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Abstract

What is “structure”? And how can we exploit it in combinatorial optimization?

These are the fundamental questions addressed in this thesis for many reasoning

tasks on complex physical and non-physical systems.

Reasoning tasks involving system design, state estimation, and prediction can

be cast as combinatorial optimization problems (COPs). Traditionally, different

kinds of COPs have been solved using dedicated algorithms. While such algorithms

are certainly valuable, they have some important drawbacks. First, the algorithms

developed for very specific subclasses are not applicable to real-world instances

if they don’t belong to these subclasses. Second, different research communities

working on very specific COPs could be oblivious of each other’s works and end

up developing different terminologies and techniques for solving the same prob-

lem. Therefore, a general mathematical framework that captures a wide variety of

COPs facilitates informedness of different research communities, cross-fertilization

of different perspectives, and a wider applicability to real-world domains.

The weighted constraint satisfaction problem (WCSP) is a general mathemat-

ical framework for COPs. It not only subsumes important COPs studied in many

different research communities but also has a strong representational power use-

ful for reasoning about complex physical and non-physical systems. Such systems
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include classical spin glass systems, percolation theory-characterized systems, and

social networks, among many other examples.

Yes, the WCSP is representationally very powerful. But how can we design

algorithms for solving it efficiently? Isn’t the very generality of the WCSP a curse?

Are we up against a very general and intractable problem? While these questions

are certainly valid for the general WCSP, the proposal in this thesis is to exploit

“structure”. Imagine two subclasses of COPs, Class A and Class B. If Class B

is more general than Class A, it is likely that we can build specialized algorithms

for solving instances from Class A more efficiently. But the hallmark of a good

algorithm for solving instances from Class B is its ability to imitate the specialized

algorithm if the input is in fact from Class A. Such an algorithm is said to exploit

“structure.” Although the formal definition of “structure” is elusive, the idea is

to create a general-purpose algorithm for solving the WCSP that automatically

simulates more specialized algorithms for subclasses of the WCSP.

We can talk about two types of structure in the WCSP. The macro structure

or the graphical structure represents which variables interact with each other. The

micro structure or the numerical structure represents how the variables interact

with each other. Two completely different schools of thought have led to algorith-

mic techniques that exploit either the macro structure or the micro structure, but

not both simultaneously. In 2008, the quest for a unifying mathematical framework

that represents the macro structure as well as the micro structure of a WCSP was

settled by the novel idea of the constraint composite graph (CCG). The CCG of a

WCSP instance is an undirected graph that uses the same variables as the WCSP

instance and an auxiliary set of variables to capture structure. Solving the WCSP

is equivalent to solving the minimum weighted vertex cover (MWVC) problem on

its associated CCG. Although the CCG can be constructed very efficiently, not
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much work was done until now in exploiting this transformation for theoretical or

practical gains.

In this thesis, we raise and answer three research questions: Are there any

theoretical advantages of the CCG other than for identifying tractable classes of

the WCSP? Is there any practical usefulness of the CCG? Is it promising to

extend the CCG to the WCSP with non-Boolean variables? We answer all three

questions affirmatively. We answer the first question by proving new theoretical

properties of the CCG. We answer the second question by efficiently implementing

the CCG construction procedure and conducting experiments. We answer the third

question by proposing new encodings for non-Boolean variables and preliminarily

demonstrate their promisingness.

On the one hand, the generality of the WCSP is intended to make it widely

applicable and bring together researchers from different research communities. On

the other hand, our theory of the CCG reduces it to a very specific COP, i.e., the

MWVC problem. This transformation not only holds the remarkable promise of a

general-purpose algorithm that can exploit structure in the WCSP but also empha-

sizes the importance of the MWVC problem as a substrate COP. Specifically, in

this thesis, we show how the CCG-based transformation can be used to: (a) kernel-

ize a WCSP instance, i.e., fix the optimal values of a subset of its variables using

a maxflow procedure even before search is initiated, (b) improve the efficiency of

the min-sum message passing algorithm, (c) make use of integer linear program-

ming (ILP) solvers, and (d) solve COPs on quantum annealers more effectively.

In addition, because our algorithms solve general COPs in the WCSP framework

more efficiently on classical computers, we provide better baselines for comparison

against quantum computers, whose true efficiency over classical computers is still

debated.
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Chapter 1

Introduction

1.1 Motivation

Combinatorial optimization problems (COPs) use discrete variables and the inter-

actions between them to characterize real-world and abstract systems. They usu-

ally cannot be solved scalably by simply applying exhaustive search, since the

amount of time required by such search increases exponentially as the number of

variables increases, and therefore intelligent algorithms are usually required for

solving them. Fortunately, after decades of efforts by researchers, we know that

there is a rich class of COPs in P, meaning that there are known algorithms to

solve them in polynomial time. However, on the other hand, we also know that

there is another rich class of COPs that are known to be NP-hard, meaning that

no algorithm can solve them in polynomial time under the assumption of P 6=NP.

Yet, in practice, we can still often solve many of them quickly, thanks to intelligent

algorithms that exploit their structure.

What is “structure”? And how can we exploit it in combinatorial optimization?

These are the fundamental questions addressed in this thesis for many reasoning

tasks on complex physical and non-physical systems. In this section, we present

the motivation to study these questions. We first present two reasons for studying

COPs: (a) Many problems in complex physical and non-physical systems have a

deep nexus to COPs, and (b) improving algorithms for solving COPs helps advance

the state of the debates on whether the quantum annealer has a true advantage over
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classical computers. After that, we discuss the specificity of COPs, i.e., how COPs

have been categorized and studied individually. Then we discuss the generality of

the weighted constraint satisfaction problem (WCSP) and why we should study it.

We later discuss the ways to solve the WCSP and two types of structure—macro

and micro structure—in the WCSP. Finally, we discuss the constraint composite

graph (CCG) for the WCSP and how it simultaneously captures the two types of

aforementioned structure.

1.1.1 Why Studying COPs is Important

Many classical complex physical and non-physical systems, such as classical spin

glass systems, percolation theory-characterized systems, and social networks, have

a deep nexus to COPs due to their discrete nature. The task of computing ground

energy states of a spin glass system can be modeled as a COP in which each dis-

crete variable represents a spin and the optimization goal characterizes interactions

between them. In fact, many discrete physics models, such as the random Ising

model, have been frequently used as test beds for techniques that solve COPs (De

Simone et al. 1995). COPs such as the minimum spanning tree problem are com-

mon tools to study percolation theory (Alexander 1995; Bezuidenhout, Grimmett,

and Löffler 1998). In social networks and citation networks, two categories of

complex systems that are commonly studied in physics (Golosovsky 2017; Wu et

al. 2018), and many problems such as the maximum influence problem (Kempe,

Kleinberg, and Tardos 2003) and community detection (Kanawati 2014) can be

modeled as COPs. Therefore, improving COP solving in general may help us solve

and understand these systems.

On the other hand, quantum annealers, the only commercially available phys-

ical realization of quantum computers nowadays, by their nature solve quadratic
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unconstrained binary optimization (QUBO) problems, a subset of COPs. A com-

mon way to use quantum annealers for solving COPs in general is via hybrid

quantum-classical algorithms (HQCAs), a class of algorithms that interleave the

use of quantum annealers and classical computers. However, despite their quantum

nature, their true efficiency is controversial: Shor’s algorithm (Shor 1994), the only

known polynomial-time algorithm on quantum computers for solving NP-complete

problems until today, cannot be implemented on quantum annealers. It is doubt-

ful that there may exist an HQCA that has a super-polynomial speedup compared

to existing algorithms on classical computers. Indeed, none of such algorithms

have been confirmed to exist. For this reason, to disprove its efficiency, a lot of

research has been put into solving COPs using algorithms on classical computers

more efficiently.

1.1.2 Specificity of COPs

Traditionally, different COPs have been solved independently using dedicated algo-

rithms. For example, the (weighted) Max-Cut problem, which is equivalent to the

problem of finding a minimum energy state of an Ising system, has its dedicated

algorithms such as (Gao, Zeng, and Dong 2008; Kochenberger et al. 2013; Krish-

nan and Mitchell 2006; Rendl, Rinaldi, and Wiegele 2008); the Max-SAT problem,

which can be used to model problems in logic with uncertainty, has its dedicated

algorithms such as EvaSolver (Narodytska and Bacchus 2014), OpenWBO (Mar-

tins, Manquinho, and Lynce 2014), and LMHS (Saikko, Berg, and Järvisalo 2016);

and the maximum (weighted) clique problem, which has been used to help solve

many important problems, such as graph coloring, has its dedicated algorithms

such as Cliquer (Niskanen and Österg̊ard 2003), FastWClq (Cai and Lin 2016),

MWCLQ (Fang, Li, and K. Xu 2016), and OTClique (Shimizu et al. 2017).
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While such algorithms are valuable, they have important drawbacks. First,

these algorithms are designed to solve a specific problem—they are not applicable

to a different problem, often even if it is only slightly different. Secondly, different

research communities working on different specific COPs could be oblivious of each

other’s works and often end up developing different terminologies and techniques

for solving the same or similar problems. Therefore, a mathematical framework

that captures a wide variety of COPs not only leads to wider applicability, but also

facilitates informedness of different research communities and cross-fertilization of

different perspectives.

1.1.3 Generality of the Weighted Constraint Satisfaction

Problem

The weighted constraint satisfaction problem (WCSP) is a general mathematical

framework of COPs. It subsumes many important COPs such as the aforemen-

tioned (weighted) Max-SAT, (weighted) Max-Cut, and maximum (weighted) clique

problems. The constraint satisfaction problem (CSP) is a classic combinatorial

problem. It consists of a set of discrete variables of finite domains and a set of

constraints, each of which allows and forbids certain assignments of values to a

subset of variables. The WCSP can be viewed as an optimization variant of the

CSP where constraints are no longer “hard,” but associated with non-negative

costs (weights). The goal of the WCSP is to find an assignment of values to the

variables that minimizes the sum of the costs (Bistarelli et al. 1999).

Studying the WCSP brings together different research communities. While

the terminology was proposed in the constraint programming (CP) community,

the problem itself is also known in different communities by different names and
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has been solved and understood using different algorithms. In CP, branch-and-

bound (BnB) search has been traditionally used to solve the WCSP (Hurley et

al. 2016; Marinescu and Dechter 2006; Marinescu and Dechter 2007). In physics,

the WCSP can be seen as a general framework that characterizes classical systems

with n-body interactions. Simulated annealing and Monte Carlo algorithms, due to

their embodiment of physical principles, are commonly used to understand physical

systems (e.g., (Ferrenberg, J. Xu, and Landau 2018; Heim et al. 2015; Wauters

et al. 2017)). In probabilistic reasoning, the WCSP is known to be equivalent to

the maximum-a-posteriori (MAP) problem on a Markov random field. Message

passing algorithms are commonly used to solve this problem (Koller and Friedman

2009). In multi-agent systems, the WCSP is known as the distributed constraint

optimization problem (DCOP). Here, distributed versions of BnB (e.g., (Yeoh,

Felner, and Koenig 2010)) and message passing algorithms (Cohen and Zivan 2018;

Farinelli et al. 2008) have been used to solve this problem. Studies on the WCSP,

therefore, are of interest for many different fields and facilitate the bond between

physics and computer science.

The WCSP has a strong representational power—it is a general powerful tool

that has been used to model many important COPs in many complex physical and

non-physical systems. For example, in condensed matter physics, the WCSP can

be used to find the ground state in Potts model and its generalizations such as the

multi-body p-spin model (Mézard and Montanari 2009, p. 155) (as illustrated in

Figure 1.1); in biophysics, it can be used to locate motifs in RNA sequences (Zyt-

nicki, Gaspin, and Schiex 2008) (as illustrated in Figure 1.2); in information theory,

it can be used to reconstruct a message sent through a noisy channel using error

correcting codes (Yedidia, Freeman, and Weiss 2003); in social science, it can be

used to solve Schelling’s model of segregation (Easley and Kleinberg 2010); and in
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Figure 1.1: Illustrates the problem of finding the ground state energy of a random
Potts model seen as a WCSP instance. Each solid circle represents a spin. Each
black edge represents a two-body interaction. The three red edges represent a
three-body interaction.

computer vision applications, it can be used to solve energy minimization prob-

lems towards tasks such as image restoration, total variation minimization, and

panoramic image stitching (Kolmogorov 2005).

1.1.4 Solving the WCSP

How can we design algorithms for solving the WCSP efficiently? Isn’t the very

generality of the WCSP a curse? Are we up against a hard intractable problem?

While these questions are certainly valid, in this thesis, we exploit “structure.”
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a b c

d e
(a) Some Elements of Structure (Zytnicki, Gaspin, and Schiex 2008, Fig. 1)

(b) RNA Motif Localization as the WCSP (Zytnicki, Gaspin, and Schiex 2008, Fig. 2a)

Figure 1.2: Illustrates locating motifs in RNA sequences. Figure (a)a shows an
example word in an RNA sequence. Figures (a)b-e show some elements of structure
that have different stabilities. (b) illustrates the formulation of the RNA motif
localization problem as the WCSP. In the WCSP formulation, each variable is
the location of a key position in an element of structure in an RNA sequence.
Costs in constraints characterize the stability associated with different elements of
structure.
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Imagine two subclasses of COPs, Class A and Class B. If Class B is more gen-

eral than Class A, it is likely that we can build specialized algorithms for solving

instances from Class A more efficiently. But the hallmark of a good algorithm for

solving instances from Class B is its ability to imitate the specialized algorithm

if the input is in fact from Class A. Such an algorithm is said to exploit “struc-

ture.” Although the formal definition of “structure” is elusive, the idea is to create

a general-purpose algorithm for solving the WCSP that automatically simulates

more specialized algorithms for subclasses of the WCSP.

By its nature, the WCSP has two types of structure: the macro structure, or

the graphical structure, and the micro structure, or the numerical structure. The

graphical structure characterizes which variables interact locally and the numerical

structure characterizes the details of each local interaction. For example, if the

WCSP is used to characterize a spin glass system, then the graphical structure is a

fully connected graph under a mean-field assumption and is sparse under a nearest-

neighbor assumption; the numerical structure for spin interactions is symmetric for

an Ising system and is asymmetric for a system with more than one type of spin.

Unfortunately, traditional algorithms do not exploit both types of structure

simultaneously. Rather, they either focus on one of them or exploit them indi-

vidually. For example, one traditional way in which this has been done is by

studying the underlying variable-interaction graphs (Dechter 1992). The variable-

interaction graph incorporates basic information about which variables are con-

strained with which other variables in the problem instance, and this “locality”

information can be exploited in solution procedures that employ dynamic pro-

gramming. Despite its apparent usefulness, the variable-interaction graph does

not represent/capture information about the costs in the weighted constraints,

and therefore cannot be used to characterize/exploit any important combinatorial
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structure that might be present in them. In fact, there are many fundamental

combinatorial problems—like the hypergraph min-st-cut problem—that can be

formulated as the Boolean WCSP, and that are tractable not by virtue of the

graphical structure in their associated variable-interaction graphs, but by virtue

of the numerical structure in their associated weighted constraints.

1.1.5 The Constraint Composite Graph

In 2008, the quest for a unifying mathematical framework that represents the

macro structure as well as the micro structure of a WCSP was settled by the novel

idea of the constraint composite graph (CCG). The CCG of a WCSP instance

is an undirected graph that uses the same variables as the WCSP instance and

an auxiliary set of variables to capture structure. For a WCSP instance, it is

equivalent to solve the minimum weighted vertex cover (MWVC) problem on its

CCG. It has many interesting properties: It can be constructed in polynomial time;

it is always tripartite; and its construction can be done on individual constraints

and then be merged (meaning that its construction can be easily made parallel

and incremental). It has also been used to discover some tractable subclasses of

the WCSP. However, since then, there has not been much work done until today

in exploiting this transformation for theoretical or practical gains. Due to these

reasons, the development and discovery of the usefulness of the CCG for the WCSP

have become important and interesting.

1.2 Hypothesis and Research Questions

In this thesis, we hypothesize that the CCG can help algorithms discover structure

in the Boolean WCSP and therefore help solve it faster and with better theoretical
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guarantees. Under this hypothesis, we propose three research questions in this

section.

While the CCG has been used to identify some tractable subclasses of the

Boolean WCSP, just like other algorithmic techniques, its theoretical usefulness

can be far beyond that. Hence, the first research question is:

Q1: Is there any theoretical usefulness of the CCG other than for identifying

tractable subclasses of the Boolean WCSP?

Although the CCG has demonstrated some theoretical usefulness for the Boolean

WCSP, there is no known implementation of it and its practical usefulness remains

unknown and unexplored. Hence, the second research question is:

Q2: Is there any practical usefulness of the CCG for the Boolean WCSP?

While the CCG is promising, its applicability has been limited to the Boolean

WCSP. However, many real-world problems can be more easily modeled as the

WCSP with non-Boolean variables. The extension of the CCG to the WCSP with

non-Boolean variables is understudied and also inefficient (Kumar 2008b). Hence,

the third research question is:

Q3: Can the CCG be efficiently extended to the WCSP with non-Boolean

variables?

1.3 Overview and Contributions of this Thesis

In this thesis, we attempt to answer the three aforementioned research questions:

1. We answer Q1 by demonstrating the theoretical benefits that the CCG

brings. In particular, we show that it enables the Nemhauser-Trotter reduc-

tion (NT reduction) and prove that it improves the ILP encoding of the

Boolean WCSP.
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2. We answer Q2 by implementing the CCG construction algorithm as described

in (Kumar 2008a)—along with various improvements—and experimentally

evaluate various algorithms for solving the (Boolean) WCSP with the help

of the CCG. In particular, we experimentally demonstrate that several CCG-

based algorithms are more advantageous than their counterparts that work

directly on the (Boolean) WCSP, including the NT reduction, the min-sum

message passing (MSMP) algorithm, and the HQCA.

3. We answer Q3 by proposing three new non-Boolean variable encodings,

namely the binary number-based encoding, the direct symmetric encoding,

and the clique-based encoding, for the WCSP with non-Boolean variables.

We also compare them using theoretical arguments and preliminary experi-

mental results. We pose it as a promising future work of this thesis.

This thesis is organized as follows. In Chapter 2, we introduce background

material, including that on the CCG. In Chapter 3, we demonstrate that the CCG

enables the use of the NT reduction, a polynomial-time procedure that reduces

problem sizes for the MWVC problem, on the Boolean WCSP. In Chapter 4,

we experimentally demonstrate that the MSMP algorithm is more efficient when

applied to the CCG of a Boolean WCSP instance than on the Boolean WCSP

instance itself. In Chapter 5, we demonstrate the theoretical advantage of the

CCG-based ILP encoding of a Boolean WCSP instance over other ILP encodings,

and experimentally compare three different ILP encodings. In Chapter 6, we show

that the CCG-based HQCA for solving the Boolean WCSP is more advantageous

than a few other baseline HQCAs. In Chapter 7, we point out that extending the

CCG for the WCSP with non-Boolean variables can be promising. We do this by

proposing three non-Boolean variable encodings and demonstrating the usefulness

of the CCG on the WCSP with non-Boolean variables in preliminary experiments.
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Finally, in Chapter 8, we draw our conclusions and discuss other potential future

research directions. In each of Chapters 3 to 7, we also point out the potential

impact of improving the specific algorithm presented in that chapter.

In summary, in this thesis, we address Q1 and Q2 in Chapters 3 to 6, and Q3

in Chapter 7.
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Chapter 2

Background

2.1 Basics in Graph Theory

We denote an undirected graph using G = 〈V,E〉, where V is a set of vertices and

E is a set of edges. A vertex-weighted undirected graph is an undirected graph

with a non-negative weight (integer or real number) associated with each vertex.

We denote a vertex-weighted undirected graph using G = 〈V,E,w〉, where V and

E have the same meaning as before and w is a function that maps a vertex to

a non-negative integer or real number. (For notational simplicity, we also write

wi short for w(vi), where vi is a vertex in V .) The weight of a subset of vertices

S ⊆ V is the sum of all weights of vertices in S.

A set of vertices S ⊆ V is an independent set (IS) of an undirected graph

G = 〈V,E〉 if and only if no two vertices in S are connected by an edge, i.e.,

∀u, v ∈ S : (u, v) 6∈ E. A set of vertices S ⊆ V is a vertex cover (VC) of a graph

G = 〈V,E〉 if and only if every edge has at least one endpoint vertex in V , i.e.,

∀(u, v) ∈ E : u ∈ S ∨ v ∈ S. A VC S of an undirected graph G is a minimum

VC (MVC) if and only if |S| is no greater than the cardinality of any other VC of

G. A VC S of a vertex-weighted undirected graph G is a minimum weighted VC

(MWVC) if and only if the weight of S is no greater than the weight of any other

VC of G. Figure 2.1 illustrates the concept of MWVCs.
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Figure 2.1: Illustrates MWVCs. Each circle represents a vertex. The number
in each circle represents the weight of the corresponding vertex. The red circles
represent vertices in S. 3 and 7 mean that S in the corresponding figures are and
are not MWVCs, respectively. S in (a) and (b) are not MWVCs because their
weights are not minimized. S in (c) is not an MWVC because it is not a VC. S
in (d) is an MWVC, although it is not an MVC.

2.2 The Weighted Constraint Satisfaction Prob-

lem

Formally, the weighted constraint satisfaction problem (WCSP) is a triplet 〈X,D,C〉,

where X = {X1, · · · , XN} is a set of variables, D = {D1, · · · , DN} is the set of

discrete-valued domains that specify the set of values that each variable can take,
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Algorithm 2.1: Solve the WCSP using branch-and-bound search.

1 Function SolveWCSP(P)
Input: P : A WCSP instance.
Output: The optimal solution of P and its total weight.

2 return BranchAndBound(P , ∅, 0, ∅, +∞);

3 Function BranchAndBound(P = 〈X ,D, C〉, a, wa, a
†, w†)

Input: P = 〈X ,D, C〉: A WCSP instance.
Input: a: A partial or complete assignment of values to variables.
Input: wa: The total weight associated with a.
Input: a†: The current best solution.
Input: w†: The weight of the current best solution.
Output: Updated current best solution and its total weight.

4 if X = ∅ then
5 if wa < w† then
6 return a, wa;

7 else
8 (P ′ = 〈X ′,D′, C ′〉), global consist := EnforceLocalConsistency(P ,

w† − wa);
9 if ¬global consist then

10 return a†, w†;

11 X := ChooseVariable(X ′);
12 D := OrderDomain(D′(X));
13 foreach x ∈ D do
14 a′ := a ∪ {X = x};
15 wa′ := wa + EC′X ({X = x});
16 P ′′ := ConstructWCSPSubInstance(X, x, P ′);
17 a†, w† := BranchAndBound(P ′′, a′, wa′, a

†, w†);

18 return a†, w†;

and C = {C1, · · · , CN} is a set of constraints. Each constraint Ci is defined on a

subset of variables Si ∈ X and specifies a non-negative cost for each possible assign-

ment of values to the varibles in Si. An optimal solution is an assignment of values

to all variables such that the sum of the costs is minimized. If ∀Di ∈ D : |Di| = 2,

then the WCSP is called a Boolean WCSP (Kumar 2008a).
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Figure 2.2: Shows an example binary constraint.

The most mainstream class of algorithms for solving the WCSP is based on

branch-and-bound search, which explores a search tree with each node representing

an assignment of values to a subset of variables (Larrosa and Schiex 2004). In

a search tree, internal nodes represent partial assignments, whereas leaf nodes

represent complete assignments. During search, a currently known best solution

a†, which we refer to as the current best solution, is maintained along with its

total weight w†. At each node, the search algorithm computes the total weight wa

corresponding to the assignment of that node. If wa > w†, the subtree below this

node is pruned. The details of this algorithm are depicted in Algorithm 2.1. While

this approach works well in practice, it does not (intend to) explicitly discover

structure in WCSP instances.

A representative state-of-the-art solver that falls into this class of algorithms is

toulbar2 (Hurley et al. 2016). It is centralized, single-threaded, and CPU-based.

It is known to solve all 715 benchmark instances on CVPR/Scene Decomposition,

with a maximum number of variables being 208 and a maximum domain size being

8, within 0.07 seconds (Hurley et al. 2016).

2.3 The Constraint Composite Graph

The constraint composite graph (CCG) for a Boolean WCSP instance 〈X ,D, C〉 is

defined using a construction procedure (Kumar 2008a). It proceeds in 3 stages:
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Figure 2.3: Shows that the projection of MWVCs on the IS {X1, X2} of this vertex-
weighted undirected graph leads to Figure 2.2. The weights on x1, x2, and y1 are
0.2, 0.1, and 0.5, respectively. The entry 0.6 in cell (X1 = 0, X2 = 1) in Figure 2.2,
for example, indicates that, when X1 is necessarily excluded from the MWVC but
X2 is necessarily included in it, then the weight of the MWVC—{X2, Y1}—is 0.6.

1. Expressing Constraints as Polynomials In this stage, each constraint

C ∈ C is converted into a polynomial pC using standard Gaussian elimination.

Consider the example constraint in Figure 2.2, which involves the variables X1

and X2. It can be written as a polynomial pC(X1 = x1, X2 = x2) in x1 and x2 of

degree 1 each:

pC(X1 = x1, X2 = x2) = c00 + c01x1 + c10x2 + c11x1x2. (2.1)

The coefficients c00, c01, c10, and c11 of the polynomial can be computed by solving

a system of linear equations, where each equation corresponds to an entry in the

constraint table, using standard Gaussian elimination. In our example, we have

pC(0, 0) = 0.5 pC(1, 0) = 0.6 pC(0, 1) = 0.7 pC(1, 1) = 0.3

c00 = 0.5 c01 = 0.1 c10 = 0.2 c11 = −0.5.

2. Decomposing the Terms of the Polynomials In this stage, for the polyno-

mial constructed from each constraint, we construct a CCG gadget, a subgraph of

the CCG. Before describing this procedure, we describe the projection of MWVCs

on an IS, a cornerstone concept for the notion of the CCG.
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Figure 2.4: Shows the lifted graphical representations of (a) linear, (b) negative
nonlinear, and (c) positive nonlinear terms in a polynomial. We assume that w > 0
in (b) and (c) (but not necessarily in (a)). A vertex has a zero weight if no weight
is shown. In (a), w1 and w2 satisfy w1 − w2 = w.

For a given graph G, one can project MWVCs on a given IS U ⊆ V . The input

to such a projection is the graph G as well as an IS U = {u1, u2, . . . , uk} on G.

The output is a table of 2k numbers. Each entry in this table corresponds to a

k-bit vector. We say that a k-bit vector t imposes the following restrictions: (a)

If the ith bit ti is 0, then vertex ui has to be excluded from the MWVC; and (b)

if the ith bit ti is 1, then the vertex ui has to be included in the MWVC. The

projection of an MWVC on the IS U is then defined to be a table with entries

corresponding to each of the 2k possible k-bit vectors t(1), t(2), . . . , t(2
k). The value

of the entry that corresponds to t(j) is the weight of the MWVC conditioned on the

restrictions imposed by t(j). Figure 2.3 illustrates this projection for the subgraph

of our example constraint in Figure 2.2.

The table produced by projecting an MWVC on the IS U can be viewed as a

constraint over |U | Boolean variables. Conversely, given a constraint (consisting of

Boolean variables), we design a lifted representation for it so as to be able to view it

as the projection of an MWVC on an IS for some intelligently constructed vertex-

weighted undirected graph (Kumar 2008a; Kumar 2008b). The lifted graphical
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Figure 2.5: Illustrates the construction of the CCG for a given WCSP instance.
Green vertices represent variable vertices and red vertices represent auxiliary ver-
tices. The green tick marks represent the vertices in an MWVC. In this exam-
ple, the constructed CCG is a bipartite graph, meaning that the original WCSP
instance falls in a tractable subclass and can be efficiently solved. (to be continued)
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Figure 2.5: Continued.

representation of a constraint depends on the nature of the terms in the polynomial

that describes the constraint. We distinguish three classes of terms: linear terms,

negative nonlinear terms, and positive nonlinear terms. We can construct a lifted

graphical representation, i.e., a CCG gadget, for each term in the polynomial of

each constraint as follows.

• A linear term is represented with the two-vertex graph shown in Figure 2.4(a)

by connecting the variable vertex with an auxiliary vertex.

• A negative nonlinear term is represented with the “flower” structure as shown

in Figure 2.4(b). Consider the term−w·(Xi·Xj ·Xk) where w > 0. Projecting

an MWVC on the “flower” structure on the variable vertices represents w−

w · (Xi ·Xj ·Xk). The constant term w does not affect the optimality of the

solution.
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• A positive nonlinear term is represented using the “flower+thorn” struc-

ture as shown in Figure 2.4(c). Consider the term w · (Xi · Xj · Xk) where

w > 0. The projection of an MWVC on the “flower+thorn” structure on the

variable vertices represents L · (1−Xk) +w−w · (Xi ·Xj · (1−Xk)), where

L > w+ 1 is a large real number. By constructing CCG gadgets that cancel

out the lower order terms as shown before, we arrive at a lifted graphical

representation of the positive nonlinear term.

3. Merging CCG Gadgets into a CCG Finally, we construct the CCG by

merging their CCG gadgets: We merge vertices representing the same variables

by adding their weights and keep all edges connecting them to all other vertices.

Computing the MWVC for the CCG yields a solution for the Boolean WCSP: If

variable X ∈ X is in the MWVC, then it is assigned the value 1 in the Boolean

WCSP, otherwise it is assigned the value 0.

This construction procedure is also illustrated in Figure 2.5.

2.3.1 Theoretical Properties of the CCG

The CCG has the following known theoretical properties:

• It can always be constructed in polynomial time. This is due to the fact that

each CCG gadget can be constructed in polynomial time and that the total

number of CCG gadgets is polynomial with respect to the problem size of

the WCSP instance. Efficient CCG construction makes the applicability of

the CCG more practical.

• It is always tripartite and can be bipartite for a subclass of the Boolean

WCSP. Since the MWVC problem on a bipartite graph is tractable, a
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Boolean WCSP instance can be solved efficiently if its CCG is bipartite.

This can be used to discover tractable subclasses of the Boolean WCSP.

• It is decomposable. The construction procedure (a) constructs a CCG gadget

for each individual constraint and then (b) assembles them together to form

the CCG. This construction procedure is decomposable: If we add or remove

a constraint from the original Boolean WCSP instance, we can obtain the

CCG of the new Boolean WCSP instance by modifying the CCG of the

original Boolean WCSP instance using the CCG gadget of the added or

removed constraint.

32



Chapter 3

The Nemhauser-Trotter

Reduction on the CCG

3.1 Introduction

Many interesting combinatorial problems are NP-hard. Despite many sophisti-

cated search algorithms dedicated to solving them, the search spaces still remain

intractable for large instances. Therefore, a polynomial-time procedure that reduces

the sizes of problem instances and identifies a combinatorial core can be beneficial

as a preprocessing step. Such a procedure is called a kernelization algorithm, and

the combinatorial core is called a kernel (illustrated in Figure 3.1).

The Nemhauser-Trotter Reduction (NT reduction) is one such algorithm for

the MWVC problem (Nemhauser and Trotter 1975). Hence, it can be applied on

the MWVC problem on the CCG as well. It is based on the observation that the

MWVC problem is a half-integral problem. This means that its Integer Linear

Programming (ILP) formulation exhibits the following property. We consider a

vertex-weighted graph G = 〈V,E,w〉. In the ILP formulation of the MWVC
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Figure 3.1: Illustrates kernelization algorithms. After a polynomial-time proce-
dure, the problem instance of N variables is reduced to a small combinatorial
kernel.

problem instance on G, a Boolean decision variable Zi is first associated with the

presence of vertex vi in the MWVC. Then, the ILP formulation is

minimize

|V |∑
i=1

wiZi,

∀ vi ∈ V : Zi ∈ {0, 1},

∀ (vi, vj) ∈ E : Zi + Zj ≥ 1.

(3.1)

If we relax the integrality constraints Zi ∈ {0, 1} for all i ∈ {1, 2, . . . , |V |} and solve

the relaxed LP, the optimal solution of the LP is guaranteed to be half-integral—

i.e., ∀i ∈ {1, 2, . . . , |V |} : Zi ∈ {0, 1
2
, 1}. There then exists an MWVC on G that

includes vi if Zi = 1 and excludes vi if Zi = 0. Therefore, one can kernelize the

MWVC problem instance on G to an MWVC problem instance on a subgraph of

G by retaining only those vertices whose Boolean variables in an optimal solution

of the LP are 1
2
.

The half-integrality property can be further exploited to solve the LP relax-

ation of the MWVC problem with a maxflow algorithm instead of a general LP

solver (Kumar 2003). We first transform G to a vertex-weighted undirected bipar-

tite graph Gb = 〈V L
Gb
, V R

Gb
, EGb

, w〉 as follows. For each vertex vi ∈ V , we create two

vertices vLi ∈ V L
Gb

and vRi ∈ V R
Gb

, both with weight wi. For each edge (vi, vj) ∈ E,
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Figure 3.2: Illustrates the NT reduction. The left-upper panel shows the graph G.
The right-upper panel shows its corresponding vertex-weighted bipartite graph Gb

where each vertex in G has a corresponding vertex in each partition of Gb. The NT
reduction then computes an MWVC on Gb. The lower-left panel illustrates one
possible computed MWVC of Gb. The call-outs in the lower-right panel show the
result of the NT reduction by inspecting the presences of vertices in the computed
MWVC in Gb.

we create two edges (vLi , v
R
j ) ∈ EGb

and (vLj , v
R
i ) ∈ EGb

. The MWVC problem

can be solved in polynomial time on the bipartite graph Gb using a maxflow algo-

rithm (Kumar 2003); and the half-integral solution of the above LP relaxation can

be retrieved as follows. If both vLi and vRi are in the MWVC of Gb, then Zi = 1

and vi can be safely included in the MWVC of G; if neither vLi nor vRi is in the

MWVC of Gb, then Zi = 0 and vi can be safely excluded from the MWVC of G;

if exactly one of vLi or vRi is in the MWVC of Gb, then Zi = 1
2

and vi is retained in

the kernel of the MWVC problem instance posed on G. Figure 3.2 illustrates this

procedure.
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(a) Benchmark instances from the UAI 2014 Inference Competition: 19 out of
160 benchmark instances solved by the NT reduction
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(b) Benchmark instances from (Hurley et al. 2016): 53 out of 410 benchmark
instances solved by the NT reduction

Figure 3.3: Shows the effectiveness of the NT reduction. The x-axes show the
fraction of variables that are eliminated by the NT reduction. The y-axes show
the number of benchmark instances on which this happens for a fraction range.
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3.2 Experimental Evaluation

In this section, we present experimental evaluations of the NT reduction. We used

two sets of Boolean WCSP benchmark instances for our experiments. The first

set of benchmark instances is from the UAI 2014 Inference Competition1. Here,

maximum-a-posteriori (MAP) inference queries with no evidence on the PR and

MMAP benchmark instances can be reformulated as Boolean WCSP instances by

first taking the negative logarithms of the probabilities in each factor and then nor-

malizing them. The second set of benchmark instances is from (Hurley et al. 2016)2.

This set includes the Probabilistic Inference Challenge 2011, the Computer Vision

and Pattern Recognition OpenGM2 benchmark, the Weighted Partial MaxSAT

Evaluation 2013, the MaxCSP 2008 Competition, the MiniZinc Challenge 2012 &

2013, and the CFLib (a library of cost function networks). The experiments were

performed on those benchmark instances that have only Boolean variables.

The optimal solutions of the benchmark instances in (Hurley et al. 2016)

were computed using toulbar2 (Hurley et al. 2016). Since toulbar2 cannot solve

WCSP instances with non-integral weights, the optimal solutions of the bench-

mark instances from the UAI 2014 Inference Competition were computed by find-

ing MWVCs on their CCGs. For each benchmark instance, the MWVC problem

was solved by first kernelizing it using the NT reduction, then reformulating it as

an ILP (H. Xu, Kumar, and Koenig 2016) and finally solving the ILP using the

Gurobi optimizer (Gurobi Optimization, Inc. 2018) with a running time limit of 5

minutes.

1http://www.hlt.utdallas.edu/~vgogate/uai14-competition/index.html

2http://genoweb.toulouse.inra.fr/~degivry/evalgm/
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For our experiments, we implemented the NT reduction using the Gurobi opti-

mizer (Gurobi Optimization, Inc. 2018) as the LP solver. The CCG construction

algorithm was implemented in C++ using the Boost graph library (Siek, Lee, and

Lumsdain 2002) and was compiled by gcc 4.9.2 with the “-O3” option. Our exper-

iments were performed on a GNU/Linux workstation with an Intel Xeon processor

E3-1240 v3 (8MB Cache, 3.4GHz) and 16GB RAM.

Figure 3.3 shows the effectiveness of the NT reduction on the benchmark

instances. The polynomial-time NT reduction solved about 1/8th of these bench-

mark instances yielding empty kernels. Being able to solve this many benchmark

instances without search is indicative of the potential usefulness of the NT reduc-

tion for solving structured real-world problems.

We also observed that the NT reduction had very little or no effects for the

majority of the rest of the benchmark instances. Here, we discuss an intuitive

understanding of why the NT reduction is ineffective on many benchmark instances.

Gb = 〈V L
Gb
, V R

Gb
, EGb

, w〉 cannot have an MWVC with weight larger than W =∑
vi∈V L

Gb

wi, since the VC consisting of all vertices in either partition of Gb has

weight W .

• If the NT reduction has no effect, then the weight of an MWVC of Gb must

equal W . This is because, for each vi ∈ G, exactly one of vLi and vRi is in the

computed MWVC of Gb.

• If the weight of an MWVC of Gb is W , then the NT reduction has the option

of simply choosing all vertices in one partition as the computed MWVC. The

probability of the existence of an alternative MWVC that consist of vertices

in both partitions is low if the weights and the additions thereof are mostly

unique. In fact, this is true for many real-world applications and, in practice,

we can achieve this by adding a random small number to each weight.
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Combining the two points above, while it is not true in theory, practically, we can

understand that the ineffectiveness of the NT reduction is mostly caused by the

fact that the weight of an MWVC of Gb is W . Therefore, if Gb of a benchmark

instance has an MWVC of weight W , the NT reduction is likely to be ineffective

on it.

3.3 Conclusion

We showed that the NT reduction popularly used for kernelization of the MWVC

problem can also be applied to the CCG of the WCSP. This leads to a polynomial-

time preprocessing algorithm that fixes the optimal values of a subset of variables

in a WCSP instance. This subset is often the set of all variables: We observed

that the NT reduction could determine the optimal values of all variables for about

1/8th of the benchmark instances without search.

Enabling the NT reduction for the WCSP can be potentially useful for improv-

ing branch-and-bound search for the WCSP: In principle, we can potentially

replace EnforceLocalConsistency in Algorithm 2.1 with running the NT reduc-

tion and develop a new variant of branch-and-bound search algorithm for the

WCSP. In other words, thanks to the enabling of the NT reduction for the WCSP,

we can now conceptually view the NT reducibility of the WCSP as a new implicit

form of local consistency. It is well known that local consistency is an important

segue towards understanding the WCSP and our work in this chapter therefore

can potentially help researchers deepen understanding of the WCSP.
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Chapter 4

The Min-Sum Message Passing

Algorithm on the CCG

4.1 Introduction

Belief propagation (BP) is a well-known technique for solving many combinatorial

problems across a wide range of fields such as probabilistic reasoning, artificial intel-

ligence, and information theory. It can be used to solve hard inference problems

that arise in statistical physics, computer vision, error-correcting coding theory,

or, more generally, on graphical models such as Bayesian Networks and Markov

random fields (Yedidia, Freeman, and Weiss 2003). BP is an efficient algorithm

that is based on local message passing. Although a complete theoretical analysis

of its convergence and correctness is elusive, it works well in practice on many

important combinatorial problems.

While BP performs message passing for the objective of marginalization over

probabilities, the min-sum message passing (MSMP) algorithm is a variant of BP

that is used to find an assignment of values to all variables in ~X that minimizes

functions of the form

E( ~X) =
∑
i

Ei( ~Xi), (4.1)
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where ~X is the set of all variables in the global function E; Ei is a local function

constituting the ith term of E; and ~Xi is a subset of ~X containing all variables that

participate in Ei.

To minimize the function E( ~X), the MSMP algorithm first builds a factor

graph, i.e., an undirected bipartite graph with one partition containing vertices

that represent the variables in ~X and the other partition containing vertices that

represent the local functions Ei for all i. An edge represents the participation of

a variable in a local function. Furthermore, a message is a vector associated with

each direction of each edge. Intuitively, messages represent interactions between

individual variables and local functions. The value of Ei is the potential of its cor-

responding vertex because it is indicative of its “potential” to affect other vertices.

Messages are updated iteratively until convergence. In each iteration, the message

from vertex u to vertex v is influenced by incoming messages to u as well as u’s

potential if it represents a local function. Upon convergence, a solution can be

extracted from the messages.

The MSMP algorithm converges and produces an optimal solution if the factor

graph is a tree (Mézard and Montanari 2009). This is, however, not necessarily

the case if the factor graph is loopy (Mézard and Montanari 2009). Although the

clique tree algorithm alleviates this problem to a certain extent by first converting

loopy graphs to trees (Koller and Friedman 2009), the technique only scales to

graphs with low treewidths. If the MSMP algorithm operates directly on loopy

graphs, the theoretical underpinnings of its convergence and optimality properties

still remain poorly understood. Nonetheless, it works well in practice on a number

of important combinatorial problems in artificial intelligence, statistical physics,

and signal processing (Mézard and Montanari 2009; Moallemi and Roy 2010).
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X1 C12

X2 C23

X3 C13

νX1→C12−−−−−→
←−−−−−
ν̂C12→X1

Figure 4.1: Illustrates the factor graph of a Boolean WCSP instance with 3
variables {X1, X2, X3} and 3 constraints {C12, C13, C23}. Here, X1, X2 ∈ C12,
X1, X3 ∈ C13, and X2, X3 ∈ C23. The circles are variable vertices, and the squares
are constraint vertices. νX1→C12 and ν̂C12→X1 are the messages from X1 to C12 and
from C12 to X1, respectively. Such a pair of messages annotates each edge (not all
are explicitly shown).

Examples include the CSP (Montanari, Ricci-Tersenghi, and Semerjian 2007), K-

satisfiability (Mézard and Zecchina 2002), and the MVC problem (Weigt and Zhou

2006). In this chapter, we show how we improve the MSMP algorithm for the

Boolean WCSP by using the CCG.

4.2 The Min-Sum Message Passing Algorithm

Applied Directly on the Boolean WCSP

We now describe how the MSMP algorithm can be applied directly to solving

the Boolean WCSP defined by 〈X ,D, C〉. We refer to this as the original MSMP

algorithm. As explained before, we first construct its factor graph. We create

a vertex for each variable in X (variable vertex) and for each constraint in C

(constraint vertex). A variable vertex Xi and a constraint vertex Cj are connected

by an edge if and only if Cj contains Xi. Figure 4.1 shows an example.
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After the factor graph is constructed, a message (two real numbers) for each of

the two directions along each edge is initialized, for instance, to zeros. A pair of

messages νX1→C12 and ν̂C12→X1 is illustrated in Figure 4.1. The messages are then

updated iteratively by using the min-sum update rules given by

ν
(t)
Xi→Cj

(Xi = xi) =
∑

Ck∈∂Xi\{Cj}

[
ν̂

(t−1)
Ck→Xi

(Xi = xi)
]

+ c
(t)
Xi→Cj

(4.2)

ν̂
(t)
Cj→Xi

(Xi = xi) = min
a∈A(∂Cj\{Xi})

[
ECj

(a ∪ {Xi = xi})

+
∑

Xk∈∂Cj\{Xi}

ν
(t)
Xk→Cj

(a|{Xk})

]
+ ĉ

(t)
Cj→Xi

(4.3)

for all Xi ∈ X , Cj ∈ C and xi ∈ {0, 1} until convergence (Mézard and Montanari

2009), where

• ν̂(t)
Cj→Xi

(Xi = xi) for both xi ∈ {0, 1} are the two real numbers of the message

that is passed from the constraint vertex Cj to the variable vertex Xi in the

tth iteration,

• ν(t)
Xi→Cj

(Xi = xi) for both xi ∈ {0, 1} are the two real numbers of the message

that is passed from the variable vertex Xi to the constraint vertex Cj in the

tth iteration,

• ∂Xi and ∂Cj are the sets of neighboring vertices of Xi and Cj, respectively,

and

• c(t)
Xi→Cj

and ĉ
(t)
Cj→Xi

are normalization constants such that

min
[
ν

(t)
Xi→Cj

(Xi = 0), ν
(t)
Xi→Cj

(Xi = 1)
]

= 0 (4.4)

min
[
ν̂

(t)
Cj→Xi

(Xi = 0), ν̂
(t)
Cj→Xi

(Xi = 1)
]

= 0. (4.5)
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The message update rules can be understood as follows. Each message from

a variable vertex Xi to a constraint vertex Cj is updated by summing up all

Xi’s incoming messages from its other neighboring vertices. Each message from a

constraint vertex Cj to a variable vertex Xi is updated by finding the minimum

of the constraint function ECj
plus the sum of all Cj’s incoming messages from its

other neighboring vertices. The messages can be updated in various orders.

We use the superscript∞ to indicate the values of messages upon convergence.

The final assignment of values to variables in X = {X1, X2, . . . , XN} can then be

found by computing

EXi
(Xi = xi) ≡

∑
Ck∈∂Xi

ν̂
(∞)
Ck→Xi

(Xi = xi) (4.6)

for all Xi ∈ X and xi ∈ {0, 1}. Here, EXi
(Xi = 0) and EXi

(Xi = 1) can be proven

to be equal to the minimum values of the total weights conditioned on Xi = 0 and

Xi = 1, respectively. By selecting the value of xi that leads to a smaller value of

EXi
(Xi = xi), we obtain the final assignment of values to all variables in X .

4.3 The Min-Sum Message Passing Algorithm

Applied on the CCG

To solve a given WCSP instance, we can first transform it to an MWVC problem

instance on its CCG. We can then apply the MSMP algorithm on the CCG. We

refer to this procedure as the lifted MSMP algorithm.

The MWVC problem on the vertex-weighted graph 〈V,E,w〉 is a subclass of the

Boolean WCSP. Throughout this section, we use the variable Xi to represent the

ith vertex in V : Xi = 1 means the ith vertex is selected in the MWVC, and Xi = 0
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means the ith vertex is not selected in the MWVC. The MWVC problem can

therefore be rewritten as a subclass of the Boolean WCSP with only the following

two types of constraints:

• Unary weighted constraints: Each of these weighted constraints corresponds

to a vertex in the MWVC problem. We use CV
i to denote the weighted

constraint that corresponds to the ith vertex. CV
i therefore only has one

variable Xi. In the weighted constraint CV
i , the tuple in which Xi = 1 has

weight wi ≥ 0 and the other tuple has weight zero. This type of weighted

constraints represents the minimization objective of the MWVC problem.

• Binary weighted constraints: Each of these weighted constraints corresponds

to an edge in the MWVC problem. We use CE
j to denote the weighted

constraint that corresponds to the jth edge. The indices of the endpoint

vertices of this edge are denoted by j(+1) and j(−1). CE
j therefore has

two variables Xj(+1) and Xj(−1). In the weighted constraint CE
j , the tuple

in which Xj(+1) = Xj(−1) = 0 has weight infinity and the other tuples have

weight zero. This type of weighted constraints represents the requirement

that at least one endpoint vertex must be selected for each edge.

Given that the MWVC problem is a subclass of the Boolean WCSP, Equa-

tions (4.2), (4.3) and (4.6) can be reused for the MSMP algorithm on it. For

the MWVC problem, these equations can be further simplified. For notational

convenience, we omit normalization constants in the following derivation.

For each of the unary weighted constraints CV
i , we have

45



• the added weight for selecting a vertex:

ECV
i

(Xi = xi) =


wi xi = 1

0 xi = 0

, (4.7)

• and exactly one variable in CV
i :

∂CV
i \ {Xi} = ∅. (4.8)

By plugging Equations (4.7) and (4.8) into Equation (4.3) for t =∞, we have

ν̂
(∞)

CV
i →Xi

(Xi = xi) =


wi xi = 1

0 xi = 0

(4.9)

for all CV
i . Note that here we do not need Equation (4.2) for CV

i since it has only

one variable and thus the message passed to it does not affect the final solution.

For each of the binary weighted constraints CE
j , we have

• the requirement that at least one endpoint vertex must be selected for each

edge:

ECE
j

(Xj(+1) = xj(+1), Xj(−1) = xj(−1)) =


+∞ xj(+1) = xj(−1) = 0

0 otherwise

,

(4.10)

• and exactly two variables in CE
j :

∂CE
j \ {Xj(`)} = {Xj(−`)} ∀` ∈ {+1,−1}. (4.11)
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By plugging Equations (4.9) to (4.11) into Equations (4.2) and (4.3) along with

the fact that there exist only unary and binary weighted constraints, we have

ν
(t)

Xj(`)→CE
j

(Xj(`) = 1) =
∑

Ck∈∂Xj(`)\{CV
j(`)

,CE
j }

[
ν̂

(t−1)
Ck→Xj(`)

(Xj(`) = 1)
]

+ wj(`) (4.12)

ν
(t)

Xj(`)→CE
j

(Xj(`) = 0) =
∑

Ck∈∂Xj(`)\{CV
j(`)

,CE
j }

ν̂
(t−1)
Ck→Xj(`)

(Xj(`) = 0) (4.13)

ν̂
(t)

CE
j →Xj(`)

(Xj(`) = 1) = min
a∈{0,1}

ν
(t)

Xj(−`)→CE
j

(Xj(−`) = a) (4.14)

ν̂
(t)

CE
j →Xj(`)

(Xj(`) = 0) = ν
(t)

Xj(−`)→CE
j

(Xj(−`) = 1) (4.15)

for all CE
j and both ` ∈ {+1,−1}. By plugging Equations (4.12) and (4.13) into

Equations (4.14) and (4.15), we have

ν̂
(t)

CE
j →Xj(`)

(Xj(`) = 1) =

min
a∈{0,1}

 ∑
Ck∈∂Xj(−`)\{CV

j(−`)
,CE

j }

[
ν̂

(t−1)
Ck→Xj(−`)

(Xj(−`) = a)
]

+ wj(−`) · a

 (4.16)

ν̂
(t)

CE
j →Xj(`)

(Xj(`) = 0) =∑
Ck∈∂Xj(−`)\{CV

j(−`)
,CE

j }

[
ν̂

(t−1)
Ck→Xj(−`)

(Xj(−`) = 1)
]

+ wj(−`)
(4.17)

for all CE
j and both ` ∈ {+1,−1}, where ν̂

(t)

CE
j →Xj(`)

(Xj(`) = b) for both b ∈ {0, 1}

are the two real numbers of the message that is passed from the jth edge to the

j(`)th vertex. Since each edge has exactly two endpoint vertices, the message from

an edge to one of its endpoint vertices can be viewed as a message from the other
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endpoint vertex to it. Formally, for the jth edge, we define the message from the

j(+1)th vertex to the j(−1)th vertex in the tth iteration as

µ
(t)
j(+1)→j(−1) ≡ ν̂

(t)

CE
j →Xj(−1)

. (4.18)

By plugging in Equation (4.18) and substituting j(`) with i and j(−`) with j,

Equations (4.16) and (4.17) can be rewritten (with normalization constants) in

the form of messages between vertices as

µ
(t)
j→i(Xi = 1) = min

a∈{0,1}

 ∑
k∈N(j)\{i}

µ
(t−1)
k→j (Xj = a) + wj · a

+ c
(t)
j→i (4.19)

µ
(t)
j→i(Xi = 0) =

∑
k∈N(j)\{i}

µ
(t−1)
k→j (Xj = 1) + wj + c

(t)
j→i (4.20)

for all i and j such that the ith and jth vertices are connected by an edge in E.

Here, N(j) is the set of neighboring vertices of the jth vertex in V and c
(t)
j→i repre-

sents the normalization constant such that min
[
µ

(t)
j→i(Xi = 1), µ

(t)
j→i(Xi = 0)

]
= 0.

Equations (4.19) and (4.20) are the message update rules of the MSMP algorithm

adapted to the MWVC problem.

If the messages converge, by plugging Equations (4.9) and (4.18) into Equa-

tion (4.6), the final assignment of values to variables can be found by computing

EXi
(Xi = xi) =

∑
j∈N(i)

[
µ

(∞)
j→i(Xi = xi)

]
+ wixi, (4.21)

where the meaning of EXi
(Xi = xi) is similar to that in Equation (4.6).
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(a) Benchmark instances from the UAI 2014 Inference Competition
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(b) Benchmark instances from (Hurley et al. 2016)

Figure 4.2: Shows the qualities of the solutions (total weights) produced by the
original and the lifted MSMP algorithms in comparison to the optimal solutions
(for benchmark instances with known optimal solutions). The x-axes show the
suboptimality of the MSMP solutions. The y-axes show the number of benchmark
instances for a range of suboptimality. Higher bars on the left are indicative of
better solutions.
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(a) Benchmark instances from the UAI
2014 Inference Competition: 126/9/18
above/below/close to the diagonal dashed
line
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(b) Benchmark instances from (Hurley et
al. 2016): 222/68/19 above/below/close
to the diagonal dashed line

Figure 4.3: Shows the qualities of the solutions produced by the original MSMP
algorithm in direct comparison to those produced by the lifted MSMP algorithm
for both sets of benchmark instances. Each point in these plots represents a bench-
mark instance. The x and y coordinates of a benchmark instance represent the
solution qualities produced by the lifted MSMP algorithm and the original MSMP
algorithm, respectively. Benchmark instances above (red)/below (blue) the diago-
nal dashed line have better/worse solution qualities when using the lifted MSMP
algorithm instead of the original MSMP algorithm. Benchmark instances whose
MSMP solution qualities differ by only 1% are considered close (green) to the
diagonal dashed line.

4.4 Experimental Evaluation

In this section, we present experimental evaluations of the lifted MSMP algorithm.

We used two sets of Boolean WCSP benchmark instances for our experiments.

The first set of benchmark instances is from the UAI 2014 Inference Competi-

tion1. Here, maximum a posteriori (MAP) inference queries with no evidence on

the PR and MMAP benchmark instances can be reformulated as Boolean WCSP

1http://www.hlt.utdallas.edu/~vgogate/uai14-competition/index.html
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instances by first taking the negative logarithms of the probabilities in each factor

and then normalizing them. The second set of benchmark instances is from (Hur-

ley et al. 2016)2. This set includes the Probabilistic Inference Challenge 2011, the

Computer Vision and Pattern Recognition OpenGM2 benchmark, the Weighted

Partial MaxSAT Evaluation 2013, the MaxCSP 2008 Competition, the MiniZinc

Challenge 2012 & 2013 and the CFLib (a library of cost function networks). The

experiments were performed on those benchmark instances that have only Boolean

variables.

The optimal solutions of the benchmark instances in (Hurley et al. 2016)

were computed using toulbar2 (Hurley et al. 2016). Since toulbar2 cannot solve

WCSP instances with non-integral weights, the optimal solutions of the bench-

mark instances from the UAI 2014 Inference Competition were computed by find-

ing MWVCs on their CCGs. For each benchmark instance, the MWVC problem

was solved by first kernelizing it using the NT reduction, then reformulating it as

an ILP (H. Xu, Kumar, and Koenig 2016) and finally solving the ILP using the

Gurobi optimizer (Gurobi Optimization, Inc. 2018) with a running time limit of 5

minutes.

For the MSMP algorithms, we set the initial values of all messages to zeros. If

no message changed by an amount more than 10−6 in any iteration, we declared

convergence. We used the synchronous message updating order, i.e., messages were

updated in parallel in each iteration. This standardized the comparison between

the two MSMP algorithms, factoring out the effects of different message updating

orders within each iteration. In case of failure to converge within the time limit

(5 minutes) for any benchmark instance, we reported the solution produced by

the MSMP algorithm on that benchmark instance at the end of that time limit.

2http://genoweb.toulouse.inra.fr/~degivry/evalgm/
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Table 4.1: Shows the number of benchmark instances on which each MSMP algo-
rithm converged. The column “Neither”/“Both” indicates the number of bench-
mark instances on which neither/both of the MSMP algorithms converged within
the time limit of 5 minutes. The column “Original”/“Lifted” indicates the num-
ber of benchmark instances on which only the original/lifted MSMP algorithm
converged.

Benchmark Instance Set Neither Both Original Lifted

UAI 2014 Inference Competition 25 4 124 0

(Hurley et al. 2016) 258 7 44 0

The CCG construction algorithm and the MSMP algorithms were implemented

in C++ using the Boost graph library (Siek, Lee, and Lumsdain 2002) and were

compiled by gcc 4.9.2 with the “-O3” option. Our experiments were performed on

a GNU/Linux workstation with an Intel Xeon processor E3-1240 v3 (8MB Cache,

3.4GHz) and 16GB RAM.

Figure 4.2 shows the qualities of the solutions (total weights) produced by

the original MSMP algorithm versus the lifted MSMP algorithm in comparison

to the optimal solutions. A significant fraction of the solutions produced by the

lifted MSMP algorithm are very close to the optimal solutions. However, both

MSMP algorithms produced solutions that are highly suboptimal in the > 30%

suboptimality range. Therefore, Figure 4.3 presents a direct comparison of the

qualities of the solutions produced by the two MSMP algorithms. From this figure,

it is evident that solution qualities of the lifted MSMP algorithm are significantly

better than those of the original MSMP algorithm.

Table 4.1 shows the number of benchmark instances on which each MSMP

algorithm converged within the time limit. Table 4.2 shows the convergence time

and number of iterations for those benchmark instances on which both algorithms

converged. Although the original MSMP algorithm converged more frequently

and faster, the lifted MSMP algorithm produced better solutions in general. In
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Table 4.2: Shows the number of iterations and running time for each of the bench-
mark instances on which both MSMP algorithms converged within the time limit
of 5 minutes. The column “Benchmark Instance” indicates the name of each
benchmark instance. The “U:” and “T:” at the beginning of the names indicate
that they are from the UAI 2014 Inference Competition and (Hurley et al. 2016),
respectively. The columns “Iterations” and “Running Time” under “The Original
MSMP” and “The Lifted MSMP” indicate the number of iterations and running
time (in seconds) after which the original MSMP algorithm and the lifted MSMP
algorithm converged, respectively. With a few exceptions, the number of itera-
tions and running time for the original MSMP algorithm are in general smaller
than those of the lifted MSMP algorithm.

Benchmark Instance
The Original MSMP The Lifted MSMP

Iterations
Running

Iterations
Running

Time Time

U:PR/relational 2 5 0.84 9 4.00
U:PR/ra.cnf 1 0.35 6 0.34

U:PR/relational 5 5 1.18 3 0.76
U:PR/Segmentation 12 9 0.04 44 0.14

T:MRF/Segmentation/4 30 s.binary 31 0.10 60 0.13
T:MRF/Segmentation/2 28 s.binary 9 0.05 44 0.11
T:MRF/Segmentation/18 10 s.binary 15 0.07 102 0.18
T:MRF/Segmentation/12 20 s.binary 31 0.13 50 0.14
T:MRF/Segmentation/11 3 s.binary 47 0.15 176 0.24
T:MRF/Segmentation/1 28 s.binary 35 0.11 60 0.14
T:MRF/Segmentation/3 20 s.binary 31 0.12 54 0.14

addition, both MSMP algorithms are anytime and can be easily implemented in

distributed settings. Therefore, the comparison of the qualities of the solutions

produced is more important than that of the frequency and speed of convergence.

To further understand the lifted MSMP algorithm, we also experimented on

small random benchmark instances. We generated 9 groups of benchmark instances.

In each group, we generated 100 Boolean WCSP instances with 50 variables.

For every pair of variables, we add a constraint between them with probability

p (referred to as the constraint density), which equals 0.05, 0.1, 0.15, 0.2, 0.25, 0.3,

0.5, 0.7, and 0.9, respectively, in the 9 groups. In each tuple of each constraint, we
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Table 4.3: Comparison of suboptimalities of the two MSMP algorithms on small
random benchmark instances. Each row represents the experimental results of one
group. “Original” indicates the median suboptimality of the solutions produced
by the original MSMP algorithm. “Lifted” indicates the median suboptimality of
the solutions produced by the lifted MSMP algorithm.

p Original Lifted

0.05 0.63 0.00
0.1 0.39 0.08
0.15 0.30 0.21
0.2 0.26 0.23
0.25 0.22 0.21
0.3 0.19 0.20
0.5 0.16 0.16
0.7 0.12 0.13
0.9 0.11 0.10

assign the weight with an integer randomly chosen between 0 and 100. We set a

running time limit of 30 seconds for each benchmark instance.

Table 4.3 shows the suboptimalities of the solutions produced by the original

and lifted MSMP algorithms. On these benchmark instances, the lifted MSMP

algorithm in general produced solutions that are closer to optimal than the origi-

nal MSMP algorithm, especially for p ≤ 0.1. In addition, the lifted MSMP algo-

rithm produced more optimal solutions when p is closer to either 0 or 1. On the

other hand, the original MSMP algorithm produced more optimal solutions as p

increases.

Table 4.4 shows our experimental results of comparing the original and lifted

MSMP algorithms directly. The lifted MSMP algorithm works better in terms of

solution qualities when the constraint density is small, but this difference becomes

smaller as the constraint density increases. In terms of running times, the original

MSMP algorithm overall has an advantage (for p ≥ 0.1) over the lifted MSMP

algorithm due to the fact that the original MSMP algorithm converged on more
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Table 4.4: Comparison of solution qualities and running times of the two MSMP
algorithms on small random benchmark instances. In both tables, each row repre-
sents the experimental results of one group. (Upper Panel): “Original” indicates
the number of benchmark instances on which the original MSMP algorithm won.
“Lifted” indicates the number of benchmark instances on which the lifted MSMP
algorithm won. “Tie” indicates the number of benchmark instances on which
the two MSMP algorithms reached a tie. (Lower Panel): “Original” indicates
the number of benchmark instances on which the original MSMP algorithm con-
verged within the running time limit. “Lifted” indicates the number of benchmark
instances on which the lifted MSMP algorithm converged within the running time
limit.

p
Solution Quality Running Time

Original Lifted Tie Original Lifted Tie

0.05 0 100 0 24 22 54
0.1 1 99 0 56 4 40
0.15 13 87 5 60 0 40
0.2 19 76 5 58 0 42
0.25 25 54 21 54 0 46
0.3 28 35 37 55 0 45
0.5 28 29 43 44 0 56
0.7 28 25 47 54 0 46
0.9 26 28 46 50 0 50

p Original Lifted

0.05 92 89
0.1 67 32
0.15 60 4
0.2 58 0
0.25 54 0
0.3 55 0
0.5 44 0
0.7 54 0
0.9 50 0

benchmark instances. This advantage increases as p increases. This is consistent

with the experimental results shown in Tables 4.1 and 4.2.
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4.5 Discussion

Similar to other message passing algorithms, a theoretical analysis on the original

and lifted MSMP algorithms is hard to carry out. Therefore, we provide some

intuitions that might explain why the lifted MSMP algorithm works better than

the original MSMP algorithm.

• Direct effects: Equation (4.21) is much simpler than Equations (4.19) and (4.20).

First, the lifted MSMP algorithm needs only one equation, instead of two

equations, for each message update. Second, the size of each message is only

one real number in the lifted MSMP algorithm instead of two real numbers.

These significantly increase the efficiency for updating messages.

• Structural effects: The CCG provides a much simpler topological structure

for message updating. The original MSMP algorithm creates an additional

constraint vertex in the factor graph for each constraint, which needs to

handle its internal constraint table during message updates. On the contrary,

the lifted MSMP algorithm creates auxiliary vertices for each constraint as in

the CCG, which do not by themselves consist of internal constraint tables. In

other words, the lifted MSMP algorithm breaks the complexity of constraint

vertices into multiple vertices in a vertex-weighted graph.

4.6 Conclusion

We revived the MSMP algorithm for solving the Boolean WCSP by applying it

on its CCG instead of its original form. We observed not only that the lifted

MSMP algorithm produced solutions that are close to optimal for a large fraction

of benchmark instances, but also that, in general, it produced significantly better
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solutions than the original MSMP algorithm. Although the lifted MSMP algorithm

requires slightly more work in each iteration since the CCG is constructed using

auxiliary variables, the size of the CCG is only linear in the size of the tabular

representation of the WCSP (Kumar 2008a; Kumar 2008b; Kumar 2016), and the

lifted MSMP algorithm has the benefit of producing better solutions. Finally, we

experimentally compared the two MSMP algorithms on small random benchmark

instances with different constraint densities. We found that the lifted MSMP

algorithm is more advantageous on benchmark instances with smaller constraint

densities, and has almost the same effectiveness as the original MSMP algorithm

when the constraint density becomes larger.

There are a number of implications of a better MSMP algorithm for the (Boolean)

WCSP. (a) In distributed optimization such as DCOPs, the MSMP algorithm is

a state-of-the-art algorithm3. While there exist a number of improved variants of

the MSMP algorithm such as splitting (Ruozzi and Tatikonda 2013) and damp-

ing (Cohen and Zivan 2017), to the best of our knowledge, their changes to the

standard MSMP algorithm are relatively minor. On the contrary, the idea of

applying the MSMP algorithm on the CCG of a given WCSP instance affects a

major change to the standard MSMP algorithm. If it can be further proved to be

more useful than the standard MSMP algorithm, we will not only create a new

direction for improving and understanding the MSMP algorithm, but also poten-

tially advance the MSMP algorithm to a new paradigm. (b) Even in a centralized

setting, unlike branch-and-bound search, the MSMP algorithm has the advantage

of being able to easily parallelize WCSP solving. Due to the simplicity of message

update rules, they can be further implemented on GPUs as well (Grauer-Gray,

Kambhamettu, and Palaniappan 2008). In an era when GPUs are getting popular

3The MSMP algorithm is referred to as the “Max-sum” algorithm in the DCOP community.
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quickly, a revolution to the MSMP algorithm can potentially revolutionize solv-

ing the WCSP and other optimization problems where the MSMP algorithm is

applicable.
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Chapter 5

Integer Linear Programming

Encoding of the Boolean WCSP

via the CCG

5.1 Introduction

There are many ways to solve a given WCSP instance. The state-of-the-art meth-

ods include best-first AND/OR search (Marinescu and Dechter 2007) and branch-

and-bound search algorithms that exploit soft arc consistencies (Hurley et al. 2016).

Unfortunately, none of these WCSP solvers make use of the power of integer lin-

ear programming (integer LP, ILP) solvers, such as the Gurobi Optimizer (Gurobi

Optimization, Inc. 2018) and lp solve (Berkelaar, Eikland, and Notebaert 2004).

ILP solvers are highly optimized and are extensively used for solving problems

in operations research. An efficient ILP encoding of the WCSP would therefore

create a connection between constraint programming and operations research.

An ILP encoding of the WCSP can be borrowed from the probabilistic reasoning

community. Here, the WCSP arises as the max-a-posteriori (MAP) problem.1

Although this ILP encoding is popularly used in probabilistic reasoning (Koller

1A MAP problem instance on a probabilistic graphic model, such as a Belief Network, can be
formulated as a WCSP instance by taking the negative logarithm on the individual probabilities.
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and Friedman 2009, Section 13.5), it does not scale to large instances since it

creates an unwieldy number of variables and constraints.

In this chapter, we introduce a new ILP encoding of the WCSP that is based

on the idea of the CCG. We refer to this encoding as the CCG-based ILP encoding.

We compare it with the ILP encoding in (Koller and Friedman 2009, Section 13.5)

and an improved version thereof for the Boolean WCSP. We refer to these two ILP

encodings as the direct and improved direct ILP encodings, respectively. We first

derive and compare the theoretical bounds on the number of variables, the number

of constraints, and the number of variables in each constraint in the ILPs generated

by these three ILP encodings. We show that the CCG-based ILP encoding is more

advantageous in terms of these theoretical bounds. In addition, experimentally,

we found that the CCG-based ILP encoding is often more efficient than the direct

and improved direct ILP encodings. Finally, we establish an important theoretical

property of the CCG-based ILP encoding.

5.2 ILP Encodings of the WCSP

In this section, we describe three methods to encode a given WCSP instance

as an ILP: The direct ILP encoding, the improved direct ILP encoding, and

our proposed CCG-based ILP encoding. For notational convenience, throughout

this section, we consider the WCSP instance B = 〈X = {X1, X2, . . . , XN},D =

{D(X1),D(X2), . . . ,D(XN)}, C = {C1, C2, . . . , CM}〉.
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5.2.1 Direct ILP Encoding

For each C ∈ C and a ∈ A(S(C)), we introduce an ILP variable qCa . Here,

A(S(C)) is the set of all assignments of values to variables in constraint C (there-

fore |A(S(C))| =
∏

X∈S(C) |D(X)|). qCa is either 0 or 1: If qCa = 1, then the

assignment a to the variables in C is part of the to-be-determined optimal solution

a∗, i.e., a∗|S(C) = a; otherwise it is not. The direct ILP encoding of B is

minimize
qCa :qCa ∈q

∑
C∈C

∑
a∈A(S(C))

wCa q
C
a (5.1)

s.t. qCa ∈ {0, 1} ∀qCa ∈ q (5.2)∑
a∈A(S(C))

qCa = 1 ∀C ∈ C (5.3)

∑
a∈A(S(C)):a|S(C)∩S(C′)=s

qCa =
∑

a′∈A(S(C′)):a′|S(C)∩S(C′)=s

qC
′

a′ ∀C,C ′ ∈ C and (5.4)

s ∈ A(S(C) ∩ S(C ′)),

where q = {qCa | C ∈ C ∧ a ∈ A(S(C))}, wCa denotes the weight of assignment a

specified by constraint C, and a|S(C) ∩ S(C ′) is the projection of the complete

assignment a onto the set of common variables in C and C ′. The cardinality of q

is
∑

C∈C
∏

X∈S(C) |D(X)|. Here,

• Equation (5.2) represents the ILP constraints that enforce the Boolean prop-

erty for all qCa ’s. It consists of
∑

C∈C
∏

X∈S(C) |D(X)| = O
(
|C|D̂Ĉ

)
ILP

constraints, where Ĉ = maxC∈C |S(C)| and D̂ = maxX∈X |D(X)|.

• Equation (5.3) represents the ILP constraints that enforce a unique assign-

ment of values to variables in each WCSP constraint. It consists of |C| ILP

constraints, each of which has |A(S(C))| =
∏

X∈S(C) |D(X)| = O
(
D̂Ĉ
)

vari-

ables.
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• Equation (5.4) represents the ILP constraints which enforce that every two

assignments in two WCSP constraints must be consistent on their shared

variables. It consists of O
(
|C|2D̂Ĉ

)
ILP constraints. Each of these ILP

constraints has O
(
D̂Ĉ
)

variables.

Therefore, if B is a Boolean WCSP instance, the direct ILP encoding has |q| =

O
(
|C|D̂Ĉ

)
= O

(
|C|2Ĉ

)
variables and O

(
|C|2D̂Ĉ

)
= O

(
|C|22Ĉ

)
ILP constraints.

Each of these ILP constraints has O
(
D̂Ĉ
)

= O
(

2Ĉ
)

variables.

5.2.2 Improved Direct ILP Encoding

The improved direct ILP encoding is similar to the direct ILP encoding, except

that Equation (5.4) is replaced by

∑
a∈A(S(C)):a|S(C′)=a′

qCa = qC
′

a′ (5.5)

∀C ∈ C,∀C ′ : |S(C ′)| = 1 ∧ S(C ′) ⊂ S(C),∀a′ ∈ A(S(C ′)),

with a dummy unary constraint—a constraint that has zero weights in all its

tuples—imposed on each variable on which there is no unary constraint.

Similar to Equation (5.4), Equation (5.5) also represents the ILP constraints

which enforce that every two assignments in two WCSP constraints must be con-

sistent on their shared variables. It consists of O
(
|C| · |X | · D̂Ĉ

)
ILP constraints.

Each of these ILP constraints has O
(
D̂Ĉ
)

variables. However, unlike Equa-

tion (5.4), which enforces this ILP constraint by considering every pair of WCSP

constraints, here, it only considers each WCSP constraint with all its relevant

unary WCSP constraints. This improvement effectively reduces the number of

ILP constraints from O
(
|C|2D̂Ĉ

)
to O

(
|C| · |X | · D̂Ĉ

)
.
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In summary, if B is a Boolean WCSP instance, the improved direct ILP encod-

ing has |q| = O
(
|C|D̂Ĉ

)
= O

(
|C|2Ĉ

)
variables andO

(
|C| · |X | · D̂Ĉ

)
= O

(
|C| · |X | · 2Ĉ

)
ILP constraints. Each of these ILP constraints has O

(
D̂Ĉ
)

= O
(

2Ĉ
)

variables.

5.2.3 CCG-Based ILP Encoding

We can encode a WCSP instance as an ILP after transforming it to an equivalent

MWVC problem instance on its CCG G = 〈V,E,w〉. The resulting CCG-based

ILP encoding is

minimize
xi:vi∈V

|V |∑
i=1

wixi (5.6)

s.t. xi ∈{0, 1} ∀ vi ∈ V (5.7)

xi + xj ≥1 ∀ (vi, vj) ∈ E, (5.8)

where variable xi represents the presence of vi in the MWVC, i.e., xi = 1 and

xi = 0 indicate that vi is and is not in the MWVC, respectively (H. Xu, Kumar,

and Koenig 2016). The numbers of ILP variables and constraints are determined

by the CCG. We now assume that B is a Boolean WCSP instance. We can

compute the number of vertices and edges in the CCG by following the CCG

construction procedure in (Kumar 2008a). A constraint C can be represented by

the multivariate polynomial

∑
T∈P(S(C))

[
cT
∏
X∈T

X

]
, (5.9)

where P(S(C)) is the power set of S(C) and the cT ’s are constants. The CCG

gadget corresponding to term cT
∏

X∈T X has at most 2 auxiliary vertices and
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Table 5.1: Shows the numbers of variables, constraints, and variables per constraint
in the three ILP encodings of Boolean WCSP instance B = 〈X ,D, C〉.

Encoding Direct Improved Direct CCG-Based

Number of Variables O
(
|C|2Ĉ

)
O
(
|C|2Ĉ

)
O
(
|C|2Ĉ

)
Number of Constraints O

(
|C|22Ĉ

)
O
(
|C| · |X | · 2Ĉ

)
O
(
|C|2ĈĈ

)
Number of Variables per Constraint O

(
2Ĉ
)

O
(
2Ĉ
)

≤ 2

O(|T |) edges. The CCG gadget corresponding to constraint C has at most |S(C)|

variable vertices. Therefore, it has an upper bound of

O (|S(C)|+ 2 · |P(S(C))|) = O
(
2|S(C)|+1

)
(5.10)

vertices and

O

 ∑
T∈P(S(C))

|T |

 = O

|S(C)|∑
|T |=0

(
|S(C)|
|T |

)
|T |

 = O
(
2|S(C)|−1|S(C)|

)
(5.11)

edges. Therefore, if B is a Boolean WCSP instance, the CCG has O
(
|C|2Ĉ

)
vertices and O

(
|C|2ĈĈ

)
edges constituting the ILP variables (Equation (5.7))

and constraints (Equation (5.8)), respectively, with each of these ILP constraints

having at most 2 variables.

5.2.4 Comparison

We compare various parameters of the three ILP encodings for the Boolean WCSP

in Table 5.1. For any non-trivial Boolean WCSP instances, the CCG-based ILP

encoding has a huge advantage over the other two ILP encodings with respect to

the number of variables per constraint. This is true even if Ĉ is bounded because,

in the other two ILP encodings, the number of variables in an ILP constraint
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corresponding to a WCSP constraint C in Equation (5.3) is 2|S(C)| ≥ 2. For the

number of constraints, while different values of the parameters lead to different

trade-offs, the most interesting real-world applications of the WCSP have a large

number |C| of constraints and a bounded arity Ĉ of the individual constraints.

Under such assumptions, the CCG-based ILP encoding is more advantageous than

the other two ILP encodings with respect to the number of constraints as well.

The CCG-based ILP encoding has the same asymptotic number of variables as

the other two ILP encodings. In general, when Ĉ is bounded, the CCG-based ILP

encoding retains the same order of the number of variables as the other two ILP

encodings and significantly wins on the number of constraints and the number of

variables per constraint.

5.3 Experimental Evaluation

In this section, we experimentally evaluate the efficiencies of solving the Boolean

WCSP using the three ILP encodings. We refer to the three algorithms that use

these ILP encodings as the direct algorithm, the improved direct algorithm, and

the CCG-based algorithm.

We used two sets of Boolean WCSP benchmark instances for our experiments.

The first set of benchmark instances is from the UAI 2014 Inference Competi-

tion2. Here, maximum a posteriori (MAP) inference queries with no evidence on

the PR and MMAP benchmark instances can be reformulated as Boolean WCSP

instances by first taking the negative logarithms of the probabilities in each factor

2http://www.hlt.utdallas.edu/~vgogate/uai14-competition/index.html
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and then normalizing them. The second set of benchmark instances is from (Hur-

ley et al. 2016)3. This set includes the Probabilistic Inference Challenge 2011, the

Computer Vision and Pattern Recognition OpenGM2 benchmark, the Weighted

Partial MaxSAT Evaluation 2013, the MaxCSP 2008 Competition, the MiniZinc

Challenge 2012 & 2013 and the CFLib (a library of cost function networks). The

experiments were performed on those benchmark instances that have only Boolean

variables. We set a running time limit of 120 seconds for each algorithm on the

first set of benchmark instances and 15 seconds on the second set of benchmark

instances.

We used the Gurobi Optimizer (Gurobi Optimization, Inc. 2018) as the ILP

solver. All default settings of the Gurobi Optimizer were kept except that it

was configured to use only one CPU thread. The ILP encoding procedures and

the CCG construction algorithm were implemented in C++ and were compiled

by the GNU Compiler Collection (GCC) 6.3.0 with the “-O3” option. We used

the Boost graph library (Siek, Lee, and Lumsdain 2002) to implement the graph

representations and operations. We performed our experiments on a GNU/Linux

workstation with an Intel Xeon processor E3-1240 v3 (8MB Cache, 3.4GHz) and

16GB RAM.

Table 5.2 shows the number of benchmark instances on which all three algo-

rithms terminated within the running time limits. We compare the CCG-based

encoding with the other two ILP encodings individually on each set of benchmark

instances. The number of benchmark instances on which only the CCG-based

algorithm terminated is much larger than the number of benchmark instances on

which only the direct or improved direct algorithm terminated. We also examine

3http://genoweb.toulouse.inra.fr/~degivry/evalgm/
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Table 5.2: Shows the number of benchmark instances on which the direct algo-
rithm/improved direct algorithm and the CCG-based algorithm terminated within
the running time limits.

(a) CCG-based versus Direct on UAI

Termination Status Total CCG-Based Only Direct Only Neither Both

Number of Benchmark Instances 160 23 5 14 118

(b) CCG-based versus Improved Direct on UAI

Termination Status Total CCG-Based Only Improved Direct Only Neither Both

Number of Benchmark Instances 160 12 5 14 129

(c) CCG-based versus Direct on (Hurley et al. 2016)

Termination Status Total CCG-Based Only Direct Only Neither Both

Number of Benchmark Instances 510 283 0 173 54

(d) CCG-based versus Improved Direct on (Hurley et al. 2016)

Termination Status Total CCG-Based Only Improved Direct Only Neither Both

Number of Benchmark Instances 510 167 27 146 170

the benchmark instances on which both the CCG-based algorithm and the direct

algorithm (or the improved algorithm) terminated.

Figure 5.1 reports the comparison of efficiencies of the directed, improved

directed, and CCG-based algorithms on the benchmark instances on which both

algorithms, the CCG-based and the directed or improved directed algorithms, ter-

minated within the running time limits. The two left panels of Figure 5.1 com-

pare the efficiencies of the CCG-based and direct algorithms on the benchmark

instances on which both of them terminated within the running time limits. On

the UAI benchmark instances, the CCG-based algorithm was more efficient on

110 benchmark instances (red points), and the direct algorithm was more efficient

on 8 benchmark instances (blue points). On the (Hurley et al. 2016) benchmark

instances, the CCG-based algorithm was more efficient on 54 benchmark instances

(red points), and the direct algorithm was more efficient on no benchmark instance.

For both sets of benchmark instances, most red points are far from the dashed diag-

onal line, meaning that the gap between the running times of the two algorithms
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(a) CCG-based versus Direct on
UAI: 110/8
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(b) CCG-based versus Improved
Direct on UAI: 36/93
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(c) CCG-based versus Direct on
(Hurley et al. 2016): 54/0
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(d) CCG-based versus Improved
Direct on (Hurley et al. 2016):
165/5

Figure 5.1: Compares the efficiencies of the direct, improved direct, and CCG-
based algorithms on the benchmark instances on which both algorithms, the CCG-
based and the direct or improved direct algorithms, terminated within the running
time limits. Each point represents a benchmark instance. The x and y coordinates
of each point show the running times of the CCG-based and (improved) direct
algorithms on its corresponding benchmark instance, respectively. The dashed
diagonal line represents equal running times. Points above and below this line
are colored red and blue, respectively. Red and blue points represent benchmark
instances on which the CCG-based and (improved) direct algorithms terminated
more quickly, respectively. The caption of each plot shows the number of red/blue
points.
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was very large for those benchmark instances on which the CCG-based algorithm

was more efficient. On the other hand, all blue points are close to the dashed

diagonal line, meaning that the direct algorithm only marginally outperformed

the CCG-based algorithm on these benchmark instances in terms of running time.

The two right panels of Figure 5.1 compare the efficiencies of the CCG-based

and improved direct algorithms on the benchmark instances on which both of them

terminated within the running time limit. On the UAI benchmark instances, the

CCG-based algorithm was more efficient on 36 benchmark instances (red points),

and the improved direct algorithm was more efficient on 93 benchmark instances

(blue points). Here, contrary to the theoretical results, experimentally, the CCG-

based algorithm was less efficient than the improved direct algorithm. Nevertheless,

on the (Hurley et al. 2016) benchmark instances, the CCG-based algorithm was

more efficient on 165 benchmark instances (red points), and the improved direct

algorithm was more efficient on 5 benchmark instances (blue points). Here, the

CCG-based algorithm was significantly more efficient than the improved direct

algorithm.

5.4 A Theoretical Property of the CCG-Based

ILP Encoding

Since an ILP itself can be interpreted as a WCSP instance with an infinite weight

marking the violation of an ILP constraint and unary constraints representing the

ILP objective function, the concept of the CCG is well defined for ILPs. It can be

constructed in polynomial time for an ILP and can be used to generate the CCG-

based ILP encoding of the given ILP. A desirable property of the CCG-based ILP
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encoding is therefore its ability to preserve the integrality of the vertices of the

feasible region of its LP relaxation.

ILPs can be relaxed to LPs by removing all integrality constraints on their

variables. LPs have convex feasible regions and can therefore be solved efficiently

(in polynomial time). If the feasible region of the LP relaxation of an ILP has

only integer vertices (equivalent to an ILP having a totally unimodular (TUM)

constraint matrix (Sierksma 2001)), an optimal solution of the LP also yields an

optimal solution of the ILP.

An ILP can be viewed as a WCSP instance as follows. Each ILP constraint

translates to a WCSP constraint with weights of values zero or infinity. The ILP

objective function translates to a set of unary WCSP constraints. The CCG-based

ILP encoding of an ILP produces a new ILP. If the original ILP has only integer

vertices in the feasible region of its LP relaxation, it is desirable for the new ILP to

also have the same property. This would mean that, if the original ILP is solvable

through LP relaxation, the new ILP is also solvable through LP relaxation. In this

section, we show that this property of the CCG-based ILP encoding in fact holds

for an important subclass of such ILPs, namely, ILPs that model MWVC problem

instances on bipartite graphs.

The MWVC problem on a given vertex-weighted graph G = 〈V,E,w〉 is for-

mulated as an ILP of the same form of Equations (5.6) to (5.8), where we simply

associate a 0/1 variable xi with each vertex vi ∈ V of non-negative weight wi

indicating the presence of vi in the MWVC. If G is bipartite, its constraint matrix

is TUM. Therefore, the LP relaxation of this ILP has only integer vertices in its

feasible region (Sierksma 2001). We can formulate this ILP as a WCSP instance

with the two types of constraints shown in Table 5.3.
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xi

xj 0 1

0 +∞ 0
1 0 0

(a) The binary constraint that repre-
sents the requirement of covering each
edge (vi, vj) ∈ E

xi 0 1

Value 0 wi

(b) The unary constraint for each vertex
vi that represents a term in the objec-
tive function of minimizing the total
weight of the vertex cover

Table 5.3: Shows the two types of WCSP constraints for the MWVC problem.

Now we show that the CCG created for the MWVC problem on any given

bipartite graph is also bipartite, which establishes that the LP relaxation of the

CCG-based ILP encoding has only integer vertices in its feasible region. Consider

an edge (vi, vj) ∈ E. The CCG gadget that represents the constraint of covering

this edge involves auxiliary vertices A and A′ (Kumar 2008a). The CCG gadget

itself has the edges (vi, A), (A,A′) and (A′, vj). If the original graph is bipartite,

then its vertices can be colored using either of two colors, red and blue, such that

every edge connects a red vertex and a blue vertex. Without loss of generality, we

assume that vi is colored red and vj is colored blue. We then color A blue and

A′ red. Such a coloring of the vertices ensures that the edges of the CCG gadgets

also always connect a red vertex and a blue vertex. This means that the CCG

is also bipartite. Hence, we establish the desired property of the CCG-based ILP

encoding for the MWVC problem on any given bipartite graph.

5.5 Conclusion

In this chapter, we introduced the CCG-based ILP encoding of the WCSP. We

compared it to the direct and improved direct ILP encodings adapted from the

probabilistic reasoning community. We showed that the CCG-based ILP encoding
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has several theoretical advantages over the direct and improved direct ILP encod-

ings. We experimentally showed that the CCG-based ILP encoding was more

efficient than the direct ILP encoding. While it is less efficient than the improved

ILP encoding on the UAI benchmark instances, it is more efficient on the (Hur-

ley et al. 2016) benchmark instances. Finally, we showed that MWVC problem

instances on bipartite graphs, whose corresponding ILPs have only integer ver-

tices in the feasible regions of their LP relaxations, preserve this property in their

CCG-based ILP encodings as well.

In theory, the CCG-based ILP encoding is asymptotically more efficient than

the (improved) direct ILP encoding. This may be beneficial when growing problem

scales in the future require us to solve extremely large WCSP instances: The

difference in the asymptotic expressions may be better represented in practice as

the problem sizes increase. Furthermore, branch-and-bound search algorithms for

large-scale WCSP instances do not exist yet, whilst ILP solvers have been and will

continue to be actively researched in large-scale settings. Therefore, reformulating

a large-scale WCSP instance as an ILP and solving it can potentially become a

more viable solution than branch-and-bound search for the WCSP.

Furthermore, improving ILP encoding of the WCSP can have implications for

developing branch-and-bound search algorithms for the WCSP. Similar to the

WCSP, the current mainstream algorithms for solving the ILP are also based on

branch-and-bound search, and they have been studied for decades and have a much

richer literature than branch-and-bound search for the WCSP. By building the

bridge between the ILP and the WCSP, we introduced a new ILP-based perspective

of WCSP solving, which can potentially inspire researchers to borrow branch-and-

bound search techniques from ILP solving to solve the WCSP.
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Chapter 6

Quantum Annealing for the

WCSP via the Constraint

Composite Graph

6.1 Introduction

Theoretical studies in physics suggest that quantum computers are inherently more

efficient than classical computers, due to the unique features in quantum processes,

such as superposition, interference and entanglement. For example, the integer

factorization problem can be solved comfortably in polynomial time by Shor’s

algorithm (Shor 1994) on quantum computers, but is not known to admit an

efficient classical algorithm.

Among all types of quantum computer hardware, the quantum annealer is

perhaps the most widely used type nowadays due to the commercial availability of

its physical realization. The quantum annealer solves combinatorial optimization

problems using a quantum process called quantum annealing. It has been shown

that quantum annealing is more advantageous than certain classical algorithms on

certain classes of problems (Rieffel and Polak 2014).

In reality, quantum annealing processors have only been built by D-Wave Sys-

tems Inc. These so-called “D-Wave processors” (D-Wave Systems Inc. 2017) can
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only take the Ising problem, equivalent to the quadratic unconstrained binary1

optimization(QUBO) problem, as its input. Therefore, to solve a combinatorial

optimization problem other than the Ising problem, such as the WCSP, a refor-

mulation process on classical computers is required. Such an algorithm is called a

hybrid quantum-classical algorithm (HQCA). Currently, there exist many HQCAs

for constraint optimization problems, such as the maximum weighted independent

set (MWIS) problem (Choi 2008), the graph partition problem (Hen and Spedalieri

2016), the graph isomorphism problem (Hen and Sarandy 2016), and the set cover

problem (Lucas 2014) as well as its generalization (Cao et al. 2016). However, due

to the short history of the quantum annealer, HQCAs for constraint optimization

problems still remain understudied in general. Therefore, developing HQCAs for

the WCSP, a very general type of constraint optimization problem, not only facili-

tates WCSP solving, but also introduces HQCAs to other constraint optimization

problems. In addition, HQCAs for the WCSP can enhance branch-and-bound

search algorithms for solving combinatorial optimization problems (Tran et al.

2016).

In this chapter, we propose the first three HQCAs for approximately solving

the WCSP. One HQCA is specifically for the binary Boolean WCSP based on the

polynomial forms of constraints. The other two are for the general WCSP (where

there may exist non-Boolean variables and non-binary constraints), one based on

integer linear programming (ILP) and the other based on the CCG (Kumar 2008a;

Kumar 2008b; Kumar 2016). We experimentally compare these approaches and

show that while the simple polynomial reformulation works well on the binary

Boolean WCSP, the CCG-based HQCA works better on the non-binary Boolean

WCSP compared to the ILP-based HQCA. We note that these HQCAs are still

1Here, binary means Boolean in our terminology.
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far behind solvers on classical computers in terms of both runtime and solution

optimality. Therefore, this chapter serves as a feasibility study on HQCAs for the

Boolean WCSP and we hope that they can be more useful as the quantum annealer

evolves and that they can intrigue future studies in this direction.

6.2 Quantum Annealing

Quantum annealing is a physical process that can be used to approximately solve

combinatorial optimization problems. Naively, it can be understood as a meta-

heuristic algorithm that makes use of features in quantum processes, such as

superposition, interference, and entanglement. The expected solution optimal-

ity of quantum annealing for a given problem can be theoretically analyzed, albeit

requiring methods that are too sophisticated and derivation that is too complicated

to be within the scope of this chapter. In particular, the minimum gap between

the energies of the ground state and the first-excited state during the quantum

annealing is indicative of its solution optimality.

In practice, the D-Wave processor, a physical realization (and perhaps the most

widely used realization) of the quantum annealer, solves the Ising problem, i.e.,

computes

arg min
x=〈x1,...,xn〉

E(x) =
∑
xi∈x

hixi +
∑

{xi,xj}∈J

Jijxixj, (6.1)

where hi and Jij are input parameters, x ∈ {−1,+1}n, and J is a subset of the

set of all pairs of variables in x determined by the D-Wave processor. Variables x

are mapped to qubits in the processor, and parameters hi and Jij are mapped to

interactions of each qubit with the external field and every other qubit, respectively.
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Figure 6.1: Shows the polynomial form of the binary constraint Cij on the left.
The top-right panel shows the polynomial form, where c−1,−1, c+1,−1, c−1,+1 and
c+1,+1 are to-be-determined coefficients. The middle-right panel shows the system
of linear equations that determines all coefficients. The bottom-right panel shows
the coefficients after solving the system of linear equations.

6.3 Polynomial-based HQCA for the Binary Boolean

WCSP

We can reduce the binary Boolean WCSP to the Ising problem through the con-

struction of polynomial forms of unary and binary constraints. A unary constraint

Ci involving one variable Xi can be rewritten in a polynomial form

ECi
({Xi = (x′i + 1)/2}) =

k1 + k0

2
+
k1 − k0

2
x′i, (6.2)

where k0 = ECi
({Xi = 0}), k1 = ECi

({Xi = 1}) and x′i ∈ {−1,+1}. A binary

constraint Cij involving two variables Xi and Xj can be rewritten in a polynomial

form

ECij
({Xi = (x′i+1)/2, Xj = (x′j +1)/2}) = c−1,−1 +c+1,−1x

′
i+c−1,+1x

′
j +c+1,+1x

′
ix
′
j

(6.3)

by simply solving a system of linear equations, where x′i, x
′
j ∈ {−1,+1}. Figure 6.1

illustrates this procedure. Finding an assignment of values to all x′i’s so as to

minimize the sum of the polynomial forms of all constraints is an Ising problem

that is equivalent to solving the binary Boolean WCSP.
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6.4 ILP-based HQCA

As shown in Equations (5.1) to (5.3) and (5.5), we have an ILP encoding of the

WCSP improved upon (Koller and Friedman 2009, Section 13.5). Since a hybrid

quantum-classical approach for a special class of ILP is known (Lucas 2014), this

yields a possible HQCA for the WCSP. For notational convenience, in this sub-

section, we assume that, for each variable X ∈ X , there exists a unary constraint

C such that S(C) = {X}.

We adapt the Ising formulation of a special class of ILPs (Lucas 2014) to our

case as follows. The Ising formulation is divided into two parts

min
pCa :pCa ∈p

H = αHα + βHβ, (6.4)

where pCa = 2qCa − 1 ∈ {−1,+1} and p = {pCa | qCa ∈ q}. Here, Hα represents ILP

constraints and Hβ represents the ILP optimization goal, and α and β are positive

numbers.

For each ILP constraint, we add a squared term to Hα to represent it. The

value of Hα is zero if all constraints are satisfied and otherwise positive:

Hα =
∑
C∈C

 ∑
a∈A(S(C))

qCa − 1

2

+
∑

C,C′∈C:|S(C′)|=1∧S(C′)⊂S(C)
a′∈A(S(C′)) ∑

a∈A(S(C)):a|S(C′)=a′

qCa − qC
′

a′

2

.

(6.5)

Here, after polynomial expansion, the quadratic terms (qCa )
2

can be merged into

linear terms due to their Boolean nature, i.e., c(qCa )
2

= cqCa .
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To characterize the ILP optimization goal (objective function), we have

Hβ =
∑
C∈C

∑
a∈A(S(C))

wCa q
C
a . (6.6)

α and β only need to satisfy

α

β
>
∑
C∈C

 ∑
a∈A(S(C))

wCa

 . (6.7)

This guarantees that the minimum positive value of αHα is greater than the max-

imum value of βHβ, and therefore any assignment leading to a non-zero Hα, i.e.,

violating at least one ILP constraint, cannot be optimal.

Combining Equations (6.4) to (6.7) and making the substitution of qCa = (pCa +

1)/2, we have an Ising formulation of the WCSP.

6.5 CCG-Based HQCA

The outline of the CCG-based HQCA is as follows: We first (a) convert the WCSP

to the MWVC problem on its CCG, and then (b) approximately solve this MWVC

problem using an HQCA as follows.

6.5.1 An HQCA for the MWVC Problem

An Ising formulation of the MWVC problem on a vertex-weighted graph G =

〈V,E,w〉 is as follows (Choi 2008). This formulation is adapted from that of the

MWIS problem. For each vertex vi, we associate a variable xi with it. xi = 0 and
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xi = 1 represent the presence and absence of vi in the MWVC, respectively. Then

the QUBO formulation is to minimize

H(x1, . . . , x|V |) = −
∑
vi∈V

wixi +
∑

(vi,vj)∈E

Jijxixj, (6.8)

where wi is the weight associated with vertex vi, and Jij’s satisfy ∀(vi, vj) ∈ E :

Jij > min{wi, wj}. The minimum H(x1, . . . , x|V |) (denoted by H∗) is the negative

total weight of the MWIS on G—that is,
∑

vi
wi + H∗ is the total weight of the

MWVC on G. By making the substitution xi = (x′i + 1)/2 and xj = (x′j + 1)/2,

where x′i, x
′
j ∈ {−1,+1}, we have an Ising formulation:

H ′(x′1, . . . , x
′
|V |) = −

∑
vi∈V

wi
2

(x′i + 1) +
∑

(vi,vj)∈E

Jij
4

(x′ix
′
j + x′i + x′j + 1). (6.9)

6.6 Experimental Evaluation

We experimentally evaluated the efficiency and effectiveness of these three HQCAs

using a D-Wave 2X processor. It is based on a physical lattice of qubits (variables

in the Ising problem) and the couplers (coefficients in the Ising problem) that

connect them. These qubits and couplers together are called the Chimera graph,

as illustrated in Figure 6.2. In a D-Wave 2X processor (or any other currently

available D-Wave processor), the Chimera graph is sparse. Therefore, it may not

be possible to feed many Ising problem instances with dense connectivity directly

into the D-Wave 2X processor. In this case, the process of embedding is necessary,

which is to find an equivalent Ising problem instance that can be directly fed into

the D-Wave 2X processor. In our experiments, for a proof of concept, we simply

used the D-Wave library (D-Wave Systems Inc. 2017) to find embeddings.

79



Figure 6.2: Shows the Chimera graph in a D-Wave 2X processor. The Chimera
graph consists of a lattice of “imperfect” K4,4 bipartite graph units. The green
dots represent qubits and edges represent couplers. The red dots represent missing
qubits in the K4,4 units.

In our experiments, we selected real-world benchmark instances from the indus-

trial weighted partial Max-SAT category of the Eleventh Max-SAT Evaluation2

and reformulated them as the Boolean WCSP. We selected benchmark instances

that have numbers of variables less than 30 to accommodate the limited number

of qubits of the D-Wave 2X processor. Of these benchmark instances, only two

(wcsp/spot5/dir/8.wcsp.dir.wcnf and wcsp/spot5/log/8.wcsp.log.wcnf) sat-

isfy this criteria. The polynomial-based HQCA is not applicable to them because

they have non-binary constraints. In addition, our experiments showed that the

ILP-based HQCA could not embed any of them within the 5-minute time limit.

The solutions produced by the CCG-based HQCA are 96 and 5, respectively, while

the optimal solutions for both benchmark instances are 2.

2http://www.maxsat.udl.cat/16/benchmarks/index.html
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Figure 6.3: Compares suboptimalities of solutions produced by HQCAs on the two
benchmark instance sets. The x-axes show the suboptimalities of the solutions
produced by the CCG-based and the polynomial-based HQCAs. The y-axes show
the number of benchmark instances in a range of suboptimality. The upper figure
compares qualities of solutions produced by the CCG-based and the polynomial-
based HQCAs with optimal solutions on the first benchmark instance set with only
binary constraints. The polynomial-based HQCA produced optimal solutions on
23 out of 50 benchmark instances and the suboptimalities on all other benchmark
instances are less than 10%. The lower figure compares suboptimalities of solutions
produced by the CCG-based HQCA on WCSP benchmark instances from the
second benchmark instance set.
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Popular real-world benchmark instances, such as those in the Eleventh Max-

SAT evaluation as well as those used in (Hurley et al. 2016), are too large to be

embedded into a D-Wave 2X processor. For this reason, we also generated two

random Boolean WCSP benchmark instance sets. (HQCAs that work on the D-

Wave 2X processor will also work on larger benchmark instances on more advanced

quantum annealing processors in the future.) In each benchmark instance in the

first benchmark instance set, for every pair of variables, we generated a binary

constraint between them with probability p = 0.1. We assigned a random integer

weight between 0 and 100 to each tuple in these constraints. In each benchmark

instance in the second benchmark instance set, we generated both binary and

ternary constraints. Binary constraints were generated in the same way as in the

first benchmark instance set, except with p = 0.12. For every triplet of variables,

we also generated a ternary constraint between them with probability 0.0001. The

number of variables in all benchmark instances is 50. Given the way the benchmark

instances were generated, the average number of constraints that each variable par-

ticipates in is about 3. We used functions find embedding and unembed answer

from the D-Wave Python library to find embeddings and restore solutions to the

original benchmark instances, respectively. For find embedding, we set the time-

out limit to 1000 seconds, and turned on the fast embedding option for trading

off fast embedding against embedding quality. For each benchmark instance, we

requested the D-Wave 2X processor to run for 1000 times3. For all benchmark

instances, we also obtained optimal solutions using toulbar2 (Hurley et al. 2016),

3While this may seem odd for algorithms on classical computers, it is common practice to
run the quantum annealing procedure for thousands of times (and they normally terminate very
quickly).
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a state-of-the-art WCSP solver. The process of solving Ising instances was per-

formed on a D-Wave 2X processor while other processes including finding embed-

dings and unembedding solutions were performed on a GNU/Linux workstation

with an Intel Xeon processor E3-1240 v3 (8MB Cache, 3.4GHz) and 16GB RAM.

Figure 6.3 compares the qualities of solutions produced by the polynomial-

based and CCG-based HQCAs with optimal solutions on the benchmark instances

from both benchmark instance sets. The ILP-based HQCA could not embed any

benchmark instances into the Chimera graph within the time limit and is thus not

shown. The CCG-based HQCA terminated between 4 to 85 seconds on all bench-

mark instances. Despite 1000 runs, the running time of the D-Wave 2X processor

on each benchmark instance is within 450 milliseconds. The Ising formulation

processes in both HQCAs also cost insignificant amounts of time (within 60 mil-

liseconds). The majority of the time was consumed by functions find embedding

and unembed answer. In fact, if find embedding and unembed answer are not

required, the efficiency and effectiveness of HQCAs can be outstanding for approx-

imately solving the Boolean WCSP. To verify this, we generated 50 Ising problem

instances, which can be seen as special cases of Boolean WCSP instances, by

randomly selecting 50% of edges of the Chimera graph as constraints of Boolean

WCSP instances with random integer weights. We used the D-Wave 2X processor,

and toulbar2 to solve them. We also reformulated them as weighted Max-SAT

and solved them using open-wbo (Martins, Manquinho, and Lynce 2014). The

experimental results showed that the quantum annealer produced solutions within

0.4 seconds and the qualities of the solutions were better than those produced by

toulbar2 and open-wbo within a 5-minute time limit.
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6.7 Conclusion

In this chapter, we proposed the first three HQCAs for solving the WCSP: Polynomial-

based, ILP-based, and CCG-based HQCAs. We evaluated them on the Boolean

WCSP using experiments on a D-Wave 2X processor, a physical realization of the

quantum annealer. We showed that the polynomial-based HQCA works well on the

binary Boolean WCSP, but the CCG-based HQCA is not only more widely applica-

ble, but also works better than the ILP-based HQCA on the general Boolean WCSP

(where the polynomial-based HQCA is not applicable). While these HQCAs are

still far behind solvers such as toulbar2 on classical computers in terms of both

runtime and solution optimality, we hope that these HQCAs become more useful

as the quantum annealer evolves, and that they can serve as a starting point for

future developments in using the quantum annealer for solving the WCSP.
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Chapter 7

Promising Direction: Extending

the Concept of the Constraint

Composite Graph to the WCSP

with Non-Boolean Variables

While we have demonstrated the advantages of the CCG in the previous few

chapters, many real-world problems are hard to be efficiently modeled as the

Boolean WCSP. Unfortunately, the existing literature only studied the CCG for

the Boolean WCSP. This primarily stems from the fact that it is easy to reduce

the Boolean WCSP to the MWVC problem on the CCG. The presence/absence

of a vertex in the MWVC is used to represent a Boolean variable.

In this chapter, we extend the concept of the CCG to the WCSP with non-

Boolean variables. We first give a formal definition of the CCG for the WCSP

with non-Boolean variables. We then review the non-Boolean variable encod-

ing from (Kumar 2008b), which we refer to as the high-degree polynomial-based

encoding. We then propose three new—and more efficient—non-Boolean variable

encodings, i.e., the binary number-based encoding, the direct symmetric encoding,

and the clique-based encoding. Finally, experimentally, we preliminarily demon-

strate the promisingness of the CCG for the WCSP with non-Boolean variables

via quantum annealers.
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Figure 7.1: Shows the polynomial form of the constraint C on the left. The top-
right panel shows the polynomial form, where c0,0, c1,0, c2,0, c0,1, c1,1, and c2,1

are to-be-determined coefficients. The middle-right panel shows the system of
linear equations that determines all coefficients. The bottom-right panel shows
the coefficients after solving the system of linear equations.

7.1 Formal Definitions

We now define the CCG for the WCSP with non-Boolean variables.

Definition 7.1. A vertex-weighted undirected graph G = 〈V,E,w〉 is a CCG of a

WCSP instance 〈X ,D, C〉 (with non-Boolean variables) if and only if there exists

a subset S ⊆ V , to whose elements we refer as variable vertices, such that their

presences and absences in any VC of G correspond to an assignment of values to

variables in the WCSP, and there exists a function f : R → R that maps the

minimum possible weight of all VCs respecting these presences and absences to

the weight of the corresponding assignment of values to variables in the original

WCSP.

7.2 Construction of the CCG for the WCSP with

Non-Boolean Variables

In this section, we review and formally describe one non-Boolean variable encoding

and propose three new and more efficient non-Boolean variable encodings.
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(b) −w · (Y1 · Y2 · Y3)

vY1,0 vY1,1 vY1,2 vY2,0 vY2,1 vY2,2 vY3,0 vY3,1

L

w0
0
0

0
0
1

0
1
0

0
1
1

0
2
0

0
2
1

1
0
0

1
0
1

1
1
0

1
1
1

1
2
0

1
2
1

2
0
0

2
0
1

2
1
0

2
1
1

2
2
0

2
2
1


(c) w · (Y1 · Y2 · Y3)

Figure 7.2: Illustrates the high-degree polynomial-based encoding. In (b) and
(c), the variables Y1, Y2, and Y3 are assumed to have domain sizes 4, 4, and 3,
respectively. Circles represent variable vertices. Their weights are 0 in (b) and (c)
(not explicitly shown). Empty and filled squares represent the auxiliary vertices
that encode the coefficients and negation of variables, respectively. The triplet of
numbers below each empty square indicates the variable vertices that it connects
to.
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7.2.1 High-Degree Polynomial-Based Encoding

The high-degree polynomial-based encoding was first proposed in (Kumar 2008b).

It uses a high-degree polynomial to represent a constraint with non-Boolean vari-

ables (as illustrated in Figure 7.1). In this subsection, we let di denote the domain

size of a non-Boolean variable Yi. Each non-Boolean variable Yi is represented by

di vertices VYi = {vYi,0, vYi,1, . . . , vYi,di−1}, referred to as variable vertices, in the

CCG gadgets. The number of these vertices in the computed MWVC indicates

the value of Yi.

A linear term w · Yi, where w may be either positive or negative, can be rep-

resented by di − 1 connected components, where each connected component con-

sists of 2 connected vertices with weights of w1 and w2 respectively such that

w1 − w2 = w. The vertices with weight w1 represent Yi. Figure 7.2a illustrates

this.

For a negative non-linear term −w ·(Y1 ·Y2 · . . . ·Ym), where w > 0, we construct

the CCG gadget as follows. We create a bipartite graph. The first partition

consists of all and only variable vertices. In the second partition, we add
∏m

i=1(di−

1) auxiliary vertices with weight w, with each of these vertices representing an

assignment of values to the variables in the term. Each auxiliary vertex connects

to exactly one variable vertex of each variable. It connects to variable vertices that

constitute its corresponding assignment. For example, for the term −w·(Y1 ·Y2 ·Y3),

an auxiliary vertex connected to vY1,0 , vY2,2 , and vY3,1 corresponds to the assignment

{Y1 = 0, Y2 = 2, Y3 = 1}. This CCG gadget represents the term w · (
∏m

i=1(di −

1)−
∏m

i=1 Yi). Figure 7.2b illustrates this. Intuitively, this can be seen as follows.

The ith variable leaves Yi
di−1

of all auxiliary vertices to be potentially excluded

from the MWVC, i.e., at least one adjacent edge is already covered. This leaves∏m
i=1

Yi
di−1

of all auxiliary vertices, i.e.,
∏m

i=1 Yi auxiliary vertices, to be excluded
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from the MWVC. That is, the total weight of vertices selected in the MWVC is

w · (
∏m

i=1(di − 1)−
∏m

i=1 Yi).

For a positive non-linear term w · (Y1 · Y2 · . . . · Ym), where w > 0, we construct

the CCG gadget as follows. We first create the CCG gadget as if w < 0. Then,

to accommodate the positive coefficient, we split each edge that is adjacent to

any variable vertex of Y1 into two parts by inserting a vertex of a large weight

L. These newly introduced vertices form a third partition, and are meant to

represent the negation of the variable Y1. For this reason, L should be chosen

such that it is greater than the sum of the weights of the vertices that it connects

to, i.e., L > w ·
∏m

i=2(di − 1). This CCG gadget represents w · [
∏m

i=1(di − 1) −

(d1 − 1 − Y1)
∏m

i=2 Yi] + L · (d1 − 1 − Y1), in which the highest-degree term is

the non-linear term of interest and the CCG gadgets for lower-degree terms are

recursively constructed (Kumar 2008b). An illustration is shown in Figure 7.2c,

which represents w · (18− (3− Y1)Y2Y3) + L · (3− Y1).

7.2.2 Binary Number-Based Encoding

For each non-Boolean variable Y with domain size d, the binary number-based

encoding uses dlog2 de Boolean variables XY = {XY,1, XY,2, . . . , XY,dlog2 de} to rep-

resent it. This converts any constraint involving this variable into a Boolean con-

straint, i.e., a constraint with only Boolean variables. The binary representation of

the value of Y corresponds to the values of these Boolean variables. For example, if

d = 6, then Y = 3 corresponds to XY,1 = 1, XY,2 = 1, and XY,3 = 0. If log2 d is not

an integer, then some assignments of values to variables in XY are forbidden, since

they may represent values larger than what Y can take. Continuing the above

example, {XY,1 = 1, XY,2 = 1, XY,3 = 1} is forbidden since Y = 7 is not allowed.

To forbid such assignments, we impose a high weight corresponding to them in
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the Boolean constraint. The binary number-based encoding is similar to the “log

encoding” used in converting the CSP to SAT (Walsh 2000).

7.2.3 Direct Symmetric Encoding

For each non-Boolean variable Y with domain size d, the direct symmetric encoding

uses d Boolean variables XY = {XY,0, XY,1, . . . , XY,d−1} to represent it. XY,i = 1

and ∀j ∈ {0, 1, . . . , d − 1} \ {i} : XY,j = 0 together indicate Y = i. All other

assignments of values to XY,0, XY,1, . . . , XY,d−1 are forbidden via a global constraint

on these d variables. Constraints over non-Boolean variables are converted to

constraints over these Boolean variables. This encoding is similar to the “direct

encoding” used in converting the CSP to SAT (Walsh 2000).

7.2.4 Clique-Based Encoding

The clique-based encoding exploits the unique structure of the MWVC problem.

To the best of our knowledge, this encoding does not have a counterpart in SAT

encoding of the CSP. For each non-Boolean variable Y with domain size d, the

clique-based encoding uses (d−1) Boolean variables XY = {XY,1, XY,2, . . . , XY,d−1}

to represent it. Similar to the binary number-based and direct symmetric encod-

ings, the clique-based encoding converts any constraint C involving non-Boolean

variables into a Boolean constraint C ′. Y = 0 corresponds to all these Boolean vari-

ables equal to 1, and Y = y, where y ∈ {1, 2, . . . , d− 1}, corresponds to XY,y = 0

and all other Boolean variables equal to 1. All other possible assignments of values

to variables in S(C ′) are forbidden. Since they are forbidden for representational

reasons, they are referred to as being variable-representationally forbidden. We

impose zero weight to variable-representationally forbidden assignments in C ′, but

forbid them with additional edges in the CCG gadget. In particular, in the CCG
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gadget, for each non-Boolean variable Y , we connect every pair of vertices rep-

resenting Boolean variables in XY to form a clique. It is easy to see that all

variable-representationally forbidden assignments of values to variables in XY cor-

respond to only invalid VCs of the CCG gadget, but all other assignments have

valid corresponding VCs.

Consider the polynomial form of C ′ as illustrated in Figure 7.1. Since all

variables in C ′ are Boolean, this polynomial is only multi-linear, i.e., the highest-

degree of any variable in C ′ is 1. Furthermore, the polynomial form of C ′ has

only terms with degrees no less than |S(C ′)| − |S(C)|. This significantly simplifies

the construction of the CCG gadget, since the procedure, as shown in (Kumar

2008a), to construct the CCG gadget considers each term of the polynomial one

at a time. This property of the polynomial form of C ′ is further leveraged in the

clique-based encoding as follows. While the construction procedure in (Kumar

2008a) is straightforward for linear and negative non-linear terms, for a positive

non-linear term T , we need to introduce a lower order term T ′ by removing a

variable from T . To minimize the size of the resulting CCG gadget, we always

choose the variable to remove from a preset order on all variables. We create this

preset order by (a) fixing an order on all variables in the WCSP instance and all

Boolean variables representing each of them, and (b) concatenating these groups of

ordered Boolean variables according to the order of variables in S(C). Compared

to arbitrary choices of the variable to remove, this scheme usually decreases the

number of introduced lower order terms.

Comparing Non-Boolean Variable Encodings

We consider a constraint consisting of n variables {Y1, Y2, . . . , Yn} in which in

general no two weights are equal and all variables have domain size d. For the sake
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of theoretical analysis, we examine the asymptotic size of the CCG gadget for it

with respect to either large n or large d (with n ≥ 2). The number of vertices,

dominated by the number of auxiliary vertices, and the number of edges can be

counted as follows (for generality, we assume that lower order terms introduced

during the construction of the CCG gadget do not cancel existing lower order

terms):

High-Degree Polynomial-Based Encoding The high-degree polynomial has

n types of terms, among which each type involves i = 1, 2, . . . , n variables. The

type of term that involves i variables has
(
n
i

)
combinations of participating vari-

ables. For i given variables, there are (d− 1)i terms, among which each term

corresponds to Θ
(

(d− 1)i
)

auxiliary vertices and Θ
(
i(d− 1)i

)
edges. Therefore,

the numbers of vertices and edges of the CCG gadget produced by the high-degree

polynomial-based encoding are Θ
(∑n

i=1 (d− 1)2i(n
i

))
= Θ

((
(d− 1)2 + 1

)n)
and

Θ
(∑n

i=1 i(d− 1)2i(n
i

))
= Θ

(
n(d− 1)2((d− 1)2 + 1

)n−1
)

, respectively.

Binary Number-Based Encoding There are dlog2 de Boolean variables repre-

senting each variable, and therefore there are ndlog2 de variables in total. By enu-

merating the presence and absence of these variables in each term, we have
(
ndlog2 de

i

)
terms that involve i variables, among which each term consists of Θ(1) auxiliary

vertices and Θ(i) edges. Therefore, there are Θ
(∑ndlog2 de

i=1

(
ndlog2 de

i

))
= Θ

(
d̄n
)

ver-

tices and Θ
(∑ndlog2 de

i=1 i
(
ndlog2 de

i

))
= Θ

(
ndlog2 ded̄n

)
edges in total, where d̄ ≥ d is

the smallest integer such that log2 d̄ is an integer.

Direct Symmetric Encoding There are d Boolean variables representing each

non-Boolean variable and each Boolean constraint consists of exactly one Boolean

variable representing each non-Boolean variable, and therefore there are dn Boolean
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constraints of arity n. Now we consider the worst case, i.e., all these Boolean con-

straints have positive terms in their polynomial forms. For each of these Boolean

constraints, we have O(n) auxiliary vertices and O(n2) edges. Therefore, we have

O(ndn) vertices and O(n2dn) edges. We note that the number of vertices and edges

introduced by the global constraint on the Boolean variables representing each non-

Boolean variable can be neglected since they are only polynomial with respect to d.

This is because the global constraint can be seen as an exact 1-out-of-d function,

which in turn can be converted to O(d2) binary Boolean constraints (Anthony

et al. 2016). This leads to only O(nd2) auxiliary vertices and edges.

Clique-Based Encoding There are (d−1) Boolean variables representing each

non-Boolean variable, and therefore there are n(d− 1) Boolean variables in total.

Now we consider the worst case, i.e., all terms have positive coefficients. We

follow the recursive algorithm to introduce lower order terms described in Sec-

tion 7.2.4 and, without loss of generality, assume that non-Boolean variables are in

the order Yn, Yn−1, . . . , Y1. There are O ((j + 1)di−1) terms which consist of exactly

1 ≤ j ≤ d − 1 Boolean variables representing Yi and no Boolean variable repre-

senting Yi′ , where i′ > i. Each term corresponds to Θ(1) auxiliary vertices and

Θ((i−1)(d−1)+j) edges. Therefore, the total numbers of vertices and edges equal

O
(∑n

i=1

∑d−1
j=1(j + 1)di−1

)
= O(dn+1) andO

(∑n
i=1

∑d−1
j=1((i− 1)(d− 1) + j)(j + 1)di−1

)
=

O(ndn+2), respectively. We note that we neglect the edges connecting Boolean vari-

ables representing each non-Boolean variable, since the number n(d− 1)(d− 2)/2

of these edges is far less than ndn+2. We also note that, in practice, since it is

common that some terms have negative coefficients, the number of vertices and

edges can be much lower.
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Table 7.1: Compares the sizes of the CCG gadget using different non-Boolean
variable encodings. We construct the CCG gadget corresponding to a constraint
with n ≥ 2 variables {Y1, Y2, . . . , Yn} in which in general no two weights are equal
and all variables have domain size d.

Encoding Vertices Edges

High-Degree Polynomial-Based Encoding Θ
((

(d− 1)2 + 1
)n)

Θ

(
n(d− 1)2

(
(d− 1)2 + 1

)n−1
)

Binary Number-Based Encoding Θ
(
d̄n
)

= O (2ndn) Θ
(
ndlog2 ded̄n

)
= O (n(log2 d)2ndn)

Direct Symmetric Encoding O(ndn) O(n2dn)
Clique-Based Encoding O

(
dn+1

)
O
(
ndn+2

)
Table 7.2: Shows the most advantageous non-Boolean variable encoding for differ-
ent bounding on n or d in terms of the asymptotic numbers of vertices and edges
of the produced CCG gadgets.

Bounded Vertices Edges

n but not d Binary Number-Based; Direct Symmetric Direct Symmetric
d but not n Clique-Based Clique-Based

Table 7.1 summarizes the numbers of vertices and edges in the CCG gadget for

each of the four non-Boolean variable encodings. If either d or n is bounded, the

high-degree polynomial-based encoding is the least favorable. Table 7.2 shows the

advantages (in terms of asymptotic numbers of vertices and edges of the produced

CCG gadgets) of the other three non-Boolean variable encodings under different

settings. We see that none of them is always the best: There are trade-offs among

them. The clique-based encoding has another advantage over the binary number-

based and direct symmetric encodings: It does not introduce very large weights.

This can be potentially helpful for avoiding numerical accuracy issues in practice.

All these non-Boolean variable encodings except for the direct symmetric encod-

ing reduce to the same encoding for the Boolean WCSP. Despite the numbers being

exponential with respect to n, they are all polynomial with respect to the actual

input size, since the input size of the constraint, i.e., the number of input bits

required to represent it, is Θ(dn).
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Figure 7.3: Compares suboptimalities of solutions produced by the CCG-based
HQCA. The x-axis shows the suboptimalities of the solutions produced by the
CCG-based HQCA. The y-axis shows the number of benchmark instances in a
range of suboptimality.

7.3 Experimental Evaluation of the CCG-Based

HQCA

We now repeat the experiments in Chapter 6 with clique-based encoding enabled

in the CCG-based HQCA on a benchmark instance set with WCSP instances

with non-Boolean variables. For similar reasons as in Chapter 6, we generated a

random WCSP benchmark instance set. In each benchmark instance, the number

of variables is 20 and the domain size of each variable is randomly set to be 2 or 3.

Constraints are generated in the same way as in Chapter 6, except with p = 0.2.
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Given the way the benchmark instances were generated, the average number of

constraints that each variable participates in is about 3.

Figure 7.3 compares the qualities of solutions produced by the CCG-based

HQCA with optimal solutions on the benchmark instances. Once again, within

the time limit, the ILP-based HQCA could not embed any benchmark instances

into the Chimera graph and is thus not shown. The polynomial-based HQCA is not

shown since it is not applicable. The CCG-based HQCA successfully embedded

38 out of 50 benchmark instances between 3 and 292 seconds. Since its advantage

over the ILP-based HQCA carries over to the non-Boolean WCSP, we believe that

the CCG for the non-Boolean WCSP can be promising.

7.4 Conclusion

In this chapter, we extended the concept of the CCG to the WCSP with non-

Boolean variables. We reviewed one non-Boolean variable encoding and proposed

three new non-Boolean variable encodings. We compared all of them, and we con-

cluded that, in theory, the binary number-based encoding, the direct symmetric

encoding, and the clique-based encoding are more advantageous than the high-

degree polynomial-based encoding, while there are trade-offs among the former

three non-Boolean variable encodings under different settings. In practice, the

clique-based encoding can potentially be the most preferable non-Boolean variable

encoding due to its better numerical accuracy. Finally, experimentally, we pre-

liminarily demonstrated the promisingness of the CCG for the WCSP with non-

Boolean variables. We reran the experiments in Chapter 6 on WCSP benchmark

instances with non-Boolean variables by introducing the clique-based encoding to

the CCG construction procedure.
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Chapter 8

Conclusion

8.1 Conclusion of Contributions

The WCSP is a general mathematical framework for COPs. It is known by different

names in different research communities and therefore studying the WCSP brings

them together. In this thesis, we demonstrated that the CCG can be useful in

both theory and practice for improving some algorithms for solving the Boolean

WCSP. We also extended the concept of the CCG to the WCSP with non-Boolean

variables. This thesis makes the following contributions:

• In Chapter 3, we experimentally studied the effects of enabling the Nemhauser-

Trotter reduction (NT reduction) on the Boolean WCSP via the CCG. This

leads to a polynomial-time preprocessing algorithm that fixes the optimal

values of a subset of variables in a WCSP instance. This subset can often be

the set of all variables: We observed that the NT reduction could determine

the optimal values of all variables for about 1/8th of the benchmark instances

without search. The enabling of the NT reduction can also be potentially

meaningful for improving branch-and-bound search for the WCSP if we view

the NT reducibility as a kind of implicit local consistency.

• In Chapter 4, we experimentally studied the advantages of applying the min-

sum message passing (MSMP) algorithm to the CCG of the Boolean WCSP.

We observed not only that the lifted MSMP algorithm produced solutions
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that are close to optimal for a large fraction of benchmark instances, but also

that, in general, it produced significantly better solutions than the original

MSMP algorithm. Although the lifted MSMP algorithm requires slightly

more work in each iteration since the CCG is constructed using auxiliary

variables, the size of the CCG is only linear in the size of the tabular rep-

resentation of the Boolean WCSP (Kumar 2008a; Kumar 2008b; Kumar

2016), and the lifted MSMP algorithm has the benefit of producing bet-

ter solutions. We experimentally compared the two MSMP algorithms on

small random benchmark instances with different constraint densities. We

found that the lifted MSMP algorithm is more advantageous on benchmark

instances with smaller constraint densities, and has almost the same effective-

ness as the original MSMP algorithm when the constraint density becomes

larger. Furthermore, this lifted MSMP algorithm non-trivially altered the

standard MSMP algorithm and may inspire, or even directly advance, the

message passing algorithms to a new generation in the future. In addition,

due to the parallel nature of the MSMP algorithm, it has the advantage

of being able to make use of GPUs, which is harder for branch-and-bound

search.

• In Chapter 5, We compared the CCG-based ILP encoding with the direct

and improved direct ILP encodings adapted from the probabilistic reasoning

community. We showed that the CCG-based ILP encoding has several the-

oretical advantages over the direct and improved direct ILP encodings. We

experimentally showed that the CCG-based ILP encoding was more efficient

than the direct ILP encoding. While it is less efficient than the improved ILP

encoding on the UAI benchmark instances, it is more efficient on the (Hurley

et al. 2016) benchmark instances. Finally, we showed that MWVC problem
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instances on bipartite graphs, whose corresponding ILPs have only integer

vertices in the feasible regions of their LP relaxations, preserve this property

in their CCG-based ILP encodings as well. Having an efficient ILP encoding

for the WCSP may potentially lead to more viable large-scale WCSP solving

due to the fact that ILP solvers have been actively developed and advanced

for decades for large problem instances. Having an efficient ILP encoding for

the WCSP may also facilitate the development of branch-and-bound search

algorithms for the WCSP by introducing an ILP perspective, since the major

class of algorithms for solving the ILP is also based on branch-and-bound

search and has been actively advanced for decades.

• In Chapter 6, we demonstrated the advantages of solving the Boolean WCSP

using the quantum annealer via the CCG. We evaluated the CCG-based

HQCA on the Boolean WCSP using experiments on a D-Wave 2X proces-

sor, a physical realization of the quantum annealer. We showed that the

polynomial-based HQCA works well on the binary Boolean WCSP, but the

CCG-based HQCA is not only more widely applicable, but also works bet-

ter than the ILP-based HQCA on the general Boolean WCSP (where the

polynomial-based HQCA is not applicable). While these HQCAs are still

far behind solvers such as toulbar2 on classical computers in terms of both

runtime and solution optimality, we hope that these HQCAs become more

useful as the quantum annealer evolves, and that they can serve as a starting

point for future developments in using the quantum annealer for solving the

WCSP.
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• In Chapter 7, we extended the concept and the construction of the CCG to

the WCSP with non-Boolean variables and showed that it can be a poten-

tially promising future direction. We reviewed one non-Boolean variable

encoding and proposed three new non-Boolean variable encodings. We com-

pared all of them, and we concluded that, in theory, the binary number-based

encoding, the direct symmetric encoding, and the clique-based encoding are

more advantageous than the high-degree polynomial-based encoding, while

there are trade-offs among the former three non-Boolean variable encodings

under different settings. In practice, the clique-based encoding can poten-

tially be the most preferable non-Boolean variable encoding due to its bet-

ter numerical accuracy. Experimentally, we preliminarily demonstrated the

promisingness of the CCG for the WCSP with non-Boolean variables. We

reran the experiments in Chapter 6 on WCSP benchmark instances with

non-Boolean variables by introducing the clique-based encoding to the CCG

construction procedure. If we are able to present more evidence support-

ing the usefulness of the CCG for the WCSP with non-Boolean variables,

we would have a handy tool for exploiting the structure of the WCSP with

non-Boolean variables.

8.2 Further Discussion

We have demonstrated that the CCG can be useful in both theory and practice for

improving some algorithms for solving the Boolean WCSP. We discuss answers to

the following natural questions:

Is the CCG the holy grail for solving the Boolean WCSP? In terms of

the bipartitivity of the CCG, the short answer is no. For example, the maximum
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matching problem is in P, but the corresponding CCG is not necessarily bipartite

and the MWVC problem on it cannot be easily identified as belonging to P.

There exists a polynomial-time factor-2 approximation algorithm for

solving the MWVC problem. Does the CCG carry over this approx-

imability property to the WCSP? In general, the CCG does not. The rea-

son lies in the procedure that constructs CCG gadgets. CCG gadgets represent

WCSP constraints but usually with an additional constant (such as w in the case

of negative nonlinear terms). This additional constant inhibits the approximability

property from being carried over to the WCSP.

For the CSP, does the CCG have any advantages or disadvantages?

Advantages: The CCG can also be used for discovering tractable subclasses of the

CSP, and all methods discussed in this thesis are also applicable. Disadvantages:

The CSP is a satisfaction problem. However, using the CCG would effectively cast

the problem as an optimization problem, which is in general much harder than

satisfaction problems.

How do the various aforementioned CCG-based algorithms experimen-

tally scale with the problem size? This thesis does not discuss how various

aforementioned CCG-based algorithms experimentally scale with the problem size.

While this looks simple on the surface, here, we argue that such experiments face

multiple difficulties.

• The availability of real-world WCSP instances with different sizes from the

same application domain is quite limited. Therefore, experimenting this

scalability on real-world problem instances is quite challenging, and requires
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systematic compilation of more real-world WCSP instances for meaningful

results.

• When real-world problem instances are unavailable, many researchers would

turn to random problem instances. However, this practice has been criti-

cized in experimental algorithm studies in general, because random problem

instances usually bear properties that are very different from real-world prob-

lem instances and the applications of a specific algorithm on these problem

instances also exhibit different scalabilities. For example, different ways to

generate random Boolean satifiability problem (SAT) instances lead to very

different runtimes for each type of algorithm (Balyo and Chrpa 2018). Unless

the random problem instances can be generated in a way that simulates

real-world problem instances, which by itself commonly requires dedicated

research, this disparity between real-world and random problem instances

often diminishes the meaningfulness of this practice. This is also one of the

major reasons why researchers carefully compile and build benchmarks for

various problems.

8.3 Future Work

In addition to Chapter 7, concerning the essence of the CCG, in the future, we can

also do the following:

• Further experiment and improve on non-Boolean variable encodings. Cur-

rently, as shown in Chapter 7, we only preliminarily experimented on our

newly proposed non-Boolean variable encodings. To further study non-

Boolean variable encodings, we should perform more thorough experiments
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on them. In addition, there may be potentially new non-Boolean variable

encodings that are more advantageous on one or many aspects.

• Explore the usefulness of constructing the CCG recursively, i.e., construct-

ing the CCG of the MWVC problem instance on the CCG associated with

a WCSP instance, and so on. From the thesis, we have already seen that

the CCG offers benefits regarding the structure of COPs. Since the MWVC

problem is also a kind of COP, constructing the CCG for the MWVC prob-

lem may lead to more interesting results and may potentially introduce new

concepts such as a new kind of higher orders of structure.

• Explore the crown reduction (Chleb́ık and Chleb́ıková 2008), another kernel-

ization algorithm for the MWVC problem. In this thesis, while we have only

discussed how the CCG helps solve and understand the WCSP via the NT

reduction, other kernelization algorithms for the MWVC problem can also

be interesting and are worth further attention.

• Develop efficient CCG representations dedicated for more specialized types

of COPs such as weighted Max-SAT and weighted Max-Cut problems. The

current CCG construction procedure is made for the general mathematical

framework of COPs, i.e., the WCSP, and we have already demonstrated its

usefulness for it. Therefore, it would be interesting to see whether specific

new structure can be understood using the CCG for specialized types of

COPs.

For specific algorithms applied on the WCSP, we can further:

• Develop a distributed version of the lifted MSMP algorithm using grid/cloud

computing facilities. As discussed in Chapter 4, one advantage of the MSMP
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algorithm is that it can be easily adapted to be used in distributed settings.

Therefore, it would be interesting to study and experiment the lifted MSMP

algorithm in real-world distributed settings.

• Prove properties of the CCG-based ILP encoding for ILPs with TUM con-

straint matrices. ILPs with TUM constraint matrices have a number of nice

properties, which make them tractable. Therefore, it would be useful to dis-

cover tractable subclasses of the WCSP by finding those whose CCG-based

ILP encoding leads to ILPs with TUM constraint matrices.

• Use our techniques to make ILP-based approaches competitive with other

approaches for solving the WCSP. As discussed in Chapter 5, the ILP-based

approaches have several potential advantages over the currently mainstream

branch-and-bound search algorithms. Therefore, it would be interesting to

study and experiment the ILP-based approaches to attempt to demonstrate

their true advantages.

• Combine the powers of state-of-the-art WCSP solvers on classical computers

and the quantum annealer. For solving the WCSP, algorithms on classical

computers are often inefficient but have theoretically guaranteed solution

qualities, and HQCAs often produce low-quality solutions but are fast. It

would be interesting if we can bring the best of both worlds together by

combining these two kinds of algorithms.

• Theoretically understand HQCAs for the WCSP. While we have already

experimentally showed that the CCG-based HQCA has an advantage over

other HQCAs, a theoretical study of them is certainly useful in further under-

standing them.
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Kempe, David, Jon Kleinberg, and Éva Tardos (2003). “Maximizing the Spread

of Influence Through a Social Network”. In: Proceedings of the ACM SIGKDD

International Conference on Knowledge Discovery and Data Mining, pp. 137–

146. doi: 10.1145/956750.956769.

Kochenberger, Gary A., Jin-Kao Hao, Zhipeng Lü, Haibo Wang, and Fred Glover
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