a freespace-shortest s-t path exists on G (equivalently, by
Lemma 4.4, if and only if dF (s, t) = d(s, t)). t is bounded-freespace-reachable with reach-
ability bound b > 0 (Fb-reachable) from s if and only if t is F-reachable from s and
d(s, t) ≤ b.

Lemma 4.10. Every edge (u, v) of F is the unique freespace-shortest u-v path.

Proof. Proof is similar to Step 3 of the proof of Lemma 4.1, and follows from M being
well-behaved (Assumption 4.3).

Theorem 4.11. F is a reachability relation. Fb is a reachability relation if, for all
~m ∈M, l~m ≤ b.

Proof. For every n ∈ V , (n, n) ∈ F and (n, n) ∈ Fb since 〈n〉 is a freespace-shortest
n-n path on G with d(n, n) = 0 ≤ b. For every (u, v) ∈ E, (u, v) ∈ F since 〈u, v〉 is
a freespace-shortest u-v path (Lemma 4.10) on G. If, for every ~m ∈ M, l~m ≤ b, then
c(u, v) = l~m ≤ b, where ~m is the primitive that induces the edge (u, v). Consequently,
(u, v) ∈ Fb.

1Since we define freespace state lattices to be infinite graphs (Definition 4.1), it is not possible to
store pairwise distances between all pairs of states on a freespace state lattice. However, we are only
interested in freespace distances between vertices that appear on (actual) state lattices, which are finite
(Assumption 4.1).
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Using a reachability bound b for F-reachability allows us to limit the calculation
and storage of freespace distances to only those pairs of vertices between which the
freespace distance is no more than b. It also allows us to influence the trade-off between
the connection and search times of queries answered using (strongly-connected) subgoal
graphs, as we discuss further and experimentally evaluate in Section 4.6. Fb-reachability
can be considered as the combination of F-reachability and BDb-reachability, which we
have introduced in Section 3.3.1. That is Fb = F ∩ BDb.

4.4.4 F-Connect

In this section, we introduce a connection algorithm for F-reachability, called F-Connect,
and prove its correctness with respect to the criteria that we have outlined in Section 3.3.4
for answering queries using F (strongly-connected) subgoal graphs. That is, we show
that F-Connect connects a given start vertex s (or a given goal vertex t) to all direct-
F-reachable subgoals from s, never connects s to a subgoal that is not F-reachable from
s, and determines the correct lengths for the connecting edges as distances on G. For
brevity, we only describe a version of F-Connect, called F→-Connect, that connects the
start vertex, but not the goal vertex, to an F (strongly-connected) subgoal graph, and
describe briefly how it can be modified to also connect the goal vertex. Furthermore,
we omit providing a connection algorithm for Fb-reachability, since F-Connect can be
modified to become a connection algorithm for Fb-reachability by simply disallowing it
from generating vertices whose distances from the start vertex are larger than b.

A connection algorithm for F-reachability needs to connect a given start vertex to
subgoals (or the goal vertex) that are direct-F-reachable from it, and only to subgoals that
are F-reachable from it, as discussed in Section 3.3.4. Algorithm 10 outlines F→-Connect,
which explores exactly the freespace-shortest paths that originate at a given start vertex
s that are unblocked on G and not covered by subgoals: Any vertex that is reached with a
shortest path that is not freespace-shortest cannot be F-reachable from s (Definition 4.2),
and any vertex that is reached with a freespace-shortest path that is covered by a subgoal
cannot be direct-F-reachable from s (Definition 3.7). Figure 4.3 shows an example of the
operation of F→-Connect on a 4-neighbor grid graph, and Figure 4.4 shows an example
on a state lattice constructed with respect to Unicycle primitives.

F→-Connect operates similarly to the aggressive variant of Overlay-Connect (that is,
a Dijkstra search that does not expand subgoals), that we have discussed in Section 3.2.5,
with two differences that are highlighted in blue in Algorithm 10:

• F→-Connect avoids generating vertices that are not F-reachable from s by checking,
for each successor v of an expanded vertex u, whether dF (s, u) + c(u, v) = dF (s, v)
(line 11). As we prove later in Lemma 4.12, this check is sufficient to maintain the
invariant that all vertices placed in the OPEN list are F-reachable from s. This proof
can be summarized as follows: Intuitively, assuming that the invariant holds, for
every vertex u selected for expansion, the search tree contains a freespace-shortest
s-u path. If the edge (u, v) extends this path to a freespace-shortest s-v path (that
is, if dF (s, u) + c(u, v) = dF (s, v)), then we can verify that (s, v) ∈ F and v is added
to OPEN, which does not violate the invariant. Otherwise, v is not added to OPEN
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(a) All freespace-shortest paths on F that
originate at s and have length 4 or less. F is

shown only partially, since it is infinite.
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(b) F4-Connect explores all freespace-shortest
paths on G that originate at s, have length 4
or less, and are not covered by subgoals (red).

Figure 4.3: F4-Connect on a 4-neighbor grid graph.

(a) All freespace-shortest paths on F that
originate at a state and have length 50 or less.
F is only shown partially, since it is infinite.

(b) F50-Connect explores all
freespace-shortest paths on G that originate

at s, have length 4 or less, and are not
covered by subgoals (none are present in this

example).

Figure 4.4: F50-Connect on a state lattice constructed using Unicycle primitives.

(but it may still be added to OPEN eventually if a freespace-shortest path to it is
found through another vertex).

• F→-Connect can expand vertices in an arbitrary order (line 5) and therefore does
not require its OPEN list to be implemented as a priority queue (line 2). Recall
that, in order to guarantee that each vertex is expanded with the correct g-value,
a Dijkstra search always chooses the next vertex to expand as the vertex with the
minimum g-value in its OPEN list. However, since Algorithm 10 maintains the
invariant that all vertices in OPEN are F-reachable from s, the distance from s to
any vertex u ∈ OPEN is d(s, u) = dF (s, u) (Definition 4.2). Therefore, Algorithm 10
can determine the correct distance for the edges it identifies by simply performing
a lookup for dF (s, u) (line 8).
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Algorithm 10 F→-Connect

Blue text: Differences from the aggressive variant of Overlay-Connect (Section 3.2.5).
Input: A state lattice G = (V,E, c), start vertex s, covering vertices S ⊆ V , target

vertices T ⊆ V
Output: A set of edges E+ such that Fs→TS ⊆ E+ ⊆ F, edge lengths c+ such that,
∀(u, v) ∈ E+, c+(u, v)= dF (u, v) = d(u, v)

1: E+ ← ∅
2: OPEN ← {s} . Implemented as a stack for depth-first search
3: CLOSED ← {} . For duplicate detection
4: while OPEN 6= ∅ do
5: u← any vertex in OPEN
6: Move u from OPEN to CLOSED
7: if u ∈ T \ {s} then
8: Add (s, u) to E+ with c+(u, v) = dF (s, u)

9: if u 6∈ S \ {s} then
10: for all successors v of u such that v 6∈ OPEN∪CLOSED do
11: if dF (s, u) + c(u, v) = dF (s, v) then
12: Add v to OPEN
13: return E+, c+

Given that F→-Connect can expand vertices in an arbitrary order, its OPEN list can
be implemented as a stack to expand vertices in a depth-first order. Each insertion and
removal from the OPEN list thus requires O(1) time. Since only vertices that are F-
reachable from s are placed in OPEN (Lemma 4.12), the total time to perform insertions
and removals from OPEN is O(|Fs→V |), where Fs→V is the set of vertices that are F-
reachable from s. Since each expansion iterates over all successors of the expanded vertex
(line 10) and performs two O(1) time freespace-distance lookups per successor (line 11),
the overall runtime of Algorithm 10 is O(|Fs→V |B), where B is the maximum out-degree
of a vertex in G. (For an expanded vertex u, dF (s, u) needs to be looked-up only once,
bringing down the number of table lookups per expansion to no more than |B|+ 1.)

F→-Connect can be modified to connect a goal vertex t to all vertices from which it
is direct-F-reachable by running it on the reverse graph of G, and reversing the order of
states in freespace-distance table look-ups. That is, when expanding a vertex u, for each
predecessor v of u, it can be determined that t is F-reachable from v if dF (u, t)+c(u, v) =
dF (v, t). We refer to this algorithm as F←-Connect, and assume that F-Connect operates
by first running F→-Connect from the start vertex and then running F←-Connect from
the goal vertex.

We now prove the correctness of F→-Connect with respect to the criteria that we
have outlined in Section 3.3.4 for answering queries using F (strongly-connected) subgoal
graphs. Namely, we show that F→-Connect connects a given source vertex s to all direct-
F-reachable subgoals from s, never connects s to a subgoal that is not F-reachable from s,
and determines the correct lengths for the connecting edges as distances on G. We omit
the proof of correctness for F←-Connect, which is similar to the proof of correctness for
F→-Connect. We also omit the proof that F→-Connect terminates, which follows from
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the fact that it uses OPEN and CLOSED lists to expand each vertex at most once, and
our assumption that G is finite (Assumption 1.1), similar to the search framework that we
have discussed in Section 2.2. We prove in Lemma 4.12 that F→-Connect expands only
vertices that are F-reachable from s, and we prove in Lemma 4.13 that it is guaranteed
to expand all vertices that are direct-F-reachable from s.

Lemma 4.12. At any point during the execution of Algorithm 10, every vertex u ∈ OPEN
is F-reachable from s.

Proof.

1. Let Si be the statement “The ith time that line 4 is executed, for every vertex
n ∈ OPEN, (s, n) ∈ F”.

2. For all i = 1, . . . , k, where k is the number of times that line 4 is executed, Si is
true (proof by induction on i):

2.1. Base case: S1 is true (since OPEN = {s}, (s, s) ∈ F ).

2.2. Induction step: If Si is true, then Si+1 is true:

2.2.1. Assume Si is true.

2.2.2. Let u be the vertex selected for expansion on line 5 immediately after line
4 is executed for the ith time.

2.2.3. Let v be any vertex added to OPEN (line 12) after line 4 is executed for
the ith time but before the (i+ 1)st time.

2.2.4. (s, u) ∈ F (since Si is true).

2.2.5. (u, v) ∈ E (line 10, since v is a successor of u).

2.2.6. dF (s, u) + c(u, v) = dF (s, v) (line 11).

2.2.7. Let πu be a freespace-shortest s-u path on G with l(πu) = dF (s, u). Such
πu exists (Definition 4.2, since (s, u) ∈ F ).

2.2.8. Let πv = πu.(u, v) with l(πv) = l(πu) + c(u, v).

2.2.9. l(πv) = l(πu) + c(u, v) = dF (πu) + c(u, v) = dF (s, v).

2.2.10. πv is freespace-shortest (Definition 4.1, since l(πv) = dF (s, v)).

2.2.11. πv is a path on G (since πv = πu.(u, v), πu is a path on G, and (u, v) ∈ E).

2.2.12. (s, v) ∈ F (Definition 4.2, since πv is a freespace-shortest s-v path on G).

Lemma 4.13. For every n ∈ V , if n is direct-F-reachable from s, then Algorithm 10
selects n for expansion (line 5) at some point during its execution.

Proof.

1. Let n ∈ V with (s, n) ∈ Fs→VS .

2. Let π = 〈p0, . . . , pk〉 be a freespace-shortest s-n path on G. Such π exists (Defini-
tion 4.2, since (s, n) ∈ F).
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3. π is a shortest s-n path on G (Lemma 4.3, since π is freespace-shortest).

4. S 6@ (s, n) (Definition 3.2, since (s, n) ∈ Fs→VS ).

5. S 6@ π (Definition 3.1, since S 6@ (s, n) and π is a shortest s-n path).

6. For i = 0, . . . , k − 1, pi 6∈ S \ {s}:

6.1. If i = 0, then pi = p0 = s 6∈ S \ {s}.
6.2. If 0 < i < k, then pi 6∈ S (Definition 3.1, since S 6@ π).

7. Let Si be the statement “Algorithm 10 selects pi for expansion on line 6 at some
point during its execution”.

8. For all i = 0, . . . , k, Si is true (proof by induction on i = 0, . . . , k − 1):

8.1. Base case: S0 is true (since OPEN = {s} the first time line 4 is executed).

8.2. Induction step: If Si is true, then Si+1 is true:

8.2.1. Assume Si is true.

8.2.2. pi is selected for expansion (since Si is true).

8.2.3. Consider the point in execution when pi is selected for expansion.

8.2.4. If pi+1 ∈ OPEN, pi+1 is eventually selected for expansion (line 4).

8.2.5. If pi+1 ∈ CLOSED, pi+1 has already been selected for expansion (line 6).

8.2.6. Otherwise, pi+1 is added to OPEN:

8.2.6.1. Lines 10–12 are executed for pi (line 9, since pi 6∈ S \ {s}).
8.2.6.2. πi = 〈p0, . . . , pi〉 and πi+1 = 〈p0, . . . , pi+1〉 are freespace-shortest paths

on G (Lemma 4.5, since πi and πi+1 are subpaths of the freespace-
shortest path π on G).

8.2.6.3. l(πi) = dF (s, pi) and l(πi+1) = dF (s, pi) (Definition 4.1, since πi and
πi+1 are freespace-shortest).

8.2.6.4. (pi, pi+1) ∈ E (since π is a path on G).

8.2.6.5. dF (s, pi+1) = l(πi+1) = l(πi) + c(u, v) = dF (s, pi) + c(pi, pi+1).

8.2.6.6. pi+1 is added to OPEN (since lines 10–12 are executed for pi, (pi, pi+1) ∈
E, and dF (s, pi) + c(pi, pi+1) = dF (s, pi+1)).

Theorem 4.14. Algorithm 10 returns a set of edges E+ with lengths c+ such that Fs→TS ⊆
E+ ⊆ F and, for every (u, v) ∈ E+, c+(u, v) = d(u, v).

Proof. By Lemma 4.12, Algorithm 10 only expands vertices that are F-reachable from
s. By Lemma 4.13, Algorithm 10 is guaranteed to expand all vertices that are direct-
F-reachable from s. Therefore, Algorithm 10 identifies a set of edges E+ with Fs→TS ⊆
E+ ⊆ F. Furthermore, since E+ ⊆ F, Algorithm 10 correctly determines the lengths of
edges in E+ as their freespace-distances (Definition 4.2).
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(b) F-Refine only explores freespace-shortest
paths on G to states that appear on
freespace-shortest s-t paths on F .

Figure 4.5: F-Refine.

4.4.5 F-Refine

In this section, we introduce a refinement algorithm for F-reachability, called F-Refine,
and prove its correctness with respect to the criteria that we have outlined in Section 3.3.4
for answering queries using F (strongly-connected) subgoal graphs. That is, we show that
F-Refine is guaranteed to find a shortest s-t path on G, given any (s, t) ∈ F. F-Refine
can be used as a refinement algorithm for Fb-reachability as well, without any changes.

Algorithm 11 F-Refine

Input: (s, t) ∈ F, G = (V,E, c)
Output: A shortest (freespace) s-t path π on G

1: OPEN := {s} . Implemented as a stack for DFS
2: CLOSED := {}
3: while OPEN 6= ∅ do
4: u := any vertex in OPEN
5: if u = t then
6: break
7: Move u from OPEN to CLOSED
8: for all successors v of u such that v 6∈ OPEN ∪ CLOSED do
9: if dF (s, u) + c(u, v) + dF (v, t) = dF (s, t) then

10: parent(v) = u
11: add v to OPEN
12: π ← 〈t〉
13: u← t
14: while u 6= s do
15: π ← 〈parent(u), u〉 · π
16: u← parent(u)

17: return π

Algorithm 11 outlines F-Refine, which only explores freespace-shortest paths on G to
states that appear on freespace-shortest s-t paths on F : If a vertex does not appear on a
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freespace-shortest s-t path on F , then it cannot appear on a freespace-shortest s-t path
on G, since, as discussed in Section 4.4.1, the set of paths on F is a superset of the set
of paths on G. F-Refine maintains the invariant that each vertex in OPEN appears on
at least one shortest s-t path on F . It does so by checking, for each successor v of an
expanded vertex u, whether dF (s, u)+c(u, v)+dF (v, t) = dF (s, t) (lines 8–9). Intuitively,
if the edge (u, v) appears on a freespace-shortest path π = π′ · 〈u, v〉 · π′′, it must hold
that dF (s, t) = l(π) = l(π′) + c(u, v) + l(π′′) = dF (s, u) + c(u, v) + dF (v, t). If so, then v
is added to OPEN since it could be verified that v can appear on a freespace-shortest s-t
path (lines 10–11). Otherwise, v is not added to OPEN.

F-Refine can be considered as a “goal-directed” version of F→-Connect. Whereas
F→-Connect avoids generating vertices that are not freespace-reachable from s, F-Refine
avoids generating vertices that are not freespace-reachable from s and vertices that cannot
appear on freespace-shortest s-t paths on F . We omit an extensive proof of the correctness
of F-Refine, which is similar to the proof of correctness of F-Connect, but only prove that
its “goal-directed” pruning is correct.

Lemma 4.15. For every (s, t) ∈ F and edge (u, v) ∈ E, if dF (s, u) + c(u, v) + dF (v, t) 6=
dF (s, t), then (u, v) cannot appear on a shortest s-t path on G.

Proof.

1. Let (s, t) ∈ F.

2. Let (u, v) ∈ E.

3. Let dF (s, u) + c(u, v) + dF (v, t) 6= dF (s, t).

4. Assume (for contradiction) that a shortest s-t path π = π′ · 〈u, v〉 · π′′ exists on G.

5. l(π) = d(s, t) (since π is a shortest s-t path on G).

6. l(π) = dF (s, t) (Definition 4.2, since (s, t) ∈ F).

7. π is a freespace-shortest s-t path (Definition 4.1, since l(π) = dF (s, t)).

8. π′, 〈u, v〉, and π′′ are freespace-shortest (Lemma 4.5, since they are subpaths of the
freespace-shortest path π).

9. l(π) = l(π′) + l(〈u, v〉) + l(π′′) (since π = π′ · 〈u, v〉 · π′′).

10. dF (s, t) = dF (s, u) + dF (u, v) + dF (v, t) (Definition 4.1, since π, π′, 〈u, v〉, and π′′

are s-t, s-u, u-v, and v-t freespace-shortest paths, respectively).

11. dF (u, v) = c(u, v) (Lemma 4.10, since (u, v) ∈ E).

12. dF (s, t) = dF (s, u) + c(u, v) + dF (v, t).

13. ⊥ (since dF (s, t) = dF (s, u) + c(u, v) + dF (v, t) 6= dF (s, t)).
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4.5 Canonical Freespace Reachability

In the previous section, we have introduced F-reachability and developed connection
and refinement algorithms for it that use precomputed freespace distances, which can
be efficiently computed and compactly stored by exploiting the translation invariance
of freespace distances. In this section, we introduce a variant of F-reachability, called
canonical-freespace-reachability (CF-reachability) and develop connection and refinement
algorithms for it. The main idea behind CF-reachability is to use a canonical ordering to
distinguish, among multiple freespace-shortest paths between two vertices, exactly one as
the freespace-canonical path. A vertex is CF-reachable from another vertex if and only if
the freespace-canonical path between them is unblocked on G. We introduce a connection
algorithm for CF-reachability that explores only the freespace-canonical paths rather than
all freespace-shortest ones, considers only a subset of the successors of expanded vertices,
and does not have to perform duplicate detection (that is, check whether each successor of
an expanded vertex already appears in OPEN or CLOSED). We introduce a refinement
algorithm for CF-reachability that simply generates the freespace-canonical path between
two CF-reachable vertices. These connection and refinement algorithms use precomputed
freespace-canonical successors, predecessors, and parents rather than freespace distances.
We prove that, similar to freespace distances, these values can be efficiently computed and
compactly stored by exploiting the translation invariance of freespace-canonical paths.

This section is organized as follows. In Section 4.5.1, we describe canonical order-
ings defined over the primitives of state lattices, and show how they can be used to
uniquely designate, among multiple freespace-shortest paths between two vertices, ex-
actly one as the freespace-canonical path. In Section 4.5.2, we prove the translation in-
variance of freespace-canonical paths, as well as prove that the set of freespace-canonical
paths that originate (or terminate) at a vertex form a tree. In Section 4.5.3, we in-
troduce canonical-freespace-reachability as a reachability relation on state lattices. In
Sections 4.5.4 and 4.5.5, we introduce connection and refinement algorithms for canonical-
freespace-reachability.

4.5.1 Symmetries and Canonical Orderings

On graphs with arbitrary edge lengths, such as road networks, there is typically a unique
shortest path between any two vertices. However, on state lattices that are constructed
with respect to a small set of primitives (or, more generally, on state spaces constructed
with respect to a small set of actions), different permutations of a sequence of primi-
tives (actions) may correspond to multiple symmetric shortest paths between two states.
Canonical orderings are total or partial orderings on the primitives (actions) available to
an agent, and can be used to distinguish one or multiple (shortest) paths between two
states as the canonical one(s). Canonical orderings have been used in search algorithms
that cannot perform proper duplicate detection (due to limited memory) to reduce the
number of duplicate nodes in their search trees (Taylor & Korf, 1993; Holte & Burch,
2014), and by Jump Point Search for symmetry breaking on grid graphs (Harabor &
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Figure 4.6: Canonical ordering based on the lexical ordering Left <L Right <L Up <L

Down of the four primitives that define a 4-neighbor grid graph. F is only shown partially,
since it is infinite.

Grastien, 2011; Harabor et al., 2014; Sturtevant & Rabin, 2016). In this section, we de-
fine a canonical ordering on the primitives of a state lattice to distinguish, among multiple
symmetric shortest paths on F , exactly one as the freespace-canonical path.

Figure 4.6 shows the symmetries on a 4-neighbor grid graph, which can be considered
as a state lattice constructed with respect to the four primitives Up, Down, Left, and
Right. There are two different freespace-shortest E5-D6 paths, namely 〈E5, ~U, ~R〉 and
〈E5, ~R, ~U〉, which correspond to executing the primitives ~U and ~R in different orders.
There are 10!/5!5! freespace-shortest E5-A10 paths, each corresponding to a different
ordering of five ~U and five ~R primitives. Searches without proper duplicate detection
might explore all these shortest paths, resulting in many redundant expansions.

State lattices, in general, have fewer symmetries than grid graphs, since some permu-
tations of a sequence of primitives might not be kinematically feasible if a primitive with
start orientation θ follows a primitive with end orientation θ′ 6= θ. However, symmetries
are still present on state lattices, which is why F-Connect needs to perform duplicate de-
tection and F-Refine needs to search for a freespace-shortest path that is unblocked on G.
Figure 4.7 shows an example of symmetries on state lattices constructed using Unicycle
primitives. The path in Figure 4.7a is the unique freespace-shortest path between the
states that it connects. Every other permutation of its primitives produces a path that
is kinematically infeasible to execute. All paths in Figure 4.7b correspond to different
permutations of a single sequence of primitives, and differ in how much the agent moves
in a straight line in the very beginning or at the very end of its planned path. The paths
in Figure 4.7c correspond to different permutations of one of two sequences of primitives:
in one sequence the agent initially steers toward the right and in the other one it steers
toward the left. This example also shows that not all symmetric shortest paths are due
to different permutations of a single sequence of primitives.
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(a) There is a single (unique)
freespace-shortest path. Every

other permutation of the
corresponding sequence of

primitives are kinematically
infeasible.

(b) The freespace-shortest
paths correspond to different

permutations of a single
sequence of primitives.

(c) The freespace-shortest
paths correspond to different
permutations of one of two

distinct sequences of
primitives.

Figure 4.7: All freespace-shortest paths between two states on the freespace state lattice
constructed using the Unicycle primitives.

We use a total canonical ordering <L on the primitives of a state lattice to desig-
nate, among multiple freespace-shortest paths between two vertices, exactly one as the
freespace-canonical path. Intuitively, <L associates each primitive with a unique “letter”,
such that, for every pair of different primitives, one is lexically smaller than the other
one. As a result, primitive paths, that is, sequences of primitives, form “words”, such
that, for every pair of different primitive paths, one is lexically smaller than the other one.
Furthermore, since there is a unique primitive path that correspond to any path on F , we
can also lexically compare two different symmetric shortest paths, by lexically comparing
their corresponding primitive paths. We define the freespace-canonical path between two
vertices on F as the lexically smallest freespace-shortest path between them. Figure 4.6b
shows all lexically smallest freespace-shortest paths that originate at a vertex on the
freespace 4-neighbor grid graph, assuming that we use the canonical ordering <L with
~W <L

~E <L
~N <L

~S. Among all 10!/5!5! symmetric paths that correspond to different
permutations of five ~N and five ~E primitives, the path 〈s, ~E, ~E, ~E, ~E, ~E, ~N, ~N, ~N, ~N, ~N〉
is selected as the freespace-canonical path, since it is the lexically smallest.

Definition 4.3 formally defines our lexical ordering of paths, and Definition 4.4 formally
defines freespace-canonical paths. Lemma 4.16 proves that freespace-canonical paths are
unique.

Definition 4.3 (Lexical ordering of paths.). Let <L be a total ordering on all primitives
in M. Let ~π = 〈~m0, . . . , ~mk〉 6= ~π′〈~m′0, . . . , ~m′k′〉 be two primitive paths.

~π is lexically smaller than ~π′, denoted as ~π <L ~π′ if and only if: there exists j ≤
min(k, k′) such that (~mj <L ~m′j and, for all i < j, ~mi = ~m′i) or, if no such j exists, if
and only if k < k′.

For every s and s′, the path π = 〈s, ~m0, . . . , ~mk〉 <L π′ = 〈s′,m′0, . . . , ~m′k′〉 if and only
if ~π <L ~π′.
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Definition 4.4 (Freespace-canonical). An s-t path (on G or F) is freespace-canonical if
and only if it is the lexically smallest shortest s-t path on F .

Lemma 4.16. For every pair of states s and t with dF (s, t) < ∞, there is a unique
freespace-canonical s-t path.

Proof. For every pair of freespace-shortest s-t paths π 6= π′, their corresponding primitive
paths ~π 6= ~π′. Therefore, it holds that either π <L π′ or π′ <L π (Definition 4.3).
Consequently, there cannot be more than one lexically smallest freespace-shortest s-t
path.

4.5.2 Properties of Freespace-Canonical Paths

In this section, we prove that all freespace-canonical paths that originate at a vertex s
form an out-tree rooted at s, and all freespace-canonical paths that terminate at a vertex
t form an in-tree rooted at t, and prove the translation invariance of freespace-canonical
paths, that is, that translating freespace-canonical paths on F produces other freespace-
canonical paths on F , which allows for the efficient computation and compact storage of
freespace-canonical successors, predecessors, and parents of states on F .

Consider all freespace-canonical paths that originate at a single vertex s on a 4-
neighbor grid graph, using the lexical ordering ~W <L

~E <L
~N <L

~S, as shown in
Figure 4.6. The collection of all edges that appear on these paths form an out-tree rooted
at s, that is, a tree where all edges point away from the root. Lemma 4.17 proves that
subpaths of freespace-canonical paths are freespace-canonical, and Theorem 4.18 proves
that all freespace-canonical paths that originate at a vertex s form an out-tree rooted at
s and all freespace-canonical paths that terminate at a vertex t form an in-tree (all edges
point towards the root) rooted at t.

Lemma 4.17. Every subpath of a freespace-canonical path is freespace-canonical.

Proof. Sketch: If a subpath πu,v of a freespace-canonical path πs,t is not freespace-
canonical, then we can replace πu,v in πs,t with a lexically-smaller freespace-shortest path
π′u,v to get a path π′s,t such that π′s,t <L πs,t, contradicting that πs,t is freespace-canonical.

1. Let πs,t = 〈s, ~m1, . . . , u, ~mi, . . . , ~mj , v, . . . , ~mk, t〉 be the freespace-canonical s-t path.

2. Assume (for contradiction) that πu,v = 〈u, ~mi, . . . , ~mj , v〉 is not freespace-canonical.

3. πs,t is freespace-shortest (Definition 4.4, since πs,t is freespace-canonical).

4. πu,v is freespace-shortest (Lemma 4.5, since πu,v is a subpath of πs,t).

5. Let π′u,v = 〈u, ~m′i, . . . , ~m′j′ , v〉 be a freespace-shortest u-v path with π′u,v <L πu,v.
Such π′u,v exists (Definition 4.4, since πu,v is not freespace-canonical).

6. l(πu,v) = l(π′u,v) = dF (u, v) (Definition 4.1, since πu,v and π′u,v are freespace-shortest
u-v paths).

7. πu,v is not a prefix of π′u,v and π′u,v is not a prefix of πu,v (since l(πu,v) = l(π′u,v)
and, for every ~m ∈M, lm > 0).
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8. Let a ≥ i be the smallest number for which ~ma 6= ~m′a. Such a ≤ min(j, j′) exists
(Definition 4.3, since π′u,v <L πu,v, πu,v is not a prefix of π′u,v, and π′u,v is not a
prefix of πu,v).

9. ~m′a <L ~ma (Definition 4.3, since π′u,v <L πu,v).

10. Let π′s,t = 〈s, ~m1, . . . , u, ~m
′
i, . . . , ~m

′
j′ , v, . . . , ~mk, t〉 (replace πu,v in πs,t with π′u,v).

11. π′s,t = 〈s, ~m1, . . . , ~ma−1, ~m
′
a, . . . , ~m

′
j′ , ~mj+1 . . . ~mk〉 (since a is the smallest number

for which ~ma 6= ~m′a).

12. π′s,t <L πs,t (Definition 4.3, since m′a <L ma).

13. π′s,t is a freespace-shortest s-t path (since π′s,t replaces the freespace-shortest u-v
path πu,v in the freespace-shortest s-t path πs,t with the freespace-shortest u-v path
π′u,v).

14. πs,t is not freespace-canonical (Definition 4.4, since π′s,t is a freespace shortest s-t
path with π′s,t <L πs,t).

15. ⊥ (πs,t is freespace-canonical and not freespace-canonical).

Theorem 4.18. All freespace-canonical paths that originate at a vertex s form an out-
tree rooted at s. All freespace-canonical paths that terminate at a vertex t form an in-tree
rooted at t.

Proof. Let π and π′ be two freespace-canonical paths with the start vertex s. Assume
(for contradiction) that an edge (u, n) appears on π and an edge (v, n) appears on π′,
with u 6= v. That is, π = πs,u ·〈u, n〉·πn,t and π′ = π′s,v ·〈v, n〉·π′n,t′ . By Lemma 4.17, both
πs,u · 〈u, n〉 and π′s,v · 〈v, n〉 are freespace-canonical, since they are subpaths of freespace-
canonical paths. By Lemma 4.16, the freespace-canonical s-n path is unique. Therefore,
πs,u · 〈u, n〉 = π′s,v · 〈v, n〉, contradicting that u 6= v.

We can similarly show that two freespace-canonical paths that terminate at a vertex
t cannot contain both the edge (n, u) and (n, v) with u 6= v.

As we discuss in the following sections, our connection algorithm for CF-reachability
uses freespace-canonical successors and predecessors, and our refinement algorithm uses
freespace-canonical parents, which correspond to the edges of the out-trees or in-trees
formed by freespace-canonical paths that originate or terminate at a vertex. Namely,
the freespace-canonical successors of a vertex u with respect to a source vertex s are the
children of u in the out-tree formed by the freespace-canonical paths that originate at
s, or, equivalently, those successors v of u on F that extend the freespace-canonical s-u
path to freespace-canonical s-v paths. Similarly, the freespace-canonical predecessors of a
vertex u with respect to a destination vertex t are the children of u in the in-tree formed
by the freespace-canonical paths that terminate at t, or, equivalently, those predecessors
v of u on F that extend the freespace-canonical u-t path to the freespace-canonical v-t
path. Finally, the freespace-canonical parent of a vertex u with respect to a source vertex
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s is the parent of u in the out-tree formed by the freespace-canonical paths that originate
at s.

We now prove the translation invariance of freespace-canonical paths, that is, that
translating freespace-canonical paths on F produces other freespace-canonical paths on
F , which can be used to efficiently compute and compactly store freespace-canonical
successors, predecessors, and parents. Recall that we use the terminology s+(x, y) = s′ to
denote that translating a state s by (x, y) results in the state s′, and use the terminology
π + (x, y) = π′ to denote that translating a path π by (x, y) results in the path π′.
Intuitively, if π is freespace-canonical, π′ = π + (x, y) must also be freespace canonical
since, otherwise, a lexically-smaller freespace-shortest path π′′ would exist with the same
length as π′. However, then π′′ − (x, y) would show that π is not freespace-canonical,
resulting in a contradiction.

Theorem 4.19 (Translation invariance of freespace-canonical paths). Let π be a freespace-
canonical path. For any two integers x and y, π′ = π + (x, y) is a freespace-canonical
path as well.

Proof. Since π is freespace-canonical, π is freespace-shortest (Definition 4.4). Since π′

is generated by translating the freespace-shortest path π, π′ is also freespace-shortest
(Lemma 4.8). Let s and t denote the first and last vertices on π, and let s′ and t′

denote the first and last vertices on π′, respectively. Assume (for contradiction) that
π′ is not freespace-canonical. That is, an s′-t′ path π′′ exists on F with l(π′′) = l(π′)
and π′′ <L π′ (Definition 4.4). Then, π′′ + (−x,−y) is a freespace s-t path with length
l(π′′ + (−x,−y)) = l(π) (Lemma 4.7). Since π and π′ have the same primitive sequence
and π′′ <L π′, it holds that π′′ <L π (Definition 4.3). Since π′′ and π′′ + (−x,−y)
have the same primitive sequence and π′′ <L π, it holds that π′′ + (−x,−y) <L π
(Definition 4.3), contradicting that π is freespace-canonical (Definition 4.4).

The translation invariance of freespace-canonical paths ensures that we can store, for
each θ ∈ OM, a single out-tree of freespace-canonical paths rooted at (0, 0, θ) (that is,
a single set of freespace-canonical successors or parents), and a single in-tree rooted at
(0, 0, θ) (that is, a single set of freespace-canonical predecessors), since these trees are
translationally equivalent to the trees rooted at every vertex (x, y, θ). Furthermore, these
trees can be computed efficiently by first performing a Dijkstra search from s = (0, 0, θ)
(using out-edges or in-edges for constructing the out-trees or in-trees, respectively) to
generate a directed acyclic graph of freespace-shortest path that originate or terminate
at a vertex, and then performing a depth-first search on this directed acyclic graph, which
evaluates successors of expanded vertices in increasing lexical order, guaranteeing that,
when a vertex is visited for the first time, it is visited through the freespace-canonical
path. The search tree of this depth-first search then corresponds to the out-tree or the
in-tree of all freespace-canonical paths rooted at (0, 0, θ).

4.5.3 Canonical Freespace Reachability (CF-Reachability)

In order to be able to use efficiently computed and compactly stored freespace-canonical
successors, predecessors, and parents during the connection and refinement phases of
queries answered using subgoal graphs, we can construct subgoal graphs with respect to
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canonical-freespace-reachability: A state t is canonical-freespace-reachable from a state s
if and only if the freespace-canonical s-t path is unblocked on G. Definition 4.5 formally
defines canonical-freespace-reachability, as well as a variant, called bounded-canonical-
freespace-reachability.

Definition 4.5 (Canonical-freespace-reachability). A vertex t is canonical-freespace-reach-
able (CF-reachable) from a vertex s, denoted as (s, t) ∈ CF, if and only if the freespace-
canonical s-t-path is unblocked on G. t is bounded-canonical-freespace-reachable with
reachability bound b > 0 (CFb-reachable) from s if and only if t is CF-reachable from
s and d(s, t) ≤ b.

Theorem 4.20. CF is a reachability relation. CFb is a reachability relation if, for all
~m ∈M, l~m ≤ b.

Proof. For every n ∈ V , (n, n) ∈ CF and (n, n) ∈ CFb since 〈n〉 is the unique freespace-
shortest n-n path on G (that is, no other freespace-shortest n-n path exists that is lexically
smaller). For every (u, v) ∈ E, (u, v) ∈ CF since 〈u, v〉 is the unique freespace-shortest
u-v path (Lemma 4.10) on G. If, for every ~m ∈ M, l~m ≤ b, then c(u, v) = l~m ≤ b, where
~m is the primitive that induces the edge (u, v). Consequently, (u, v) ∈ CFb.

Similar to how Fb reachability can be considered to be the combination of F-reachability
and BDb-reachability, CFb reachability can be considered to be the combination of CF-
reachability and BDb-reachability. That is, CFb = CF∩BDb and, therefore, CFb ⊆ BDb.
Furthermore, if (s, t) ∈ CF, a freespace-shortest s-t path exists on G (namely, the canoni-
cal one). Therefore, (s, t) ∈ F and, consequently, CF ⊆ F. We discuss and experimentally
evaluate in Section 4.6 how the relationship CFb ⊆ Fb ⊆ BDb affects the trade-off be-
tween the connection, search, and refinement times of queries answered using (strongly-
connected) subgoal graphs constructed with respect to these reachability relations.

4.5.4 CF-Connect

In this section, we introduce a connection algorithm for CF-reachability, called CF-
Connect, and prove its correctness with respect to the criteria that we have outlined in
Section 3.3.4 for answering queries using CF (strongly-connected) subgoal graphs. That
is, we show that CF-Connect connects a given start vertex s (or a given goal vertex t)
to all direct-CF-reachable subgoals from s, never connects s to a subgoal that is not CF-
reachable from s, and determines the correct lengths for the connecting edges as distances
on G. For brevity, we only describe a version of CF-Connect, called CF→-Connect, that
connects the start vertex, but not the goal vertex, to a CF (strongly-connected) sub-
goal graph, and describe briefly how it can be modified to also connect the goal vertex.
Furthermore, we omit providing a connection algorithm for CFb-reachability, since CF-
Connect can be modified to become a connection algorithm for CFb-reachability by simply
disallowing it from generating vertices whose distances from the start vertex are larger
than b.

Algorithm 12 outlines CF→-Connect, which operates similarly to F→-Connect, except
that it explores freespace-canonical rather than freespace-shortest paths on G that origi-
nate at a vertex s. That is, it explores exactly the freespace-canonical paths that originate
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Algorithm 12 CF→-Connect

Blue text: Differences from F→-Connect. CF→-Connect does not maintain a
CLOSED list, since it does not have to perform duplicate detection.

Input: A state lattice G = (V,E, c), start vertex s, covering vertices S ⊆ V , target
vertices T ⊆ V

Output: A set of edges E+ such that CFs→TS ⊆ E+ ⊆ CF, edge lengths c+ such that,
∀(u, v) ∈ E+, c+ = dF (u, v) = d(u, v)

1: E+ ← ∅
2: OPEN ← {s} . Implemented as a stack for depth-first search
3: g(s)← 0 . g-values maintained since dF is not available
4: while OPEN 6= ∅ do
5: u← any vertex in OPEN
6: Remove u from OPEN
7: if u ∈ T \ {s} then
8: Add (s, u) to E+ with c+(u, v)= g(u) = dF (s, u)

9: if u 6∈ S \ {s} then
10: for all freespace-canonical successors v of u with respect to s do
11: if (u, v) ∈ E then
12: g(v)← g(u) + c(u, v)
13: Add v to OPEN
14: return E+, c+

at a given start vertex s that are unblocked on G and not covered by subgoals: Any vertex
that cannot be reached with a freespace-canonical path cannot be CF-reachable from s
(Definition 4.5), and any vertex that is reached with a freespace-canonical path that is
covered by a subgoal cannot be direct-CF-reachable from s (Definition 3.7). Figure 4.8
shows an example of the operation of CF→-Connect on a 4-neighbor grid graph.

The operation of CF→-Connect differs from the operation of F→-Connect in two ways,
which are highlighted in blue in Algorithm 12:

• CF→-Connect generates only the (unblocked) freespace-canonical successors (with
respect to s) of expanded vertices u (lines 10–11), that is, successors that extend
the freespace-canonical s-u path to the freespace-canonical s-v path, whereas F→-
Connect iterates over the (unblocked) successors v of u to determine whether they
are freespace-shortest successors, that is, whether they extend a freespace-shortest s-
u path to a freespace-shortest s-v path. Therefore, CF→-Connect iterates over fewer
successors per expansion (only the freespace-canonical ones rather than all succes-
sors) and does not perform a check to see if the successor is freespace-canonical
(or freespace-shortest). However, since CF→-Connect does not use precomputed
freespace distances, it maintain g-values for generated vertices to correctly deter-
mine the lengths of the edges it finds (lines 3, 12). We introduce a variant of
F→-Connect in Section 4.6.2 that uses precomputed freespace-shortest successors
rather than freespace distances, so that it also performs expansions more efficiently.
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(a) All freespace-canonical paths on F based
on the lexical ordering Left <L Right <L Up
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(b) CF4-Connect explores all
freespace-canonical paths on G that originate

at s, have length 4 or less, and are not
covered by subgoals (red).

Figure 4.8: CF4-Connect on a 4-neighbor grid graph.

• CF→-Connect does not perform duplicate detection since the freespace-canonical
paths that originate at s form a tree (Theorem 4.18). That is, it does not maintain
a CLOSED list, unlike F→-Connect (Algorithm 10, lines 3, 6, and 10).

CF→-Connect can be modified to connect a goal vertex t to vertices from which it is
direct-CF-reachable by running it on the reverse graph of G, and using freespace-canonical
predecessors rather than successors. That is, when expanding a vertex u, CF←-Connect
only generates the freespace-canonical predecessors of u with respect to t.

We now prove the correctness of CF→-Connect with respect to the criteria that we
have outlined in Section 3.3.4 for answering queries using CF (strongly-connected) subgoal
graphs. Namely, we show that CF→-Connect connects a given source vertex s to all direct-
CF-reachable subgoals from s, never connects s to a subgoal that is not CF-reachable
from s, and determines the correct lengths for the connecting edges as distances on G. We
omit the proof of correctness for CF←-Connect, which is similar to the proof of correctness
for CF→-Connect. We also omit the proof that CF→-Connect terminates, which follows
from the fact that it never generates duplicate vertices, and our assumption that G is
finite (Assumption 1.1). Lemmata 4.21 and 4.22 are similar to Lemmata 4.12 and 4.13,
respectively, that we used to prove the correctness of F→-Connect.

Lemma 4.21. At any point during the execution of Algorithm 12, every vertex u ∈ OPEN
is CF-reachable from s with g(u) = dF (s, u) = d(s, u).

Proof.

1. Let Si be the statement “The ith time that line 4 is executed, for every vertex
n ∈ OPEN, (s, n) ∈ CF and g(n) = dF (s, n) = d(s, n)”.
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2. For all i = 1, . . . , k, where k is the number of times that line 4 is executed, Si is
true (proof by induction on i):

2.1. Base case: S1 is true (since OPEN = {s}, (s, s) ∈ CF, g(s) = 0 = dF (s, s) =
d(s, s)).

2.2. Induction step: If Si is true, then Si+1 is true:

2.2.1. Assume Si is true.

2.2.2. Let u be the vertex selected for expansion on line 5 immediately after line
4 is executed for the ith time.

2.2.3. Let v be any vertex added to OPEN (line 12) after line 4 is executed for
the the ith time but before the (i+ 1)st time.

2.2.4. (s, u) ∈ CF (since Si is true).

2.2.5. Let πu be the canonical freespace s-u path on G. Such πu exists (Defini-
tion 4.5, since (s, u) ∈ CF).

2.2.6. v is a canonical successor of u with respect to s (line 10).

2.2.7. πv = πu · 〈u, v〉 is a canonical freespace s-v path (since πu is the canonical
freespace s-u path and v is a canonical successor of u with respect to s).

2.2.8. (s, v) ∈ CF:

2.2.8.1. (u, v) ∈ E (line 11).

2.2.8.2. πv is a path on G (since πu is a path on G and (u, v) ∈ E).

2.2.8.3. (s, v) ∈ CF (Definition 4.5, since πv is a canonical freespace s-v path
on G).

2.2.9. g(v) = d(s, v) = dF (s, v):

2.2.9.1. g(v) = g(u) + c(u, v) (line 12).

2.2.9.2. g(v) = dF (s, u) + c(u, v) (since Si is true).

2.2.9.3. g(v) = l(πu) + c(u, v) (Definition 4.1, since πu is a freespace s-v path).

2.2.9.4. g(v) = l(πv) (since πv = πu · 〈u, v〉).
2.2.9.5. g(v) = dF (s, v) (Definition 4.1, since πv is a freespace s-v path on G).

2.2.9.6. g(v) = d(s, v) (Lemma 4.4, since πv is a freespace s-v path on G).

Lemma 4.22. For every n ∈ V , if n is direct-CF-reachable from s, then Algorithm 12
selects n for expansion (line 5) at some point during its execution.

Proof.

1. Let n ∈ V with (s, n) ∈ CFs→VS .

2. Let π = 〈p0, . . . , pk〉 be a canonical freespace s-n path on G. Such π exists (Defini-
tion 4.5, since (s, n) ∈ CF).

3. S 6@ (s, n) (Definition 3.2, since (s, n) ∈ CFs→VS ).

4. S 6@ π (Definition 3.1, since S 6@ (s, n) and π is a shortest s-n path).
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5. For i = 0, . . . , k − 1, pi 6∈ S \ {s}:

5.1. If i = 0, then pi = p0 = s 6∈ S \ {s}.
5.2. If 0 < i < k, then pi 6∈ S (Definition 3.1, since S 6@ π).

6. Let Si be the statement “Algorithm 12 selects pi for expansion on line 6 at some
point during its execution”.

7. For all i = 0, . . . , k, Si is true (proof by induction on i = 0, . . . , k − 1):

7.1. Base case: S0 is true (since OPEN = {s} the first time line 4 is executed).

7.2. Induction step: If Si is true, then Si+1 is true:

7.2.1. Assume Si is true.

7.2.2. pi is selected for expansion (since Si is true).

7.2.3. Consider the point during execution when pi is selected for expansion.

7.2.4. If pi+1 ∈ OPEN, then pi+1 is eventually selected for expansion (line 4).

7.2.5. If pi+1 ∈ CLOSED, then pi+1 has already been selected for expansion (line
6).

7.2.6. Otherwise, pi+1 is added to OPEN:

7.2.6.1. Lines 10–13 are executed for pi (line 9, since pi 6∈ S \ {s}).
7.2.6.2. πi = 〈p0, . . . , pi〉 is a canonical freespace path on G (since πi is a

subpath of the canonical freespace s-n path π on G).

7.2.6.3. πi+1 = 〈p0, . . . , pi+1〉 is a canonical freespace path on G (since πi+1 is
a subpath of the canonical freespace s-n path π on G).

7.2.6.4. pi+1 is a canonical successor of πi with respect to s (since (pi, pi+1)
extends the canonical freespace s-pi path πi to the canonical freespace
s-pi+1 path).

7.2.6.5. (pi, pi+1) ∈ E (since π is a path on G).

7.2.6.6. pi+1 is added to OPEN (since lines 10–13 are executed for pi, pi+1 is
a canonical successor of πi with respect to s, and (pi, pi+1) ∈ E).

Theorem 4.23. Algorithm 12 returns a set of edges E+ with lengths c+ such that
CFs→TS ⊆ E+ ⊆ CF and, for every (u, v) ∈ E+, c+(u, v) = d(u, v).

Proof. By Lemma 4.21, Algorithm 12 only expands vertices that are CF-reachable from
s. By Lemma 4.22, Algorithm 12 is guaranteed to expand all vertices that are direct-CF-
reachable from s. Therefore, Algorithm 12 identifies a set of edges E+ with CFs→TS ⊆
E+ ⊆ CF. Furthermore, by Lemma 4.21, Algorithm 12 correctly maintains the distances
of expanded vertices from the start vertex on G as g-values. Therefore, Algorithm 12
correctly determines the lengths of edges in E+ as distances on G.
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Algorithm 13 CF-Refine

Input: (s, t) ∈ CF
Output: The freespace-canonical s-t path π.

1: π ← 〈t〉
2: u← t
3: while u 6= s do
4: π ← 〈freespace-canonical-parent(s, u), u〉 · π
5: u← freespace-canonical-parent(s, u)

6: return π

4.5.5 CF-Refine

Our refinement algorithm for CF-reachability, CF-Refine, uses freespace-canonical parents
to generate the freespace-canonical path between two CF-reachable vertices. Algorithm 13
outlines CF-Refine.

4.6 Experimental Evaluation

In this section, we perform three sets of experiments: First, we compare various con-
nection algorithms for BDb-, Fb-, and CFb-reachability with respect to their connection
times. Second, we compare answering queries using BDb, Fb, and CFb subgoal graphs
(SGs) with respect to their query times. Third, we compare answering queries using
BDb, Fb, and CFb strongly-connected subgoal graphs (SCSGs) with respect to their path
suboptimalities and query times.

4.6.1 Benchmarks

We use four benchmarks in our experiments, a small grid paired with a small set of
primitives, a small grid paired with a large set of primitives, a large grid paired with a
small set of primitives, and a large grid paired with a large set of primitives. We now
explain these benchmarks in more detail.

• Unicycle and Urban primitives:2 Unicycle primitives have 16 induced orien-
tations and 5 (kinematically feasible) primitives per orientation. Urban primitives
have 32 induced orientations and 36 primitives per orientation. Urban primitives
have been used in Carnegie Mellon University’s “Boss” entry in the DARPA Urban
Challenge for navigation in unstructured and cluttered environments such as park-
ing lots (Urmson et al., 2008), and can be considered as the more “realistic” set of
primitives.

In both the Unicycle and Urban primitives, the length of each primitive is equal
to the distance traveled by the agent, with the following exceptions: In Unicycle
primitives, the lengths of primitives that correspond to backward moves or turns

2We thank Maxim Likhachev for making these primitives available to us.
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(a) Unicycle
primitives.

(b) Urban primitives.

(c) Arena2. (d) Aurora.

Primitives Grid |OM| |θM| Dimensions Unblocked Vertices Edges

Unicycle Arena2 16 4 209 × 281 24,311 375,391 1,262,812
Aurora 16 4 768 × 1024 493,772 7,584,050 27,203,641

Urban Arena2 32 32 209 × 281 24,311 755,949 14,089,647
Aurora 32 32 768 × 1024 493,772 15,255,281 333,465,922

(e) Number of primitives, grid dimensions, and the size of G as the largest
strongly-connected component of the resulting state lattice. |OM|: number of induced

orientations, |θM |: largest number of primitives per orientation.

Figure 4.9: Experimental setup: Primitives and grids. In both (c) and (d), unblocked
cells are colored white and blocked cells are colored black or green.
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are multiplied by 5 or 3, respectively. In Urban primitives, the lengths of primitives
that correspond to backward moves are multiplied by 3.

Neither Unicycle nor Urban primitives are well-behaved. For instance, Unicycle
primitives contain a primitive ~m for moving the agent forward by one cell, and
another primitive for moving the agent forward by eight cells that is equivalent to
executing ~m eight times. To satisfy our assumption that we construct state lattices
with well-behaved sets of primitives (Assumption 4.3), we remove those primitives
from the Unicycle and Urban primitives, respectively, that can be replaced with
sequences of other primitives. After the removal of such primitives, Unicycle prim-
itives have 4 primitives per orientation, and Urban primitives have between 27 to
32. Figures 4.9a and 4.9b show the “well-behaved” Unicycle and Urban primitives,
respectively.

• Arena2 and Aurora grids: We use two different grids from Nathan Sturtevant’s
benchmark grid maps (Sturtevant, 2012a) in our experiments. Arena2 is a 209 ×
281 grid with 24,311 unblocked cells from the video game Dragon Age: Origins.
Aurora is a 768 × 1024 grid with 493,772 unblocked cells from the video game
Starcraft. Arena2 and Aurora are shown in Figures 4.9c and 4.9d, respectively.

• State lattices: We use four state lattices in our experiments, which correspond to
the four combinations of the two Unicycle and Urban primitives with the two Arena2
and Aurora grids. To satisfy Assumption 4.2, we designate our four benchmark
graphs, Unicycle-Arena2, Unicycle-Aurora, Urban-Arena2, and Urban-Aurora, as
the largest strongly connected components of these four state lattices. Figure 4.9e
shows the number of vertices and edges of these four benchmark graphs (bench-
marks, for short).

• Instances: For each benchmark, we randomly generate 1000 start and goal pairs,
which we use to evaluate execution times of queries answered using subgoal graphs
and strongly-connected subgoal graphs constructed with respect to different reach-
ability relations. We use only the start vertices of these 1000 start and goal pairs
when evaluating the execution times of different connection algorithms.

• Server: We run our experiments on a PC with 3.6GHz Intel Core i7-7700 CPU
and 32GB of RAM.

4.6.2 Algorithms

We distinguish between six different ways of implementing connection and refinement
algorithms for BDb, Fb, and CFb reachability, which are shown in Table 4.2 and explained
below.

• BDb-reachability: We distinguish between three different ways of implementing
BDb-Connect, which correspond to the three variants of Overlay-Connect discussed
in Section 3.2.5, namely, the conservative (BDb-C), aggressive (BDb-A), and stall-
on-demand (BDb-S) variants. We perform refinement for BDb-reachability using
A* searches with the Euclidean distance heuristic.
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R R-Connect R-Refine

BDb Dijkstra search.
Prune v if g(v) > b.
(C)onservative variant: Propagate cov-
ered, terminate when OPEN is covered.
(A)ggressive variant: Stall u if u ∈ S.
(S)tall-on-demand variant: Stall u if u ∈
S or if its parent can be changed to a stalled
vertex without increasing g(u).

A* search

Fb Depth-first search.
Prune v if g(v) > b.
Stall u if u ∈ S.
(D)istance variant:
Prune v if dF (s, u) + c(u, v) 6= dF (s, v).
(F)lag variant:
Skip v if not a freespace-shortest successor of
u wrt s.

Depth-first search.
(D)istance variant:
Prune v if dF (s, t) 6=
dF (s, u) + c(u, v) + dF (v, t).
(F)lag variant:
Skip v if not a freespace-
shortest parent of u.

CFb Depth-first search.
Prune v if g(v) > b.
Stall u if u ∈ S.
Skip v if not a freespace-canonical successor
of u wrt s.
No duplicate detection.

Follow freespace-canonical
parents.

Table 4.1: Summary of three reachability relations CFb ⊆ Fb ⊆ BDb on state lattices,
and their six variants. S = set of subgoals. s = start vertex. t = goal vertex. u =
vertex selected for expansion. v = successor (or predecessor, if connecting the goal) of u.
“Prune” = v is evaluated but not generated. “Skip” = v is not evaluated. “Stall’ = u is
selected for expansion but not expanded.
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• Fb-reachability: We distinguish between two different ways of implementing the
connection and refinement algorithms for Fb-reachability, namely, the distance vari-
ant (Fb-D) that uses precomputed freespace distances as discussed in Section 4.4,
and a flag variant (Fb-F) that uses precomputed freespace-shortest successors, pre-
decessors, and parents that are similar to their freespace-canonical counterparts
that we discussed in Section 4.5. For instance, the freespace-shortest successors of
a state u with respect to a start vertex s are those successors v of u that can extend
a freespace-shortest s-u path to a freespace-shortest s-v path. The flag variant of
Fb-Connect performs a single look-up for the freespace-shortest successors (or pre-
decessors) of expanded vertices, whereas the distance variant of Fb-Connect iterates
over all successors and determines whether they are freespace-shortest successors
by looking-up freespace distances for each successor.

• CFb-reachability: We implement the connection and refinement algorithms for
CFb-reachability as discussed in Section 4.5 and do not distinguish between multiple
variants.

4.6.3 Implementation Details

We now discuss implementation details for our algorithms.

• OPEN: We use a binary heap to implement priority queues, which are used for
A* searches (on G, subgoal graphs, or strongly-connected subgoal graphs) and all
three variants of BDb-Connect. We use a stack for CFb-Connect, both variants of
Fb-Connect, and both variants of Fb-refine.

• Preallocation: We preallocate memory for all data structures used during queries
to ensure that no new memory is allocated during queries. This includes the memory
required for maintaining g-, h-, or f -values; parent pointers; covered, stalled, open,
and closed flags; and OPEN lists implemented as either binary heaps or stacks.

• Avoiding collision detection using executable primitive flags: As described
in Section 4.2, state lattices are implicitly defined by a grid and a set of primitives.
Searches over state lattices using this “implicit” representation should perform col-
lision detection to generate the successors of expanded vertices. That is, for every
primitive ~m that is kinematically feasible to execute from an expanded vertex s,
the search should check if ~m is also collision-free to execute from s by iterating
over the list of cells that the footprint of the agent intersects with when execut-
ing ~m from s. We avoid this overhead during queries by performing these checks
during preprocessing and caching the results: We store a bitfield for every state,
called executable primitive flags, where the ith bit indicates whether the ith primi-
tive that is kinematically feasible to execute from s is also collision-free to execute
from s. The successors of a state s can then be determined by iterating over its
executable primitive flags and generating a successor for every set bit, by looking
up the resulting state and length of the corresponding primitive. We store these
flags in a 3D array which can be accessed using the x- and y-coordinates and the
orientation of a state. Furthermore, we unset bits that correspond to edges that are
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not part of the largest strongly-connected component of the state lattice, allowing
us to represent the benchmark graphs exactly. This approach uses 96MB for storing
the executable primitive flags in the Urban-Aurora benchmark, where no state has
more than 32 successors and executable primitive flags for each state can thus be
stored using 32 bits. We similarly store “predecessors” for every state using another
set of executable primitive flags.

• Storing freespace information: As discussed in Section 4.4.2, freespace distances
up to a bound b can be stored compactly by exploiting the translation invariance of
freespace distances: For each orientation θ, we store a 3D table Tθ where the entry
(x, y, θ′) stores the freespace distance of state (x, y, θ′) from (0, 0, θ). We adjust the
x- and y−dimensions of these tables to correspond to the smallest rectangle that
contain all the states with freespace-distance up to b from (0, 0, θ). We use 32 bits
to store each freespace-distance entry in these tables.

We store the freespace-shortest successors, predecessors, and parents (used for the
flag variants of Fb-Connect and Fb-Refine) using bitfields that are similar to exe-
cutable primitive flags: For instance, the ith bit in the freespace-shortest successor
flags for a state u = (x, y, θ′) in table Tθ is set if and only if the ith primitive that
is kinematically feasible to execute from u is a freespace-canonical successor of u
with respect to (0, 0, θ). During connection, we determine the unblocked freespace-
shortest successors of expanded states by performing a “bitwise and” operation on
the corresponding executable primitive flags and freespace-shortest successor flags,
iterating over the resulting bits, and generating a successor for each set bit. We
store the freespace-shortest successors, predecessors, and parents by using 4 and 32
bits each per entry on the Unicycle and Urban benchmarks, respectively.

We store the freespace-canonical successors and predecessors (used for CFb-Connect)
in the same way that we store freespace-shortest successors and predecessors. How-
ever, since the freespace-canonical parents (used for CFb-refine) are unique for each
state, we store them as the “ID” of the corresponding primitive rather than a bit-
field with only one set bit, using 2 and 8 bits per entry on the Unicycle and Urban
benchmarks, respectively.

Figures 4.10a and 4.10b show the memory required for storing freespace information
for Fb-D, Fb-F, and CFb on the Unicycle and Urban benchmarks, respectively. On
Unicycle benchmarks, storing freespace distances (32 bits per entry) is more expen-
sive than storing freespace-shortest successors, predecessors, and parents (12 bits
per entry). On Urban benchmarks, storing freespace distances (32 bits per entry)
is less expensive than storing freespace-shortest successors, predecessors, and par-
ents (96 bits per entry). On all benchmarks, storing freespace-canonical successors,
predecessors, and parents is slightly less expensive than storing freespace-shortest
successors, predecessors, and parents, since storing freespace-canonical parents is
less expensive that storing freespace-shortest parents.

• Further compression of freespace information (not used): The translation
invariance of freespace distances and freespace-canonical paths can be considered
as translational symmetries, which hold for any set of primitives. However, many
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(a) Unicycle primitives, all 16 tables.
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(b) Urban primitives, all 32 tables.
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(c) Unicycle primitives, 3 tables.
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(d) Urban primitives, 5 tables.
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(e) Unicycle primitives, 3 tables, shrunk
for cardinal and diagonal orientations.
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(f) Urban primitives, 5 tables, shrunk for
cardinal and diagonal orientations.

(g) Rotational and reflexive symmetries for Urban primitives.
Each arrow denotes an orientation for which a freespace in-
formation table Tθ can be stored.
Red arrows: The five stored freespace information tables.
Green arrows: Can be obtained from red arrows by reflexive
symmetry around the diagonal.
Black arrows: Can be obtained from the red and green arrows
by rotational symmetries (or reflexive symmetries around the
x- and y-axes).

Figure 4.10: Storage of freespace information.
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sets of primitives, including the Unicycle and Urban primitives, also have rotational
and reflexive symmetries that can be exploited to further reduce the memory re-
quired for storing freespace information. For instance, for both sets of primitives,
the freespace-shortest and freespace-canonical paths (using an appropriate canon-
ical ordering) that originate at (0,0,N) are rotationally symmetric to those that
originate at (0,0,E), (0,0,S), (0,0,W). Therefore, the tables TN , TW , TS , TE are all
rotationally symmetric and storing only one of them is sufficient. By exploiting
these rotational symmetries, as well as reflexive symmetries along the cardinal and
diagonal axes, the number of stored tables can be reduced from 16 to 3 for Unicycle
primitives and from 32 to 5 for Urban primitives. Figure 4.10g shows these symme-
tries, and Figures 4.10c and 4.10d show the memory required for storing only these
tables. Furthermore, the number of entries within each table Tθ can also be reduced
for cardinal and diagonal θ, since freespace-shortest paths and freespace-canonical
paths (using an appropriate canonical ordering) that originate at (0, 0, θ) may have
reflexive symmetries along cardinal or diagonal axes, as can be seen in Figure 4.1.
Figures 4.10e and 4.10f show the memory required for storing only 3 and 5 tables for
Unicycle and Urban primitives, respectively, by also exploiting symmetries within
tables.

4.6.4 R-Connect

In this section, we compare the connection times of the six R-connect algorithms outlined
in Table 4.1 and investigate how different factors contribute to their differences in con-
nection times. As part of our analysis, we also investigate the average number of pairs
of R-reachable vertices to help characterize the constraints on the construction of R SGs
and R SCSGs, for various R.

4.6.4.1 Setup

The six R-connect algorithms outlined in Table 4.1 differ in which vertices they expand,
how they process the successors of expanded vertices, which data structures they use
for OPEN, and whether they perform duplicate detection. These differences can be
attributed broadly to the following three factors:

• Reachability relation (number of R-reachable vertices from s): As we have
discussed in Sections 4.4.3 and 4.5.3, for a given reachability bound b, CFb ⊆ Fb ⊆
BDb. Therefore, for any given start vertex s, reachability bound b, and set of
subgoals S, there are at least as many vertices that are direct-BDb-reachable from
s (with respect to S) as there are vertices that are direct-Fb-reachable or direct-
CFb-reachable from s. Directly comparing the connection times of BDb-Connect
variants to Fb-Connect variants or CFb-Connect for the same reachability bound is
unfair since BDb-Connect variants inherently need to do more work to guarantee
completeness. Namely, whereas BDb-Connect variants need to explore shortest
paths to all direct-BDb-reachable vertices n from s with d(s, n) ≤ b, Fb-Connect
variants and CFb-Connect can avoid exploring paths that are not freespace-shortest
or freespace-canonical, respectively. Figure 4.11 shows an example of the “extra
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(a) BD50-Connect
(aggressive). Expands
all vertices within a

distance of 50 from the
start vertex, unless all

paths to them with
lengths greater than b

are covered by
subgoals.

(b) F50-Connect.
Expands all vertices

within a distance of 50
from the start vertex,

unless all freespace
paths to them are

blocked by obstacles or
covered by subgoals.
Arbitrary expansion
order. (Fb-F variant:

only generate
freespace-shortest

successors.)

(c) CF50-Connect.
Expands all vertices

within a distance of 50
from the start vertex,
unless the canonical
freespace paths to

them are blocked by
obstacles or covered by

subgoals. Arbitrary
expansion order, only

generate
freespace-canonical

successors, no
duplicate detection.

Figure 4.11: Search trees of BD50-, F50-, and CF50-Connect. The start vertex is shown
in blue, and the subgoals are shown in red.
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work” performed by the aggressive variant of BDb-Connect, compared to Fb- and
CFb-Connect. Although the relation CFb ⊆ Fb ⊆ BDb implies “extra work” that
needs to be performed by BDb-Connect variants, it also means fewer constraints on
the SGs or SCSGs constructed with respect to BDb-reachability, as we observe and
discuss in Sections 4.6.5 and 4.6.6.

• Optimizations for managing OPEN and processing successors of ex-
panded vertices: Since Fb-Connect variants and CFb-Connect perform depth-first
searches to explore freespace-shortest and freespace-canonical paths, respectively,
their OPEN lists can be implemented using a stack (Sections 4.4.4 and 4.5.4) in-
stead of a priority queue, allowing for constant time insertions and removals from
OPEN. Whereas the distance variant of Fb-Connect processes each successor of an
expanded vertex u and performs freespace-distance look-ups to determine whether
to generate that successor, the flag variant of Fb-Connect and CFb-Connect perform
a single look-up to generate all freespace-shortest or freespace-canonical successors
of u, respectively. That is, they avoid processing successors that are not freespace-
shortest or freespace-canonical, respectively, reducing the time to perform each
expansion. Additionally, CFb-Connect does not perform duplicate detection, since
all freespace-canonical paths that originate at a vertex are guaranteed to form a
tree (Section 4.5.4).

• Strategies for avoiding to expand non-direct-reachable vertices: The three
variants of BDb-connect correspond to the three variants of the Overlay-Connect
algorithm discussed in Section 3.2.5, which differ in how they try to void expanding
vertices that are not direct reachable (from the start vertex or to the goal vertex,
with respect to some set of subgoals), with various degrees of success and vari-
ous degrees of overhead incurred per expansion: Whereas the conservative variant
maintains covered values to terminate its search when all vertices in OPEN are
covered, the aggressive and stall-on-demand variants do not expand (that is, stall)
subgoals, and the stall-on-demand variant also checks to see if each vertex selected
for expansion can be stalled instead of expanded by changing its parent to another
stalled vertex without increasing its g-value. The two Fb-Connect variants and
CFb-Connect operate as the aggressive variant of Overlay-Connect.

In order to evaluate how the three factors discussed above affect the connection times
of the six R-connect algorithms, we report four sets of experimental results, using reach-
ability bounds varying from 25 to 150 and percentage of subgoals varying from 0 to 64
(that is, 0, 1, 2, 4, 8, 16, 32, or 64 percent of the vertices of G are randomly selected
as subgoals). First, we report the average number of vertices that are BDb-, Fb-, or
CFb-reachable from 1000 randomly selected start vertices. Second, we report the aver-
age expansion times of the six R-connect algorithms when run from these 1000 vertices,
assuming that there are no subgoals, which guarantees that the three variants of BDb-
Connect expand the same set of vertices. Third, we report connection times and the
number of non-direct-R-reachable vertices expanded by the six R-connect algorithms for
different percentages of subgoals. Finally, we report the “direct-R-reachable expansion
rates” of the six R-connect algorithms, which measure the number of direct-R-reachable
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vertices expanded per millisecond. This measure normalizes the connection times of differ-
ent R-connect algorithms with respect to the number of direct-R-reachable vertices that
they need to expand to guarantee correctness, which, we think, provides a fair measure
for comparison.

4.6.4.2 Number of R-Reachable Vertices from a Given Vertex

In this section, we compare the average number of vertices that are R-reachable from
the start vertex, for varying reachability relations and reachability bounds. For brevity,
we refer to this value as the “number of R-reachable vertices”. Figure 4.12 reports the
average number of BDb-, Fb-, and CFb-reachable vertices with b varying from 25 to 150,
on each of the four benchmarks.

We first analyze how the number of BDb-reachable vertices varies, as the reachability
bound, primitives, and grid vary.

• BDb, varying b: State lattices can be considered to be “3-dimensional” graphs,
in the sense that their vertices are uniquely defined by their x-coordinates, y-
coordinates, and orientations. However, the third dimension of state lattices, namely
the range of possible orientations, is significantly smaller than their first two dimen-
sions, namely the range of possible x- and y-coordinates. Consider a “ball of radius
b” Bb centered at a vertex s in a state lattice, which contains exactly those vertices
with distance less than or equal to b from s (that is, all BDb-reachable vertices
from s). As b increases, we expect Bb to include new vertices that do not share
their x-coordinates, y-coordinates, or orientations with the existing vertices, when
b is sufficiently small. However, for sufficiently large b, Bb includes vertices for all
possible orientations, in which case increasing b can only add new vertices that do
not share their x- or y-coordinates with existing vertices, but not their orientations.
Therefore, as b increases, we expect the number of vertices in Bb to increase cubi-
cally at first and then, eventually, quadratically. Our results show that Bb grows
cubically for b ≤ 150, as can be observed by the shape of the (blue) curves in
Figure 4.13, that correspond to the cubic root of the number of vertices in Bb.

• BDb, varying primitives: State lattices constructed with respect to Urban prim-
itives, compared to those constructed with respect to Unicycle primitives, can be
considered as (1) “having a thicker third dimension”, since Urban primitives have
twice the number of induced orientations; and (2) “greater connectivity”, since
Urban primitives have more primitives that are kinematically feasible to execute
from any given orientation, and smaller length multipliers. Both factors may con-
tribute to increasing the number of BDb-reachable vertices. Our results show that
the number of BDb-reachable vertices is ∼9–12 times larger on Urban benchmarks
compared to Unicycle benchmarks.

• BDb, varying grids: Aurora has larger contiguous regions of unblocked cells
than Arena2, resulting in roughly twice as many BDb-reachable vertices in Aurora
benchmarks compared to Arena2 benchmarks.
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(a) Unicycle-Arena2.
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(b) Unicycle-Aurora.
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(c) Urban-Arena2.
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(d) Urban-Aurora.

Figure 4.12: Average number of R-reachable vertices from a given source vertex.
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(a) Unicycle-Arena2.
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(b) Unicycle-Aurora.
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(c) Urban-Arena2.
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(d) Urban-Aurora.

Figure 4.13: Cubic root of the average number of R-reachable vertices from a given source
vertex.
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(a) Unicycle-Arena2.
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(b) Unicycle-Aurora.
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(c) Urban-Arena2.
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(d) Urban-Aurora.

Figure 4.14: Percentage of BDb-reachable vertices that are also Fb- and CFb-reachable
from a source vertex.

We now analyze how the number of Fb- and CFb-reachable vertices varies, as the
reachability bound, primitives, and grid vary, and how these numbers compare to the
number of BDb-reachable vertices. We perform our analysis in the context of the following
observation: CFb = Fb = BDb on a freespace state lattice F since, for every s and t with
dF (s, t) ≤ b, there exists a freespace-canonical s-t path π with l(π) ≤ b on F (that is,
(s, t) ∈ CFb), which is also a freespace-shortest s-t path on F (that is, (s, t) ∈ Fb), and an
s-t path on F (that is, (s, t) ∈ BDb). However, when the underlying grid contains blocked
cells, CFb = Fb = BDb no longer necessarily holds. Instead, CFb ⊆ Fb ⊆ BDb: even
if the freespace-canonical s-t path becomes blocked, a freespace-shortest s-t path might
still be unblocked (that is, CFb ⊆ Fb); and, if all freespace-shortest s-t paths become
blocked, an s-t path π′ with l(π′) ≤ b might still be unblocked (that is, Fb ⊆ BDb). In
this sense, BDb reachability is more “robust” to cells becoming blocked on the underlying
grid, since it is allowed to use a larger set of paths (any s-t path π′ with l(π′) ≤ b) to go
“around” them, whereas Fb-reachability is only allowed to use freespace-shortest paths,
and CFb-reachability is only allowed to use the unique freespace-canonical s-t path. We
perform our analysis from this perspective, by starting on F (where CFb = Fb = BDb),
and then analyzing how each reachability relation “adapts” as cells become blocked when
the freespace grid is replaced with Arena2 or Aurora. Figure 4.14 shows the percentage
of BDb-reachable vertices that are also Fb- and CFb-reachable.

143



• Fb and CFb vs. BDb, varying b: As b increases, the percentage of BDb-reachable
vertices that are also Fb- or CFb-reachable decreases. Consider the tree of all
freespace-canonical paths with length less than or equal to b that originate at a
vertex on F . When blocked cells are introduced, this tree is more likely to remain
intact for small b since it is less likely for a smaller tree to have one of its paths
blocked by a blocked cell than it is for a larger tree. For instance, we observe
that, for b = 25, almost all (∼99–100%) BDb-reachable vertices are also Fb- or
CFb-reachable, which is similar to the case CFb = Fb = BDb. As b grows large, it
is more likely that the tree is no longer intact and is missing whole subtrees. Fb-
reachability can “repair” this tree with alternate freespace-shortest paths, whereas
BDb-reachability can “repair” it using any path with length less than or equal to b,
which leads to the case CFb ⊆ Fb ⊆ BDb.

• Fb and CFb vs. BDb, varying primitives: Since Urban primitives have smaller
length multipliers than Unicycle primitives, the trees of freespace-canonical paths
are typically larger (that is, reach cells that are further away) on Urban freespace
state lattices than on Unicycle freespace state lattices for a given reachability bound
b. We therefore observe that, as b increases, the percentage of BDb-reachable ver-
tices that are also Fb- or CFb-reachable decreases faster on Urban benchmarks than
on Unicycle benchmarks.

• Fb and CFb vs. BDb, varying grids: Since Aurora has larger contiguous re-
gions of unblocked cells than Arena2, the tree of freespace-canonical paths is more
likely to remain intact on Aurora benchmarks than Arena2 benchmarks. We there-
fore observe that, as b increases, the percentage of BDb-reachable vertices that are
also Fb- or CFb-reachable decreases slower on Urban benchmarks than Unicycle
benchmarks.

• Fb vs. CFb: The difference between the number of Fb- and CFb-reachable vertices
is small, up to 1% on Urban benchmarks and up to 8% on Unicycle benchmarks.
If all freespace-shortest paths on a state lattice were unique shortest paths (that is,
were freespace-canonical), it would hold that CFb = Fb (since the unique freespace-
shortest path between them becomes blocked when the freespace-canonical path
between them becomes blocked). We suggest that the degree of deviation from
CFb = Fb could be used as a measure for the symmetries present in state lattices.
Since our experiments show that the deviation from CFb = Fb is greater for Unicycle
benchmarks than Urban benchmarks, we suspect that there are more symmetries
present in Unicycle benchmarks than Urban benchmarks. We revisit this notion
again when discussing our next set of results.

To summarize, as the reachability bound b increases from 25 to 150, the number of
BDb-reachable vertices grows near-cubically, and the percentage of those vertices that
are also Fb- or CFb-reachable decreases on all four benchmarks. Urban benchmarks have
more BDb-reachable vertices than Unicycle benchmarks, and Aurora benchmarks have
more BDb-reachable vertices than Arena2 benchmarks, which means that BDb-Connect
variants might have to expand more vertices on Urban or Aurora benchmarks, and expand
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the most vertices on the Urban-Aurora benchmark (∼ 20 times more than the Unicycle-
Arena2 benchmark). Similar trends hold for the number of Fb- and CFb-reachable vertices
on the different benchmarks, but the percentage of BDb-reachable vertices that are also
Fb- or CFb-reachable are the highest on the Unicycle-Aurora benchmark and the lowest
on the Urban-Arena2 benchmark.

4.6.4.3 Average Expansion Time

In this section, we compare the connection times of the six R-connect algorithms, as-
suming that there are no subgoals present. That is, each R-connect algorithm expands
all R-reachable vertices that we have measured in the previous section. Since there are
typically more BDb-reachable vertices than there are Fb- or CFb-reachable ones, BDb-
Connect variants expand more vertices than Fb-Connect variants and CFb-Connect. To
normalize for this fact, we instead compare the average expansion times (that is, the
connection times divided by number of expansions) of the six R-connect algorithms, re-
ported in Figure 4.15. Figure 4.16 reports the average number of successors processed
per expansion, that is, the successors explicitly iterated over by the various R-connect
algorithms.

We make the following observations:

• BDb, OPEN list: As the reachability bound b increases, the average expansion
time increases for the BDb-Connect variants, which maintain their OPEN lists as
priority queues: as b increases, the number of BDb-reachable vertices increases as
discussed in the previous section, and, therefore, the average number of vertices in
OPEN, the time to perform insertions, removals, and g-value updates in OPEN,
and thus the BDb-connection times increase. This increase is more significant in
Urban and Aurora benchmarks compared to Unicycle and Arena2 benchmarks, re-
spectively, since the number of BDb-reachable vertices is typically higher in these
benchmarks. For instance, the average expansion time of the aggressive variant of
BD150-Connect is 1.10 times longer than it is for BD25-Connect on the Unicycle-
Arena2 benchmark, but 1.12, 1.17, and 1.36 times longer on the Unicycle-Aurora,
Urban-Arena2, and Urban-Aurora benchmarks, respectively. Since the Fb-Connect
variants and CFb-Connect use a stack implementation of OPEN, their average ex-
pansion times are not affected by the size of OPEN and the reachability bound
b.

• BDb, avoiding expansions of non-BDb-reachable vertices: All three BDb-
Connect variants perform the same sequence of expansions and process the same
number of successors per expansion, 3.21–3.58 on Unicycle benchmarks and 19.43–
23.50 on Urban benchmarks (these numbers are higher on Aurora benchmarks
compared to Arena2 benchmarks since Aurora has larger contiguous regions of un-
blocked cells than Arena2, as noted in the previous section). However, their average
expansion times are different due to their different strategies for avoiding the expan-
sion of non-direct-BDb-reachable vertices (these strategies have no effect in this set
of experiments since we assume that there are no subgoals). The aggressive variant
of BDb-Connect performs a single check for each vertex selected for expansion to
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(a) Unicycle, arena2.
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(b) Unicycle, Aurora.
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(c) Urban, arena2.
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(d) Urban, Aurora.

Figure 4.15: Average R-connect expansion times when no subgoals are present.
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(a) Unicycle-Arena2.
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(b) Unicycle-Aurora.
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(c) Urban-Arena2.
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(d) Urban-Aurora.

Figure 4.16: Average numbers of successors processed per expansion by R-connect when
no subgoals are present.
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see if it is a subgoal, and has an average expansion time of 153–191 nanoseconds on
Unicycle benchmarks and 354–612 nanoseconds on Urban benchmarks. The conser-
vative variant of BDb-Connect maintains covered values and therefore has slightly
longer average expansion times, 7–16 nanoseconds longer than the aggressive vari-
ant on Unicycle benchmarks and 16–29 nanoseconds longer on Urban benchmarks.
The stall-on-demand variant of BDb-Connect iterates over predecessors of vertices
selected for expansion to see if the vertex can be stalled, and has the longest average
expansion times, 35–50 nanoseconds longer than the aggressive variant on Unicycle
benchmarks and 170–270 nanoseconds longer on Urban benchmarks.

• Fb-D vs. BDb-A: The distance variant of Fb-Connect iterates over all successors
of expanded vertices to determine whether they are freespace-shortest successors,
by looking up freespace distances from the start vertex to each successor. Therefore,
for small b, the average expansion times are longer for the distance variant of Fb-
Connect than for the aggressive variant of BDb-Connect. However, as discussed
earlier, as b increases, the average expansion time increases for the BDb-Connect
variants, making them longer than for the distance variant of Fb-Connect.

• Fb-F vs. Fb-D: The average expansion times for the flag variant of Fb-Connect are
significantly shorter than for the distance variant, since the flag variant performs
a single look-up to determine all (unblocked) freespace successors of an expanded
vertex, rather than performing a freespace distance look-up for each of its successors.
On average, the distance variant of Fb-Connect processes 3.29–3.59 and 20.84–24.14
successors per expansion on Unicycle and Urban benchmarks, respectively, whereas
the flag variant processes only 1.12–1.19 and 1.06–1.13 freespace-shortest successors,
respectively.

• CFb vs. Fb-F: The average expansion times for CFb-Connect are shorter than
for the flag variant of Fb-Connect, since CFb-Connect processes fewer successors
per expanded vertex and does not perform duplicate detection. CFb-Connect pro-
cesses on average ∼ 1 freespace-canonical successor per expanded vertex, since it
essentially traverses a tree (namely, the tree of unblocked freespace-canonical paths
originating at the start vertex), where the number of vertices in the tree is equal
to one plus the number of edges in the tree. In other words, the numbers of suc-
cessors processed per expanded vertex are 1.12–1.19 and 1.06–1.13 times smaller
for CFb-Connect than the flag variant of Fb-Connect on the Unicycle and Urban
benchmarks, respectively. However, the average expansion times are 1.25–1.44 and
1.15–1.20 shorter for CFb-Connect than the flag variant of Fb-Connect on the Unicy-
cle and Urban benchmarks, respectively, suggesting that the avoidance of duplicate
detection also contributes to shorter average expansion times.

• Symmetries: If all freespace-shortest paths on a state lattice were unique shortest
paths (that is, were freespace-canonical), the average number of successors processed
per expanded vertex would be one for the flag variant of Fb-Connect as well, similar
to CFb-Connect. We suggest that the degree of deviation from an average of 1
successor processed per expansion by the flag variant of Fb-Connect could be used
as another measure (in addition to the one mentioned in the previous section) for the
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symmetries present in state lattices. Since our experiments show that this deviation
is larger for Unicycle benchmarks than Urban benchmarks, we suspect that there are
more symmetries present in Unicycle benchmarks than Urban benchmarks, which
is consistent with our observation in the previous section.

To summarize, the average expansion times are the longest for the BDb-Connect
variants, especially when b is large, since they use priority queues to maintain their
OPEN lists. Among the BDb-Connect variants, the aggressive variant has the shortest
average expansion times, and the stall-on-demand variant has the longest, due to their
different strategies for avoiding the expansions of non-direct-BDb-reachable vertices. The
average expansion times for the distance variant of Fb-Connect are comparable to those
of the BDb-Connect variants, but typically a bit shorter since Fb-Connect maintains its
OPEN list as a stack. The average expansion times for the flag variant of Fb-Connect
are significantly shorter than for the distance variant, especially on Urban benchmarks,
since the flag variant processes only a small number of successors per expansion; and
even shorter for CFb-Connect since CFb-Connect processes on average only 1 successor
per expansion and avoids performing duplicate detection.

4.6.4.4 Avoiding Expansions of Non-Direct-Reachable Vertices

In this section, we compare how successful the sixR-connect algorithms are in avoiding the
expansions of non-direct-R-reachable vertices, by measuring the number of non-direct-R-
reachable vertices they expand relative to all vertices they expand, for varying percentages
p of vertices of G selected as subgoals. For brevity, we report results only for a fixed
reachability bound of 100, and report results only on the Unicycle-Arena2 and Urban-
Aurora benchmarks. The results for other reachability bounds and benchmarks have
similar trends and are not reported. Figures 4.17 and 4.18 report the average number of
direct-R-reachable vertices, the average connection times, the average number of vertices
popped from OPEN (that is, expanded or stalled), and the percentage of popped vertices
that are not direct-R-reachable, for the six R-Connect variants on the Unicycle-Arena2
and Urban-Aurora benchmarks, respectively. We count subgoals that are not expanded
by the aggressive and stall-on-demand variants of BDb-Connect, both variants of Fb-
Connect, and CFb-Connect as stalled (and, therefore, popped).

We make the following observations:

• Number of direct-R-reachable vertices: By definition of direct-reachability
(Definition 3.2), as the number of subgoals increases (that is, as p increases), the
number of direct-R-reachable vertices decreases. We observe that, in both bench-
marks, this reduction is similar for all reachability relations. For instance, when
1% of the vertices of G become subgoals, for all R, 18.5%-20.0% and 9.3%-9.8%
of the R-reachable vertices become non-direct-R-reachable in the Unicycle-Arena2
and Urban-Aurora benchmarks, respectively.

• R-connect time, BDb-Connect variants: As we have discussed in Section 3.2.5,
the main downside of the aggressive variant of Overlay-Connect is that it can go
“around” the subgoals, possibly via suboptimal paths. As we have suggested in
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(b) R-connect time (ms).
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(d) % redundant popped.

Figure 4.17: R-connect statistics, Unicycle-Arena2, varying percentage of subgoals, reach-
ability bound 100.
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Figure 4.18: R-connect statistics, Urban-Aurora, varying percentage of subgoals, reacha-
bility bound 100.
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Section 3.3, bounding its search using a reachability relation can help to mitigate
this problem, for instance, by using BDb-reachability as the reachability relation.
Our results show that the aggressive variant is, overall, the fastest BDb-Connect
variant in both benchmarks, for up to 16% subgoals. We analyze this result in
further detail below.

• Percentage of non-direct-R-reachable vertices popped, BDb-Connect vari-
ants: The aggressive variant of BDb-Connect consistently pops fewer vertices for
expansion than the conservative variant does and, since its average expansion times
are shorter, its connection times are also consistently smaller. The stall-on-demand
variant is guaranteed to pop no more vertices for expansion than the aggressive vari-
ant, since it stalls all the vertices that the aggressive variant stalls. However, the
difference in the number of popped vertices for the stall-on-demand and aggressive
variants is smaller than for the aggressive and conservative variants. Furthermore,
the aggressive variant has shorter average expansion times than the stall-on-demand
variant, as demonstrated in the previous section. The results show that the aggres-
sive variant typically has shorter connection times than the stall-on-demand variant
on both benchmarks when less than 16% of the vertices of G are subgoals, and sim-
ilar or slightly longer connection times when more subgoals are introduced.

• Fb-Connect variants and CFb-Connect: Since Fb-Connect variants differ only
in their implementations, they expand and stall the same set of vertices, so we
will not distinguish between them in this analysis. Both Fb-Connect and CFb-
Connect are based on the aggressive variant of Overlay-Connect. Similar to how
using BDb-reachability as the reachability relation can help to prevent the aggressive
variant of Overlay-Connect from going “around” subgoals by bounding its search,
using Fb- or CFb-reachability as the reachability relation prevents this behavior
by preventing it from exploring suboptimal paths: Fb-Connect and CFb-Connect
explore only freespace-shortest and freespace-canonical paths on G, respectively,
which are guaranteed to be shortest paths on G. As the results show, the Fb-
and CFb-Connect variants have the smallest percentage of popped vertices that are
non-direct-R-reachable from the start. This percentage is roughly half for CFb-
Connect than what it is for Fb-Connect on both benchmarks, and less than half for
Fb-Connect than what it is for all BDb-Connect variants.

To summarize, the percentage of popped vertices that are not direct-R-reachable is
the lowest for the Fb-Connect variants and CFb-Connect, which only explore shortest
paths and therefore have only a small tendency to go “around” subgoals; the highest
for the conservative variant of BDb-Connect, which also explores shortest paths only
but does not stall any vertices (besides terminating its search early); and lower for the
stall-on-demand variant of BDb-Connect than the aggressive variant of BDb-Connect,
since the stall-on-demand variant can stall more vertices than the aggressive variant.
However, since the stall-on-demand variant of BDb-Connect performs an expensive check
to determine whether it can stall vertices, its connection times are typically longer than
the connection times of the aggressive variant, especially when only a small percentage
of the vertices of G are subgoals. As we demonstrate in Section 4.6.5, answering queries
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using SGs or SCSGs that have a high percentage of vertices of G as subgoals typically
has execution times comparable to A* searches on G, and we therefore use the aggressive
variant of BDb-Connect in our experiments only in Sections 4.6.5 and 4.6.6, since it has the
smallest connection times among the BDb-Connect variants when only small percentages
of the vertices of G are subgoals.

4.6.4.5 Direct-R-Reachable Expansion Rate

In this section, we compare the “efficiency” of the six R-connect algorithms by measuring
their “direct-R-reachable expansion rates” (DR-rates, for short), that is, the number of
direct-R-reachable vertices they expand divided by their connection times. The DR-rate
can be considered to be the normalization of the connection times of different R-connect
algorithms, with respect to the number of direct-R-reachable vertices that they have to
expand to guarantee completeness; and, when no subgoals are present, it is equivalent to
the inverse of the average expansion times (Section 4.6.4.3).

Figure 4.19 reports the DR-rates of the six R-connect algorithms, for varying reach-
ability bounds and percentages of subgoals, on the Unicycle-Arena2 and Urban-Aurora
benchmarks. The results on the Unicycle-Aurora and Urban-Arena2 benchmarks have
similar trends and are thus not reported. Table 4.2 reports more detailed statistics for
reachability bound 100 and percentages of subgoals 1% and 32%, by also providing the
average number of R-reachable and direct-R-reachable vertices, subgoals encountered,
expanded and stalled vertices, successors processed per expansion, and connection times.
Since the DR-rates of different R-connect algorithms are determined by their average
expansion times and how successfully they avoid the expansion of non-direct-R-reachable
vertices, our discussion of DR-rates is simply a summary of our discussions from the
previous sections.

CFb-Connect and both variants of Fb-Connect have higher DR-rates than the three
BDb-Connect variants since their OPEN lists are implemented as stacks rather than
priority queues and a smaller percentage of the vertices expanded by them are non-direct-
R-reachable. The flag variant of Fb-Connect has a higher DR-rate than the distance
variant, especially on Urban benchmarks, since it only processes the freespace-successors
of expanded vertices rather than iterating over all successors and determining whether
they are freespace-shortest by using freespace distances; but it has a lower DR-rate than
CFb-Connect since CFb-Connect processes fewer successors (namely, only the freespace-
canonical successors) per expansion, does not perform duplicate detection, and has a
smaller percentage of popped vertices that are not direct-R-reachable. The DR-rates of
the BDb-Connect variants are similar to each other, where the aggressive variant has the
higher DR-rate when a small percentage (less than 16%) of the vertices of G are subgoals,
and the stall-on-demand variant has the higher DR-rate when a large percentage of the
vertices of G are subgoals. For 1% subgoals and reachability bound 100 on the Urban-
Aurora benchmark, the DR-rate of CFb-Connect is 1.21 and 6.75 times higher than that
of the flag and distance variants of Fb-Connect, respectively, and 12.83, 9.22, and 9.70
times higher than that of the stall-on-demand, aggressive, and conservative variants of
BDb-Connect, respectively. As we discuss in Section 4.6.6, the high DR-rates of CFb-
Connect and the flag variant of Fb-Connect allow one to find good trade-offs between the
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(a) Unicycle-Arena2, 0% subgoals.
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(b) Urban-Aurora, 0% subgoals.
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(c) Unicycle-arena2, 1% subgoals.
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(d) Urban-Aurora, 1% subgoals.
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(e) Unicycle-Arena2, 4% subgoals.
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(f) Urban-Aurora, 4% subgoals.
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(g) Unicycle-Arena2, 32% subgoals.
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(h) Urban-Aurora, 32% subgoals.

Figure 4.19: Direct-R-reachable expansion rates of R-connect algortihms on the small
and large benchmarks, with different percentages of subgoals and varying reachability
bounds.
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connection and search times when answering queries using CFb or Fb SCSGs, resulting
in short query times.

4.6.5 Subgoal Graphs

In this section, we compare answering queries using BDb, Fb, and CFb SGs with respect
to their query-times.

4.6.5.1 Setup

We consider two different ways of constructing R SGs in our experiments, namely using
the pruning and growing variants of constructing R-SPCs (Sections 3.3.5 and 3.3.6). We
consider four different algorithms for answering queries using R SGs, which use four of
the six different variants of performing connection and refinement outlined in Table 4.2,
excluding the conservative and stall-on-demand variants of BDb-Connect (as discussed
in Section 4.6.4.4). We vary the reachability bound from 25 to 150, similar to our ex-
periments in Section 4.6.4. Due to long preprocessing times, we only present results on
the Arena2-Unicycle benchmark, and do not present results for the pruning variant of
constructing R-SPCs for reachability bounds above 75. We now provide a brief summary
of the pruning and growing variants of constructing R-SPCs and discuss implementation
details.

• Identifying R-SPCs by pruning: Recall that the pruning variant of identifying
an R-SPC S starts by initializing S = V and then removes vertices from S one by
one while maintaining that S is an R-SPC (Section 3.3.5), that is, for every pair of
vertices (s, t) 6∈ R, S covers at least one shortest s-t path on G. The set of subgoals
S identified by the pruning variant is guaranteed to be a minimal R-SPC (that is,
no S′ ⊂ S is an R-SPC) but not necessarily a minimum R-SPC (that is, there might
exist an R-SPC S′ with |S′| < |S|). One method of trying to find a small S is to vary
the order with which the pruning variant iterates over the vertices in V . We use the
“DFS-completion” ordering to iterate over the vertices in V for our experiments,
inspired by Funke et al.’s method for constructing k-hop shortest path covers on
road networks (Funke et al., 2014), which corresponds to a post-order traversal of
the tree of a depth-first search run from a random vertex (that is, vertices whose
children are processed first by the depth-first search appear earlier in the order).
Our preliminary results suggest that this ordering is slightly better than a random
ordering, producing on average ∼3.6% and up to ∼6.4% fewer subgoals.

• Identifying R-SPCs by growing: Recall that the growing variant of identifying
an R-SPC starts by initializing S = ∅ and then adds subgoals to S until it becomes
an R-SPC (Section 3.3.6). For each n ∈ V , it first identifies the “fringe vertices of
n” Fn, that is, vertices u with (n, u) 6∈ R and S 6@ (n, u), and then extends S so
that it covers at least one shortest path from n to each fringe vertex of n. We use
a heuristic to identify the subgoals used to extend S to cover shortest paths from
n to its fringe vertices, which we describe below.
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We first construct a directed acyclic graph An of all shortest paths from n to its
fringe vertices, and assign a value of 1 to each fringe vertex and 0 to each non-fringe
vertex. We then back-propagate through An, starting from the fringe vertices and
visiting each vertex before visiting any of its parents in An. For each visited vertex
u with value v(u) and set of parents Pu in An and each parent p ∈ Pu of u, we
increase v(p) by v(u)/|Pu|. Intuitively, when the back-propagation terminates, the
value of a non-fringe vertex u is high if making it a subgoal covers shortest paths
from n to a large number of its fringe vertices, or if it covers shortest paths to fringe
vertices to which only a small number of shortest paths from n exist. We then
add the vertex u with the highest v(u) · d(n, u) to S (that is, make it a subgoal),
update An by removing those fringe vertices to which a shortest path from n is
covered by u, and repeat the process, until at least one shortest path from n to
each of its fringe vertices is covered. When picking the next vertex u to add to S,
we consider its distance d(n, u) from n because, otherwise, u is typically selected as
one of the successors of n since they typically cover shortest paths from n to the
largest number of its fringe vertices.

• Constructing the edges of R SGs: We construct the edges of R SGs by perform-
ing an R-connect operation from each subgoal. Since Fb-Connect and CFb-Connect
can identify a superset of the necessary edges, we perform an additional operation
to remove the redundant ones, by performing a Dijkstra search on the SG (possi-
bly with the redundant edges) from each subgoal u until all subgoals v that share
an edge with n are expanded, and check for each v whether the Dijkstra search
has found an alternative u-v path. We construct the edges of BDb SGs using the
conservative variant of BDb-Connect, since it can do so exactly.

• Memory requirements: When reporting the memory requirements, we consider
only the memory required to store freespace information and the edges of SGs.
We store freespace information without exploiting symmetries between primitives.
As discussed in Section 4.6.3, by exploiting such symmetries, we could reduce the
memory requirements for freespace information by a factor of ∼8 for both the
Unicycle and Urban primitives. When reporting the memory required to store the
edges of SGs, we assume that each edge can be stored using 8 bytes, 4 bytes for its
destination and 4 bytes for its length. For the distance variant of Fb-reachability, we
assume that each edge of the SG can be stored using 4 bytes, only for its destination,
since its length can be looked up from the stored freespace distances.

4.6.5.2 Results

Table 4.3 reports the time to construct BDb, Fb, and CFb SGs by pruning or growing the
set of subgoals, the numbers of vertices and edges in these SGs relative to G, the memory
required to store the edges of these SGs and freespace information, the execution times
of queries answered using these SGs relative to A* search times on G (that is, “speed
up”), and the percentage of query times spent in the search phase, on the Unicycle-Arena2
benchmark. Figure 4.20 shows the trends from Table 4.3 as the reachability bound varies.

We make the following observations:
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Prep. Memory (MB) Size vs G Search / Speed
R C b time (s) FS Edges Subgoals Edges Query up

BD-A P 25 13 0.00 9.33 87.29% 96.85% 99.61% 0.98
50 622 0.00 13.85 46.36% 143.74% 99.08% 1.73
75 16,232 0.00 19.04 33.48% 197.66% 98.67% 2.07

G 25 6 0.00 9.40 89.68% 97.52% 99.58% 1.08
50 23 0.00 12.11 55.27% 125.74% 99.24% 1.51
75 69 0.00 15.45 42.09% 160.35% 98.95% 1.88

100 162 0.00 19.86 34.48% 206.17% 98.43% 1.89
125 309 0.00 24.48 28.70% 254.05% 97.40% 2.03
150 532 0.00 29.54 24.57% 306.65% 94.88% 2.07

F-D P 25 16 0.37 4.67 87.29% 96.85% 99.91% 0.96
50 716 2.02 6.87 46.47% 142.52% 99.84% 1.65
75 10,480 5.84 8.81 35.10% 182.95% 99.79% 2.06

G 25 7 0.37 4.70 89.68% 97.52% 99.90% 1.08
50 28 2.02 6.01 55.48% 124.82% 99.86% 1.53
75 76 5.84 7.16 43.85% 148.63% 99.83% 1.79

100 145 12.59 8.17 40.02% 169.55% 99.81% 1.93
125 223 23.72 9.00 38.16% 186.90% 99.80% 1.83
150 304 39.84 9.71 37.53% 201.59% 99.79% 1.89

F-F P 25 16 0.12 9.34 87.29% 96.85% 99.95% 0.98
50 716 0.71 13.74 46.47% 142.52% 99.91% 1.68
75 10,480 2.09 17.62 35.10% 182.95% 99.88% 2.06

G 25 7 0.12 9.40 89.68% 97.52% 99.95% 1.08
50 28 0.71 12.02 55.48% 124.82% 99.92% 1.55
75 76 2.09 14.32 43.85% 148.63% 99.90% 1.81

100 145 4.61 16.34 40.02% 169.55% 99.89% 1.93
125 223 8.76 18.00 38.16% 186.90% 99.89% 1.87
150 304 14.77 19.42 37.53% 201.59% 99.88% 1.96

CF P 25 17 0.10 9.33 87.29% 96.85% 99.98% 0.97
50 706 0.58 13.69 46.80% 142.06% 99.95% 1.65
75 9,979 1.72 17.27 36.50% 179.25% 99.93% 2.03

G 25 7 0.10 9.40 89.68% 97.52% 99.98% 1.08
50 27 0.58 11.84 55.43% 122.93% 99.96% 1.53
75 76 1.72 14.00 43.99% 145.29% 99.94% 1.87

100 143 3.82 15.94 40.48% 165.47% 99.94% 1.88
125 214 7.28 17.44 39.03% 181.05% 99.93% 1.91
150 292 12.28 18.70 38.46% 194.08% 99.93% 1.89

Table 4.3: Comparison of SGs constructed by pruning (P) or growing (G) an R-SPC.
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Figure 4.20: Comparison of SGs on the Unicycle-Arena2 benchmark.

• Number of subgoals, BDb vs. Fb vs. CFb: Since CFb ⊆ Fb ⊆ BDb, BDb SGs
have fewer subgoals than Fb SGs, which in turn have fewer subgoals than CFb SGs,
when using the same reachability bound b and the same construction method. For
instance, when using reachability bound 75 and the pruning variant of constructing
SGs, the BD75 SG has ∼4.6% fewer subgoals than the F75 SG, which in turn has
∼3.8% fewer subgoals than the CF75 SG.

• Number of subgoals and edges, varying b: As the reachability bound increases,
the number of subgoals in BDb, Fb, and CFb SGs decrease, since, for every b1 < b2,
BDb1 ⊆ BDb2, Fb1 ⊆ Fb2, and CFb1 ⊆ CFb2. However, as the reachability bound
increases, the number of edges in BDb, Fb, and CFb SGs increases as well. We think
that this is due to state lattices having large highway dimensions, as we discuss at
the end of this section. Interestingly, the BD25, F25, and CF25 SGs constructed by
pruning and growing are (almost) identical, which we think is due to the following
reason: Edges that correspond to turns on the Unicycle-Arena2 benchmark have a
length of 17.35, which means that any two successive turns correspond to a unique
shortest path with length 34.7 > 25, requiring its middle vertex to be a subgoal in
any BD25-, F25-, and CF25-SPC.

• Number of subgoals, pruning vs. growing: The BD75 SG constructed by the
pruning variant has 20.46% fewer subgoals than the one constructed by the growing
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variant, since the pruning variant guarantees the minimality of the set of subgoals.
The F75 and CF75 SGs constructed by the pruning variant have fewer subgoals
than the F150 and CF150 SGs constructed by the growing variant. These results
suggest that the heuristic that we use in the growing variant for identifying subgoals
could be improved.

• Preprocessing times: The time to construct BDb, Fb, and CFb SGs increases
as the reachability bound b increases, for both the pruning and growing variants,
where the increase for the pruning variant is significantly larger. For instance, the
pruning variant requires roughly four and a half hours of preprocessing time to
construct a BD75 SG, whereas the growing variant requires only 69 seconds.

• Query times: All SGs in our experiments use a significant percentage of the
vertices of G as subgoals (∼24.6% at the lowest) and, for reachability bounds greater
than 25, have more edges than G. Therefore, answering queries using them is slow,
at best 2.07 times faster than A* searches on G.

• Search times: The search times make up at least ∼94.8% of the query times, sig-
nificantly reducing the contribution of the more efficient connection and refinement
algorithms for Fb- and CFb-reachability to the query times.

To summarize, our current construction methods fail to produce small SGs within
a reasonable amount of time. We conjecture that this is in part due to state lattices
having large highway dimensions. Recall that, on a graph with maximum edge length
m and highway dimension h, it is possible to construct a (b − 2m,h) sparse BDb-SPC
for b > 3m (Theorem 3.13). That is, there exists a BDb-SPC S such that, for every
u ∈ V , the number of vertices v ∈ S with max(d(u, v), d(v, u)) ≤ 2b − 4m is at most h.
For Unicycle benchmarks, m ≈ 17.35, and this result applies for b = 75 ≥ 3 · 17.35. If
G has a small highway dimension, we would expect a small number of subgoals within
distance 2 · 75− 4 · 17.35 ≈ 80 from any given vertex n ∈ V . However, this does not seem
to be the case for the BD75 SGs that we generate via pruning, whose sets of subgoals
S are guaranteed to be minimal BD75-SPC. We note that the minimality of S does not
necessarily mean that it is the minimum set of subgoals, which is why our results (which
construct minimal but not minimum R-SPCs) cannot be used to conclusively show that
state lattices have large highway dimensions. Therefore, based on our results, we can
only conjecture that state lattices, in general, may have large highway dimensions.

4.6.6 Strongly-Connected Subgoal Graphs

In this section, we compare answering queries using BDb, Fb, and CFb SCSGs with respect
to their query times and path suboptimalities.

4.6.6.1 Setup

As we have shown in the previous section, our current construction methods fail to pro-
duce small SGs on state lattices, which we think is due to their large highway dimensions.
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To get around this limitation, we now experiment with R SCSGs (Section 3.5), whose
subgoals do not necessarily form R-SPCs.

We use a setup similar to the one that we have used for our experiments with SGs
(Section 4.6.5). Namely, we omit the conservative and stall-on-demand variants of BDb-
reachability in our comparison, report the amount of memory required to store SGs using
4 bytes per edge for the distance variant of Fb-reachability and 8 bytes per edge for the
other reachability relations, and report the amount of memory required to store freespace
information without exploiting symmetries among primitives. When constructing SCSGs,
we first use Algorithm 8 to identify the access subgoals (such that any start and goal vertex
can be connected to at least one access subgoal using R-Connect), then use Algorithm 9
to strongly-connect the access subgoals using only R-reachable edges, adding additional
subgoals as necessary. In order to find short paths in practice, we add edges between all
direct-R-reachable subgoals in SCSGs, as well as use all direct-R-reachable edges during
the connection phases of queries. Similarly to constructing SGs, to construct the edges
of SCSGs, we perform R-Connect from every subgoal and then eliminate any redundant
edges, if necessary (for Fb- and CFb-reachability).

We are ultimately interested in the query-time/path-suboptimality trade-offs (trade-
offs, for short) of SCSGs constructed with respect to different reachability relations.
We treat the reachability bound b as a parameter that can be fine-tuned differently
for different reachability relations, resulting in different trade-offs.3 We therefore use
the following scheme for comparing the trade-offs of SCSGs constructed with respect to
different reachability relations: First, for each reachability relation R, we construct a set
TR of trade-offs, by varying the reachability bound b from 25 to 150 in increments of
25. We then eliminate those trade-offs t from TR that are dominated by at least one
other trade-off t′ in TR (that is t′ has both a shorter query time and a smaller path
suboptimality than t), essentially removing trade-offs that correspond to a “bad tuning”
of b. The remaining set of trade-offs PR forms the “query-time/path-suboptimality Pareto
frontier” (Pareto frontier, for short) for SCSGs constructed with respect to R. We say
that a Pareto frontier PR dominates a trade-off t if and only if at least one trade-off
t′ ∈ PR dominates t. We say that a Pareto frontier PR dominates a Pareto frontier PR′

if and only if PR dominates all trade-offs t ∈ PR′ . We say that a Pareto frontier PR is
non-dominated if and only if there is at least one t ∈ PR that is not dominated by any
other Pareto frontier PR′ .

We also experiment with weighted A* searches on G, using the Euclidean distance
(Euc) and 2D grid distance (2D) heuristics, and similarly calculate Pareto frontiers for
them by varying the suboptimality bound w from 1 to 3 in increments of 0.25. The 2D
grid distance from a state s = (xs, ys, θs) to a state t = (xt, yt, θt) is the (xs, ys)-(xt, yt)
distance on the 8-neighbor grid center graph constructed on the underlying grid of the
state lattice, and is not necessarily admissible (Butzke, Sapkota, Prasad, MacAllister, &
Likhachev, 2014). We compute 2D grid distances “on demand” during searches. That
is, in the beginning of a (weighted) A* search on the state lattice, we also start a search
on the corresponding 8-neighbor grid graph, backwards from the goal. When we want to

3To clarify, we do not claim that the reachability bound b can be used to trade off shorter query-
times and smaller path-suboptimalities, but only remark that different values of b may result in different
query-time/path-suboptimality trade-offs.
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look-up the n-t 2D grid distance during the A* search on the state lattice, the A* search
over the 8-neighbor grid graph expands vertices until the vertex that corresponds to n is
expanded, and then return its g value. The time to compute 2D grid distances is included
in our reported search and query times.

4.6.6.2 Results

We first compare answering queries using BDb, Fb, and CFb SCSGs on the Unicycle-
Arena2 benchmark with respect to their query times and path suboptimalities, both to
each other and to answering queries using BDb, Fb, and CFb SGs (Section 4.6.5). We then
compare answering queries using BDb, Fb, and CFb SCSGs across the four benchmarks
with respect to their query times and path suboptimalities, and focus on their differences
across the different benchmarks.

Table 4.4 reports the time needed to construct BDb, Fb, and CFb SCSGs, the num-
bers of vertices and edges in these SCSGs relative to G, the memory required to store
these edges and freespace information, the connection, search, and refinement times of
queries answered using these SCSGs, and the average and maximum suboptimalities of the
paths found by these queries, on the Unicycle-Arena2 benchmark. Figure 4.21 shows the
trends from Table 4.4 as the reachability bound varies, as well as the query-time/path-
suboptimality trade-off when answering queries using BDb, Fb, and CFb SCSGs, and
weighted A* searches on G.

We make the following observations:

• Preprocessing times: R SCSGs can be constructed significantly faster than R
SGs for the same R, since our construction algorithm (Section 3.5.3) only performs
three (modified) R-connect operations for each identified subgoal n, namely once
forward and once backward from n to mark the vertices of G that can R-connect to
n in the forward and backward directions, and once more afterward to identify the
edges of the SG. For instance, a BD150 SCSG can be constructed 58 times faster
than a BD150 SG constructed by growing.

• Number of subgoals: R SCSGs have significantly fewer subgoals than R SGs for
the same R, since there are fewer constraints on the placement of their subgoals
(that is, their subgoals do not have to form R-SPCs). For instance, the BD25 SCSG
has 64.9% fewer subgoals than the BD25 SG constructed by pruning, and the BD75
SCSG has 80.6% fewer subgoals than the BD75 SG constructed by pruning. We
observe similar trends in the number of subgoals in R SCSGs as we have observed
for R SGs as the reachability relation and reachability bound vary. Namely, BDb
SCSGs have fewer subgoals than Fb and CFb SCSGs for the same b, and, as b
increases, the number of subgoals decreases for all R SCSGs. Furthermore, similar
to the results in Section 4.6.5, the BD25, F25, and CF25 SCSGs are identical,
presumably due to all edges in the Unicycle-Arena2 benchmark having a length
of 17.35 and, consequently, the length of any sequence of two turns exceeding the
reachability bound.

• Memory requirements: The memory required to store freespace information is
the same for answering queries using R SCSGs and R SGs, for the same R. However,
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Figure 4.21: Comparison of SCSGs on the Unicycle-Arena2 benchmark.
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since R SCSGs are typically smaller than R SGs, the memory required to store their
edges is smaller as well.

• Connection times: As the reachability bound increases, the connection times in-
crease for all R-connect algorithms, and increase faster for BDb-Connect than the
Fb-Connect variants and CFb-Connect. As discussed in Section 4.6.4, there are
several factors that contribute to this result. As the reachability bound increases:
1) The number of BDb-reachable vertices increases faster than the number of Fb-
and CFb-reachable vertices. 2) The average expansion time of BDb-Connect (vari-
ants) increases due to more expensive insertion and removal operations in OPEN,
whereas the average expansion times of the Fb-Connect variants and CFb-Connect
are unaffected. 3) Since BDb SCSGs have fewer subgoals than Fb and CFb SCSGs,
a higher percentage of R-reachable vertices are direct-R-reachable (and, therefore,
should be expanded by R-connect) for BDb-reachability, compared to Fb- and CFb-
reachability. Similar to our results in Section 4.6.4, CFb-Connect has the shortest
connection times, followed by the flag variant of Fb-Connect, since these variants
process only a small number of successors per expansion and since CFb-Connect
avoids duplicate detection.

• Search times: As the reachability bound increases, the search times decrease since
the number of subgoals decrease for all R SCSGs. They are the smallest for BDb
SCSGs, which contain fewer subgoals than Fb and CFb SCSGs for the same b.

• Refinement times: As the reachability bound increases, BDb-Refine times in-
crease, whereas Fb- and CFb-Refine times remain mostly unchanged. This can be
explained as follows. As the reachability bound increases, R SCSGs have fewer
subgoals that need to be (and can be) connected through longer edges. As a result,
as the reachability bound increases, paths on R SCSGs tend to have fewer edges
that are longer. This negatively affects BDb-Refine times, since BDb-Refine is im-
plemented as an A* search, and a single A* search between vertices that are far
apart typically requires more time than multiple A* searches between vertices that
are close together. CFb-Refine times remain mostly unaffected since they depend
only on the number of edges on the resulting path. Similarly, Fb-Refine times are
mostly unaffected since, although Fb-Refine performs searches, it typically operates
similarly to CFb-Refine due to state lattices not having too many symmetric short-
est paths. Interestingly, as b increases, CFb- and Fb-refine times can decrease, since
the paths found on query CFb and Fb SCSGs become shorter, as we discuss later,
when discussing path suboptimalities.

• Query times: As the reachability bound increases, the query times may increase or
decrease, depending on how the fast connection and refinement times increase and
the search times decrease. Our results show that query times typically first decrease
and then increase, and the bound for which the query times are shortest varies with
the reachability relations and connection and refinement algorithms. When using
BDb-reachability (and the aggressive variant of BDb-Connect), the shortest query
times are achieved at reachability bound 100. When using Fb-reachability (and both
the flag and distance variants of Fb-Connect and Fb-Refine) or CFb-reachability, the
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shortest query times are achieved at reachability bound 125. The shortest query
times are achieved with a smaller reachability bound when using BDb-reachability
because: 1) The connection and refinement times increase faster when using BDb-
reachability rather than Fb- and CFb-reachability. 2) The search times decrease
faster when using BDb-reachability rather than Fb- and CFb-reachability. Figures
4.21b, 4.21c, 4.21d, and 4.21e show how the reachability bound affects the connec-
tion, search, refinement, and query times.

• Path suboptimality: Paths found on BDb SCSGs are longer than those on Fb
SCSGs, which in turn are longer than those on CFb SCSGs, for the same b. As the
reachability bound increases, paths found on BDb SCSGs first get shorter and then
longer, and paths found on Fb and CFb SCSGs get shorter. We suspect that there
are several factors that contribute to these results: 1) As mentioned during our
discussion of the refinement times, as the reachability bound increases, the paths
found over R SCSGs typically consist of shorter sequences of longer edges. Since
edges on these paths correspond to shortest paths on G, paths consisting of shorter
sequences of longer edges typically have longer “stretches” that are “optimal” (that
is, correspond to shortest paths on G), compared to paths consisting of longer
sequences of shorter edges. Therefore, this factor contributes to paths found on R
SCSGs getting shorter (since they have longer stretches that are optimal) as the
reachability bound increases. 2) Our algorithm for constructing R SCSGs aims to
find small R SCSGs with the highest priority, and reduce path lengths only with
secondary priority, by adding more edges to R SCSGs after determining the set of
subgoals. Fewer subgoals in R SCSGs mean that fewer possible “turning points”
are considered, which can result more frequently in sequences of edges forming
“non-taut” turns. Therefore, this factor contributes to paths found over R SCSGs
getting longer as the reachability bound increases. We suspect that these two
factors contribute to differences in path lengths found over R SCSGs for different
reachability relations and reachability bounds. For instance, as the reachability
bound increases, the number of subgoals of BDb SCSGs decreases faster than the
number of subgoals in Fb and CFb SCSGs, which could be the reason why the
lengths of paths found over BDb SCSGs increase as the reachability bound increases.
As indicated in Section 3.5, a more detailed analysis of path suboptimalities on
SCSGs is beyond the scope of this dissertation.

• Query-time/path-suboptimality trade-off: The (query-time/path-suboptimal-
ity) Pareto frontier for answering queries using Fb SCSGs and the flag variants of
Fb-Connect and Fb-Refine dominate the Pareto frontier for answering queries using
Fb SCSGs and the distance variants of Fb-Connect and Fb-Refine, since both algo-
rithms have the same path-suboptimalities and search times, but the flag variants
of Fb-Connect and Fb-Refine are faster than the distance variants. Throughout this
discussion, we therefore assume that the flag variants of Fb-Connect and Fb-Refine
are used when answering queries using Fb SCSGs (similar to how we assume that
the aggressive variant of BDb-Connect is used when answering queries using BDb
SCSGs).
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The Pareto frontiers for answering queries using Fb and CFb SCSGs dominate the
Pareto frontier for answering queries using BDb SCSGs, since answering queries
using Fb and CFb SCSGs is typically faster and finds shorter paths. The Pareto
frontiers of these two algorithms are very similar and do not dominate each other,
with answering queries using CFb SCSGs having slightly longer query times but
smaller path suboptimalities. Furthermore, the Pareto frontiers of these two al-
gorithms are non-dominated by the Pareto frontier when answering queries using
weighted A* searches (with either the Euclidean or the 2D grid distance heuristics)
on G, since they have shorter query times; but also do not dominate the Pareto
frontier when answering queries using weighted A* searches on G, since they find
longer paths.

We now analyze the results over all benchmarks, and focus on their differences across
different benchmarks.

• Number of R-reachable vertices, percentage of subgoals, and connection
and search times: Figures 4.22, 4.23, 4.24, and 4.25, respectively, report the
number of R-reachable vertices (also reported in Figure 4.12), the number of vertices
of R SCSGs relative to G, and the connection and search times of queries answered
using R SCSGs across the four benchmarks. The refinement times are not reported
since they are small compared to the connection and search times. We observe that
the differences in the number of R-reachable vertices across the four benchmarks
(as discussed in Section 4.6.4.2) result in differences in the number of vertices of R
SCSGs relative to G and in the connection and search times of queries answered
using R SCSGs across the four benchmarks.

• Search times relative to query times: Figure 4.26 reports the percentage of
query times spent in the search phase when answering queries using R SCSGs, across
the four benchmarks. We observe that, on all benchmarks and for all reachability
relations, the percentage of query times spent in the search phase decreases as the
reachability bound increases, since the search times decrease but the connection
and refinement times (not reported) increase. The percentage of query times spent
in the search phase decreases faster on Urban and Arena2 benchmarks compared to
the Unicycle and Aurora benchmarks. The reason for this is two-fold: 1) Connection
(and refinement) can be considered to be “local” operations since they are performed
up to a bound, whereas search can be considered to be a “global” operation since
it is performed on SCSGs that span the whole graph. As the grid size increases
(that is, the Aurora benchmarks compared to the Arena2 benchmarks), the time to
perform the “global” operation relative to the “local” operations increases. 2) The
number of R-reachable vertices is larger on the Urban benchmarks than the Unicycle
benchmarks, which results in longer connection times and smaller R SCSGs that
can be searched faster.

• Speed-up over weighted A* searches: Figure 4.27 shows the speed-up achieved
by answering queries using R SCSGs over weighted A* searches on G using the
Euclidean distance heuristic, across the four benchmarks. We observe that how the
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Figure 4.22: Number of R-reachable vertices.
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(b) Unicycle-Aurora.

 0

 1

 2

 3

 4

 5

 6

 7

 8

 9

 10

 25  50  75  100  125  150

%
 S

ub
go

al
s

Reachability bound

BD-A
F-D
F-F
CF

(c) Urban-Arena2.
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Figure 4.23: Percentage of subgoals in R SCSGs (relative to G).
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Figure 4.24: Connection times when answering queries using R SCSGs.
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(b) Unicycle-Aurora.
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Figure 4.25: Search times when answering queries using R SCSGs.
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(b) Unicycle-Aurora.
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(c) Urban-Arena2.
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Figure 4.26: Percentage of query times spent in the search phase when answering queries
using SCSGs.
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Figure 4.27: Speed-up over A* searches when answering queries using SCSGs.
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percentage of query times spent in the search phase varies affects the reachability
bound for which the highest speed-ups are achieved over weighted A* searches. On
the Unicycle-Aurora benchmark, where the percentage of query times spent in the
search phase decreases slowly as the reachability bound increases, the reachability
bounds for which the highest speed-ups are achieved are high, namely 125 for BDb
SCSGs and 150 for the other R SCSGs. On the Urban-Arena2 benchmark, where
the percentage of query times spent in the search phase decreases quickly, the
reachability bounds for which the highest speed-ups are achieved are low, namely
25 for BDb SCSGs and 50 for other R SCSGs.

• Path suboptimalities: Figure 4.27 shows the suboptimalities of the paths found
when answering queries using R SCSGs, across the four benchmarks. We observe
that the paths found when using BDb SCSGs have higher suboptimalities on the
Urban benchmarks than the Unicycle benchmarks, which we think is due to BDb
SCSGs having a smaller percentage of the vertices of G as subgoals on the Ur-
ban benchmarks. We observe that the paths found when using Fb and CFb SCSGs
have lower suboptimalities on the Aurora benchmarks than the Arena2 benchmarks,
which we think is due to the Aurora benchmarks containing larger contiguous re-
gions of unblocked cells than the Arena2 benchmarks. As indicated in Section 3.5, a
more detailed analysis of the suboptimalities of the paths found when using SCSGs
is beyond the scope of this dissertation.

• Query-time/path-suboptimality trade-off: Figure 4.29 shows the (query-time/
path-suboptimality) Pareto frontiers when answering queries using R SCSGs or
weighted A* searches, across the four benchmarks. The dominance relations that
we have observed on the Unicycle-Arena2 benchmark also hold on all other bench-
marks. Namely, the Pareto frontiers when answering queries using CFb SCSGs or
Fb SCSGs with the flag variants of performing connection and refinement dominate
the Pareto frontiers when answering queries using BDb SCSGs or Fb SCSGs with the
distance variants of performing connection and refinement, and are non-dominated
by the Pareto frontiers when answering queries using weighted A* searches with the
Euclidean or 2D grid-distance heuristics.

To summarize, R SCSGs can be constructed faster than R SGs, are smaller, and can be
used to answer queries faster. Although R SCSGs cannot be used to find shortest paths,
we observe that, in practice, short paths (10–15% longer than shortest paths) can be found
by using Fb and CFb SCSGs. As the reachability bound increases, the connection and
refinement times when answering queries using BDb SCSGs quickly increase, whereas the
search times decrease. In comparison, as the reachability bound increases, the increase in
connection times when answering queries using Fb and CFb SCSGs is much smaller, and
the refinement times do not increase. As a result, the (query-time/path-suboptimality)
Pareto frontiers (generated by varying the reachability bound) when answering queries
using Fb and CFb SCSGs dominate the Pareto frontier when answering queries using BDb
SCSGs.
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Figure 4.28: Path suboptimality when answering queries using SCSGs.
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Figure 4.29: Query-time/path-length Pareto frontiers when answering queries using SC-
SGs or weighted A* searches.
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4.7 Conclusions and Future Work

In this chapter, we have applied the subgoal graph framework to state lattices, by us-
ing freespace-reachability and canonical-freespace-reachability as reachability relations to
capture the freespace structure of state lattices, and developing efficient connection and
refinement algorithms that exploit this structure. Specifically, we have characterized the
freespace structure of state lattices as the translation invariance of freespace distances and
freespace-canonical paths, and showed that it can be exploited to efficiently compute and
compactly store freespace information, such as pairwise distances or shortest path trees
on freespace state lattices. We have introduced freespace-reachability and canonical-
freespace-reachability as reachability relations to distinguish those pairs of vertices on
state lattices between which the freespace information is accurate, and developed connec-
tion and refinement algorithms for these reachability relations, that use freespace informa-
tion to efficiently explore freespace-shortest and freespace-canonical paths, respectively.
We have experimentally demonstrated that answering queries using freespace-reacha-
bility or canonical-freespace-reachability strongly-connected subgoal graphs achieves a
dominating query-time/path-suboptimality trade-off compared to answering queries using
bounded-distance-reachability strongly-connected subgoal graphs, and a non-dominated
query-time/path-suboptimality trade-off compared to answering queries using weighted
A* searches. These results validate the hypothesis of this dissertation that one can de-
velop preprocessing-based path-planning algorithms for state lattices that exploit their
freespace structure to improve the query-time/memory/path-suboptimality Pareto fron-
tier of the state-of-the-art algorithms.

Recall our discussion from Section 3.1 that the “benefit” of using overlay (subgoal)
graphs for answering queries is that searches over them are faster, while the “cost” of
using them is that one has to perform connection and refinement. Although we were
not able to achieve short query times by using subgoal graphs, possibly due to the large
highway dimensions of state lattices, we were able to do so using strongly-connected sub-
goal graphs (with the additional “cost” of sacrificing optimality). We have observed that,
in order to accrue higher “benefits” by constructing smaller strongly-connected subgoal
graphs that can be searched faster, we also pay higher “costs” of increased connection
and refinement times, and achieve the shortest query times when we find a good balance
between the two, by adjusting the reachability bound. Our results from Section 4.6.4
suggest that the “cost” of connection, as measured by the “DR-rate”, can be signifi-
cantly smaller for freespace-reachability and canonical-freespace-reachability, compared
to bounded-distance-reachability. Our results from Section 4.6.6 suggest that the smaller
“cost” of connection (and refinement) is the reason why queries can be answered faster by
using freespace-reachability or canonical-freespace-reachability strongly-connected sub-
goal graphs than bounded-distance-reachability strongly-connected subgoal graphs.

As future work, we consider several directions for improving the answering of queries
using freespace-reachability or canonical-freespace-reachability strongly-connected sub-
goal graphs. First, as we have discussed in Section 3.5.3, we think that our current
algorithm for constructing strongly-connected subgoal graphs can be improved. Second,
we think that our definition of strongly-connected subgoal graphs can be extended to
use two different reachability relations Rc and Rr, where Rc is used for connection and
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Rr is used for refinement. That is, access subgoals can be identified with respect to Rc,
but they can be strongly-connected using Rr-reachable edges rather than Rc-reachable
edges. Using a larger reachability bound for Rr could result in fewer additional sub-
goals being necessary to strongly-connect access subgoals, which in turn could result in
smaller strongly-connected subgoal graphs that can be searched faster. Our experimental
results from Section 4.6.6 show that the refinement times when answering queries us-
ing freespace-reachability or canonical-freespace-reachability strongly-connected subgoal
graphs are very short, and do not increase as the reachability bound increases. There-
fore, increasing the reachability bound only for refinement does not increase refinement
times, and can decrease search (and thus query) times. Finally, we think that it would
be interesting to develop a version of strongly-connected subgoal graphs that can be used
to find bounded-suboptimal paths.
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Chapter 5

Exploiting the Freespace Structure of Grid Graphs

In this chapter, we apply the subgoal graph framework to grid graphs by using safe-
freespace-reachability as reachability relation, discuss the similarities and differences of
subgoal graphs with jump-point search, and augment contraction hierarchies with reacha-
bility relations in various ways. Specifically, we show that the freespace structure (Octile
property) of grid graphs allows for the construction of safe-freespace-reachability sub-
goal graphs by using only the convex corners of blocked cells, introduce a connection
algorithm for safe-freespace-reachability that scans the grid efficiently by using clearance
values, and prove that this algorithm can be used to construct subgoal graphs in time
linear in the size of the underlying grid. We show that jump-point search can be under-
stood as a search on a jump-point graph, which is a freespace-reachability subgoal graph
on the direction-extended canonical grid graph. We experimentally demonstrate that
answering queries using contraction hierarchies on subgoal graphs achieves a dominating
query-time/memory trade-off compared to answering queries using contraction hierar-
chies on G or jump-point graphs. Our results further suggest (through interpolation)
that answering queries using contraction hierarchies on subgoal graphs and performing
freespace-based refinement is 2.34 times faster than single-row compression, the fastest
entry in the Grid-Based Path-Planning Competition, while requiring 139.06 times less
memory. These results validate the hypothesis of this dissertation that one can develop
preprocessing-based path-planning algorithms for grid graphs that exploit their freespace
structure to improve the query-time/memory/path-suboptimality Pareto frontier of the
state-of-the-art algorithms.

This chapter is organized as follows. In Section 5.1, we provide a detailed summary
of the main ideas that we use in this chapter. In Section 5.2, we formally define grid
graphs and introduce notation that we use throughout this chapter. In Section 5.3, we
characterize the Octile property of grid graphs, introduce safe-freespace-reachability as
a reachability relation, prove that safe-freespace-reachability subgoal graphs can be con-
structed on grid graphs by using convex corners of blocked cells as subgoals, introduce
a connection algorithm for safe-freespace-reachability, and prove that this algorithm can
be used to construct safe-freespace-reachability subgoal graphs on grid graphs in time
linear in the size of the underlying grid. In Section 5.4, we show that jump-point search
can be understood as a search on a freespace-reachability subgoal graph constructed on
a direction-extended canonical grid graph. In Section 5.5, we introduce various aug-
mentations of contraction hierarchies with reachability relations, perform an extensive
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experimental evaluation of these variants, and compare our results to results from the
Grid-Based Path-Planning Competition. Finally, in Section 5.6, we summarize our re-
sults.

5.1 Introduction

In Chapter 4, we showed that the freespace structure of state lattices can be exploited to
achieve non-dominated query-time/path-suboptimality trade-offs by: 1) constructing Fb
or CFb strongly connected subgoal graphs, 2) storing freespace information compactly by
exploiting the translation invariance of freespace distances or freespace-canonical paths,
and 3) using freespace information to perform connection and refinement efficiently during
queries. However, we have failed to construct small subgoal graphs on state lattices, and
thus were not able to speed up the answering of path queries optimally beyond a factor
of ∼2.

In this chapter, we consider a specific type of state lattice, namely the grid graph,
where states describe only the locations of the agent, and primitives correspond to move-
ments in one of the four cardinal or four diagonal directions. Grid graphs have the Octile
property, the property that freespace-shortest paths on them consist of moves in at most
two directions, a diagonal one and an associated cardinal one. We exploit the Octile
property of grid graphs in three different ways: 1) The Octile property allows us to
implement Fb and CFb connection and refinement algorithms without storing freespace
information, since the required freespace information can be computed online, in con-
stant time: Freespace distances are equal to Octile distances, and freespace-shortest and
freespace-canonical successors, predecessors, and parents can be computed using diagonal
and associated cardinal moves along freespace-shortest paths. As a consequence of this,
we no longer need to use a reachability bound to limit the storage of freespace informa-
tion, and can construct F and CF subgoal graphs instead of Fb and CFb subgoal graphs.
2) An arguably more important benefit of the Octile property is that it allows for the
construction of small F and CF subgoal graphs: The convex corners of blocked cells form
both an F-SPC and a CF-SPC, and can thus be used as the subgoals of F and CF subgoal
graphs on grid graphs. That is, the F and CF subgoal graphs that we construct on grid
graphs are the same. We therefore refer to F and CF subgoal graphs simply as “sub-
goal graphs” in this chapter. Furthermore, these subgoal graphs can also be considered
to be safe-freespace-reachability (SF) subgoal graphs: Whereas F- and CF-reachability,
respectively, require at least one freespace-shortest path or the freespace-canonical path
between two vertices to be unblocked, SF-reachability can be considered to be a “stricter”
reachability relation that requires all freespace-shortest paths between two vertices to be
unblocked. Note that, since the F, CF, and SF subgoal graphs on grid graphs have the
same set of subgoals, they have the same set of edges as well (Definition 3.3). 3) Finally,
we exploit the Octile property of grid graphs by introducing a connection algorithm for
SF-reachability that uses precomputed clearance values to efficiently scan the grid for
subgoals, and prove that it can be used to construct subgoal graphs in time linear in the
size of the underlying grid.

The subgoal graphs that we construct and use to answer queries on grid graphs have
many similarities with jump-point search, an online path-planning algorithm on grid
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graphs that we have discussed as related work in Section 2.3.3. Namely, similar to sub-
goal graphs on grid graphs, jump-point search also considers the convex corners of blocked
cells as “important vertices”, and, similar to our connection algorithm for SF-reachability,
jump-point search also performs scans of the grid to efficiently perform “jumps”. These
similarities are not a coincidence: Sturtevant and Rabin break down jump-point search
into three components, a best-first search, a canonical ordering, and a jumping policy
(Sturtevant & Rabin, 2016). They also introduce canonical A* search, that can be con-
sidered both to be a jump-point search without the jumping policy, or an A* search
that prunes successors of expanded vertices using a canonical ordering. We characterize
the search space of canonical A* search as the direction-extended canonical grid graph,
and show that the set of jump points used by jump-point search form an F-SPC on the
direction-extended canonical grid graph. That is, we show that jump-point search can be
understood as a search on a jump-point graph, which is a subgoal graph constructed on
the direction-extended canonical grid graph.

Finally, we consider augmenting contraction hierarchies with reachability relations
in three different ways. We have already described two of these augmentations in Sec-
tion 3.4.2, namely constructing contraction hierarchies on subgoal graphs, or restricting
the edges of contraction hierarchies to be R-reachable (R contraction hierarchies). The
third augmentation is a simple modification that uses R-Refine rather than unpacking
to refine the R-reachable edges of contraction hierarchies. Therefore, we do not explain
these augmentations in further detail in this chapter, but simply experimentally evaluate
the query-time/memory trade-offs associated with them on grid graphs.

5.2 Preliminaries and Notation

As described in Section 2.1.3, grid graphs can be considered to be instances of state lattices
where states describe only the discretized location of the agent and edges correspond to
straight-line motions in one of the four cardinal or four diagonal directions. We outline
below the notation that we use for grid graphs, some of which is similar to the notation
that we use for state lattices.

Cell, grid, freespace grid: As defined in Chapter 4, a grid G ⊆ Z2 is a list of unblocked
cells (x, y) ∈ G and the freespace grid is the grid Z2. In this chapter, we use the term
“cell” instead of the term “state” (since states in grid graphs describe only the locations
of the agent) and use the terms “cell” and “vertex” interchangeably (since there is a
one-to-one correspondence between the vertices in grid graphs and the unblocked cells in
the underlying grid).

Move, direction: We refer to the eight “primitives” on grid graphs as “moves”. Each
move is associated with one of the four cardinal directions (Up, Left, Down, Right) or one
of the four diagonal directions that are formed by combining two perpendicular cardinal
directions. We typically use ~c to indicate a move in a cardinal direction (cardinal move), ~d
to indicate a move in a diagonal direction (diagonal move), and ~v to indicate a move in any
direction. We sometimes treat moves ~v as their directions: We use the notation ~v1 ⊥ ~v2
to denote that the directions (of the moves) ~v1 and ~v2 are perpendicular (for instance,
Up ⊥ Left). We use the algebra ~d = ~c1 +~c2 to denote that combining two perpendicular
cardinal directions ~c1 and ~c2 results in the diagonal direction ~d (for example, Up + Left
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= Up-Left). We refer to ~c1 and ~c2 as the “associated cardinal directions” of ~d. We use
the algebra t = s+ k · ~v to denote that a cell t is reached from a cell s by moving k steps
in direction ~v.

1 2 3

A

B

C

Figure 5.1: A grid graph. Corner-cutting diagonal moves (dashed lines) are not allowed.

Grid graph, freespace grid graph: Grid graphs are state lattices constructed with
respect to a grid G and the set of primitives that correspond to the eight moves discussed
above. We assume that cardinal moves have two swept cells, namely the source and
destination cells, and length 1. We assume that diagonal moves have four swept cells,
namely the 2×2 square of cells that contains the source and destination cells, and length√

2. The swept cells of diagonal moves enforce the “no corner-cutting” constraint, that
is, they disallow diagonal moves between two unblocked cells that share a neighboring
blocked cell, as shown by the dashed lines in Figure 5.1. Similar to state lattices, we
assume that G corresponds to the largest strongly connected component of the grid
graph. For instance, in Figure 5.1, A3 is not part of G since it is disconnected from the
largest strongly connected component of the grid graph. The freespace grid graph is a
freespace state lattices as defined in Chapter 4, and we therefore use the same notation
F for the freespace grid graph.

2-subpath, turn: We refer to any two-edge subpath 〈n,~v1, ~v2〉 of a path as a 2-subpath.
We refer to a 2-subpath 〈n,~v1, ~v2〉 with ~v1 6= ~v2 as a turn.

Taut, freespace-taut: We say that a path π is taut or freespace-taut if and only if
all 2-subpaths of π are shortest paths or freespace-shortest paths, respectively. Note
that, by definition, shortest or freespace-shortest paths are necessarily taut or freespace-
taut, respectively. However, taut or freespace-taut paths are not necessarily shortest or
freespace-shortest paths, respectively. For instance, in Figure 5.1 the path 〈A1,B1,C2,C3〉
is not freespace-shortest, but both of its 2-subpaths, namely 〈A1,B1,C2〉 and 〈B1,C2,C3〉
are freespace-taut.

Freespace-canonical, freespace-diagonal-first, freespace cardinal-first: As defined in
Definition 4.4, an s-t path is freespace-canonical if and only if it is the lexically small-
est freespace-shortest s-t path with respect to a given canonical ordering on the moves.
We say that a canonical ordering is diagonal-first if and only if it orders all diagonal
moves before cardinal ones. We say that a canonical ordering is cardinal-first if and
only if it orders all cardinal moves before diagonal ones. We say that a path is freespace-
diagonal-first if and only if it is a freespace-shortest path where all diagonal moves appear
before cardinal ones. We say that a path is freespace-cardinal-first if and only if it is a
freespace-shortest path where all cardinal moves appear before diagonal ones. That is,
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freespace-diagonal-first and freespace-cardinal-first paths are freespace-canonical paths
with respect to different canonical orderings (where diagonal moves are lexically smaller
than cardinal ones or vice versa).

5.3 Subgoal Graphs on Grid Graphs

In Section 4.6.5, we have observed that it is difficult to construct small BDb, Fb, or
CFb subgoal graphs on state lattices. In this section, we show that it is possible to
construct small F or CF subgoal graphs (that is, without reachability bounds) on grid
graphs by placing their subgoals at the convex corners of blocked cells. The resulting F
and CF subgoal graphs are equivalent, and can also be considered to be a safe-freespace-
reachability subgoal graph. We therefore refer to this F, CF, or safe-freespace-reachability
subgoal graph as the subgoal graph throughout this chapter. We discuss how the F and
CF refinement algorithms that we have developed for state lattices can be adapted to grid
graphs to exploit the Octile property, introduce a connection algorithm for safe-freespace-
reachability, and show that it can be used to construct subgoal graphs in time linear in
the size of the underlying grid.

This section is organized as follows. In Section 5.3.1, we characterize the freespace
structure of grid graphs as the Octile property. In Section 5.3.2, we adapt the F and CF
refinement algorithms to grid graphs to exploit the Octile property. In Section 5.3.3, we
introduce safe-freespace-reachability as a reachability relation, and, in Section 5.3.4, we
prove that the convex corner cells form a minimum safe-freespace-reachability SPC. In
Section 5.3.5, we introduce a connection algorithm for safe-freespace-reachability, and, in
Section 5.3.6, we prove that it can be used to construct subgoal graphs in time linear in
the size of the underlying grid.

5.3.1 Freespace Structure of Grid Graphs

Since grid graphs are instances of state lattices, they inherit the structural properties
of state lattices, namely the translation invariance of freespace distances and freespace-
canonical paths. However, since grid graphs are “very specific” instances of state lattices,
they have other properties that are not necessarily present in arbitrary state lattices.
Namely, on a grid with no blocked cells, shortest paths consist of moves in at most two
directions, a diagonal one and an associated cardinal one. We refer to this property as
the Octile property, which is used in the literature to efficiently calculate Octile distances,
that is, freespace distances on grid graphs. In this section, we describe this property in
greater detail.

Figure 5.2 shows all freespace-shortest paths between two cells on the freespace grid
graph. Observe that all freespace-shortest E2-B9 paths consist of three Up-Right moves
and four Right moves that are executed in different orders. In general, the Octile property
can be stated as follows.

Theorem 5.1 (Octile property). For every pair of cells s and t, there exist a diagonal
move ~d, an associated cardinal move ~c, and non-negative integers d and c, such that all
freespace-shortest s-t paths consist of d moves in direction ~d and c moves in direction ~c.
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Figure 5.2: Freespace-shortest paths on grid graphs. Red path: Freespace-diagonal-first
s-t path (equivalently, freespace-cardinal-first t-s path).

We omit the proof of Theorem 5.1 since it is a well-known property of grid graphs.
The Octile property allows for the efficient calculation of the numbers and directions of
moves along freespace-shortest paths between two cells, using only the coordinates of
the cells. Given s = (xs, ys) and t = (xt, yt), with t = s + d · ~d + c · ~c, ~d and ~c can
be determined in constant time by determining which ones of the inequalities xs < xt,
ys < yt, and |xs−xt| < |ys−yt| hold. Furthermore, d and c can be calculated in constant
time as follows:

∆x = |xs − xt|

∆y = |ys − yt|

d = min(∆x,∆y)

c = max(∆x,∆y)−min(∆x,∆y)

From these values, the freespace s-t distance, also known as the Octile distance, can be
calculated as follows:

dF (s, t) =
√

2 · d+ c = (
√

2− 1) ·min(∆x,∆y) + max(∆x,∆y)

5.3.2 F-Reachability and CF-Reachability on Grid Graphs

Since grid graphs are instances of state lattices, the definitions of F-reachability and CF-
reachability on state lattices (Definitions 4.2 and 4.5) also apply to grid graphs. Namely,
a cell t is F-reachable from a cell s if and only if a freespace-shortest s-t path is unblocked
on G, and CF-reachable if and only if the freespace-canonical s-t path (with respect to
a given canonical-ordering of the eight moves) is unblocked on G. In this section, we
describe how the F-Refine and CF-Refine algorithms (Algorithms 11 and 13) that we
have developed for state lattices can be adapted to grid graphs to exploit the Octile
property, and discuss the canonical orderings we use on grid graphs. We do not use
F-Connect and CF-Connect in this chapter, but introduce a connection algorithm for
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(a) Diagonal-first canonical ordering.
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(b) Symmetric canonical ordering.

Figure 5.3: All freespace-canonical paths that originate at a cell, for the diagonal-first
and symmetric canonical orderings.

safe-freespace-reachability in Section 5.3.5, which we use for constructing subgoal graphs
on grid graphs.

F-Refine: We can implement F-Refine such that, for every (s, t) ∈ F, it finds a
freespace-shortest s-t path that is unblocked on a grid graph G as follows: As discussed
in Section 5.3.1, there exist d, c, ~d, and ~c such that every freespace-shortest s-t path
consists of d diagonal moves in direction ~d and c cardinal moves in direction ~c; and d, c,
~d, ~c can be calculated in constant time from the coordinates of s and t. Since (s, t) ∈ F ,
at least one ordering of these moves corresponds to an unblocked s-t path on G. We can
find this ordering by performing a depth-first search from s on G that only generates
paths with at most d moves in direction ~d and c moves in direction ~c (and no moves in
any other directions). Once the depth-first search finds an unblocked path with exactly
d moves in direction ~d and c moves in direction ~c, the resulting path is guaranteed to be
a freespace-shortest s-t path on G.

Canonical orderings: Since freespace-shortest paths on grid graphs have moves in at
most two directions, every canonical ordering L that specifies, for every diagonal direction
~d and associated cardinal direction ~c, either ~d <L ~c or ~c <L

~d, also uniquely designates
exactly one freespace-shortest s-t path, either the diagonal-first or the cardinal-first one,
as the freespace-canonical s-t path. We refer to the canonical ordering that specifies
~d <L ~c for all such ~d and ~c as the diagonal-first canonical ordering. We refer to the
canonical ordering that specifies ~c <L

~d for all such ~d and ~c as the cardinal-first canonical
ordering. Figure 5.3a shows all freespace-diagonal-first paths that originate at a cell s.
Equivalently, it shows all freespace-cardinal-first paths that terminate at a cell s. Observe
that, although grid graphs are undirected, the CF-reachability relation with respect to
the diagonal-first or cardinal-first canonical ordering is not necessarily symmetric. For
instance, if, for some s, t ∈ V , the freespace-diagonal-first s-t path is unblocked but
the freespace-cardinal-first s-t path (equivalently, the freespace-diagonal-first t-s path) is
blocked, then (s, t) ∈ CF but (t, s) 6∈ CF.

We use the following canonical ordering on grid graphs, which we refer to as the
symmetric canonical ordering, or, simply, as the canonical ordering, which is guaranteed to
result in a symmetric CF-reachability relation (which we use in Section 5.5.9 to construct
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CF contraction hierarchies with undirected edges only): For every diagonal direction
~d = ~c1 +~c2, if ~c1 = Right or ~c2 = Right, then ~d <L ~c1 and ~d <L ~c2. Otherwise, ~c1 <L

~d
and ~c2 <L

~d. That is, for every (s, t) ∈ CF, if t is towards the Right of s, we require
that the freespace-diagonal-first s-t path is unblocked and, otherwise, we require that the
freespace-cardinal-first s-t path is unblocked. Figure 5.3b shows all freespace-canonical
paths that originate at a cell s, with respect to the symmetric canonical ordering.

CF-Refine: For every canonical ordering, we can implement CF-Refine to simply
generate, for any (s, t) ∈ CF, the freespace-diagonal-first or the freespace-cardinal-first
s-t path, depending on the canonical ordering and the relative locations of s and t on the
grid.

5.3.3 Safe-Freespace-Reachability (SF-Reachability)

In this section, we introduce a new reachability relation on grid graphs, called safe-
freespace-reachability (SF-reachability), formally defined in Definition 5.1.

Definition 5.1 (Safe-freespace-reachability). A vertex t is safe-freespace-reachable (SF-
reachable) from a vertex s, denoted as (s, t) ∈ SF, if and only if all freespace-shortest s-t
paths are unblocked on G.

F-, CF-, and SF-reachability relate to each other as follows: For every (s, t) ∈ SF, since
all freespace-shortest s-t paths are unblocked on G, the freespace-canonical s-t path must
be unblocked on G. Therefore, (s, t) ∈ CF and, consequently, SF ⊆ CF. As discussed in
Section 4.5.3, for every (s, t) ∈ CF, since the freespace-canonical s-t path is unblocked on
G, at least one freespace-shortest s-t path must be unblocked on G. Therefore, (s, t) ∈ F
and, consequently, CF ⊆ F. Combining these two facts, we get SF ⊆ CF ⊆ F.

We introduce a connection algorithm for SF-reachability in Section 5.3.5. Since SF ⊆
CF, we use CF-Refine as a refinement algorithm for SF-reachability as well.

5.3.4 Using Convex Corner Cells as Subgoals

In this section, we prove that the set of convex corner cells is a minimum SF-SPC, CF-
SPC, and F-SPC. We also discuss at the end of this section how subgoals could be placed
on other types of grid graphs.

Figure 5.4 shows an example of a convex corner cell, namely A2, placed at the convex
corner of blocked cell B1. Definition 5.2 defines convex corner cells.

Definition 5.2 (Convex Corner Cell). An unblocked cell s is a convex corner cell if and
only if there are two cardinal directions ~c1 ⊥ ~c2 such that s+~c1 +~c2 is blocked and s+~c1
and s+ ~c2 are unblocked. C is the set of all convex corner cells.

Observe that every convex corner cell has to be included in every SF-SPC, CF-SPC,
and F-SPC: Recall that an R-SPC S has the property that, for every s, t ∈ V , (s, t) ∈ R
or S @ (s, t) (S covers a shortest s-t path). Consider the example in Figure 5.4. The
unique freespace-shortest A1-B2 path 〈A1,B2〉 is blocked by B1 since it corresponds to a
corner-cutting diagonal move. Therefore, (A1, B2) 6∈ F ⊇ CF ⊇ SF, and every SF-SPC,
CF-SPC, and F-SPC has to cover at least one shortest A1-B2 path on G. However,
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Figure 5.4: A convex corner cell (red disk). A2 must be included in every F-SPC, CF-
SPC, or SF-SPC since B1 blocks the unique freespace-shortest A1-B2 path 〈A1, B2〉.
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Figure 5.5: A query subgoal graph Gs,tC on grid graphs. C is shown as red disks. All edges
are DC-, FC-, CFC-, and SFC-reachable.

there is only one shortest A1-B2 path on G, namely, 〈A1,A2,B2〉, which is covered by
only a single cell, namely, the convex corner cell A2. Therefore, A2 must be included in
every F-SPC, CF-SPC, or SF-SPC. Theorem 5.2 summarizes this result (proof omitted).
This theorem is a direct consequence of the fact that the grid graphs that we consider in
this dissertation exclude corner-cutting diagonal moves. As we discuss at the end of this
section, this result does not necessarily hold for other types of grid graphs.

Theorem 5.2. For every F-SPC, CF-SPC, or SF-SPC S, C ⊆ S.

Theorem 5.2 does not imply that C is an F-SPC, CF-SPC, or an SF-SPC, but only
states that C has to be part of every such SPC. Figure 5.5 shows the overlay graph GC of
the convex corner cells, extended to a query overlay graph Gs,tC using only DC-reachable
edges. Notice that all edges shown in Figure 5.5 connect SF-reachable (and, therefore,
CF- and F-reachable) cells. We now prove that C is an SF-SPC (and, by Lemma 3.11,
therefore also a CF-SPC and an F-SPC).

Let π be a shortest s-t path on G that is not covered by C. Lemma 5.3 proves
that π is freespace-taut. Lemma 5.4 proves that “swapping” consecutive cardinal and
diagonal moves on π produces unblocked paths. Lemma 5.5 uses the swapping operation
introduced in Lemma 5.4 to prove that π is also freespace-shortest, which is sufficient to
prove that (s, t) ∈ F . Theorem 5.6 uses the swapping operation introduced in Lemma 5.4
to rearrange the order of moves on π to produce any other freespace-shortest s-t path, to
prove that C is an SF-SPC.

We note that the fact that the vertices of safe-freespace-reachability subgoal graphs
on grid graphs are placed at convex corner cells is closely related to the fact that the
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vertices of visibility graphs on Euclidean spaces with polygonal obstacles (Lozano-Pérez
& Wesley, 1979) are placed at the convex corners of the polygons. Our proofs also reflect
this similarity, by showing that shortest paths that are not freespace-shortest (in the
case of visibility graphs, shortest paths that are not straight lines) must pass through
a convex corner cell (convex corner of a polygon) because, otherwise, they cannot be
shortest paths.

Lemma 5.3. Let π be a shortest s-t path on G, such that C 6@ π. Then, π is freespace-
taut.

Proof. We prove that, if π is a shortest path and C 6@ π, then π is freespace-taut, that is,
all its 2-subpaths are freespace-shortest paths. Figure 5.6 shows all possible 2-subpaths
〈n,~v1, ~v2〉 that can appear on a path with no cycles. The first move ~v1 is shown as a black
arrow, and all possible second moves ~v2 are shown as red, blue, or green arrows.

1 2 3

A

B

C

(a) Cases where the first move is cardinal.

1 2 3

A

B

C

(b) Cases where the first move is diagonal.

Figure 5.6: All possible 2-subpaths on grid graphs that do not form cycles. The black
arrow denotes the first move. Red arrows denote moves that are guaranteed to form
non-taut 2-subpaths with the first move. Blue arrows denote moves that may or may
not form taut 2-subpaths with the first move. Green arrows denote moves that form
freespace-taut 2-subpaths with the first move.

We consider three cases:

• The second move is red: Then, the two moves cannot form a taut 2-subpath and,
therefore, π cannot be a shortest path, contradicting that it is. For instance, Right
followed by Up-Left can be replaced with Up, which is strictly shorter. On any grid
graph where Right followed by Up-Left is unblocked, Up must also be unblocked.
This reasoning applies to all cases where the second move is red.

• The second move is blue: This case considers two perpendicular cardinal directions
~c1 ⊥ ~c2. Let ~d = ~c1 + ~c2. We consider two subcases: 1) If 〈n, ~d〉 is unblocked, then
〈n,~c1,~c2〉 is not taut and, therefore, π cannot be a shortest path, contradicting that
it is. 2) If 〈n, ~d〉 is blocked (but 〈n,~c1,~c2〉 is unblocked), then it must be the case
that n+ ~c1 ∈ C, which covers 〈n,~c1,~c2〉, contradicting that C 6@ π.

• The second move is green: Then, the two moves form a freespace-taut 2-subpath.

Since, in any 2-subpath in π, the second move cannot be red or blue, the second move
must be green, and, therefore, the 2-subpath must be freespace-taut. Therefore, π is
freespace-taut.
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Lemma 5.4. Let π be a shortest s-t path on G, such that C 6@ π. Then, swapping the
order of any two consecutive moves on π results in an (unblocked) shortest s-t path on G.

Proof. By Lemma 5.3, every pair of consecutive moves ~vi and ~vi+1 on π form a freespace-
taut 2-subpath. If ~v1 = ~v2, then swapping them in π results in π. Otherwise, it must be
the case that exactly one of ~v1 or ~v2 is a diagonal move, and the other one an associated
cardinal move. Figure 5.7 shows both cases (swapping the order of moves in one case
results in the other case):

1 2 3

A

B

Figure 5.7: Replacing diagonal-to-cardinal turns with cardinal-to-diagonal turns.

Without loss of generality, we prove the lemma for moving ~c = Right first and ~d =
Down-Right second from cell A1. Since the (black) path 〈A1,~c, ~d〉 = 〈A1, A2, B3〉 is
unblocked, the cells A1, A2, A3, B2, and B3 must be unblocked. Since C 6@ π and
we assume that 〈A1, A2, B3〉 is a 2-subpath of π, C 6@ 〈A1, A2, B3〉 (Definition 3.1).
Therefore, A2 cannot be a convex corner cell. Consequently, B1 must be unblocked
because, otherwise, A2 would be a convex corner cell. Therefore, all six cells must be
unblocked, and the (red) path 〈A1, ~d,~c〉 is also unblocked.

Lemma 5.5. Let π be a shortest s-t path on G, such that C 6@ π. Then, π is freespace-
shortest.

Proof. Let π = 〈s,~v1, . . . , ~vk〉 be a shortest path with C 6@ π. We prove that any two moves
on π (not necessarily consecutive ones) can be combined into a freespace-shortest path.
That is, we prove that, for every ~vi and ~vj on π, it holds that ~vi = ~vj or that exactly one
of vi or vj is in a diagonal direction and the other one in an associated cardinal direction.

Consequently, π must be freespace shortest, that is, there exist a diagonal direction ~d and
an associated cardinal direction ~c such that, for all ~vi, either ~vi = ~d or ~vi = ~c (otherwise,
if no such ~d and ~c exist, then at least two moves on π combine into a path that is not
freespace-shortest).

Assume, for contradiction, that two non-consecutive moves ~vi and ~vj appear on π
that combine into a 2-subpath that is not freespace-shortest. Let ~vi and ~vj be two such
moves with i < j and minimum j − i. By Lemma 5.3, all 2-subpaths of π are freespace-
shortest. Intuitively, there can only be two cases that satisfy these criteria, which are
shown in Figure 5.8. The path 〈n,~vi, . . . , ~vj〉 is shown in black (and the dotted line
corresponds to the sequence of moves ~vi+1, . . . , ~vj−1). In both cases, we can prove that
either C @ 〈~vi, . . . , ~vj〉, or that we can replace 〈~vi, . . . , ~vj〉 in π with a strictly shorter path,
shown in red, contradicting that π is a shortest path with C 6@ π.

Without loss of generality, assume that ~vi = ~d is a diagonal move. We prove that
Case 1 holds. (A similar proof can be used to show that Case 2 holds if ~vi = ~c is a
cardinal move.) First, we prove that there exists a cardinal move ~c associated with ~d
such that, for every m ∈ {i+ 1, . . . , j − 1}, ~vm = ~c, by induction on m. Base case: Since
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(b) Case 1.

1 2 3

A

B

C

(a) Case 2.

Figure 5.8: Black paths are freespace-taut but not freespace-shortest. Red paths are
freespace-shortest. Dashed arrows indicate any positive number of repeated moves in a
given direction.

〈~vi = ~d,~vi+1〉 is freespace-shortest (Lemma 5.3), it holds that either ~vi+1 = ~vi or ~vi+1 = ~c
for some cardinal move ~c associated with ~d. However, ~vi+1 6= ~vi because, otherwise,
~vi+1 and ~vj combine into a 2-subpath that is not freespace shortest, contradicting that
~vi and ~vj are two such moves with i < j and the minimum j − i. Therefore, ~vi+1 = ~c

for some cardinal direction ~c associated with ~d. Induction step: Assume that ~vm = ~c for
some cardinal direction ~c associated with ~d. Since 〈~vm = ~c,~vm+1〉 is freespace-shortest
(Lemma 5.3), it holds that either ~vm+1 = ~vm = ~c, ~vi+1 = ~d, or ~vi+1 = ~d′ for the other
diagonal move ~d′ 6= ~d associated with ~c. However, ~vm+1 6= ~d (and ~vm+1 6= ~d′) because,
otherwise, ~vm+1 and ~vj (or ~vi and ~vm+1) combine into a 2-subpath that is not freespace
shortest, contradicting that ~vi and ~vj are two such moves with i < j and the minimum
j − i. Therefore, ~vm+1 = ~vm = ~c and, consequently, ~vi+1 = · · · = ~vj−1 = ~c for some

cardinal move ~c associated with ~d. Second, we prove that ~vj = ~d′ for the other diagonal

move ~d′ 6= ~d associated with ~c. Since 〈~vj−1 = ~c,~vj〉 is freespace-shortest (Lemma 5.3),

it holds that either ~vj = ~vj−1 = ~c, ~vi+1 = ~d, or ~vi+1 = ~d′ for the other diagonal move
~d′ 6= ~d associated with ~c. However, since we assume that vi = ~c and vj do not combine

into a 2-subpath that is freespace shortest, ~vj 6= ~d and ~vj 6= ~c. Therefore, ~vj = ~d′ and,
consequently, Case 1 holds.

Assume that Case 1 (or, similarly, Case 2) holds. Let n = s + ~v0 + · · · + ~vi−1 (that
is, the vertex from which ~vi is executed on π). We prove that 〈n,~vi, . . . , ~vj〉 is not a
shortest path, by transforming it to a shorter path (that is, we transform the black path
in Figure 5.8 to the red path). Let π0, . . . , πj−i−1 be the sequence of paths such that

π0 = 〈n,~vi = ~d, vi+1 = ~c, . . . , ~vj−1 = ~c,~vj = ~d′〉 (no cardinal moves appear before the
first diagonal move) and, for every m ∈ {1, . . . , πj−i−1}, πm = 〈n,~vi+1 = ~c, . . . , ~vi+m =

~c,~vi = ~d,~vi+m+1 = ~c, . . . , ~vj−1 = ~c,~vj = ~d′〉 (m cardinal moves appear before the first
diagonal move). That is, πm+1 is obtained from πm by swapping the order of the diagonal
move ~vi = ~d with the cardinal move ~vi+m+1 = ~c that follows it on πm. We prove that,
for m = 0, . . . , j − 1 − 1, πm is unblocked on G by induction on m. Base case: π0 is
a subpath of π, and is therefore unblocked on G. Induction step: Assume that πm is
unblocked on G. πm+1 is obtained by replacing the path 〈n′, ~vi = ~d, n′′, ~vi+m+1 = ~c〉
in πm with the path 〈n′, ~vi+m+1, ~vi〉. Observe that, similar to π, n′′ is reached from n
on πm with one diagonal move ~d and m cardinal moves ~c. Therefore, n′′ is an internal
vertex π. Since C 6@ π, n′ 6∈ C (Definition 3.1). Since 〈n′, ~vi, n′′, ~vi+m+1〉 is a subpath of
πm, it is unblocked. Therefore, Lemma 5.4 applies to 〈n′, ~vi, n′′, ~vi+m+1〉, and the path
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〈n′, ~vi+m+1, ~vi〉 is unblocked on G. Consequently, πm+1 is unblocked on G. Consequently,
πj−i−1 = 〈n,~vi+1 = ~c, . . . , ~vj−1 = ~c,~vi = ~d,~vj = ~d′〉 is unblocked on G.

πj−i−1 has the same length as π0, since it is obtained by reordering moves on π0.

However, replacing the subpath 〈n′′′, ~vi = ~d,~vj = ~d′〉 in πj−i−1 with the path 〈n′′′,~c,~c〉
produces a path that is shorter than πj−i−1 and, therefore, shorter than π0. Consequently,
π0 is not a shortest path and, since π0 is a subpath of π, π cannot be a shortest path,
contradicting our assumption that it is. Therefore, no ~vi and ~vj on π combine into a
non-freespace-shortest path. Consequently, π must be freespace shortest, that is, there
exist a diagonal direction ~d and an associated cardinal direction ~c such that, for all ~vi,
either ~vi = ~d or ~vi = ~c (otherwise, if no such ~d and ~c exist, then at least two moves on π
combine into a path that is not freespace-shortest).

Theorem 5.6. C is an SF-SPC.

Proof. We show that, for every s, t ∈ V , (s, t) ∈ SF or C @ (s, t). Assume, for contradic-
tion, that there exists s, t ∈ V with (s, t) 6∈ SF and C 6@ (s, t). Let π be a shortest s-t path.
Since C 6@ (s, t), C 6@ π (Definition 3.1). Then, by Lemma 5.5, π is freespace-shortest.
(Note that, this would conclude the proof if we were proving that C is an F-SPC). We
now prove that every freespace-shortest s-t path π′ is unblocked on G, that is (s, t) ∈ SF,
to arrive at a contradiction.

Let π′ be any freespace-shortest s-t path. Since π and π′ are both freespace-shortest
s-t paths, they consists of the same set of moves, but possibly correspond to different
orderings of these moves. Therefore, we can generate π′ from π by swapping consecutive
moves on π a finite number of times (that is, “sort” the moves on π′ to match π). Let
π0 = π, . . . , πk = π′ be the sequence of paths, where, for each i = 1, . . . , k, we can obtain
πi from πi−1 with a single “swap”. We show that, by induction on i = 0, . . . , k, πi is
unblocked on G. Base case: For i = 0, π0 = π, which is known to be unblocked. Induction
step: Assume that πi is unblocked. Since πi is freespace-shortest and unblocked, it is a
shortest path on G (Lemma 4.3). Since C 6@ (s, t), C 6@ πi (Definition 3.1). Therefore,
Lemma 5.4 applies to πi, and, since πi+1 is derived from πi by “swapping” two consecutive
moves, πi+1 is unblocked on G.

Since all freespace-shortest s-t paths are unblocked on G, (s, t) ∈ SF, contradicting
that (s, t) 6∈ SF. Therefore, for every s, t ∈ V , (s, t) ∈ SF or C @ (s, t), and, consequently,
C is an SF-SPC.

By Theorems 5.2 and 5.6, the set of convex corner cells C is the minimum SF-SPC,
CF-SPC, and F-SPC. The fact that C is the minimum SF-SPC is a direct consequence
of the fact that the grid graphs that we consider in this dissertation exclude corner-
cutting diagonal moves. However, the intuition that cells associated with convex corners of
blocked cells are “important” applies to other variations of grid graphs as well. Figure 5.9
shows an example. On a 4-neighbor grid graph (Figure 5.9a), the set of convex corner cells
also forms an SF-SPC. On an 8-neighbor grid graph with corner-cutting diagonal-moves
(Figure 5.9b), the cells adjacent to convex corner cells form a SF-SPC. However, these
sets of cells are not necessarily minimal SF-SPCs. For instance, in Figure 5.9b, C9 can be
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(a) An F-SPC on a 4-neighbor grid graph.
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(b) An F-SPC on an (8-neighbor) grid graph
with corner-cutting diagonal-moves.

Figure 5.9: Placement of subgoals on other types of grid graphs. The set of all (red or
white) disks shows the “important” cells associated with convex corners and forms an
SF-SPC. The set of red disks show one possible placement of subgoals as F-SPCs.

excluded from an SF-SPC. More generally, on 8-neighbor grid graphs with corner-cutting
diagonal moves, all concave corner cells can be excluded from SF-SPCs (since shortest
paths do not “bend” around concave corners as they do around convex corners). As we
will see in our experimental evaluation in Section 5.5.4, the exclusion of corner-cutting
diagonal moves in the grid graphs that we consider in this dissertation results in the
staircase problem, which negatively affects the execution times of answering queries using
subgoal graphs. F-SPC can be significantly smaller than SF-SPCs on different types of
grid graphs. The red disks in Figures 5.9a and 5.9b show F-SPCs that are smaller than
SF-SPCs. Finally, minimal F-SPCs are not necessarily unique on different types of grid
graphs (like they are on grid graphs without corner-cutting diagonal moves). For instance,
if A6 were removed from the F-SPC shown in Figure 5.9b, it can be replaced with B5
and B7, resulting in a different minimal F-SPC. A more formal analysis of the placement
of subgoals on other types of grid graphs is beyond the scope of this dissertation.

5.3.5 SF-Connect

In this section, we introduce a connection algorithm for SF-reachability. Algorithm 14
outlines the SF→-Connect algorithm, which uses precomputed clearance values to scan
the grid efficiently, and, as we show in Section 5.3.6, can be used to construct GC in
time linear in the size of the underlying grid. SF→-Connect is exact, that is, identifies
the set of SFC-reachable subgoals from a given vertex exactly. However, since it relies
on precomputed clearance values, it might not connect the start vertex to the goal vertex
even if they are SF-reachable. Algorithm 15 outlines the SF-Connect algorithm, which
executes SF→-Connect twice, once from the start vertex and once from the goal vertex,
and addresses the shortcoming of SF→-Connect by performing a separate check to see if
the freespace-diagonal-first path from the start vertex to the goal vertex is unblocked.

We break down the operation of SF→-Connect (Algorithm 14) from a given vertex s
into three components: 1) SF→-Connect explores only freespace-diagonal-first paths that
originate at s, and only those paths that are not covered by C. That is, its operation is
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Algorithm 14 SF→-Connect.

Blue text: Only used for exactly identifying the SFC-reachable subgoals from s.
Input: Start vertex s
Output: The set D of SFC-reachable subgoals from s

1: function CardinalScan(n, ~c, &D, &clearance limit)
2: if 0 < C[n,~c] ≤ clearance limit then
3: clearance limit ← C[n,~c]
4: if n+ ~c ·C[n,~c] is a subgoal then
5: add n+ ~c ·C[n,~c] to D
6: clearance limit ← clearance limit −1

7: function DiagonalFirstScan(n, ~d, &D)
8: assign ~c1,~c2 such that ~c1 + ~c2 = ~d
9: clearance limit 1 ← C[s,~c1]− 1 if s+ ~c1 ·C[s,~c1] is a subgoal, C[s,~c1] otherwise

10: clearance limit 2 ← C[s,~c2]− 1 if s+ ~c2 ·C[s,~c2] is a subgoal, C[s,~c2] otherwise
11: while can move from n to n+ ~d do
12: n← n+ ~d
13: if n is a subgoal then
14: add n to D
15: return
16: CardinalScan(n, ~c1, D, clearance limit 1)
17: CardinalScan(n, ~c2, D, clearance limit 2)

18: function SF→-Connect(s)
19: D ← ∅
20: for all cardinal directions ~c do
21: CardinalScan(s, ~c, D, ∞)

22: for all diagonal directions ~d do
23: DiagonalFirstScan(s, ~d, D)

24: return D

similar to that of CF→-Connect (Algorithm 12), assuming that the canonical ordering is
diagonal-first. We informally refer to the exploration of freespace-diagonal-first paths as
“scanning the grid”. 2) SF→-Connect uses precomputed cardinal clearance values to scan
the grid more efficiently. 3) SF→-Connect terminates some of its scans early to identify
SFC-reachable subgoals from a given vertex exactly. We use Figure 5.10 as a running
example throughout this section.

• Exploring freespace-diagonal-first paths (scanning the grid): SF→-Connect explores
freespace-diagonal-first paths that originate at s, and only those paths that are not
covered by C. These paths are shown as a combination of black, green, and red lines
in Figure 5.10. For every SFC-reachable vertex t from s, the freespace-diagonal-first
s-t path must be unblocked and not covered by C: If it is blocked, then t is not
SF-reachable from s, and, if it is covered by C, then t is not direct-reachable from
s. Therefore, SF→-Connect can identify all SFC-reachable subgoals from s.
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Figure 5.10: SF→-Connect scans the diagonal-first path to every cell that is SFC-reachable
from s. Subgoals (C) that are SFC-reachable from s are shown in green, and subgoals
that are not SFC-reachable from s are shown in red. Clearance-value look-ups are shown
as dotted lines, where the green parts sweep cells that are SFC-reachable from s and the
red parts sweep cells that are not SFC-reachable from s.

SF→-Connect systematically explores these paths as follows: First, SF→-Connect
explores all freespace-diagonal-first paths that consists of only cardinal moves, by
performing cardinal scans (CardinalScan, lines 20–21) from s in every cardinal di-
rection ~c. A cardinal scan from s in direction ~c scans the grid from s in direction
~c until a subgoal or a blocked cell is reached (lines 1–6). Second, SF→-Connect ex-
plores all freespace-diagonal-first paths that contains at least one diagonal move, by
performing a diagonal-first scan (DiagonalFirstScan, lines 22–23). A diagonal-first
scan from s in direction ~d proceeds similarly to a cardinal scan, and scans the grid
from s in direction ~d until a subgoal is reached or a ~d move is no longer possible due
to blocked cells (lines 11–15), but also branches off into cardinal scans in directions
~c1 + ~c2 = d (line 8) from every visited unblocked cell that is not a subgoal (lines
16–17).

• Clearance values: The results of cardinal scans for every starting cell n and car-
dinal direction ~c can be precomputed and stored as clearance values. That is, the
clearance value C[n,~c] of a cell n in direction ~c is the number of moves that can be
made from n in direction ~c to reach a subgoal or a blocked cell. Using precomputed
clearance values, cardinal scans of SF→-Connect reduce to clearance-value look-ups
(line 4), and the execution time of SF→-Connect can be measured by the length of
its diagonal scans, shown as black lines in Figure 5.10. We discuss the complexity
of SF→-Connect in more detail in Section 5.3.6.

• Clearance limits: Freespace-diagonal-first paths that originate at s and are not
covered by C can reach cells that are not SFC-reachable from s. In Figure 5.10, paths
that reach such cells are shown in red. For instance, D13 is reached from s with
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a freespace-diagonal-first path that is not covered by C, but is not SFC-reachable
from s = F6 since the subgoal at E12 covers a shortest F6-D13 path. In order to
ensure that it scans only SFC-reachable cells from s, SF→-Connect terminates some
of its cardinal scans early by following two simple rules. Rule 1: When performing
cardinal scans in direction ~c during a diagonal-first scan in direction ~d, the ith
cardinal scan cannot extend further than any of the previous cardinal scans (line
2), where the cardinal scan from s in direction ~c is assumed to be the 0th scan.
Rule 2: If a cardinal scan finds a subgoal, its length is treated as one cell shorter for
limiting the subsequent cardinal scans. SF→-Connect implements these two rules
by maintaining a “clearance limit” (shown in blue text in Algorithm 14), which
is initialized to C[s,~c] (minus one if s + ~c · C[s,~c] is a subgoal) (lines 9–10), and
adjusted after each scan according to the two rules (lines 2,3, and 5). Any clearance
value is then truncated to the clearance limit (line 2). We now explain the intuition
behind these two rules.

By definition, a cell t is SFC-reachable from s if and only if all freespace-shortest
s-t paths are unblocked (Definition 5.1), and none of these paths are covered by C
(Definition 3.2). Since freespace-shortest s-t paths correspond to different orderings
of a given set of diagonal and associated cardinal moves (Theorem 5.1), they form
a “parallelogram area”, as shown in Figure 5.2. Intuitively, for a cell t to be SFC-
reachable from s, the parallelogram area between them cannot contain blocked
cells that block freespace-shortest s-t paths, and cannot contain subgoals that cover
freespace-shortest s-t paths. To ensure that it scans only those cells t that are SFC-
reachable from s, SF→-Connect therefore has to verify that the parallelogram area
between s and t satisfies these criteria. Therefore, it uses Rule 1 to make sure that
parallelogram areas from s to scanned cells do not contain blocked cells, and uses
both Rules 1 and 2 to make sure that parallelogram areas from s to scanned cells
do not contain subgoals that cover freespace-shortest paths from s.

Algorithm 15 SF-Connect.

Input: Start vertex s, goal vertex t
Output: The freespace-diagonal-first s-t path π if π is unblocked; the set of edges E+ =

SFs→SS ∪ SFS→tS and edge lengths c+ such that, ∀(u, v) ∈ E+, c+(u, v) = d(u, v)
otherwise

1: if the freespace-diagonal-first s-t path π is unblocked then
2: return π
3: E+ ← ∅
4: D ← SF→-Connect(s)
5: for all n ∈ D do
6: Add (s, n) to E+ with c+(s, n) = OctileDistance(s, n)

7: D ← SF→-Connect(t)
8: for all n ∈ D do
9: Add (n, t) to E+ with c+(n, t) = OctileDistance(n, t)

10: return E+, c+
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Although SF→-Connect can identify the set of SFC-reachable subgoals from s exactly,
it cannot determine if the goal vertex t is SFC-reachable from s, due to its reliance on
precomputed clearance values. SF-Connect (Algorithm 15) accounts for this shortcoming
of SF→-Connect by first checking if the freespace-diagonal-first s-t path π is unblocked
(line 1). If so, it returns π as a shortest s-t path (line 2). Otherwise, it has determined
that t cannot be SF-reachable from s since a freespace-shortest s-t path is blocked, and
proceeds to execute SF→-Connect from s and from t and returns the corresponding edges
(lines 3–10).

5.3.6 Linear Time Preprocessing

In this section, we prove that subgoal graphs can be constructed in time linear in the
size of the underlying grid by using SF→-Connect. Specifically, we prove that, if the
underlying grid has width W and height H, C can be identified in O(WH) time (Lemma
5.7), cardinal clearance values can be computed in O(WH) time (Lemma 5.8), SF→-
Connect can be executed from every cell n ∈ C to identify the edges of GC in O(WH)
time (Lemma 5.9), and, therefore, GC can be constructed in O(WH) time (Theorem 5.10).
This result also proves that the memory required to store all cardinal clearance values
and GC is O(WH) as well, since the auxiliary information is generated by an O(WH)
time preprocessing operation and thus can be stored using O(WH) memory.

Lemma 5.7. C can be identified in O(WH) time.

Proof. For each cell, we can determine whether it is a convex corner cell in constant time,
since, by Definition 5.2, we only need to consider its eight surrounding cells. To compute
C, we then only need to iterate over the O(WH) cells once and perform a constant-time
operation for each cell.

Lemma 5.8. All four cardinal clearance values for all unblocked cells can be computed
in O(WH) time.

Proof. The Left clearance values for all unblocked cells can be computed by scanning
each row of the grid from right to left once, while counting the number of consecutive
unblocked cells visited since the last time a blocked cell or a convex corner cell is visited.
This operation visits each cell once, and requires constant time per visited cell (assigning
a clearance value to that cell and either incrementing or resetting the current count of
unblocked cells). Therefore, it requires O(WH) time. The Right, Up, and Down clearance
values can be computed similarly by scanning the grid in different directions.

Lemma 5.9. The edges of GC can be computed in O(WH) time.

Proof. To identify the edges of GC , we can run SF→-Connect (Algorithm 14) once from
each s ∈ C. We prove that the total execution time of running SF→-Connect from each
s ∈ C is O(WH).

The cardinal scans (lines 20–21) from each s ∈ C in all four cardinal directions ~c
require O(WH) time since SF→-Connect performs four constant-time clearance-value
look-ups from each s ∈ C ⊆ G.

190



Consider two diagonal-first scans (lines 22–23) from any two different cells u, v ∈ C
in the same diagonal direction ~d. The diagonals iterated over by these two diagonal-first
scans cannot overlap, since a diagonal-first scan terminates once it reaches a cell n ∈ C
(lines 13–15). For instance, if the diagonal-first scan from u in direction ~d reaches v ∈ C,
it stops before iterating over the cells that the diagonal-first scan from v in direction ~d
iterates over. Therefore, each one of the O(WH) cells can be iterated over by at most
one diagonal-first scan from a vertex n ∈ C in a given diagonal direction ~d. Since SF→-
Connect processes each visited cell it iterates over during a diagonal-first scan in constant
time, by performing two cardinal clearance-value look-ups and updating clearance limits
accordingly, the total time to perform all diagonal-first scans from all s ∈ C in direction
~d is O(WH). Since there are only four diagonal directions, the total time to perform all
diagonal-first scans from all s ∈ C is O(WH).

Theorem 5.10. GC can be computed in O(WH) time. All cardinal clearance values and
GC can be stored using O(WH) memory.

5.4 Jump-Point Graphs

In this section, we examine the similarities between subgoal graphs on grid graphs and
jump-point search (Harabor & Grastien, 2011; Harabor et al., 2014), and show that
jump-point search can be understood as a search on a subgoal graph constructed on the
direction-extended canonical grid graph.

5.4.1 Jump-Point Search

As described in Section 2.3.3, jump-point search is an online (that is, does not perform
preprocessing) path-planning algorithm that is specialized for grid graphs, uses a diagonal-
first canonical ordering to consider only a small number of successors per expanded vertex,
and performs “jumps” between “jump points” to expand only a small number of vertices.
In this section, we describe the operation of jump-point search using our terminology.

Jump-point search only explores diagonal-first paths, that is, taut paths where no
cardinal-to-diagonal turn can be replaced with a diagonal-to-cardinal turn (Harabor &
Grastien, 2011, Definition 4). In this dissertation, we refer to such paths as locally-
diagonal-first paths, since the canonicity constraints on these paths are defined “locally”
on their 2-subpaths. To clarify, locally-diagonal-first paths differ from freespace-diagonal-
first paths as follows: 1) Freespace-diagonal-first paths are shortest paths on F (that is,
they are freespace shortest). Locally-diagonal-paths are not necessarily shortest paths
on F or G. However, they are taut paths on G, that is, their 2-subpaths are shortest
paths on G. 2) Freespace-diagonal-first paths are the lexically smallest shortest paths on
F . Locally-diagonal-first paths are not necessarily the lexically smallest paths on G or
F . However, all their 2-subpaths are lexically smallest shortest paths on G. 3) Between
every pair of cells on G, there exists at most one freespace-diagonal-first path (if it is not
blocked) but there might exists multiple locally-diagonal-first paths. In fact, as we prove
in Lemma 5.11, between every pair of cells s an t on G, at least one shortest s-t path on
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Figure 5.11: Operation of jump-point search. Straight jump points are shown as red
arrows, and diagonal jump points are shown as orange arrows. Solid lines show freespace-
diagonal-first paths that generated jump points, and dashed lines show freespace-diagonal-
first paths that are scanned but do not generate jump points.

G is guaranteed to be locally-diagonal-first. Therefore, jump-point search is guaranteed
to find shortest paths even though it only explores locally-diagonal-first paths.

Lemma 5.11. For every shortest s-t path π on G, there exists a locally-diagonal-first
shortest s-t path π′ on G with l(π) = l(π′).

Proof. Since π is a shortest path, it is taut. If π is not locally-diagonal-first, then there
must be a cardinal-to-diagonal turn on π that can be replaced with a diagonal-to-cardinal
turn that produces an unblocked path (that is lexically smaller than the cardinal-to-
diagonal turn with respect to the diagonal-first canonical ordering). Recursively replac-
ing such cardinal-to-diagonal turns in π with diagonal-to-cardinal turns until no such
cardinal-to-diagonal turn remains results in a path π′ with l(π) = l(π′) that is locally-
diagonal-first.

Jump-point search explores locally-diagonal-first paths by combining freespace-diag-
onal-first paths. When jump-point search expands the start vertex, it scans freespace-
diagonal-first paths that extend from it to identify its jump-point successors, and inserts
them into the OPEN list. Each jump point is associated with an incoming direction,
which is the direction of the last move along the freespace-diagonal-first path that is
used to reach that jump point. When jump-point search expands a jump-point, it scans
freespace-diagonal-first paths that extend from the jump-point to identify its jump-point
successors, but only in directions that form locally-diagonal-first 2-subpaths with the in-
coming direction of the jump point. Jump-point search distinguishes between straight
and diagonal (intermediate) jump points. Straight jump points are always placed at con-
vex corners cells, where the diagonal-first freespace path from the expanded vertex can
be extended with a cardinal-to-cardinal turn that is taut (which is referred to as a “forced
neighbor”). Diagonal jump points can be placed at any unblocked cell on the grid, and
are only placed at a cell if there is a straight jump point that can be reached from that cell
with a sequence of moves in a cardinal direction ~c that is associated with the incoming
direction ~d of the diagonal jump point.
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Figure 5.11 shows an example of the operation of jump-point search. When the start
vertex s = A1 is expanded, a straight jump point (A2, Right) is identified as its successor,
since the path 〈A1, A2, B2〉 forms a cardinal-to-cardinal turn that is taut. When the
jump point (A2, Right) is expanded, jump-point search scans the freespace-diagonal-
first paths that extend from A2 in directions Down, Right, and Down-Right, which form
locally-diagonal-first 2-subpaths with the incoming direction Right of (A2, Right). The
scan terminates when it generates (F4, Down) as a straight jump point (due to the path
〈E4, F4, F3〉 forming a taut cardinal-to-cardinal turn) and generates (C4, Down-Right)
as a diagonal jump point that can reach (F4, Down) with a sequence of Down moves.
Jump-point search proceeds by expanding (C4, Down-Right) to generate the straight
jump point (E9, Right) and the intermediate diagonal jump point (E6, Down-Right),
and finally expanding (E9, Right) to generate the goal vertex t = C9. When (E9, Right)
is expanded, the freespace-diagonal-first paths that extend from E9 in direction Down-
Right are not scanned. This is so, because, although Down-Right forms a taut turn with
the incoming direction Right of (E9, Right) at E9, namely the turn 〈E8, E9, F10〉, it does
not form a locally-diagonal-first 2-subpath, since it can be replaced with the diagonal-first
path 〈E8, F9, F10〉.

So far, we have explained the operation of the offline version of jump-point search,
abbreviated as JPS (Harabor & Grastien, 2011). After our publication of subgoal graphs
on grid graphs (Uras, Koenig, & Hernandez, 2013), Harabor et al. (Harabor et al., 2014)
introduced a preprocessing-based variant of jump-point search, called JPS+, that uses
clearance values, similar to SF-Connect, to speed up the scanning of the grid for jump
point successors of expanded vertices, and a variant called JPS+P that uses only straight
jump points, which, as described earlier, are placed at the convex corner cells. JPS+P
makes the similarities between jump-point search and answering queries using subgoal
graphs clearer: both algorithms consider convex corner cells as “important” vertices and
use clearance values to efficiently scan the grid for freespace-diagonal-first paths. We
aim to formally characterize their similarities and differences in the following sections,
by introducing direction-extended canonical grid graphs. We now describe JPS+ and
JPS+P in further detail.

Figure 5.12 shows the operation of JPS+P. Similar to JPS, JPS+P expands s =A1
to generate the jump point (A2, Right). Unlike JPS, when JPS+ expands (A2, Right), it
generates (F4, Down) and (E9, Right) as its successors, without generating (C4, Down-
Right) and (E6, Down-Right) as diagonal (intermediate) jump points. The “P” in JPS+P
stands for “improved pruning rules” (Harabor et al., 2014) since JPS+P can be considered
to be immediately expanding diagonal jump points, effectively pruning them from the
search.

JPS+P (and JPS+) uses clearance values, similar to SF-Connect (Algorithm 14), to
efficiently scan the grid to generate jump-point successors of expanded vertices (rather
than direct-SF-reachable subgoals from the start or the goal), with the following differ-
ences: 1) JPS+P does not use a “clearance limit” to limit its scans to SFC-reachable
cells (that is, the blue text in Algorithm 14 is omitted), since doing so would result
in JPS+P identifying jump point successors incorrectly. As described in Section 5.3.5,
without the clearance limit, SF-Connect explores all freespace-diagonal-first paths that
originate at the start vertex, similar to the scans performed during a jump-point search.
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Figure 5.12: Operation of jump-point search using clearance values and without gener-
ating diagonal jump points (JPS+P). Solid lines correspond to clearance-value look-ups.
Since clearance values do not account for the goal vertex, the goal vertex needs to be
detected manually during scans.

2) The clearance values are computed to jump points with matching directions (that is,
the clearance value in direction ~c indicates the distance in direction ~c to a jump point
with incoming direction ~c) rather than to convex corner cells that are closest. 3) Clear-
ance values are stored in diagonal directions as well, to indicate distances to diagonal
jump points. This is an optimization that can be used for SF-Connect as well, in order
to “jump” along diagonals to rows or columns that contain subgoals. 4) Since precom-
puted clearance values cannot account for the goal vertex, JPS+ has to perform “target
detection” during its scans to make sure that it does not “jump past” the goal vertex.
Specifically, JPS+ checks, for each each diagonal jump, whether it crosses the row or the
column of the goal vertex and, if so, whether the goal vertex can be reached by moving
in a straight line along that row or column. 5) When scanning for jump-point succes-
sors of expanded jump points (and not the start vertex), JPS+P performs scans only
in directions that form diagonal-first and taut turns with the direction of the expanded
jump point. Figure 5.13 shows the differences in using SF-Connect to connect the start
vertex to a subgoal graph and the scan performed by JPS+P to identify the jump-point
successors of the start vertex.

5.4.2 Direction-Extended Canonical Grid Graph

Sturtevant and Rabin suggest that jump-point search can be broken down into three
components: A best-first search (since jump-point search can be considered as a modifi-
cation of A* search with further pruning and jumping rules), a canonical ordering, and a
jumping policy (Sturtevant & Rabin, 2016). They also introduce a version of jump-point
search without the jumping policy, namely an A* search that uses canonical orderings to
prune successors, called canonical A* search. When expanding a vertex n that is reached
with a move in direction ~v1, canonical A* search generates successors only in directions
~v2 such that 〈~v1, n,~v2〉 is locally-diagonal-first. Similar to jump-point search, canonical
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Figure 5.13: Differences between SF-Connect when connecting the start vertex to the
subgoal graph and the scanning procedure of jump-point search when generating jump-
point successors of the start vertex. Green disk: Subgoal that is direct-SF-reachable from
s. Red disk: Cell containing a jump-point successors of s. Black line: Freespace-diagonal-
first path explored by both SF-Connect and JPS+P. Green line: Freespace-diagonal-first
path explored only by SF-Connect. Red line: Freespace-diagonal-first path explored only
by JPS+P.

A* search is guaranteed to find shortest paths, since it does not prune locally-diagonal-
first paths, one of which is guaranteed to exist between any given pair of start and goal
vertices (Lemma 5.11).

We now formally introduce the direction-extended canonical grid graph G∗ to charac-
terize the search space of canonical A* search. That is, canonical A* search on G can be
considered to be equivalent to a regular A* search on G∗.

Definition 5.3 (Direction-extended canonical grid graph.). The direction-extended canon-
ical grid graph G∗ = (V ∗, E∗, c∗) of G = (V,E, c) is a graph where:

• For each vertex n ∈ V and each direction ~v, (n,~v) ∈ V ∗.

• For each edge (n1, n2) ∈ E and each pair of directions ~v1, ~v2, ((n1, ~v1), (n2, ~v2)) ∈ E∗
if and only if:

– n2 = n1 + ~v2, and

– 〈~v1, n1, ~v2〉 is locally-diagonal-first.

• For each edge ((n1, ~v1), (n2, ~v2)) ∈ E∗, c∗((n1, ~v1), (n2, ~v2))) = c(n1, n2).

G∗ contains eight vertices (n,~v) for each vertex n in G, annotated with one of the
four cardinal or four diagonal directions ~v that encodes the incoming direction into n
(that is, G∗ is direction-extended). For every vertex on G∗, every pairing of an in-edge
and an out-edge of that vertex form a path that corresponds to a locally-diagonal-first
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path on G (that is, G∗ is canonical). As a result, every path on G∗ corresponds to a
locally-diagonal-first path on G, since its 2-subpaths correspond to locally-diagonal-first
paths on G. Furthermore, for every locally-diagonal-first path π on G, there exists a
corresponding path π∗ on G∗:

Lemma 5.12. Let π = 〈n0, . . . , nk) be a locally-diagonal-first path on G. Then, there
exist ~v0, . . . , ~vk such that π∗ = 〈(n0, v0), . . . , (nk, vk)〉 is a path on G∗.

Proof. The proof follows from Definition 5.3 by selecting, for i = 1, . . . , k, ~vi as the
direction that satisfies ni−1 + ~vi = ni, and selecting ~v0 = ~v1.

For every s, t ∈ V , at least one shortest s-t path on G is locally-diagonal-first (Lemma
5.11), and this path is preserved in G∗ (Lemma 5.12). Therefore, G∗ can be used to find
shortest s-t paths on G, by treating (s,~v) as start vertices and (t, ~v) as goal vertices for
all ~v. Furthermore, since all paths on G∗ correspond to locally-diagonal-first paths on G,
searches on G∗ can only explore paths that correspond to locally-diagonal-first paths on
G, similar to canonical A* search and jump-point search.

5.4.3 Jump-Point Graph

We now show that jump-point search can be understood as a search on a subgoal graph
constructed on G∗ that uses straight jump points as subgoals. We refer to this subgoal
graph as the jump-point graph.

We first extend our definitions on G to G∗:

• Direction-extended canonical freespace grid graph: We use F∗ to denote the direction-
extended canonical freespace grid graph. That is, all paths on F∗ correspond to
locally-diagonal-first paths on the freespace grid graph F . On F , between ev-
ery pair of vertices, there is exactly one locally-diagonal-first path, namely the
freespace-diagonal-first one: A locally-diagonal-first path on F can have at most
one turn, namely a diagonal-to-cardinal turn. It cannot have a cardinal-to-diagonal
turn, since that turn can always be replaced with a diagonal-to-cardinal turn. The
only paths on F that contain at most one diagonal-to-cardinal turn are freespace-
diagonal-first paths. Consequently, on F∗, every s∗-t∗ path is the unique s∗-t∗ path,
and corresponds to the freespace-diagonal-first s-t path, since F∗ preserves only the
locally-diagonal-first (freespace-diagonal-first) paths from F .

• Freespace-reachability: We use F∗-reachability to denote F-reachability on G∗. That
is, for every (s,~v1), (t, ~v2) ∈ V ∗, ((s,~v1), (t, ~v2)) ∈ F∗ if and only if the unique (s,~v1)-
(t, ~v2) path on F∗ is also an (unblocked) path on G∗. (Since, as discussed above,
(freespace-)shortest paths on F∗ are unique, CF∗- and SF∗-reachability on G∗ are
equivalent to F∗-reachability.)

Definition 5.4 formally defines straight jump points as vertices of G∗, and Theo-
rem 5.13 proves that the set of straight jump points form an F∗-SPC on G∗. We only
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provide a sketch of the proof, which is similar to our proof that the set of convex cor-
ner cells is an SF-SPC on G.1 Figure 5.14a shows all straight jump points on a grid,
and illustrates them covering a locally-diagonal-first (but not freespace-diagonal-first) s-t
path. Figure 5.14b shows the set of subgoals (on G) as a comparison, and illustrates
them covering at least one shortest s-t path.

Definition 5.4. A vertex (n,~c1) of G∗ is a straight jump point if and only if there exists
~c2 ⊥ ~c1 such that the cell n − ~c1 − ~c′2 is blocked and n − ~c1 and n − ~c2 are unblocked
(equivalently, the path 〈~c1, n,−~c2〉 on G is taut).

Theorem 5.13. The set of straight jump points form an F∗-SPC on G∗.

Proof. Sketch: Let π∗ be any shortest s∗-t∗ path on G∗, for some s∗ = (s,~v1) and t∗ =
(t, ~v2). By Definition 5.3, π∗ corresponds to a locally-diagonal-first path on G. We show
that, if (s∗, t∗) 6∈ F∗, then π∗ is covered by a straight jump point. For contradiction,
assume that (s∗, t∗) 6∈ F∗ and that π∗ is not covered by a straight jump point. π∗ cannot
have a cardinal-to-cardinal turn because, otherwise, it is either non-taut or it is covered
by a straight jump point. π∗ cannot have a diagonal-to-diagonal turn because, otherwise,
it is non-taut. π∗ cannot have a cardinal-to-diagonal turn because, otherwise, it is either
non-locally-diagonal-first or it is covered by a straight jump point. Therefore, π∗ can only
have diagonal-to-cardinal turns. There is only one such possible π∗, namely the one that
corresponds to the freespace-diagonal-first s-t path. But then, the freespace-diagonal-first
s∗-t∗ path is unblocked on G∗, contradicting that (s∗, t∗) 6∈ F∗.

Theorem 5.13 suggests that we can construct an F∗ subgoal graph on G∗ by using
straight jump points as subgoals. We refer to this subgoal graph as the jump-point graph.
Jump-point graphs can be used to answer queries on G as follows:

• Connect: The start vertex is connected to its jump-point successors, similar to
jump-point search. The goal vertex, on the other hand, is connected to all jump-
points from which the freespace-diagonal-first path to the goal vertex is unblocked,
using a different connection algorithm. Namely, the algorithm that connects the
goal vertex to the jump-point graph scans the freespace-diagonal-first paths that
terminate at the goal vertex (equivalently, freespace-cardinal-first paths that orig-
inate from the goal vertex), by first scanning cardinally from the goal vertex and
then branching off in diagonal directions (rather than first scanning diagonally and
then branching off in cardinal directions, like SF-Connect). This scanning can be
sped up by using a second set of clearance values in diagonal directions (similar
to how SF-Connect can be sped up by using cardinal clearance values). We refer
to the connection algorithm used to connect both the start and goal vertices to
jump-point graphs as JP-Connect.

1G∗ does not satisfy Assumption 1.2, that is, there might not be any paths between some pairs of
vertices on G∗. For instance, in Figure 5.14a, no (locally-diagonal-first) path exists from (A2, Up) to (E9,
Up). For our proof, we assume that a shortest path cover does not need to cover paths between such
pairs of vertices.
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(a) Straight jump points (arrows) cover every
s-t path on G∗ that is not

freespace-diagonal-first (that is, if (s, t) 6∈ F ∗).

(b) Subgoals (disks) cover at least one
shortest s-t path on G if (s, t) 6∈ F .

Figure 5.14: The set of straight jump points and the set of subgoals (convex corner cells)
are F∗-SPCs and F-SPCs on G∗ and G, respectively.

(a) Search tree of a search on a (query)
jump-point graph.

(b) Search tree of a search on a (query)
subgoal graph.

Figure 5.15: Search trees of searches over (query) jump-point and subgoal graphs.

• Search and refine: Once the start and goal vertices are connected to the jump-
point graph, the resulting query jump-point graph can be searched for a shortest
path, which can then be refined into a path on G by replacing its edges with
the corresponding freespace-diagonal-first path on G. We refer to the refinement
algorithm used for paths found on jump-point graphs as JP-Refine. JP-Refine and
CF-Refine are very similar, except that JP-Refine always finds freespace-diagonal-
first paths, whereas, as discussed in Section 5.3.2, CF-Refine may find freespace-
diagonal-first or freespace-cardinal-first paths, since we use the symmetric canonical
ordering. (This distinction does not matter for answering queries using subgoal
graphs, but will be relevant when we use CF-reachability to augment contraction
hierarchies in Section 5.5.)

Figure 5.15 shows the search trees of searches over (query) jump-point and subgoal
graphs. Although the jump-point graph has more vertices than the subgoal graph (two
or more jump points at each convex corner cell rather than exactly one subgoal), the
search on the jump-point graph expands fewer vertices, since it only considers jump
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points (n,~c) that can be reached from other jump points (or the start vertex) through
freespace-diagonal-first paths whose last move is in direction ~c. We will refer back to this
example when discussing our experimental results in Section 5.5.5.

Compared to jump-point search, answering queries using jump-point graphs has the
following benefits: 1) The grid is scanned at most twice for connecting the start and
goal vertices to the jump-point graph, rather than once for each expansion. 2) Since the
jump-point graph is constructed explicitly, it can be combined easily with orthogonal
techniques, such as contraction hierarchies. We explore this idea further in Section 5.5.5.
However, unlike jump-point search that (optionally) uses precomputed clearance values
only, answering queries using jump-point graphs requires explicitly storing the jump-point
graph, as well as (optionally) two sets of precomputed clearance values, one for connecting
the start vertex and one for connecting the goal vertex to the jump-point graph.

5.5 Experimental Evaluation

In this section, we experimentally evaluate answering queries using subgoal graphs, con-
traction hierarchies, their combinations, and their variants on grid graphs, with respect
to their query times and memory requirements. We consider three different ways of aug-
menting contraction hierarchies with reachability relations: We have already described
two of these augmentations in Section 3.4.2, namely constructing contraction hierarchies
on subgoal graphs, or restricting the edges of contraction hierarchies to be R-reachable
(R contraction hierarchies). The third augmentation is a simple modification that uses
R-Refine rather than unpacking to refine R-reachable edges of contraction hierarchies.

This section is organized as follows: In Section 5.5.1, we provide an overview of
the algorithms that we evaluate in this section and discuss implementation details. In
Section 5.5.2, we describe the benchmark grids and problem instances that we use in
our experimental evaluation. In Section 5.5.3, we describe our method of presenting
the results. In Sections 5.5.4-5.5.5, we experimentally evaluate answering queries using
subgoal graphs, jump-point graphs, and contraction hierarchies. In Sections 5.5.7 and
5.5.11, we experimentally evaluate answering queries using combinations and variants of
subgoal graphs, jump-point graphs, and contraction hierarchies. In Section 5.5.12, we
compare our algorithms against state-of-the-art path-planning algorithms on grid graphs
that have been evaluated in the Grid-Based Path-Planning Competition (GPPC).

5.5.1 Algorithms and Implementation Details

We compare various algorithms that answer queries using subgoal graphs, contraction
hierarchies, their combinations, and their variants. Table 5.1 provides a summary of
these algorithms and how their connection, search, and refinement phases differ from one
another. Figure 5.16 provides a summary of how these algorithms relate to each other.
We now describe these algorithms and discuss implementation details.

• A*: We use the Octile distance heuristic for our A* searches, and use a binary heap
as the priority queue. We implement the searches for all other algorithms similarly,
and preallocate memory for all required data structures and values maintained by
the searches so that there is no memory allocation during a search.
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Algorithm Connect Search Refine

A* - A* -
SG SF-Connect A* CF-refine
JP JP-Connect A* (grouping) JP-refine

CH-GPPC - Bidir. Dij. Midpoint
CH - Bidir. A* 2-pointer

CH-SG SF-Connect Bidir. A* 2-pointer then CF-refine
CH-JP JP-Connect Bidir. A* 2-pointer then JP-refine

CH+Rr - Bidir. A* R-refine or 2-pointer
CH-SG+Rr SF-Connect Bidir. A* R-refine, or 2-pointer then CF-refine

R-CH - Bidir. A* (C) R-refine
R-CH-SG SF-Connect Bidir. A* (C) R-refine

R-N-SG SF-Connect Bidir. A* (CL) R-refine

Table 5.1: Algorithms on grid graphs evaluated in this dissertation. “C” indicates that
forward searches of bidirectional searches generate successors of expanded vertices using
core edges. “L” indicates that forward searches of bidirectional searches use non-core
same-level edges to check if the two searches meet.

• SG: SG constructs the subgoal graph GC on G during preprocessing and uses it to
answer queries. It uses precomputed clearance values from unblocked cells in all
four cardinal directions, as explained in Sections 5.3.5 and 5.3.6.

We store clearance values in a 1D array that can be accessed by linearizing the x
and y coordinates of a cell (that is, the linearized coordinates l of the cell (x, y)
is computed as x + y ·W , where y is the width of the grid). We store each entry
in this array as a 4 byte integer, each byte representing a clearance value in one
of the four cardinal directions. For clearance values above 255 (the highest value
that can be represented using 1 byte), we simply store 255 as the clearance value.
When looking up the clearance value C[n,~c] of a cell n in direction ~c, if the stored
clearance value is 255, we also look up the clearance value C[n + 255 · ~c,~c], and
repeat this process until a cell n′ = n + k · 255 · ~c is reached with C[n′,~c] < 255.
The clearance value of n in direction ~c is then calculated as 255 · k + C[n′,~c].

Since all edges of subgoal graphs are F-reachable, their lengths can be calculated in
constant time as the Octile distances between the vertices they connect, as described
in Section 5.3.1. Therefore, we avoid storing the edge lengths and store each edge
using 4 bytes only to indicate its destination.

• JP: JP constructs a jump-point graph on G∗ during preprocessing and uses it to
answer queries. It stores two sets of clearance values, a set of cardinal clearance
values, similar to our SG implementation, to connect the start vertices to the jump-
point graphs, and a set of diagonal clearance values to connect the goal vertices to
the jump-point graphs. It therefore requires twice the memory to store the clearance
values compared to SG.
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Jump-point search has an optimization that we have not mentioned in Section 5.4.1.
Namely, it expands at most one jump-point in each cell, the one that has the smallest
g-value in that cell. All other jump-points in that cell are discarded, even if their
g-values are the same as the g-value of the expanded one. We have included this
optimization in JP as well. To the best of our knowledge, there is no formal proof
that jump-point search with this optimization is still guaranteed to find shortest
paths, but our JP implementation using this optimization has always found the
shortest path in our experiments. We also optimize our JP implementation to store
the g-values for cells rather than jump points, and preallocate memory for our data
structures assuming that we are searching over the convex corner cells, rather than
the jump points. That is, the jump-point graph is essentially used as a look-up
table to determine the successors of the expanded “convex corner cells” based on
their incoming directions.

• CH and CH-GPPC: CH constructs a contraction hierarchy on G during prepro-
cessing and uses it to answer queries. It uses a bidirectional A* search, as described
in Section 3.4.4, to search its contraction hierarchy for a shortest up-down path,
and uses 2-pointer unpacking, as described in Section 3.4.4, to refine the path found
into a shortest path on G. CH-GPPC instead uses bidirectional Dijkstra searches
and midpointer unpacking.

Our CH-GPPC implementation closely follows the implementation of the contrac-
tion hierarchy entry in GPPC. Namely: 1) It uses the same online top-down ordering
for constructing the hierarchy, as described in Section 3.4.3.3. 2) It uses 12 bytes to
store each edge, namely 4 bytes each for its destination, length, and midpoint (for
midpoint unpacking). 3) It does not store downward edges since, in contraction
hierarchies constructed on undirected graphs, there exists an upward edge (u, v)
for every downward edge (v, u) and vice versa. 4) It uses stall-on-demand dur-
ing searches. 5) It does not use a heuristic in searches. Our preliminary results
show that the query times of our CH-GPPC implementation and the contraction
hierarchy entry in the GPPC are very similar. Our implementation has shorter
preprocessing times (almost by a factor of two) since it exploits the fact that con-
traction hierarchies on undirected graphs are also undirected, and performs only
half of the witness searches.

Our CH implementation differs from our CH-GPPC implementation in the following
ways: 1) CH performs 2-pointer unpacking. 2) CH uses 16 bytes to store each edge,
namely 4 bytes for its destination, 4 bytes for its length, and 8 bytes for two pointers
to its unpacked edges. 3) CH uses the Octile distance heuristic during searches. All
of our algorithms that use hierarchies follow an implementation similar to our CH
implementation unless noted otherwise.

• CH-SG: CH-SG constructs a contraction hierarchy on the subgoal graph GC during
preprocessing and uses it to answer queries, as described in Section 3.4.4. CH-
SG performs connection using SF-Connect, similar to SG; performs search using
bidirectional A* searches, similar to CH; and performs refinement first by using
2-pointer unpacking, similar to CH, to refine the path found on the contraction
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hierarchy to a path on the subgoal graph, and then by using CF-Refine, similar to
SG, to refine it to a path on G. CH-SG stores clearance values in the four cardinal
directions, similar to SG; and stores each edge using 16 bytes, similar to CH.

• CH-JP: CH-JP constructs a contraction hierarchy on the jump-point graph during
preprocessing and uses it to answer queries. CH-JP operates similarly to CH-SG,
with the following exceptions. Unlike CH-SG, but similarly to JP, CH-JP stores two
sets of clearance values, uses JP-Connect for connection, and JP-Refine for refining
paths on the jump-point graph to paths on G. Unlike CH and CH-SG, CH-JP stores
upward edges and “reversed downward edges” of contraction hierarchies separately
since jump-point graphs are directed graphs and, as a result, these two sets of edges
are not necessarily equivalent. Furthermore, unlike JP, CH-JP treats jump points
as individual vertices, rather than “grouping them” based on their locations. Our
preliminary experiments have shown that, otherwise, CH-JP can find paths that
are not shortest paths. We discuss further implementation details in Section 5.5.8.

• CH+Rr and CH-SG+Rr: CH+Rr (contraction hierarchies + R-refine) and CH-
SG+Rr operate similarly to CH and CH-SG, respectively, but also “mark” shortcut
edges that are R-reachable during preprocessing. During the refinement phases
of queries, they refine the “marked” shortcuts using an R-refine algorithm instead
of 2-pointer unpacking. Unmarked shortcut edges are refined using 2-pointer un-
packing as usual. Whereas CH+Fr and CH-SG+Fr mark F-reachable shortcuts
and refine them using F-Refine, CH+CFr and CH-SG+CFr mark CF-reachable
shortcuts and refine them using CF-Refine. We do not perform experiments with
CH+SFr and CH-SG+SFr since SF-Refine is implemented similarly to CF-Refine,
and since a smaller number of shortcuts can be marked as SF-reachable rather than
CF-reachable (SF ⊆ CF). We mark each shortcut by storing a unique 8 byte value
instead of the two pointers to its unpacked edges, and therefore do not use extra
memory for marking shortcuts.

• R-CH and R-CH-SG: R-CH and R-CH-SG operate similarly to CH and CH-SG,
respectively, but construct R contraction hierarchies instead of contraction hierar-
chies. The forward searches of their bidirectional searches also generate successors
of expanded vertices that are reached by level edges, as described in Section 3.4.4.
Since all their shortcuts are R-reachable, they refine shortcuts using R-refine rather
than 2-pointer unpacking and store each edge using 4 bytes, similar to SG. Similar
to CH+Rr, CH-SG+Rr, we use F-reachability and CF-reachability as R, but not
SF-reachability.

• R-N-SG R-N-SG operates similarly to R-CH-SG, but constructs R N -level subgoal
graphs instead of R contraction hierarchies. The forward searches of its bidirectional
searches also use non-core same-level edges to check if the two searches meet, as
described in Section 3.4.4. Similar to R-CH-SG, we use F-reachability and CF-
reachability as R, but not SF-reachability.

Figure 5.16 provides a summary of the relationships between different algorithms and
their associated trade-offs, and serves as a roadmap for our experiments. Namely: 1) In
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R-CH R-CH-SG R-N-SG
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R-reachable shortcuts only, 
R-refine (S, R, EM)

Allow non-core, 
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SG as base graph 
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unpack (S, R)

CH-JP JP

Construct subgoal graph 
on direction-extended 

canonical grid graph (S)

Figure 5.16: Relationships between variants and combinations of subgoal graphs, jump-
point graphs, and contraction hierarchies. S: Structural differences in the graph/hierarchy
can result in different query-time/memory trade-offs. C: Implementation of R-connect
can affect the query-time/memory trade-off. R: Implementation of R-refine can affect
the query-time/memory trade-off. EM: Memory required to store each edge can vary
depending on R; unpacking information does not need to be stored for shortcuts.

Sections 5.5.4 and 5.5.6, we experimentally evaluate the query-time/memory trade-offs
of SG and CH, respectively. Observe that these algorithms have no incoming arrows in
Figure 5.16. 2) In Sections 5.5.7, 5.5.9, and 5.5.10, we experimentally evaluate the query-
time/memory trade-offs associated with three different ways of augmenting contraction
hierarchies with reachability relations, which are marked with red, green, and blue arrows
in Figure 5.16, respectively. The purpose of this set of experiments is to demonstrate
that it is possible to “specialize” contraction hierarchies to different types of graphs
through reachability relations to exploit structure in them. 3) In Section 5.5.11, we
experimentally evaluate the query-time/memory trade-off of R-N-SG compared to R-
CH-SG. The purpose of this set of experiments, in conjunction with the previous set of
experiments, is to systematically study the differences between CH and F-N-SG through
the sequence of intermediate algorithms CH-SG and F-CH-SG. 4) In Sections 5.5.5 and
5.5.8, we experimentally evaluate the query-time/memory trade off of JP and CH-JP,
relative to SG and CH-SG, respectively, which are marked as purple arrows in Figure 5.16.
We discuss the query-time/memory trade-offs associated with each arrow in Figure 5.16
in the relevant sections, in conjunction with experimental results on grid graphs.

5.5.2 Benchmarks

We use two sets of benchmarks in our experiments: Nathan Sturtevant’s benchmark
grid maps and problem instances (Sturtevant, 2012a), which we refer to as the MovingAI
benchmarks, and GPPC grid maps and problem instances (Sturtevant et al., 2015), which
we refer to as the GPPC benchmarks. We use the MovingAI benchmarks for most of our
experiments since they contain significantly more maps and instances than the GPPC
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benchmarks, and use the GPPC benchmarks in Section 5.5.12 in order to compare our
algorithms to other GPPC entries. We describe the MovingAI benchmarks below, and
describe the GPPC benchmarks in Section 5.5.12.

The maps in the MovingAI benchmarks can be divided into 5 main categories (game,
maze, random, room, and street), which can further be subdivided into a total of 26
subcategories, as summarized below:

• Game: The game maps are a collection of maps from different video games.

– bg: 120 maps from the video game Baldur’s Gate II, ranging in size from 50
× 50 to 320 × 320.

– bg-512: 75 maps from the video game Baldur’s Gate II, all scaled to size 512
× 512.

– dao: 156 maps from the video game Dragon Age: Origins, ranging in size
from 22 × 28 to 1260 × 1104.

– da2: 67 maps from the video game Dragon Age 2, ranging in size from 37 ×
37 to 770 × 770.

– sc: 75 maps from the video game Starcraft II, ranging in size from 384 × 384
to 1024 × 1024.

– wc3-512 36 maps from the video game Warcraft III, all scaled to size 512 ×
512.

• Maze: The maze maps are artificially generated maps of size 512 × 512, with
varying corridor widths of 1, 2, 4, 8, 16, and 32. There are 10 maps for each of
the 6 corridor widths, for a total of 60 maps. We refer to maze maps with corridor
width X as maze-X maps.

• Random: The random maps are artificially generated by randomly blocking a
percentage of cells in a 512 × 512 grid. The percentage of blocked cells varies from
10 to 40 in increments of 5. There are 10 maps for each of the 7 percentages of
blocked cells, for a total of 70 maps. We refer to random maps with X percent
blocked cells as random-X maps.

• Room: The room maps are artificially generated by dividing a 512 × 512 grid into
square rooms of fixed size, and randomly adding doors between adjacent rooms.
The room sizes in room maps are 8 × 8, 16 × 16, 32 × 32, and 64 × 64. There
are 10 maps for each of the 4 room sizes, for a total of 40 maps. We refer to room
maps with room size X as room-X maps.

• Street: Street maps are generated by discretizing square areas within different
cities into 256 × 256, 512 × 512, or 1024 × 1024 grids. There are 30 areas, each
discretized into 3 different-sized grids, for a total of 90 maps. For 1024 × 1024
maps, we use only the first 10 maps rather than all 30, due to high preprocessing
times on these maps. We refer to street maps with size X ×X as street-X maps.

204



Map Instances Path Avg. G size A* time
Count Count Avg length |V | |E| (µs)

all 769 1,642,670 2,136 1,137 109,752 776,644 9,898

game-all 529 653,050 1,234 431 64,861 499,013 5,137
maze-all 60 627,000 10,450 2,265 207,941 1,338,316 16,732
random-all 70 155,750 2,225 483 185,864 937,004 5,508
room-all 40 84,350 2,109 422 232,785 1,691,743 8,645
street-all 70 122,520 1,750 454 218,423 1,710,030 6,738

bg 120 40,780 340 142 4,507 32,180 451
bg-512 75 122,600 1,635 361 73,930 574,509 2,359
dao 156 67,200 1,003 281 15,911 117,640 2,373
da2 67 155,620 998 418 21,322 159,548 1,049
sc 75 211,390 2,819 613 263,782 2,040,510 11,540
wc3-512 36 55,460 1,541 318 112,488 867,184 3,030

maze-1 10 145,490 14,549 2,986 131,071 262,140 6,947
maze-2 10 119,110 11,911 2,413 174,517 870,383 13,141
maze-4 10 104,220 10,422 2,150 209,268 1,356,891 18,461
maze-8 10 103,310 10,331 2,133 232,928 1,688,141 21,997
maze-16 10 91,210 9,121 1,877 246,042 1,871,727 24,349
maze-32 10 63,660 6,366 1,300 253,819 1,980,615 23,532

random-10 10 17,970 1,797 360 235,903 1,533,055 2,512
random-15 10 18,610 1,861 372 222,689 1,301,321 3,914
random-20 10 19,150 1,915 383 209,255 1,097,499 5,072
random-25 10 19,900 1,990 398 195,315 918,694 6,048
random-30 10 20,780 2,078 416 180,209 760,078 6,606
random-35 10 22,970 2,297 459 161,313 613,313 7,229
random-40 10 36,370 3,637 752 96,365 335,069 6,023

room-8 10 20,980 2,098 420 206,792 1,301,001 7,994
room-16 10 20,370 2,037 407 231,263 1,663,793 7,839
room-32 10 20,970 2,097 420 243,733 1,855,004 8,847
room-64 10 22,030 2,203 441 249,352 1,947,173 9,820

street-256 30 28,020 934 188 48,012 363,862 842
street-512 30 56,270 1,876 376 196,602 1,531,899 3,467
street-1024 10 38,230 3,823 765 795,122 6,282,926 15,874

Table 5.2: MovingAI benchmarks.
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(a) AR0011SR
(Baldur’s Gate II)

(b) orz100d (Dragon
Age: Origins)

(c) orz103d (Dragon
Age: Origins)

(d) Aurora (StarCraft)

(e) maze512-32-0
(maze-32)

(f) random512-40-0
(random-40)

(g) 64room-000
(room-64)

(h) Berlin-0-1024
(street-1024)

Figure 5.17: MovingAI grid maps.

Each map in MovingAI benchmarks has an associated set of instances (start and goal
pairs) that are uniformly distributed to cover various path lengths. Specifically, on a map
where the maximum shortest path length is K, the interval [0,K] is split into buckets
[4k, 4k+4) (where k is an integer), each bucket containing 10 instances where the distance
between the start and goal vertices is in the range [4k, 4k + 4) (Sturtevant, 2012a). As a
result, maps with larger maximum shortest path lengths, such as maze maps, have more
instances per map. Table 5.2 reports the total number of maps, the total and average
number of instances, the average path length of the instances, the average number of
vertices and edges of the corresponding grid graph G, and the average query time of A*
searches, over the MovingAI benchmarks. We discuss how the averaging is performed in
the next section, along with how the cells are colored in the table.

5.5.3 Result Presentation

We report our experimental results using tables that report statistics across different
types of maps in MovingAI benchmarks. We use the following methods to make these
tables easier to read:

• Order of rows: We organize the rows of the tables so that the first row provides
an overview of the results on all maps in the MovingAI benchmarks, the next 5
rows provide an overview of the 5 main categories of maps, and the remaining rows
provide results on the 26 subcategories of maps, as shown in Table 5.2. We average
statistics that relate to preprocessing (such as preprocessing time, memory, and
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graph size) over all maps in each (main or sub) category, and average statistics that
relate to queries (such as query time) over all instances associated with the maps in
each category. This averaging strategy is also used in GPPC, and might skew the
averages toward maps with larger numbers of instances or toward categories that
contain more maps.

• Abbreviations: We use the following abbreviations for the various statistics that
we report frequently in our tables: |V | (number of vertices), |E| (number of edges),
PT (preprocessing time), Cn (connection time), Sr (search time), Rf (refinement
time), DQ (distance query time, that is, the sum of the connection and search
times), and PQ (path query time, that is, the sum of the connection, search, and
refinement times). We use several other abbreviations which which we describe as
necessary.

When reporting statistics about an algorithm X relative to an algorithm Y , we
mark the relevant part of the table with the syntax Y → X and mark the relevant
columns of the table by adding a “%” or “*” at the end of their abbreviations.
We typically use “%” to modify |V | or |E|, indicating that we are reporting the
number of vertices or edges of the graph used by algorithm X as a percentage of
the number of vertices or edges, respectively, of the graph used by algorithm Y . We
typically use “*” to modify the other statistics, indicating that we are reporting the
improvement factor of switching from algorithm Y toX. Since shorter preprocessing
and query times and lower memory requirements are always better, we calculate
the improvement factor for those statistics by dividing the relevant statistic for
algorithm Y by the relevant statistic for algorithm X.

• Colors: We color cells in our tables based on their values and types, in order
to highlight trends in our results and distinguish between the different types of
statistics that we report. We color cells in a column that reports statistics about a
single algorithm on a scale from white to orange, where the cell with the lowest value
in the column is colored white, the cell with the highest value is colored orange,
and any other cell is colored in a shade of orange determined based on its value in
relation to the lowest and highest values in the column. We color cells in a column
that reports percentage statistics on a scale from white to blue, where a cell with
value 0% is colored white, a cell with value 200% or higher is colored blue, and any
other cell is colored in a shade of blue determined based on its value in relation to
0% and 200%. We color cells in a column that reports improvement factor statistics
on a scale from red to white to green, where a cell with improvement factor 1 (no
improvement or deterioration) is colored white, a cell with improvement factor 5 or
above is colored green, a cell with an improvement factor from 1 to 5 is colored in a
shade of green determined based on its value in relation to 1 and 5, and a cell with
an improvement factor of less than 1 (that is, deterioration) is colored in a shade
of red based on its value in relation to 0 and 1 (where 0 is red).

The coloring of cells in tables does not convey additional information, and simply
aims to make the tables easier to read. To that end, we make a couple of exceptions
to the rules we described above. For some improvement factors (such as the query
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(a) Staircase pattern (Berlin-0-256.map from
street maps).

(b) Random pattern (random512-40-0.map).

Figure 5.18: Staircase and random patterns of subgoal graphs on grid graphs.

times of CH or SG relative to A*), the improvement is much higher than 5, resulting
in all cells colored in the same shade of green. In these cases, we use the value
500 rather than 5 for determining the cell colors. We also make an exception
when reporting the memory required by SG to store clearance values and edges in
Table 5.3, by using the minimum and maximum values that appear in both columns
to determine the colors of cells in either column, in order to make the two columns
comparable.

5.5.4 Subgoal Graphs

In this section, we experimentally evaluate SG (answering queries using subgoal graphs) in
terms of its preprocessing and path query times, and memory requirements. We start with
a discussion of two types of patterns that we observe on grid graphs, namely the staircase
and random patterns, which can negatively affect SG path query times. Figure 5.18 shows
examples of these two patterns.

• Staircase pattern: The staircase pattern occurs on grids when the boundaries of
obstacles in the environment do not align horizontally or vertically with the grid, as
shown in Figure 5.18a. On grids with staircase patters, many cells are convex corner
cells, resulting in many subgoals. We informally refer to the subgoals introduced
by staircase patterns as staircase subgoals. When two staircases face each other,
subgoal graphs typically have many edges between staircase subgoals along the two
opposite staircases, as shown in Figure 5.18a. We informally refer to these edges as
staircase edges.

Most staircase subgoals and edges can be considered to be “unimportant” for an-
swering queries unless the start or goal vertices are tucked away in the crevices of
the staircases. That is, if most of the staircase subgoals were removed from the
subgoal graph, the remaining subgoals can still be connected to each other through
safe-freespace-reachable edges and be used to answer most path queries optimally.
However, as discussed in Section 5.3.4, subgoal graphs need to include all convex
corner cells as subgoals, for them to be useful for answering all path queries opti-
mally. We refer to the problem of having to include staircase subgoals and edges
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in subgoal graphs as the staircase problem. As discussed in Section 5.3.4, the stair-
case problem can be considered to be a direct consequence of the fact that the grid
graphs that we consider in this dissertation exclude corner-cutting diagonal moves.
We discuss in Section 5.5.5 how jump-point search avoids the staircase problem, and
discuss in Section 5.5.7 how constructing hierarchies on subgoal graphs can mitigate
this problem. As an interesting side note, the staircase problem was the motivation
for our development of 2-level subgoal graphs (Uras et al., 2013), with the aim of
ignoring most of the subgoals and edges along staircases during searches, by labeling
such subgoals as level 1 subgoals. We eventually extended 2-level subgoal graphs
to N -level subgoal graphs (Uras & Koenig, 2014).

Staircase patterns typically occur on game and street maps, where (the boundaries
of) obstacles in the environment do not necessarily align horizontally or vertically
with the grid. For instance, in the video games Baldur’s Gate II and StarCraft,
the viewpoint of the in-game camera is angled to reveal as much detail about the
environment as possible, typically resulting in obstacles being aligned diagonally
with the grid, as shown in Figures 5.17a and 5.17d, exacerbating the staircase
problem. In the video games Dragon Age: Origins and Dragon Age 2, which have
been released more recently than Baldur’s Gate II and StarCraft, the players can
rotate the camera as they please, and therefore maps in these games are typically
designed so that obstacles are aligned horizontally or vertically with the grid, as
shown in Figure 5.17c. However, maps in these games can still have obstacles that
are curved or otherwise irregularly shaped, as shown in Figure 5.17b, resulting
in staircase patterns. Street maps contain obstacles (that is, buildings) that are
not necessarily aligned with the grid (that is, the geographic coordinate system),
also resulting in staircase patterns. Maze and room maps do not have staircase
patterns, as all obstacles are aligned horizontally or vertically with the grid, as
shown in Figures 5.17f and 5.17g.

• Random pattern: The random pattern occurs on random maps, where the
blocked cells of grids are scattered randomly around the grid, without forming
large, contiguous areas of blocked cells. The random pattern therefore introduces,
similar to the staircase pattern, many convex corners and, thus, subgoals, as shown
in Figure 5.18b. Typically, random patterns introduce many more subgoals than
staircase patterns, but do not introduce as many edges. Random patterns are
detrimental to the freespace structure that we aim to exploit with subgoal graphs,
since the random placement of blocked cells typically results in only nearby pairs
of vertices being F-, CF-, or SF-reachable.

Table 5.3 reports the A* query times (also reported in Table 5.2), the SG preprocessing
times (PT, including the time to calculate the clearance values), the numbers of vertices
and edges of subgoal graphs relative to G (|V |% and |E|%), the memory required to
the store clearance values and the edges of subgoal graphs (M(C) and M(E)), the SG
connection, search, and refinement times (Cn, Sr, Rf), and the SG path query times
relative to A* (PQ*).

We make the following observations:
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A* A* → SG
PQ PT |V | |E| M(C) M(E) Cn Sr Rf PQ
(µs) (µs) % % (MB) (MB) (µs) (µs) (µs) *

all 9,898 13,898 8.29 7.28 0.78 0.24 5 527 8 18.33

game-all 5,137 6,510 2.19 4.29 0.70 0.08 7 123 2 39.10
maze-all 16,732 18,785 5.56 2.05 1.01 0.10 3 701 15 23.28
random-all 5,508 59,075 39.60 35.41 1.01 1.26 2 2,077 8 2.64
room-all 8,645 14,405 1.82 0.81 1.01 0.05 4 103 2 79.19
street-all 6,738 20,072 1.51 5.61 0.84 0.64 13 118 2 50.46

bg 451 781 9.96 13.38 0.07 0.01 3 39 1 10.28
bg-512 2,359 5,933 0.90 1.42 1.01 0.03 6 34 1 56.52
dao 2,373 3,067 4.20 6.26 0.52 0.03 5 91 2 24.21
da2 1,049 2,464 3.76 4.85 0.58 0.02 4 36 2 25.13
sc 11,540 25,936 2.16 5.08 1.71 0.40 10 265 3 41.54
wc3-512 3,030 8,793 1.06 1.56 1.01 0.05 6 31 1 79.61

maze-1 6,947 29,182 27.60 27.60 1.01 0.27 2 1,694 27 4.03
maze-2 13,141 25,995 12.58 6.58 1.01 0.22 2 1,138 20 11.32
maze-4 18,461 18,284 3.78 1.83 1.01 0.09 3 407 13 43.65
maze-8 21,997 13,784 1.03 0.44 1.01 0.03 3 115 9 174.02
maze-16 24,349 12,939 0.29 0.12 1.01 0.01 3 31 5 603.72
maze-32 23,532 12,528 0.07 0.03 1.01 0.00 4 8 3 1,553.45

random-10 2,512 60,289 28.30 30.23 1.01 1.77 3 788 4 3.16
random-15 3,914 65,124 36.04 34.79 1.01 1.72 3 1,392 5 2.80
random-20 5,072 66,074 40.92 37.24 1.01 1.56 3 1,943 6 2.60
random-25 6,048 65,298 43.66 38.20 1.01 1.34 2 2,384 7 2.53
random-30 6,606 62,953 44.97 38.30 1.01 1.11 2 2,604 7 2.53
random-35 7,229 57,697 45.14 37.68 1.01 0.88 2 2,811 8 2.56
random-40 6,023 36,087 45.05 37.11 1.01 0.47 2 2,201 14 2.72

room-8 7,994 18,724 6.18 3.15 1.01 0.15 3 327 4 23.91
room-16 7,839 13,928 1.40 0.64 1.01 0.04 3 66 2 109.25
room-32 8,847 12,860 0.32 0.14 1.01 0.01 4 18 2 371.68
room-64 9,820 12,109 0.07 0.03 1.01 0.00 5 5 1 928.87

street-256 842 5,052 3.88 7.39 0.25 0.11 5 41 1 17.60
street-512 3,467 18,542 1.89 6.27 1.01 0.36 10 92 2 33.66
street-1024 15,874 69,719 0.80 4.81 4.02 1.15 25 214 2 65.80

Table 5.3: Subgoal graphs on grid graphs.
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• PT: As proven in Section 5.3.6, subgoal graphs on grid graphs can be constructed
in time linear in the size of the underlying grid. Our experimental results agree
with our theoretical results, and show that the SG preprocessing times are short,
on the order of milliseconds, and comparable to the A* search times. On average,
subgoal graphs can be constructed in the time that it takes to perform 1.40 A*
searches on grid graphs. This value is lowest on maze-32 maps at 0.55, and highest
on random-10 maps at 24.00.

• |V |%: On average, 8.29% of the vertices of G become subgoals. However this re-
sult is heavily skewed by the results on random maps (28.30%-45.14%) and maze
maps with small corridor widths (27.60%-12.58%). Although game and street maps
exhibit staircase patterns, they typically also have large contiguous areas of un-
blocked cells and, therefore, the percentage of subgoals on these types of maps is
small, namely 2.19% and 1.51%, respectively. As the corridor width of maze maps
increases, the number of corridors and convex corners formed by intersecting corri-
dors decreases, and, therefore, the percentage of subgoals decreases from 27.6% on
maze-1 maps to 0.07% on maze-32 maps. Similarly, as the room size of room maps
increases, the number of rooms and the convex corners formed by “doors” between
adjacent rooms decreases, and, therefore, the percentage of subgoals decreases from
6.17% on room-4 maps to 0.07% on room-32 maps.

• |E|%: On average, the number of edges in subgoal graphs is 7.29% of the number
of edges in G and follows a pattern similar to the percentage of vertices of G that
become subgoals, across different types of maps: When there are more subgoals,
more edges are required to connect them. However, there are some deviations from
this trend, which we explain by using the average number of edges per subgoal
in subgoal graphs (not reported in Table 5.3): On game and street maps, where
staircase patterns are prevalent, the average number of edges per subgoal is 15.06
and 29.04, respectively (up to a maximum of 47.37 on street-1024 maps). On maze,
random, and room maps, which do not contain staircase patterns, the average
number of edges per subgoal is significantly lower, namely 2.37, 4.51, and 3.23,
respectively. Across all maps, the average number of edges per subgoal is 6.21,
which is slightly smaller than 7.08, the average number of edges per vertex in G.

• M (C and E): On average, the memory required to store clearance values and
subgoal graphs is very low, 0.78 and 0.24 megabytes, respectively, for a total of
1.02 megabytes. The memory required to store clearance values scales with the
grid size, and is the highest on street-1024 and sc maps. The memory required to
store subgoal graphs depends on the number of edges, and is the highest on random
maps.

• Cn: The SG connection (SF-Connect) times are typically short, 5 microseconds on
average. Recall that the the execution time of running SF-connect from a cell can be
measured by the lengths of the diagonals that extend from the cell (Section 5.3.5).
These diagonals extend further on game and street maps, which typically have
large contiguous regions of unblocked cells. Therefore, SG connection times are
significantly longer on game and street maps than they are on other types of maps.
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• Sr: The SG search times contribute the most to the SG path query times (∼ 105
times more than connection times), and are highly correlated with the number of
subgoals, with a correlation coefficient of 0.897,2 and less so with the number of
edges of subgoal graphs, with a correlation coefficient of 0.638.

• Rf: The SG refinement (CF-Refine) times are typically short, 8 microseconds on
average, but longer than the SG connection times. Recall that CF-Refine runs in
time linear in the length of the resulting path on G (Section 4.5.5). Therefore, SG
refinement times are highly correlated with instance path lengths (Table 5.2), with
a correlation coefficient of 0.805. However, when refining a path π on the query sub-
goal graph, CF-Refine calculates, for every edge on π, the directions and the number
of diagonal and cardinal moves on the corresponding freespace-shortest paths on G.
Executing CF-Refine for paths that consist of longer sequences of shorter edges
incurs this overhead more frequently, thereby increasing its execution times. For
instance, the SG refinement times on random maps, where subgoal graphs typi-
cally have short edges, are disproportionately long (with respect to instance path
lengths), namely ∼4 times longer than they are on game, room, and street maps,
even though the instance path lengths are similar on these four types of maps.

• PQ*: The SG path query times are 18.33 times shorter than the A* path query
(search) times across all maps, only 2.64 times shorter on random maps, and up
to ∼1,550 times shorter on maze-32 maps. Since the SG search times contribute
significantly more to the SG path query times than SG connection and refinement
times, and since the SG search times are highly correlated with the numbers of
vertices and edges of subgoal graphs, the speed-up achieved by using subgoal graphs
over A* searches on G are highly correlated with the numbers of vertices and edges
of the subgoal graphs relative to G, with correlation coefficients of 0.956 and 0.957,
respectively. The results over all maps are heavily skewed by the results on random
maps and maze maps with small corridor widths, where the percentage of subgoals
is higher than it is on other types of maps.

• Scaling: As discussed in Section 5.5.2, the street-256, street-512, and street-1024
maps are generated by discretizing the same environments using different resolution
grids. As our results show, SG achieves a higher speed-up over A* searches on
street-1024 maps (65.80) than it does on street-256 and street-512 maps (17.60 and
33.66, respectively). The reason for this is as follows: As larger resolution grids are
used for discretization, the number of vertices of G, and therefore the number of
vertices expanded by A* searches on G, grows quadratically in the dimensions of
the grid. However, the number of convex corners in G, and therefore the number
of vertices expanded by SG searches, grow only linearly in the dimensions of the
grid, since they can only appear along the boundaries of obstacles. Furthermore,
since the path lengths and the lengths of the diagonals that extend from unblocked
cells grow linearly in the dimensions of the grid, the SG connection and refinement
times also grow only linearly in the dimensions of the grid.

2We calculate correlation coefficients based on the averaged statistics for the 26 subcategories of maps.
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As discussed in Section 5.5.2, the bg-512 and wc3-512 maps are generated by scaling
the (smaller) maps used in the games Baldur’s Gate II and Warcraft III, respec-
tively, to size 512 × 512. However, this scaling is not performed by discretizing an
environment using a higher resolution grid, but instead by replacing each blocked or
unblocked cell on the original grid with an appropriate-sized square area of blocked
or unblocked cells. Therefore, this scaling does not introduce additional convex
corners to the grid (that is, this scaling can be considered as “zooming-in” without
enhancing the details), and, therefore, does not increase the SG search times. As a
result, the staircase problem is less pronounced, and SG achieves higher speed-ups
over A* searches on bg-512 and wc3-512 maps, compared to other types of game
maps.

Finally, maze maps with large corridor widths and room maps with large room
sizes can be considered to be scaled up versions of parts of maze maps with smaller
corridor widths and room maps with smaller room sizes, respectively. That is,
although all maze and room maps have the same size, maze maps with larger
corridor widths and room maps with larger room sizes can be considered to be
using higher resolution grids to discretize environments. As a result, SG achieves
higher speed-ups over A* searches on maze maps with large corridor widths and
room maps with large room sizes.

To summarize, on grid graphs, SG requires little preprocessing time and memory, and
achieves a significantly higher speed-up over A* than on state lattices (Section 4.6.5). SG
achieves a small speed-up over A* on random maps and maze maps with small corridor
widths, higher speed-ups on game and street maps despite their staircase patterns, due
to them typically containing large contiguous regions of unblocked cells, and significant
speed-ups on maze maps with large corridor widths and room maps with large room sizes.
Furthermore, SG achieves higher speed-ups over A* when using “higher resolution” grids
or when scaling grids to larger sizes, as can be observed on bg-512, wc3-512 maps, maze
maps with large corridor widths, room maps with large room sizes, and street maps
with large grid resolutions. Although the SG connection and refinement times contribute
little to the SG path query times on most types of maps, they make up a significant
percentage of the path query times on maze maps with large corridor widths and room
maps with large room sizes, and a non-trivial percentage of the path query times on game
and street maps. As we will discuss in Section 5.5.7, combining subgoal graphs with
contraction hierarchies can significantly reduce the search times, making the connection
and refinement times more important for the path query times across all types of maps.

5.5.5 Jump-Point Graphs

In this section, we compare JP (answering queries using jump-point graphs) with SG
(answering queries using subgoal graphs) with respect to their preprocessing and query
times, and memory requirements.

Table 5.5 reports the JP preprocessing, connection, search, refinement, and path query
times relative to SG (PT*, Cn*, Sr*, Rf*, and PQ*), the number of vertices and edges in
jump-point graphs relative to subgoal graphs (|V |% and |E|%), the memory required to
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SG → JP
PT |V |% |E|% M* Exp* Succ* Cn* Sr* Rf* PQ*

all 0.29 226.77 95.58 0.56 1.41 4.09 0.64 1.34 1.08 1.32

game-all 0.45 202.67 46.63 0.55 3.99 33.05 0.68 5.43 1.54 3.90
maze-all 0.34 217.74 108.77 0.52 1.31 3.03 0.61 1.24 1.01 1.22
random-all 0.22 230.90 138.98 0.60 1.45 2.63 0.49 1.21 1.24 1.21
room-all 0.36 278.81 131.82 0.51 1.22 2.03 0.61 1.02 1.14 1.00
street-all 0.27 202.60 21.86 0.64 4.49 93.16 0.64 8.66 1.47 3.72

bg 0.29 205.35 43.00 0.57 5.05 28.77 0.75 6.34 1.69 3.86
bg-512 0.47 200.30 31.52 0.51 4.58 32.92 0.73 6.30 1.45 2.86
dao 0.42 204.02 51.40 0.52 3.13 14.98 0.70 3.85 1.57 3.06
da2 0.38 202.51 44.20 0.51 4.35 27.36 0.72 5.80 1.55 3.24
sc 0.48 202.27 46.72 0.58 4.30 45.17 0.67 6.01 1.56 4.55
wc3-512 0.36 200.08 54.67 0.52 3.37 17.27 0.62 4.03 1.39 2.06

maze-1 0.28 233.99 139.01 0.53 1.12 2.24 0.67 1.03 0.91 1.03
maze-2 0.29 200.00 88.94 0.56 1.48 3.84 0.72 1.46 1.00 1.44
maze-4 0.36 200.00 78.42 0.53 2.40 7.49 0.67 2.40 1.21 2.29
maze-8 0.43 199.96 79.53 0.51 2.37 7.29 0.62 2.52 1.19 2.19
maze-16 0.48 200.00 79.26 0.50 2.36 7.17 0.56 2.66 1.21 1.80
maze-32 0.50 200.00 80.53 0.50 2.34 6.87 0.49 2.44 1.17 1.03

random-10 0.23 217.67 157.61 0.58 1.36 1.89 0.46 1.09 1.57 1.08
random-15 0.21 224.54 144.71 0.61 1.29 2.02 0.47 1.07 1.47 1.07
random-20 0.21 229.84 136.67 0.62 1.28 2.19 0.48 1.04 1.37 1.04
random-25 0.21 233.63 131.71 0.62 1.33 2.42 0.49 1.07 1.28 1.07
random-30 0.22 236.31 128.60 0.62 1.40 2.69 0.49 1.14 1.23 1.14
random-35 0.22 237.73 126.18 0.60 1.51 3.08 0.51 1.29 1.19 1.29
random-40 0.23 238.26 124.95 0.57 1.62 3.49 0.52 1.53 1.16 1.53

room-8 0.27 275.55 132.59 0.52 1.20 1.98 0.69 1.00 1.15 1.00
room-16 0.38 286.74 129.94 0.51 1.27 2.15 0.65 1.09 1.14 1.06
room-32 0.46 296.45 128.15 0.50 1.34 2.31 0.60 1.18 1.14 1.02
room-64 0.49 291.40 127.04 0.50 1.42 2.48 0.56 1.25 1.13 0.81

street-256 0.23 204.18 41.32 0.65 3.37 24.65 0.71 4.54 1.43 2.71
street-512 0.24 202.45 24.76 0.65 3.92 58.89 0.63 6.74 1.46 3.43
street-1024 0.31 201.44 13.90 0.63 5.55 169.37 0.63 12.49 1.49 4.17

Table 5.4: Jump-point graphs.
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(a) Subgoal graph, AR0606SR.map. (b) Jump-point graph, AR0606SR.map.

(c) Subgoal graph, random512-10-0.map. (d) Jump-point graph, random512-10-0.map.

Figure 5.19: Jump-point and subgoal graphs on grids with staircase and random patterns.

store the edges of jump-point graphs and the clearance values in both the cardinal and
diagonal directions relative to the memory required to store the edges of subgoal graphs
and the clearance values in only cardinal directions (M*), and the number of vertices
expanded and successors evaluated by JP searches relative to SG searches (Exp* and
Succ*).

We make the following observations:

• PT: The JP preprocessing times are 3.45 times longer than the SG preprocessing
times since JP calculates two sets of clearance values and often scans longer diag-
onals when identifying edges, as we discuss later. However, the JP preprocessing
times are still very short, namely 48 milliseconds on average, especially compared
to other algorithms that we discuss in the following sections.

• |V |%: As discussed in Section 5.4.3, convex corner cells typically contain two or
more jump points, compared to exactly one subgoal. Our results show that jump-
point graphs have 2.27 times more vertices on average than subgoal graphs.

• |E|%: As discussed in Section 5.4.3, even if the freespace-diagonal-first path π
between two jump points is unblocked, jump-point graphs may not have an edge
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between them if the direction of the last move on π does not match the direction
of the second jump point. Therefore, jump-point graphs typically avoid adding
edges between staircase subgoals, resulting in jump-point graphs having 53.37%
and 78.14% fewer edges than subgoal graphs on game and street maps, respec-
tively, which frequently contain staircase patterns. Figures 5.19a and 5.19b show
an example.

Whereas subgoal graphs have edges between subgoals that are direct-reachable with
respect to the set of subgoals on G, jump-point graphs have edges between jump
points that are direct-reachable with respect to the set of jump-points on G∗. If a
path on G passes through a convex corner cell, it would be covered by the subgoal
at that cell and, therefore, an edge that corresponds to that path does not need to
be added to the subgoal graph. On the other hand, if a path on G∗ passes through
a convex corner cell, a jump point (n, ~c) at that cell only covers that path if the last
move on the path when reaching n is in direction ~c. That is, jump points typically
cover fewer paths on G∗ than subgoals do on G. As a result, jump-point graphs
might have more edges than subgoal graphs. Our results show that jump-point
graphs have 38.93% and 31.82% more edges than subgoal graphs on random and
room maps, respectively. Figures 5.19c and 5.19d show an example.

• M*: As discussed in Section 5.5.4, SG requires more memory to store clearance
values than the edges of subgoal graphs. Since JP stores twice the number of
clearance values than SG and roughly the same number of edges, JP requires on
average 1.79 times more memory than SG.

• Cn*: The JP connection (JP-Connect) times are 1.56 times longer than the SG
connection (SF-Connect) times, because, since jump-point graphs do not have diag-
onal jump-points, the diagonal scans in JP-Connect terminate only when movement
is no longer possible in that direction. In contrast, as discussed in Section 5.3.5,
the diagonal scans in SF-Connect terminate at convex corner cells.

We have also experimented with storing additional clearance values to scan diag-
onals (rows and columns, when connecting the goal vertex to JP) more efficiently,
as discussed in Section 5.4.1, by “jumping” to those rows and columns that contain
subgoals or jump points, for SG and JP, respectively. This modification decreases
the average SG connection times from 5.14 to 4.62 microseconds, and the JP con-
nection times from 7.99 to 4.95 microseconds, making SG and JP connection times
very similar. However, it increases the SG and JP memory requirements by factors
of 1.78 and 1.89, respectively, while reducing the SG and JP path query times by
factors of only 1.001 and 1.008, respectively.

• Sr*, Exp*, and Succ*: JP searches explore only locally-diagonal-first paths on
G, since jump-point graphs contain only locally-diagonal-first paths, as discussed
in Section 5.4.3. When we consider the number of vertices and edges in jump-point
graphs relative to subgoal graphs, we observe that the average out-degree of vertices
is 2.37 times smaller in jump-point graphs compared to subgoal graphs. As a result,
JP searches expand 1.41 times fewer vertices, process 4.09 times fewer successors,
and are 1.34 times faster than SG searches. These numbers are higher on game and
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(a) Search tree of SG.

(b) Search tree of JP.

Figure 5.20: Search trees of SG and JP on Berlin-0-256.map (street-256). Edges are
colored based on their destination vertices, namely gray (expanded) and green (generated
but not expanded). The start and goal vertices are shown as large blue and red circles,
respectively.

street maps, where jump-point graphs also contain significantly fewer edges than
subgoal graphs due to jump-point graphs avoiding staircase problems, as discussed
earlier. For instance, JP searches process 93.16 times fewer successors than SG
searches on street maps. Figure 5.20 shows an example.

• Rf*: The JP refinement (JP-Refine) times are 1.08 times shorter than the SG
refinement (CF-Refine) times on average, and 1.54 times and 1.47 times shorter
on game and street maps, respectively. As discussed in Section 5.4.3, JP-Refine
and CF-Refine can be considered to be equivalent. As discussed in Section 5.5.4,
the CF-refinement times are typically shorter when refining paths that consist of
shorter sequences of longer edges. Jump-point graph edges are typically longer
than subgoal-graph edges, as shown in Figures 5.19d and 5.20b, resulting in CF-
refinement times being slightly shorter on paths found on jump-point graphs com-
pared to those found on subgoal graphs.
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• PQ*: The JP path query times are 1.32 times shorter than the SG path query
times on average, since the JP search times are shorter than the SG search times
and, as discussed in Section 5.5.4, the SG search times are the dominant factor in
the SG path query times (that is, the SG connection times being shorter than the
JP connection times does not affect the path query times too much).

To summarize, by exploring only locally-diagonal-first paths, JP searches avoid the
staircase problem that negatively affects the SG search times, and run significantly faster
than SG searches on game and street maps, and slightly faster on other types of maps.
Although jump-point graphs have more edges than subgoal graphs, they have significantly
fewer edges on game and street maps, but more edges on other types of maps, which
will become more relevant in Section 5.5.8 when we compare answering queries using
contraction hierarchies constructed on subgoal and jump-point graphs. Since JP scans
the grid differently when connecting goal vertices to jump-point graphs, it stores an
additional set of clearance values and therefore requires more memory than SG.

5.5.6 Contraction Hierarchies

In this section, we compare CH (answering queries using contraction hierarchies on G)
with A* (answering queries using A* searches on G), SG (answering queries using subgoal
graphs on G), and CH-GPPC (a variant of CH that does not use a heuristic in its searches,
and performs midpoint unpacking instead of 2-pointer unpacking), with respect to their
preprocessing and query times, and memory requirements.

Recall that contraction hierarchies are constructed by forming hierarchies among the
vertices of a graph and adding shortcut edges to ensure that, between every pair of
vertices s and t, the hierarchies contain at least one up-down s-t path with length d(s, t)
(Section 3.4.2). As a result, contraction hierarchies can be searched for a shortest up-down
s-t path with bidirectional searches, where the forward search constructs the upward part
of a shortest up-down s-t path and the backward search constructs the downward part.
Any vertex that cannot be reached from s with an upward path, or cannot reach t with
a downward part is therefore effectively eliminated from these searches (Section 3.4.4).

Table 5.5 reports the SG path query times relative to A* (PQ*, also reported in Table
5.3), the CH preprocessing times (PT), the number of edges in contraction hierarchies
relative to G (|E|%), the memory required to store these edges (M), the CH search and
refinement times (Sr and Rf), the CH path query times relative to A* (PQ*), and the
CH search and refinement times relative to CH-GPPC (Sr* and Rf*).

We make the following observations:

• PT: The CH preprocessing times are significantly longer than the SG preprocessing
times (Table 5.3), by a factor of 7,555 over all maps. CH preprocessing times are the
longest on the street-1024 maps, followed by the street-512 and sc maps. These maps
are also the largest maps in the MovingAI benchmarks and contain large contiguous
regions of unblocked cells, which might be the reason why the CH preprocessing
times are longer on these types of maps.

• |E|%: On average, contraction hierarchies have 2.3% fewer edges than G: Since
contraction hierarchies do not have level edges, every edge (u, v) of G becomes
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A* → A* → CH CH-GPPC
SG → CH
PQ PT |E| M Sr Rf PQ Sr Rf
* (s) % (MB) (µs) (µs) * * *

all 18.33 105 97.70 12.13 53 19 136.41 2.15 2.32

game-all 39.10 66 92.01 8.28 70 10 64.27 1.44 2.43
maze-all 23.28 33 118.52 17.23 24 33 292.55 0.85 2.25
random-all 2.64 74 110.18 12.98 43 12 100.79 2.23 2.30
room-all 79.19 44 113.59 22.73 44 10 160.29 1.03 2.50
street-all 50.46 528 87.01 29.99 130 17 45.67 5.69 2.62

bg 10.28 1 112.14 0.44 14 2 28.23 1.16 2.42
bg512 56.52 110 89.80 9.76 57 8 36.00 1.99 2.38
dao 24.21 9 101.43 2.40 35 8 55.28 1.09 2.58
da2 25.13 4 107.44 1.67 24 4 37.25 1.00 2.54
sc 41.54 281 90.21 34.52 129 17 79.26 1.17 2.39
wc3-512 79.61 99 91.98 14.39 66 9 40.39 3.06 2.48

maze-1 4.03 0 116.49 3.43 4 38 163.27 0.85 1.90
maze-2 11.32 2 161.10 8.24 6 35 314.06 0.87 2.10
maze-4 43.65 5 152.55 13.57 10 32 443.60 0.86 2.33
maze-8 174.02 19 124.20 20.74 19 32 427.71 0.83 2.53
maze-16 603.72 52 107.19 26.64 45 30 325.52 0.84 2.60
maze-32 1,553.45 119 98.28 30.75 107 22 182.35 0.86 2.53

random-10 3.16 242 95.50 24.50 61 14 33.66 3.94 2.47
random-15 2.80 161 101.11 19.64 75 13 44.55 2.71 2.42
random-20 2.60 75 107.98 15.51 73 13 59.55 2.05 2.38
random-25 2.53 27 116.89 11.99 60 12 84.51 1.66 2.31
random-30 2.53 7 127.45 9.10 41 11 128.97 1.40 2.28
random-35 2.56 2 139.86 6.69 23 10 224.79 1.13 2.21
random-40 2.72 1 150.09 3.41 7 12 323.67 0.89 2.14

room-8 23.91 6 143.29 13.85 29 10 205.01 1.32 2.45
room-16 109.25 18 123.41 20.57 24 9 235.48 1.10 2.57
room-32 371.68 47 107.69 26.28 39 9 182.84 0.94 2.54
room-64 928.87 106 98.41 30.19 82 10 106.11 0.95 2.44

street-256 17.60 28 96.74 5.74 34 4 22.33 3.28 2.39
street-512 33.66 290 88.90 26.29 91 13 33.30 4.54 2.51
street-1024 65.80 2739 84.23 113.82 258 34 54.37 6.52 2.71

Table 5.5: Contraction hierarchies on grid graphs. The CH-GPPC and CH preprocessing
times are the same. The CH-GPPC memory requirements are 75% of those of CH.

219



either an upward or a downward edge in the hierarchy. Furthermore, since G is
undirected, for every edge (u, v) of G that becomes an upward edge in the hierarchy,
there exists an edge (v, u) of G that becomes a downward edge. Since CH does not
store downward edges (Section 5.5.1), exactly half of the edges of G are present in
contraction hierarchies, and the other half are discarded. Our results show that, on
average, the number of shortcut edges added to contraction hierarchies is slightly
smaller than the number of edges discarded, resulting in contraction hierarchies
having a slightly smaller number of edges than G. Similar results have also been
observed for contraction hierarchies constructed on road networks (Geisberger et al.,
2008). This result holds mainly for game and street maps, but not other types of
maps. A discussion for why this is the case is beyond the scope of this dissertation.
Compared to subgoal graphs (Table 5.3), contraction hierarchies have 14.06 times
more edges on average.

• M: Since CH uses 16 bytes to store each edge of a contraction hierarchy (4 times
higher than SG, as discussed in Section 5.5.1), and since contraction hierarchies on
grid graphs have significantly more edges than subgoal graphs, CH requires 11.89
times more memory on average to store the edges of contraction hierarchies than
SG requires to store the edges of subgoal graphs plus the clearance values. Since
CH-GPPC uses 12 bytes to store each edge of a contraction hierarchy, it requires
25% less memory than CH (not reported in the table).

• Sr: The CH search times are short, namely 9.93 times shorter than the SG search
times and 186.30 times shorter than the A* search times across all maps. As the
corridor width and the room size increases in maze and room maps, respectively,
the CH search times increase, similarly to the number of vertices of G and the A*
search times (Table 5.2). As the percentage of blocked cells increases in random
maps, the CH search times decrease, similarly to the number of vertices of G, but
contrary to the A* search times. The increase in the A* search times despite the
decrease in the number of vertices of G suggests that the Octile distance heuristic
becomes less informed on random maps as the percentage of blocked cells increases.
However, as our results suggest, less informed heuristics do not seem to affect the
CH search times as much as they affect the A* search times. We now explain why
this is the case.

1) Heuristics typically help to avoid expanding vertices that are “far away” from
the start and goal vertices: An A* search for a shortest s-t path does not expand
vertices n with d(s, n) + h(n, t) > d(s, t). Adding d(n, t) to both sides of this
inequality and rearranging the terms, we obtain the equivalent inequality d(s, n) +
d(n, t)− d(s, t) > d(n, t)− h(n, t). Intuitively, the right-hand side of this inequality
(d(n, t)−h(n, t)) corresponds to how much h underestimates the n-t distance on G.
If the underestimation is less than the value of the left-hand side (d(s, n) +d(n, t)−
d(s, t)), then the A* search is guaranteed to avoid expanding n. As the heuristic
becomes more informed, A* searches avoid expanding vertices n with smaller values
of d(s, n) + d(n, t) − d(s, t), that is, vertices n for which d(s, n) and/or d(n, t) are
large. 2) Forward and backward CH searches typically avoid expanding vertices
that are “far away” from the start and the goal vertices, respectively: Intuitively,
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as discussed in Section 2.3.2, CH searches expand vertices that are far away from
the start and the goal vertex only if they are “important”, that is, if their levels
are high. More formally, high-level shortcut edges are typically longer than low-
level (shortcut) edges in contraction hierarchies, since high level shortcut edges are
formed by combining two lower-level edges and, thus, their lengths are determined
as the sum of the two edges. As a result, the successors of expanded vertices
are typically further away than the expanded vertex, the higher the level of the
expanded vertex. Figure 5.21c shows an example of CH search trees, which we
discuss in further detail in Section 5.5.7. Since CH searches “climb upward” in the
hierarchy, the branches of CH search trees are typically “sparser” the further away
they are from the start (for the forward search) or the goal (for the backward search)
vertex. Therefore, the further away a vertex is from the start and the goal, the less
likely it is to be expanded by CH searches. Consequently, CH searches benefit less
from heuristics, since CH searches already avoid expanding most vertices that are
far away from the start and the goal, even without the use of a heuristic.

Compared to the SG search times, the CH search times are typically shorter across
all types of maps, with the following exceptions: On maze maps with large corridor
widths and room maps with large room sizes, the SG search times are significantly
shorter, namely by factors of 13.63 and 17.56 on maze-32 and room-64 maps, re-
spectively (not reported in the table). On bg-512, wc3-512, and street-1024 maps,
the SG search times are slightly shorter, namely by factors of 1.67, 2.17, and 1.20,
respectively. As discussed in Section 5.5.4, this can be explained by the fact that
all five types of maps can be considered to be “higher resolution” discretizations of
environments, where the SG search times are typically very short. On bg-512, wc3-
512, and street-1024 maps, SG search times are only slightly shorter than the CH
search times, since these maps contain staircase patterns, which negatively affect
the SG search times. In addition to searches, SG queries also include a connection
phase. The results reported above change only slightly when the SG connection
times are taken into account, and the SG path query times are shorter than the CH
path query times on these five types of maps.

• Sr*: The CH search times are 2.15 times shorter than the CH-GPPC search times,
since CH searches use the Octile distance heuristic. On street maps, where the
Octile distance heuristic can be very informative, CH searches expand or stall 6.48
times fewer vertices than CH-GPPC searches (not reported in Table 5.5), and the
CH search times are 5.69 times shorter. On maze maps, where the Octile distance
heuristic is not very informative, CH searches expand or stall only 1.02 times fewer
vertices than CH-GPPC searches, but the CH search times are 1.18 times longer,
due to the overhead of computing the Octile distances.

• Rf: The CH refinement (2-pointer unpacking) times make up 26.78% of the CH
path query times on average, and are 2.38 times longer than the SG refinement
(CF-Refine) times. Recall that 2-pointer unpacking runs in time linear in the num-
ber of edges of the resulting path (Section 3.4.4). Therefore, similar to the SG
refinement times, the CH refinement times are highly correlated with the instance
path lengths, with a correlation coefficient of 0.905. However, 2-pointer unpacking
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frequently accesses memory to look up the two edges that correspond to a shortcut
edge, whereas CF-Refine does not need to access memory (besides the paths found
by the SG searches and the resulting paths after refinement), since it simply gener-
ates freespace-diagonal-first or freespace-cardinal-first paths between CF-reachable
vertices. Therefore, 2-pointer unpacking is typically slower than CF-Refine. An
exception to this rule occurs on random maps, where CF-Refine has to calculate
the directions and number of moves along freespace-shortest paths frequently, as
discussed in Section 5.5.4. On random-40 maps, CF-Refine is 1.19 times slower
than 2-pointer unpacking. On all other types of maps, CF-Refine is faster.

• Rf*: The CH refinement (2-pointer unpacking) times are 2.32 times shorter than
the CH-GPPC refinement (midpoint unpacking) times, since midpoint unpacking
performs the same sequence of look-ups as 2-pointer unpacking, but also has to scan
the incident edges of vertices to find the corresponding two edges. The ratios of
the CH refinement times to the CH-GPPC refinement times are similar across the
different types of maps.

• PQ*: The CH path query times are on average 2.20 times shorter than the CH-
GPPC path query times, since the CH search and refinement times are shorter than
the CH-GPPC search and refinement times, respectively. The CH path query times
are 136.41 times shorter than the A* search times across all maps, and 7.44 times
shorter than the SG path query times. The relative path query times of CH and SG
across the different types of maps depend on their relative search and refinement
times, as well as the SG connection times. We discuss the CH and SG path query
times in more detail in Section 5.5.7, when we construct contraction hierarchies on
subgoal graphs.

To summarize, CH has shorter path query times than SG, especially on random maps,
but longer preprocessing times, higher memory requirements, and longer refinement times.
On grids with “higher resolutions”, the SG path query times are typically shorter than the
CH path query times, but less so when staircase patterns are present. On random maps,
the SG path query times are long, and the CH path query times are significantly shorter.
In this sense, SG and CH seem to have complementary strengths, which we explore in
more detail in Section 5.5.7. Furthermore, the SG refinement times are typically much
shorter than the CH refinement times, and SG uses less memory to store each edge, which
we aim to exploit in Sections 5.5.9 and 5.5.10 when we augment CH with reachability
relations.

5.5.7 Contraction Hierarchies on Subgoal Graphs

In this section, we compare CH-SG (answering queries using contraction hierarchies on
subgoal graphs) to CH and SG with respect to their preprocessing and query times, and
memory requirements. Recall that CH-SG performs connection using SF-Connect, similar
to SG; performs search using bidirectional A* searches, similar to CH; and performs
refinement first by using 2-pointer unpacking, similar to CH, to refine the path found on
the contraction hierarchy to a path on the subgoal graph, and then by using CF-Refine,
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similar to SG, to refine it into a path on G. Furthermore, CH-SG stores clearance values
in the four cardinal directions, similar to SG; and stores each edge using 16 bytes, similar
to CH.

Table 5.5 reports the CH-SG preprocessing times (PT*) relative to CH, the number of
edges of contraction hierarchies on subgoal graphs (|E|%) relative to subgoal graphs and
contraction hierarchies on G, respectively, and the CH-SG memory requirements (M*),
distance query times (DQ*, that is, connection plus search times), refinement times (Rf*),
and path query times (PQ*), all relative to SG and CH, respectively.

We make the following observations:

• PT*: The CH-SG preprocessing times are shorter than the CH preprocessing times
on all types of maps except for the street-512, street-1024, random-10, and random-
15 maps. The CH-SG preprocessing times are significantly shorter than the CH
preprocessing times on maze maps (by a factor of 700 on all maze maps and up
to a factor of 8,669 on the maze-32 maps), room maps (by a factor of 138 on all
room maps and up to a factor of 7,417 on room-64 maps), and game maps (by a
factor of 5 on all game maps and up to factors of 143 and 78 on the bg-512 and
wc3-512 maps, respectively). The types of maps for which the CH-SG preprocessing
times are significantly shorter than the CH preprocessing times correspond to the
types of maps that are scaled-up, as discussed in Section 5.5.4, except for the street
maps. The scaling on street maps also introduces additional staircase subgoals and
edges, unlike the scaling on game, maze, and room maps. Therefore, as the grid
resolution of street maps increases, the average number of neighbors per subgoal
increases, and contracting each subgoal requires many more witness searches. This
issue can be addressed by avoiding witness searches between those pairs of neighbors
whose corresponding edges form “non-taut” paths. Whether two edges incident to
a subgoal form a taut path can easily be determined in constant time simply by
checking the directions of the edges and the direction of the corner that introduced
the subgoal. Our implementation does not have this optimization and, as a result,
performs poorly on street maps. Since the CH preprocessing times are already
long on street maps and the CH-SG preprocessing times are longer, the CH-SG
preprocessing times appear to be longer than the CH preprocessing times across all
maps.

• |E|%: Contraction hierarchies on subgoal graphs have 8.28% fewer edges than
subgoal graphs across all maps, similar to contraction hierarchies on G, which have
2.3% fewer edges than G, as reported in Section 5.5.6. Contraction hierarchies on
subgoal graphs, on average, have 93.48% fewer edges than contraction hierarchies
on G, since they are constructed on subgoal graphs, which have, on average, 92.72%
fewer edges than G (Table 5.3).

• |M |%: Since CH-SG stores 92.72% fewer edges than CH, it requires less memory
than CH, by a factor of 7.63 on average, despite its additional memory overhead
for storing clearance values. Although CH-SG stores each edge using four times
more memory than SG, it requires only 1.56 times more memory than SG, since
the memory required to store clearance values is higher than the memory required
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SG → CH-SG CH → CH-SG

|E|% M* DQ* Rf* PQ* PT* |E|% M* DQ* Rf* PQ*

all 91.72 0.64 30.54 0.63 18.37 0.82 6.52 7.63 3.05 1.62 2.47

game-all 56.84 0.89 6.34 0.49 5.29 5.07 2.25 9.41 3.43 2.25 3.22
maze-all 78.16 0.83 126.83 0.70 26.90 700.23 1.90 12.86 4.38 1.55 2.14
random-all 119.55 0.32 49.94 0.50 36.04 0.95 46.64 1.84 1.03 0.72 0.94
room-all 126.31 0.83 8.13 0.48 6.05 138.39 1.16 17.90 3.38 1.94 2.99
street-all 54.82 0.77 3.79 0.43 3.44 0.43 2.67 15.62 3.75 4.19 3.80

bg 60.72 0.73 4.34 0.42 3.41 3.48 9.11 4.00 1.41 0.71 1.24
bg512 58.08 0.96 3.07 0.46 2.58 143.39 0.74 9.04 4.39 2.59 4.04
dao 59.94 0.90 6.14 0.51 4.83 6.92 3.81 3.93 2.27 1.60 2.11
da2 58.57 0.95 3.74 0.48 2.91 13.58 3.05 2.65 2.22 1.22 1.96
sc 55.60 0.81 7.85 0.50 6.79 3.25 2.55 13.33 3.68 2.82 3.56
wc3-512 59.78 0.94 2.64 0.44 2.24 78.57 0.86 12.73 4.77 2.78 4.41

maze-1 85.02 0.66 366.85 0.69 39.66 3.95 27.34 1.76 0.92 0.99 0.98
maze-2 75.58 0.74 197.58 0.69 33.04 18.39 8.01 4.93 1.12 1.20 1.19
maze-4 68.30 0.87 69.36 0.71 17.40 117.21 1.90 10.69 1.61 1.75 1.71
maze-8 68.31 0.95 20.78 0.74 7.21 810.40 0.38 19.03 3.39 2.71 2.93
maze-16 67.73 0.99 6.07 0.72 3.03 3,280.81 0.09 25.86 7.84 3.94 5.63
maze-32 65.96 1.00 1.96 0.64 1.39 8,669.57 0.02 30.45 17.20 4.78 11.86

random-10 140.83 0.25 13.35 0.37 11.27 0.90 40.66 2.23 1.03 1.20 1.06
random-15 135.89 0.26 19.51 0.38 16.48 0.95 47.80 1.89 1.04 0.99 1.03
random-20 126.35 0.29 27.86 0.40 23.10 1.02 50.81 1.74 1.04 0.86 1.01
random-25 114.22 0.33 41.73 0.43 33.03 1.12 51.01 1.68 1.05 0.77 0.99
random-30 100.99 0.39 65.71 0.47 47.44 1.30 49.30 1.66 1.03 0.68 0.93
random-35 87.24 0.46 126.69 0.52 73.68 1.93 45.98 1.64 1.01 0.60 0.84
random-40 76.91 0.60 286.93 0.62 74.15 2.98 42.84 1.38 0.91 0.52 0.62

room-8 128.73 0.64 14.34 0.52 10.84 6.00 5.82 7.65 1.27 1.26 1.26
room-16 122.39 0.87 5.35 0.48 3.98 115.91 0.96 17.00 1.89 1.74 1.85
room-32 111.45 0.97 2.26 0.44 1.73 1,538.68 0.17 25.03 4.02 2.29 3.51
room-64 92.55 0.99 1.31 0.45 1.06 7,417.83 0.03 29.60 11.63 3.54 9.28

street-256 59.51 0.72 3.02 0.39 2.58 2.13 4.26 11.48 2.17 1.35 2.03
street-512 55.44 0.75 3.62 0.43 3.23 0.77 3.09 14.45 3.26 3.32 3.27
street-1024 52.98 0.80 4.07 0.45 3.76 0.37 2.15 17.62 4.40 6.30 4.56

Table 5.6: Contraction hierarchies on subgoal graphs.
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to store edges, as reported in Section 5.5.4, and, to a lesser extent, since CH-SG
stores 8.28% fewer edges than SG.

• DQ* vs. SG: The CH-SG distance query (connection plus search) times are
30.54 times shorter than the SG distance query times on average. The factor of
improvement is lowest on maze maps with large corridor widths and room maps
with large room sizes, where SG already achieves large speed-up over A* searches,
and highest on maze maps with small corridor widths and random maps with high
percentages of blocked cells, where SG achieves small speed-ups over A*. The factor
of improvement is relatively small on game and street maps, which we think is due to
the staircase patterns that appear frequently on these types of maps, as we explain
below.

Figure 5.21a shows an example of a SG search tree (the figure only shows the par-
ents of vertices in the search tree, and not all successors considered per expansion).
SG expands many staircase subgoals and uses many staircase edges to generate suc-
cessors that cannot appear on any shortest path between the start and goal vertices
(the staircase problem). CH-SG mitigates the staircase problem to some degree, by
assigning lower levels to staircase subgoals and thus removing them from considera-
tion as successors for higher-level vertices. However, CH-SG still connects the start
and goal vertices to staircase subgoals, generates staircase subgoals as successors
when the start and goal vertices are expanded, and eventually can expand staircase
subgoals, which might generate more staircase subgoals as successors (although,
only the ones with lower levels). Figure 5.21b shows an example of a CH-SG search
tree. Most of the expanded or generated vertices are staircase subgoals to which
the start or goal vertices are connected.

The following statistics (not reported in the table) support this explanation: On
game maps, CH-SG connects the start and goal vertices to a total of 57.60 subgoals,
and expands or stalls 81.9 vertices. On street maps, CH-SG connects the start and
goal vertices to a total of 125.72 subgoals, and expands or stalls 81.08 vertices.
That is, on game and street maps, the number of subgoals to which the start or
goal vertices are connected are comparable to the number vertices expanded or
stalled by CH-SG. On maze, random, and room maps, CH-SG connects the start
and goal vertices to only 4.78, 7.69, and 5.81 subgoals, respectively, and expands
or stalls 26.72, 126.84, and 49.15 vertices. That is, on maze, random, and room
maps, the number of subgoals to which the start or goal vertices are connected
is significantly smaller than the number vertices expanded or stalled by CH-SG
searches.

• DQ* vs. CH: The CH-SG distance query times are 3.05 times shorter than the
CH distance query times on average, and shorter across all types of maps except
for the random-10 and maze-1 maps, where they are 1.09 times longer. There are
two competing factors that determine whether the CH-SG distance query times are
shorter than the CH distance query times. Namely, the CH-SG search times relative
to the CH search times, and the CH-SG connection times: The CH-SG search
times are typically shorter than the CH search times since contraction hierarchies
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(a) The search tree of
SG. The start and goal
vertices are connected

to many subgoals
along staircases, whose

expansions also
generate many

successors along
staircases.

(b) The search trees of
CH-SG. The start and

goal vertices are
connected to many

subgoals along
staircases, whose

expansions typically do
not generate many

successors along
staircases.

(c) The search trees of
CH. Most vertices are

generated and
expanded or stalled in

freespace, which is
avoided by CH-SG. In

this example, CH
expands or stalls ∼4.5

times more vertices
than CH-SG.

Figure 5.21: The search trees of SG, CH, and CH-SG on Berlin-0-256.map (street-256).
For CH and CH-SG, the search trees in both the forward and backward searches are
shown. The edges are colored based on their destination vertices, namely gray (expanded),
green (generated but not expanded), and red (stalled).
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constructed on subgoal graphs are typically smaller than contraction hierarchies
constructed on G. However, in order for the CH-SG distance query times to be
shorter than the CH distance query times, the CH-SG connection times should not
exceed the difference between the CH and CH-SG search times. On the maze-1
and random-40 maps, where the SG search times are only slightly shorter than the
A* search times, the CH-SG search times are also only slightly shorter than the
CH search times (not reported in the table), and the difference in the CH-SG and
CH search times is shorter than CH-SG connection times, resulting in the CH-SG
distance query times being longer than the CH distance query times.

The factor of improvement of the distance query times for switching from CH to
CH-SG is the highest on the scaled-up maps, that is, the wc-512 maps, the bg-512
maps, the maze maps with large corridor widths, the room maps with large room
sizes, and the street maps with large grid resolutions. As discussed in Section 5.5.6,
CH searches are more likely to expand vertices that are “close” to the start or goal
vertices. CH-SG can avoid most of these expansions since it typically connects
the start and goal vertices directly to “far away” subgoals. Since scaled-up maps
typically contain large contiguous regions of unblocked cells, CH-SG can connect
the start and goal vertices to subgoals that are farther away than on other types
of maps. Figures 5.21b and 5.21c show an example, where, despite the staircase
problem, CH-SG expands or stalls 4.5 times fewer vertices than CH.

• Rf* vs. SG: The CH-SG refinement times are strictly longer than the SG re-
finement times, by a factor of 1.59 on average, since both CH-SG and SG refine
paths on subgoal graphs into paths on grids, but CH-SG first has to refine paths
on contraction hierarchies into paths on subgoal graphs.

• Rf* vs. CH: The CH-SG refinement times are 1.62 times longer than the CH
refinement times on average, but shorter on random maps. Recall that (2-pointer)
unpacking a path π on a contraction hierarchy recursively replaces shortcut edges
on π with two (shortcut) edges until a path on G is generated. CH-SG refinement
differs from unpacking by using CF-Refine for edges of subgoal graphs. As discussed
in Section 5.5.6, CF-Refine is typically faster than 2-pointer unpacking when refin-
ing long edges, but may be slower when refining short edges. Therefore, CH-SG
refinement is typically faster than CH refinement, except on random maps where
subgoal graph edges are typically short.

• PQ*: Since both the CH-SG distance query and refinement times are shorter than
the CH distance query and refinement times, respectively, their sums, the CH-SG
path query times, are also shorter than the CH path query times, by a factor of 2.47
on average. Since the CH-SG distance query times are significantly shorter than the
SG distance query times and the CH-SG refinement times are only slightly longer
than the SG refinement times, the CH-SG path query times are shorter than the
SG path query times, by a factor of 18.37 on average.

To summarize, compared to CH, CH-SG typically has shorter path query times and
lower memory requirements, since CH-SG stores and searches smaller hierarchies, and
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since it arguably pays only a small “cost” for using smaller hierarchies, by using efficient
connection and refinement algorithms that exploit the freespace structure of grid graphs.
Compared to SG, CH-SG has shorter path query times but higher memory requirements,
since using a contraction hierarchy allows searches to ignore more vertices (in addition to
the non-subgoal vertices ignored by SG), and since CH-SG uses more memory to store
each edge.

5.5.8 Contraction Hierarchies on Jump-Point Graphs

In this section, we compare CH-JP (answering queries using contraction hierarchies on
jump-point graphs) to CH-SG (answering queries using contraction hierarchies on subgoal
graphs) with respect to their preprocessing and query times, and memory requirements.

We have remarked in Section 5.4.3 that constructing an explicit graph of jump-points,
namely the jump-point graph, allows for the combination of jump-point search with other
orthogonal techniques, such as contraction hierarchies. We now point out a drawback of
the straightforward way of combining these two techniques, and discuss how our imple-
mentation addresses this drawback.

Figure 5.22: Shortest paths on jump-point graphs are not necessarily shortest paths on
G. Contraction hierarchies constructed on jump-point graphs preserve these paths, which
can be considered to be redundant when answering queries on G.

Consider the example shown in Figure 5.22. The only locally-diagonal-first path
from (C3, Right) to (D9, Up) on the jump-point graph (shown as a solid line) does
not correspond to a shortest path on G. That is, the (C3, Right)-(D9-Up) distance on
the jump-point graph is not equal to the C3-D9 distance on G. When constructing a
contraction hierarchy on the jump-point graph, if (F9, Right) is contracted before (C3,
Right) and (D9, Up), the shortcut edge ((C3, Right), (D9, Up)) would be introduced to
preserve the (C3, Right)-(D9-Up) distance on the jump-point graph. However, since this
edge does not correspond to a shortest path on G, it cannot be used for finding shortest
paths on G and is therefore redundant. We have observed in our preliminary experiments
that the straightforward way of combining contraction hierarchies and jump-point graphs
resulted in very long preprocessing times (more than several hours) on random maps, due
to redundant edges resulting in more witness searches during contractions.
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One method of addressing this problem is to avoid adding shortcut edges whose lengths
do not represent distances on G. However, this requires determining distances on G to
check whether each shortcut edge is redundant, which can also result in long prepro-
cessing times. Our current implementation of CH-JP instead performs the following,
approximate, check to determine whether a shortcut edge ((n1,~c1), (n2,~c2)) is redundant:
It performs a search on the jump-point graph, treating all jump points at cell n1 as start
vertices and all jump points at cell n2 as goal vertices, in order to determine an upper
bound on the n1-n2 distance on G (to determine the exact n1-n2 distance, all pairings of
n1 and n2 with the eight directions need to be considered). It avoids adding the shortcut
edge ((n1,~c1), (n2,~c2)) if its length is greater than this bound. For instance, in the exam-
ple in Figure 5.22, it finds that the length of the path from (C3, Right) to (D9, Right) is
smaller than the length of the shortcut edge ((C3,Right),(C9,Up)), and therefore avoids
adding ((C3,Right),(C9,Up)) as a shortcut edge.

Our preliminary experiments on a 400 × 400 grid with 33% blocked cells showed that,
without the elimination of redundant edges, contraction hierarchies on jump-point graphs
have 475,401 shortcut edges, of which 121,890 (25.6%) are redundant. Our approximate
method of eliminating redundant edges eliminate all but 19,456 of these redundant edges,
reducing the CH-JP path query times by a factor of 1.42 and the preprocessing times
by a factor of 2.06 (since fewer witness searches need to be performed). Eliminating all
redundant edges further reduces the CH-JP path query times by a factor of 1.07, but
increases the preprocessing times by a factor of 3.31 (due to the more expensive checks
needed to determine whether each shortcut is redundant). In our experiments, we use
the approximate method of eliminating redundant edges, whose preprocessing times are
still high on random maps (∼1 hour on average, and up to ∼4.5 hours on the random10
maps).

Table 5.5 reports the CH-JP preprocessing, connection, search, refinement, and path
query times relative to CH-SG (PT*, Cn*, Sr*, Rf*, and PQ*), the number of edges
of contraction hierarchies on jump-point graphs relative to contraction hierarchies on
subgoal graphs (|E|%), the CH-JP memory requirements relative to CH-SG (M*), and
the number of vertices expanded and successors evaluated by CH-JP searches relative to
CH-SG searches (Exp* and Succ*).

We make the following observations:

• PT*: As discussed in Section 5.5.5, jump-point graphs have significantly fewer
edges than subgoal graphs on game and street maps. As a result, the construction
of contraction hierarchies on jump-point graphs requires significantly fewer wit-
ness searches and, thus, runs 8.04 and 23.82 times faster than the construction of
contraction hierarchies on subgoal graphs on game and street maps, respectively.
The opposite case happens on maze, random, and room maps, since jump-point
graphs typically have more edges than subgoal graphs on these types of maps. The
CH-JP preprocessing times are 45.30 times longer than the CH-SG preprocessing
times on random maps, despite the technique discussed above that we use to reduce
preprocessing times.

• |E|%: The number of edges of contraction hierarchies on jump-point graphs is
smaller than the number of edges of contraction hierarchies on subgoal graphs on
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CH-SG → CH-JP
PT |E|% M* Exp* Succ* Sr* PQ*

all 0.39 133.35 0.43 1.17 1.57 0.79 0.83

game-all 8.04 45.80 0.56 2.19 6.25 2.15 1.28
maze-all 0.33 104.36 0.50 1.01 1.66 0.92 0.89
random-all 0.02 169.85 0.31 0.51 0.48 0.35 0.43
room-all 0.14 123.54 0.48 0.70 0.76 0.57 0.67
street-all 23.82 23.24 0.74 3.54 12.48 3.49 1.26

bg 3.34 40.36 0.69 2.20 5.24 2.17 1.34
bg-512 8.25 31.75 0.52 2.39 6.35 2.41 1.20
dao 2.13 51.57 0.54 1.63 3.50 1.58 1.19
da2 8.84 42.81 0.52 2.06 5.57 2.13 1.26
sc 8.97 45.71 0.61 2.54 8.29 2.48 1.39
wc3-512 3.02 54.08 0.53 1.73 3.09 1.57 0.97

maze-1 0.23 128.72 0.44 0.79 1.11 0.59 0.80
maze-2 0.36 87.26 0.53 1.01 1.68 0.95 0.93
maze-4 0.50 72.43 0.53 1.11 1.90 1.11 1.08
maze-8 0.50 73.21 0.51 1.13 1.97 1.16 1.02
maze-16 0.47 72.96 0.50 1.18 2.08 1.22 0.91
maze-32 0.46 73.40 0.50 1.23 2.10 1.23 0.73

random-10 0.02 209.66 0.25 0.44 0.36 0.29 0.34
random-15 0.03 184.26 0.28 0.45 0.41 0.31 0.36
random-20 0.04 163.52 0.32 0.47 0.47 0.33 0.38
random-25 0.07 147.94 0.35 0.51 0.56 0.37 0.43
random-30 0.09 136.60 0.38 0.55 0.64 0.41 0.50
random-35 0.10 127.73 0.41 0.60 0.77 0.48 0.62
random-40 0.21 122.37 0.44 0.67 0.89 0.55 0.87

room-8 0.13 126.08 0.45 0.61 0.67 0.49 0.59
room-16 0.23 116.84 0.49 0.75 0.86 0.61 0.70
room-32 0.39 110.15 0.50 0.86 1.05 0.81 0.82
room-64 0.45 108.05 0.50 1.01 1.26 0.93 0.73

street-256 4.76 42.75 0.69 2.07 3.89 1.84 1.18
street-512 13.67 26.18 0.75 3.04 8.11 2.79 1.25
street-1024 27.53 14.45 0.74 5.30 24.75 5.45 1.29

Table 5.7: Contraction hierarchies on jump-point graphs.
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Figure 5.23: Symmetric paths on jump-point graphs with different topologies. Contrac-
tion hierarchies constructed on jump-point graphs might need to preserve all such paths
to guarantee the finding of shortest paths on G.

game and street maps, but greater on maze, random, and room maps. These results
are similar to the relative numbers of edges of subgoal graphs and jump-point graphs
discussed in Section 5.5.5.

• M*: CH-JP requires 2.33 times more memory than CH-SG on average, since it
stores two sets of clearance values, stores more edges than CH-SG, and cannot avoid
storing “reversed downward edges” (since, as discussed in Section 5.5.1, contraction
hierarchies on jump-point graphs are directed graphs and their reversed downward
edges are not equivalent to their upward edges).

• Sr*, Exp*, and Succ*: The CH-JP search times are 2.15 times and 3.49 times
shorter than the CH-SG search times on game and street maps, respectively, but
1.09, 2.88, and 1.75 times longer on maze, random, and room maps. That is, unlike
the JP search times which are always shorter than the SG search times, the CH-JP
search times are not always shorter than the CH-SG search times and, even when
they are, the ratio of them is smaller than the ratio of the JP and SG search times.
Similar trends hold for the number of expanded vertices and processed successors.
Although we do not have a complete explanation for why this is the case, we suspect
that the following factors contribute to these results:

1. As discussed in Section 5.5.5, each convex corner cell typically contains between
two to four jump points, but exactly one subgoal. Unlike JP searches, CH-JP
searches do not “group together” jump-points that share the same cell, and
might expand each of them separately. We have experimented with a version
of CH-JP that prunes jump points with provably suboptimal g-values based
on the g-values of other jump-points at the same cell. However, this approach
slightly increased the CH-JP search times due to the overhead of performing
this check, which typically prunes only one or two jump-points from the search.
We suspect that stall-on-demand already prunes most of these jump points
from the search.
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2. As discussed earlier in this section, contraction hierarchies on jump-point
graphs may include redundant edges that correspond to suboptimal paths on
G. We suspect that a similar problem occurs where contraction hierarchies on
jump-point graphs preserve multiple shortest paths with different topologies
between two cells, as shown in Figure 5.23. However, we do not think that
these paths can be considered to be redundant: For instance, if the red path
in Figure 5.23 is not preserved and the start vertex is connected to the red
jump point at B2 but not the green one, then it might not be possible to find a
shortest path from the start vertex to F8. We reiterate that our preprocessing
eliminates most of the redundant (suboptimal) edges from contraction hierar-
chies on jump-point graphs, and that our preliminary results show that even
if all redundant edges are eliminated, the CH-JP search times are still longer
than CH-SG search times on random and room maps.

3. Although CH-JP searches expand fewer vertices and process fewer successors
than CH-SG searches on maze maps, CH-JP search times are longer than
CH-SG search times on maze maps. We suspect that this is due to CH-SG
maintaining smaller data structures that account for a smaller set of vertices
(subgoals, as opposed to jump points) and edges (since CH-SG discards “re-
versed downward edges”, unlike CH-JP). As a result, cache misses might be
less frequent during CH-SG searches compared to CH-JP searches.

• PQ*: The relative path query times of CH-JP and CH-SG mirror the relative
search times of CH-JP and CH-SG. The CH-JP path query times are shorter than
the CH-SG path query times on game and street maps, but 1.20 times longer across
all maps. We have also experimented with versions of CH-SG and CH-JP that store
additional clearance values to speed up their connection phases, which reduce the
CH-SG path query times by a factor of 1.02 and the CH-JP path query times by
a factor of 1.09, resulting in CH-JP path query times being only 1.11 times longer
than the CH-SG path query times across all maps.

To summarize, CH-JP addresses the staircase problem of CH-SG discussed in Sec-
tion 5.5.7, and therefore has shorter preprocessing and path query times on game and
street maps, but higher memory requirements. However, across all maps, CH-JP has
longer preprocessing and query times than CH-SG, and higher memory requirements.
We do not clearly understand why the CH-JP path query times are longer than the CH-
SG path query times even though the JP path query times are shorter than the SG path
query times, but suspect that having multiple copies of vertices that represent different
incoming directions to cells results in contraction hierarchies on jump-point graphs hav-
ing to preserve shortest paths between more pairs of vertices compared to contraction
hierarchies on subgoal graphs. We have identified one such problem where contraction
hierarchies on jump-point graphs preserve paths that are shortest paths on jump-point
graphs but not on G. However, addressing this problem did not significantly change the
results.
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5.5.9 R-Refining R-Reachable Shortcut Edges

In this section, we compare CH+Rr (answering queries using contraction hierarchies and
an R-refine algorithm) and CH-SG+Rr (answering queries using contraction hierarchies
on subgoal graphs and an R-refine algorithm) with CH and CH-SG, respectively, with
respect to their query times, for R = CF and R = F. Recall that, during preprocessing,
CH+Rr and CH-SG+Rr mark R-reachable shortcut edges in contraction hierarchies and,
during 2-pointer unpacking, use an R-refine algorithm to refine R-reachable shortcut
edges. The main idea behind CH+Rr and CH-SG+Rr is to capitalize on the efficient
refinement algorithms on grid graphs to try and improve CH and CH-SG refinement
times, without increasing their memory requirements.

Table 5.8 reports the percentage of shortcut edges that are R-reachable in contraction
hierarchies (R%), and the CH+Rr refinement and path query times (Rf* and PQ*)
relative to CH, for R = CF and R = F. It also reports the same statistics for CH-SG+Rr
relative to CH-SG. Since marking R-reachable edges during preprocessing requires little
time, the preprocessing times are not reported. Since marking R-reachable edges does
not require extra memory, the memory requirements are not reported either.

We make the following observations:

• CH → CH+CFr: The CH+CFr refinement times are 1.48 times shorter than
the CH refinement times on average, but longer on maze maps with small corri-
dor widths and random maps with large percentages of blocked cells. As discussed
in Section 5.5.6, CF-Refine is typically faster than 2-pointer unpacking, especially
when refining long edges. Therefore, the CH+CFr refinement times are typically
shorter than the CH refinement times. However, CF-reachable edges are typi-
cally short on maze maps with small corridor widths and random maps with large
percentages of blocked cells. Therefore, on these types of maps, the CH+CFr re-
finement times are longer than the CH refinement times. A significant percentage,
on average 95.54%, of shortcut edges of contraction hierarchies are CF-reachable,
which means that CF-Refine is used frequently during refinement. This percentage
is lower (at 55.00%) on random maps, and decreases as the percentage of blocked
cells increases, due to the random pattern discussed in Section 5.5.4. Since the
CH+CFr refinement times are shorter than the CH refinement times, the CH+CFr
path query times are also shorter than the CH path query times.

• CH → CH+Fr: The CH+Fr refinement times are 1.19 times longer than the
CH refinement times on average. Recall that F-Refine, similar to CF-Refine, first
calculates the directions and the number of diagonal and cardinal moves along the
freespace-shortest paths between two vertices. However, unlike CF-Refine, which
simply orders these moves according to a canonical ordering, F-Refine performs a
depth-first search to find an ordering of these moves that corresponds to an un-
blocked freespace-shortest path on G. If the freespace-diagonal-first path between
two F-reachable vertices is unblocked, the depth-first search of F-Refine simply
generates this path, without backtracking (this is due to our implementation of the
depth-first search, which generates successors using diagonal moves first). However,
even if this is the case, F-Refine still has to verify that this path is unblocked on the
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CH → CH+Rr CH-SG → CH-SG+Rr
R = CF R = F R = CF R = F

R% Rf* PQ* R% Rf* PQ* R% Rf* PQ* R% Rf* PQ*

all 95.54 1.48 1.10 96.81 0.84 0.95 31.16 1.11 1.04 49.91 0.56 0.76

game-all 99.74 4.51 1.11 99.92 1.70 1.05 71.01 1.28 1.04 91.00 0.64 0.91
maze-all 97.09 1.16 1.09 97.35 0.68 0.79 10.40 1.04 1.03 12.46 0.51 0.57
random-all 55.00 1.04 1.01 67.61 0.77 0.94 29.34 1.26 1.06 48.66 0.86 0.96
room-all 97.82 2.09 1.10 98.45 1.15 1.02 19.80 1.10 1.03 32.05 0.58 0.84
street-all 99.82 8.98 1.12 99.93 2.94 1.08 70.85 1.27 1.02 90.83 0.60 0.93

bg 98.89 1.81 1.06 99.49 0.88 0.98 75.92 1.24 1.05 89.59 0.84 0.96
bg-512 99.86 4.55 1.11 99.96 1.61 1.05 68.64 1.17 1.03 89.09 0.58 0.88
dao 99.33 3.16 1.14 99.75 1.32 1.04 69.59 1.29 1.06 89.12 0.70 0.91
da2 99.50 2.60 1.11 99.81 1.12 1.02 73.57 1.20 1.04 89.75 0.69 0.90
sc 99.78 5.79 1.11 99.93 2.00 1.06 71.52 1.36 1.04 92.51 0.62 0.92
wc3-512 99.73 5.20 1.10 99.93 2.01 1.06 65.61 1.11 1.02 87.00 0.57 0.88

maze-1 50.62 0.72 0.74 50.62 0.47 0.49 4.23 1.02 1.02 4.23 0.54 0.56
maze-2 79.39 0.86 0.88 80.38 0.52 0.56 14.56 1.04 1.03 14.56 0.54 0.59
maze-4 96.86 1.46 1.32 98.26 0.81 0.85 25.08 1.09 1.07 39.84 0.54 0.61
maze-8 99.37 2.12 1.49 99.73 1.06 1.04 25.40 1.08 1.06 40.80 0.46 0.55
maze-16 99.79 2.98 1.36 99.91 1.29 1.10 27.11 1.05 1.03 41.94 0.38 0.52
maze-32 99.94 4.60 1.16 99.98 1.49 1.06 28.57 1.03 1.01 43.96 0.36 0.57

random-10 65.45 1.67 1.08 81.50 1.27 1.04 33.44 1.44 1.05 63.11 0.93 0.99
random-15 55.41 1.34 1.04 69.65 1.17 1.02 29.37 1.40 1.05 51.07 1.06 1.01
random-20 49.26 1.15 1.02 60.61 0.99 1.00 27.25 1.32 1.04 42.97 1.02 1.00
random-25 46.14 1.04 1.01 55.40 0.83 0.97 26.40 1.28 1.05 38.74 0.95 0.99
random-30 45.34 0.97 0.99 53.09 0.73 0.93 26.74 1.25 1.06 37.00 0.89 0.97
random-35 46.96 0.90 0.97 53.54 0.64 0.85 28.32 1.22 1.08 37.47 0.83 0.92
random-40 49.52 0.81 0.87 55.19 0.52 0.64 30.86 1.18 1.13 39.41 0.74 0.79

room-8 85.00 1.27 1.06 88.90 0.86 0.96 19.84 1.13 1.03 31.83 0.68 0.89
room-16 97.59 1.85 1.14 98.40 1.08 1.02 19.65 1.08 1.02 32.08 0.59 0.84
room-32 99.52 2.70 1.14 99.72 1.29 1.04 19.63 1.12 1.03 34.80 0.54 0.80
room-64 99.88 4.13 1.09 99.93 1.56 1.04 22.04 1.03 1.01 42.45 0.45 0.74

street-256 99.32 3.15 1.08 99.69 1.43 1.03 64.50 1.15 1.02 85.61 0.74 0.94
street-512 99.76 7.00 1.12 99.90 2.54 1.08 69.57 1.23 1.02 90.61 0.63 0.93
street-1024 99.93 13.25 1.12 99.98 3.60 1.09 78.53 1.38 1.02 95.64 0.53 0.93

Table 5.8: R-refining R-reachable edges of contraction hierarchies.
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grid graph because, different from CF-reachable vertices, the freespace-diagonal-first
or freespace-cardinal-first path between two F-reachable vertices is not necessarily
unblocked. That is, F-Refine is slower than CF-Refine even if its depth-first search
does not backtrack, since it needs to access memory to determine whether certain
paths are unblocked on G. As a result of this overhead (memory access and pos-
sible backtracking), unlike CF-Refine, F-Refine is typically slower than 2-pointer
unpacking and, therefore, the CH+Fr refinement times are typically longer than
the CH refinement times. An exception to this trend occurs on scaled-up maps
and most game maps, since these maps typically contain large contiguous regions
of unblocked cells and, therefore, the freespace-diagonal-first paths that correspond
to F-reachable edges are typically unblocked.

• CH-SG → CH-SG+CFr: The CH-SG+CFr refinement times are 1.11 times
shorter than the CH-SG refinement times on average, and consistently shorter
on each type of map. The improvement factor of the refinement times for using
CH-SG+CFr over CH-SG (1.11) is smaller than it is for using CH+CFr over CH
(1.48), since, as discussed in Section 5.5.7, the CH-SG refinement times are already
shorter than the CH refinement times. However, unlike the CH+CFr refinement
times compared to the CH refinement times, the CH-SG+CFr refinement times are
consistently shorter than the CH-SG refinement times, across all benchmarks. This
is due to the following reason. Since shortcut edges in contraction hierarchies on
subgoal graphs (and also on G) are formed by combining two (shortcut) edges, they
are typically longer than the edges of subgoal graphs. Therefore, the (shortcut)
edges refined by CF-Refine during the CH-SG+CFr refinement are typically longer
than the edges refined by CF-Refine during the CH-SG refinement. That is, the
overhead of calculating the directions and number of diagonal and cardinal moves
along freespace-shortest paths are incurred less frequently during the CH-SG+CFr
refinement than the CH-SG refinement and, therefore, the CH-SG+CFr refinement
times are consistently shorter than the CH-SG refinement times.

• CH-SG → CH-SG+Fr: CH-SG+Fr refinement is 1.78 times slower than CH-SG
refinement on average. As discussed earlier, this is due to 2-pointer unpacking typ-
ically being faster than F-Refine, and also due to CH-SG refinement being already
fast.

To summarize, marking shortcut edges for R-refinement has no downsides if R-
refinement can be performed faster than 2-pointer unpacking. This idea can be improved
in several ways: 1) Marking only those edges for R-refinement where R-refinement runs
faster than 2-pointer unpacking would guarantee that there is no deterioration in re-
finement times (such as the CH+CFr refinement times on the random-40 and maze-1
maps). 2) Using several reachability relations and marking shortcut edges accordingly
could help with refining more edges using efficient refinement procedures. For instance,
vertices between which the freespace-diagonal-first path is unblocked and between which
the freespace-cardinal-first path is unblocked can be marked separately, and refined using
CF-Refine accordingly. 3) The bits that are no longer used for storing 2-pointer unpacking
information could be utilized to store additional information that can be used to refine
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the edges. For instance, the directions and number of moves along freespace-shortest
paths can be stored (instead of computed during refinement). 4) Storing the R-reachable
and non-R-reachable shortcut edges in hierarchies separately could allow for the storage
of R-reachable edges using less memory (for instance, with 4 bytes for CF- or F-reachable
edges rather than 16 bytes).

5.5.10 R Contraction Hierarchies

In this section, we compare R-CH (answering queries using R contraction hierarchies) and
R-CH-SG (answering queries using R contraction hierarchies on subgoal graphs) with CH
and CH-SG, respectively, with respect to their query times and memory requirements,
for R = CF and R = F. Recall that R contraction hierarchies are constructed simi-
larly to contraction hierarchies, except that no vertex is contracted whose contraction
introduces a shortcut edge that is not R-reachable. Therefore, R contraction hierarchies
have R-reachable shortcut edges only, but may contain a core of uncontracted vertices.
As discussed in Section 3.4.4, the bidirectional searches used for searching contraction
hierarchies can be modified so that the core vertices are expanded by the forward (or the
backward) search but not the backward (or forward) search. The main idea behind R-CH
and R-CH-SG is to: 1) capitalize on efficient refinement algorithms for grid graphs to try
and improve the CH and CH-SG refinement times, even more so than for CH+Rr and
CH-SG+Rr, by ensuring that all edges in the hierarchies can be refined using R-Refine;
and 2) reduce the memory requirements by storing each edge using less memory (4 bytes
instead of 16 bytes). The main downside of R-CH and R-CH-SG compared to CH and
CH-SG, respectively, is that their hierarchies are restricted to use only R-reachable edges
and might have uncontracted cores, which can result in longer search times.

Table 5.9 reports the percentage of vertices of R contraction hierarchies that remain
in their cores (Core%), the R-CH memory requirements (M*), the distance query times
(DQ*), refinement times (Rf*), and path query times (PQ*) relative to CH, for R = CF
and R = F. Table 5.10 reports the same statistics for R-CH-SG relative to CH-SG. The
R-CH preprocessing times are similar to the CH preprocessing times, and the R-CH-SG
preprocessing times are similar to the CH-SG preprocessing times, and thus not reported.

We make the following observations:

• Core%, CH → R-CH: The cores of CF and F contraction hierarchies are typi-
cally small, containing on average 4.17% and 3.50% of the vertices of G, respectively.
Since F ⊇ CF, F contraction hierarchies have fewer constraints on how they can
be constructed than CF contraction hierarchies, and therefore consistently have
smaller cores than CF contraction hierarchies across all types of maps. As dis-
cussed in Section 5.5.4, the random patterns of random maps typically result in
only nearby pairs of vertices to be CF- or F-reachable, therefore imposing even
more constraints on how CF and F contraction hierarchies can be constructed. As
a result, the cores of CF and F contraction hierarchies on random maps are larger,
containing 25.42% and 21.36% of the vertices of G, respectively. In maze maps,
especially those with small corridor widths, it is also typically the case that only
nearby pairs of vertices are CF- or F-reachable. Interestingly, CF and F contraction
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CH → CF-CH CH → F-CH
Core% M* DQ* Rf* PQ* Core% M* DQ* Rf* PQ*

all 4.17 4.03 0.27 3.24 0.35 3.50 4.03 0.30 1.09 0.37

game-all 0.16 4.00 0.86 6.39 0.97 0.11 4.00 0.93 1.77 0.80
maze-all 0.00 4.03 0.48 2.76 0.91 0.00 4.03 0.49 0.93 0.22
random-all 25.42 4.36 0.03 1.89 0.04 21.36 4.30 0.04 0.84 0.04
room-all 1.46 4.02 0.29 3.89 0.35 1.29 4.01 0.31 1.36 0.16
street-all 0.13 4.00 0.89 11.34 1.00 0.10 4.00 0.94 3.29 0.90

bg 0.91 4.00 0.82 2.29 0.90 0.67 4.00 0.87 0.88 0.83
bg-512 0.09 4.00 0.92 5.88 1.03 0.06 4.00 0.98 1.65 0.89
dao 0.46 4.00 0.76 4.61 0.89 0.27 4.00 0.87 1.41 0.76
da2 0.21 3.98 0.88 3.45 1.00 0.12 3.98 0.94 1.06 0.89
sc 0.12 4.00 0.87 8.78 0.97 0.08 4.00 0.93 2.12 0.78
wc3-512 0.14 4.00 0.89 6.36 0.98 0.10 4.00 0.94 2.04 0.87

maze-1 0.00 4.45 0.07 1.73 0.51 0.00 4.45 0.07 0.69 0.09
maze-2 0.00 4.10 0.13 2.20 0.63 0.00 4.10 0.13 0.83 0.15
maze-4 0.00 4.03 0.37 3.51 1.19 0.00 4.01 0.43 1.08 0.43
maze-8 0.00 4.00 0.68 4.68 1.47 0.00 4.00 0.75 1.24 0.60
maze-16 0.00 4.00 0.92 5.95 1.38 0.00 4.00 0.95 1.30 0.77
maze-32 0.00 4.00 0.97 7.05 1.14 0.00 4.00 1.01 1.39 0.91

random-10 24.56 4.38 0.07 3.77 0.09 18.55 4.26 0.09 1.67 0.10
random-15 29.03 4.47 0.05 3.03 0.06 23.82 4.38 0.06 1.34 0.07
random-20 30.12 4.46 0.04 2.54 0.05 25.76 4.41 0.05 1.12 0.05
random-25 28.52 4.36 0.03 2.18 0.04 24.88 4.33 0.03 0.95 0.04
random-30 25.02 4.23 0.02 1.83 0.03 21.98 4.21 0.03 0.82 0.03
random-35 19.57 4.10 0.01 1.54 0.02 17.21 4.08 0.02 0.68 0.02
random-40 13.26 4.06 0.01 1.18 0.03 11.65 4.06 0.01 0.53 0.01

room-8 4.91 4.06 0.08 2.58 0.10 4.35 4.05 0.08 1.01 0.09
room-16 1.16 4.01 0.26 3.51 0.35 1.02 4.01 0.28 1.30 0.23
room-32 0.26 4.00 0.67 4.73 0.80 0.23 4.00 0.71 1.54 0.55
room-64 0.05 4.00 0.94 6.41 1.04 0.05 4.00 0.98 1.84 0.81

street-256 0.53 3.99 0.84 3.74 0.91 0.41 3.99 0.89 1.45 0.85
street-512 0.17 4.00 0.89 8.92 1.00 0.12 4.00 0.95 2.87 0.88
street-1024 0.04 4.00 0.90 17.04 1.01 0.03 4.00 0.94 4.08 0.92

Table 5.9: R contraction hierarchies.
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CH-SG → CF-CH-SG CH-SG → F-CH-SG
Core% M* DQ* Rf* PQ* Core% M* DQ* Rf* PQ*

all 51.75 1.64 0.12 2.01 0.20 43.18 1.64 0.14 0.70 0.21

game-all 11.88 1.19 0.64 2.94 0.74 5.41 1.19 0.80 0.87 0.81
maze-all 0.01 1.25 0.22 1.81 0.72 0.01 1.25 0.22 0.62 0.45
random-all 65.07 3.21 0.04 2.39 0.05 55.34 3.14 0.04 1.13 0.06
room-all 81.29 1.20 0.14 2.17 0.19 67.68 1.20 0.16 0.78 0.20
street-all 18.26 1.45 0.75 3.01 0.82 6.60 1.45 0.90 0.95 0.91

bg 11.58 1.38 0.76 3.56 0.93 7.35 1.38 0.83 1.36 0.92
bg-512 13.36 1.05 0.81 2.77 0.93 7.06 1.05 0.89 0.78 0.86
dao 14.29 1.13 0.60 2.92 0.74 7.03 1.13 0.76 0.96 0.79
da2 7.36 1.05 0.81 3.05 1.00 3.68 1.05 0.89 0.98 0.91
sc 10.96 1.34 0.59 2.96 0.67 4.15 1.34 0.78 0.82 0.79
wc3-512 16.01 1.09 0.80 2.79 0.92 9.64 1.09 0.87 0.89 0.88

maze-1 0.00 1.68 0.09 1.69 0.58 0.00 1.68 0.09 0.70 0.40
maze-2 0.00 1.48 0.15 1.84 0.66 0.00 1.48 0.15 0.71 0.44
maze-4 0.01 1.20 0.36 2.13 0.97 0.01 1.19 0.43 0.65 0.58
maze-8 0.04 1.07 0.52 1.93 1.02 0.04 1.06 0.60 0.49 0.52
maze-16 0.14 1.02 0.72 1.76 1.08 0.14 1.02 0.77 0.35 0.46
maze-32 0.54 1.00 0.89 1.73 1.13 0.54 1.00 0.91 0.29 0.48

random-10 87.72 3.93 0.08 2.87 0.10 69.95 3.73 0.10 1.38 0.11
random-15 81.73 3.81 0.06 2.83 0.07 68.28 3.70 0.07 1.33 0.08
random-20 74.76 3.51 0.05 2.71 0.05 64.32 3.46 0.05 1.28 0.06
random-25 66.29 3.14 0.03 2.55 0.04 57.80 3.11 0.04 1.18 0.05
random-30 56.37 2.75 0.03 2.42 0.04 49.36 2.73 0.03 1.13 0.04
random-35 43.86 2.34 0.02 2.33 0.03 38.40 2.34 0.02 1.10 0.03
random-40 29.75 1.82 0.01 2.08 0.05 25.96 1.80 0.01 0.99 0.05

room-8 81.14 1.55 0.08 2.04 0.11 67.92 1.55 0.09 0.86 0.12
room-16 82.76 1.15 0.20 2.14 0.27 68.20 1.15 0.23 0.81 0.29
room-32 80.10 1.03 0.48 2.40 0.62 64.77 1.03 0.55 0.76 0.59
room-64 70.43 1.01 0.78 2.28 0.97 56.45 1.01 0.81 0.63 0.75

street-256 22.36 1.56 0.71 3.14 0.82 10.72 1.56 0.85 1.27 0.90
street-512 19.36 1.49 0.70 2.99 0.78 6.44 1.50 0.88 1.02 0.90
street-1024 12.70 1.39 0.81 2.99 0.86 3.26 1.40 0.92 0.81 0.91

Table 5.10: R contraction hierarchies on subgoal graphs.
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hierarchies constructed on maze maps do not have cores (except for the highest-
level vertex), that is, all vertices are contracted when forming these hierarchies,
similarly to contraction hierarchies. However, CF and F contraction hierarchies on
maze maps have very different structures than contraction hierarchies, as shown in
Figure 5.24. Observe that up-down paths on the F contraction hierarchy in Fig-
ure 5.24b use longer sequences of shorter edges than on the contraction hierarchy
in Figure 5.24a. As a result, the F contraction hierarchy in Figure 5.24b has more
levels to guarantee that the levels of vertices on up-down paths first strictly increase
and then strictly decrease.

• M*, CH → R-CH: Both the CF-CH and F-CH memory requirements are 4.03
times lower than the CH memory requirements on average, since CF-CH and F-CH
require 4 times less memory to store each edge than CH. This result also indicates
that CF and F contraction hierarchies have roughly the same number of edges as
contraction hierarchies.

• DQ*, CH → R-CH: The CF-CH and F-CH distance query (search) times are
significantly longer than the CH distance query times, on average by factors of
3.75 and 3.37, respectively, and on random maps by factors of 31.68 and 27.74,
respectively. As discussed earlier, the deterioration in path query times is worse for
CF-CH since CF contraction hierarchies have more constraints on how they can be
constructed compared to F contraction hierarchies, resulting in larger cores. The
deterioration in path query times for both CF-CH and F-CH is typically small on
scaled-up maps, which, as discussed in Section 5.5.4, have large contiguous areas of
unblocked cells that allow distant pairs of vertices to be CF or F-reachable.

• Rf*, CH → R-CH: The CF-CH refinement times are 3.24 times shorter than the
CH refinement times on average. Furthermore, they are 2.19 times shorter than
the CH+CF refinement times and 1.27 times shorter than SG refinement times,
making CF-CH, along with CF-CH-SG and CF-N-SG (that we discuss in the next
section), all algorithm with the shortest refinement times among the algorithms
listed in Table 5.1 (except for A*, which does not perform refinement). The CF-CH
refinement times are shorter than the SG refinement times since the shortcut edges
of CF contraction hierarchies can be longer than the edges of subgoal graphs (which
contain only SF-reachable edges, where SF ⊆ CF), requiring CF-Refine to calculate
the directions and number of moves along freespace-shortest paths less frequently
when refining paths found on CF contraction hierarchies. The F-CH refinement
times are 1.09 times shorter than the CH refinement times on average, and 2.98
times longer than the CF-CH refinement times, due to the overhead of having to
access memory and perform depth-first searches, as discussed in Section 5.5.9.

• PQ*, CH → R-CH: The CF-CH and F-CH path query times are longer than the
CH path query times, on average by factors of 0.35 and 0.37, respectively. On game,
maze, and street maps, the CF-CH path query times are similar to the CH path
query times, indicating that the reduction in the refinement times can make up for
the increase in the path query times. The CF-CH path query times are also shorter
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(a) Contraction hierarchies
can have long shortcut

edges that are not freespace
reachable, allowing for the

uniform contraction of
vertices.

(b) F contraction
hierarchies can only have

F-reachable shortcut edges,
which limits how they can
be constructed: Vertices
whose contraction would

introduce non-F-reachable
shortcut edges are not

contracted, interfering with
the contraction order and
typically resulting in an

uncontracted core. In this
example, although all the

vertices are contracted, the
resulting hierarchy is

significantly different from
the contraction hierarchy

shown in (a).

Figure 5.24: Contraction and F contraction hierarchies constructed on maze-512-8-0.map
(maze map with corridor width 8). The higher-level vertices are shown higher from the
grid. The edges are colored based on the level of their source vertex, on a scale from
yellow (low level) to red (high level).
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than the F-CH path query times on these types of maps, but longer on random and
room maps, making them longer across all maps.

• CH-SG → R-CH-SG: The trends in distance query times and memory require-
ments of CF-CH-SG and F-CH-SG relative to CH-SG are similar to the trends in
distance query times and memory requirements of CF-CH and F-CH relative to
CH. However, the improvements in refinement times and memory requirements and
the deterioration in distance and path query times of CF-CH-SG and F-CH-SG
relative to CH-SG are worse than they are for CF-CH and F-CH relative to CH,
since The reason for this result is that CH-SG has shorter refinement, path, and
distance query times, and lower memory requirements than CH, as discussed in
Section 5.5.7. We discuss three cases where this fact results in different CF-CH-SG
and F-CH-SG improvement factors over the CH-SG compared to CF-CH and F-SG
improvement factors over CH: 1) The numbers of vertices in the cores of CF and
F contraction hierarchies on subgoal graphs are similar to the numbers of vertices
in the cores of CF and F contraction hierarchies (on G), respectively (not reported
in the table). However, since subgoal graphs are smaller than G, the sizes of their
cores relative to G are larger for hierarchies constructed on subgoal graphs. 2) The
CF-CH-SG and F-CH-SG refinement times are similar to the CF-CH and F-CH re-
finement times, respectively (not reported in the table). However, since the CH-SG
refinement times are shorter than the CH refinement times, the improvement in the
refinement times of CF-CH-SG and F-CH-SG relative to CH-SG is less than the im-
provement in the refinement times of CF-CH and F-CH relative to CH, respectively.
3) CF-CH-SG, F-CH-SG, CF-CH, and F-CH all store shortcut edges using 4 times
less memory than CH-SG and CH. However, CF-CH-SG, F-CH-SG, and CH-SG
also store clearance values and, therefore, the improvement in the CF-CH-SG and
F-CH-SG memory requirements relative to CH-SG is less than a factor of 4.

To summarize, using R contraction hierarchies rather than contraction hierarchies
for answering path-queries trades off lower memory requirements for longer distance and
path query times. This trade-off is typically worse (that is, reduces memory requirements
less but increases query times more) when subgoal graphs are used as base graphs, worse
when distant pairs of vertices are typically not R-reachable (for instance, on random
maps), and better when they are (for instance, on scaled-up maps).

5.5.11 N-Level Subgoal Graphs

In this section, we compare R-N -SG (answering queries using R N -level subgoal graphs)
with R-CH-SG with respect to their path query times and memory requirements, for
R = CF and R = F. Recall that, similar to R contraction hierarchies (on subgoal graphs),
R N -level subgoal graphs have R-reachable edges only. Different from R contraction hi-
erarchies, R N -level subgoal graphs can have same-level edges between non-core vertices,
with the caveat that any arching path on them can use at most one non-core same-
level edge. As discussed in Section 3.4.4, the bidirectional searches used for searching R
contraction hierarchies can be modified so that the non-core same-level edges are consid-
ered only by the forward (or the backward) search but not the backward (or forward)
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search, and successors generated through non-core same-level edges are never placed in
the OPEN list. That is, the non-core same-level edges are used only to check if the
forward and backward searches meet.

Our entry into the GPPC uses F N -level subgoal graphs, and is non-dominated with
respect to its query-time/memory trade-off among all entries that are guaranteed to find
shortest paths. As discussed in Section 5.5.1, F N -level subgoal graphs can be related to
contraction hierarchies through three separate modifications to contraction hierarchies:
1) Constructing (contraction) hierarchies on subgoal graphs rather than on G (CH→ CH-
SG). As shown in Section 5.5.7, this modification can reduce both the query times and
memory requirements of answering queries using contraction hierarchies. 2) Constructing
hierarchies with F-reachable edges only (CH-SG→ F-CH-SG). As shown in Section 5.5.6,
this modification can reduce the refinement times and memory requirements, but can
increase the search times and, ultimately, the path query times. 3) Allowing non-core
same-level edges in the hierarchy (F-CH-SG → F-N -SG). As we show in this section,
this modification can result in fewer expansions during the searches but more successors
evaluated per expansion, ultimately resulting in slightly longer query times.

Table 5.11 reports the number of edges of R N -level subgoal graphs relative to R
contraction hierarchies constructed on subgoal graphs (|E|%), the maximum level of
vertices in R N -level subgoal graphs relative to R contraction hierarchies constructed on
subgoal graphs (L%), the number of vertices expanded (or stalled) and the number of
successors evaluated byR-N -SG searches relative toR-CH-SG searches (Exp* and Succ*),
and the R-N -SG search times relative to R-CH-SG (Sr*), for R = CF and R = F. The
R-N -SG preprocessing times are similar to the R-CH-SG preprocessing times and thus
not reported.

We make the following observations:

• E%: CF and F N -level subgoal graphs have on average 37.08% and 70.83% more
edges than CF and F contraction hierarchies on subgoal graphs, respectively. We
explain this result using a hypothetical example and a concrete one that is shown in
Figure 5.25. Recall that N -level subgoal (overlay) graphs consist of N −1 extended
overlay graphs (Section 3.4.1). Also recall that an extended overlay graph GS,T
has an edge (u, v) if and only if u, v ∈ T and v is direct-reachable from u with
respect to S. That is, as S gets smaller, more pairs of vertices in T become direct-
reachable with respect to S, and, therefore, more edges are included in GS,T . In
the extreme case, when S = ∅, the edges of GS,T form a clique of T , that is, GS,T
has the maximum set of edges possible that can be added between the vertices
in T . This hypothetical case can only occur if all pairs of vertices in T are R-
reachable (otherwise, the N -level subgoal graph that contains GS,T would have
non-R-reachable edges), and therefore rarely occurs in practice. However, it can
still occur “locally”, where non-core same-level edges can form cliques with many
vertices. As the results show, this problem typically occurs on game and street
maps, where staircase subgoals along one or multiple staircases can all be connected
to each other through F- or CF-reachable edges. Figure 5.25b shows an example,
where level 1 edges in an F 4-level subgoal graph form large cliques. Figure 5.25a
shows an F contraction hierarchy constructed on a subgoal graph for comparison.
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CF-CH-SG → CF-N-SG F-CH-SG → F-N-SG
E% L% Exp* Succ* Sr* E% L% Exp* Succ* Sr*

all 137.08 86.24 1.01 0.97 0.93 170.83 81.49 1.01 0.94 0.94

game-all 183.92 65.42 1.08 0.90 0.84 253.50 49.34 1.23 0.79 0.83
maze-all 121.42 99.66 1.00 1.00 0.95 126.52 99.51 1.00 1.00 0.95
random-all 105.23 87.43 1.00 1.00 0.94 110.75 84.24 1.00 1.00 0.95
room-all 100.95 89.26 1.00 1.00 0.94 103.09 87.04 1.00 1.00 0.95
street-all 247.59 72.17 1.08 0.77 0.77 416.22 43.03 1.33 0.54 0.72

bg 315.22 55.02 1.16 0.79 0.87 397.66 44.47 1.32 0.70 0.88
bg-512 191.31 59.28 1.12 0.89 0.87 261.26 43.46 1.29 0.79 0.88
dao 191.68 65.19 1.08 0.91 0.87 257.43 53.71 1.19 0.79 0.85
da2 226.49 67.83 1.15 0.85 0.88 290.53 51.45 1.30 0.74 0.87
sc 171.66 73.48 1.07 0.91 0.83 243.59 48.94 1.23 0.80 0.81
wc3-512 160.63 67.16 1.07 0.95 0.86 194.86 52.24 1.16 0.91 0.87

maze-1 103.32 100.01 1.00 1.00 0.95 103.32 100.01 1.00 1.00 0.95
maze-2 128.61 99.85 1.00 1.00 0.95 128.61 99.85 1.00 1.00 0.95
maze-4 145.45 99.31 1.00 1.00 0.92 166.21 98.53 1.01 1.00 0.95
maze-8 145.24 98.70 1.00 1.00 0.94 166.48 97.70 1.01 0.99 0.93
maze-16 143.74 97.13 1.01 0.99 0.94 163.73 95.44 1.02 0.98 0.94
maze-32 142.33 94.38 1.02 0.99 0.95 162.79 89.00 1.04 0.97 0.95

random-10 101.03 79.26 1.00 1.00 0.94 107.11 77.53 1.00 1.00 0.94
random-15 102.07 87.02 1.00 1.00 0.94 107.28 68.75 1.00 1.00 0.96
random-20 103.64 82.86 1.00 1.00 0.94 108.39 86.01 1.00 1.00 0.93
random-25 106.00 85.81 1.00 1.00 0.96 110.92 86.75 1.00 1.00 0.97
random-30 108.99 85.79 1.00 1.00 0.94 114.61 81.97 1.00 1.00 0.96
random-35 113.41 89.96 1.00 1.00 0.93 120.34 85.93 1.00 1.00 0.95
random-40 118.50 91.67 1.00 1.00 0.95 127.10 92.84 1.00 1.00 0.96

room-8 100.96 90.24 1.00 1.00 0.94 102.94 86.17 1.00 1.00 0.95
room-16 100.79 95.89 1.00 1.00 0.95 103.16 90.00 1.00 1.00 0.96
room-32 101.17 89.19 1.00 1.00 0.93 104.70 88.57 1.00 1.00 0.94
room-64 102.76 81.16 1.01 1.00 0.95 106.00 83.75 1.01 1.00 0.95

street-256 202.12 71.66 1.05 0.91 0.86 306.82 48.32 1.18 0.79 0.88
street-512 223.80 73.63 1.06 0.86 0.81 371.63 40.71 1.28 0.65 0.80
street-1024 285.98 69.97 1.11 0.70 0.71 494.26 37.79 1.45 0.47 0.64

Table 5.11: R N -level subgoal graphs.
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(a) An F contraction hierarchy on
subgoal graph with 12 levels and 366

edges. Since F contraction
hierarchies cannot have non-core

same-level edges, the non-core
vertices cannot form cliques.

(b) An F 4-level subgoal graph with
1,456 edges. Almost all staircase

subgoals are level 1 vertices, and the
edges between them form four large
cliques, on the up, down, left, and

right side of the obstacle in the
middle. If the obstacle in the middle

were to be removed, the edges
between the staircase subgoals would

form one large clique.

Figure 5.25: F contraction hierarchy on subgoal graph (with 12 levels) and F 4-level
subgoal graph constructed on AR0606SR.map. The edges are colored based on the level
of their source vertices, on a scale from yellow (low level) to red (high level).
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Since R contraction hierarchies cannot have non-core same-level edges, they cannot
contain such cliques.

Our algorithm for constructing N -level subgoal graphs amplifies the problem, since
it generates every extended overlay graph GS,T in an N -level subgoal graph by
starting with the overlay graph GT and identifying S as a minimal (R, T )-SPC
(Section 3.3.5). That is, it tries to minimize the number of vertices in S and, as a
consequence, maximize the number of edges in GS,T . Since F ⊇ CF, our algorithm
is able to identify a smaller S from a given T when constructing F N -level subgoal
graphs, compared to when constructing CF N -level subgoal graphs. Therefore, the
F N -level subgoal graphs that it constructs typically have more edges than the CF
N -level subgoal graphs that it constructs.

• L%: The maximum levels of CF and F N -level subgoal graphs are smaller than
the maximum levels of CF and F contraction hierarchies on subgoal graphs, respec-
tively, namely 13.76% and 19.51% smaller on average, 34.58% and 50.66% smaller
on game maps, and 27.83% and 56.97% smaller on street maps. These results have
an explanation similar to the larger numbers of edges in N -level subgoal graphs
compared to R contraction hierarchies on subgoal graphs: The cliques formed by
non-core same-level edges of R N -level subgoal graphs are not allowed in R con-
traction hierarchies (on subgoal graphs), where many pairs of vertices have to be
assigned different levels to avoid such edges.

• Exp*: CF-N -SG and F-N -SG searches expand (or stall) fewer vertices on game
and street maps than CF-CH-SG and F-CH-SG searches, respectively, by factors of
1.08 an 1.23 on game maps, and 1.08 and 1.33 on street maps. There is no noticeable
difference on the other types of maps. Recall that neither R-N -SG nor R-CH-SG
searches expand non-core vertices that cannot be reached with an upward path from
the start vertex and cannot reach the goal vertex with a downward path. Since R
N -level subgoal graphs typically have smaller maximum levels than R contraction
hierarchies on subgoal graphs, especially on game and street maps with staircase
patterns, more vertices have the same or a lower level than the start or goal vertices
and can thus be ignored by searches.

• Succ*: CF-N -SG and F-N -SG searches evaluate more successors on game and
street maps than CF-CH-SG and F-CH-SG searches, respectively, by factors of 1.11
an 1.26 on game maps, and 1.31 and 1.86 on street maps. This is a direct con-
sequence of CF and F N -level subgoal graphs having more edges than CF and F
contraction hierarchies on subgoal graphs, respectively: Although successors gen-
erated by non-core same-level edges are not placed in the OPEN list, they are still
evaluated during searches to check if the forward and backward searches meet.

• Sr*: The CF-N -SG and F-N -SG search times are longer than the CF-CH-SG and
F-CH-SG search times, respectively, by factors of 1.19 and 1.21 on game maps, 1.30
and 1.39 on street maps, and 1.06 and 1.05 on the other types of maps. The slight
increase in search times across all types of maps is due to our R-N -SG implementa-
tion performing a check for every successor v of an expanded vertex u to determine
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Map Instances Path Avg. G size A* time
Benchmark Type Count Count Avg length |V | |E| (µs)

GPPC all 132 347,868 2,635 2,095 216,261 1,491,276 57,086
game 105 142,534 1,357 488 48,250 367,992 4,086
maze 9 145,976 16,220 4,180 939,083 7,008,834 120,289
random 9 32,228 3,581 888 663,094 2,628,585 36,172
room 9 27,130 3,014 749 1,006,724 7,941,382 20,309

MovingAI all 769 1,642,670 2,136 1,137 109,752 776,644 9,898
game 529 653,050 1,234 431 64,861 499,013 5,137
maze 60 627,000 10,450 2,265 207,941 1,338,316 16,732
random 70 155,750 2,225 483 185,864 937,004 5,508
room 40 84,350 2,109 422 232,785 1,691,743 8,645
street 70 122,520 1,750 454 218,423 1,710,030 6,738

Table 5.12: GPPC benchmarks.

whether (u, v) is a same-level edge. The increase in search times on game and street
maps is due to the increased number of successors evaluated during the searches,
as discussed above.

To summarize, allowing non-core same-level edges in R N -level subgoal graphs seem to
negatively affect both the search times and memory requirements (due to larger numbers
of edges), especially on game and street maps due to their staircase patterns.

5.5.12 Grid-Based Path-Planning Competition

In the previous sections, we have evaluated answering queries using subgoal graphs, jump-
point graphs, contraction hierarchies, and their combinations and variants, with respect
to their path query times, memory requirements, and other characteristics on the Moving-
AI benchmarks, typically by comparing a small number of algorithms at a time and dis-
cussing their query-time/memory trade-offs across different types of maps. In this section,
we evaluate the query-time/memory trade-offs of these algorithms on Grid-Based Path-
Planning Competition (GPPC) benchmarks, both to summarize our results from earlier
sections and to compare these algorithms to state-of-the-art path-planning algorithms on
grid graphs that have been evaluated on GPPC benchmarks.

5.5.12.1 Competition Benchmarks

The GPPC benchmarks include 105 game maps from the MovingAI benchmarks (namely,
27 from dao, 67 from dao2, and 11 from sc), 9 new maze maps, 9 new random maps,
and new room maps, for a total of 132 maps. Each maze, random, and room map in the
GPPC benchmarks has a different size, varying from 100 × 100 to 1550 × 1550. The
corridor widths in maze maps are equal to 1% of the map dimensions. For instance, on
the 100 × 100 maze map, the corridor width is 1. The room sizes in room maps are equal
to 10% of the map dimensions. That is, each room map contains exactly 100 rooms.
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The random maps have 33% blocked cells. The GPPC benchmarks do not include street
maps.

Table 5.12 reports the number of maps and instances, instance path lengths, graph
sizes, and A* search times across different types of maps in the GPPC and MovingAI
benchmarks (the statistics for the MovingAI benchmarks are the same as reported in
Table 5.2). The maze, random, and room maps are significantly larger in the GPPC
benchmarks then they are in the MovingAI benchmarks and, as a result, the instance path
lengths are 1.84 times longer, the graphs have 1.97 times more vertices and 1.92 times more
edges, and the A* search times are 5.77 times longer on GPPC benchmarks compared to
the MovingAI benchmarks. Similar to the MovingAI benchmarks, the majority of maps
in the GPPC benchmarks are game maps and the majority of instances are from game
and maze maps.

Table 5.13 reports the preprocessing times (PT), memory requirements (M), and
path query times (PQ) of the algorithms listed in Table 5.1 on the MovingAI and GPPC
benchmarks. (It also reports normalized statistics for the GPPC benchmarks, which we
discuss later.) We observe the following differences in results on the GPPC and MovingAI
benchmarks:

• PT: The preprocessing times are generally longer on the GPPC benchmarks due to
their larger graph sizes. However, since the GPPC benchmarks do not include street
maps, the preprocessing times of the algorithms that use hierarchies on subgoal
graphs (CH-SG, CH-SG+R, R-CH, and R-N-SG) are significantly shorter on the
GPPC benchmarks. As discussed in Section 5.5.6, these algorithms typically have
long preprocessing times on street maps due to their staircase patterns. Similarly,
the CH-JP preprocessing times are shorter on the GPPC benchmarks, which include
only random maps with 33% blocked cells. As discussed in Section 5.5.8, the CH-JP
preprocessing times are longer on random maps with small percentages of blocked
cells. The differences in the preprocessing times of the algorithms on the MovingAI
and GPPC benchmarks are significant and affect their relative preprocessing times:
For instance, the CH-SG preprocessing times are 1.22 times longer than the CH
preprocessing times on the MovingAI benchmarks, but 10.72 times shorter on the
GPPC benchmarks. That is, the relative preprocessing times of CH and CH-SG
differ by a factor of 13.08 between the MovingAI and GPPC benchmarks.

• M: The memory requirements of each algorithm are higher on the GPPC bench-
marks compared to the MovingAI benchmarks, due to the larger graph sizes in the
GPPC benchmarks. However, the increase in memory requirements is about the
same for each algorithm, ranging from a factor of 1.64 (for CH-SG) to a factor of
1.85 (for R-CH).

• PQ: The path query times are longer on the GPPC benchmarks due to the increased
graph sizes and instance path lengths, and the increase in the path query times is
significantly different for different algorithms: The R-CH, R-CH-SG, and R-N-SG
path query times are increased by factors ranging from 4.72 to 5.43, the SG path
query times are increased by a factor of 3.03, and the CH, CH+Rr, CH-SG, and
CH-SG+Rr path query times are increased by factors ranging from 1.09 to 1.36.
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MovingAI GPPC GPPC (Normalized)
PT M PQ PT M PQ PT M PQ
(s) (MB) (µs) (s) (MB) (µs) (s) (MB) (µs)

A* - - 9,898 - - 57,086 - - 110,501
SG 0 1.02 540 0 1.78 1,638 0 1.93 3,170
JP 0 1.81 409 0 3.26 1,397 0 3.54 2,705
CF-CH 98 3.01 205 125 5.57 1,016 241 6.04 1,967
F-CH 98 3.01 197 126 5.57 930 243 6.04 1,800
CF-N-SG 86 1.03 158 10 1.77 857 19 1.92 1,659
CF-CH-SG 95 0.97 148 7 1.71 813 13 1.86 1,574
F-N-SG 132 1.09 149 16 1.82 783 31 1.97 1,515
F-CH-SG 119 0.97 142 9 1.71 742 18 1.86 1,437
CH-GPPC 105 9.10 160 130 16.76 187 252 18.18 362
CH 105 12.13 73 130 22.35 99 252 24.25 191
CH+Fr 105 12.13 74 130 22.35 85 252 24.25 164
CH+CFr 105 12.13 65 130 22.35 71 252 24.25 138
CH-SG+Fr 127 1.59 39 12 2.61 47 24 2.83 90
CH-JP 325 3.72 35 65 5.73 43 125 6.22 82
CH-SG 127 1.59 29 12 2.61 34 24 2.83 66
*CH-SG+CFr 127 1.59 28 12 2.61 32 24 2.83 62

*JPS - - - - - - - - 62,524
JPS+(Harabor) - - - - - - 34 22.73 20,874
*BL-JPS - - - - - - 0 0.15 14,453
JPS+(Rabin) - - - - - - 0 7.17 7,732
*BL-JPS2 - - - - - - 0 0.36 7,444
JPS+Bucket(Rabin) - - - - - - 0 7.17 1,616
*2-SG - - - - - - 0 0.70 1,429
*N-SG-GPPC - - - - - - 1 2.22 773
CH-GPPC - - - - - - 440 18.18 362
JPS+BB - - - - - - 1,386 15.15 149
SRC - - - - - - 5,605 393.94 145

Table 5.13: Results on MovingAI and GPPC benchmarks. The GPPC (Normalized)
column contains the official GPPC results, as well as our results normalized to match the
GPPC results, treating CH-GPPC as a baseline. During normalization, the preprocessing
and path query times are multiplied by 1.94 and the memory requirement is multiplied
by 1.08. The cells in each column are colored from red (worst) to white (median) to
green (best), based on the logarithms of the values they contain. Algorithms with non-
dominated query-time/memory trade-offs on the GPPC benchmarks are marked with
asterisks.
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The difference in the increase of the path query times of different algorithms can
be explained by their query times on random maps: 1) Since SG, R-CH, R-CH-SG,
and R-N-SG all use graphs or hierarchies with R-reachable edges only, they have
long query times on random maps, as discussed in Sections 5.5.4, 5.5.6, and 5.5.10.
2) Since the GPPC benchmarks contain large random maps, the longer path query
times on these maps can significantly affect the average path query times across all
GPPC maps. Our results on the path query times on different types of maps (not
reported in the table) confirm this observation: For instance, the SG path query
times on GPPC game, maze, and room maps are 1.02, 2.44, and 1.32 times shorter,
respectively, than the MovingAI benchmarks (the GPPC maze and room maps are
large, but typically contain fewer convex corners). However, the SG path query
times are 7.52 times longer on the GPPC random maps and, as a result they are
3.03 times longer across all GPPC maps.

To summarize, the results on the MovingAI and GPPC benchmarks are similar, except
for: 1) the relatively short preprocessing times for hierarchies constructed on subgoal
graphs, due to the exclusion of street maps from the GPPC benchmarks; and 2) the
relatively long query times for SG, R-CH, R-CH-SG, and R-N-SG, due to their long
query times on the larger random maps of the GPPC benchmarks.

5.5.12.2 Competition Results

We now compare our algorithms on grid graphs to the state-of-the-art path-planning
algorithms of the GPPC, which we refer to as the GPPC algorithms. Seven of these
algorithms have non-dominated query-time/memory trade-offs among the twenty-one al-
gorithms that find shortest paths in GPPC. These algorithms include two of our entries
based on subgoal graphs, namely 2-SG (called “Subgoal Graph (Low Memory)” in the
GPPC) and N-SG-GPPC (called “NSubgoal” in the GPPC); three variants of jump-point
search, namely JPS, BLJPS, and BLJPS2; the contraction hierarchy entry CH-GPPC
(called “CH” in the GPPC); and the single-row compression entry SRC. 2-SG and N-SG-
GPPC answer queries using F 2-level and N -level subgoal graphs, respectively, and were
implemented in a different framework than the one that we use for our experiments. We
explain the implementation differences and give a brief summary of how the other algo-
rithms operate, during the discussion of our results. We also include three implementa-
tions of JPS+ in our comparison, whose query-time/memory trade-offs are all dominated
by N-SG-GPPC in the GPPC. Finally, we include JPS+BB in our comparison, which
combines JPS+ with bounding boxes, and was evaluated on the GPPC server using the
GPPC benchmarks after GPPC was held for the last time. That is, it can be considered
to be a GPPC entry whose results have not yet been officially announced. To the best
of our knowledge, these eleven algorithms form a comprehensive list of state-of-the-art
path-planning algorithms on grid graphs.

Our experiments were run on a different server (a 3.6GHz Intel Core i7-7700 with 32
GB of RAM) than the GPPC server (a 2.4 GHz Intel Xeon E5620 with 12 GB of RAM).
In order to establish a meaningful comparison between our algorithms and the GPPC
algorithms, we normalize the results on our server to match the results on the GPPC
server by treating CH-GPPC as a baseline:
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• We inflate the path query (and preprocessing) times measured on our server by
a factor of 1.94, so that the path query time of our implementation of CH-GPPC
matches the path query time of the CH-GPPC entry measured on the GPPC server.
As discussed in Section 5.5.1, our implementation of CH-GPPC closely follows the
implementation of the CH-GPPC entry. The main differences are that our CH-
GPPC implementation uses floating point values for the edge lengths instead of
integers, and keeps track of various statistics during queries. Our normalization of
results also accounts for these minor implementation differences. Our preliminary
results suggest that both implementations expand or stall similar numbers of ver-
tices (within 1% of each other) and have similar query times on our server, with
our implementation being slightly slower (by a factor of 1.18).

• We inflate our memory requirement estimations by a factor of 1.08, so that our
estimated memory requirement for CH-GPPC matches the memory requirement
measured by the GPPC. Recall that our estimation considers only the memory
required to store the edges of graphs and, for algorithms that use subgoal graphs,
the clearance values. Specifically, our estimation leaves out the amount of memory
required to store the source vertices, which can be stored compactly by storing
together edges that share the same source vertex. This normalization of the memory
requirements also inflates the amount of memory required to store the clearance
values, which does not require such inflation. However, we allow for this inflation
to keep our normalized results as conservative as possible.

Table 5.13 reports the normalized preprocessing times, memory requirements, and
path query times of our algorithms on the GPPC benchmarks, as well as the same statis-
tics for the GPPC algorithms as measured in the GPPC. We now summarize these re-
sults by discussing the query-time/memory trade-offs of these algorithms, as shown in
Figure 5.26, in decreasing order of their path query times. For brevity, we refer to the
path query times simply as the query times, since we do not discuss the distance query
times.

• JPS, BL-JPS, BL-JPS2, and JPS+ variants: JPS is the online version of
jump-point search, and has a non-dominated query-time/memory trade-off since it
does not perform preprocessing and does not store any information (Figure 5.26 re-
ports its memory requirements as 0.1 megabytes since it uses a logarithmic scale for
the memory requirements). JPS+(Harabor) is an earlier implementation of JPS+,
which, as discussed in Section 5.4.1, uses precomputed clearance values to identify
the jump-point successors of expanded vertices efficiently. JPS+(Rabin) is a more
recent implementation of JPS+ and has a dominating query-time/memory trade-
of compared to JPS+(Harabor). BL-JPS and BL-JPS2 can be considered to be
variants of JPS+ that use “boundary-lookup” values, which can be considered as
“compressed clearance values”. BLJPS2 has slightly shorter query times compared
to JPS+(Rabin) and requires significantly less memory, and, therefore, has a domi-
nating query-time/memory trade-off compared to JPS+(Rabin). Both BL-JPS and
BL-JPS2 have non-dominated query-time/memory trade-offs since they use very
little memory. Finally, JPS+Bucket(Rabin) is a variant of JPS+(Rabin) that im-
plements its OPEN list using buckets rather than a binary heap and runs 4.78 times
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Figure 5.26: Query-time/memory trade-off of various algorithms on the GPPC bench-
marks. Red dots: Official results from the GPPC. Green dots: Algorithms evaluated in
this dissertation that use subgoal graphs. Blue dots: Algorithms evaluated in this disser-
tation that use jump-point graphs. Purple dots: Algorithms evaluated in this dissertation
that use variants of contraction hierarchies. The query times and memory requirements
of the algorithms evaluated in this dissertation are normalized the query times and mem-
ory requirements of CH-GPPC reported in the GPPC and our evaluation, as shown in
Table 5.13.
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faster than JPS+(Rabin) while using the same amount of memory, and, therefore,
has a dominating query-time/memory trade-off compared to JPS+(Rabin). How-
ever, its query-time/memory trade-off is dominated by N-SG-GPPC.

• SG, R-CH-SG, R-N-SG, and R-CH: CF-CH-SG, F-CH-SG, CF-N-SG and F-
N-SG all have very similar query times and memory requirements, as we have also
observed in Sections 5.5.10 and 5.5.11, with F-CH-SG having the dominating query-
time/memory trade-off compared to the other three algorithms. F-CH-SG also has
a dominating query-time/memory trade-off compared to SG, CF-CH, and F-CH.
Although we have not directly compared F-CH-SG with SG, CF-CH, or F-CH in
our experiments, the results are consistent with our comparison of CH-SG with SG
or CH: Queries can be answered faster by using a combination of subgoal graphs
and contraction hierarchies, instead of using them individually.

• JP: JP, which explicitly constructs jump-point graphs, runs faster than JPS+(Ra-
bin), which scans the grid whenever vertices are expanded. However, JP is slower
than JPS+Bucket(Rabin). We suspect that using a bucket implementation of the
OPEN list significantly decreases the query times on random maps, where JP and
(presumably) all JPS variants have long query times due to a large number of
expansions. On random maps, we expect the scanning of the grid to identify jump-
point successors of expanded vertices to be quite fast since diagonals that extend
from cells are typically very short. The query-time/memory trade-off of JP is
dominated by F-CH-SG, 2-SG, and N-SG-GPPC. As discussed in Section 5.5.5,
neither JP nor SG dominate each other with respect to their query-time/memory
trade-offs.

• 2-SG and N-SG-GPPC: 2-SG has slightly shorter query times compared to F-
CH-SG but uses significantly less memory, and, therefore, has a dominating query-
time/memory trade-off compared to F-CH-SG. N-SG-GPPC has shorter query
times than F-N-SG but uses more memory, although they both use F N -level
subgoal graphs to answer queries. These differences can be explained by the differ-
ences in their implementations and algorithmic design decisions: We have developed
2-SG and N-SG-GPPC as entries in the GPPC, and, therefore, they have very op-
timized implementations. On the other hand, we have developed F-CH-SG and
F-N-SG (which can be considered to be the most similar algorithm to 2-SG and N-
SG-GPPC) as augmentations of CH (CH-GPPC) with reachability relations, and,
therefore, their implementations closely follow the CH-GPPC implementation. We
now outline some of the important differences in the implementations and algorith-
mic design decisions of 2-SG, N-SG-GPPC, and F-N-SG and comment on how they
might affect the resulting query-time/memory trade-offs:

– 2-SG and N-SG-GPPC perform backward searches before forward searches and
use breadth-first searches rather than A* searches for the backward searches.
Since backward searches over N -level (2-level) subgoal graphs do not expand
core vertices, they typically exhaust (the vertices in) their OPEN lists before
the bidirectional searches terminate. 2-SG and N-SG-GPPC commit to ex-
hausting the OPEN lists of the backward searches, with the following benefits:
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1) The backward searches are run before the forward searches, which can avoid
accessing the memory of data structures by two different searches at once. 2)
The backward searches are implemented as breadth-first searches that expand
vertices in increasing order of levels rather than A* searches, which reduce the
time to perform each expansion by avoiding the calculation of heuristic dis-
tances and performing insertions and removals in the OPEN list in O(1) time.
3) Non-core same-level edges are considered by the more efficient backward
searches, which can reduce the number of vertices in the OPEN lists of the
forward searches.

– 2-SG and N-SG-GPPC use a “fast stack” to complement the binary heap used
for maintaining the OPEN lists of their forward searches: Whenever a successor
is generated with the same f -value as the expanded vertex, the successor is
inserted into the fast stack rather than the binary heap. Vertices are selected
for expansion first from the fast stack, until the fast stack is empty, and only
then from the binary heap. This optimization results in fewer insertion and
removal operations in binary heaps, and is particularly impactful on random
maps where subgoal graphs have shorter edges, since successors generated
through shorter edges are more likely to have f -values similar to the ones of
the expanded vertices.

– 2-SG and N-SG-GPPC both store edge lengths, which increases their mem-
ory requirements (not storing the edge lengths was an optimization we have
thought about later). 2-SG stores each clearance value using 4 bits rather than
1 byte. That is, it can store clearance values up to 16 rather than 256, which
means that determining the clearance value of a cell in a given direction might
require more clearance-value look-ups.

– When there are more than 65,536 subgoals on a grid graph, such as on most
random maps, 2-SG does not use subgoal graphs for answering queries and
instead uses an A* search with buckets.3 This inadvertently reduces its mem-
ory requirements further, since it avoids storing subgoal graphs (or clearance
values) for maps with more than 65,536 subgoals.

– 2-SG and N-SG-GPPC do not determine the order of heavy F contractions on-
line when constructing F N -level (2-level) subgoal graphs, and instead heavy F
contract them in the order of their subgoal IDs. Therefore, their preprocessing
times are shorter than the N-F-SG preprocessing times.

An evaluation of these optimizations is beyond the scope of this dissertation. How-
ever, we believe that the N-SG-GPPC query times and memory requirements may
be improved by using F contraction hierarchies instead of F N -level subgoal graphs,

3The reason for this is as follows: Clearance values for convex corner cells are never used by SF-Connect
when connecting the start and goal vertices to subgoal graphs, since the diagonal scans of SF-Connect
terminate when they encounter subgoals. Our 2-SG implementation leverages this fact by using the
memory allocated for storing the clearance values to store subgoal IDs instead, to associate convex corner
cells with the subgoals they contain. However, since 2-SG uses 4 bits to store each clearance value, it
allocates only 16 bits to store a subgoal ID at each convex corner cell, and can therefore store subgoal
IDs only up to 65,536.
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as our results from Section 5.5.11 suggest. Similarly, we believe that applying the
memory optimizations of 2-SG to N-SG-GPPC can result in an algorithm that uses
less memory than 2-SG while having shorter query times.

• CH-GPPC, CH, and CH+Rr: As discussed in Sections 5.5.1 and 5.5.6, CH uses
2-pointer unpacking rather than midpoint unpacking and uses the Octile distance
heuristic in its bidirectional searches, which results in higher memory requirements
but shorter query times compared to CH-GPPC. Therefore, neither algorithm has
a dominating query-time/memory trade-off compared to the other one. Contrary
to our results in Section 5.5.9, CH+Fr has shorter query times than CH due to
shorter refinement times on the larger room and maze maps in the GPPC bench-
marks. CH+CFr has shorter query times than CH+Fr and therefore has a dom-
inating query-time/memory trade-off compared to CH and CH+Fr. Interestingly,
CH+CFr has shorter query times than SRC while requiring significantly less mem-
ory and, therefore, has a dominating query-time/memory trade-off compared to
SRC. However, the query-time/memory trade-offs of CH-GPPC, CH, CH+CFr and
CH+Fr are all dominated by the query-time/memory trade-off of CH-SG(+CFr)
since, as we have shown in Section 5.5.7, constructing hierarchies on subgoal graphs
rather than G can significantly reduce the query times and memory requirements
of algorithms that use them to answer queries.

• JPS+BB: JPS+BB is a variant of JPS+ that associates each edge (u, v) with
a bounding box that contains all cells that can be reached optimally from u via
a path whose first edge is (u, v). During searches, JPS+BB ignores those edges
whose bounding boxes do not contain the goal vertex. Section 2.3.3 provides a more
detailed description of the “goal-directed” pruning of JPS+BB. JPS+BB uses the
“fast stack” implementation that we have used in 2-SG and N-SG-GPPC. With
the combined pruning of jump-point search and bounding boxes, and by using the
fast stack to avoid binary heap operations, JPS+BB performs an average of 3.01
and 3.91 insertions into the binary heap on the dao and wc3-512 maps, respectively
(Rabin & Sturtevant, 2016). However, these numbers are typically higher on most
other types of maps (for instance 200.41 on the sc maps). The JPS+BB query times
are shorter than the CH-GPPC, CH, CH+Fr, CH+CFr query times, and JPS+BB
requires less memory than these algorithms. Therefore, it has a dominating query-
time/memory trade-off compared to them. However, its query-time/memory trade-
off is dominated by CH-SG(+CFr).

• SRC: Single-row compression (SRC) precomputes and stores compressed pairwise
next-move tables, and answers queries by repeatedly looking up the next move along
a shortest path from the start vertex to the goal vertex. It has long preprocessing
times (5,604 seconds) and large memory requirements (394 megabytes), but also the
shortest query times in the GPPC (145 microseconds). Among our new algorithms,
CH+CFr and CH-SG (+CFr, +Fr) all have shorter query times than SRC, while
requiring significantly less memory and preprocessing time, and therefore have a
dominating query-time/memory trade-off compared to SRC.
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• CH-JP: CH-JP has a dominating query-time/memory trade-off compared to JPS+
BB and SRC. The CH-JP query times are 1.82 times shorter than the JPS+BB
query times. However, it is unclear whether this result is due to JPS+BB performing
scans during query time, or whether the combination of jump-point search with
contraction hierarchies results in shorter query times compared to the combination
of jump-point search with bounding boxes. However, the query-time/memory trade-
off of CH-JP is dominated by the one of CH-SG, whose query times are 1.24 times
shorter and whose memory requirements are 2.20 times lower. Although we have
not experimented with a version of CH-JP that uses CF-Refine to refine any CF-
reachable shortcuts (that is, CH-JP+CFr), we suspect that its query times would
only be slightly shorter than the CH-JP query times.

• CH-SG and CH-SG+Rr: CH-SG+CFr has the shortest query times in our com-
parison, which are 2.23 times shorter than the CH+CFr query times, 2.34 times
shorter than the SRC query times, 2.40 times shorter than the JPS+BB query times,
and 5.83 times shorter than the CH-GPPC query times. It also requires less memory
than these algorithms, namely 8.56 times less memory than CH+CFr, 139.13 times
less memory than SRC, 5.35 times less memory than JPS+BB, and 6.42 times less
memory than CH-GPPC. It therefore has a dominating query-time/memory trade-
off compared to these algorithms. Since CH-SG+CFr has the shortest query times,
it also has a non-dominated query-time/memory trade-off in our comparison.

To summarize, we observe that implementation details play a significant role in de-
termining the query-time/memory trade-offs of different algorithms. We think that our
implementation of the algorithms listed in Table 5.1 within the same framework, which
follows the CH-GPPC implementation, minimizes the effects of implementation details
on the relative query-time/memory trade-offs of these algorithms; and our normalization
of the results on our server with respect to the results on the GPPC server allows for a
meaningful comparison of all algorithms.

Among the algorithms listed in Table 5.1, CH-SG+CFr and F-CH-SG have undom-
inated query-time/memory trade-offs. Both algorithms combine subgoal graphs with
(variants of) contraction hierarchies, where F-CH-SG restricts its hierarchies to use only
F-reachable edges that can be stored compactly, and therefore has lower memory require-
ments, and CH-SG+CFr has no restrictions on the edges of its hierarchies, and therefore
can achieve significantly shorter query times. Although the query-time/memory trade-
off of F-CH-SG is dominated by our GPPC entry 2-SG, which is also based on subgoal
graphs, we think that, with similar implementations, F-CH-SG can achieve a dominating
query-time/memory trade-off compared to 2-SG and N-SG-GPPC, based on our results
from Section 5.5.11.

Our implementation of jump-point search within the subgoal graph framework achieves
a dominating query-time/memory trade-off compared to other JPS+ variants except
for JPS+Bucket(Rabin), and its combination with contraction hierarchies achieves a
dominating query-time/memory trade-off compared to JPS+BB. Although the query-
time/memory trade-off of CH-JP is dominated by CH-SG (and CH-SG+Rr), the combi-
nation of jump-point graphs and contraction hierarchies is not well understood, and there
might be a version of CH-JP that can achieve shorter query times than CH-SG.
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5.6 Conclusions

In this chapter, we have applied the subgoal graph framework to grid graphs by using safe-
freespace-reachability as reachability relation, discussed the similarities and differences
of subgoal graphs with jump-point search, and augmented contraction hierarchies with
reachability relations in various ways. Specifically, we have shown that the freespace
structure (Octile property) of grid graphs allows for the construction of safe-freespace-
reachability subgoal graphs by using only convex corner cells as subgoals, introduced a
connection algorithm for safe-freespace-reachability that scans the grid efficiently by using
clearance values, and proved that this algorithm can be used to construct subgoal graphs
in time linear in the size of the underlying grid. We have shown that jump-point search
can be understood as a search on a jump-point graph, which is a freespace-reachability
subgoal graph on the direction-extended canonical grid graph. We have experimentally
demonstrated that answering queries using contraction hierarchies on subgoal graphs
achieves a dominating query-time/memory trade-off compared to answering queries using
contraction hierarchies on G or jump-point graphs. Our results further suggest (through
interpolation) that answering queries using contraction hierarchies on subgoal graphs and
performing freespace-based refinement is 2.34 times faster than single-row compression,
the fastest entry in the Grid-Based Path-Planning Competition, while requiring 139.06
times less memory. These results validate the hypothesis of this dissertation that one
can develop preprocessing-based path-planning algorithms for grid graphs that exploit
their freespace structure to improve the query-time/memory/path-suboptimality Pareto
frontier of the state-of-the-art algorithms.

As future work, we consider combining subgoal graphs with other techniques, such
as geometric containers or hub labeling. As discussed in Section 2.3.2, storing geometric
containers for each edge of G allows for goal-directed pruning during searches, and storing
hubs for each vertex of G allows for answering queries without performing search. Storing
geometric containers or hubs only for the edges or vertices of subgoal graphs rather than
G would require significantly less memory, and we think can still be used to answer
queries in a very short time. Another direction that we consider for future work is to
better understand the combination of jump-point graphs with contraction hierarchies. As
discussed in Section 5.5.8, a straightforward combination results in redundant shortcut
edges in contraction hierarchies on jump-point graphs. Although we have (partially)
addressed this issue, we still do not clearly understand why queries can be answered faster
with a combination of subgoal graphs and contraction hierarchies than a combination of
jump-point graphs and contraction hierarchies.
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Chapter 6

Conclusions

Preprocessing-based path-planning algorithms compute and store auxiliary information
about a graph during a preprocessing phase, and then use the auxiliary information to effi-
ciently answer path or distance queries on that graph. Preprocessing-based path-planning
algorithms that achieve non-dominated query-time/memory trade-offs on road networks
have been shown to exploit their hierarchical structure and small highway dimensions.
State lattices and grid graphs, on the other hand, have larger highway dimensions than
road networks. When some of these algorithms are applied to grid graphs, they achieve
smaller speed-ups relative to Dijkstra searches and require more memory relative to the
size of the graph. However, state lattices and grid graphs have other properties that
can be exploited, namely, their freespace structure. In this dissertation, we have hypoth-
esized that one can develop preprocessing-based path-planning algorithms for state lat-
tices and grid graphs that exploit their freespace structure to improve the query-time/me-
mory/path-suboptimality Pareto frontier of the state-of-the-art algorithms. We made the
following contributions to validate this hypothesis:

• In Chapter 3, we have introduced the subgoal graph framework, that can be spe-
cialized to exploit structure in different types of graphs, by choosing a reachability
relation that captures structure in that type of graph and developing specialized
connection and refinement algorithms that exploit that structure. We have proved
that subgoal graphs can be used to answer path queries optimally with the Connect-
Search-Refine algorithm, and that it is possible to construct locally-sparse subgoal
graphs with respect to bounded-distance reachability on graphs with small highway
dimensions. We have introduced a hierarchical variant of subgoal graphs, called
N -level subgoal graphs, and introduced variants of contraction hierarchies within
this framework. We have introduced a suboptimal variant of subgoal graphs, called
strongly connected subgoal graphs, that can be used to answer path queries with-
out the guarantee of optimality. We have introduced algorithms for constructing
subgoal graphs, N -level subgoal graphs, and strongly connected subgoal graphs.

• In Chapter 4, we have applied the subgoal graph framework to state lattices, by us-
ing freespace-reachability and canonical-freespace-reachability as reachability rela-
tions to capture the freespace structure of state lattices, and developing efficient con-
nection and refinement algorithms that exploit this structure. Specifically, we have
characterized the freespace structure of state lattices as the translation-invariance
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of freespace distances and freespace-canonical paths, and showed that it can be ex-
ploited to efficiently compute and compactly store freespace information, such as
pairwise distances or shortest path trees on freespace state lattices. We have in-
troduced freespace-reachability and canonical-freespace-reachability as reachability
relations to distinguish those pairs of vertices on state lattices between which the
freespace information is accurate, and developed connection and refinement algo-
rithms for these reachability relations that use freespace information to efficiently
explore the freespace-shortest and freespace-canonical paths, respectively. We have
experimentally demonstrated that answering queries using freespace-reachability
or canonical-freespace-reachability strongly connected subgoal graphs achieves a
dominating query-time/path-suboptimality trade-off compared to answering queries
using bounded-distance-reachability strongly connected subgoal graphs, and a non-
dominated query-time/path-suboptimality trade-off compared to answering queries
using weighted A* searches. These results validate the hypothesis of this dis-
sertation that one can develop preprocessing-based path-planning algorithms for
state lattices that exploit their freespace structure to improve the query-time/me-
mory/path-suboptimality Pareto frontier of the state-of-the-art algorithms.

• In Chapter 5, we have applied the subgoal graph framework to grid graphs by using
safe-freespace-reachability as a reachability relation, discussed the similarities and
differences of subgoal graphs with jump-point search, and augmented contraction
hierarchies with reachability relations in various ways. Specifically, we have shown
that the freespace structure (Octile property) of grid graphs allows for the construc-
tion of safe-freespace-reachability subgoal graphs by using only convex corner cells
as subgoals, introduced a connection algorithm for safe-freespace-reachability that
scans the grid efficiently by using clearance values, and proved that this algorithm
can be used to construct subgoal graphs in time linear in the size of the underly-
ing grid. We have shown that jump-point search can be understood as a search
over a jump-point graph, which is a freespace-reachability subgoal graph on the
direction-extended canonical grid graph. We have experimentally demonstrated
that answering queries using contraction hierarchies on subgoal graphs achieves
a dominating query-time/memory trade-off compared to answering queries using
contraction hierarchies alone, or on jump-point graphs. Our results further sug-
gest (through interpolation) that answering queries using contraction hierarchies
on subgoal graphs and performing freespace-based refinement is 2.34 times faster
than single-row compression, the fastest entry in the Grid-Based Path-Planning
Competition, while requiring 139.06 times less memory. These results validate
the hypothesis of this dissertation that one can develop preprocessing-based path-
planning algorithms for grid graphs that exploit their freespace structure to improve
the query-time/memory/path-suboptimality Pareto frontier of the state-of-the-art
algorithms.

Our work on using subgoal graphs to exploit freespace structure in state lattices and
grid graphs has resulted in preprocessing-based path-planning algorithms that achieve
non-dominated query-time/path-suboptimality trade-offs on state lattices, and non-dom-
inated query-time/memory trade-offs on grid graphs. As of the time of the publication of
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this dissertation, subgoal graphs on grid graphs have been applied by other researchers to
moving target search (Nussbaum & Yorukcu, 2015), adapted to 2k-neighbor grid graphs
(Hormazábal et al., 2017), and used for planning high-level paths for agents maneuver-
ing in continuous and uncertain environments (Zeng et al., 2019). The clearance-based
scanning that we developed for the connection phases of queries answered using subgoal
graphs on grid graphs have been adapted and used in preprocessing-based variants of
jump-point search, previously an online path-planning algorithm on grid graphs (Hara-
bor et al., 2014; Rabin & Sturtevant, 2016).

Going forward, we think that there are several research directions in which our work
can be applied to other types of graphs or improved in various ways:

• Throughout this dissertation, we have shown that various algorithms can be un-
derstood and augmented in the (N -level) subgoal graph framework. For instance,
we have shown that contraction hierarchies can be understood as N -level subgoal
graphs without same-level edges or a reachability relation and shown that they
can be augmented within this framework to use a reachability relation in various
ways. We think that it might be possible to use this understanding to augment
contraction hierarchies with reachability relations on other types of graphs as well.
For instance, one might be able to improve query times on road networks by iden-
tifying various reachability relations on road networks, developing connection and
refinement algorithms for these reachability relations, and using these algorithms
in various ways to augment contraction hierarchies (as outlined in this dissertation
or in other novel ways). Our results on grid graphs suggest that simply marking
some shortcut edges for R-refinement can shorten query times without increasing
memory requirements, given that an efficient R-refine algorithm is available. One
candidate for such an R-refine algorithm on road networks might be to greedily
move in the direction of the target vertex (the endpoint of the R-reachable edge) by
always picking the next move as the move whose direction is closest to the direction
of the target vertex from the current vertex.

• Although the paths found by using strongly connected subgoal graphs are not neces-
sarily bounded-suboptimal, our experimental results on state lattices suggest that
they are typically not much longer than optimal. As we have discussed in Sec-
tions 3.6 and 4.7, we think that there are several ways in which our current algorithm
of constructing strongly connected subgoal graphs can be improved. We also think
that developing a variant of strongly connected subgoal graphs that can be used for
finding bounded-suboptimal paths would be an interesting research direction.

• Our experimental results on grid graphs suggest that queries can be answered faster
with a combination of contraction hierarchies and subgoal graphs than with either
method by itself. We think that a similar case might hold for the combinations of
subgoal graphs with other speed-up techniques, such as geometric containers or hub
labeling, and might be an interesting direction for future research.

• Our experimental results on grid graphs suggest that queries can be answered faster
with a combination of contraction hierarchies and subgoal graphs than with a com-
bination of contraction hierarchies and jump-point graphs, despite the fact that they
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also suggest that queries can be answered faster with jump-point graphs than with
subgoal graphs. As we have mentioned in Section 5.5.8, we do not completely un-
derstand the combination of contraction hierarchies and jump-point graphs, and we
think that further research on this subject might result in algorithms with shorter
query times.

To summarize, the research presented in this dissertation has resulted in new state-
of-the-art path-planning algorithms on grid graphs and state lattices, and we think can
be applied to other types of graphs and be improved in various ways.
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