
SPEEDING UP DISTRIBUTED CONSTRAINT OPTIMIZATION

SEARCH ALGORITHMS

by

William Yeoh

A Dissertation Presented to the
FACULTY OF THE USC GRADUATE SCHOOL
UNIVERSITY OF SOUTHERN CALIFORNIA

In Partial Fulfillment of the
Requirements for the Degree

DOCTOR OF PHILOSOPHY
(COMPUTER SCIENCE)

December 2010

Copyright 2010 William Yeoh

Acknowledgements

First and foremost, I would like to thank my advisor, Sven Koenig, for his guidance

and support throughout this journey, as well as the other members of my committee,

Maged Dessouky, Gaurav Sukhatme, Milind Tambe and Makoto Yokoo, for their helpful

comments and suggestions. I would also like to thank my colleagues and collaborators,

Po-An Chen, Kenny Daniel, Ariel Felner, Alex Nash, Pradeep Varakantham, Xiaoming

Zheng and Roie Zivan, for all the stimulating discussions we have had. I would like to

separately acknowledge Xiaoxun Sun for the many fruitful collaborations that directly

influenced my dissertation. Last but not least, I would like to thank my family and my

fiancee for being so understanding and patient with me.

ii

Table of Contents

Acknowledgements ii

List Of Tables vi

List Of Figures vii

Abstract xi

Chapter 1 Introduction 1
1.1 DCOP Problems . 2
1.2 Hypotheses . 4
1.3 Contributions . 7
1.4 Dissertation Structure . 11

Chapter 2 Background 12
2.1 Overview of DCOP Problems . 12

2.1.1 Constraint Satisfaction Problems 12
2.1.2 DCOP Problems . 14

2.1.2.1 Definition of DCOP Problems 14
2.1.2.2 Search Trees . 16
2.1.2.3 Heuristic Values . 18

2.1.3 DCOP Algorithms . 19
2.1.3.1 Incomplete DCOP Algorithms 19
2.1.3.2 Complete DCOP Algorithms 20

2.1.4 DCOP Applications . 22
2.1.5 DCOP Problem Types Used in the Experiments in this Dissertation 23

2.2 Overview of ADOPT . 24
2.2.1 Properties of ADOPT . 25
2.2.2 Search Strategy of ADOPT . 27
2.2.3 Pre-processing Techniques for ADOPT 30

2.3 Overview of Approaches Used to Speed Up Centralized Search Algorithms 31
2.3.1 Search Strategies . 31
2.3.2 Approximation Algorithms . 34
2.3.3 Caching Algorithms . 36
2.3.4 Incremental Search Algorithms . 37

iii

Chapter 3 Speeding Up via Appropriate Search Strategies 40
3.1 Motivation . 41
3.2 BnB-ADOPT . 42

3.2.1 Notations and Key Terms . 42
3.2.2 Updating the Bounds . 45
3.2.3 Adhering to the Memory Limitations 50
3.2.4 Performing Depth-First Search . 50
3.2.5 Performing Branch-and-Bound Search 59
3.2.6 Further Enhancements . 61
3.2.7 Pseudocode . 64
3.2.8 Execution Trace . 69

3.3 Correctness, Completeness and Complexity 75
3.3.1 Correctness and Completeness . 75
3.3.2 Complexity . 89

3.4 Experimental Evaluation . 90
3.4.1 Metrics . 90
3.4.2 Problem Types . 92
3.4.3 Experimental Results . 93

3.5 Summary . 100

Chapter 4 Speeding Up via Approximation Mechanisms 102
4.1 Motivation . 103
4.2 Approximation Mechanisms . 104

4.2.1 Absolute Error Mechanism . 105
4.2.2 Relative Error Mechanism . 107
4.2.3 Weighted Heuristics Mechanism . 108

4.3 Correctness, Completeness and Complexity 110
4.3.1 Correctness and Completeness . 110
4.3.2 Complexity . 112

4.4 Experimental Evaluation . 113
4.4.1 Metrics . 113
4.4.2 Problem Types . 114
4.4.3 Experimental Results . 115

4.5 Summary . 121

Chapter 5 Speeding Up via Caching Schemes 123
5.1 Motivation . 124
5.2 Caching . 125

5.2.1 Cache Design . 126
5.2.2 Caching Problem . 127

5.2.2.1 Likelihood of Future Use: P(I) 128
5.2.2.2 Invested Search Effort: E(I) 129

5.2.3 Caching Schemes . 129
5.2.3.1 Benchmark Schemes . 130
5.2.3.2 MaxPriority Scheme . 130

iv

5.2.3.3 MaxEffort Scheme . 133
5.2.3.4 MaxUtility Scheme . 135

5.3 Correctness, Completeness and Complexity 135
5.3.1 Correctness and Completeness . 136
5.3.2 Complexity . 140

5.4 Experimental Evaluation . 141
5.4.1 Metrics . 141
5.4.2 Problem Types . 142
5.4.3 Experimental Results . 143

5.4.3.1 Caching Schemes . 143
5.4.3.2 Caching Schemes with Approximation Mechanisms 148

5.5 Summary . 151

Chapter 6 Speeding Up via Incremental Search 153
6.1 Motivation . 154
6.2 Incremental Approaches . 155

6.2.1 Dynamic DCOP Problems . 155
6.2.2 Incremental Procedure . 157
6.2.3 Incremental Pseudo-tree Reconstruction Algorithms 164

6.2.3.1 Existing Pseudo-tree Reconstruction Algorithms 165
6.2.3.2 HARP Pseudo-tree Reconstruction Algorithm 166

6.3 Correctness, Completeness and Complexity 175
6.3.1 Correctness and Completeness . 175

6.3.1.1 ReuseBounds Procedure 175
6.3.1.2 HARP Pseudo-tree Reconstruction Algorithm 189

6.3.2 Complexity . 198
6.4 Experimental Evaluation . 199

6.4.1 Metrics . 199
6.4.2 Problem Types . 200
6.4.3 Experimental Results . 202

6.5 Summary . 208

Chapter 7 Conclusions 210

Bibliography 215

v

List Of Tables

2.1 Properties of Complete DCOP Search Algorithms 25

3.1 Trace of the Updates of all Variables of BnB-ADOPT 68

vi

List Of Figures

1.1 Example DCOP Problem . 2

2.1 DCOP Problems as a Generalization and Extension of Constraint Satis-
faction Problems . 13

2.2 Example Pseudo-tree . 15

2.3 AND/OR Search Tree . 17

2.4 Taxonomy of DCOP Algorithms . 19

2.5 Example Sensor Network Problem . 23

2.6 Example Meeting Scheduling Problem . 23

2.7 Trace of Simplified Memory-Bounded Best-First Search (Centralized
ADOPT) . 28

2.8 Trace of Depth-First Branch-and-Bound Search 32

3.1 Simplified Trace of the Updates of the (Lower and Upper) Bounds 47

3.2 Trace of the Updates of the Lower Bounds 54

3.3 Trace of the Updates of the Upper Bounds 55

3.4 Pseudocode of BnB-ADOPT . 65

3.5 Trace of the Updates of the Lower Bounds of BnB-ADOPT 67

3.6 Trace of the Updates of the Upper Bounds of BnB-ADOPT 69

vii

3.7 Experimental Results Comparing ADOPT, BnB-ADOPT and NCBB on
Graph Coloring Problems with Constraint Costs Ranging from 0 to 10,000 94

3.8 Experimental Results Comparing ADOPT, BnB-ADOPT and NCBB on
Graph Coloring Problems with 10 Vertices 95

3.9 Experimental Results Comparing ADOPT, BnB-ADOPT and NCBB on
Sensor Network Problems . 96

3.10 Experimental Results Comparing ADOPT, BnB-ADOPT and NCBB on
Meeting Scheduling Problems . 96

3.11 Experimental Results Comparing ADOPT, BnB-ADOPT and NCBB on
Combinatorial Auction Problems . 97

3.12 Experimental Results on the Reason for the Speedup of BnB-ADOPT over
ADOPT . 98

4.1 Trace of the Updates of the Lower Bounds of BnB-ADOPTAEM with Ab-
solute Error Bound b = 24 . 105

4.2 Trace of the Updates of the Lower Bounds of BnB-ADOPTREM with Rel-
ative Error Bound p = 3 . 106

4.3 Trace of the Updates of the Lower Bounds of BnB-ADOPTWHM with
Relative Error Bound w = 3 . 108

4.4 Experimental Results Comparing ADOPT with the Approximation Mech-
anisms on Graph Coloring Problems . 116

4.5 Experimental Results Comparing BnB-ADOPT with the Approximation
Mechanisms on Graph Coloring Problems 117

4.6 Experimental Results Comparing ADOPT and BnB-ADOPT with the
Approximation Mechanisms on Sensor Network, Meeting Scheduling and
Combinatorial Auction Problems . 118

4.7 Experimental Results Comparing ADOPTWHM , BnB-ADOPTWHM and
MGM-k . 120

5.1 Trace of Simplified Best-First Search (Centralized ADOPT without Mem-
ory Limitations) . 126

5.2 Correlation of P̂ (I) and P (I) . 132

viii

5.3 Correlation of Ê(I) and E(I) . 134

5.4 Experimental Results Comparing ADOPT and BnB-ADOPT with the
Caching Schemes on Graph Coloring Problems 144

5.5 Experimental Results Comparing ADOPT and BnB-ADOPT with the
Caching Schemes on Sensor Network, Meeting Scheduling and Combina-
torial Auction Problems . 145

5.6 Experimental Results of ADOPTWHM and BnB-ADOPTWHM with the
Caching Schemes on Graph Coloring Problems 149

5.7 Experimental Results of ADOPTWHM and BnB-ADOPTWHM with the
Caching Schemes on Sensor Network, Meeting Scheduling and Combina-
torial Auction Problems . 150

6.1 Delta and Gamma Costs of the Example DCOP Problem 159

6.2 Delta and Gamma Costs after the Removal of the Constraint between
Agents a1 and a3 . 160

6.3 Pseudocode of ReuseBounds . 161

6.4 DFS, Mobed and HARP Pseudo-trees after Removal of the Constraint
between Agents a4 and a5 . 164

6.5 Pseudocode of HARP . 167

6.6 HARP Pseudo-tree Reconstruction Steps 168

6.7 Experimental Results Comparing ADOPT and BnB-ADOPT with the
ReuseBounds Procedure and the Pseudo-tree Reconstruction Algorithms
on Graph Coloring Problems with Change 1 203

6.8 Experimental Results Comparing ADOPT and BnB-ADOPT with the
ReuseBounds Procedure and the Pseudo-tree Reconstruction Algorithms
on Sensor Network, Meeting Scheduling and Combinatorial Auction Prob-
lems with Change 1 (1) . 204

6.9 Experimental Results Comparing ADOPT and BnB-ADOPT with the
ReuseBounds Procedure and the Pseudo-tree Reconstruction Algorithms
on Sensor Network, Meeting Scheduling and Combinatorial Auction Prob-
lems with Change 1 (2) . 205

ix

6.10 Experimental Results Comparing ADOPT and BnB-ADOPT with the
ReuseBounds Procedure and the Pseudo-tree Reconstruction Algorithms
on Graph Coloring Problems with Change 2 206

6.11 Experimental Results Comparing ADOPT and BnB-ADOPT with the
ReuseBounds Procedure and the Pseudo-tree Reconstruction Algorithms
on Graph Coloring Problems with Change 3 206

x

Abstract

Distributed constraint optimization (DCOP) is a model where several agents coordinate

with each other to take on values so as to minimize the sum of the resulting constraint

costs, which are dependent on the values of the agents. This model is becoming pop-

ular for formulating and solving agent-coordination problems. As a result, researchers

have developed a class of DCOP algorithms that use search techniques. For example,

Asynchronous Distributed Constraint Optimization (ADOPT) is one of the pioneering

DCOP search algorithms that has been widely extended. Since solving DCOP problems

optimally is NP-hard, solving large problems efficiently becomes an issue.

DCOP search algorithms can be viewed as distributed versions of centralized search

algorithms. Therefore, I hypothesize that one can speed up DCOP search algorithms

by applying insights gained from centralized search algorithms, specifically (1) by us-

ing an appropriate search strategy, (2) by sacrificing solution optimality, (3) by using

more memory, and (4) by reusing information gained from solving similar DCOP prob-

lems. However, DCOP search algorithms are sufficiently different from centralized search

algorithms that these insights cannot be trivially applied.

To validate my hypotheses: (1) I introduce Branch-and-Bound ADOPT (BnB-

ADOPT), an extension of ADOPT that changes the search strategy of ADOPT from

xi

memory-bounded best-first search to depth-first branch-and-bound search, resulting in

one order of magnitude speedup. These results validate my hypothesis that DCOP search

algorithms that employ depth-first branch-and-bound search can be faster than DCOP

search algorithms that employ memory-bounded best-first search. (2) I introduce an ap-

proximation mechanism that uses weighted heuristic values to trade off solution costs for

smaller runtimes. This approximation mechanism allows ADOPT and BnB-ADOPT to

terminate faster with larger weights, validating my hypothesis that DCOP search algo-

rithms that use weighted heuristic values can have runtimes that decrease as larger weights

are used. Additionally, the new approximation mechanism provides relative error bounds

and thus complements existing approximation mechanisms that only provide absolute

error bounds. (3) I introduce the MaxPriority, MaxEffort and MaxUtility DCOP-specific

caching schemes, which allow ADOPT and BnB-ADOPT to cache DCOP-specific infor-

mation when they have more memory available and terminate faster with larger amounts

of memory. Experimental results show that the MaxEffort and MaxUtility schemes speed

up ADOPT more than the currently used generic caching schemes, and the MaxPriority

scheme speeds up BnB-ADOPT at least as much as the currently used generic caching

schemes. Therefore, these results validate my hypothesis that DCOP-specific caching

schemes can reduce the runtime of DCOP search algorithms at least as much as the cur-

rently used generic caching schemes. (4) I introduce an incremental procedure and an

incremental pseudo-tree reconstruction algorithm that allow ADOPT and BnB-ADOPT

to reuse information gained from solving similar DCOP problems to solve the current

problem faster, resulting in runtimes that decrease with larger amounts of information

reuse. These results validate my hypothesis that DCOP search algorithms that reuse

xii

information from searches of similar DCOP problems to guide their search can have run-

times that decrease as they reuse more information.

xiii

Chapter 1

Introduction

Distributed constraint optimization (DCOP) (Modi, 2003; Mailler, 2004; Petcu, 2007;

Pearce, 2007; Burke, 2008) is a model where several agents coordinate with each other

to take on values so as to minimize the sum of the resulting constraint costs, which are

dependent on the values of the agents. This model is becoming popular for formulating

and solving agent-coordination problems (Lesser, Ortiz, & Tambe, 2003; Maheswaran,

Pearce, & Tambe, 2004; Schurr, Okamoto, Maheswaran, Scerri, & Tambe, 2005; Junges

& Bazzan, 2008; Ottens & Faltings, 2008; Kumar, Faltings, & Petcu, 2009). As a result,

researchers have developed several DCOP algorithms that use search techniques. For

example, Asynchronous Distributed Constraint Optimization (ADOPT) (Modi, Shen,

Tambe, & Yokoo, 2005) is one of the pioneering DCOP search algorithms that has been

widely extended. Since solving DCOP problems optimally is NP-hard (Modi et al., 2005),

solving large problems efficiently becomes an issue.

DCOP search algorithms can be viewed as distributed versions of centralized search

algorithms. Therefore, I hypothesize that one can speed up DCOP search algorithms

by applying insights gained from centralized search algorithms, specifically (1) by using

1

a3

a1 a2

a4

a1 a2 Cost
0 0 5
0 1 8
1 0 20
1 1 3

a1 a3 Cost
0 0 5
0 1 10
1 0 20
1 1 3

a2 a3 Cost
0 0 5
0 1 4
1 0 3
1 1 3

a2 a4 Cost
0 0 3
0 1 8
1 0 10
1 1 3

(a) (b)

Figure 1.1: Example DCOP Problem

an appropriate search strategy, (2) by sacrificing solution optimality, (3) by using more

memory, and (4) by reusing information from searches of similar DCOP problems.

To validate my hypotheses: (1) I introduce Branch-and-Bound ADOPT (BnB-

ADOPT), an extension of ADOPT that changes the search strategy of ADOPT from

memory-bounded best-first search to depth-first branch-and-bound search, resulting in

one order of magnitude speedup when solving sufficiently large DCOP problems; (2) I

introduce an approximation mechanism that allows ADOPT and BnB-ADOPT to use

weighted heuristic values to trade off solution costs for smaller runtimes; (3) I introduce

DCOP-specific caching schemes that allow ADOPT and BnB-ADOPT to store more in-

formation when they have more memory available, which can be at least as fast as the

currently used generic caching schemes; and (4) I introduce an incremental procedure

and an incremental pseudo-tree reconstruction algorithm that allow ADOPT and BnB-

ADOPT to reuse information from searches of similar DCOP problems. ADOPT and

BnB-ADOPT terminate faster when they reuse more information.

1.1 DCOP Problems

A DCOP problem consists of a set of agents, each responsible for taking on (= assigning

itself) a value from its finite domain. The agents coordinate their value assignments,

2

which are subjected to a set of constraints. Two agents are said to be constrained if they

share a constraint. Each constraint has an associated cost, which depends on the values

taken on by the constrained agents. An agent only knows the costs of constraints that it

is involved in. A complete solution is an assignment of values to all agents, and a partial

solution is an assignment of values to a subset of agents. The cost of a solution is the

sum of the constraint costs of all constraints resulting from the given value assignments.

Solving a DCOP problem optimally means to find a complete solution such that the

sum of all constraint costs is minimized. Finding such a cost-minimal solution is NP-

hard (Modi et al., 2005). It is common to visualize a DCOP problem as a constraint

graph where the vertices are the agents and the edges are the constraints. Figure 1.1(a)

shows the constraint graph of an example DCOP problem with four agents that can each

take on the value zero or one, and Figure 1.1(b) shows the constraint costs. The cost-

minimal solution of our example DCOP problem is where all agents take on the value

one, incurring a total cost of 12 (3 from each constraint).

The DCOP model is becoming popular for formulating and solving agent-coordination

problems such as the distributed scheduling of meetings (Maheswaran et al., 2004;

Petcu & Faltings, 2005b; Greenstadt, Grosz, & Smith, 2007; Zivan, 2008; Yeoh, Fel-

ner, & Koenig, 2009, 2010), the distributed coordination of unmanned aerial vehi-

cles (Schurr et al., 2005), the distributed coordination of sensors in a network (Lesser

et al., 2003; Zhang, Xing, Wang, & Wittenburg, 2003; Yeoh, Sun, & Koenig, 2009a; Yeoh,

Varakantham, & Koenig, 2009b; Zivan, Glinton, & Sycara, 2009; Lisỳ, Zivan, Sycara, &

Péchoucek, 2010), the distributed allocation of resources in disaster evacuation scenar-

ios (Carpenter, Dugan, Kopena, Lass, Naik, Nguyen, Sultanik, Modi, & Regli, 2007; Lass,

3

Kopena, Sultanik, Nguyen, Dugan, Modi, & Regli, 2008), the distributed synchronization

of traffic lights (Junges & Bazzan, 2008), the distributed planning of truck routes (Ottens

& Faltings, 2008), the distributed management of power distribution networks (Kumar

et al., 2009) and the distributed generation of coalition structures (Ueda, Iwasaki, &

Yokoo, 2010). As a result, researchers have developed several DCOP algorithms that use

search techniques (= DCOP search algorithms). For example, ADOPT (Modi et al., 2005)

is one of the pioneering DCOP search algorithms that has been widely extended (Modi &

Ali, 2004; Ali, Koenig, & Tambe, 2005; Bowring, Tambe, & Yokoo, 2006; Davin & Modi,

2006; Pecora, Modi, & Scerri, 2006; Choxi & Modi, 2007; Matsui, Silaghi, Hirayama,

Yokoo, & Matsuo, 2008; Silaghi & Yokoo, 2009; Matsui, Silaghi, Hirayama, Yokoo, &

Matsuo, 2009; Gutierrez & Meseguer, 2010). ADOPT is a distributed best-first search

algorithm that is complete and memory-bounded.

1.2 Hypotheses

DCOP search algorithms can be viewed as distributed versions of centralized search al-

gorithms. Therefore, my hypothesis is as follows:

One can speed up DCOP search algorithms by applying insights gained from

centralized search algorithms to DCOP search algorithms.

Specifically, there are four common approaches that are used to speed up centralized

search algorithms in the literature that can be applied to DCOP search algorithms:

4

1. One can speed up DCOP search algorithms by using an appropriate search strategy

for the given problem type. A common approach is to use depth-first branch-

and-bound search instead of memory-bounded best-first search for problems whose

search trees are bounded. Researchers have shown that depth-first branch-and-

bound search is faster than memory-bounded best-first search for these prob-

lems (Zhang & Korf, 1995). Therefore, I hypothesize that DCOP search algorithms

that employ depth-first branch-and-bound search can be faster than DCOP search

algorithms that employ memory-bounded best-first search since the search trees of

DCOP problems are bounded.

2. One can speed up DCOP search algorithms by sacrificing solution optimality. A

common approach is to use weighted heuristic values to focus the search. Algorithms

that use this approach include Weighted A* (Pohl, 1970) and Weighted A* with

dynamic weights (Pohl, 1973). These algorithms guarantee that the costs of the

solutions found are at most a constant factor larger than the minimal costs, where

the constant is the largest weight used. Typically, the runtime of these algorithms

decreases as larger weights are used. Therefore, I hypothesize that DCOP search

algorithms that use weighted heuristic values can have runtimes that decrease as

larger weights are used.

3. One can speed up DCOP search algorithms by using more memory. A common

approach is to cache information as long as memory is available, such that the

cached information can be used when needed. Algorithms that use this approach

5

include MA* (Chakrabarti, Ghosh, Acharya, & DeSarkar, 1989) and SMA* (Rus-

sell, 1992). Typically, the runtime of these algorithms decreases as more memory

is available. Motivated by these results, researchers have developed any-space ver-

sions of DCOP search algorithms, such as any-space ADOPT (Matsui, Matsuo,

& Iwata, 2005) and any-space NCBB (Chechetka & Sycara, 2006a), and showed

that the runtime of these algorithms indeed decreases as more memory is available.

However, they use generic caching schemes, such as FIFO and LRU, that are simi-

lar to popular page replacement schemes used in operating systems. These generic

schemes do not exploit the cached information in a DCOP-specific way. Therefore, I

hypothesize that DCOP-specific caching schemes can reduce the runtime of DCOP

search algorithms at least as much as the currently used generic caching schemes.

4. One can speed up DCOP search algorithms by reusing information from searches of

similar DCOP problems. A common approach is to reuse information from searches

of similar problems to guide the search. Algorithms that use this approach include

incremental search algorithms (Koenig, Likhachev, Liu, & Furcy, 2004b) such as

D* (Stentz, 1995), Adaptive A* (Koenig & Likhachev, 2005) and FRA* (Sun, Yeoh,

& Koenig, 2009b). Typically, the runtime of these algorithms decreases as they reuse

more information. Therefore, I hypothesize that DCOP search algorithms that reuse

information from searches of similar DCOP problems to guide their search can have

runtimes that decrease as they reuse more information.

6

1.3 Contributions

Although DCOP search algorithms can be viewed as distributed versions of centralized

search algorithms, they are often independently developed. For example, ADOPT was

developed independent of RBFS (Korf, 1993), but both algorithms share many properties.

For example, both algorithms are memory-bounded, use the same search strategy and

use the same principle to restore information already purged from memory. Therefore,

one should be able to utilize the insights gained from centralized search algorithms to

speed up DCOP search algorithms. However, DCOP search algorithms are sufficiently

different from centralized search algorithms that these insights cannot be trivially applied.

For example, unlike centralized search algorithms, DCOP search algorithms operate in a

distributed fashion, have memory that is distributed among the agents and have agents

that can only perform local searches, yet must follow a global search strategy.

This dissertation uses the four approaches described in Section 1.2 to speed up DCOP

search algorithms. I make a design choice to use the framework of ADOPT, which is

one of the pioneering DCOP search algorithms, as the starting platform for the work

in this dissertation. The motivation for this decision is that ADOPT has been widely

extended (Modi & Ali, 2004; Ali et al., 2005; Bowring et al., 2006; Davin & Modi,

2006; Pecora et al., 2006; Choxi & Modi, 2007; Matsui et al., 2008; Silaghi & Yokoo,

2009; Matsui et al., 2009; Gutierrez & Meseguer, 2010) in addition to it having good

properties. For example, agents in ADOPT operate concurrently and asynchronously to

solve subproblems in parallel, which results in smaller runtimes than if they are to operate

sequentially and synchronously. This dissertation makes the following four contributions:

7

1. To assess the hypothesis that DCOP search algorithms that employ depth-first

branch-and-bound search can be faster than DCOP search algorithms that employ

memory-bounded best-first search, we introduce BnB-ADOPT. BnB-ADOPT is

a DCOP search algorithm that uses the framework of ADOPT but changes the

search strategy of ADOPT from memory-bounded best-first search to depth-first

branch-and-bound search. Although there exist other DCOP search algorithms,

such as SBB (Hirayama & Yokoo, 1997), NCBB (Chechetka & Sycara, 2006b) and

AFB (Gershman, Meisels, & Zivan, 2009), that employ depth-first branch-and-

bound search, it is difficult to determine if depth-first branch-and-bound search is

faster than memory-bounded best-first search since these algorithms differ by more

than their search strategies when compared to ADOPT. In fact, SBB has been

shown to be slower than ADOPT (Modi et al., 2005) while NCBB and AFB have

been shown to be faster than ADOPT (Chechetka & Sycara, 2006b; Gershman

et al., 2009). Hence, we introduce BnB-ADOPT since these results make clear

the need for two DCOP search algorithms that differ only in their search strategies.

Experimental results show that BnB-ADOPT is up to one order of magnitude faster

than ADOPT when solving sufficiently large DCOP problems. Therefore, these

results validate the hypothesis that DCOP search algorithms that employ depth-

first branch-and-bound search can be faster than DCOP search algorithms that

employ memory-bounded best-first search.

This work is non-trivial since ADOPT is a rather complicated distributed algorithm

whose agents operate concurrently and asynchronously at all times. Agents can only

perform local searches, yet must follow a global search strategy.

8

2. To assess the hypothesis that DCOP search algorithms that use weighted heuristic

values can have runtimes that decrease as larger weights are used, we introduce the

Weighted Heuristics mechanism. This approximation mechanism allows ADOPT

and BnB-ADOPT to use weighted heuristic values to trade off solution costs for

smaller runtimes. Additionally, the Weighted Heuristics mechanism also guaran-

tees that the costs of the solutions found are at most a constant factor larger than

the minimal costs, where the constant is the largest weight used. Experimental

results show that ADOPT and BnB-ADOPT terminate faster with larger weights,

validating the hypothesis that DCOP search algorithms that use weighted heuris-

tic values can have runtimes that decrease as larger weights are used. Additionally,

the Weighted Heuristics mechanism provides relative error bounds and thus comple-

ments the existing Absolute Error mechanism (Modi et al., 2005) that only provides

absolute error bounds.

This work is non-trivial since ADOPT and BnB-ADOPT use heuristic values dif-

ferently than centralized search algorithms, such as A* (Hart, Nilsson, & Raphael,

1968). Furthermore, the proof of the quality guarantee for DCOP search algorithms

cannot be trivially obtained from the proof for centralized search algorithms since

DCOP search algorithms are distributed and agents only have local views of the

problem or, in other words, they know only the agents that they share constraints

with and the costs of those constraints.

3. To assess the hypothesis that DCOP search algorithms that use DCOP-specific

caching schemes can have runtimes that are at least as small as using generic caching

9

schemes, we introduce the MaxPriority, MaxEffort and MaxUtility DCOP-specific

caching schemes. They allow ADOPT and BnB-ADOPT to determine which in-

formation to purge from memory when their memory is full and new information

needs to be stored in memory. Experimental results show that the MaxEffort and

MaxUtility schemes speed up ADOPT more than the currently used generic caching

schemes, and the MaxPriority scheme speeds up BnB-ADOPT as much as the cur-

rently used generic caching schemes. Therefore, these results validate the hypoth-

esis that DCOP-specific caching schemes can reduce the runtime of DCOP search

algorithms at least as much as the currently used generic caching schemes.

This work is non-trivial since agents in ADOPT and BnB-ADOPT need to predict

future information access while having only local views of the problem or, in other

words, knowing only the agents that they share constraints with and the costs of

those constraints.

4. To assess the hypothesis that DCOP search algorithms that reuse information from

searches of similar DCOP problems can have runtimes that decrease as they reuse

more information, we model dynamic DCOP problems as sequences of static DCOP

problems and introduce the ReuseBounds procedure and the Hybrid Algorithm for

Reconstructing Pseudo-trees (HARP). The ReuseBounds procedure and HARP al-

gorithm allow ADOPT and BnB-ADOPT to reuse information from searches of

similar static DCOP problems to guide their search to potentially solve the cur-

rent static DCOP problem faster. Experimental results show that ADOPT and

10

BnB-ADOPT with the ReuseBounds procedure and the HARP algorithm termi-

nate faster when they reuse more information, validating the hypothesis that DCOP

search algorithms that reuse information from searches of similar DCOP problems

to guide their search can have runtimes that decrease as they reuse more informa-

tion.

This work is non-trivial since agents in ADOPT and BnB-ADOPT need to identify

information that they can reuse or, in other words, know whether changes to the

dynamic DCOP problem can affect its local information while having only local

views of the problem or, in other words, knowing only the agents that they share

constraints with and the costs of those constraints.

1.4 Dissertation Structure

This dissertation is structured as follows: In the next chapter, we give an overview of

centralized search algorithms, DCOP problems and the ADOPT algorithm. We then

introduce the BnB-ADOPT algorithm in Chapter 3 and the approximation mechanisms

that trade off solution costs for smaller runtimes in Chapter 4. Next, we describe the

caching schemes in Chapter 5 and the incremental procedure and incremental pseudo-tree

reconstruction algorithm in Chapter 6 before concluding in Chapter 7.

11

Chapter 2

Background

This chapter begins by providing an overview of DCOP problems in Section 2.1. Since

ADOPT is the starting platform for the work in this dissertation, we provide an overview

of ADOPT in Section 2.2. Finally, we give an overview of common approaches used to

speed up centralized search algorithms in Section 2.3.

2.1 Overview of DCOP Problems

In this section, we describe how DCOP problems are related to constraint satisfaction

problems before providing an overview of DCOP problems, algorithms, applications and

common problem types used in experiments.

2.1.1 Constraint Satisfaction Problems

Centralized constraint satisfaction problems (CSPs) have been well studied in artificial

intelligence (Dechter, 2003). A CSP is defined as a finite set of variables, a finite set

of values for each variable and a finite set of constraints. A constraint is defined to be

between multiple variables. Each constraint has an associated cost, which depends on

12

CSP

DisCSP

COP

DCOP

Gen
era

liz
es

 toExtends to

Gen
era

liz
es

 to Extends to

Figure 2.1: DCOP Problems as a Generalization and Extension of Constraint Satisfaction
Problems

the values of the variables that it constrains. The constraint costs are Boolean (satis-

fied/unsatisfied). Solving a CSP means finding a solution such that all constraints are

satisfied. An example application is the scheduling of jobs in a job-shop, where con-

straints express that some jobs can only be performed by certain machines and some jobs

can only be performed after some other jobs. There could potentially be multiple solu-

tions that satisfy all constraints. However, some solutions might be more desirable than

others. For example, one might prefer the solution with the shortest completion time.

Unfortunately, CSPs cannot capture these preferences. However, constraint optimization

problems (COPs) are able to do so by using numeric constraint costs to represent the

preferences. Therefore, one can view COPs as a generalization of CSPs.

Researchers have also extended CSPs to distributed constraint satisfaction problems

(DisCSPs) (Yokoo, Durfee, Ishida, & Kuwabara, 1992, 1998). In a DisCSP, agents own

13

variables and are responsible for assigning values to the variables they own. Agents com-

municate with other agents to assign values to variables so as to satisfy all constraints.

Similar to the generalization of CSPs to COPs, the DCOP model emerged as a general-

ization of the DisCSP model, where constraints no longer have Boolean costs but instead

have numeric costs. As a result, several DCOP algorithms employ principles of DisCSP

algorithms. For example, the NOGOOD messages used in ABT (Yokoo et al., 1998)

(a DisCSP algorithm) are also used in ADOPT-ng (Silaghi & Yokoo, 2009) (a DCOP

algorithm).

2.1.2 DCOP Problems

In this subsection, we formally define DCOP problems, describe the representation of

solutions of DCOP problems and describe how heuristic values are used in DCOP prob-

lems.

2.1.2.1 Definition of DCOP Problems

Most DCOP algorithms operate on a pseudo-tree, which is a spanning tree of the (com-

pletely connected) constraint graph, previously defined in Section 1.1, with the property

that edges in the constraint graph connect a vertex with one of its ancestor or descendant

vertices in the pseudo-tree (Freuder & Quinn, 1985; Bayardo & Miranker, 1995). An

edge of the constraint graph that is not part of the pseudo-tree is called a backedge. An

agent c is called a pseudo-child agent of agent p if agent c is a descendant agent of agent

p and they are both constrained via a backedge in the pseudo-tree. Similarly, agent p is

called the pseudo-parent agent of agent c. Sibling subtrees in the pseudo-tree represent

14

a1

a3

a2

a4

Figure 2.2: Example Pseudo-tree

independent DCOP subproblems (since no two agents in different sibling subtrees share

a constraint). Figure 2.2 shows one possible pseudo-tree for the example DCOP prob-

lem in Figure 1.1, where the assignments of values to agents a3 and a4 are independent

subproblems (the dotted line is a backedge).

A DCOP problem is defined by the following:

• a finite set of agents A = {a1, a2, ..., an};

• a set of finite domains D = {Dom(a1),Dom(a2), ...,Dom(an)}, where Dom(ai) is

the domain of possible floating point values of agent ai ∈ A; and

• a set of binary constraints F = {f1, f2, ..., fm}, where each constraint fi :

Dom(ai,1) × Dom(ai,2) → R
+ ∪ ∞, specifies its non-negative constraint cost as

a function of the values of the distinct agents ai,1 and ai,2 that share the constraint.

The above definition assumes that each agent takes on one value rather than multiple

values, for example, a different value for each constraint that it is involved in. These

DCOP problems are more commonly formulated as each agent being responsible for

the assignments to multiple variables. However, there exist techniques that reduce such

DCOP problems to our DCOP problems (Yokoo, 2001; Burke & Brown, 2006). Thus, we

15

use the terms agent and variable interchangeably. The above definition also assumes that

constraints are binary (= between two agents) rather than n-ary (= between n agents).

However, this restriction is justified since it has been shown that any problem with n-ary

constraints can be represented as a problem with binary constraints (Bacchus, Chen, van

Beek, & Walsh, 2002). Additionally, we assume that each DCOP problem is not made up

of disjoint DCOP subproblems since each disjoint DCOP subproblem can be solved as an

independent DCOP problem. We also assume that there are at least two agents in each

DCOP problem and messages sent between agents can be delayed by a finite amount of

time but are never lost and are received in the order they were sent.

2.1.2.2 Search Trees

The solution space of DCOP problems can be visualized with search trees. Traditional

search trees or, synonymously, OR search trees (Marinescu & Dechter, 2009) assign values

to agents sequentially. They do not utilize the fact that the values of agents that belong

to independent DCOP subproblems do not have to be assigned sequentially. AND/OR

search trees are based on pseudo-trees and remedy this issue (Marinescu & Dechter, 2009).

Thus, we use AND/OR search trees and refer to them as search trees in this dissertation.

Their depth is bounded by twice the number of agents.

Figure 2.3(a) shows the search tree that is based on the pseudo-tree in Figure 2.2.

Figure 2.3(b) labels each node of the search tree with an identifier to allow us to refer

to the nodes easily. Circular nodes are OR nodes (labeled with upper-case letters) and

correspond to agents. For example, the agent of node C is agent a2. Left branches of OR

nodes correspond to the agents taking on value 0, and right branches correspond to the

16

a1OR

AND

OR

AND

OR

AND

0

a2

5

a3

10 14

a4

3 8

8

a3

8 13

a4

10 3

0

a2

20

a3

25 7

a4

3 8

3

a3

23 6

a4

10 3

(a)

AOR

AND

OR

AND

OR

AND

a

B

c

D

g h

E

i j

d

F

k l

G

m n

b

C

e

H

o p

I

q r

f

J

s t

K

u v

(b)

Figure 2.3: AND/OR Search Tree

agents taking on value 1. Square nodes are AND nodes (labeled with lower-case letters)

and correspond to the partial solutions from the root node to those nodes. For example,

the partial solution of node f is {(a1, 1), (a2, 1)}. The subtree rooted at an AND node

represents the DCOP subproblem under the assumption that the (partial) solution to the

complement DCOP subproblem is the partial solution of the AND node. For example,

the subtree rooted at node f represents the DCOP subproblem of assigning values to

agents a3 and a4 given the partial solution {(a1, 1), (a2, 1)}. The number of independent

DCOP subproblems within this DCOP subproblem is indicated by the number of branches

exiting the AND node. For example, there are two branches exiting node f , indicating

that there are two independent DCOP subproblems, namely of assigning values to agents

a3 and a4.

The numbers in the AND nodes in Figure 2.3(a) are the delta costs of the nodes. The

delta cost of an AND node is defined to be the sum of the constraint costs of all constraints

in its partial solution that involve the agent of its parent OR node. For example, the

partial solution of node v is {(a1, 1), (a2, 1), (a4, 1)}. There are two constraints in this

partial solution, namely the constraint between agents a1 and a2, which has constraint

cost 3, and the constraint between agents a2 and a4, which also has constraint cost 3.

17

Since the parent node of node v is node K with agent a4, the delta cost of node v is 3,

namely the constraint cost of the latter constraint. The former constraint is not included

since it does not involve agent a4. The solution cost of a partial solution of an AND node

is the sum of the delta costs of all AND nodes along the branch from the root node to that

node. For example, the solution cost of the partial solution of node v (= 6) is the sum

of the delta costs of nodes b, f and v. In our example DCOP problem, a cost-minimal

solution is the union of the partial solutions of nodes t and v (all agents take on value 1).

Thus, the minimal solution cost (= 12) is the sum of the delta costs of nodes b, f , t and

v.

2.1.2.3 Heuristic Values

Each AND node can have a heuristic value that estimates the smallest cost of assigning

values to agents of all the OR nodes in the subtree rooted at that AND node, given

the partial solution of that AND node. For example, the agents of the OR nodes in

the subtree rooted at node f are agents a3 and a4, and the partial solution of node f

is {(a1, 1), (a2, 1)}. Given this partial solution, the smallest cost of assigning values to

agents a3 and a4 is the sum of the delta costs of nodes t and v (= 9). Heuristic values

are typically used by search algorithms to speed up the search by making them more

informed. The heuristic value of an AND node is admissible iff it does not overestimate

the smallest cost of assigning values to the agents of all OR nodes in the subtree rooted at

that AND node, given the partial solution of that AND node (Pearl, 1985). For example,

if the heuristic value of node f in Figure 2.3 is no larger than 9, then it is an admissible

heuristic value.

18

DCOP Algorithms

Complete Algorithms
Incomplete Algorithms
e.g., DBA, DSA, MGM,

k-optimal algorithms

Partially Centralized Algorithms
e.g., OptAPO

Fully Decentralized
Algorithms

Inference Algorithms
e.g., DPOP

Search Algorithms
e.g., SBB, ADOPT,

NCBB, AFB

Figure 2.4: Taxonomy of DCOP Algorithms

2.1.3 DCOP Algorithms

We now illustrate the relationship of DCOP search algorithms to other DCOP algorithms

by providing a taxonomy of DCOP algorithms. Figure 2.4 shows the taxonomy. DCOP

algorithms are divided into two groups, namely complete and incomplete DCOP algo-

rithms. Complete DCOP algorithms find cost-minimal solutions while incomplete DCOP

algorithms are often faster but typically find suboptimal solutions.

2.1.3.1 Incomplete DCOP Algorithms

Incomplete DCOP algorithms typically use local search to find locally optimal solu-

tions and can thus potentially get trapped in local minima. Nevertheless, since solving

DCOP problems optimally is NP-hard, such DCOP algorithms are desirable for large

DCOP problems where finding cost-minimal solutions might be slow. DBA (Hirayama

& Yokoo, 2005), DSA (Fitzpatrick & Meertens, 2003), MGM (Maheswaran et al., 2004),

19

decentralized Max-Sum (Farinelli, Rogers, Petcu, & Jennings, 2008; Stranders, Farinelli,

Rogers, & Jennings, 2009a, 2009b; Stranders, Delle Fave, Rogers, & Jennings, 2010),

k-optimal DCOP algorithms (Pearce & Tambe, 2007; Bowring, Pearce, Portway, Jain,

& Tambe, 2008; Bowring, Yin, Zinkov, & Tambe, 2009; Greenstadt, 2009), t-optimal

DCOP algorithms (Kiekintveld, Yin, Kumar, & Tambe, 2010) and DCOP algorithms us-

ing the Anytime Local Search (Zivan, 2008) and Divide-and-Coordinate (Vinyals, Pujol,

Rodriguez-Aguilarhas, & Cerquides, 2010) frameworks are examples of incomplete DCOP

algorithms.

2.1.3.2 Complete DCOP Algorithms

Complete DCOP algorithms are generally divided into two groups, namely partially cen-

tralized and fully decentralized DCOP algorithms.

• Partially centralized DCOP algorithms allow some agents to transfer their

constraint information (= information regarding the constraints that they are in-

volved in) to a central agent for processing. OptAPO (Mailler & Lesser, 2004;

Grinshpoun & Meisels, 2008) is an example of a partially centralized DCOP algo-

rithm that uses cooperative mediation, where certain agents act as mediators to

solve overlapping DCOP subproblems centrally.

• Fully decentralized DCOP algorithms do not have central agents that collect

constraint information of other agents that are not constrained with them. Rather,

every agent has access to only its own constraint information. Fully decentralized

20

DCOP algorithms are generally divided into two groups, namely DCOP inference

and search algorithms.

– DCOP inference algorithms typically use dynamic programming to prop-

agate aggregated constraint costs from one agent to another agent and thus

reduce the DCOP problem size by one agent at each step. They repeat this

procedure until the DCOP problem size is reduced to only one agent and the

solution space thus cannot be reduced anymore. The sole remaining agent then

has sufficient knowledge to find a cost-minimal solution. Action-GDL (Vinyals,

Rodŕıguez-Aguilar, & Cerquides, 2009) and DPOP (Petcu & Faltings, 2005a,

2005b, 2005c, 2007; Petcu, Faltings, & Mailler, 2007; Atlas & Decker, 2007;

Brito & Meseguer, 2010) are example DCOP inference algorithms. The num-

ber of messages sent between agents in Action-GDL and DPOP is only linear

in the number of agents. However, their memory requirements are exponential

in the induced width of the DCOP problem. The induced width depends on

the number of backedges in the pseudo-tree. It can be as large as the number

of agents minus one if the constraint graph is fully connected and every agent

is thus constrained with every other agent.

– DCOP search algorithms use search strategies to search through the so-

lution space to find a cost-minimal solution. ADOPT uses best-first search,

and SBB (Hirayama & Yokoo, 1997), NCBB (Chechetka & Sycara, 2006b),

21

AFB (Gershman et al., 2009) and our new DCOP search algorithm, BnB-

ADOPT, use depth-first branch-and-bound search. Their memory require-

ments are only polynomial in the number of agents. However, the number of

messages sent between agents can be exponential in the number of agents.

2.1.4 DCOP Applications

The DCOP model is a popular way of formulating and solving agent-coordination prob-

lems. This model is well-suited for formulating multi-agent problems since they are

distributed by nature. Moreover, distributed algorithms are able to work on subprob-

lems in parallel and thus might be faster than centralized algorithms. As a result, the

DCOP model has been used in formulating multi-agent problems such as the distributed

scheduling of meetings (Maheswaran et al., 2004; Petcu & Faltings, 2005b; Greenstadt

et al., 2007; Zivan, 2008; Yeoh et al., 2009, 2010), the distributed coordination of un-

manned aerial vehicles (Schurr et al., 2005), the distributed coordination of sensors in a

network (Lesser et al., 2003; Zhang et al., 2003; Yeoh et al., 2009a, 2009b; Zivan et al.,

2009; Lisỳ et al., 2010), the distributed allocation of resources in disaster evacuation

scenarios (Carpenter et al., 2007; Lass et al., 2008), the distributed synchronization of

traffic lights (Junges & Bazzan, 2008), the distributed planning of truck routes (Ottens

& Faltings, 2008), the distributed management of power distribution networks (Kumar

et al., 2009) and the distributed generation of coalition structures (Ueda et al., 2010).

22

Sensors

Targets

Constraints

Figure 2.5: Example Sensor Net-
work Problem

A unit

2

5

43

1

876 109 11 1312

Figure 2.6: Example Meeting
Scheduling Problem

2.1.5 DCOP Problem Types Used in the Experiments in this

Dissertation

The three most popular DCOP problem types used to experimentally evaluate the per-

formance of DCOP algorithms are graph coloring problems, sensor network problems

and meeting scheduling problems (Junges & Bazzan, 2008). Therefore, we use these

three problem types as well as an additional combinatorial auction problem type in the

experiments of this dissertation.

• A graph coloring problem involves coloring the vertices of a graph. The agents

are the vertices, their domains are the colors, and the constraints are between

adjacent vertices.

• A sensor network problem involves assigning targets to sensors in a sensor net-

work, taking restrictions in the availability of the sensors, restrictions in the number

of sensors that need to track each target, and priorities of the targets into account.

The agents are the targets, their domains are the time slots when they can be

tracked, and the constraints are between adjacent targets (Maheswaran et al., 2004).

Figure 2.5 shows a sensor network where the targets are located on a grid and each

target is surrounded by 4 sensors, all of which are needed to track the target.

23

• A meeting scheduling problem involves scheduling meetings between the em-

ployees of a company, taking restrictions in their availability as well as their prior-

ities into account. The agents are the meetings, their domains are the time slots

when they can be held, and the constraints are between meetings that share par-

ticipants (Maheswaran et al., 2004). Figure 2.6 shows a hierarchical organization

with four units of a supervisor and their three subordinates, such as supervisor 2

with three subordinates 5, 6 and 7. In each unit, we assume five possible meetings:

one of the entire unit (2, 5, 6, 7), two parent-child meetings (2, 5 and 2, 7) and two

sibling-sibling meetings (5, 6 and 6, 7).

• A combinatorial auction problem involves determining the winner(s) in a com-

binatorial auction. The agents are the bidders with one bid each, their domains

are the Boolean values indicating if they win or lose their bids, and the constraints

are between bidders that bid on a common item (Petcu, Faltings, & Parkes, 2008;

Kumar, Petcu, & Faltings, 2008).

2.2 Overview of ADOPT

Aside from being a very popular DCOP search algorithm, ADOPT also has many desir-

able properties. For example, it is memory-bounded, it restricts communication to only

be between neighboring agents, its agents operate concurrently and asynchronously, and

it orders the agents into a non-degenerate pseudo-tree. In this section, we describe its

properties, the search strategy that it employs, and the pre-processing techniques used

to speed it up.

24

DCOP Memory Communication Agent Pseudo-tree
Algorithm Requirement Restriction Operation Structure

SBB bounded only with neighbors sequential & synchronous chain
ADOPT bounded only with neighbors concurrent & asynchronous tree
NCBB bounded only with neighbors sequential & synchronous tree
AFB bounded with all agents concurrent & asynchronous chain

Table 2.1: Properties of Complete DCOP Search Algorithms

2.2.1 Properties of ADOPT

Table 2.1 shows the properties of some complete DCOP search algorithms. We will now

describe each property in more detail.

• Memory Requirement: The memory requirement is the amount of memory a

complete DCOP search algorithm needs to have in order to guarantee that it finds

a cost-minimal solution. In applications such as sensor networks, agents/sensors

might have only a small amount of memory available. Thus, it is desirable for

complete DCOP search algorithms to be developed with this limitation in mind.

All four complete DCOP search algorithms, SBB, ADOPT, NCBB and AFB, are

memory-bounded, in that each agent requires only a linear (in the number of agents)

amount of memory. Thus, ADOPT is desirable because it is memory-bounded.

• Communication Restriction: Agents in complete DCOP search algorithms

typically communicate with each other via messages. In applications such as sensor

networks, agents/sensors can communicate only with their neighbors due to their

limited communication radius. Since neighboring sensors need to coordinate with

each other to sense the areas near them, neighboring sensors often share constraints.

Thus, it is desirable for complete DCOP search algorithms to be developed with

25

this communication restriction in mind. SBB, ADOPT and NCBB restrict com-

munication to be only between agents that share constraints, while AFB does not

impose this restriction and allows its agents to broadcast messages to all other

agents. Thus, ADOPT is desirable because agents in ADOPT communicate only

with neighboring agents.

• Agent Operation: Agents in complete DCOP search algorithms can operate

sequentially or concurrently. Agents that operate sequentially are often idle while

waiting for the active agent to finish its computation. On the other hand, agents

that operate concurrently are operating at all times. Concurrent operation is pre-

ferred since DCOP problems can potentially be solved more quickly if the agents can

perform potentially useful computation instead of waiting for other agents. Agents

in SBB and NCBB operate sequentially while agents in ADOPT and AFB oper-

ate concurrently. Thus, ADOPT is desirable because agents in ADOPT operate

concurrently.

Concurrent agents in complete DCOP search algorithms can operate synchronously

or asynchronously. Agents that operate synchronously operate in time slices called

cycles (Hirayama & Yokoo, 2000). At the start of each cycle, each agent collects

all messages that were sent to it. It then performs its computation and sends out

new messages at the end of the cycle. Therefore, every agent must wait until the

last agent is done sending its messages, before starting its new cycle. On the other

hand, agents that operate asynchronously can operate independently of each other.

It is desirable to allow agents to operate asynchronously since asynchrony increases

26

the robustness of the algorithm (Silaghi, Landwehr, & Larrosa, 2004). For example,

if a single communication link suffers from congestion, all synchronous agents are

affected while only a small number of asynchronous agents are affected. Agents in

SBB and NCBB operate synchronously while agents in ADOPT and AFB operate

asynchronously. Thus, ADOPT is desirable because agents in ADOPT operate

asynchronously.

• Pseudo-tree Structure: Complete DCOP search algorithms typically start with

a pre-processing step of ordering the agents into a pseudo-tree. Algorithms can

order the agents into a non-degenerate tree or degenerate tree, which is a chain.

A tree ordering is able to capture independent subproblems (represented as sibling

subtrees) while a chain ordering is not able to do so. Thus, a tree ordering is

desirable since algorithms that operate on trees are able to operate on independent

subproblems independently, while algorithms that operate on chains are not able

to do so. SBB and AFB use a chain ordering while ADOPT and NCBB use a tree

ordering. Thus, ADOPT is desirable because it uses a tree ordering.

2.2.2 Search Strategy of ADOPT

We now describe the search strategy of ADOPT from a centralized perspective. ADOPT

traverses the search tree in a best-first search order. We now describe a simplified version

of best-first search. The complete version can be found in (Marinescu & Dechter, 2007).

Best-first search maintains a list that initially contains only the child AND nodes of the

root node. It repeatedly performs the following operations: It expands the AND node

27

AOR

AND

OR

AND

OR

AND

a

B

c

D

g h

E

i j

d

F

k l

G

m n

b

C

e

H

o p

I

q r

f

J

s t

K

u v

Identifiers

a1OR

AND

OR

AND

OR

AND

0

a2

5

a3

10 14

a4

3 8

8

a3

8 13

a4

10 3

0

a2

20

a3

25 7

a4

3 8

3

a3

23 6

a4

10 3

LBr = 0
UBr = infinity

Xr

Xr

Step 1

a1OR

AND

OR

AND

OR

AND

0

a2

5

a3

10 14

a4

3 8

8

a3

8 13

a4

10 3

0

a2

20

a3

25 7

a4

3 8

3

a3

23 6

a4

10 3

LBr = 3
UBr = infinity

Xr

Xr

Step 2

a1OR

AND

OR

AND

OR

AND

0

a2

5

a3

10 14

a4

3 8

8

a3

8 13

a4

10 3

0

a2

20

a3

25 7

a4

3 8

3

a3

23 6

a4

10 3

LBr = 5
UBr = infinity

Xr

Xr

Step 3

a1OR

AND

OR

AND

OR

AND

0

a2

5

a3

10 14

a4

3 8

8

a3

8 13

a4

10 3

0

a2

20

a3

25 7

a4

3 8

3

a3

23 6

a4

10 3

LBr = 5
UBr = infinity

Xr

Xr

Step 4

a1OR

AND

OR

AND

OR

AND

0

a2

5

a3

10 14

a4

3 8

8

a3

8 13

a4

10 3

0

a2

20

a3

25 7

a4

3 8

3

a3

23 6

a4

10 3

LBr = 8
UBr = infinity

Xr

Xr

Step 5
a1OR

AND

OR

AND

OR

AND

0

a2

5

a3

10 14

a4

3 8

8

a3

8 13

a4

10 3

0

a2

20

a3

25 7

a4

3 8

3

a3

23 6

a4

10 3

LBr = 8
UBr = infinity

Xr

Xr

Step 6

a1OR

AND

OR

AND

OR

AND

0

a2

5

a3

10 14

a4

3 8

8

a3

8 13

a4

10 3

0

a2

20

a3

25 7

a4

3 8

3

a3

23 6

a4

10 3

LBr = 8
UBr = infinity

Xr

Xr

Step 7

a1OR

AND

OR

AND

OR

AND

0

a2

5

a3

10 14

a4

3 8

8

a3

8 13

a4

10 3

0

a2

20

a3

25 7

a4

3 8

3

a3

23 6

a4

10 3

LBr = 8
UBr = infinity

Xr

Xr

Step 8

a1OR

AND

OR

AND

OR

AND

0

a2

5

a3

10 14

a4

3 8

8

a3

8 13

a4

10 3

0

a2

20

a3

25 7

a4

3 8

3

a3

23 6

a4

10 3

LBr = 8
UBr = infinity

Xr

Xr

Step 9

a1OR

AND

OR

AND

OR

AND

0

a2

5

a3

10 14

a4

3 8

8

a3

8 13

a4

10 3

0

a2

20

a3

25 7

a4

3 8

3

a3

23 6

a4

10 3

LBr = 8
UBr = infinity

Xr

Xr

Step 10

a1OR

AND

OR

AND

OR

AND

0

a2

5

a3

10 14

a4

3 8

8

a3

8 13

a4

10 3

0

a2

20

a3

25 7

a4

3 8

3

a3

23 6

a4

10 3

LBr = 8
UBr = infinity

Xr

Xr

Step 11

a1OR

AND

OR

AND

OR

AND

0

a2

5

a3

10 14

a4

3 8

8

a3

8 13

a4

10 3

0

a2

20

a3

25 7

a4

3 8

3

a3

23 6

a4

10 3

LBr = 12
UBr = infinity

Xr

Xr

Step 12

a1OR

AND

OR

AND

OR

AND

0

a2

5

a3

10 14

a4

3 8

8

a3

8 13

a4

10 3

0

a2

20

a3

25 7

a4

3 8

3

a3

23 6

a4

10 3

LBr = 12
UBr = infinity

Xr

Xr

Step 13

a1OR

AND

OR

AND

OR

AND

0

a2

5

a3

10 14

a4

3 8

8

a3

8 13

a4

10 3

0

a2

20

a3

25 7

a4

3 8

3

a3

23 6

a4

10 3

LBr = 12
UBr = infinity

Xr

Xr

Step 14

a1OR

AND

OR

AND

OR

AND

0

a2

5

a3

10 14

a4

3 8

8

a3

8 13

a4

10 3

0

a2

20

a3

25 7

a4

3 8

3

a3

23 6

a4

10 3

LBr = 12
UBr = 12

Xr

Xr

Step 15

Figure 2.7: Trace of Simplified Memory-Bounded Best-First Search (Centralized
ADOPT)

28

with the smallest estimate of the complete solution cost in the list by removing that

node from the list and adding the grandchild AND nodes of that node into the list. The

estimate of the complete solution cost of an AND node is the sum of the solution cost of

the partial solution of that AND node and the heuristic value of that AND node. For our

example DCOP problem, if the zero heuristic values are used, best-first search expands

the AND nodes in the search tree in Figure 2.3 for the first time in the following order,

where the numbers in parentheses indicate the estimates of complete solution costs of the

expanded nodes: a (0), b (0), f (3), c (5), v (6), i (8), d (8) and t (9).

Figure 2.7 shows a simplified trace of ADOPT on our example DCOP problem.

ADOPT terminates after fifteen steps with minimal complete solution cost 12. The

numbers in the AND nodes are the delta costs of the nodes. The lower bound LBr
Xr

is an optimistic estimate of the minimal solution cost. It is the smallest underestimated

solution cost, over all solutions. The underestimated solution cost of a solution is the sum

of the delta costs of all AND nodes of that solution whose parent OR node is the root

node or whose grandparent AND node is expanded. For example, the underestimated

solution cost of the solution {(a1, 1), (a2, 1), (a3, 1), (a4, 1)} is 3 if node b is expanded and

nodes f , t and v are not expanded. The upper bound UBr
Xr is a pessimistic estimate of

the minimal solution cost. It is the smallest solution cost of any complete solution found

so far. ADOPT terminates when the upper bound UBr
Xr is no larger than the lower

bound LBr
Xr . In order to be memory-bounded, ADOPT maintains only one branch of

the search tree (shaded grey in the figure) from the root node to the currently expanded

node and thus needs to repeatedly reconstruct nodes that it purged from memory. For

example, in Step 3, ADOPT has the branch to node f in memory. The next node that

29

best-first search expands is node c, and ADOPT discards the branch to node f in Step

4. In Steps 6 and 7, it then needs to reconstruct the discarded branch to node f in order

to expand node v in Step 8.

2.2.3 Pre-processing Techniques for ADOPT

There are two known pre-processing techniques that speed up ADOPT.

• The first technique is to use heuristic values. Originally, ADOPT did not use

heuristic values, but researchers later extended it to use admissible heuristic values

to speed it up. The admissible heuristic values are computed by solving a re-

laxed version (where backedges are ignored) of the DCOP problem using a dynamic

programming-based approach (Ali et al., 2005). Experimental results show that the

use of these heuristic values can speed up ADOPT by one order of magnitude when

solving graph coloring problems at low pre-processing costs (Ali et al., 2005).

• The second technique is to transform the DCOP problem into an equivalent DCOP

problem that is simpler to solve using directed arc consistency methods (Matsui

et al., 2009). The transformed DCOP problem is simpler to solve because it has

reduced constraint costs and often has a smaller number of constraints. The use of

this approach can also speed up ADOPT by one order of magnitude when solving

graph coloring problems (Matsui et al., 2009).

30

2.3 Overview of Approaches Used to Speed Up Centralized

Search Algorithms

The hypothesis of this dissertation is that one can speed up DCOP search algorithms by

using insights from centralized search algorithms. Thus, in this section, we describe four

common approaches used to speed up centralized search algorithms that can be applied

to DCOP search algorithms.

2.3.1 Search Strategies

Since different search strategies have different benefits and drawbacks, a search strategy

that does well in a particular problem type might not do so well in another problem type.

Therefore, it is important to use an appropriate search strategy for the given problem

type, except that it is usually very difficult to make recommendations a priori. In this

subsection, we first describe the depth-first branch-and-bound search strategy and then

compare it to the memory-bounded best-first search strategy described in Section 2.2.2.

We now describe depth-first branch-and-bound search using the same definitions of

LBr
Xr and UBr

Xr as described earlier in the context of Figure 2.7. After it has expanded

an AND node, depth-first branch-and-bound search expands the grandchild AND node

with the smallest estimate of the complete solution cost. Depth-first branch-and-bound

search prunes those AND nodes whose estimate of the complete solution costs are no

smaller than UBr
Xr . It backtracks once all grandchild AND nodes have been expanded or

pruned. The algorithm terminates when it is not able to backtrack to an AND node whose

estimate of the complete solution cost is smaller than UBr
Xr . It returns the complete

31

AOR

AND

OR

AND

OR

AND

a

B

c

D

g h

E

i j

d

F

k l

G

m n

b

C

e

H

o p

I

q r

f

J

s t

K

u v

Identifiers

a1OR

AND

OR

AND

OR

AND

0

a2

5

a3

10 14

a4

3 8

8

a3

8 13

a4

10 3

0

a2

20

a3

25 7

a4

3 8

3

a3

23 6

a4

10 3

LBr = 0
UBr = infinity

Xr

Xr

Step 1

a1OR

AND

OR

AND

OR

AND

0

a2

5

a3

10 14

a4

3 8

8

a3

8 13

a4

10 3

0

a2

20

a3

25 7

a4

3 8

3

a3

23 6

a4

10 3

LBr = 0
UBr = infinity

Xr

Xr

Step 2

a1OR

AND

OR

AND

OR

AND

0

a2

5

a3

10 14

a4

3 8

8

a3

8 13

a4

10 3

0

a2

20

a3

25 7

a4

3 8

3

a3

23 6

a4

10 3

LBr = 0
UBr = infinity

Xr

Xr

Step 3

a1OR

AND

OR

AND

OR

AND

0

a2

5

a3

10 14

a4

3 8

8

a3

8 13

a4

10 3

0

a2

20

a3

25 7

a4

3 8

3

a3

23 6

a4

10 3

LBr = 0
UBr = infinity

Xr

Xr

Step 4

a1OR

AND

OR

AND

OR

AND

0

a2

5

a3

10 14

a4

3 8

8

a3

8 13

a4

10 3

0

a2

20

a3

25 7

a4

3 8

3

a3

23 6

a4

10 3

LBr = 0
UBr = 18

Xr

Xr

Step 5

a1OR

AND

OR

AND

OR

AND

0

a2

5

a3

10 14

a4

3 8

8

a3

8 13

a4

10 3

0

a2

20

a3

25 7

a4

3 8

3

a3

23 6

a4

10 3

LBr = 0
UBr = 18

Xr

Xr

Step 6

a1OR

AND

OR

AND

OR

AND

0

a2

5

a3

10 14

a4

3 8

8

a3

8 13

a4

10 3

0

a2

20

a3

25 7

a4

3 8

3

a3

23 6

a4

10 3

LBr = 0
UBr = 18

Xr

Xr

Step 7

a1OR

AND

OR

AND

OR

AND

0

a2

5

a3

10 14

a4

3 8

8

a3

8 13

a4

10 3

0

a2

20

a3

25 7

a4

3 8

3

a3

23 6

a4

10 3

LBr = 0
UBr = 18

Xr

Xr

Step 8
a1OR

AND

OR

AND

OR

AND

0

a2

5

a3

10 14

a4

3 8

8

a3

8 13

a4

10 3

0

a2

20

a3

25 7

a4

3 8

3

a3

23 6

a4

10 3

LBr = 3
UBr = 18

Xr

Xr

Step 9

a1OR

AND

OR

AND

OR

AND

0

a2

5

a3

10 14

a4

3 8

8

a3

8 13

a4

10 3

0

a2

20

a3

25 7

a4

3 8

3

a3

23 6

a4

10 3

LBr = 12
UBr = 18

Xr

Xr

Step 10

a1OR

AND

OR

AND

OR

AND

0

a2

5

a3

10 14

a4

3 8

8

a3

8 13

a4

10 3

0

a2

20

a3

25 7

a4

3 8

3

a3

23 6

a4

10 3

LBr = 12
UBr = 18

Xr

Xr

Step 11
a1OR

AND

OR

AND

OR

AND

0

a2

5

a3

10 14

a4

3 8

8

a3

8 13

a4

10 3

0

a2

20

a3

25 7

a4

3 8

3

a3

23 6

a4

10 3

LBr = 12
UBr = 12

Xr

Xr

Step 12

Figure 2.8: Trace of Depth-First Branch-and-Bound Search

solution with the smallest cost upon termination. For our example DCOP problem, if

the zero heuristic values are used, depth-first branch-and-bound search expands the AND

nodes in the search tree in the following order, where it prunes the nodes in brackets: a

(0), c (5), i (8), j (13), g (15), [h (19)], d (8), n (11), k (16), [m (18)], [l (21)], b (0), f

(3), v (6) and t (9).

32

The primary drawback of depth-first branch-and-bound search is that it can expand

nodes along a very long and potentially infinite branch down the search tree when a

solution might be near the root of the search tree. Another drawback is that it can

expand nodes that memory-bounded best-first search does not expand, such as node j in

Step 4. However, unlike memory-bounded best-first search, it expands each node at most

once and thus do not re-expand nodes that it purged from memory.

Since both search strategies have benefits and drawbacks, researchers have compared,

theoretically and experimentally, depth-first branch-and-bound search and RBFS (Korf,

1993), an algorithm that employs memory-bounded best-first search, on random OR

search trees of varying branching factors, depths, and delta costs (Zhang & Korf, 1995).

They concluded that depth-first branch-and-bound search often runs faster than RBFS

on depth-bounded search trees, and vice versa on search trees with unbounded depth.

This insight is promising since the depth of search trees of DCOP problems is bounded

by twice the number of agents in the problem. Thus, although the conclusions were only

proven and tested for centralized search algorithms, one can hypothesize that DCOP

search algorithms that employ depth-first branch-and-bound search might be faster than

DCOP search algorithms that employ memory-bounded best-first search.

The primary drawback of memory-bounded best-first search is that it needs to re-

peatedly re-expand nodes that it purged from memory due to its memory limitation. If

there are no memory limitations, best-first search will no longer need to re-expand nodes.

In fact, for problems where the entire search tree can be stored in memory, researchers

have theoretically proved that A* (Hart et al., 1968), a centralized search algorithm

that employs best-first search, requires the least number of node expansions compared to

33

other centralized search algorithms, assuming that the algorithms use identical consistent

heuristic values (Dechter & Pearl, 1985). Therefore, one can expect that best-first search

should be faster than depth-first branch-and-bound search since depth-first branch-and-

bound search can expand nodes that best-first search does not. In our example DCOP

problem, best-first search will expand nodes in exactly the same way as shown in Fig-

ure 2.7, except that it will skip Steps 4, 6, 7, 9, 10, 13 and 14. Thus, it will terminate after

eight steps, which is four steps fewer than the twelve steps that depth-first branch-and-

bound search needs. However, this insight does not directly apply to memory-bounded

DCOP search algorithms unless their memory requirements are relaxed.

2.3.2 Approximation Algorithms

Another common approach to speed up centralized search algorithms is to sacrifice solu-

tion optimality by using approximation algorithms. Approximation algorithms typically

find complete solutions faster than complete algorithms. However, the costs of the solu-

tions found can be suboptimal, but they are within a given error bound of the minimal

costs (Pohl, 1970, 1973; Pearl & Kim, 1982; Neller, 2002).

There are generally two approaches used by approximation algorithms for centralized

search. The first approach uses an early termination detection scheme to terminate once a

solution within a given error bound ε is found (Zhang, 2000; Neller, 2002). For example,

imagine a version of depth-first branch-and-bound search whose termination condition

is slightly different from the one described in Section 2.3.1. This version of depth-first

branch-and-bound search terminates when it is not able to backtrack to a node whose

estimate of the complete solution cost is smaller than UBr
Xr − ε. In our example DCOP

34

problem, this version of depth-first branch-and-bound search with ε = 20 will terminate

after five steps when the estimate of the complete solution cost of each node that it

can backtrack to is larger than UBr
Xr − ε. Thus, it takes seven steps fewer than the

optimal version of depth-first branch-and-bound search, but with a suboptimal solution

of cost 18. The costs of the solutions found by two approximation algorithms that use this

approach, Truncated DFBnB (Zhang, 2000) and ε-RBFS (Neller, 2002), have been shown

to be at most ε larger than the minimal cost. Larger values of ε typically allow these

approximation algorithms to terminate earlier at the cost of potentially larger errors.

Thus, one can potentially use this approach to speed up DCOP search algorithms as

well.

The second approach uses inadmissible heuristic values computed by multiplying ad-

missible heuristic values with sufficiently large weights (Pohl, 1970, 1973). These weighted

heuristic values prevent the approximation algorithms from expanding nodes that they

would otherwise expand. For example, imagine that the heuristic values of nodes b and

d in our example DCOP problem are 20 and the heuristic values of every other node are

0. Then, depth-first branch-and-bound search will terminate after five steps when the

estimate of the complete solution cost of each node that it can backtrack to is larger than

UBr
Xr . Thus, it takes seven steps fewer that the optimal version of depth-first branch-

and-bound search, but with a suboptimal solution of cost 18. The costs of the solutions

found by two approximation algorithms that use this approach, Weighted A* (Pohl, 1970)

and Weighted A* with dynamic weights (Pohl, 1973), have been shown to be at most

a constant factor larger than the minimal cost, where the constant is the largest weight

35

used. Larger weights typically allow these approximation algorithms to terminate ear-

lier at the cost of potentially larger errors. Since DCOP search algorithms use heuristic

values, one can potentially speed them up by using weighted heuristic values.

2.3.3 Caching Algorithms

The primary drawback of memory-bounded best-first search is that it needs to repeatedly

re-expand nodes that it purged from memory. Therefore, if search algorithms that employ

memory-bounded best-first search have more memory available than the minimal amount

required by the search, then they can cache more nodes in memory, resulting in fewer

nodes being purged. As a result, they should re-expand fewer nodes and thus have smaller

runtimes.

Researchers have used this insight to develop algorithms, such as MA* (Chakrabarti

et al., 1989) and SMA* (Russell, 1992), that employ any-space best-first search, which is

a version of memory-bounded best-first search that uses more memory than the minimal

amount. For example, SMA* will not purge nodes from memory as long as its memory

is not full. Although SMA* was designed to operate on OR search trees, it can be easily

extended to operate on AND/OR search trees as well. We thus describe its operation

on AND/OR search trees. When the memory of SMA* is full, among all AND nodes

in memory with no grandchild AND nodes in memory, SMA* purges the AND node

with the largest estimate of the complete solution cost. If there are multiple AND nodes

with the same largest estimate, it purges the AND node with the smallest depth in the

search tree. If there are multiple AND nodes with the same smallest depth, it breaks

ties randomly. To investigate the relationship between runtime and memory availability,

36

experiments were performed on sliding tile puzzles using perturbed Manhattan distances

as heuristic values. As expected, the runtime1 of SMA* decreases as more memory is

available (Russell, 1992).

This result is promising since ADOPT employs memory-bounded best-first search

and thus its runtime might also decrease when it uses more memory that is available.

However, unlike MA* and SMA*, the memory is distributed among the agents in DCOP

search algorithms. Thus, the caching schemes of centralized search algorithms cannot be

applied directly to DCOP search algorithms.

2.3.4 Incremental Search Algorithms

Researchers have modeled dynamic path-planning problems as sequences of static path-

planning problems with changes between consecutive problems (Stentz, 1995; Koenig

et al., 2004b). If the changes between two consecutive problems are small, one can

potentially use information from solving the first problem to help solve the second prob-

lem faster. Centralized search algorithms that use this approach are called incremental

search algorithms (Koenig et al., 2004b). Incremental search algorithms can potentially

find solutions to a series of problems faster than is possible by solving each problem

from scratch, while guaranteeing that the cost-minimal solution is found for each prob-

lem (Koenig et al., 2004b). Typically, the runtime of these algorithms decreases as they

reuse more information.

There are generally three classes of incremental search algorithms. Algorithms of

the first class reuse information from previous searches to update the heuristic values
1Measured in the number of nodes expanded.

37

of the current search to make them more informed (Koenig & Likhachev, 2005; Koenig,

Likhachev, & Sun, 2007; Sun, Koenig, & Yeoh, 2008). Algorithms that belong to this

class include Adaptive A* (Koenig & Likhachev, 2005), MT-Adaptive A* (Koenig et al.,

2007) and GAA* (Sun et al., 2008). Experimental results show that GAA* can be up

to twice faster than algorithms that solve each problem from scratch (Sun et al., 2008).

Typically, the larger the number of heuristic values that are made more informed, the

smaller the runtime of the current search. This approach is promising since DCOP search

algorithms use heuristic values to guide their searches.

Incremental search algorithms of the second class transform the OR search tree of

the previous search to the OR search tree of the current search (Stentz, 1995; Koenig &

Likhachev, 2002; Koenig, Likhachev, & Furcy, 2004a; Sun, Yeoh, & Koenig, 2010b). Algo-

rithms that belong to this class include D* (Stentz, 1995), D* Lite (Koenig & Likhachev,

2002), LPA* (Koenig et al., 2004a) and MT-D* Lite (Sun et al., 2010b). Experimental

results show that D* Lite can be up two orders of magnitude faster than algorithms that

solve each problem from scratch in four-neighbor random gridworlds when the number

of changes is small (Sun, Yeoh, & Koenig., 2009a). Typically, the larger the similarity

between the previous and current OR search trees, the smaller the runtime of the current

search. This approach is promising since DCOP search algorithms use AND/OR search

trees, which are similar to OR search trees.

Incremental search algorithms of the third class identify the portion of the OR search

tree from the previous search that can be reused for the current search (Sun & Koenig,

2007; Sun et al., 2009b; Sun, Yeoh, & Koenig, 2010a). Algorithms that belong to this class

include FSA* (Sun & Koenig, 2007), FRA* (Sun et al., 2009b) and G-FRA* (Sun et al.,

38

2010a). Experimental results show that FRA* can be up to one order of magnitude

faster than algorithms that solve each problem from scratch in four-neighbor random

gridworlds (Sun et al., 2009b). Typically, the larger the portion of the OR search tree

from the previous search that is reused, the smaller the runtime of the current search.

This approach is promising since DCOP search algorithms use AND/OR search trees,

which are similar to OR search trees.

39

Chapter 3

Speeding Up via Appropriate Search Strategies

This chapter introduces Branch-and-Bound ADOPT (BnB-ADOPT), a DCOP search

algorithm that uses the framework of ADOPT but changes the search strategy of ADOPT

from memory-bounded best-first search to depth-first branch-and-bound search. Our

experimental results show that BnB-ADOPT is up to one order of magnitude faster than

ADOPT when solving sufficiently large DCOP problems. Therefore, these results validate

the hypothesis that DCOP search algorithms that employ depth-first branch-and-bound

search can be faster than DCOP search algorithms that employ memory-bounded best-

first search.

This chapter is organized as follows: We first describe the motivation for our work in

Section 3.1. In Section 3.2, we provide a detailed description of the BnB-ADOPT algo-

rithm. We then prove its correctness and completeness and describe its space complexity

in Section 3.3 before presenting our experimental results in Section 3.4 and our summary

in Section 3.5.

40

3.1 Motivation

Researchers have concluded that, within the context of centralized search algorithms,

depth-first branch-and-bound searches are often faster than memory-bounded best-first

searches when solving problems with bounded-depth search trees (Zhang & Korf, 1995).

As it turns out, DCOP problems are problems with bounded-depth search trees – the

depth of search trees of DCOP problems is bounded by twice the number of agents in

the problem. Therefore, I hypothesize that DCOP search algorithms that employ depth-

first branch-and-bound search can be faster than DCOP search algorithms that employ

memory-bounded best-first search.

However, this hypothesis is not necessarily true since the conclusions in (Zhang &

Korf, 1995) were for centralized search algorithms. In fact, there exist a DCOP search

algorithm that employs depth-first branch-and-bound search, namely SBB, that is slower

than a DCOP search algorithm that employ memory-bounded best-first search, namely

ADOPT (Modi et al., 2005). However, it is difficult to determine which one is the

better search strategy since both algorithms differ by more than their search strategies,

as shown in Table 2.1. In fact, Table 2.1 shows that existing DCOP search algorithms

that employ depth-first branch-and-bound search, namely SBB, NCBB and AFB, have

other properties aside from the search strategies that are different from those of ADOPT.

Therefore, I introduce Branch-and-Bound ADOPT (BnB-ADOPT), a DCOP search

algorithm that uses the framework of ADOPT and only changes the search strategy of

ADOPT from memory-bounded best-first search to depth-first branch-and-bound search.

Thus, the comparison of the runtimes of ADOPT and BnB-ADOPT will experimentally

41

assess my hypothesis. This work is non-trivial since ADOPT is a rather complicated

algorithm whose agents operate concurrently and asynchronously at all times. The agents

can only perform local searches, yet must follow a global search strategy.

3.2 BnB-ADOPT

We now introduce our new algorithm Branch-and-Bound ADOPT (BnB-ADOPT). BnB-

ADOPT has the same memory requirement, observes the same communication restriction

and uses the same agent operation and pseudo-tree structure as ADOPT, but employs

a depth-first branch-and-bound search strategy instead of a memory-bounded best-first

search strategy. We do not describe BnB-ADOPT as a modification of ADOPT since this

approach requires the readers to have an in-depth understanding of ADOPT. Instead, we

give a stand-alone description of BnB-ADOPT that requires no knowledge of ADOPT,

with the intention of creating a self-contained and hopefully easy-to-read section.

3.2.1 Notations and Key Terms

We adopt the following notation from ADOPT to describe BnB-ADOPT.

• V alInit(a) ∈ Dom(a) is the initial value of agent a ∈ A;

• CD(a) ⊆ A is the set of child and pseudo-child agents of agent a ∈ A;

• C(a) ⊆ CD(a) is the set of child agents of agent a ∈ A;

• pa(a) ∈ A is the parent agent of agent a ∈ A except for the root agent;

• P (a) ⊆ A is the set of ancestor agents (including the parent agent) of agent a ∈ A;

42

• SCP (a) ⊆ P (a) is the set of ancestor agents (including the parent agent) of agent

a ∈ A that are parent or pseudo-parent agents of agent a or one (or more) of its

descendant agents; and

• CP (a) ⊆ SCP (a) is the set of ancestor agents (including the parent agent) of agent

a ∈ A that are parent or pseudo-parent agents of agent a.

We adopt the following key terms from ADOPT to describe BnB-ADOPT.

• Context (X): The context Xa of agent a is the set of values of all ancestor agents

of agent a. The context Xr of the root agent r is always equal to {}.

• Delta cost (δ): The delta cost δa
Xa(d) is the sum of the constraint costs of all

constraints that involve both agent a and one of its ancestor agents, under the

assumption that agent a takes on value d and its ancestor agents take on the values

in context Xa. In the search tree, δa
Xa(d) is the delta cost of the AND node that

has partial solution Xa ∪ (a, d). For example, δa2

{(a1,1)}(1) is the delta cost of node

f in Figure 2.3.

• Gamma cost (γ): The gamma costs γa
Xa(d) and γa

Xa are defined as follows:

γa
Xa(d) := δa

Xa(d) +
∑

c∈C(a)

γc
Xa∪(a,d) (3.1)

γa
Xa := min

d∈Dom(a)
{γa

Xa(d)} (3.2)

43

for all agents a, all values d and all contexts Xa. Thus, the gamma cost γa
Xa(d) is

the sum of the constraint costs of all constraints that involve agent a or one of its

descendant agents (that is, either both agent a and one of its ancestor agents, both

agent a and one of its descendant agents, both a descendant agent and an ancestor

agent of agent a or two descendant agents of agent a) minimized over all possible

values of its descendant agents, under the assumption that agent a takes on value

d and its ancestor agents take on the values in context Xa. In the search tree,

γa
Xa(d) is the gamma cost of the AND node that has partial solution Xa ∪ (a, d).

For example, γa2

{(a1,1)}(1) is the gamma cost of node f in Figure 2.3. The gamma

cost γa
Xa is the sum of the constraint costs of all constraints that involve agent a

or one of its descendant agents minimized over all possible values of agent a and

its descendant agents, under the assumption that the ancestor agents of agent a

take on the values in context Xa. In the search tree, the gamma cost γa
Xa is the

gamma cost of the OR node whose agent is agent a and whose parent AND node

has partial solution Xa. For example, γa2

{(a1,1)} is the gamma cost of node C in

Figure 2.3. Therefore, the gamma cost of an AND node is the sum of its delta cost

and the gamma costs of its child OR nodes, and the gamma cost of an OR node is

the minimum of the gamma costs of its child AND nodes. For example, the gamma

cost of node f in Figure 2.3 is the sum of its delta cost and the gamma costs of

nodes J and K, and the gamma cost of node C in Figure 2.3 is the minimum of

the gamma costs of nodes e and f .

44

Solving a DCOP problem optimally means to determine γr
Xr for the root agent r or,

equivalently, the gamma cost of the root node since γr
Xr is the minimal solution cost.

It is not difficult for the agents to cache information that allows them to determine a

cost-minimal solution.

3.2.2 Updating the Bounds

Every agent a in BnB-ADOPT stores and updates several bounds on the gamma costs,

namely lba,c
Xa(d), LBa

Xa(d), LBa
Xa , uba,c

Xa(d), UBa
Xa(d) and UBa

Xa for all values d, all child

agents c and all contexts Xa, maintaining the following bound property:

LBa
Xa ≤ γa

Xa ≤ UBa
Xa (3.3)

LBa
Xa(d) ≤ γa

Xa(d) ≤ UBa
Xa(d) (3.4)

lba,c
Xa(d) ≤ γc

Xa∪(a,d) ≤ uba,c
Xa(d) (3.5)

In the search tree,

• LBa
Xa and UBa

Xa are lower and upper bounds, respectively, (on the gamma cost)

of the OR node whose agent is agent a and whose parent AND node has partial

solution Xa;

• LBa
Xa(d) and UBa

Xa(d) are lower and upper bounds, respectively, (on the gamma

cost) of the AND node that has partial solution Xa ∪ (a, d); and

45

• lba,c
Xa(d) and uba,c

Xa(d) are lower and upper bounds, respectively, (on the gamma cost)

of the OR node whose agent is agent c and whose parent AND node has partial

solution Xa ∪ (a, d).

For example, LBa2

{(a1,1)} and UBa2

{(a1,1)} are bounds of node C in Figure 2.3,

LBa2

{(a1,1)}(1) and UBa2

{(a1,1)}(1) are bounds of node f , and lba2,a3

{(a1,1)}(1) and uba2,a3

{(a1,1)}(1)

are bounds of node J . lba2,a3

{(a1,1)}(1), uba2,a3

{(a1,1)}(1), LBa3

{(a1,1),(a2,1)} and UBa3

{(a1,1),(a2,1)} are

bounds of node J , but agent a2 maintains the first two bounds while agent a3 maintains

the last two bounds.

Each agent a uses the following update equations for all values d, all child agents c and

all contexts Xa to initialize its bounds lba,c
Xa(d) and uba,c

Xa(d), where the heuristic values

ha,c
Xa(d) are floating point numbers that are admissible and thus satisfy 0 ≤ ha,c

Xa(d) ≤

γc
Xa∪(a,d):

lba,c
Xa(d) := ha,c

Xa(d) (3.6)

uba,c
Xa(d) := ∞ (3.7)

Agent a then uses repeatedly the following update equations for all values d, all child

agents c, all contexts Xa and all contexts Xc (= Xa ∪ (a, d)) to tighten the bounds:

46

AOR

AND

OR

AND

OR

AND

a

B

c

D

g h

E

i j

d

F

k l

G

m n

b

C

e

H

o p

I

q r

f

J

s t

K

u v

Identifiers

0OR

AND

OR

AND

OR

AND

0

0

0

0

10 14

0

3 8

0

0

8 13

0

10 3

0

0

0

0

25 7

0

3 8

0

0

23 6

0

10 3

Step 1

0OR

AND

OR

AND

OR

AND

0

10 14 3 8 8 13 10 3

0

25 7 3 8 23 6 10 3

0

18

10 3

19

3

0

30

7 3

12

6 38

Step 2

12OR

AND

OR

AND

OR

AND

18

10 14 3 8 8 13 10 3

12

25 7 3 8 23 6 10 3

18

18

10 3

19

3

12

30

7 3

12

6 38

Step 3

Figure 3.1: Simplified Trace of the Updates of the (Lower and Upper) Bounds

lba,c
Xa(d) := max{lba,c

Xa(d), LBc
Xc} (3.8)

LBa
Xa(d) := δa

Xa(d) +
∑

c∈C(a)

lba,c
Xa(d) (3.9)

LBa
Xa := min

d∈Dom(a)
{LBa

Xa(d)} (3.10)

uba,c
Xa(d) := min{uba,c

Xa(d), UBc
Xc} (3.11)

UBa
Xa(d) := δa

Xa(d) +
∑

c∈C(a)

uba,c
Xa(d) (3.12)

UBa
Xa := min

d∈Dom(a)
{UBa

Xa(d)} (3.13)

The updates maintain the bound property and improve the bounds monotonically,

that is, the lower bounds are monotonically non-decreasing and the upper bounds are

monotonically non-increasing.1 After a finite amount of time, UBa
Xa ≤ LBa

Xa for all

1Leaf agents use the same update equations. Since they do not have child agents, the sums over their
child agents evaluate to 0. For example, LBa

Xa(d) = UBa
Xa(d) = δa

Xa(d) for all leaf agents a, all values d
and all contexts Xa.

47

agents a and all contexts Xa. BnB-ADOPT terminates when its termination condition

UBr
Xr ≤ LBr

Xr for the root agent r is satisfied. Then, UBr
Xr ≤ LBr

Xr and the bound

property UBr
Xr ≥ LBr

Xr together imply that UBr
Xr = γr

Xr = LBr
Xr , and the DCOP

problem is solved optimally.

Figure 3.1 shows a simplified trace of the updates of the (lower and upper) bounds

for our example DCOP problem. We assume that the updates proceed sequentially from

the leaf agents to the root agent. Due to this simplification, the lower and upper bounds

of each node are identical to its gamma cost and independent of the heuristic values. The

numbers in the nodes are their bounds. Two agents maintain the bounds of OR nodes

except for the root node. The figure shows the bounds that the parent agent maintains

rather than the bounds that the child agent maintains. For example, the number in node

B is the bounds that agent a1 rather than agent a2 maintains. The bounds that the child

agent maintains can be computed by taking the minimum of the bounds of the child AND

nodes of the OR node. Agents update the bound of an AND node to the sum of its delta

cost and the bounds of its child OR nodes according to update equations 3.9 and 3.12.

They update the bound of an OR node to the minimum of the bounds of its child AND

nodes according to update equations 3.10 and 3.13. A more detailed description of the

trace is as follows:

• Step 1: Leaf agent a3 updates the bounds of AND nodes g, h, k, l, o, p, s and t

to their delta costs according to update equations 3.9 and 3.12 and the bounds of

OR nodes D, F , H and J to the minimum of the bounds of their child AND nodes

according to update equations 3.10 and 3.13. Similarly, leaf agent a4 updates the

48

bounds of AND nodes i, j, m, n, q, r, u and v to their delta costs according to

update equations 3.9 and 3.12 and the bounds of OR nodes E, G, I and K to the

minimum of the bounds of their child AND nodes according to update equations 3.10

and 3.13. The bounds of OR nodes D to K are not shown in the figure since they

are not (yet) maintained by agent a2.

• Step 2: Agent a2 updates the bounds of OR nodes D to K that it maintains to

the bounds of the same OR nodes that leaf agents a3 and a4 maintain according

to update equations 3.8 and 3.11, the bounds of AND nodes c to f to the sum

of their delta costs and the bounds of their child OR nodes according to update

equations 3.9 and 3.12 and the bounds of OR nodes B and C to the minimum of

the bounds of their child AND nodes according to update equations 3.10 and 3.13.

The bounds of OR nodes B and C are not shown in the figure since they are not

(yet) maintained by agent a1.

• Step 3: Agent a1 updates the bounds of OR nodes B and C that it maintains

to the bounds of the same OR nodes that agent a2 maintains according to update

equations 3.8 and 3.11, the bounds of AND nodes a and b to the sum of their delta

costs and the bounds of their child OR nodes according to update equations 3.9

and 3.12 and the bounds of OR node A to the minimum of the bounds of its child

AND nodes according to update equations 3.10 and 3.13. Since the lower and upper

bounds of a node are equal to its gamma cost, the lower and upper bounds of the

root node are equal to its gamma cost, which in turn is equal to the minimal solution

cost. The propagation terminates after three steps with minimal solution cost 12.

49

3.2.3 Adhering to the Memory Limitations

Our description of BnB-ADOPT so far assumes no memory limitations. However, BnB-

ADOPT is a memory-bounded DCOP search algorithm with memory requirements per

agent that are linear in the number of agents. We now describe how BnB-ADOPT adheres

to these memory limitations using techniques that were introduced for ADOPT but apply

to BnB-ADOPT as well.

The simplified trace in Figure 3.1 assumes that every agent a maintains its bounds

for all values d, all child agents c and all contexts Xa. The number of contexts can be

exponential in the depth of the agent in the pseudo-tree. For our example DCOP problem,

agent a3 has four different contexts for the four different combinations of values of its

ancestor agents a1 and a2. An agent cannot maintain an exponential number of bounds

due to the memory limitations. Therefore, every agent maintains its bounds for only one

context at any given time. This context is stored in the variable Xa for agent a. The size

of the context is at most linear in the number of agents. The number of bounds of an

agent is now linear in the product of its domain cardinality and the number of its child

agents. Thus, the memory requirements per agent are only linear in the number of agents

if the domain cardinality and the magnitude of the bounds (and the other variables) are

constant for each agent.

3.2.4 Performing Depth-First Search

Our description of BnB-ADOPT so far applies to ADOPT as well. However, BnB-

ADOPT uses depth-first branch-and-bound search and ADOPT uses best-first search.

We now describe how BnB-ADOPT implements depth-first search.

50

Agents in BnB-ADOPT send messages that are similar to that of ADOPT but pro-

cesses them differently. They send messages of three different types, namely VALUE,

COST and TERMINATE messages. At the start, every agent a initializes its context

Xa, uses update equations 3.6, 3.9, 3.10, 3.7, 3.12 and 3.13 to initialize its bounds and

takes on its best value da := arg mind∈Dom(a){LBa
Xa(d)}. It sends VALUE messages to all

child agents and a COST message to its parent agent. It then repeatedly waits for incom-

ing messages, processes them, possibly takes on a different value and again sends VALUE

messages to all child agents and a COST message to its parent agent. A description of

the three message types and how agents process them is as follows:

• VALUE messages: An agent a with context Xa and value da sends VALUE

messages to all child agents with the desired context Xa ∪ (a, da), which is its

context augmented with its value. Leaf agents do not have child agents and thus do

not send VALUE messages. VALUE messages thus propagate contexts down the

pseudo-tree.

When an agent receives a VALUE message, it checks whether its context is identical

to the desired context in the VALUE message. If it is not, then the agent changes

its context to the desired context in the VALUE message. In either case, it then

executes the common program (see below).

• COST messages: An agent a sends COST messages to its parent agent with its

identity a, its context Xa and its bounds LBa
Xa and UBa

Xa . The root agent does

not have a parent agent and thus does not send COST messages. COST messages

thus propagate bounds up the pseudo-tree.

51

When an agent receives a COST message, it checks whether its context and the

context in the COST message are compatible. Two contexts are compatible if no

agent takes on different values in the two contexts. If they are, then the agent uses

update equations 3.8 to 3.13 with the bounds in the COST message to improve its

bounds for the value in the message. In either case, it then executes the common

program (see below).

• TERMINATE messages: When the termination condition UBr
Xr ≤ LBr

Xr is

satisfied, the root agent r sends TERMINATE messages (without parameters) to all

child agents to inform them that the search is complete and then terminates. When

an agent receives such a TERMINATE message, it sends TERMINATE messages

to all child agents and terminates as well. Leaf agents do not have child agents and

thus do not send TERMINATE messages. TERMINATE messages thus propagate

down the pseudo-tree until all agents terminate.

The common program is as follows:

• Context change: If an agent a changed its context Xa, it executes the following

statements: It uses update equations 3.6, 3.9, 3.10, 3.7, 3.12 and 3.13 to initialize

its bounds and takes on its best value da := arg mind∈Dom(a){LBa
Xa(d)}. It then

sends VALUE messages to all child agents and a COST message to its parent agent.

• No context change: If an agent a did not change its context Xa, it executes

the following statements: If UBa
Xa ≤ LBa

Xa(da) for its value da, then the context

of the agent augmented with its value cannot be completed to a solution whose

solution cost is smaller than the solution cost of the best solution found so far

52

for its context Xa (= UBa
Xa) and the agent thus takes on its best value da :=

arg mind∈Dom(a){LBa
Xa(d)}. It then sends VALUE messages to all child agents and

a COST message to its parent agent.

Assume that the context Xa of an agent a does not change. After a finite amount

of time, UBa
Xa ≤ LBa

Xa(da) for its value da. The agent then takes on its best value and

repeats the procedure. After a finite amount of time, UBa
Xa ≤ LBa

Xa(d) for all values

d, which implies that UBa
Xa ≤ LBa

Xa . The agent takes on every value d at most once

until UBa
Xa ≤ LBa

Xa since LBa
Xa(d) remains unchanged and UBa

Xa is monotonically non-

increasing once the agent changes its value from d to a different value, which prevents

the agent from changing its value back to d before UBa
Xa ≤ LBa

Xa. BnB-ADOPT thus

performs depth-first search. Then, after a finite amount of time, UBr
Xr ≤ LBr

Xr and the

bound property UBr
Xr ≥ LBr

Xr together imply that UBr
Xr = γr

Xr = LBr
Xr for the root

agent r, and the DCOP problem is solved optimally.

Figures 3.2 and 3.3 show traces of the updates of the lower and upper bounds, re-

spectively, for our example DCOP problem. BnB-ADOPT uses the zero heuristic values.

The initial context of every agent assigns value 0 to all ancestor agents of the agent. We

partition time into cycles. Agents maintain their bounds for only one context at any given

time. Nodes in the figures are crossed out if their agent does not maintain their bounds.

AND nodes are shaded if their partial solution is equal to the context of the agent of

their parent OR node augmented with its value. For example, agents a1, a3 and a4 take

on value 0 in Cycle 2, and agent a2 takes on value 1. The context of agent a1 is {}, the

53

AOR

AND

OR

AND

OR

AND

a

B

c

D

g h

E

i j

d

F

k l

G

m n

b

C

e

H

o p

I

q r

f

J

s t

K

u v

Identifiers

X X X X

OR

AND

OR

AND

OR

AND

5

0

10 14

0

3 8

8

0 0

X

X

X X

X

X X

X

X

X X

X

X X

0

0

0

0

0

Cycle 1

0OR

AND

OR

AND

OR

AND 10 14 3 8 X X X X

0

0

X

X

X X

X

X X

X

X

X X

X

X X

5

10 3

8

0 0

5

18

Cycle 2

0OR

AND

OR

AND

OR

AND X X 8 13 10 3

X

X

X X

X

X X

X

X

X X

X

X X

18

10 3

8

0 0

0

08

8

X X

Cycle 3

0OR

AND

OR

AND

OR

AND X X X X 8 13 10 3

X

X

X X

X

X X

X

X

X X

X

X X

18

10 3 8 3

0

08

8

19

Cycle 4

0OR

AND

OR

AND

OR

AND 10 14 3 8 X X

X

X

X X

X

X X

X

X

X X

X

X X

18

10 3

19

8 3

0

018

18

X X

Cycle 5

0OR

AND

OR

AND

OR

AND 10 14 3 8 X X X X

20

X X X X

3

X X X X

X

10 3

X

X X

0

018

18

0 0 0 0

Cycle 6

3OR

AND

OR

AND

OR

AND X X X X X X X X

20

X X X X

3

0

23 6

0

10 3

X

X X

X

X X

318

18 3

0 0

Cycle 7

3OR

AND

OR

AND

OR

AND X X X X X X X X

20

X X X X 23 6 10 3

X

X X

X

X X

3

18

18

3

0 0 6 3

12

Cycle 8

12OR

AND

OR

AND

OR

AND X X X X X X X X

20

X X X X 23 6 10 3

X

X X

X

X X

12

18

18

12

0 0 6 3

12

Cycle 9

Figure 3.2: Trace of the Updates of the Lower Bounds

context of agent a2 is {(a1, 0)} and the contexts of agents a3 and a4 are {(a1, 0), (a2, 0)}.

A description of the trace is as follows:

• Cycle 1: Root agent a1 initializes its context Xa1 to {}. It initializes the lower

bounds of nodes B (= lba1,a2

Xa1 (0)) and C (= lba1,a2

Xa1 (1)) to 0 since it uses the zero

heuristic values. It updates the lower bound of node a (= LBa1
Xa1 (0)) to the sum of

its delta cost (= 0) and the lower bound of node B (= 0) according to the update

equations. It updates the lower bound of node b (= LBa1
Xa1 (1)) to the sum of its

delta cost (= 0) and the lower bound of node C (= 0) according to the update

54

AOR

AND

OR

AND

OR

AND

a

B

c

D

g h

E

i j

d

F

k l

G

m n

b

C

e

H

o p

I

q r

f

J

s t

K

u v

Identifiers

X X X X

OR

AND

OR

AND

OR

AND

inf

inf

10 14

inf

3 8

inf

inf inf

X

X

X X

X

X X

X

X

X X

X

X X

inf

inf

inf

inf

inf

Cycle 1

infOR

AND

OR

AND

OR

AND 10 14 3 8 X X X X

inf

0

X

X

X X

X

X X

X

X

X X

X

X X

inf

10 3

inf

inf inf

inf

18

Cycle 2

18OR

AND

OR

AND

OR

AND X X 8 13 10 3

X

X

X X

X

X X

X

X

X X

X

X X

18

10 3

inf

inf inf

inf

inf18

18

X X

Cycle 3

18OR

AND

OR

AND

OR

AND X X X X 8 13 10 3

X

X

X X

X

X X

X

X

X X

X

X X

18

10 3 8 3

inf

inf18

18

19

Cycle 4

18OR

AND

OR

AND

OR

AND 10 14 3 8 X X

X

X

X X

X

X X

X

X

X X

X

X X

18

10 3

19

8 3

inf

inf18

18

X X

Cycle 5

18OR

AND

OR

AND

OR

AND 10 14 3 8 X X X X

inf

X X X X

inf

X X X X

X

10 3

X

X X

inf

inf18

18

inf inf inf inf

Cycle 6

18OR

AND

OR

AND

OR

AND X X X X X X X X

inf

X X X X

inf

inf

23 6

inf

10 3

X

X X

X

X X

inf18

18 inf

inf inf

Cycle 7

18OR

AND

OR

AND

OR

AND X X X X X X X X

inf

X X X X 23 6 10 3

X

X X

X

X X

inf

18

18

inf

inf inf 6 3

12

Cycle 8

12OR

AND

OR

AND

OR

AND X X X X X X X X

inf

X X X X 23 6 10 3

X

X X

X

X X

12

18

18

12

inf inf 6 3

12

Cycle 9

Figure 3.3: Trace of the Updates of the Upper Bounds

equations. It updates the lower bound of node A (= LBa1
Xa1) to the minimum of the

lower bound of node a (= 0) and the lower bound of node b (= 0) according to the

update equations. It initializes the upper bounds of nodes B and C to infinity. It

updates the upper bounds of nodes a, b and A to infinity according to the update

equations. It takes on its best value. It can take on either value 0 or value 1 since

the lower bounds of nodes a and b are both 0. It takes on value 0 and sends a

VALUE message to its child agent a2.

55

Agent a2 initializes its context Xa2 to {(a1, 0)}. It initializes the lower bounds of

nodes D, E, F and G to 0. It updates the lower bounds of nodes c, d and B to 5,

8 and 5, respectively. It initializes the upper bounds of nodes D, E, F and G to

infinity. It updates the upper bounds of nodes c, d and B to infinity. The bounds

of node B that agent a2 maintains are not shown in the figures. It takes on its best

value 0, sends VALUE messages to its child agents a3 and a4 and sends a COST

message to its parent agent a1.

Leaf agent a3 initializes its context Xa3 to {(a1, 0), (a2, 0)}. It updates the lower

bounds of nodes g and h to their delta costs 10 and 14, respectively, since leaf agents

do not have child agents. It updates the lower bound of node D to 10. It updates

the upper bounds of nodes g and h to their delta costs 10 and 14, respectively, since

leaf agents do not have child agents. It updates the upper bound of node D to 10.

The bounds of node D that leaf agent a3 maintains are not shown in the figures. It

takes on its best value 0 and sends a COST message to its parent agent a2.

Leaf agent a4 initializes its context Xa4 to {(a1, 0), (a2, 0)}. It updates the lower

bounds of nodes i and j to their delta costs 3 and 8, respectively. It updates the

lower bound of node E to 3. It updates the upper bounds of nodes i and j to their

delta costs 3 and 8, respectively. It updates the upper bound of node E to 3. The

bounds of node E that leaf agent a4 maintains are not shown in the figures. It takes

on its best value 0 and sends a COST message to its parent agent a2.

56

In summary, the following messages are sent during Cycle 1:

– message (VALUE, {(a1, 0)}) from agent a1 to agent a2;

– message (VALUE, {(a1, 0), (a2, 0)}) from agent a2 to agent a3;

– message (VALUE, {(a1, 0), (a2, 0)}) from agent a2 to agent a4;

– message (COST, a2, {(a1, 0)}, 5, ∞) from agent a2 to agent a1;

– message (COST, a3, {(a1, 0), (a2, 0)}, 10, 10) from agent a3 to agent a2; and

– message (COST, a4, {(a1, 0), (a2, 0)}, 3, 3) from agent a4 to agent a2.

• Cycle 2: Root agent a1 receives the COST message sent by its child agent a2 in

Cycle 1. Since the context of agent a1 (= {}) is compatible with the context in the

message (= {(a1, 0)}), it improves its bounds. It updates the bounds of node B to

the bounds in the message (= 5 and infinity, respectively). It updates the bounds

of nodes a, b and A. It does not change its value since the lower bound of node a

(= LBa1
Xa1 (da1) = 5 for its value da1 = 0) is still smaller than the upper bound of

node A (= UBa1
Xa1 = ∞). It sends a VALUE message to its child agent a2.

Agent a2 receives the VALUE message sent by its parent agent a1 in Cycle 1. Its

context (= {(a1, 0)}) remains unchanged since it is the same as the desired context

in the message (= {(a1, 0)}). Agent a2 also receives the COST messages sent by

its child agents a3 and a4 in Cycle 1. Since the context of agent a2 (= {(a1, 0)})

is compatible with the contexts in the messages (= {(a1, 0), (a2, 0)}), it improves

its bounds. It updates the bounds of node D to the bounds in the first message

(= 10 and 10, respectively) and the bounds of node E to the bounds in the second

57

message (= 3 and 3, respectively). It updates the bounds of nodes c, d and B. It

changes its value since the lower bound of node c (= LBa2
Xa2 (da2) = 18 for its value

da2 = 0) is no longer smaller than the upper bound of node B (= UBa2
Xa2 = 18). It

takes on its best value 1, sends VALUE messages to its child agents a3 and a4 and

sends a COST message to its parent agent a1.

Leaf agents a3 and a4 receive the VALUE messages sent by their parent agent a2

in Cycle 1. Their contexts (= {(a1, 0), (a2, 0)}) remain unchanged since they are

the same as the desired context in the message (= {(a1, 0), (a2, 0)}). They send the

same COST messages as before to their parent agent a2.

In summary, the messages sent during Cycle 2 are identical to the ones sent during

Cycle 1, except for the messages sent by agent a2, which are as follows:

– message (VALUE, {(a1, 0), (a2, 1)}) from agent a2 to agent a3;

– message (VALUE, {(a1, 0), (a2, 1)}) from agent a2 to agent a4; and

– message (COST, a2, {(a1, 0)}, 8, 18) from agent a2 to agent a1.

The VALUE messages are different because agent a2 changed its value from 0 to 1.

The COST message is different because agent a2 changed its bounds.

• Cycles 3-9: The messages sent during Cycle 3 are identical to the ones sent during

Cycle 2, except for the messages sent by agents a3 and a4, which are as follows:

– message (COST, a3, {(a1, 0), (a2, 1)}, 8, 8) from agent a3 to agent a2; and

– message (COST, a4, {(a1, 0), (a2, 1)}, 3, 3) from agent a4 to agent a2.

58

The COST messages are different because agents a3 and a4 changed their contexts.

The termination condition holds after a finite amount of time when the upper

bound of node A (= UBa1
Xa1 = 12) is no larger than the lower bound of node A

(= LBa1
Xa1 = 12). Root agent a1 sends TERMINATE messages to all child agents,

and the TERMINATE messages propagate down the pseudo-tree until all agents

terminate. BnB-ADOPT terminates after nine cycles with minimal solution cost

12.

3.2.5 Performing Branch-and-Bound Search

The operation of the agent as described in Section 3.2.4 can be further improved. We now

refine our description of BnB-ADOPT by explaining how the agents implement branch-

and-bound search to make BnB-ADOPT faster. Every agent a in BnB-ADOPT now also

maintains the variable threshold THa
Xa, which it initializes to infinity. The threshold of

the root agent always remains infinity. Every other agent uses its threshold for pruning,

meaning that it can change its value earlier than previously.

• First change: If an agent a did not change its context Xa, it previously executed

the following statements: If UBa
Xa ≤ LBa

Xa(da) for its value da, then the agent

took on its best value. It then sent VALUE messages to all child agents and a

COST message to its parent agent. Now, if THa
Xa ≤ LBa

Xa(da), then the agent also

takes on its best value. Thus, if min{THa
Xa , UBa

Xa} ≤ LBa
Xa(da), then the agent

takes on its best value and thus potentially changes its value, which is earlier than

previously. min{THa
Xa , UBa

Xa} is the pruning quantity.

59

• Second change: An agent a with context Xa and value da sends VALUE mes-

sages to all its child agents, which previously contained only the desired con-

text Xa ∪ (a, da). VALUE messages now also contain the desired threshold

min{THa
Xa , UBa

Xa} − δa
Xa(da) − ∑

c′∈C(a)\c lba,c′
Xa (da) for the child agent c. When

agent c receives a VALUE message, it sets its threshold to the desired threshold

and then proceeds as described earlier. The desired threshold is set such that the

lower bound LBa
Xa(da) of agent a for its value da reaches its pruning quantity (and

agent a thus potentially changes its value) when the lower bound LBc
Xc of agent c

reaches the desired threshold. This property can be verified as follows:

LBc
Xc ≥ min{THa

Xa , UBa
Xa} − δa

Xa(da) −
∑

c′∈C(a)\c
lba,c′

Xa (da) (3.14)

lba,c
Xa(da) ≥ min{THa

Xa , UBa
Xa} − δa

Xa(da) −
∑

c′∈C(a)\c
lba,c′

Xa (da) (3.15)

−min{THa
Xa , UBa

Xa} ≥ −δa
Xa(da) − lba,c

Xa(da) −
∑

c′∈C(a)\c
lba,c′

Xa (da) (3.16)

min{THa
Xa , UBa

Xa} ≤ δa
Xa(da) + lba,c

Xa(da) +
∑

c′∈C(a)\c
lba,c′

Xa (da) (3.17)

min{THa
Xa , UBa

Xa} ≤ δa
Xa(da) +

∑

c′∈C(a)

lba,c′
Xa (da) (3.18)

min{THa
Xa , UBa

Xa} ≤ LBa
Xa(da) (3.19)

60

3.2.6 Further Enhancements

We continue to refine our description of BnB-ADOPT by explaining a number of addi-

tional enhancements, which were introduced for ADOPT.

• Reduced contexts: The agents now use reduced contexts, which are subsets of

the contexts described previously. The reduced context Xa
1 of agent a contains the

values of all ancestor agents p ∈ SCP (a), while the context Xa
2 described previously

contains the values of all ancestor agents p ∈ P (a). The agents can use reduced

contexts since γa
Xa

1
= γa

Xa
2

and γa
Xa

1
(d) = γa

Xa
2
(d) for all values d. Agents now use

reduced contexts because they need to change their contexts and thus initialize

their bounds less often when they receive VALUE messages since their contexts are

then more often identical to the desired contexts in the VALUE messages. For our

example DCOP problem, the reduced context of agent a4 contains the values of

only agent a2 rather than the values of agents a1 and a2. Therefore, the following

pairs of nodes in the search tree are actually the same node: nodes i and q, nodes

j and r, nodes m and u, and nodes n and v.

• VALUE and COST messages: An agent sends VALUE messages to all child

agents, which previously contained the desired context and the desired threshold.

The desired context is the context of the agent augmented with its value. When

an agent receives a VALUE message, it previously checked whether its context is

identical to the desired context in the VALUE message. If it was not, then the

agent changed its context to the desired context in the VALUE message. Agents

now update their contexts differently to reduce the size of the VALUE messages. An

61

agent sends VALUE messages to all child and pseudo-child agents with its identity,

value and desired threshold, which is infinity for its pseudo-child agents. When an

agent receives a VALUE message, it sets its threshold to the desired threshold if the

message is from its parent agent. It also checks whether the value of the ancestor

agent in the VALUE message is more recent than the value of the ancestor agent

in its context. If it is, then the agent changes the value of the ancestor agent in

its context to the value of the ancestor agent in the VALUE message. However,

the context of an agent does not only contain the values of its parent and pseudo-

parent agents but also the values of its ancestor agents that are the parent or

pseudo-parent agents of one (or more) of its descendant agents, and ancestor agents

that are not constrained with the agent cannot send VALUE messages to the agent.

However, they send VALUE messages to their pseudo-child agents, at least one of

which is a descendant agent of the agent, and the information then propagates up

the pseudo-tree with COST messages until it reaches the agent. When an agent

receives a COST message, it now checks whether the value of an ancestor agent in

the context of the COST message is more recent than the value of the ancestor agent

in its context. If it is, then the agent changes the value of the ancestor agent in its

context to the value of the ancestor agent in the context of the COST message. Our

example DCOP problem is too simple to allow us to illustrate the propagation of

the information up the pseudo-tree. However, imagine that a new agent a5 is a child

agent of agent a4 and is constrained with agents a1 and a4. The context of agent a4

then contains the value of agent a1 but agent a1 cannot send VALUE messages to

agent a4. However, agent a1 sends VALUE messages to agent a5. Agent a5 changes

62

the value of agent a1 in its context and sends COST messages with its context to

agent a4, which then changes the value of agent a1 in its context as well.

The agents now need to determine whether the value of an agent in VALUE mes-

sages or in the contexts of COST messages is more recent than the value of the

agent in their contexts. Every agent a therefore now also maintains a counter IDa

and increments it whenever it changes its value. Therefore, a larger ID indicates

a more recent value. The values of agents in contexts are now labeled with their

IDs, and VALUE messages contain the identity of the sending agent, its value, its

ID and the desired threshold.

• Bounds: Whenever an agent changes its context Xa, it previously initialized its

bounds and took on its best value. The (reduced) context of a child agent of an

agent can now be a strict subset of the (reduced) context of the agent since the

parent or some pseudo-parent agents of the agent might not be (parent or) pseudo-

parent agents of the child agent or its descendant agents. If the context of child

agent c does not contain the values of any agents whose values changed in the

context of agent a, then agent a does not initialize its lower bounds lba,c
Xa(d) and

upper bounds uba,c
Xa(d) for agent c and all values d before it takes on its best value.

Agents use this optimization because they need to initialize their bounds less often

this way. For our example DCOP problem, if agent a2 changes its context from

{(a1, 0)} to {(a1, 1)} (where the IDs are omitted for simplicity), then it does not

initialize its lower bounds lba2,a4

Xa2 (d) and upper bounds uba2,a4

Xa2 (d) for child agent a4

63

and all values d since the context of agent a4 does not contain the value of agent

a1.

Additionally, if an agent a changes its context due to a COST message from its

child agent c and its new context Xa is compatible with the context in the COST

message, then agent a can set its lower bound lba,c
Xa(d) and upper bound uba,c

Xa(d)

for agent c and the value d of agent a in the COST message to the bounds in

the COST message before it takes on its best value. Agents use this optimization

because the bounds in the COST message are more informed than the initialized

bounds. Our example DCOP problem is too simple to allow us to illustrate this

optimization. However, imagine again that a new agent a5 is a child agent of agent

a4 and is constrained with agents a1 and a4. Assume that the context of agent a4

is {(a1, 0), (a2, 0)} (where the IDs are again omitted for simplicity) and it receives a

COST message from agent a5 with context {(a1, 1), (a4, 0)}. Agent a4 then changes

its context to {(a1, 1), (a2, 0)}, sets its lower bound lba4,a5

{(a1,1),(a2,0)}(0) and its upper

bound uba4,a5

{(a1,1),(a2,0)}(0) to the bounds in the COST message and initializes all other

bounds before it takes on its best value.

3.2.7 Pseudocode

Figure 3.4 shows the BnB-ADOPT pseudocode of every agent. The pseudocode does

not index variables with the context since this context is implicitly given by the variable

Xa. It uses the predicate Compatible(X,X ′) = ¬∃(a,d,ID)∈X,(a′,d′,ID′)∈X′(a = a′ ∧ d
= d′)

that determines if two contexts X and X ′ are compatible, that is, if no agent takes on

two different values in the two contexts [Lines 35, 44, 46, 48 and 51]. The pseudocode

64

procedure Start()
[01] Xa := {(p, ValInit(p), 0) | p ∈ SCP (a)};
[02] IDa := 0;
[03] forall c ∈ C(a), d ∈ Dom(a)
[04] InitChild(c, d);
[05] InitSelf();
[06] Backtrack();
[07] loop forever
[08] if(message queue is not empty)
[09] while(message queue is not empty)
[10] pop msg off message queue;
[11] When Received(msg);
[12] Backtrack();

procedure InitChild(c, d)
[13] lba,c(d) := ha,c(d);
[14] uba,c(d) := ∞;

procedure InitSelf()
[15] da := argmind∈Dom(a){δa(d) +

∑
c∈C(a) lba,c(d)};

[16] IDa := IDa + 1;
[17] THa := ∞;

procedure Backtrack()
[18] forall d ∈ Dom(a)
[19] LBa(d) := δa(d) +

∑
c∈C(a) lba,c(d);

[20] UBa(d) := δa(d) +
∑

c∈C(a) uba,c(d);

[21] LBa := mind∈Dom(a){LBa(d)};
[22] UBa := mind∈Dom(a){UBa(d)};
[23] if(LBa(da) ≥ min{THa, UBa})
[24] da := arg mind∈Dom(a){LBa(d)} (choose the previous da if possible);
[25] if a new da has been chosen
[26] IDa := IDa + 1;
[27] if((a is root and UBa ≤ LBa) or termination message received)
[28] Send(TERMINATE) to each c ∈ C(a);
[29] terminate execution;

[30] Send(VALUE, a, da, IDa, min{THa, UBa} − δa(da) − ∑
c′∈C(a)\c lba,c′(da)) to each c ∈ C(a);

[31] Send(VALUE, a, da, IDa, ∞) to each c ∈ CD(a) \ C(a);
[32] Send(COST, a, Xa, LBa, UBa) to pa(a) if a is not root;

procedure When Received(VALUE, p, dp, IDp, THp)
[33] X′ := Xa;
[34] PriorityMerge((p,dp, IDp), Xa);
[35] if(!Compatible(X′, Xa))
[36] forall c ∈ C(a), d ∈ Dom(a)
[37] if(p ∈ SCP (c))
[38] InitChild(c, d);
[39] InitSelf();
[40] if(p = pa(a))
[41] THa := THp;

procedure When Received(COST, c, Xc, LBc, UBc)
[42] X′ := Xa;
[43] PriorityMerge(Xc, Xa);
[44] if(!Compatible(X′, Xa))
[45] forall c ∈ C(a), d ∈ Dom(a)
[46] if(!Compatible({(p, dp, IDp) ∈ X′ | p ∈ SCP (c)},Xa))
[47] InitChild(c,d);
[48] if(Compatible(Xc, Xa))
[49] lba,c(d) := max{lba,c(d), LBc} for the unique (a′, d, ID) ∈ Xc with a′ = a;
[50] uba,c(d) := min{uba,c(d), UBc} for the unique (a′, d, ID) ∈ Xc with a′ = a;
[51] if(!Compatible(X′, Xa))
[52] InitSelf();

procedure When Received(TERMINATE)
[53] record termination message received;

Figure 3.4: Pseudocode of BnB-ADOPT

65

also uses the procedure PriorityMerge(X,X ′) that executes X ′ := {(a′, d′, ID′) ∈ X ′ |

¬∃(a,d,ID)∈X(a = a′)}∪{(a′, d′, ID′) ∈ X ′ | ∃(a,d,ID)∈X(a = a′∧ID ≤ ID′)}∪{(a, d, ID) ∈

X | ∃(a′,d′,ID′)∈X′(a = a′ ∧ ID > ID′)} and thus replaces the values of agents in context

X ′ with more recent values, if available, of the same agents in context X [Lines 34 and 43].

The code is identical for every agent except that the variable a is a “self” variable that

points to the agent itself. At the start, BnB-ADOPT calls Start() for every agent. When

an agent a receives a VALUE message from an ancestor agent, then the “When Received”

handler for VALUE messages is called with p being the ancestor agent, dp being the value

of the ancestor agent, IDp being the ID of the ancestor agent and THp being the desired

threshold for agent a if the ancestor agent is its parent agent (and infinity otherwise)

[Line 11]. When agent a receives a COST message from a child agent, then the “When

Received” handler for COST messages is called with c being the child agent, Xc being the

context of the child agent, LBc being the lower bound LBc
Xc of the child agent and UBc

being the upper bound UBc
Xc of the child agent [Line 11]. Finally, when agent a receives

a TERMINATE message from its parent agent, then the “When Received” handler for

TERMINATE messages is called without any arguments [Line 11].

BnB-ADOPT uses the same message passing and communication framework as

ADOPT and has the same memory requirements. It uses similar VALUE, COST and

TERMINATE messages, a similar strategy to update the context of an agent based on

VALUE messages from its ancestor agents and COST messages from its child agents, the

same semantics for the bounds and the same update equations to update these bounds.

BnB-ADOPT and ADOPT both use thresholds but BnB-ADOPT uses the thresholds for

pruning while ADOPT uses them to reconstruct partial solutions that were purged from

66

AOR

AND

OR

AND

OR

AND

a

B

c

D

g h

E

i j

d

F

k l

G

m n

b

C

e

H

o p

I

q r

f

J

s t

K

u v

Identifiers

OR

AND

OR

AND

OR

AND

9

2

10 14

2

3 8

12

2

X X

2

X X

X

X

X X

X

X X

X

X

X X

X

X X

3

3

6

6

3

Cycle 1

OR

AND

OR

AND

OR

AND

18

10

10 14

3

3 8

12

2

X X

2

X X

X

X

X X

X

X X

X

X

X X

X

X X

6

9

6

6

9

Cycle 2

OR

AND

OR

AND

OR

AND

18

10

X X

3

X X

12

2

8 13

2

10 3

X

X

X X

X

X X

X

X

X X

X

X X

6

12

6

6

12

Cycle 3

OR

AND

OR

AND

OR

AND

18

10

X X

3

X X

19

8

8 13

3

10 3

X

X

X X

X

X X

X

X

X X

X

X X

6

12

6

6

12

Cycle 4

OR

AND

OR

AND

OR

AND

18

10

10 14

3

3 8

19

8

X X

3

X X

X

X

X X

X

X X

X

X

X X

X

X X

6

18

6

6

18

Cycle 5

OR

AND

OR

AND

OR

AND

X

X

X X

X

X X

X

X

X X

X

X X

25

2

25 7

3

3 8

8

2

X X

3

X X

6

18

6

6

18

Cycle 6

OR

AND

OR

AND

OR

AND

X

X

X X

X

X X

X

X

X X

X

X X

30

7

X X

3

X X

8

2

23 6

3

10 3

8

18

8

8

18

Cycle 7

OR

AND

OR

AND

OR

AND

X

X

X X

X

X X

X

X

X X

X

X X

30

7

X X

3

X X

12

6

23 6

3

10 3

8

18

8

8

18

Cycle 8

OR

AND

OR

AND

OR

AND

X

X

X X

X

X X

X

X

X X

X

X X

30

7

X X

3

X X

12

6

23 6

3

10 3

12

18

12

12

18

Cycle 9

Figure 3.5: Trace of the Updates of the Lower Bounds of BnB-ADOPT

memory. Thus, BnB-ADOPT uses a different threshold initialization [Line 17], differ-

ent desired threshold calculation [Line 30] and different termination condition [Line 27].

BnB-ADOPT also differs from ADOPT in that it maintains IDs that agents use to in-

dicate the recency of their values and labels the values of agents in contexts with their

IDs.

67

Cycle 1 2 3 4 5 6 7 8 9

Xa1

da1 0 0 0 0 1 1 1 1 1
IDa1 1 1 1 1 2 2 2 2 2
THa1 ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞
LBa1(0) 3 9 12 12 18 18 18 18 18
LBa1(1) 6 6 6 6 6 6 8 8 12
LBa1 3 6 6 6 6 6 8 8 12
UBa1(0) ∞ ∞ 18 18 18 18 18 18 18
UBa1(1) ∞ ∞ ∞ ∞ ∞ ∞ ∞ 30 12
UBa1 ∞ ∞ 18 18 18 18 18 18 12
lba1,a2(0) 3 9 12 12 18 18 18 18 18
lba1,a2(1) 6 6 6 6 6 6 8 8 12
uba1,a2(0) ∞ ∞ 18 18 18 18 18 18 18
uba1,a2(1) ∞ ∞ ∞ ∞ ∞ ∞ ∞ 30 12

Xa2 (a1, 0, 0) (a1, 0, 1) (a1, 0, 1) (a1, 0, 1) (a1, 0, 1) (a1, 1, 2) (a1, 1, 2) (a1, 1, 2) (a1, 1, 2)
da2 0 1 1 0 0 1 1 1 1
IDa2 1 2 2 3 3 4 4 4 4
THa2 ∞ ∞ ∞ 18 18 18 18 18 18
LBa2(0) 9 18 18 18 18 25 30 30 30
LBa2(1) 12 12 12 19 19 8 8 12 12
LBa2 9 12 12 18 18 8 8 12 12
UBa2(0) ∞ 18 18 18 18 ∞ 30 30 30
UBa2(1) ∞ ∞ ∞ 19 19 ∞ ∞ 12 12
UBa2 ∞ 18 18 18 18 ∞ 30 12 12
lba2,a3(0) 2 10 10 10 10 2 7 7 7
lba2,a3(1) 2 2 2 8 8 2 2 6 6
uba2,a3(0) ∞ 10 10 10 10 ∞ 7 7 7
uba2,a3(1) ∞ ∞ ∞ 8 8 ∞ ∞ 6 6
lba2,a4(0) 2 3 3 3 3 3 3 3 3
lba2,a4(1) 2 2 2 3 3 3 3 3 3
uba2,a4(0) ∞ 3 3 3 3 3 3 3 3
uba2,a4(1) ∞ ∞ ∞ 3 3 3 3 3 3

Xa3 (a1, 0, 0) (a1, 0, 1) (a1, 0, 1) (a1, 0, 1) (a1, 0, 1) (a1, 1, 2) (a1, 1, 2) (a1, 1, 2) (a1, 1, 2)
(a2, 0, 0) (a2, 0, 1) (a2, 1, 2) (a2, 1, 2) (a2, 0, 3) (a2, 0, 3) (a2, 1, 4) (a2, 1, 4) (a2, 1, 4)

da3 0 0 0 0 0 1 1 1 1
IDa3 1 1 2 2 3 4 5 5 5
THa3 ∞ ∞ 8 8 10 10 12 12 6
LBa3(0) 10 10 8 8 10 25 23 23 23
LBa3(1) 14 14 13 13 14 7 6 6 6
LBa3 10 10 8 8 10 7 6 6 6
UBa3(0) 10 10 8 8 10 25 23 23 23
UBa3(1) 14 14 13 13 14 7 6 6 6
UBa3 10 10 8 8 10 7 6 6 6

Xa4 (a2, 0, 0) (a2, 0, 1) (a2, 1, 2) (a2, 1, 2) (a2, 0, 3) (a2, 0, 3) (a2, 1, 4) (a2, 1, 4) (a2, 1, 4)
da4 0 0 1 1 0 0 1 1 1
IDa4 1 1 2 2 3 3 4 4 4
THa4 ∞ ∞ 8 8 3 3 13 13 3
LBa4(0) 3 3 10 10 3 3 10 10 10
LBa4(1) 8 8 3 3 8 8 3 3 3
LBa4 3 3 3 3 3 3 3 3 3
UBa4(0) 3 3 10 10 3 3 10 10 10
UBa4(1) 8 8 3 3 8 8 3 3 3
UBa4 3 3 3 3 3 3 3 3 3

Table 3.1: Trace of the Updates of all Variables of BnB-ADOPT
68

AOR

AND

OR

AND

OR

AND

a

B

c

D

g h

E

i j

d

F

k l

G

m n

b

C

e

H

o p

I

q r

f

J

s t

K

u v

Identifiers

OR

AND

OR

AND

OR

AND

inf

inf

10 14

inf

3 8

inf

inf

X X

inf

X X

X

X

X X

X

X X

X

X

X X

X

X X

inf

inf

inf

inf

inf

Cycle 1

OR

AND

OR

AND

OR

AND

18

10

10 14

3

3 8

inf

inf

X X

inf

X X

X

X

X X

X

X X

X

X

X X

X

X X

inf

inf

inf

inf

inf

Cycle 2

OR

AND

OR

AND

OR

AND

18

10

X X

3

X X

inf

inf

8 13

inf

10 3

X

X

X X

X

X X

X

X

X X

X

X X

18

18

inf

inf

18

Cycle 3

OR

AND

OR

AND

OR

AND

18

10

X X

3

X X

19

8

8 13

3

10 3

X

X

X X

X

X X

X

X

X X

X

X X

18

18

inf

inf

18

Cycle 4

OR

AND

OR

AND

OR

AND

18

10

10 14

3

3 8

19

8

X X

3

X X

X

X

X X

X

X X

X

X

X X

X

X X

18

18

inf

inf

18

Cycle 5

OR

AND

OR

AND

OR

AND

X

X

X X

X

X X

X

X

X X

X

X X

inf

inf

25 7

3

3 8

inf

inf

X X

3

X X

18

18

inf

inf

18

Cycle 6

OR

AND

OR

AND

OR

AND

X

X

X X

X

X X

X

X

X X

X

X X

30

7

X X

3

X X

inf

inf

23 6

3

10 3

18

18

inf

inf

18

Cycle 7

OR

AND

OR

AND

OR

AND

X

X

X X

X

X X

X

X

X X

X

X X

30

7

X X

3

X X

12

6

23 6

3

10 3

18

18

30

30

18

Cycle 8

OR

AND

OR

AND

OR

AND

X

X

X X

X

X X

X

X

X X

X

X X

30

7

X X

3

X X

12

6

23 6

3

10 3

12

18

12

12

18

Cycle 9

Figure 3.6: Trace of the Updates of the Upper Bounds of BnB-ADOPT

3.2.8 Execution Trace

Figures 3.5 and 3.6 show traces of the updates of the lower and upper bounds, respec-

tively, for our example DCOP problem, and Table 3.1 shows a trace of the updates

of all variables. BnB-ADOPT uses the heuristic values ha1,a2

Xa1 (0) := 3, ha1,a2

Xa1 (1) := 6,

ha2,a3

Xa2 (0) := 2, ha2,a3

Xa2 (1) := 2, ha2,a4

Xa2 (0) := 2 and ha2,a4

Xa2 (1) := 2 for all contexts Xa1 and

Xa2 . These heuristic values were chosen by hand. Every agent assigns the value of all its

69

ancestor agents in its initial context to 0. We partition time into cycles as in Figures 3.2

and 3.3 and continue to use the conventions made in the context of those figures.

• Cycle 1: Root agent a1 initializes its context Xa1 to {} [Line 1]. It initializes the

lower bounds of nodes B (= lba1,a2

Xa1 (0)) and C (= lba1,a2

Xa1 (1)) to their heuristic values

3 and 6, respectively [Line 13]. It updates the lower bound of node a (= LBa1
Xa1 (0))

to the sum of its delta cost (= 0) and the lower bound of node B (= 3) according to

the update equations [Line 19]. It updates the lower bound of node b (= LBa1
Xa1 (1))

to the sum of its delta cost (= 0) and the lower bound of node C (= 6) according to

the update equations [Line 19]. It updates the lower bound of node A (= LBa1
Xa1)

to the minimum of the lower bound of node a (= 3) and the lower bound of node b

(= 6) according to the update equations [Line 21]. It initializes the upper bounds of

nodes B and C to infinity [Line 14]. It updates the upper bounds of nodes a, b and

A to infinity according to the update equations [Lines 20 and 22]. It takes on its

best value 0 since the lower bound of node a (= 3) is smaller than the lower bound

of node b (= 6) [Line 15], initializes its ID IDa1 to 1 [Lines 2 and 16], initializes its

threshold THa1 to infinity [Line 17] and sends VALUE messages to its child agent

a2 and pseudo-child agent a3 [Lines 30-31].

Agent a2 initializes its context Xa2 to {(a1, 0, 0)} [Line 1]. It initializes the lower

bounds of nodes D, E, F and G to their heuristic value 2 [Line 13]. It updates the

lower bounds of nodes c, d and B to 9, 12 and 9, respectively [Lines 19 and 21].

It initializes the upper bounds of nodes D, E, F and G to infinity [Line 14]. It

updates the upper bounds of nodes c, d and B to infinity [Lines 20 and 22]. The

70

bounds of node B that agent a2 maintains are not shown in the figure. It takes

on its best value 0 [Line 15], initializes its ID to 1 [Lines 2 and 16], initializes its

threshold to infinity [Line 17] and sends VALUE messages to its child agents a3 and

a4 and a COST message to its parent agent a1 [Lines 30-32].

Leaf agent a3 initializes its context Xa3 to {(a1, 0, 0), (a2, 0, 0)} [Line 1]. It updates

the lower bounds of nodes g and h to their delta costs 10 and 14, respectively, since

leaf agents do not have child agents [Line 19]. It updates the lower bound of node

D to 10 [Line 21]. It updates the upper bounds of nodes g and h to their delta

costs 10 and 14, respectively, since leaf agents do not have child agents [Line 20].

It updates the upper bound of node D to 10 [Line 22]. The bounds of node D that

leaf agent a3 maintains are not shown in the figure. It takes on its best value 0

[Line 15], initializes its ID to 1 [Lines 2 and 16], initializes its threshold to infinity

[Line 17] and sends a COST message to its parent agent a2 [Line 32].

Leaf agent a4 initializes its (reduced) context Xa4 to {(a2, 0, 0)} [Line 1]. It updates

the lower bounds of nodes i and j to their delta costs 3 and 8, respectively [Line 19].

It updates the lower bound of node E to 3 [Line 21]. It updates the upper bounds

of nodes i and j to their delta costs 3 and 8, respectively [Line 20]. It updates

the upper bound of node E to 3 [Line 22]. The bounds of node E that leaf agent

a4 maintains are not shown in the figure. It takes on its best value 0 [Line 15],

initializes its ID to 1 [Lines 2 and 16], initializes its threshold to infinity [Line 17]

and sends a COST message to its parent agent a2 [Line 32].

71

In summary, the following messages are sent during Cycle 1:

– message (VALUE, a1, 0, 1, ∞) from agent a1 to agent a2;

– message (VALUE, a1, 0, 1, ∞) from agent a1 to agent a3;

– message (VALUE, a2, 0, 1, ∞) from agent a2 to agent a3;

– message (VALUE, a2, 0, 1, ∞) from agent a2 to agent a4;

– message (COST, a2, {(a1, 0, 0)}, 9, ∞) from agent a2 to agent a1;

– message (COST, a3, {(a1, 0, 0), (a2, 0, 0)}, 10, 10) from agent a3 to agent a2;

and

– message (COST, a4, {(a2, 0, 0)}, 3, 3) from agent a4 to agent a2.

• Cycle 2: Root agent a1 receives the COST message sent by its child agent a2 in

Cycle 1. Since the context of agent a1 (= {}) is compatible with the context in the

message (= {(a1, 0, 0)}), it improves its bounds. It updates the bounds of node B to

the bounds in the message (= 9 and infinity, respectively) [Lines 48-50]. It updates

the bounds of nodes a, b and A [Lines 18-22]. It does not change its value since

the lower bound of node a (= LBa1
Xa1 (da1) = 9 for its value da1 = 0) is still smaller

than its pruning quantity (= min{THa1
Xa1 , UBa1

Xa1} = min(∞,∞) = ∞). It sends

VALUE messages to its child agent a2 and pseudo-child agent a3 [Lines 30-31].

Agent a2 receives the VALUE message sent by its parent agent a1 in Cycle 1. It

updates its context from {(a1, 0, 0)} to {(a1, 0, 1)} since the ID of agent a1 in its

context (= 0) is smaller than the ID in the message (= 1) [Line 34]. Its threshold

(= ∞) remains unchanged since it is the same as the desired threshold (= ∞) in

72

the message. Agent a2 also receives the COST messages sent by its child agents a3

and a4 in Cycle 1. Since its context (= {(a1, 0, 1)}) is compatible with the contexts

in the messages (= {(a1, 0, 0), (a2 , 0, 0)} and {(a2, 0, 0)}, respectively), it improves

its bounds. It updates the bounds of node D to the bounds in the first message

(= 10 and 10, respectively) and the bounds of node E to the bounds in the second

message (= 3 and 3, respectively) [Lines 48-50]. It updates the bounds of nodes

c, d and B [Lines 18-22]. It changes its value since the lower bound of node c

(= LBa2
Xa2 (da2) = 18 for its value da2 = 0) is no longer smaller than its pruning

quantity (= min{THa2
Xa2 , UBa2

Xa2} = min(∞, 18) = 18). It takes on its best value 1

[Line 24], increments its ID to 2 [Lines 25-26], sends VALUE messages to its child

agents a3 and a4 [Lines 30-31] and sends a COST message to its parent agent a1

[Line 32].

Leaf agent a3 receives the VALUE messages sent by its parent agent a2 and pseudo-

parent agent a1 in Cycle 1. It updates its context from {(a1, 0, 0), (a2, 0, 0)} to

{(a1, 0, 1), (a2, 0, 1)} since the IDs of agents a1 and a2 in its context (= 0 and 0,

respectively) are smaller than the IDs in the messages (= 1 and 1, respectively)

[Line 34]. Its threshold (= ∞) remains unchanged since it is the same as the

desired threshold (= ∞) in the message. Its bounds are not reinitialized since its

context is compatible with its previous context [Line 35]. It sends the same COST

message as before to its parent agent a2 [Line 32].

Leaf agent a4 receives the VALUE message sent by its parent agent a2 in Cycle 1.

It updates its contexts from {(a2, 0, 0)} to {(a2, 0, 1)} since the ID of agent a2 in its

73

context (= 0) is smaller than the ID in the message (= 1) [Line 34]. Its threshold

(= ∞) remains unchanged since it is the same as the desired threshold (= ∞) in

the message. Its bounds are not reinitialized since its context is compatible with its

previous context [Line 35]. It sends the same COST message as before to its parent

agent a2 [Line 32].

In summary, the messages sent during Cycle 2 are identical to the ones sent during

Cycle 1, except for the messages sent by agents a2, a3 and a4, which are as follows:

– message (VALUE, a2, 1, 2, 8) from agent a2 to agent a3;

– message (VALUE, a2, 1, 2, 8) from agent a2 to agent a4; and

– message (COST, a2, {(a1, 0, 1)}, 12, 18) from agent a2 to agent a1.

– message (COST, a3, {(a1, 0, 1), (a2, 0, 1)}, 10, 10) from agent a3 to agent a2;

and

– message (COST, a4, {(a2, 0, 1)}, 3, 3) from agent a4 to agent a2.

The VALUE messages are different because agent a2 changed its value from 0 to

1. The COST messages are different because agent a2 changed its bounds and its

context and agents a3 and a4 changed their contexts.

• Cycles 3-9: The messages sent during Cycle 3 are identical to the ones sent during

Cycle 2, except for the messages sent by agents a3 and a4, which are as follows:

– message (COST, a3, {(a1, 0, 1), (a2, 1, 2)}, 8, 8) from agent a3 to agent a2; and

– message (COST, a4, {(a2, 1, 2)}, 3, 3) from agent a4 to agent a2.

74

The COST messages are different because agents a3 and a4 changed their contexts.

The termination conditions holds after a finite amount of time when the upper

bound of node A (= UBa1
Xa1 = 12) is no larger than the lower bound of node A

(= LBa1
Xa1 = 12) [Line 27]. Root agent a1 sends TERMINATE messages to all child

agents [Line 28], and the TERMINATE messages propagate down the pseudo-tree

[Line 28] until all agents terminate. BnB-ADOPT terminates after nine cycles with

minimal solution cost 12.

3.3 Correctness, Completeness and Complexity

In this section, we prove the correctness and completeness of BnB-ADOPT. Additionally,

we also describe its space and message complexities.

3.3.1 Correctness and Completeness

Each agent a uses the following equations for all values d, all child agents c and all

contexts Xa to initialize its bounds.

lba,c
Xa(d) := w · ha,c

Xa(d) (3.20)

uba,c
Xa(d) := ∞ (3.21)

where the weight w is a floating point number that satisfies 1 ≤ w < ∞ and the heuristic

values ha,c
Xa(d) are floating point numbers that satisfy

75

0 ≤ ha,c
Xa(d) ≤ γc

Xa∪(a,d) (3.22)

We only need to prove for w = 1 in order to prove the correctness and completeness

of BnB-ADOPT. However, we prove for larger weights so that they also apply to BnB-

ADOPT when it uses the approximation mechanisms described in Chapter 4. Messages

are sent at the end of a cycle and received in the beginning of a cycle. ∆ is the largest

duration between the time a message is sent and the time it is processed, and ε is the

largest duration of a cycle.

Lemma 1 If two contexts X and X ′ of an arbitrary agent a ∈ A agree on the values of

all ancestor agents p ∈ SCP (a) of agent a, then γa
X = γa

X′ .

Proof: By definition, Xa ⊆ X is the (reduced) context that contains the values of all

ancestor agents p ∈ SCP (a) of agent a. The gamma cost γa
X is the sum of the constraint

costs of all constraints that involve agent a or one of its descendant agents minimized

over all possible values of agent a and its descendant agents, under the assumption that

the ancestor agents of agent a take on the values in context X. The gamma cost γa
X thus

depends only on the values of the ancestor agents (including the parent agent) of agent a

that are the parent or pseudo-parent agents of agent a or one (or more) of its descendant

agents, that is, the values of all ancestor agents p ∈ SCP (a) of agent a. Therefore,

γa
X = γa

Xa . Similarly, γa
X′ = γa

Xa .

76

Definition 1 Contexts are correct iff the IDs of the values of all agents in the contexts

are equal to the IDs of the agents, which implies that the values of all agents in the

contexts are equal to the values of the agents.

Lemma 2 If the context Xa of an arbitrary agent a ∈ A does not change for a period

of time, then the lower bounds lba,c
Xa(d), LBa

Xa(d) and LBa
Xa are monotonically non-

decreasing and the upper bounds uba,c
Xa(d), UBa

Xa(d) and UBa
Xa are monotonically non-

increasing during that period of time for all values d ∈ Dom(a) and all child agents

c ∈ C(a).

Proof: Since the context Xa does not change, the delta values δa
Xa(d) are constant and

the bounds (once initialized) are updated according to update equations 3.8 to 3.13.

Thus, the lower bounds are monotonically non-decreasing and the upper bounds are

monotonically non-increasing.

Lemma 3 If the value of an arbitrary ancestor agent p ∈ SCP (a) of an arbitrary agent

a ∈ A does not change between the current time T and a future time t with t ≥ T + |A| ·

(∆ + ε)+ ε, then the value of agent p and its ID in the context of agent a are equal to the

value of agent p and its ID, respectively, between some time t′ and time t with t′ ≤ t.

Proof: Assume that the value of an arbitrary ancestor agent p ∈ SCP (a) of an arbitrary

agent a ∈ A does not change between the current time T and a future time t with

t ≥ T + |A| · (∆ + ε) + ε. There are the following two cases.

• Case 1: If agent p is a parent or pseudo-parent agent of agent a, then it sent a

VALUE message to agent a with its value and ID at the time t′′ ≤ T + ε that is at

77

the end of the cycle in which it took on the value that it has at time T since the

duration of that cycle is no larger than ε. (The agents send VALUE messages at

the end of every cycle.) Agent a receives the VALUE message by time t′′ + ∆ since

messages are delivered with finite delay ∆. It then updates the value of agent p and

its ID in its context by time t′′+∆+ε since the update is done in the same cycle and

thus takes an amount of time no larger than ε. Thus, the value of agent p and its ID

in the context of agent a are equal to the value of agent p and its ID, respectively,

between some time t′ and time t with t′′ ≤ t′ ≤ t′′ + ∆ + ε ≤ T + ∆ + 2 · ε ≤ t since

agent p does not change its value between time t′′ and time t.

• Case 2: If agent p is not a parent or pseudo-parent agent of agent a, then one of

its pseudo-child agent c is a descendant agent of agent a. Agent p sent a VALUE

message to agent c with its value and ID at the time t′′ ≤ T + ε that is at the end of

the cycle in which it took on the value that it has at time T . Agent c receives the

VALUE message by time t′′ + ∆. It then updates the value of agent p and its ID in

its context and sends a COST message to its parent agent pa(c) with its updated

context by time t′′ + ∆ + ε. (The agents send COST messages at the end of every

cycle.) Agent pa(c) receives the COST message by time t′′ + 2 · ∆ + ε. It then

updates the value of agent p and its ID in its context and sends a COST message

to its parent agent pa(pa(c)) with its updated context by time t′′ + 2 · (∆ + ε). This

process continues until agent a updates the value of agent p and its ID in its context

by time t′′ + n · (∆ + ε), where n ≤ |A| is the number of messages in the chain of

messages. Thus, the value of agent p and its ID in the context of agent a are equal

78

to the value of agent p and its ID, respectively, between some time t′ and time t

with t′′ ≤ t′ ≤ t′′ + n · (∆ + ε) ≤ T + |A| · (∆ + ε) + ε ≤ t since agent p does not

change its value between time t′′ and time t.

Corollary 1 If the values of all ancestor agents p ∈ SCP (a) of an arbitrary agent a ∈ A

do not change between the current time T and a future time t with t ≥ T + |A| ·(∆+ε)+ε,

then the context of agent a is correct between some time t′ and time t with t′ ≤ t.

Lemma 4 If LBc
Xc ≤ w · γc

Xc ≤ w ·UBc
Xc at all times for all child agents c ∈ C(a) of an

arbitrary agent a and their contexts Xc, then lba,c
Xa(d) ≤ w · γc

Xa∪(a,d) ≤ w · uba,c
Xa(d) at all

times for the context Xa of agent a, all values d ∈ Dom(a) and all child agents c ∈ C(a).

Proof by induction on the number of times that agent a changes its context or updates

its bounds lba,c
Xa(d) and uba,c

Xa(d) for an arbitrary value d and an arbitrary child agent

c after agent a initializes its bounds: The lemma holds after agent a with context Xa

initializes its bounds since

lba,c
Xa(d) = w · ha,c

Xa(d) (Eq. 3.20)

≤ w · γc
Xa∪(a,d) (Eq. 3.22)

≤ ∞

= w · uba,c
Xa(d) (Eq. 3.7)

for the (unchanged or new) context Xa of agent a (induction basis). Now assume that

the lemma holds after agent a changed its context or updated its bounds a number of

79

times (induction assumption). We show that it then also holds after agent a changes its

context or updates its bounds one more time (induction step). There are the following

two cases (where we split the operations after receiving a COST message into two parts).

• Case 1: The lemma holds when agent a changes its context from Xa to X̂a after

receiving a VALUE or COST message and the two contexts are compatible since

agent a then does not change its bounds and thus

lba,c

X̂a
(d) = lba,c

Xa(d) (premise of case)

≤ w · γc
Xa∪(a,d) (induction assumption)

= w · γc
X̂a∪(a,d)

(Lemma 1)

uba,c

X̂a
(d) = uba,c

Xa(d) (premise of case)

≥ γc
Xa∪(a,d) (induction assumption)

= γc
X̂a∪(a,d)

(Lemma 1)

after receiving the VALUE or COST message.

• Case 2: The lemma holds when agent a updates its bounds from lba,c
Xa(d) and

uba,c
Xa(d) to l̂b

a,c

Xa(d) and ûb
a,c

Xa(d), respectively, after receiving a COST message from

some child agent c with bounds LBc
Xc and UBc

Xc and context Xc that is compatible

with its context Xa and in which agent a has value d since

80

l̂b
a,c
Xa(d) = max{lba,c

Xa(d), LBc
Xc} (Eq. 3.8)

≤ max{w · γc
Xa∪(a,d), w · γc

Xc}

(induction assumption and premise of lemma)

= max{w · γc
Xa∪(a,d), w · γc

Xa∪(a,d)} (Lemma 1)

= w · γc
Xa∪(a,d)

ûb
a,c
Xa(d) = min{uba,c

Xa(d), UBc
Xc} (Eq. 3.11)

≥ min{γc
Xa∪(a,d), γ

c
Xc} (induction assumption and premise of lemma)

= min{γc
Xa∪(a,d), γ

c
Xa∪(a,d)} (Lemma 1)

= γc
Xa∪(a,d)

after receiving the COST message.

Thus, lba,c
Xa(d) ≤ w · γc

Xa∪(a,d) ≤ w · uba,c
Xa(d) at all times for all values d ∈ Dom(a) and all

child agents c ∈ C(a).

Lemma 5 LBa
Xa(d) ≤ w · γa

Xa(d) ≤ w ·UBa
Xa(d) and LBa

Xa ≤ w · γa
Xa ≤ w ·UBa

Xa at all

times for all values d ∈ Dom(a) and the context Xa of an arbitrary agent a ∈ A.

Proof by induction on the depth of an agent in the pseudo-tree: The lemma holds for a

leaf agent a in the pseudo-tree with context Xa since

81

LBa
Xa(d) = δa

Xa(d) (Eq. 3.9)

= γa
Xa(d) (Eq. 3.1)

UBa
Xa(d) = δa

Xa(d) (Eq. 3.12)

= γa
Xa(d) (Eq. 3.1)

for all values d at all times. Thus, LBa
Xa(d) = γa

Xa(d) ≤ w · γa
Xa(d) = w ·UBa

Xa(d) for all

values d at all times. Furthermore,

LBa
Xa = min

d∈Dom(a)
{LBa

Xa(d)} (Eq. 3.10)

= min
d∈Dom(a)

{γa
Xa(d)} (see above)

= γa
Xa (Eq. 3.2)

UBa
Xa = min

d∈Dom(a)
{UBa

Xa(d)} (Eq. 3.13)

= min
d∈Dom(a)

{γa
Xa(d)} (see above)

= γa
Xa (Eq. 3.2)

at all times. Thus, LBa
Xa = γa

Xa ≤ w · γa
Xa = w · UBa

Xa at all times (induction basis).

Now assume that the lemma holds for all agents at depth d in the pseudo-tree (induction

82

assumption). We show that it then also holds for all agents at depth d− 1 in the pseudo-

tree each time after they update their bounds (induction step). The lemma holds for

agent a with context Xa since

LBa
Xa(d) = δa

Xa(d) +
∑

c∈C(a)

lba,c
Xa(d) (Eq. 3.9)

≤ δa
Xa(d) +

∑

c∈C(a)

w · γc
Xa∪(a,d) (induction assumption and Lemma 4)

≤ w · γa
Xa(d) (Eq. 3.1)

UBa
Xa(d) = δa

Xa(d) +
∑

c∈C(a)

uba,c
Xa(d) (Eq. 3.12)

≥ δa
Xa(d) +

∑

c∈C(a)

γc
Xa∪(a,d) (induction assumption and Lemma 4)

= γa
Xa(d) (Eq. 3.1)

Thus, LBa
Xa(d) ≤ w · γa

Xa(d) ≤ w · UBa
Xa(d) at all times for all values d ∈ Dom(a).

Furthermore,

LBa
Xa = min

d∈Dom(a)
{LBa

Xa(d)} (Eq. 3.10)

≤ min
d∈Dom(a)

{w · γa
Xa(d)} (see above)

= w · min
d∈Dom(a)

{γa
Xa(d)}

= w · γa
Xa (Eq. 3.2)

83

UBa
Xa = min

d∈Dom(a)
{UBa

Xa(d)} (Eq. 3.13)

≥ min
d∈Dom(a)

{γa
Xa(d)} (see above)

= γa
Xa (Eq. 3.2)

Thus, LBa
Xa ≤ w · γa

Xa ≤ w · UBa
Xa at all times.

Definition 2 The potential of an agent a ∈ A with context Xa is
∑

d∈Dom(a){w ·

UBa
Xa(d) − LBa

Xa(d)}.

Lemma 6 If the context Xa of an arbitrary agent a ∈ A no longer changes, then the po-

tential of the agent is monotonically non-increasing and decreases by more than a positive

constant every time the agent changes its value.

Proof: The lower bounds LBa
Xa(d) are monotonically non-decreasing and the upper

bounds UBa
Xa(d) are monotonically non-increasing for all values d according to Lemma 2

since the context Xa of agent a no longer changes. Therefore, the potential of agent a is

monotonically non-increasing. Furthermore, agent a changes its value d to a new value

only if mind∈Dom(a){LBa
Xa(d)} < LBa

Xa(d) [Line 24]. Thus, the lower bound LBa
Xa(d)

must have strictly increased between the time when the agent changed its value to d and

the time when it changes its value d to a new value. Thus, its potential has decreased by

more than a positive constant, namely the smallest possible increase of the lower bound

LBa
Xa(d). Assume that all constraint costs, weights and heuristic values are integers.

Then, the smallest possible increase is bounded from below by one because the only

possible values of LBa
Xa(d) are combinations of all constraint costs and weighted heuristic

84

values. A similar statement holds if all constraint costs, weights and heuristic values are

floating point numbers since they can then all be transformed into integers by multiplying

them with the same sufficiently large integer.

Lemma 7 All agents change their values only a finite number of times.

Proof by contradiction: Assume that the lemma does not hold and choose an agent a

that changes its value an infinite number of times but whose ancestor agents p ∈ SCP (a)

change their values only a finite number of times. Then, there exists a time when the

ancestor agents do not change their values any longer. There exists a (later) time when

agent a no longer changes its context Xa according to Corollary 1. Every time agent

a changes its value afterwards, its potential decreases by more than a positive constant

according to Lemma 6, towards minus infinity. However, its potential cannot become

negative since LBa
Xa(d) ≤ w ·UBa

Xa(d) for all values d according to Lemma 5, which is a

contradiction. Thus, all agents change their values only a finite number of times.

Lemma 8 If BnB-ADOPT does not terminate earlier, then UBa
Xa ≤ LBa

Xa after a finite

amount of time for all agents a ∈ A and their contexts Xa.

Proof by induction on the depth of an agent in the pseudo-tree: There exists a time when

no agent changes its value any longer according to Lemma 7. There exists a (later) time

when the contexts of all agents are correct and no longer change according to Corollary 1.

Let Xa be the context of agent a at this point in time for all agents a. There exists an (even

later) time when the bounds lba,c
Xa(d), LBa

Xa(d), LBa
Xa , uba,c

Xa(d), UBa
Xa(d) and UBa

Xa no

longer change for all agents a, all values d and all child agents c since (1) the lower bounds

85

lba,c
Xa(d), LBa

Xa(d) and LBa
Xa are monotonically non-decreasing and the upper bounds

lba,c
Xa(d), UBa

Xa(d) and UBa
Xa are monotonically non-increasing for all agents a, all values

d and all child agents c according to Lemma 2, (2) LBa
Xa(d) ≤ w · γa

Xa(d) ≤ w ·UBa
Xa(d)

and LBa
Xa ≤ w · γa

Xa ≤ w ·UBa
Xa for all agents a and all values d according to Lemma 5,

(3) lba,c
Xa(d) ≤ w · uba,c

Xa(d) for all agents a, all values d and all child agents c according

to Lemma 4 and (4) the smallest possible increases of the lower bounds and the smallest

possible decreases of the upper bounds are larger than a positive constant since the only

possible values of the bounds are combinations of all constraint costs and heuristic values,

as explained in more detail in the proof of Lemma 6. Consider the first COST message

that each agent sends after this time and the earliest time when all of these COST

messages have been processed by their receiving agents. The lemma holds for a leaf agent

a in the pseudo-tree with context Xa since

LBa
Xa(d) = δa

Xa(d) (Eq. 3.9)

= γa
Xa(d) (Eq. 3.1)

UBa
Xa(d) = δa

Xa(d) (Eq. 3.12)

= γa
Xa(d) (Eq. 3.1)

for all values d after the considered time. Furthermore,

LBa
Xa = min

d∈Dom(a)
{LBa

Xa(d)} (Eq. 3.10)

= min
d∈Dom(a)

{γa
Xa(d)} (see above)

= γa
Xa (Eq. 3.2)

86

UBa
Xa = min

d∈Dom(a)
{UBa

Xa(d)} (Eq. 3.13)

= min
d∈Dom(a)

{γa
Xa(d)} (see above)

= γa
Xa (Eq. 3.2)

after the considered time. Thus, UBa
Xa = LBa

Xa after the considered time (induction

basis). Now assume that the lemma holds for all agents at depth d in the pseudo-tree

after the considered time (induction assumption). We show that it then also holds for all

agents at depth d − 1 in the pseudo-tree after the considered time (induction step). For

agent a with context Xa

LBa
Xa(d) = δa

Xa(d) +
∑

c∈C(a)

lba,c
Xa(d) (Eq. 3.9)

= δa
Xa(d) +

∑

c∈C(a)

max{lba,c
Xa(d), LBc

Xc} (Eq. 3.8)

≥ δa
Xa(d) +

∑

c∈C(a)

LBc
Xc

≥ δa
Xa(d) +

∑

c∈C(a)

UBc
Xc (induction assumption)

≥ δa
Xa(d) +

∑

c∈C(a)

min{uba,c
Xa(d), UBc

Xc}

= δa
Xa(d) +

∑

c∈C(a)

uba,c
Xa(d) (Eq. 3.11)

= UBa
Xa(d) (Eq. 3.12)

87

for its value d after the considered time since all bounds no longer change. Thus,

UBa
Xa(d) ≤ LBa

Xa(d) for its value d after the considered time. Since agent a does

not change its value d after the considered time, it must hold that LBa
Xa(d) <

min{THa
Xa, UBa

Xa} [Line 23] or LBa
Xa(d) = mind∈Dom(a){LBa

Xa(d)} [Line 24]. The first

disjunct implies that

min{THa
Xa , UBa

Xa} ≤ UBa
Xa

≤ UBa
Xa(d) (Eq. 3.13)

≤ LBa
Xa(d) (see above)

< min{THa
Xa , UBa

Xa} (first disjunct)

for its value d, which is a contradiction. The second disjunct implies that

UBa
Xa ≤ UBa

Xa(d) (Eq. 3.13)

≤ LBa
Xa(d) (see above)

= min
d∈Dom(a)

{LBa
Xa(d)} (second disjunct)

= LBa
Xa (Eq. 3.10)

for its value d and thus that UBa
Xa ≤ LBa

Xa .

88

Theorem 1 BnB-ADOPT terminates after a finite amount of time.

Proof: If BnB-ADOPT does not terminate earlier, then UBa
Xa ≤ LBa

Xa after a finite

amount of time for all agents a ∈ A and their contexts Xa according to Lemma 8.

In particular, UBr
Xr ≤ LBr

Xr for the root agent r. Thus, the termination condition

UBr
Xr ≤ LBr

Xr of BnB-ADOPT is satisfied.

Theorem 2 BnB-ADOPT terminates with the minimal solution cost γr
Xr .

Proof: BnB-ADOPT terminates after a finite amount of time according to Theorem 1.

The solution cost of BnB-ADOPT is the upper bound UBr
Xr of the root agent r. UBr

Xr ≤

LBr
Xr upon termination according to its termination condition. w · UBr

Xr ≥ w · γr
Xr ≥

LBr
Xr according to Lemma 5. Therefore, UBr

Xr = γr
Xr = LBr

Xr since w = 1.

3.3.2 Complexity

We measure the space complexity of BnB-ADOPT in the number of floating point num-

bers. As BnB-ADOPT uses the same framework as ADOPT, their memory requirements

are identical. Every agent a needs to store lba,c(d) and uba,c(d) for all child agents c ∈ C(a)

and values d ∈ Dom(a). Thus, the space complexity of every agent a in BnB-ADOPT is

O(|C(a)| · |Dom(a)|) = O(|A| · maxDom), where maxDom = maxa′∈A|Dom(a′)| is the

maximum domain cardinality over all agents a′ ∈ A.

We measure the message complexity of BnB-ADOPT in the number of floating point

numbers as well. As BnB-ADOPT uses the same messages as ADOPT, their message

complexities are identical. The complexity of VALUE messages is O(1) since they contain

five floating point numbers. The complexity of COST messages is O(|A|) since they

89

contain four floating point numbers and the context of the sending agent. Therefore, the

message complexity of BnB-ADOPT is O(|A|).

3.4 Experimental Evaluation

We now compare BnB-ADOPT to two other memory-bounded DCOP search algorithms

that also restrict communication to agents that share constraints, namely ADOPT and

NCBB. NCBB is a memory-bounded synchronous branch-and-bound DCOP search al-

gorithm with the feature that an agent can take on a different value for each one of its

child agents.

As described in Section 2.1.2.3, ADOPT can be sped up with the use of heuristic

values. In our experiments, we use a state-of-the-art pre-processing framework called

DP2 (Ali et al., 2005) to calculate heuristic values for ADOPT. The same heuristic

values can also be used for BnB-ADOPT since the definition and use of lower bounds

in BnB-ADOPT is the same as that in ADOPT. It calculates heuristic values by solving

a relaxed version (where backedges are ignored) of the DCOP problem using a dynamic

programming-based approach. Agents in NCBB do not perform any pre-processing, but

calculate their own heuristic values during the search.

3.4.1 Metrics

We measure the runtimes and solution costs of ADOPT, BnB-ADOPT and NCBB. Ad-

ditionally, we also measure the number of unique and repeated contexts explored per

agent of ADOPT and BnB-ADOPT to better understand the reason for the speedups.

90

The number of unique contexts is the number of different contexts explored. The num-

ber of repeated contexts is the total number of contexts explored minus the number of

unique contexts. The sum of both numbers is correlated with the runtime of ADOPT

and BnB-ADOPT.

We measure the runtimes with two common runtime metrics, namely non-concurrent

constraint checks (Meisels, Kaplansky, Razgon, & Zivan, 2002) and cycles (Hirayama &

Yokoo, 2000).

• Non-concurrent constraint checks (NCCCs): NCCCs are a weighted sum of

processing and communication time. Every agent a maintains a counter NCCCa,

which is initialized to 0. The agent assigns NCCCa := NCCCa + 1 every time it

performs a constraint check to account for the time it takes to perform the constraint

check. It assigns NCCCa := max{NCCCa, NCCCa′
+ t} every time it receives a

message from agent a′ to account for the time it takes to wait for agent a′ to send

the message (NCCCa′
) and the transmission time of the message (t). We use t = 0

to simulate fast communication and t = 1000 to simulate slow communication. The

number of NCCCs then is the largest counter value of any agent. NCCCs are a good

runtime metric if the ratio of processing and communication time can be estimated

reliably.

• Cycles: Cycles are time slices. A cycle is the time required for an agent to process

all incoming messages in its queue and send all outgoing messages, which are then

processed by the receiving agents in the next cycle. Thus, the number of cycles

indicates the length of the longest chain of messages between agents. Cycles are a

91

good runtime metric if the communication time is much larger than the processing

time. Cycles will become a better and better runtime metric in the future since

the communication time is expected to remain relatively stable while the processing

time is expected to decrease (Silaghi, Lass, Sultanik, Regli, Matsui, & Yokoo, 2008).

3.4.2 Problem Types

As described in Section 2.1.5, we run our experiments on four problem types, namely

graph coloring, sensor network, meeting scheduling and combinatorial auction problems.

• Graph coloring problems: We vary the number of agents (= vertices to color)

from 5 to 15, the density, defined as the ratio between the number of constraints

and the number of agents, from 2 (sparse graphs) to 3 (dense graphs) and the range

of constraint costs from a range of 0 to 1 (small range) to a range of 0 to 10,000

(large range). Each agent always has three possible values (= colors). All costs are

randomly generated. We average the experimental results over 50 DCOP problem

instances with randomly generated constraints.

• Sensor network problems: We vary the number of agents (= targets to track)

from 4 to 15. Each agent always has nine values (= time slots). The cost of assigning

a time slot to a target that is also assigned to an adjacent target is infinity (to be

precise: 1,000,000) since the same sensor cannot track both targets during the same

time slot. The cost of targets that are not tracked during any time slot is 100. All

other costs are randomly generated from 0 to 100. We average the experimental

results over 50 DCOP problem instances.

92

• Meeting scheduling problems: We vary the number of agents (= meetings

to schedule) from 5 to 20. Each agent always has nine values (= time slots). The

cost of assigning a time slot to a meeting that has at least one participant who

has another meeting during the same time slot is infinity (to be precise: 1,000,000)

since the same person cannot attend more than one meeting at a time. The cost of

a non-scheduled meeting is 100. All other costs are randomly generated from 0 to

100. We average the experimental results over 50 DCOP problem instances.

• Combinatorial auction problems: We vary the number of agents (= bids to

consider) from 5 to 35. Each agent always has two values (= bid results). Each bid

is a bid on a random bundle of three out of fifty items. The cost of assigning two bids

that share a common item as winning bids is infinity (to be precise: 1,000,000) since

two bids cannot both win a common item. The cost of assigning two bids that share

a common item as losing bids is 100. All other costs are randomly generated from

0 to 100. We average experimental results over 50 DCOP problem instances, which

we generate randomly using the CATS problem suite (Leyton-Brown, Pearson, &

Shoham, 2000) and the L3 distribution (Sandholm, 2002).

3.4.3 Experimental Results

Figure 3.7 shows our experimental results for ADOPT, BnB-ADOPT and NCBB on graph

coloring problems with constraint costs ranging from 0 to 10,000, where we varied the

number of vertices, while Figure 3.8 shows our experimental results for ADOPT, BnB-

ADOPT and NCBB on graph coloring problems with 10 vertices, where we varied the

range of constraint costs. Figures 3.7(a-c) and 3.8(a-c) show the results for coloring sparse

93

Graph Coloring, Density = 2
Communication Cost = 0

1.E+02

1.E+03

1.E+04

1.E+05

5 6 7 8 9 10 11 12 13 14

Number of Vertices

N
C

C
C

ADOPT
BnB-ADOPT
NCBB

(a)

Graph Coloring, Density = 2
Communication Cost = 1000

1.E+05

1.E+06

1.E+07

1.E+08

5 6 7 8 9 10 11 12 13 14

Number of Vertices

N
C

C
C

ADOPT
BnB-ADOPT
NCBB

(b)

Graph Coloring, Density = 2

1.E+02

1.E+03

1.E+04

5 6 7 8 9 10 11 12 13 14

Number of Vertices

C
yc

le
s

ADOPT
BnB-ADOPT
NCBB

(c)

Graph Coloring, Density = 3
Communication Cost = 0

1.E+02

1.E+03

1.E+04

1.E+05

1.E+06

7 8 9 10 11 12 13 14

Number of Vertices

N
C

C
C

ADOPT
BnB-ADOPT
NCBB

(d)

Graph Coloring, Density = 3
Communication Cost = 1000

1.E+05

1.E+06

1.E+07

1.E+08

1.E+09

7 8 9 10 11 12 13 14

Number of Vertices

N
C

C
C

ADOPT
BnB-ADOPT
NCBB

(e)

Graph Coloring, Density = 3

1.E+02

1.E+03

1.E+04

1.E+05

7 8 9 10 11 12 13 14

Number of Vertices

C
yc

le
s

ADOPT
BnB-ADOPT
NCBB

(f)

Figure 3.7: Experimental Results Comparing ADOPT, BnB-ADOPT and NCBB on
Graph Coloring Problems with Constraint Costs Ranging from 0 to 10,000

graphs, and Figures 3.7(d-f) and 3.8(d-f) show the results for coloring dense graphs. The

y-axes are in log scale and show the runtimes in NCCCs or cycles. We make the following

observations:

• DCOP search algorithms on sparse graphs are faster than on dense graphs because,

for example, there is a larger likelihood of independent DCOP subproblems in sparse

graphs.

94

Graph Coloring, Density = 2
Communication Cost = 0

1.E+01

1.E+02

1.E+03

1.E+04

1.E+05

0-1 0-10 0-100 0-1,000 0-10,000

Range of Constraint Costs

N
C

C
C

ADOPT
BnB-ADOPT
NCBB

(a)

Graph Coloring, Density = 2
Communication Cost = 1000

1.E+04

1.E+05

1.E+06

1.E+07

1.E+08

0-1 0-10 0-100 0-1,000 0-10,000

Range of Constraint Costs

N
C

C
C

ADOPT
BnB-ADOPT
NCBB

(b)

Graph Coloring, Density = 2

1.E+01

1.E+02

1.E+03

1.E+04

0-1 0-10 0-100 0-1,000 0-10,000

Range of Constraint Costs

C
yc

le
s

ADOPT
BnB-ADOPT
NCBB

(c)

Graph Coloring, Density = 3
Communication Cost = 0

1.E+01

1.E+02

1.E+03

1.E+04

1.E+05

1.E+06

0-1 0-10 0-100 0-1,000 0-10,000

Range of Constraint Costs

N
C

C
C

ADOPT
BnB-ADOPT
NCBB

(d)

Graph Coloring, Density = 3
Communication Cost = 1000

1.E+04

1.E+05

1.E+06

1.E+07

1.E+08

1.E+09

0-1 0-10 0-100 0-1,000 0-10,000

Range of Constraint Costs

N
C

C
C

ADOPT
BnB-ADOPT
NCBB

(e)

Graph Coloring, Density = 3

1.E+01

1.E+02

1.E+03

1.E+04

1.E+05

0-1 0-10 0-100 0-1,000 0-10,000

Range of Constraint Costs

C
yc

le
s

ADOPT
BnB-ADOPT
NCBB

(f)

Figure 3.8: Experimental Results Comparing ADOPT, BnB-ADOPT and NCBB on
Graph Coloring Problems with 10 Vertices

• BnB-ADOPT is generally faster than NCBB on sparse graphs but not on dense

graphs because BnB-ADOPT allows agents to send messages only to their parent

agents in the pseudo-tree (along edges of the pseudo-tree) but NCBB allows agents

also to send messages to their pseudo-parent agents (along backedges of the pseudo-

tree). Thus, agents in NCBB receive updates faster than agents in BnB-ADOPT.

This effect is more prevalent in dense graphs since there are more backedges in

95

Sensor Network
Communication Cost = 0

1.E+01

1.E+02

1.E+03

1.E+04

1.E+05

1.E+06

4 5 6 7 8 9 10 11 12 13 14 15

Number of Targets

N
C

C
C

ADOPT
BnB-ADOPT
NCBB

(a)

Sensor Network
Communication Cost = 1000

1.E+04

1.E+05

1.E+06

1.E+07

1.E+08

1.E+09

4 5 6 7 8 9 10 11 12 13 14 15

Number of Targets

N
C

C
C

ADOPT
BnB-ADOPT
NCBB

(b)

Sensor Network

1.E+01

1.E+02

1.E+03

1.E+04

1.E+05

4 5 6 7 8 9 10 11 12 13 14 15

Number of Targets

C
yc

le
s

ADOPT
BnB-ADOPT
NCBB

(c)

Figure 3.9: Experimental Results Comparing ADOPT, BnB-ADOPT and NCBB on Sen-
sor Network Problems

Meeting Scheduling
Communication Cost = 0

1.E+02

1.E+03

1.E+04

1.E+05

1.E+06

5 6 7 8 9 10 11 12 13 14 15

Number of Meetings

N
C

C
C

ADOPT
BnB-ADOPT
NCBB

(a)

Meeting Scheduling
Communication Cost = 1000

1.E+04

1.E+05

1.E+06

1.E+07

1.E+08

5 6 7 8 9 10 11 12 13 14 15

Number of Meetings

N
C

C
C

ADOPT
BnB-ADOPT
NCBB

(b)

Meeting Scheduling

1.E+01

1.E+02

1.E+03

1.E+04

1.E+05

5 6 7 8 9 10 11 12 13 14 15

Number of Meetings

C
yc

le
s

ADOPT
BnB-ADOPT
NCBB

(c)

Figure 3.10: Experimental Results Comparing ADOPT, BnB-ADOPT and NCBB on
Meeting Scheduling Problems

96

Combinatorial Auction
Communication Cost = 0

1.E+00

1.E+01

1.E+02

1.E+03

1.E+04

1.E+05

1.E+06

5 10 15 20 25 30 35

Number of Bids
N

C
C

C

ADOPT
BnB-ADOPT
NCBB

(a)

Combinatorial Auction
Communication Cost = 1000

1.E+03

1.E+04

1.E+05

1.E+06

1.E+07

1.E+08

1.E+09

5 10 15 20 25 30 35

Number of Bids

N
C

C
C

ADOPT
BnB-ADOPT
NCBB

(b)

Combinatorial Auction

1.E+00

1.E+01

1.E+02

1.E+03

1.E+04

1.E+05

5 10 15 20 25 30 35

Number of Bids

C
yc

le
s

ADOPT
BnB-ADOPT
NCBB

(c)

Figure 3.11: Experimental Results Comparing ADOPT, BnB-ADOPT and NCBB on
Combinatorial Auction Problems

dense graphs. However, the difference between BnB-ADOPT and NCBB becomes

negligible when communication is slow.

• Figure 3.7 shows that BnB-ADOPT is at least half an order of magnitude faster

than ADOPT when the number of vertices is small. The speedup over ADOPT

increases as the number of vertices gets larger and the DCOP problems thus become

more complex. Similarly, Figure 3.8 shows that the speedup over ADOPT increases

as the range of constant costs increases and the DCOP problems thus become

more complex. However, ADOPT can be faster than BnB-ADOPT for simple

DCOP problems. For example, ADOPT requires fewer cycles than BnB-ADOPT

for DCOP problems with constraint costs ranging from 0 to 1. Figures 3.9, 3.10

and 3.11 show that the trend for graph coloring problems carries over to sensor

network, meeting scheduling and combinatorial auction problems, respectively, as

97

Sensor Network
Communication Cost = 0

1.E+01

1.E+02

1.E+03

1.E+04

1.E+05

0.5 0.6 0.7 0.8 0.9 1

Weight
N

C
C

C

ADOPT

BnB-ADOPT

(a)

Sensor Network
Communication Cost = 1000

1.E+04

1.E+05

1.E+06

0.5 0.6 0.7 0.8 0.9 1

Weight

N
C

C
C

ADOPT

BnB-ADOPT

(b)

Sensor Network

1.E+01

1.E+02

1.E+03

0.5 0.6 0.7 0.8 0.9 1

Weight

C
yc

le
s

ADOPT

BnB-ADOPT

(c)

Sensor Network
Unique Contexts Explored

1.E+01

1.E+02

0.5 0.6 0.7 0.8 0.9 1

Weight

N
o

. o
f

C
o

n
te

xt
s

ADOPT

BnB-ADOPT

(d)

Sensor Network
Repeated Contexts Explored

1.E+00

1.E+01

1.E+02

1.E+03

0.5 0.6 0.7 0.8 0.9 1

Weight

N
o

. o
f

C
o

n
te

xt
s

ADOPT

BnB-ADOPT

(e)

Figure 3.12: Experimental Results on the Reason for the Speedup of BnB-ADOPT over
ADOPT

well. The reason for this behavior is as follows. ADOPT uses memory-bounded

best-first search and thus exploits the heuristic values well but needs to repeatedly

reconstruct partial solutions that it purged from memory, especially if the heuristic

values are poorly informed. BnB-ADOPT uses depth-first branch-and-bound search

and thus does not exploit the heuristic values quite as well but does not have to

98

repeatedly reconstruct partial solutions. ADOPT can thus be faster than BnB-

ADOPT for DCOP problems with well informed heuristic values, such as simple

DCOP problems.

We confirm this intuition with an additional experiment on sensor network problems

with four targets and different informedness of heuristic values. We use the heuristic

values c ·ha,c
Xa(d) for 0.5 ≤ c ≤ 1, where ha,c

Xa(d) are the heuristic values calculated by

DP2, as used until now. Figures 3.12(a-c) show the number of NCCCs for different

weights c. When the heuristic values are well informed (large weights), ADOPT

can indeed be faster than BnB-ADOPT. Since ADOPT relies on the heuristic val-

ues more than BnB-ADOPT, the speedup of ADOPT is much larger than that of

BnB-ADOPT as the heuristic values get more informed. Figures 3.12(d,e) show the

number of unique (= different) and repeated contexts per agent for different weights

c. When the heuristic values are well informed (large weights), agents in ADOPT

explore fewer unique contexts than agents in BnB-ADOPT since they are more fo-

cused in their search. However, when the heuristic values are poorly informed (small

weights), they explore more unique contexts. Agents in ADOPT explore many more

repeated contexts than agents in BnB-ADOPT since they need to reconstruct par-

tial solutions that they purged from memory. Agents in BnB-ADOPT explore a

few repeated contexts even though it does not have to reconstruct partial solutions.

The reason for this behavior is the distributed nature of BnB-ADOPT. For exam-

ple, assume that the context of an agent is {(a1, 0), (a2, 0)} and the next context

of a centralized variant of BnB-ADOPT would be {(a1, 1), (a2, 1)} (where the IDs

are omitted for simplicity). The agent updates its context to {(a1, 1), (a2, 0)} when

99

it receives the message from agent a1 that it takes on value 1. The agent then

updates its context to {(a1, 1), (a2, 1)} when it receives the message from agent

a2 that it takes on value 1. Thus, the agent explores the intermediate context

{(a1, 1), (a2, 0)} that a centralized variant of BnB-ADOPT would not explore. It

counts as a repeated context if the agent explores this context intentionally in the

future.

Overall, BnB-ADOPT tends to be experimentally faster than ADOPT if the heuristic

values are poorly informed (small weights). Thus, BnB-ADOPT has great potential as

a DCOP search algorithm since heuristic values often become more poorly informed as

the DCOP problems have larger numbers of agents (Ali et al., 2005), larger domains,

larger numbers of constraints or larger ranges of constraint costs, or in other words, as

the DCOP problems become more complex.

3.5 Summary

This chapter introduced BnB-ADOPT, a DCOP search algorithm that has the same

memory requirement, observes the same communication restriction and uses the same

agent operation and pseudo-tree structure as ADOPT, but employs a depth-first branch-

and-bound search strategy instead of a memory-bounded best-first search strategy. Our

experimental results showed that BnB-ADOPT tends to be faster than ADOPT when

the heuristic values are poorly informed since ADOPT needs to repeatedly reconstruct

partial solutions that it purged from memory. In large DCOP problems, where the

heuristic values are often poorly informed, BnB-ADOPT is up to one order of magnitude

100

faster than ADOPT. These results experimentally validate the hypothesis that DCOP

search algorithms that employ depth-first branch-and-bound search can be faster than

DCOP search algorithms that employ memory-bounded best-first search.

101

Chapter 4

Speeding Up via Approximation Mechanisms

This chapter introduces a new approximation mechanism called the Weighted Heuristics

mechanism. It allows ADOPT and BnB-ADOPT to use weighted heuristic values to

trade off solution costs for smaller runtimes. Additionally, it also guarantees that the

costs of the solutions found are at most a constant factor larger than the minimal costs,

where the constant is the largest weight used. Our experimental results show that, when

ADOPT and BnB-ADOPT use the Weighted Heuristics mechanism, they terminate faster

with larger weights, validating the hypothesis that DCOP search algorithms that use

weighted heuristic values can have runtimes that decrease as larger weights are used.

Additionally, we also introduce the Relative Error mechanism that is an extension of the

existing Absolute Error mechanism. The new Weighted Heuristics and Relative Error

mechanisms provide relative error bounds and thus complement the existing Absolute

Error mechanism, which only provides absolute error bounds.

This chapter is organized as follows: We first describe the motivation for our work in

Section 4.1. Next, we provide a detailed description of the Weighted Heuristics mechanism

and existing approximation mechanisms in Section 4.2. We then prove their correctness

102

and completeness and describe their space complexity in Section 4.3 before presenting

our experimental results in Section 4.4 and our summary in Section 4.5.

4.1 Motivation

Researchers have developed centralized search algorithms, such as Weighted A* (Pohl,

1970) and Weighted A* with dynamic weights (Pohl, 1973), that use weighted heuristic

values to trade off solution costs for smaller runtimes. These algorithms also provide

a quality guarantee, namely that the costs of the solutions found are at most a con-

stant factor larger than the minimal costs, where the constant is the largest weight used.

Typically, the runtime of these algorithms decreases as larger weights are used.

Since DCOP search algorithms such as ADOPT and BnB-ADOPT use heuristic val-

ues to focus their search, I hypothesize that DCOP search algorithms that use weighted

heuristic values can have runtimes that decrease as larger weights are used. Addition-

ally, the costs of the solutions found should be at most a constant factor larger than

the minimal costs, where the constant is the largest weight used. Therefore, I introduce

the Weighted Heuristics mechanism, an approximation mechanism that trades off solu-

tion costs for smaller runtimes. Thus, the comparison of the runtimes of ADOPT and

BnB-ADOPT with the Weighted Heuristics mechanism using different weights will ex-

perimentally assess my hypothesis. This work is non-trivial ADOPT and BnB-ADOPT

use heuristic values differently than centralized search algorithms, such as A*. Further-

more, the proof of the quality guarantee for DCOP search algorithms cannot be trivially

obtained from the proof for centralized search algorithms since DCOP search algorithms

103

are distributed and agents only have local views of the problem or, in other words, they

know only the agents that they share constraints with and the costs of those constraints.

4.2 Approximation Mechanisms

Since solving DCOP problems optimally is NP-hard, it is desirable to find approximation

mechanisms that trade off solution costs for smaller runtimes. However, to the best of our

knowledge, there only exists one approximation mechanism, namely the Absolute Error

mechanism, that is designed for DCOP search algorithms. The Absolute Error mecha-

nism was originally developed for ADOPT (Modi et al., 2005), but it can be extended to

work with BnB-ADOPT. It uses early termination detection to trade off solution costs

for smaller runtimes by allowing users to specify absolute error bounds on the solution

costs, for example that the solution costs should be at most 10 larger than minimal. The

downside of this approximation mechanism is that it is impossible to set relative error

bounds, for example that the solution costs should be at most 10 percent larger than

minimal, without knowing the minimal costs. Therefore, in addition to the Weighted

Heuristics mechanism, we also present the Relative Error mechanism, which is an exten-

sion of the Absolute Error mechanism. The two new approximation mechanisms allow

users to set relative error bounds. We describe the Absolute Error mechanism in Sec-

tion 4.2.1, the Relative Error mechanism in Section 4.2.2 and the Weighted Heuristics

mechanism in Section 4.2.3. We only describe how these approximation mechanisms are

used by BnB-ADOPT, but the same description applies for ADOPT unless otherwise

mentioned.

104

OR

AND

OR

AND

OR

AND

9

2

10 14

2

3 8

12

2

X X

2

X X

X

X

X X

X

X X

X

X

X X

X

X X

3

3

6

6

3

lima1= 27
UBa1 = infinity

Cycle 1

OR

AND

OR

AND

OR

AND

18

10

10 14

3

3 8

12

2

X X

2

X X

X

X

X X

X

X X

X

X

X X

X

X X

6

9

6

6

9

lima1= 30
UBa1 = infinity

Cycle 2

OR

AND

OR

AND

OR

AND

18

10

X X

3

X X

12

2

8 13

2

10 3

X

X

X X

X

X X

X

X

X X

X

X X

6

12

6

6

12

lima1= 30
UBa1 = 18

Cycle 3

Figure 4.1: Trace of the Updates of the Lower Bounds of BnB-ADOPTAEM with Absolute
Error Bound b = 24

All approximation mechanisms let the root agent r (and only the root agent) maintain

the limit limr. The root agent uses this limit in the same way in the termination condition

for all approximation mechanisms but updates it differently. The termination condition

UBr
Xr ≤ LBr

Xr on Line 27 of the pseudocode of BnB-ADOPT is replaced with UBr
Xr ≤

limr. Therefore, limr = LBr
Xr for BnB-ADOPT, and limr = THr

Xr for ADOPT. The

root agent updates the limit between Lines 26 and 27 in the pseudocode, outside of the

preceding if statement.

4.2.1 Absolute Error Mechanism

The Absolute Error mechanism of ADOPT requires a user-defined absolute error bound

0 ≤ b < ∞ that specifies that the solution cost should be at most b larger than the minimal

solution cost. This approximation mechanism can easily be modified for BnB-ADOPT

by setting the limit as follows:

limr := b + LBr
Xr (4.1)

105

OR

AND

OR

AND

OR

AND

9

2

10 14

2

3 8

12

2

X X

2

X X

X

X

X X

X

X X

X

X

X X

X

X X

3

3

6

6

3

lima1= 9
UBa1 = infinity

Cycle 1

OR

AND

OR

AND

OR

AND

18

10

10 14

3

3 8

12

2

X X

2

X X

X

X

X X

X

X X

X

X

X X

X

X X

6

9

6

6

9

lima1= 18
UBa1 = infinity

Cycle 2

OR

AND

OR

AND

OR

AND

18

10

X X

3

X X

12

2

8 13

2

10 3

X

X

X X

X

X X

X

X

X X

X

X X

6

12

6

6

12

lima1= 18
UBa1 = 18

Cycle 3

Figure 4.2: Trace of the Updates of the Lower Bounds of BnB-ADOPTREM with Relative
Error Bound p = 3

BnB-ADOPTAEM is the resulting variant of BnB-ADOPT with the Absolute Error

mechanism. BnB-ADOPTAEM terminates once the upper bound of the root node (which

is equal to the solution cost of the solution with the smallest solution cost found so far)

is no larger than the limit (which is equal to the absolute error bound b plus the lower

bound of the root node, which is a lower bound on the minimal solution cost). BnB-

ADOPTAEM terminates with a solution cost that is equal to the upper bound of the root

node although the minimal solution cost could be as small as the lower bound of the root

node. It thus terminates with a solution cost that is at most b larger than the minimal

solution cost.

Figure 4.1 shows a trace of BnB-ADOPTAEM with b = 24 for our example DCOP

problem. In Cycle 3, the lower bound LBa1
Xa1 of 6 indicates that the minimal cost is

at least 6, and the upper bound UBa1
Xa1 of 18 indicates that BnB-ADOPTAEM found a

solution with cost 18. Since the solution cost is at most 24 larger than the minimal cost,

BnB-ADOPTAEM terminates after three cycles with suboptimal solution cost 18, which

is six cycles faster than BnB-ADOPT.

106

4.2.2 Relative Error Mechanism

It is often much more desirable to specify a relative error bound on the solution cost

rather than an absolute error bound. Fortunately, the Absolute Error mechanism of

BnB-ADOPT can easily be changed to the Relative Error mechanism by setting the limit

as follows. The Relative Error mechanism requires a user-defined relative error bound

1 ≤ p < ∞ that specifies that the solution cost should be at most p times larger than the

minimal solution cost:

limr := p · LBr
Xr (4.2)

BnB-ADOPTREM is the resulting variant of BnB-ADOPT with the Relative Error

mechanism. BnB-ADOPTREM terminates once the upper bound of the root node (which

is equal to the solution cost of the solution with the smallest solution cost found so far)

is no larger than the limit (which is equal to the relative error bound p times the lower

bound of the root node, which is a lower bound on the minimal solution cost). BnB-

ADOPTREM terminates with a solution cost that is equal to the upper bound of the

root node although the minimal solution cost could be as small as the lower bound of the

root node. It thus terminates with a solution cost that is at most p times larger than the

minimal solution cost.

Figure 4.2 shows a trace of BnB-ADOPTREM with p = 3 for our example DCOP

problem. In Cycle 3, the lower bound LBa1
Xa1 of 6 indicates that the minimal cost is

107

OR

AND

OR

AND

OR

AND

17

6

10 14

6

3 8

20

6

X X

6

X X

X

X

X X

X

X X

X

X

X X

X

X X

9

9

18

18

9

lima1= 9
UBa1 = infinity

Cycle 1

OR

AND

OR

AND

OR

AND

21

10

10 14

6

3 8

20

6

X X

6

X X

X

X

X X

X

X X

X

X

X X

X

X X

17

17

18

18

17

lima1= 17
UBa1 = infinity

Cycle 2

OR

AND

OR

AND

OR

AND

21

10

X X

6

X X

20

6

8 13

6

10 3

X

X

X X

X

X X

X

X

X X

X

X X

18

20

18

18

20

lima1= 18
UBa1 = 18

Cycle 3

Figure 4.3: Trace of the Updates of the Lower Bounds of BnB-ADOPTWHM with Relative
Error Bound w = 3

at least 6, and the upper bound UBa1
Xa1 of 18 indicates that BnB-ADOPTREM found a

solution with cost 18. Since the solution cost is at most 3 times larger than the minimal

cost, BnB-ADOPTREM terminates after three cycles with suboptimal solution cost 18,

which is six cycles faster than BnB-ADOPT.

4.2.3 Weighted Heuristics Mechanism

As mentioned in Section 3.2.2, BnB-ADOPT uses heuristic values to approximate the

gamma costs of nodes in the search tree. Each agent a initializes lba,c
Xa(d) := ha,c

Xa(d) for

admissible heuristic values 0 ≤ ha,c
Xa(d) ≤ γc

Xa∪(a,d) for all values d ∈ Dom(a), all child

agents c ∈ C(a) and current context Xa. If these heuristic values are close to the gamma

costs the runtimes will be small.

It is common practice in the context of A* to trade off solution cost for a smaller

runtime by using weighted heuristic values (Pohl, 1973), which are derived from admissible

heuristic values by multiplying them with a user-defined weight 1 ≤ w < ∞. The resulting

heuristic values can be inadmissible. A* is then no longer guaranteed to find cost-minimal

solutions but it is guaranteed to terminate with a solution cost that is at most w times

larger than the minimal solution cost (Pohl, 1970). This approximation mechanism can

easily be modified for BnB-ADOPT by setting the limit as follows:

108

limr := LBr
Xr (4.3)

and by initializing the lower bounds lba,c
Xa(d) as follows:

lba,c
Xa(d) := w · ha,c

Xa(d) (4.4)

for all agents a, all values d, all child agents c and all contexts Xa. BnB-ADOPTWHM

is the resulting variant of BnB-ADOPT with the Weighted Heuristics mechanism. BnB-

ADOPTWHM terminates once the upper bound of the root node (which is equal to the

solution cost of the solution with the smallest solution cost found so far) is no larger than

the limit (which is equal to the lower bound of the root node, which is a lower bound on

w times the minimal solution cost). BnB-ADOPTWHM terminates with a solution cost

that is equal to the upper bound of the root node although the minimal solution cost

could be as small as the lower bound of the root node divided by w. It thus terminates

with a solution cost that is at most w times larger than the minimal solution cost.

Figure 4.3 shows a trace of BnB-ADOPTWHM with w = 3 for our example DCOP

problem. In Cycle 3, the lower bound LBa1
Xa1 of 18 indicates that the (overestimated)

109

minimal cost is at least 18, and the upper bound UBa1
Xa1 of 18 indicates that BnB-

ADOPTWHM found a solution with cost 18. (The lower bound is an overestimate of the

minimal cost since BnB-ADOPTWHM uses weighted heuristic values.) Since the solution

cost is no larger than the (overestimated) minimal cost, BnB-ADOPTWHM terminates

after three cycles with suboptimal solution cost 18, which is six cycles faster than BnB-

ADOPT.

4.3 Correctness, Completeness and Complexity

In this section, we prove the correctness and completeness of the approximation mech-

anisms when used by BnB-ADOPT. Their correctness and completeness when used by

ADOPT can be proven in a similar way. We also describe their space and message

complexities.

4.3.1 Correctness and Completeness

All definitions, lemmas and theorems of Section 3.3.1 continue to hold when BnB-ADOPT

uses the approximation mechanisms. We follow the assumptions in Section 3.3.1 and

assume that each agent a uses the following update equation for all values d, all child

agents c and all contexts Xa to initialize its bounds.

lba,c
Xa(d) := w · ha,c

Xa(d) (3.20)

uba,c
Xa(d) := ∞ (3.21)

110

where the weight w is a floating point number that satisfies 1 ≤ w < ∞ and the heuristic

values ha,c
Xa(d) are floating point numbers that satisfy

0 ≤ ha,c
Xa(d) ≤ γc

Xa∪(a,d) (3.22)

Theorem 3 The suboptimal variants of BnB-ADOPT terminate after a finite amount

of time.

Proof: If the suboptimal variants of BnB-ADOPT do not terminate earlier, then UBa
Xa ≤

LBa
Xa after a finite amount of time for all agents a ∈ A and their contexts Xa according

to Lemma 8. In particular, UBr
Xr ≤ LBr

Xr ≤ limr for the root agent r, where limr =

LBr
Xr for BnB-ADOPTWHM , limr = b + LBr

Xr with b ≥ 0 for BnB-ADOPTAEM and

limr = p · LBr
Xr with p ≥ 1 for BnB-ADOPTREM according to Section 4.2. Thus,

the termination condition UBr
Xr ≤ limr of the suboptimal variants of BnB-ADOPT are

satisfied.

Theorem 4 BnB-ADOPTAEM terminates with a solution cost that is bounded from

above by the user-defined absolute error bound b plus the minimal solution cost γr
Xr .

Proof: BnB-ADOPTAEM terminates after a finite amount of time according to Theo-

rem 3. The solution cost of BnB-ADOPTAEM is the upper bound UBr
Xr of the root agent

r. UBr
Xr ≤ limr = b + LBr

Xr upon termination according to its termination condition.

LBr
Xr ≤ w · γr

Xr according to Lemma 5. Therefore, UBr
Xr ≤ b + γr

Xr since w = 1.

111

Theorem 5 BnB-ADOPTREM terminates with a solution cost that is bounded from

above by the user-defined relative error bound p times the minimal solution cost γr
Xr .

Proof: BnB-ADOPTREM terminates after a finite amount of time according to Theo-

rem 3. The solution cost of BnB-ADOPTREM is the upper bound UBr
Xr of the root agent

r. UBr
Xr ≤ limr = p · LBr

Xr upon termination according to its termination condition.

LBr
Xr ≤ w · γr

Xr according to Lemma 5. Therefore, UBr
Xr ≤ p · γr

Xr since w = 1.

Theorem 6 BnB-ADOPTWHM terminates with a solution cost that is bounded from

above by the user-defined weight w times the minimal solution cost γr
Xr .

Proof: BnB-ADOPTWHM terminates after a finite amount of time according to The-

orem 3. The solution cost of BnB-ADOPTWHM is the upper bound UBr
Xr of the root

agent r. UBr
Xr ≤ limr = LBr

Xr upon termination according to its termination condition.

LBr
Xr ≤ w · γr

Xr according to Lemma 5. Therefore, UBr
Xr ≤ w · γr

Xr .

4.3.2 Complexity

Since ADOPT and BnB-ADOPT with any of the three approximation mechanisms only

maintain one additional variable, namely limr, their memory requirements are identical

to ADOPT and BnB-ADOPT without any approximation mechanism. Thus, their space

complexity is identical to the one described in Section 3.3.2. They use the same messages

as ADOPT and BnB-ADOPT and their message complexity is thus identical to the one

described in Section 3.3.2 as well.

112

4.4 Experimental Evaluation

We now compare ADOPT and BnB-ADOPT with the different approximation mecha-

nisms and the DP2 pre-processing framework described in Section 3.4. We also compare

ADOPTWHM and BnB-ADOPTWHM to MGM-k (Pearce, Maheswaran, & Tambe, 2006;

Pearce & Tambe, 2007), an incomplete k-optimal DCOP algorithm. It partitions the

DCOP problem into groups of at most k agents and runs a local search algorithm to find

a DCOP solution that is cost-minimal within each group.

4.4.1 Metrics

We measure the runtimes in cycles. We do not measure the runtimes in NCCCs because

the number of cycles reflects the number of NCCCs; the number of constraint checks and

the number of messages sent in each cycle are very similar for both ADOPT and BnB-

ADOPT. We report normalized runtimes, that is, the runtimes divided by the runtimes for

finding cost-minimal solutions. Thus, the normalized runtime 0.25 refers to one quarter

of the number of cycles that it takes to find a cost-minimal solution. We also measure the

solution costs found by the algorithms. We report normalized solution costs, that is, the

solution costs divided by the minimal solution costs. Thus, the normalized solution cost

2.5 refers to a solution cost that is two and a half times larger than the minimal solution

cost. Lastly, we also measure the number of unique and repeated contexts explored per

agent of ADOPT and BnB-ADOPT to better understand the reason for the speedups.

The sum of both numbers is correlated with the runtime of ADOPT and BnB-ADOPT.

113

We vary the relative error bound, which is the worst acceptable normalized solution

cost, from 1.0 to 4.0. These relative error bounds correspond to p for the Relative Error

mechanism and w for the Weighted Heuristics mechanism. We pre-calculate the minimal

costs to set the correct value of b for the Absolute Error mechanism. For example, if the

minimal cost is 100 and the relative error bound is 2.5, p = 2.5 for the Relative Error

mechanism, w = 2.5 for Weighted Heuristics mechanism, and b = (2.5 − 1) · 100 = 150

for the Absolute Error mechanism.

4.4.2 Problem Types

As described in Section 2.1.5, we run our experiments on four problem types, namely

graph coloring, sensor network, meeting scheduling and combinatorial auction problems.

• Graph coloring problems: We use the same experimental setup as Section 3.4.2

except that we set the number of agents (= vertices to color) to 10 and the density

to 2. Each agent always has three possible values (= colors). All costs are randomly

generated from 0 to 10,000. We average the experimental results over 50 DCOP

problem instances.

• Sensor network problems: We use the same experimental setup as Section 3.4.2

except that we set the number of agents (= targets to track) to 9. Each agent always

has nine values (= time slots). We average the experimental results over 50 DCOP

problem instances.

• Meeting scheduling problems: We use the same experimental setup as Sec-

tion 3.4.2 except that we set the number of agents (= meetings to schedule) to 10.

114

Each agent always has nine values (= time slots). We average the experimental

results over 50 DCOP problem instances.

• Combinatorial auction problems: We use the same experimental setup as

Section 3.4.2 except that we set the number of agents (= bids to consider) to 25.

Each agent always has two values (= bid results). We average the experimental

results over 50 DCOP problem instances.

4.4.3 Experimental Results

Figures 4.4 and 4.5 show our experimental results for ADOPT and BnB-ADOPT with

the approximation mechanisms, respectively, on graph coloring problems. We make the

following observations:

• Figures 4.4(a) and 4.5(a) show that the normalized solution costs of all subopti-

mal variants of ADOPT and BnB-ADOPT increase as the relative error bound

increases. However, the solution costs remains much smaller than the error bound.

For example, the normalized solution costs of all suboptimal variants are less than

1.3 (rather than 3) when the relative error bound is 3. The normalized solu-

tion costs of ADOPT and BnB-ADOPT with the Absolute Error mechanism are

usually larger than the normalized solution costs with the Relative Error mech-

anism for the same relative error bound. The reason for this behavior is that

ADOPT and BnB-ADOPT with the Absolute Error mechanism terminate when

UBr
Xr ≤ limr = b + LBr

Xr = (p − 1) · γr
Xr + LBr

Xr , where γr
Xr is the minimal

solution cost. Thus, the solution cost with the Absolute Error mechanism can be

115

Graph Coloring
Solution Cost of ADOPT

1.00

1.05

1.10

1.15

1.20

1.25

1.30

1.00 1.50 2.00 2.50 3.00 3.50 4.00

Relative Error Bound

N
o

rm
al

iz
ed

 C
o

st
s

Weighted Heuristics (WHM)
Absolute Error (AEM)
Relative Error (REM)

(a)

Graph Coloring
Computation Time of ADOPT

0.00

0.20

0.40

0.60

0.80

1.00

1.00 1.50 2.00 2.50 3.00 3.50 4.00

Relative Error Bound

N
o

rm
al

iz
ed

 R
u

n
ti

m
es

(C

yc
le

s)

Weighted Heuristics (WHM)
Absolute Error (AEM)
Relative Error (REM)

(b)
Graph Coloring

Unique Contexts Explored by ADOPT

0

10

20

30

40

50

60

1.00 1.50 2.00 2.50 3.00 3.50 4.00

Relative Error Bound

N
o

. o
f

C
o

n
te

xt
s Weighted Heuristics (WHM)

Absolute Error (AEM)
Relative Error (REM)

(c)

Graph Coloring
Repeated Contexts Explored by ADOPT

0

1000

2000

3000

4000

5000

1.00 1.50 2.00 2.50 3.00 3.50 4.00

Relative Error Bound

N
o

. o
f

C
o

n
te

xt
s Weighted Heuristics (WHM)

Absolute Error (AEM)
Relative Error (REM)

(d)
Graph Coloring

Performance of ADOPT

0.00

0.20

0.40

0.60

0.80

1.00

1.00 1.05 1.10 1.15 1.20 1.25 1.30

Normalized Costs

N
o

rm
al

iz
ed

 R
u

n
ti

m
es

(C
yc

le
s)

Weighted Heuristics (WHM)
Absolute Error (AEM)
Relative Error (REM)

(e)

Figure 4.4: Experimental Results Comparing ADOPT with the Approximation Mecha-
nisms on Graph Coloring Problems

at most UBr
Xr − LBr

Xr ≤ (p − 1) · γr
Xr larger than the minimal solution cost. On

the other hand, ADOPT and BnB-ADOPT with the Relative Error mechanism ter-

minate when UBr
Xr ≤ limr = p · LBr

Xr . Thus, the solution cost with the Relative

Error mechanism can be at most UBr
Xr − LBr

Xr ≤ (p − 1) · LBr
Xr larger than the

minimal solution cost. The absolute error bound of the Absolute Error mechanism

is thus no smaller than the absolute error bound of the Relative Error mechanism

116

Graph Coloring
Solution Cost of BnB-ADOPT

1.00

1.05

1.10

1.15

1.20

1.25

1.30

1.35

1.00 1.50 2.00 2.50 3.00 3.50 4.00

Relative Error Bound

N
o

rm
al

iz
ed

 C
o

st
s

Weighted Heuristics (WHM)
Absolute Error (AEM)
Relative Error (REM)

(a)

Graph Coloring
Computation Time of BnB-ADOPT

0.00

0.20

0.40

0.60

0.80

1.00

1.00 1.50 2.00 2.50 3.00 3.50 4.00

Relative Error Bound

N
o

rm
al

iz
ed

 R
u

n
ti

m
es

(C

yc
le

s)

Weighted Heuristics (WHM)
Absolute Error (AEM)
Relative Error (REM)

(b)
Graph Coloring

Unique Contexts Explored by BnB-ADOPT

0

10

20

30

40

50

1.00 1.50 2.00 2.50 3.00 3.50 4.00

Relative Error Bound

N
o

. o
f

C
o

n
te

xt
s Weighted Heuristics (WHM)

Absolute Error (AEM)
Relative Error (REM)

(c)

Graph Coloring
Repeated Contexts Explored by BnB-ADOPT

0

20

40

60

80

100

120

1.00 1.50 2.00 2.50 3.00 3.50 4.00

Relative Error Bound

N
o

. o
f

C
o

n
te

xt
s Weighted Heuristics (WHM)

Absolute Error (AEM)
Relative Error (REM)

(d)
Graph Coloring

Performance of BnB-ADOPT

0.00

0.20

0.40

0.60

0.80

1.00

1.00 1.05 1.10 1.15 1.20 1.25 1.30

Normalized Costs

N
o

rm
al

iz
ed

 R
u

n
ti

m
es

(C
yc

le
s)

Weighted Heuristics (WHM)
Absolute Error (AEM)
Relative Error (REM)

(e)

Figure 4.5: Experimental Results Comparing BnB-ADOPT with the Approximation
Mechanisms on Graph Coloring Problems

since γr
Xr ≥ LBr

Xr but is initially strictly greater than the absolute error bound of

the Relative Error mechanism since γr
Xr > LBr

Xr during most of the search.

• Figures 4.4(b) and 4.5(b) show that the normalized runtimes of all suboptimal vari-

ants of ADOPT and BnB-ADOPT decrease as the relative error bound increases.

They decrease to almost 0 when the relative error bound is about 1.5 for ADOPT

and 2.0 for BnB-ADOPT. Therefore, all suboptimal variants terminate almost im-

mediately after finding the first solution. The normalized runtimes of ADOPT

117

Sensor Network
Performance of ADOPT

0.00

0.20

0.40

0.60

0.80

1.00

1.00 1.02 1.04 1.06 1.08 1.10

Normalized Costs

N
o

rm
al

iz
ed

 R
u

n
ti

m
es

(C
yc

le
s)

Weighted Heuristics (WHM)
Absolute Error (AEM)
Relative Error (REM)

(a)

Sensor Network
Performance of BnB-ADOPT

0.00

0.20

0.40

0.60

0.80

1.00

1.00 1.02 1.04 1.06 1.08 1.10 1.12 1.14

Normalized Costs

N
o

rm
al

iz
ed

 R
u

n
ti

m
es

(C
yc

le
s)

Weighted Heuristics (WHM)
Absolute Error (AEM)
Relative Error (REM)

(b)
Meeting Scheduling

Performance of ADOPT

0.00

0.20

0.40

0.60

0.80

1.00

1.00 1.05 1.10

Normalized Costs

N
o

rm
al

iz
ed

 R
u

n
ti

m
es

(C
yc

le
s)

Weighted Heuristics (WHM)
Absolute Error (AEM)
Relative Error (REM)

(c)

Meeting Scheduling
Performance of BnB-ADOPT

0.00

0.20

0.40

0.60

0.80

1.00

1.00 1.05 1.10 1.15 1.20 1.25

Normalized Costs

N
o

rm
al

iz
ed

 R
u

n
ti

m
es

(C
yc

le
s)

Weighted Heuristics (WHM)
Absolute Error (AEM)
Relative Error (REM)

(d)
Combinatorial Auction
Performance of ADOPT

0.00

0.20

0.40

0.60

0.80

1.00

1.00 1.01 1.02 1.03 1.04 1.05

Normalized Costs

N
o

rm
al

iz
ed

 R
u

n
ti

m
es

(C
yc

le
s)

Weighted Heuristics (WHM)
Absolute Error (AEM)
Relative Error (REM)

(e)

Combinatorial Auction
Performance of BnB-ADOPT

0.20

0.40

0.60

0.80

1.00

1.00 1.01 1.02 1.03 1.04 1.05

Normalized Costs

N
o

rm
al

iz
ed

 R
u

n
ti

m
es

(C
yc

le
s)

Weighted Heuristics (WHM)
Absolute Error (AEM)
Relative Error (REM)

(f)

Figure 4.6: Experimental Results Comparing ADOPT and BnB-ADOPT with the Ap-
proximation Mechanisms on Sensor Network, Meeting Scheduling and Combinatorial Auc-
tion Problems

and BnB-ADOPT with the Absolute Error mechanism are usually smaller than

the normalized runtimes with the Relative Error mechanism for the same relative

error bound. The reason for this behavior is that ADOPT and BnB-ADOPT with

the Absolute Error mechanism can terminate with a suboptimal solution cost that

is within its absolute error bound but not yet within the absolute error bound of

ADOPT and BnB-ADOPT with the Relative Error mechanism. In other words,

ADOPT and BnB-ADOPT with the Absolute Error mechanism can terminate with

118

a suboptimal solution cost (p − 1) · LBr
Xr < UBr

Xr ≤ (p − 1) · γr
Xr while ADOPT

and BnB-ADOPT with the Relative Error mechanism can not.

• Figures 4.4(c,d) and 4.5(c,d) give insight into the reasons for the decrease in nor-

malized runtime. They show that the number of unique and repeated contexts per

agent decreases as the relative error bound increases, indicating that both the size of

the search space explored by all suboptimal variants of ADOPT and BnB-ADOPT

and the size of the search space that they need to reconstruct decreases. The size

of the search space that the suboptimal variants of ADOPT need to reconstruct is

much larger than the one that the suboptimal variants of BnB-ADOPT need to re-

construct since the suboptimal variants of ADOPT need to reconstruct abandoned

partial solutions repeatedly like ADOPT.

• Figures 4.4(e) and 4.5(e) compare the different approximation mechanisms by plot-

ting the normalized runtime needed to achieve a given normalized solution cost.

For ADOPT, there does not seem to be a significant difference between the three

suboptimal variants. However, for BnB-ADOPT, BnB-ADOPTWHM performs bet-

ter than BnB-ADOPTAEM , which in turn performs better than BnB-ADOPTREM .

For example, the normalized runtime needed to achieve a normalized solution cost

of 1.05 is about 0.18 for BnB-ADOPTWHM , 0.30 for BnB-ADOPTAEM and 0.35

for BnB-ADOPTREM . Thus, BnB-ADOPTWHM is the suboptimal variant with the

best performance.

• Figures 4.6(a,c) show that the trend for graph coloring problems carries over to

sensor network and meeting scheduling problems as well. Figure 4.6(e) shows that

119

Graph Coloring

0

2000

4000

6000

8000

1.00 1.05 1.10 1.15 1.20 1.25 1.30

Normalized Costs

R
u

n
ti

m
es

 (
C

yc
le

s)

ADOPT with WHM
BnB-ADOPT with WHM
MGM-k

(a)

Sensor Network

0

200

400

600

800

1000

1.00 1.02 1.04 1.06 1.08 1.10 1.12 1.14

Normalized Costs

R
u

n
ti

m
es

 (
C

yc
le

s)

ADOPT with WHM
BnB-ADOPT with WHM
MGM-k

(b)
Meeting Scheduling

0

400

800

1200

1600

2000

1.00 1.05 1.10 1.15 1.20 1.25

Normalized Costs

R
u

n
ti

m
es

 (
C

yc
le

s)

ADOPT with WHM
BnB-ADOPT with WHM
MGM-k

(c)

Combinatorial Auction

0

2000

4000

6000

8000

1.00 1.05 1.10 1.15 1.20

Normalized Costs

R
u

n
ti

m
es

 (
C

yc
le

s)

ADOPT with WHM
BnB-ADOPT with WHM
MGM-k

(d)

Figure 4.7: Experimental Results Comparing ADOPTWHM , BnB-ADOPTWHM and
MGM-k

ADOPTWHM performs better than ADOPTAEM , which in turn performs better

than ADOPTREM when they find solutions with normalized costs no larger than

about 1.005 on combinatorial auction problems. ADOPTAEM performs better than

ADOPTWHM , which in turn performs better than ADOPTREM when they find

solutions with larger normalized costs. Figures 4.6(b,d,f) show that the trend for

graph coloring problems carries over to sensor network, meeting scheduling and

combinatorial auction problems as well.

We now compare ADOPTWHM and BnB-ADOPTWHM to MGM-k for k ≤ 3. We

do not use larger values of k because efficient implementations are so far known only

for k ≤ 3 (Maheswaran et al., 2004). Figure 4.7 shows the results. As k increases,

the normalized solution costs of MGM-k increase and the runtimes of MGM-k decrease.

The performance of the DCOP algorithms appears to be domain dependent. On graph

120

coloring problems, BnB-ADOPTWHM performs better than ADOPTWHM and MGM-k.

ADOPTWHM performs better than MGM-k when they find solutions with normalized

costs no larger than 1.03 and performs similarly otherwise. On sensor network prob-

lems, all three DCOP algorithms perform similarly. On meeting scheduling problems,

ADOPTWHM performs better than MGM-k and BnB-ADOPTWHM . On combinatorial

auction problems, BnB-ADOPTWHM performs better than ADOPTWHM . ADOPTWHM

and BnB-ADOPTWHM found solutions with normalized costs no larger than 1.05, and

MGM-k found solutions with normalized costs no smaller than 1.05. Overall, ADOPT

and BnB-ADOPT with the Weighted Heuristics mechanism have smoother tradeoffs be-

tween solution costs and runtimes than MGM-k.

Overall, the Weighted Heuristics mechanism experimentally performs better than the

other tested approximation mechanisms when used by BnB-ADOPT. Therefore, it is a

good complement to the existing Absolute Error mechanism that only provides absolute

error bounds. In general, we expect our approximation mechanisms to apply to other

DCOP search algorithms as well since all of them perform search and thus benefit from

using heuristic values to focus their searches.

4.5 Summary

This chapter introduced two approximation mechanisms, the Relative Error mechanism

and the Weighted Heuristics mechanism, that trade off solution costs for smaller runtimes.

These two approximation mechanisms provide relative error bounds and thus complement

the existing Absolute Error mechanism that only provides absolute error bounds. The

121

Relative Error mechanism changes the early termination condition of the Absolute Error

mechanism such that it provides relative error bounds. The Weighted Heuristics mech-

anism uses weighted heuristic values to find suboptimal solutions and guarantees that

the costs of the solutions found are at most a constant factor larger than the minimal

costs, where the constant is the largest weight used. Our experimental results show that,

when ADOPT and BnB-ADOPT use the Weighted Heuristics mechanism, they terminate

faster with larger weights, validating the hypothesis that DCOP search algorithms that

use weighted heuristic values can have runtimes that decrease as larger weights are used.

122

Chapter 5

Speeding Up via Caching Schemes

This chapter frames the caching problem as an optimization problem and introduces three

new DCOP-specific caching schemes called the MaxPriority, MaxEffort and MaxUtility

schemes. They allow the agents in ADOPT and BnB-ADOPT to determine which infor-

mation to purge from memory when their memory is full and new information needs to

be stored in memory. Our experimental results show that the MaxEffort and MaxUtility

schemes speed up ADOPT more than the currently used generic caching schemes, and

the MaxPriority scheme speeds up BnB-ADOPT at least as much as the currently used

generic caching schemes. Therefore, these results validate the hypothesis that DCOP-

specific caching schemes can reduce the runtime of DCOP search algorithms at least as

much as the currently used generic caching schemes.

This chapter is organized as follows: We first describe the motivation for our work

in Section 5.1. In Section 5.2, we provide a detailed description of the MaxPriority,

MaxEffort and MaxUtility schemes. We then prove their correctness and completeness

and describe their space and message complexities in Section 5.3 before presenting our

experimental results in Section 5.4 and our summary in Section 5.5.

123

5.1 Motivation

Researchers have developed centralized search algorithms, such as MA* (Chakrabarti

et al., 1989) and SMA* (Russell, 1992), that employ any-space best-first search, which is

a version of memory-bounded best-first search that uses more memory than the minimal

amount. These algorithms cache information as long as memory is available. Typically,

the runtime of these algorithms decreases as more memory is available (Chakrabarti et al.,

1989; Russell, 1992).

Motivated by these results, researchers have developed any-space versions of DCOP

search algorithms, such as any-space ADOPT (Matsui et al., 2005) and any-space

NCBB (Chechetka & Sycara, 2006a), that cache information as long as memory is avail-

able. However, unlike MA* and SMA*, memory is distributed among the agents in DCOP

search algorithms. Therefore, the caching schemes of centralized search algorithms can-

not be applied directly to DCOP search algorithms. As a result, any-space ADOPT

and any-space NCBB use generic caching schemes that are similar to popular page re-

placement schemes used in operating systems. For example, any-space ADOPT uses the

Least-Recently-Used (LRU) caching scheme and any-space NCBB uses the First-In-First-

Out (FIFO) caching scheme, which allow the agents to determine which information to

purge from memory when their memory is full and new information needs to be stored in

memory. Despite the use of generic caching schemes, similar to the results of any-space

centralized search algorithms, the runtime of these any-space DCOP search algorithms

also decreases as more memory is available (Matsui et al., 2005; Chechetka & Sycara,

2006a).

124

I hypothesize that DCOP-specific caching schemes can reduce the runtime of DCOP

search algorithms at least as much as the currently used generic caching schemes. There-

fore, I introduce the MaxPriority, MaxEffort and MaxUtility schemes, three caching

schemes that exploit the cached information in a DCOP-specific way. Thus, the com-

parison of the runtimes of ADOPT and BnB-ADOPT with the different caching schemes

will experimentally assess my hypothesis. This work is non-trivial since agents ADOPT

and BnB-ADOPT need to predict future information access while having only local views

of the problem or, in other words, knowing only the agents that they share constraints

with and the costs of those constraints.

5.2 Caching

Each agent in ADOPT and BnB-ADOPT requires only a linear (in the number of the

agents) amount of memory to find a cost-minimal solution. However, if additional memory

is available, it can use the additional memory to cache additional lower and upper bounds,

which avoids search effort. For example, using the same definitions described in the

context of Figure 2.7, Figure 5.1 shows the search strategy of ADOPT when all agents

have a sufficient amount of memory to maintain all lower and upper bounds. ADOPT

takes seven steps fewer since it no longer needs to re-expand nodes. We describe the

information that is cached in Section 5.2.1, formulate the caching problem in Section 5.2.2

and introduce the caching schemes in Section 5.2.3.

125

AOR

AND

OR

AND

OR

AND

a

B

c

D

g h

E

i j

d

F

k l

G

m n

b

C

e

H

o p

I

q r

f

J

s t

K

u v

Identifiers

a1OR

AND

OR

AND

OR

AND

0

a2

5

a3

10 14

a4

3 8

8

a3

8 13

a4

10 3

0

a2

20

a3

25 7

a4

3 8

3

a3

23 6

a4

10 3

LBr = 0
UBr = infinity

Xr

Xr

Step 1

a1OR

AND

OR

AND

OR

AND

0

a2

5

a3

10 14

a4

3 8

8

a3

8 13

a4

10 3

0

a2

20

a3

25 7

a4

3 8

3

a3

23 6

a4

10 3

LBr = 3
UBr = infinity

Xr

Xr

Step 2

a1OR

AND

OR

AND

OR

AND

0

a2

5

a3

10 14

a4

3 8

8

a3

8 13

a4

10 3

0

a2

20

a3

25 7

a4

3 8

3

a3

23 6

a4

10 3

LBr = 5
UBr = infinity

Xr

Xr

Step 3

a1OR

AND

OR

AND

OR

AND

0

a2

5

a3

10 14

a4

3 8

8

a3

8 13

a4

10 3

0

a2

20

a3

25 7

a4

3 8

3

a3

23 6

a4

10 3

LBr = 8
UBr = infinity

Xr

Xr

Step 4

a1OR

AND

OR

AND

OR

AND

0

a2

5

a3

10 14

a4

3 8

8

a3

8 13

a4

10 3

0

a2

20

a3

25 7

a4

3 8

3

a3

23 6

a4

10 3

LBr = 8
UBr = infinity

Xr

Xr

Step 5

a1OR

AND

OR

AND

OR

AND

0

a2

5

a3

10 14

a4

3 8

8

a3

8 13

a4

10 3

0

a2

20

a3

25 7

a4

3 8

3

a3

23 6

a4

10 3

LBr = 8
UBr = infinity

Xr

Xr

Step 6

a1OR

AND

OR

AND

OR

AND

0

a2

5

a3

10 14

a4

3 8

8

a3

8 13

a4

10 3

0

a2

20

a3

25 7

a4

3 8

3

a3

23 6

a4

10 3

LBr = 12
UBr = infinity

Xr

Xr

Step 7

a1OR

AND

OR

AND

OR

AND

0

a2

5

a3

10 14

a4

3 8

8

a3

8 13

a4

10 3

0

a2

20

a3

25 7

a4

3 8

3

a3

23 6

a4

10 3

LBr = 12
UBr = 12

Xr

Xr

Step 8

Figure 5.1: Trace of Simplified Best-First Search (Centralized ADOPT without Memory
Limitations)

5.2.1 Cache Design

An information unit I consists of one context IXa of agent a and the lower and upper

bounds I lba,c
IXa(d), ILBa

IXa(d), Iuba,c
IXa(d) and IUBa

IXa(d) for that context, all values d ∈

Dom(a) and all child agents c ∈ C(a). Each agent in ADOPT and BnB-ADOPT caches

only one information unit, namely for its current context.

We now generalize ADOPT and BnB-ADOPT by allowing agents to cache more than

one information unit. An agent always uses the information unit with its current context.

We assume that an agent can cache a given number of information units. If the agent

receives lower and upper bounds via COST messages for a context that is compatible with

the context of a cached information unit, then it updates the bounds of that information

126

unit according to update equations 3.8 to 3.13. If the agent receives lower and upper

bounds for a context that is incompatible with the context of any cached information

unit and its cache is not yet full, then it creates a new information unit and caches the

context and bounds in that information unit. If the agent receives lower and upper bounds

for a context that is incompatible with the context of any cached information unit and the

cache is full, then it ignores the bounds, with one exception: If the agent receives lower

and upper bounds for a context and then switches its current context to that context,

then it needs to cache them since an agent always has to cache the information unit with

its current context. A caching scheme then decides which information unit to purge from

the cache.

5.2.2 Caching Problem

We frame the problem of which information unit to purge from the cache as an optimiza-

tion problem. We calculate the utility

U(I) := P (I) · E(I) (5.1)

of an information unit I based on its likelihood of future use P (I) and the invested search

effort E(I). Each agent then greedily maximizes the sum of the utilities of all cached

information units by purging an information unit with the smallest utility.

127

5.2.2.1 Likelihood of Future Use: P(I)

The likelihood of future use P (I) measures the probability that the context of information

unit I will again become the current context. It is important to use the likelihood of future

use as part of a measure of the utility of an information unit because it is pointless to

cache an information unit whose context will never again become the current context. It

is affected by two factors:

• Distributed Execution: The agents in ADOPT and BnB-ADOPT can ex-

pand intermediate nodes or, synonymously, explore intermediate contexts for a

short period of time when their current context changes because they operate

in a distributed fashion. For example, assume that the context of an agent is

{(a1, 0), (a2, 0)} and the next context of a centralized variant of ADOPT and BnB-

ADOPT would be {(a1, 1), (a2, 1)} (where the IDs are omitted for simplicity). The

agent updates its context to {(a1, 1), (a2, 0)} when it receives the message from agent

a1 that it takes on value 1. The agent then updates its context to {(a1, 1), (a2, 1)}

when it receives the message from agent a2 that it takes on value 1. Thus, the agent

explores the intermediate context {(a1, 1), (a2, 0)} for a short period of time. The

more agent-value assignments a context has in common with the current context of

the agent, the larger the likelihood of future use is.

• Search Strategy: As described in Sections 2.2.2 and 2.3.1, the depth-first branch-

and-bound search strategy of BnB-ADOPT does not require agents to re-expand

nodes but the memory-bounded best-first search strategy of ADOPT does require

agents to re-expand nodes.

128

5.2.2.2 Invested Search Effort: E(I)

Existing caching schemes for DCOP search algorithms use only the likelihood of future

use to measure the utility of an information unit. It is also important to use the invested

search effort (= search effort that has been spent to update the lower and upper bounds

of the information unit and thus will likely have to be spent again if it is purged from

the cache but its context gets re-explored) as part of a measure of the utility of an

information unit because it might be better to purge an information unit from the cache

whose likelihood of reuse is 100 percent but whose invested search effort is almost zero

than an information unit whose likelihood of future use is only 50 percent but whose

invested search effort is large.

5.2.3 Caching Schemes

We classify caching schemes into three categories:

• Category 1: Caching schemes that purge an information unit I with the smallest

likelihood of future use P (I). We introduce a new MaxPriority scheme for this

category.

• Category 2: Caching schemes that purge an information unit I with the smallest

invested search effort E(I). We introduce a new MaxEffort scheme for this category.

• Category 3: Caching schemes that purge an information unit I with the smallest

utility U(I) = P (I) ·E(I). We introduce a new MaxUtility scheme for this category.

129

5.2.3.1 Benchmark Schemes

We use page replacement schemes for virtual memory management from the operating

systems literature as benchmark schemes. In particular, we use First-In-First-Out (FIFO)

and Least-Recently-Used (LRU) as benchmark schemes of Category 1, which are similar

to existing caching schemes for DCOP search algorithms. For example, any-space NCBB

uses a version of the FIFO scheme, and any-space ADOPT uses a version of the LRU

scheme. The FIFO scheme purges the information unit that has been in the cache for the

longest time, and the LRU scheme purges the information unit that has not been used or

updated for the longest time. Both caching schemes use the intuition that an information

unit that has been cached, used or updated recently will likely be used again.

Similarly, we use Last-In-First-Out (LIFO) and Least-Frequently-Used (LFU) as

benchmark schemes of Category 2. The LIFO scheme purges the information unit that

has been in the cache for the shortest time, and the LFU scheme purges the information

unit that has been used or updated the least number of times. Both caching schemes

use the intuition that a large search effort has been invested in an information unit that

has been in the cache for a long time (which assumes similar update frequencies for all

information units) or that has been used or updated frequently (which assumes a similar

ratio of use and update frequencies for all information units).

5.2.3.2 MaxPriority Scheme

The MaxPriority scheme attempts to purge the information unit I with the smallest

likelihood of future use P (I). The likelihood of future use of an information unit is

affected by both the distributed execution and the search strategy of a DCOP search

130

algorithm. It is currently unknown how to best estimate the likelihood of future use

due to the search strategy. The MaxPriority scheme thus estimates only the likelihood

of future use due to the distributed execution. The more agent-value assignments the

context of the information unit has in common with the current context of the agent, the

larger the likelihood of future use due to the distributed execution is.

The MaxPriority scheme, however, uses additional knowledge of the operation of

ADOPT and BnB-ADOPT in the form of the lower bounds ILBa
IXa(d) that every agent

a maintains for all values d ∈ Dom(a) in the information unit I with its current context

IXa. The MaxPriority scheme uses the property that every agent a takes on its best

value arg mind∈Dom(a){ILBa
IXa(d)} when it changes its value or, synonymously, the value

with the smallest lower bound in the information unit with its current context.

We now discuss how the MaxPriority scheme estimates the likelihood of future use

of an information unit I of agent a: Let a1 . . . ak be the ancestor agents of agent a in

the pseudo-tree, ordered in increasing order of their depth in the pseudo-tree. Consider

any ancestor agent al and assume that estimates of the lower bounds in the information

unit of agent al with the current context of agent al are available to agent a. Let I(al)

be the index of the lower bound of the value of agent al in the context of information

unit I in decreasing order of all lower bounds, with one exception: I(al) is infinity if the

value of agent al in the context of information unit I is equal to the value of agent al

in the current context of agent a. For example, assume that agent al can take on four

values, namely 0, 1, 2 and 3. Assume that the following estimates of the lower bounds

in information unit I of agent al with the current context of the agent are available:

ILBal

IXal (0) = 8, ILBal

IXal (1) = 12, ILBal

IXal (2) = 10 and ILBal

IXal (3) = 6. If the value of

131

Graph Coloring

0.0

0.1

0.2

0.3

0.4

0.0-
0.1

0.1-
0.2

0.2-
0.3

0.3-
0.4

0.4-
0.5

0.5-
0.6

0.6-
0.7

0.7-
0.8

0.8-
0.9

0.9-
1.0

Normalized PriorityEst (I)

P
(I

)

ADOPT BnB-ADOPT

Figure 5.2: Correlation of P̂ (I) and P (I)

agent al in the current context of agent a is 0, then it is most likely that agent al still

takes on this value. Since each agent takes on the value with the smallest lower bound

in the information unit with its current context, if it changes its value, the value that

agent al currently takes on is in increasing order of likelihood: 1, 2, 3 and 0. The lower

bounds are in decreasing order: ILBal

IXal (1) = 12 (index 0), ILBal

IXal (2) = 10 (index 1),

ILBal

IXal (0) = 8 (index 2) and ILBal

IXal (3) = 6 (index 3). Thus, the index of the lower

bound of value 3 is 3, the index of the lower bound of value 2 is 1, and the index of

the lower bound of value 1 is 0. The index of the lower bound of value 0 is changed

to infinity because it is the value of agent al in the current context of agent a. Thus,

the larger the index is, the more likely it is that agent al currently takes on this value.

Now consider the tuple (I(a1), . . . , I(ak)) for each information unit I cached by agent

a. The MaxPriority scheme purges the information unit whose tuple is lexicographically

smallest among these information units. More generally, it uses the index of the tuple of

an information unit I in the increasing lexicographic order of the tuples of all information

units cached by the agent as estimate P̂ (I) of P (I). P̂ (I) is not meant to approximate

P (I) but be proportional to it.

132

To evaluate how well P̂ (I) and P (I) are correlated for ADOPT and BnB-ADOPT,

we conduct experiments on the graph coloring problems described in Section 5.4.2. The

caches of all agents are sufficiently large to store all information units. For each infor-

mation unit I of each agent a directly before the agent changes its current context, we

divide P̂ (I) by the number of cached information units at that point in time minus one

to normalize it into the interval from 0 to 1, shown as Normalized PriorityEst(I) in Fig-

ure 5.2, and then classify it into one of 10 buckets that cover the interval evenly. We then

calculate the frequency for each bucket of the event that the contexts of its information

units became the current contexts of their agents after the context switch, shown as P (I)

in Figure 5.2. The Pearson’s coefficient shows indeed a strong correlation between P̂ (I)

and P (I) with ρ > 0.85.

5.2.3.3 MaxEffort Scheme

The MaxEffort scheme attempts to purge the information unit I with the smallest invested

search effort E(I). It estimates the invested search effort of an information unit by using

knowledge of the operation of ADOPT and BnB-ADOPT in the form of the lower and

upper bounds ILBa
IXa(d) and IUBa

IXa(d), respectively, that every agent a maintains for

all values d ∈ Dom(a) in the information unit I with its current context IXa. The

MaxEffort scheme uses the property that the lower bounds ILBa
IXa(d) are monotonically

non-decreasing and the upper bounds IUBa
IXa(d) are monotonically non-increasing if the

context IXa does not change. Thus, the difference between the lower and upper bounds

of an information unit decreases as more search effort is invested in it.

133

Graph Coloring

0.0

0.1

0.2

0.3

0.0-
0.1

0.1-
0.2

0.2-
0.3

0.3-
0.4

0.4-
0.5

0.5-
0.6

0.6-
0.7

0.7-
0.8

0.8-
0.9

0.9-
1.0

Normalized EffortEst (I)

E
(I

)

ADOPT BnB-ADOPT

Figure 5.3: Correlation of Ê(I) and E(I)

We now discuss how the MaxEffort scheme estimates the invested search effort of

an information unit I of agent a: The MaxEffort scheme calculates the average differ-

ence AD(I) between the upper bounds IUBa
IXa(d) and lower bounds ILBa

IXa(d) of the

information unit I over all values d ∈ Dom(ai):

AD(I) :=

∑
d∈Dom(a){IUBa

IXa(d) − ILBa
IXa(d)}

|Dom(a)| (5.2)

The MaxEffort scheme purges the information unit whose average difference is largest

among all cached information units. More generally, it uses

Ê(I) := AD(I ′) − AD(I) (5.3)

as estimate Ê(I) of E(I), where I ′ is the information unit of agent ai with the largest

average difference. Ê(I) is not meant to approximate E(I) but be proportional to it.

134

To evaluate how well Ê(I) and E(I) are correlated for ADOPT and BnB-ADOPT,

we use the same experimental formulation and setup as described in the context of the

MaxPriority scheme. For the information unit I with the current context of each agent

a directly after the agent changed its current context, we divide Ê(I) by the largest such

estimate over all information units cached by agent a at that point in time to normalize

it into the interval from 0 to 1, shown as Normalized EffortEst(I) in Figure 5.3, and then

classify it into one of 10 buckets that cover the interval evenly. We then calculate for

each bucket the average number of cycles that the contexts of its information units had

already been the current contexts of their agents before the context switches and divide

each average by the largest average over all buckets to normalize it into the interval from

0 to 1, shown as E(I) in Figure 5.3. The Pearson’s coefficient shows indeed a strong

correlation between Ê(I) and E(I) with ρ > 0.85.

5.2.3.4 MaxUtility Scheme

The MaxUtility scheme attempts to purge the information unit I with the smallest value

of U(I) = P (I) ·E(I). It uses Û(I) := P̂ (I) · Ê(I) as estimate Û(I) of U(I). It calculates

P̂ (I) like the MaxPriority scheme and Ê(I) like the MaxEffort scheme.

5.3 Correctness, Completeness and Complexity

In this section, we prove the correctness and completeness of the caching schemes when

used by BnB-ADOPT. Their correctness and completeness when used by ADOPT can

be proven in a similar way. We also describe their space and message complexities.

135

5.3.1 Correctness and Completeness

We follow the assumptions in Section 3.3.1 and assume that each agent a uses the following

equations for all values d, all child agents c and all contexts Xa to initialize its bounds.

lba,c
Xa(d) := w · ha,c

Xa(d) (3.20)

uba,c
Xa(d) := ∞ (3.21)

where the weight w is a floating point number that satisfies 1 ≤ w < ∞ and the heuristic

values ha,c
Xa(d) are floating point numbers that satisfy

0 ≤ ha,c
Xa(d) ≤ γc

Xa∪(a,d) (3.22)

The only exception is the case where Xa is compatible with the context IXa of a

cached information unit I, in which case agent a uses the following equations.

lba,c
Xa(d) := I lba,c

IXa(d) (5.4)

uba,c
Xa(d) := Iuba,c

IXa(d) (5.5)

where I lba,c
IXa(d) and I lba,c

IXa(d) are the bounds in information unit I. Due to this exception,

the proof of Lemma 4 is no longer correct. However, we provide a more general proof

136

of Lemma 4 below that shows that the lemma still holds. All other definitions, lemmas

and theorems of Sections 3.3.1 and 4.3.1 continue to hold when BnB-ADOPT uses the

caching schemes.

Proof of Lemma 4 by induction on the number of times that agent a changes its context

or updates its bounds lba,c
Xa(d) and uba,c

Xa(d) for an arbitrary value d and an arbitrary child

agent c after agent a initializes its bounds: The lemma holds after agent a with context

Xa initializes its bounds for the first time since

lba,c
Xa(d) = w · ha,c

Xa(d) (Eq. 3.20)

≤ w · γc
Xa∪(a,d) (Eq. 3.22)

≤ ∞

= w · uba,c
Xa(d) (Eq. 3.7)

(induction basis). Now assume that the lemma holds after agent a changed its context

(and either cached or purged its bounds) or updated its bounds a number of times (in-

duction assumption). We show that it then also holds after agent a changes its context or

updates its bounds one more time (induction step). There are the following three cases

(where we split the operations after receiving a COST message into three parts).

• Case 1: The lemma holds when agent a changes its context from Xa to X̂a after

receiving a VALUE or COST message and the two contexts are compatible since

agent a then does not change its bounds and thus

137

lba,c

X̂a
(d) = lba,c

Xa(d) (premise of case)

≤ w · γc
Xa∪(a,d) (induction assumption)

= w · γc
X̂a∪(a,d)

(Lemma 1)

uba,c

X̂a
(d) = uba,c

Xa(d) (premise of case)

≥ γc
Xa∪(a,d) (induction assumption)

= γc
X̂a∪(a,d)

(Lemma 1)

after receiving the VALUE or COST message.

• Case 2: The lemma holds when agent a updates its bounds from lba,c
Xa(d) and

uba,c
Xa(d) to l̂b

a,c

Xa(d) and ûb
a,c

Xa(d), respectively, after receiving a COST message from

some child agent c with bounds LBc
Xc and UBc

Xc and context Xc that is compatible

with its context Xa and in which agent a has value d since

l̂b
a,c
Xa(d) = max{lba,c

Xa(d), LBc
Xc} (Eq. 3.8)

≤ max{w · γc
Xa∪(a,d), w · γc

Xc}

(induction assumption and premise of lemma)

= max{w · γc
Xa∪(a,d), w · γc

Xa∪(a,d)} (Lemma 1)

= w · γc
Xa∪(a,d)

138

ûb
a,c

Xa(d) = min{uba,c
Xa(d), UBc

Xc} (Eq. 3.11)

≥ min{γc
Xa∪(a,d), γ

c
Xc} (induction assumption and premise of lemma)

= min{γc
Xa∪(a,d), γ

c
Xa∪(a,d)} (Lemma 1)

= γc
Xa∪(a,d)

after receiving the COST message.

• Case 3: The lemma holds when agent a changes its context from Xa to X̂a after

receiving a VALUE or COST message and the two contexts are incompatible. There

are the following two cases.

– Case 3a: If context X̂a is incompatible with the context of any cached infor-

mation unit, then agent a reinitializes its bounds according to Equations 3.20

and 3.7, and this case is thus identical to the induction basis.

– Case 3b: If context X̂a is compatible with the context IXa of a cached infor-

mation unit I, then agent a updates its bounds from lba,c
Xa(d) and uba,c

Xa(d) to

the bounds I lba,c
IXa(d) and Iuba,c

IXa(d) in information unit I, respectively. The

lemma holds since

lba,c

X̂a
(d) = I lba,c

IXa(d) (Eq. 5.4)

≤ w · γc
Xa∪(a,d) (induction assumption)

= w · γc
X̂a∪(a,d)

(Lemma 1)

139

uba,c

X̂a
(d) = Iuba,c

IXa(d) (Eq. 5.5)

≥ γc
Xa∪(a,d) (induction assumption)

= γc
X̂a∪(a,d)

(Lemma 1)

Thus, lba,c
Xa(d) ≤ w · γc

Xa∪(a,d) ≤ w · uba,c
Xa(d) at all times for all values d ∈ Dom(a) and all

child agents c ∈ C(a).

5.3.2 Complexity

We measure the space complexity of ADOPT and BnB-ADOPT in the number of floating

point numbers. The memory size of a context is O(|A|). Every agent a needs to store

I lba,c
IXa(d) and Iuba,c

IXa(d) for all child agents c ∈ C(a) and values d ∈ Dom(a) for each

information unit I. Thus, the memory size of an information unit is O(|A| · maxDom),

where maxDom := maxa∈A |Dom(a)| is the maximum domain cardinality over all agents

a ∈ A. An agent can cache O(maxDom|A|) information units at the same time, namely one

for each of the O(maxDom|A|) possible contexts. Thus, the maximum cache size and space

complexity of every agent in ADOPT and BnB-ADOPT is O(|A|·maxDom·maxDom|A|) =

O(|A| · maxDom|A|+1).

We measure the message complexity of ADOPT and BnB-ADOPT in the number of

floating point numbers as well. The message complexity of ADOPT and BnB-ADOPT is

O(|A|) as described in Section 3.3.2. None of the caching schemes increase this message

complexity, except for the MaxPriority and MaxUtility schemes. An agent a that uses

these caching schemes needs to know, for all of its ancestor agents p ∈ SCP (a), the indices

140

of the lower bounds for all of their values in their information units with their current

contexts. VALUE messages therefore need to include these indices for the sending agent,

and COST messages need to include these indices for all ancestor agents p ∈ SCP (a) of

the sending agent a. There are O(|A|) ancestor agents, each one of which has O(maxDom)

values and thus indices. The message complexity thus increases to O(|A|+maxDom·|A|) =

O(maxDom · |A|).

5.4 Experimental Evaluation

We now compare ADOPT and BnB-ADOPT with the different caching schemes and the

DP2 pre-processing framework described in Section 3.4. We also investigate the effects

of caching on ADOPTWHM and BnB-ADOPTWHM .

5.4.1 Metrics

We measure the runtimes in cycles. We do not measure the runtimes in NCCCs because

the number of cycles reflects the number of NCCCs; the number of constraint checks

and the number of messages sent in each cycle are very similar for both ADOPT and

BnB-ADOPT. We also measure the solution costs found by the algorithms. We report

normalized solution costs, that is, the solution costs divided by the minimal solution

costs. Thus, the normalized solution cost 2.5 refers to a solution cost that is two and a

half times larger than the minimal solution cost. Lastly, we also measure the number of

unique and repeated contexts explored per agent in ADOPT and BnB-ADOPT to better

understand the reason for the speedups. The sum of both numbers is correlated with the

runtime of ADOPT and BnB-ADOPT.

141

We vary the number of information units that the agents can cache using the cache

factor metric (Chechetka & Sycara, 2006a). The cache factor of an agent is the ratio

of (the number of information units that fit into its cache - 1) and (the number of its

possible contexts - 1). If an agent has only one possible context, then it can only cache

one information unit independent of the cache factor. Otherwise, agents that can cache

only one information unit thus have cache factor zero, and agents that can cache all

information units have cache factor one or larger. We vary the cache factor from 0.0 to

1.0. All agents always have the same cache factor.1

5.4.2 Problem Types

As described in Section 2.1.5, we run our experiments on four problem types, namely

graph coloring, sensor network, meeting scheduling and combinatorial auction problems.

• Graph coloring problems: We use the same experimental setup as Section 3.4.2

except that we set the number of agents (= vertices to color) to 10 and the density

to 2. Each agent always has five possible values (= colors). All costs are randomly

generated from 0 to 10,000. We average the experimental results over 50 DCOP

problem instances.

• Sensor network problems: We use the same experimental setup as Section 3.4.2

except that we set the number of agents (= targets to track) to 12. Each agent
1We also performed experiments with the cache size metric on graph coloring problems. The cache

size of an agent is the number of information units that fit into its cache. The trend for graph coloring
problems with the cache factor metric carries over to graph coloring problems with the cache size metric,
except that the runtime difference between caching schemes is smaller.

142

always has five values (= time slots). We average the experimental results over 50

DCOP problem instances.

• Meeting scheduling problems: We use the same experimental setup as Sec-

tion 3.4.2 except that we set the number of agents (= meetings to schedule) to

10. Each agent always has five values (= time slots). We average the experimental

results over 50 DCOP problem instances.

• Combinatorial auction problems: We use the same experimental setup as

Section 3.4.2 except that we set the number of agents (= bids to consider) to 25.

Each agent always has two values (= bid results). We average the experimental

results over 50 DCOP problem instances.

5.4.3 Experimental Results

We show the experimental results comparing ADOPT and BnB-ADOPT with the

different caching schemes in Section 5.4.3.1 and the experimental results comparing

ADOPTWHM with the MaxEffort scheme and BnB-ADOPTWHM with the MaxPrior-

ity scheme in Section 5.4.3.2.

5.4.3.1 Caching Schemes

Figure 5.4 shows our experimental results for ADOPT and BnB-ADOPT with the caching

schemes on graph coloring problems. Figures in the left and right column show our results

for ADOPT and BnB-ADOPT, respectively. We do not report the solution costs found

by the algorithms since they all find cost-minimal solutions. We make the following

observations:

143

Graph Coloring
Computation Time of ADOPT

0

50000

100000

150000

200000

0 0.2 0.4 0.6 0.8 1

Cache Factor
C

yc
le

s

FIFO LIFO
LRU LFU
MaxPriority MaxEffort
MaxUtility

(a)

Graph Coloring
Computation Time of BnB-ADOPT

2300

2350

2400

2450

2500

2550

0 0.2 0.4 0.6 0.8 1

Cache Factor

C
yc

le
s

FIFO LIFO
LRU LFU
MaxPriority MaxEffort
MaxUtility

(b)

Graph Coloring
Unique Contexts Explored by ADOPT

225

250

275

300

0 0.2 0.4 0.6 0.8 1

Cache Factor

C
yc

le
s

FIFO LIFO
LRU LFU
MaxPriority MaxEffort
MaxUtility

(c)

Graph Coloring
Unique Contexts Explored by BnB-ADOPT

190

195

200

205

210

0 0.2 0.4 0.6 0.8 1

Cache Factor

C
yc

le
s

FIFO LIFO
LRU LFU
MaxPriority MaxEffort
MaxUtility

(d)

Graph Coloring
Repeated Contexts Explored by ADOPT

0

10000

20000

30000

40000

50000

60000

0 0.2 0.4 0.6 0.8 1

Cache Factor

C
yc

le
s

FIFO LIFO
LRU LFU
MaxPriority MaxEffort
MaxUtility

(e)

Graph Coloring
Repeated Contexts Explored by BnB-ADOPT

405

410

415

420

0 0.2 0.4 0.6 0.8 1

Cache Factor

C
yc

le
s

FIFO LIFO
LRU LFU
MaxPriority MaxEffort
MaxUtility

(f)

Figure 5.4: Experimental Results Comparing ADOPT and BnB-ADOPT with the
Caching Schemes on Graph Coloring Problems

• Figures 5.4(a,b) show that the runtimes of ADOPT and BnB-ADOPT with the

caching schemes decrease as the cache factor increases, as expected. The runtime of

all caching schemes is identical for each DCOP search algorithm if the cache factor

is 0 (because all information units need to be purged) or 1 (because no information

units need to be purged). The speedup from caching is much larger for ADOPT

than BnB-ADOPT.

144

Sensor Network
Computation Time of ADOPT

0

10000

20000

30000

40000

50000

0 0.2 0.4 0.6 0.8 1

Cache Factor
C

yc
le

s

FIFO LIFO
LRU LFU
MaxPriority MaxEffort
MaxUtility

(a)

Sensor Network
Computation Time of BnB-ADOPT

1150

1200

1250

0 0.2 0.4 0.6 0.8 1

Cache Factor

C
yc

le
s

FIFO LIFO
LRU LFU
MaxPriority MaxEffort
MaxUtility

(b)

Meeting Scheduling
Computation Time of ADOPT

0
5000

10000
15000
20000
25000
30000
35000

0 0.2 0.4 0.6 0.8 1

Cache Factor

C
yc

le
s

FIFO LIFO
LRU LFU
MaxPriority MaxEffort
MaxUtility

(c)

Meeting Scheduling
Computation Time of BnB-ADOPT

1100

1150

1200

1250

0 0.2 0.4 0.6 0.8 1

Cache Factor

C
yc

le
s

FIFO LIFO
LRU LFU
MaxPriority MaxEffort
MaxUtility

(d)

Combinatorial Auction
Computation Time of ADOPT

0

5000

10000

15000

20000

0 0.2 0.4 0.6 0.8 1

Cache Factor

C
yc

le
s

FIFO LIFO
LRU LFU
MaxPriority MaxEffort
MaxUtility

(e)

Combinatorial Auction
Computation Time of BnB-ADOPT

350

400

450

500

550

0 0.2 0.4 0.6 0.8 1

Cache Factor

C
yc

le
s

FIFO LIFO
LRU LFU
MaxPriority MaxEffort
MaxUtility

(f)

Figure 5.5: Experimental Results Comparing ADOPT and BnB-ADOPT with the
Caching Schemes on Sensor Network, Meeting Scheduling and Combinatorial Auction
Problems

• Figures 5.4(c-f) give insight into the reason for the decrease in runtime. They

show that the number of unique contexts is about the same for all cache factors,

indicating that the size of the search space explored by ADOPT and BnB-ADOPT

is about the same for all cache factors. The figures also show that the number of

repeated contexts per agent decreases as the cache factor increases, indicating that

the size of the search space that they need to reconstruct decreases. The size of the

search space that ADOPT needs to reconstruct is much larger than the one that

145

BnB-ADOPT needs to reconstruct since ADOPT needs to reconstruct abandoned

partial solutions repeatedly. This difference is also reflected in the runtimes.

• The caching schemes of Category 2 (LIFO, LFU, MaxEffort) result in a smaller

runtime than the ones of Category 1 (FIFO, LRU, MaxPriority) for ADOPT and

vice versa for BnB-ADOPT. However, the relationships within each category are

similar for ADOPT and BnB-ADOPT. For Category 1, the MaxPriority scheme is

generally faster than the LRU scheme, which in turn is generally faster than the

FIFO scheme. Thus, the MaxPriority scheme is a good caching scheme for Category

1. For Category 2, the MaxEffort scheme is generally faster than the LIFO scheme,

which in turn is generally faster than the LFU scheme. Thus, the MaxEffort scheme

is a good caching scheme for Category 2. The runtime is about the same for the

MaxUtility and MaxEffort schemes. Overall, the MaxEffort and MaxUtility schemes

experimentally speed up ADOPT more than the other tested caching schemes, while

our MaxPriority scheme experimentally speeds up BnB-ADOPT at least as much

as the other tested caching schemes.

The depth-first branch-and-bound search strategy of BnB-ADOPT does not require

its agents to re-expand nodes or, synonymously, re-explore contexts. Due to their

distributed execution, agents can explore intermediate contexts for a short period

of time when their current context changes. The search effort invested in the in-

formation units with the intermediate contexts is thus small. The search effort

invested in the other information units is often large but they do not need to be

cached because their contexts do not need to be re-explored. On the other hand,

146

the memory-bounded best-first search strategy of ADOPT does require its agents

to re-expand nodes or, synonymously, re-explore contexts. The search effort in-

vested in the information units with these contexts varies. It is therefore important

to select a good caching scheme carefully, as the runtimes show. Caching schemes

of Category 1 are not well suited for ADOPT, as the runtimes show, since their

estimates of the likelihood of future use take into account only that the agents re-

explore contexts due to the distributed execution of ADOPT but not that they also

re-explore contexts due to its memory-bounded best-first search strategy. Caching

schemes of Category 2 are not well suited for BnB-ADOPT, as the runtimes show,

since the contexts of the information units with the largest invested search effort

do not need need to be re-explored. Ideally, the MaxUtility scheme should result

in smaller runtimes than the other caching schemes since an ideal caching scheme

minimizes the search effort of a DCOP search algorithm by accurately estimating

both the likelihood of future use P (I) of an information unit I and the invested

search effort E(I). However, while our estimate P̂ (I) is correlated with P (I) and

our estimate Ê(I) is correlated with E(I), these correlations are not linear, as shown

in Figures 5.2 and 5.3. Thus, the information unit with the smallest value of P̂ (I)

(which gets purged by the MaxPriority scheme) or Ê(I) (which gets purged by the

MaxEffort scheme) is often also the information unit with the smallest value of

P (I) or E(I), respectively. However, the information unit with the smallest value

of Û(I) = P̂ (I) · Ê(I) (which gets purged by the MaxUtility scheme) is often not

the information unit with the smallest value of U(I) = P (I) · E(I).

147

• Figure 5.5 shows that the trend for graph coloring problems carries over to sensor

network, meeting scheduling and combinatorial auction problems as well.

Overall, the MaxEffort and MaxUtility schemes experimentally speed up ADOPT

more than the other tested caching schemes, while the MaxPriority scheme experimentally

speeds up BnB-ADOPT at least as much as the other tested caching schemes. In general,

we also expect our caching schemes to apply to other DCOP search algorithms since they

also maintain lower and upper bounds on the solution costs.

5.4.3.2 Caching Schemes with Approximation Mechanisms

Figure 5.6 shows our experimental results for ADOPTWHM with the MaxEffort scheme

and BnB-ADOPTWHM with the MaxPriority scheme on graph coloring problems. We

performed experiments with ADOPTWHM and BnB-ADOPTWHM because we showed in

Section 4.4.3 that the Weighted Heuristics mechanism performs better than the other

tested approximation mechanisms when used by BnB-ADOPT.2 We let ADOPTWHM

use the MaxEffort scheme and BnB-ADOPTWHM use the MaxPriority scheme because

we showed in Section 5.4.3.1 that the MaxEffort scheme performs better than the other

tested schemes when used by ADOPT and the MaxPriority scheme is no worse than all

other tested schemes when used by BnB-ADOPT. We make the following observations:

• Figures 5.6(a,b) show that the normalized solution costs of ADOPTWHM and BnB-

ADOPTWHM are very similar for every cache factor.
2We also performed experiments with ADOPTAEM , ADOPTREM , BnB-ADOPTAEM and BnB-

ADOPTREM on graph coloring problems. The trend for ADOPTWHM and BnB-ADOPTWHM carries
over to the other ADOPT and BnB-ADOPT suboptimal variants, respectively, except that the speedups
from caching are smaller.

148

Graph Coloring
Solution Cost of ADOPTWHM

1.00

1.10

1.20

1.30

1.40

1.50

1.00 1.50 2.00 2.50 3.00 3.50 4.00

Relative Error Bound

N
o

rm
al

iz
ed

 C
o

st
s

cache factor = 0.0
cache factor = 0.2
cache factor = 0.4
cache factor = 0.6
cache factor = 0.8
cache factor = 1.0

(a)

Graph Coloring
Solution Cost of BnB-ADOPTWHM

1.00

1.10

1.20

1.30

1.40

1.50

1.60

1.00 1.50 2.00 2.50 3.00 3.50 4.00

Relative Error Bound

N
o

rm
al

iz
ed

 C
o

st
s

cache factor = 0.0
cache factor = 0.2
cache factor = 0.4
cache factor = 0.6
cache factor = 0.8
cache factor = 1.0

(b)
Graph Coloring

Computation Time of ADOPTWHM

0

40000

80000

120000

160000

200000

1.00 1.50 2.00 2.50 3.00 3.50 4.00

Relative Error Bound

C
yc

le
s

cache factor = 0.0
cache factor = 0.2
cache factor = 0.4
cache factor = 0.6
cache factor = 0.8
cache factor = 1.0

(c)

Graph Coloring
Computation Time of BnB-ADOPTWHM

0

500

1000

1500

2000

2500

3000

1.00 1.50 2.00 2.50 3.00 3.50 4.00

Relative Error Bound

C
yc

le
s

cache factor = 0.0
cache factor = 0.2
cache factor = 0.4
cache factor = 0.6
cache factor = 0.8
cache factor = 1.0

(d)
Graph Coloring

Performance of ADOPTWHM

0

40000

80000

120000

160000

200000

1.00 1.10 1.20 1.30 1.40 1.50
Normalized Costs

C
yc

le
s

cache factor = 0.0
cache factor = 0.2
cache factor = 0.4
cache factor = 0.6
cache factor = 0.8
cache factor = 1.0

(e)

Graph Coloring
Performance of BnB-ADOPTWHM

0

1000

2000

3000

1.00 1.10 1.20 1.30 1.40 1.50 1.60
Normalized Costs

C
yc

le
s

cache factor = 0.0
cache factor = 0.2
cache factor = 0.4
cache factor = 0.6
cache factor = 0.8
cache factor = 1.0

(f)
Graph Coloring

Performance of ADOPTWHM

0

1000

2000

3000

1.00 1.10 1.20 1.30 1.40 1.50
Normalized Costs

C
yc

le
s

cache factor = 0.0
cache factor = 0.2
cache factor = 0.4
cache factor = 0.6
cache factor = 0.8
cache factor = 1.0

(g)

Figure 5.6: Experimental Results of ADOPTWHM and BnB-ADOPTWHM with the
Caching Schemes on Graph Coloring Problems

• Figures 5.6(c,d) show that the runtimes of ADOPTWHM and BnB-ADOPTWHM

decrease as the cache factor increases. The speedup from caching for ADOPTWHM

149

Sensor Network
Performance of ADOPTWHM

0

10000

20000

30000

40000

50000

1.00 1.10 1.20 1.30 1.40
Normalized Costs

C
yc

le
s

cache factor = 0.0
cache factor = 0.2
cache factor = 0.4
cache factor = 0.6
cache factor = 0.8
cache factor = 1.0

(a)

Sensor Network
Performance of BnB-ADOPTWHM

0

200

400

600

800

1000

1200

1400

1.00 1.10 1.20 1.30 1.40

Normalized Costs

C
yc

le
s

cache factor = 0.0
cache factor = 0.2
cache factor = 0.4
cache factor = 0.6
cache factor = 0.8
cache factor = 1.0

(b)
Meeting Scheduling

Performance of ADOPTWHM

0

5000

10000

15000

20000

25000

30000

35000

1.00 1.05 1.10 1.15 1.20 1.25 1.30
Normalized Costs

C
yc

le
s

cache factor = 0.0
cache factor = 0.2
cache factor = 0.4
cache factor = 0.6
cache factor = 0.8
cache factor = 1.0

(c)

Meeting Scheduling
Performance of BnB-ADOPTWHM

0

200

400

600

800

1000

1200

1400

1.00 1.05 1.10 1.15 1.20 1.25 1.30 1.35
Normalized Costs

C
yc

le
s

cache factor = 0.0
cache factor = 0.2
cache factor = 0.4
cache factor = 0.6
cache factor = 0.8
cache factor = 1.0

(d)
Combinatorial Auction

Performance of ADOPTWHM

0

2000

4000

6000

8000

10000

12000

14000

16000

1.00 1.01 1.02 1.03 1.04 1.05
Normalized Costs

C
yc

le
s

cache factor = 0.0
cache factor = 0.2
cache factor = 0.4
cache factor = 0.6
cache factor = 0.8
cache factor = 1.0

(e)

Combinatorial Auction
Performance of BnB-ADOPTWHM

100

200

300

400

500

600

700

1.00 1.01 1.02 1.03 1.04 1.05
Normalized Costs

C
yc

le
s

cache factor = 0.0
cache factor = 0.2
cache factor = 0.4
cache factor = 0.6
cache factor = 0.8
cache factor = 1.0

(f)

Figure 5.7: Experimental Results of ADOPTWHM and BnB-ADOPTWHM with the
Caching Schemes on Sensor Network, Meeting Scheduling and Combinatorial Auction
Problems

is much larger than for BnB-ADOPTWHM . The reason for this behavior is described

in Section 5.4.3.1.

• Figures 5.6(d-f) compare the results for the different cache factors by plotting the

runtime needed to achieve a given normalized solution cost. (Figures 5.6(d,f) are

identical except for the range of the runtimes. Figure 5.6(f) plots the runtimes

from 0 to 3,000 only to better show the difference between the different cache

factors.) For ADOPTWHM , the runtime needed to achieve a given normalized

150

solution cost decreases as the cache factor increases. We expect this result since the

normalized solution costs of ADOPTWHM are very similar for every cache factor

but the runtime of ADOPTWHM decreases as the cache factor increase. For BnB-

ADOPTWHM , there does not seem to be a significant difference between the different

cache factors. We expect this result since the normalized solution costs and runtimes

of BnB-ADOPTWHM are very similar for every cache factor.

• Figure 5.7 shows that the trend for graph coloring problems carries over to sensor

network, meeting scheduling and combinatorial auction problems as well.

Therefore, one can combine the MaxEffort scheme and the Weighted Heuristics mech-

anism to further speed up ADOPT. The combination of the MaxPriority scheme and the

Weighted Heuristics mechanism do not further speed up BnB-ADOPT. However, we ex-

pected this result since caching speeds up BnB-ADOPT only very slightly as seen in

Figures 5.4 and 5.5.

5.5 Summary

This chapter framed the caching problem as an optimization problem, where each agent

greedily maximizes the sum of the utilities of all cached information units by purging an

information unit with the smallest utility from the cache. This chapter also introduced

three new DCOP-specific caching schemes called the MaxPriority, MaxEffort and MaxU-

tility schemes. These three caching schemes use additional knowledge of the operation of

ADOPT and BnB-ADOPT in the form of the lower and upper bounds that every agent

maintains. The MaxPriority scheme uses the lower bounds to estimate the likelihood

151

of future use P (I) of an information unit I. The MaxEffort scheme uses the lower and

upper bounds to estimate the invested search effort E(I) of an information unit I. The

MaxUtility scheme combines the MaxPriority and MaxEffort schemes to estimate the

utility U(I) = P (I) · E(I) of an information unit I. Our experimental results show that

the MaxEffort and MaxUtility schemes speed up ADOPT more than the currently used

generic caching schemes, and the MaxPriority scheme speeds up BnB-ADOPT at least as

much as the currently used generic caching schemes. Therefore, these results validate the

hypothesis that DCOP-specific caching schemes can reduce the runtime of DCOP search

algorithms at least as much as the currently used generic caching schemes.

152

Chapter 6

Speeding Up via Incremental Search

This chapter models dynamic DCOP problems as sequences of static DCOP problems

and introduces an incremental procedure and an incremental pseudo-tree reconstruction

algorithm that allow ADOPT and BnB-ADOPT to reuse information from searches of

similar static DCOP problems to guide their search to potentially solve the current static

DCOP problem faster. The ReuseBounds procedure is an incremental procedure that

allows some agents in ADOPT and BnB-ADOPT to reuse the lower and upper bounds

from the previous static DCOP problem to solve the current static DCOP problem. The

Hybrid Algorithm for Reconstructing Pseudo-trees (HARP) is an incremental pseudo-tree

reconstruction algorithm that reuses parts of the pseudo-tree of the previous static DCOP

problem to construct the pseudo-tree of the current static DCOP problem. Our exper-

imental results show that ADOPT and BnB-ADOPT with the ReuseBounds procedure

and the HARP algorithm terminate faster when they reuse more information. Therefore,

these results validate the hypothesis that DCOP search algorithms that reuse information

from searches of similar static DCOP problems to guide their search can have runtimes

that decrease as they reuse more information.

153

This chapter is organized as follows: We first describe the motivation for our work

in Section 6.1. In Section 6.2, we provide a detailed description of the ReuseBounds

procedure and the HARP algorithm. We then prove their correctness and completeness

and describe their space and message complexities in Section 6.3 before presenting our

experimental results in Section 6.4 and our summary in Section 6.5.

6.1 Motivation

Researchers have developed a class of centralized search algorithms, called incremental

search algorithms, that use information from solving problems similar to the given prob-

lem to help solve the given problem faster (Koenig et al., 2004b). These algorithms

find solutions to a series of problems potentially faster than is possible by solving each

problem from scratch, while guaranteeing that they find a cost-minimal solution for each

problem (Koenig et al., 2004b). Typically, the runtime of these algorithms decreases as

they reuse more information.

Motivated by these results, I hypothesize that DCOP search algorithms that reuse

information from searches of similar DCOP static problems to guide their search can have

runtimes that decrease as they reuse more information. As described in Section 2.3.4,

there are three classes of incremental search algorithms. As a case study, I apply only

techniques from the third class of incremental search algorithms to DCOP search al-

gorithms. Specifically, I model dynamic DCOP problems as sequences of static DCOP

problems and introduce an incremental procedure, called the ReuseBounds procedure,

and an incremental pseudo-tree reconstruction algorithm, called Hybrid Algorithm for

154

Reconstructing Pseudo-trees (HARP), that allow ADOPT and BnB-ADOPT to reuse

information from searches of similar static DCOP problems to guide their search to po-

tentially solve the current static DCOP problem faster. The comparison of the runtimes

of ADOPT and BnB-ADOPT with and without the ReuseBounds procedure and the

HARP algorithm on dynamic DCOP problems will experimentally assess my hypothesis.

This work is non-trivial since agents in ADOPT and BnB-ADOPT need to know the

changes to the DCOP problem and identify information that they can reuse while having

only local views of the problem or, in other words, knowing only the agents that they

share constraints with and the costs of those constraints.

6.2 Incremental Approaches

Since many multi-agent problems change dynamically over time, it is desirable to model

such problems with the DCOP model and to design DCOP search algorithms that solve

them. We first describe our model of dynamic DCOP problems in Section 6.2.1. We

then describe the ReuseBounds procedure in Section 6.2.2 and the Hybrid Algorithm for

Reconstructing Pseudo-trees (HARP) in Section 6.2.3.

6.2.1 Dynamic DCOP Problems

There are generally two approaches one can take to model dynamic DCOP problems.

• Online approach: One can model dynamic DCOP problems as sequences of static

DCOP problems with changes between subsequent static DCOP problems. Each

155

static DCOP problem in the sequence is a snapshot of the dynamic DCOP prob-

lem. Solving a dynamic DCOP problem optimally means finding a cost-minimal

solution for each static DCOP problem in the sequence. Therefore, this approach

is a myopic approach that does not consider future changes to the dynamic DCOP

problem. Researchers have used this approach to model dynamic constraint satis-

faction problems (Dechter & Dechter, 1988; Schiex & Verfaillie, 1994) and dynamic

path-planning problems (Stentz, 1995; Koenig et al., 2004b). The advantage of

this approach is that solving dynamic DCOP problems is no harder than solving

static DCOP problems. The disadvantage of this approach is that it can become

impossible to solve dynamic DCOP problems if they change sufficiently frequently.

• Offline approach: One can model dynamic DCOP problems to take into account

all possible future changes to the problem. Solving a dynamic DCOP problem

optimally means finding a mapping that maps each possible static DCOP problem

to a cost-minimal solution for that static DCOP problem. This model is thus

similar to the decentralized Markov decision process (Dec-MDP) model (Pynadath

& Tambe, 2002; Goldman & Zilberstein, 2004). The advantage of this approach is

that it is able to solve dynamic DCOP problems that change arbitrarily fast since

no computation is required at runtime. The disadvantage of this approach is that

the dynamic DCOP problem can become intractable when the number of possible

changes is large.

Researchers have shown that (centralized) incremental search algorithms can be

faster than (centralized) non-incremental search algorithms, such as repeated A*

156

searches (Koenig et al., 2004b). Thus, DCOP search algorithms that use similar in-

cremental approaches might be able to solve static DCOP problems sufficiently fast to

avoid the disadvantages of the online approach. Therefore, we model dynamic DCOP

problems using the online approach in this dissertation. Additionally, we assume that

dynamic DCOP problems can change in the following five ways: (1) the costs of a con-

straint can change, (2) a constraint can be removed, (3) a constraint can be added, (4)

an agent and its constraints can be removed, and (5) an agent and its constraints can be

added.

6.2.2 Incremental Procedure

Instead of solving each static DCOP problem from scratch, DCOP search algorithms can

reuse information from searches of similar static DCOP problems to guide their search to

potentially solve the current static DCOP problem faster. Therefore, we introduce the

ReuseBounds procedure, an incremental procedure that ADOPT and BnB-ADOPT can

use to identify lower and upper bounds from the previous static DCOP problem that can

be reused for the current static DCOP problem. After each change in the dynamic DCOP

problem, ADOPT and BnB-ADOPT first reconstruct their pseudo-trees using one of the

algorithms described in Section 6.2.3. They then call the ReuseBounds procedure in a

pre-processing step before solving the current static DCOP problem.

The principle behind the ReuseBounds procedure is as follows. It identifies potentially

affected and unaffected agents in the DCOP problem. The potentially affected agents are

those agents whose lower and upper bounds that they maintain from the previous static

DCOP problem might no longer be correct bounds for the current static DCOP problem.

157

The unaffected agents are the other agents. Thus, each potentially affected agent purges

all its cached information units, creates a new information unit and caches the current

context and the lower and upper bounds initialized to their default values for that context

before solving the current static DCOP problem. Unaffected agents reuse the lower and

upper bounds in all their cached information units. An agent a is a potentially affected

agent iff the gamma costs γa
Xa or γa

Xa(d) for some context Xa and value d of agent a can

change between the previous and current static DCOP problems. To be more precise,

a gamma cost can change iff one can assign some cost to each constraint that is added,

removed or whose costs changed in such a way that the gamma cost indeed changes. If

γa
Xa changes, then the lower and upper bounds LBa

Xa and UBa
Xa , which were correct

bounds LBa
Xa ≤ w · γa

Xa ≤ w · UBa
Xa for the previous static DCOP problem, might

no longer be correct bounds for the current static DCOP problem. Similarly, if γa
Xa(d)

changes, then the lower and upper bounds LBa
Xa(d) and UBa

Xa(d), which were correct

bounds LBa
Xa(d) ≤ w · γa

Xa(d) ≤ w · UBa
Xa(d) for the previous static DCOP problem,

might no longer be correct bounds for the current static DCOP problem. Unfortunately,

an agent cannot directly discern if the gamma costs can change because it needs to solve

the current static DCOP problem to do so. However, an agent a can determine if it is a

potentially affected agent by checking if it has one or more of the following properties.

• Property 1: Agent a shares an added constraint, deleted constraint or constraint

with changed constraint costs with another agent. If agent a shares the constraint

with a descendant agent, then it is a potentially affected agent (see Property 3).

If agent a shares the constraint with an ancestor agent, then the changes in the

158

AOR

AND

OR

AND

OR

AND

a

B

c

D

g h

E

i j

d

F

k l

G

m n

b

C

e

H

o p

I

q r

f

J

s t

K

u v

(a) Identifiers

a1OR

AND

OR

AND

OR

AND

0

a2

5

a3

10 14

a4

3 8

8

a3

8 13

a4

10 3

0

a2

20

a3

25 7

a4

3 8

3

a3

23 6

a4

10 3

(b) Delta Costs

12OR

AND

OR

AND

OR

AND

18

10 14 3 8 8 13 10 3

12

25 7 3 8 23 6 10 3

18

18

10 3

19

3

12

30

7 3

12

6 38

(c) Gamma Costs

Figure 6.1: Delta and Gamma Costs of the Example DCOP Problem

constraints can change the delta cost δa
Xa(d) for some context Xa and value d of

agent a, which in turn can change the gamma cost γa
Xa(d) (see Equation 3.1),

which in turn can change the gamma cost γa
Xa (see Equation 3.2). Agent a is thus

a potentially affected agent.

• Property 2: The set of child agents C(a) of agent a changes between the pre-

vious and current static DCOP problems. This difference can change the sum

∑
c∈C(a) γc

Xa∪(a,d) for some context Xa and value d, which in turn can change γa
Xa(d)

(see Equation 3.1), which in turn can change γa
Xa (see Equation 3.2). Agent a is

thus a potentially affected agent.

• Property 3: Agent a has a descendant agent c that is a potentially affected agent.

If γc
Xc for some context Xc of agent c changes, then the gamma cost γa

Xa(d) can

change for some context Xa and value d of agent a (see Equation 3.1), which in turn

can change the gamma cost γa
Xa (see Equation 3.2). Agent a is thus a potentially

affected agent.

For example, imagine that the constraint between agents a1 and a3 is removed from our

example DCOP problem of Figure 1.1. Figures 6.1 and 6.2 show the delta and gamma

costs for the example DCOP problem before and after the removal of the constraint,

159

AOR

AND

OR

AND

OR

AND

a

B

c

D

g h

E

i j

d

F

k l

G

m n

b

C

e

H

o p

I

q r

f

J

s t

K

u v

(a) Identifiers

a1OR

AND

OR

AND

OR

AND

0

a2

5

a3 a4

3 8

8

a3 a4

10 3

0

a2

20

a3 a4

3 8

3

a3 a4

10 35 4 3 3 5 4 3 3

(b) Delta Costs

3 8 10 3 3 8 10 3

3 3 3 3

OR

AND

OR

AND

OR

AND 5 4 3 3 5 4 3 3

5 5 33

9

13 9

13 9

13 14 28 9

(c) Gamma Costs

Figure 6.2: Delta and Gamma Costs after the Removal of the Constraint between Agents
a1 and a3

respectively, assuming that the ordering of agents in the pseudo-tree remains unchanged.

The delta and gamma costs that change are shown in bold. The removal of the constraint

changes the delta costs of nodes g, h, k, l, o, p, s, t, which in turn changes the gamma

costs of those nodes and nodes D, F , H and J . Thus, agent a3 is a potentially affected

agent since it maintains lower and upper bounds of those nodes (Property 1). The change

in the gamma costs of nodes D, F , H and J changes the gamma costs of nodes c, d, e

and f , which in turn changes the gamma costs of nodes B and C. Thus, agent a2 is

a potentially affected agent since it maintains lower and upper bounds of those nodes

(Property 3). The change in the gamma costs of nodes B and C changes the gamma

costs of nodes a and b, which in turn changes the gamma cost of node A. Thus, agent a1

is a potentially affected agent since it maintains lower and upper bounds of those nodes

(Property 3).

Each agent can directly discern if it has Properties 1 or 2. However, it cannot directly

discern if it has Property 3 since it knows neither the constraints nor the set of child agents

of each one of its descendant agents. Therefore, each agent in ADOPT and BnB-ADOPT

runs the ReuseBounds procedure to discern if it has Property 3 after it reconstructs the

pseudo-tree for the current static DCOP problem. The idea behind the ReuseBounds

procedure is as follows. The root agent starts the propagation of QUERY messages down

160

procedure ReuseBounds()
[01] sentSTART := amAffected := false;
[02] loop forever
[03] if(message queue is not empty)
[04] pop msg off message queue;
[05] When Received(msg);
[06] if(!sentSTART and detected changes in its constraints or C(a))
[07] sentSTART := true;
[08] Send(START) to pa(a) if a is not root;
[09] Send(QUERY) to each c ∈ C(a) if a is root;

procedure When Received(START)
[10] if(!sentSTART)
[11] sentSTART := true;
[12] Send(START) to pa(a) if a is not root;
[13] Send(QUERY) to each c ∈ C(a) if a is root;

procedure When Received(QUERY)
[14] Send(QUERY) to each c ∈ C(a);
[15] if(a is a leaf)
[16] if(detected changes in its constraints or C(a))
[17] amAffected := true;
[18] Send(RESPONSE, a, amAffected) to pa(a);

procedure When Received(RESPONSE, c, amAffectedc)
[19] if(amAffectedc or detected changes in its constraints or C(a))
[20] amAffected := true;
[21] if(received a RESPONSE message from each c′ ∈ C(a))
[22] Send(RESPONSE, a, amAffected) to pa(a) if a is not root;
[23] if(a is root)
[24] if(amAffected)
[25] purge all information units and reinitialize information unit for current context;
[26] Send(STOP) to each c′ ∈ C(a);
[27] restart DCOP algorithm to solve the current static DCOP problem;

procedure When Received(STOP)
[28] if(amAffected)
[29] purge all information units and reinitialize information unit for current context;
[30] Send(STOP) to each c ∈ C(a);
[31] restart DCOP algorithm to solve the current static DCOP problem;

Figure 6.3: Pseudocode of ReuseBounds

the pseudo-tree. When a leaf agent receives a QUERY message, it identifies itself as a

potentially affected agent if it has Properties 1 or 2. It then sends a RESPONSE message

to its parent agent with the information whether it is a potentially affected agent. When

an agent receives a RESPONSE message, it identifies itself as a potentially affected agent

if it has Properties 1 or 2 or its child is a potentially affected agent. After it has received a

RESPONSE message from each one of its child agents, it sends a RESPONSE message to

its parent agent with the information whether it is a potentially affected agent. Therefore,

when the root agent receives a RESPONSE message from each one of its child agents,

161

each agent must have identified itself as a potentially affected agent if it has Properties

1, 2 or 3.

Figure 6.3 shows the pseudocode. The code is identical for every agent except that

the variable a is a “self” variable that points to the agent itself. Each agent by default

identifies itself as an unaffected agent by setting its amAffected flag to false [Line 1]. The

ReuseBounds procedure uses four types of messages:

• START messages: START messages propagate up the pseudo-tree until they

reach the root agent. The purpose of START messages is to start the procedure

and to trigger the root agent to send QUERY messages.

Each agent with Properties 1 or 2 sends a START message to its parent agent

[Lines 6-8]. When an agent receives a START message, if it did not send a START

message earlier (on Line 8), then it sends a START message to its parent agent

[Lines 10-12].

• QUERY messages: QUERY messages propagate down the pseudo-tree until they

reach all leaf agents. The purpose of QUERY messages is to trigger leaf agents to

send RESPONSE messages.

If the root agent has Properties 1 or 2, it sends a QUERY message to each one of

its child agents [Line 9]. When the root agent receives its first START message,

if it did not send QUERY messages earlier (on Line 9), then it sends a QUERY

message to each one of its child agents [Line 13]. When an agent receives a QUERY

message, it sends a QUERY message to each one of its child agents [Line 14].

162

• RESPONSE messages: RESPONSE messages propagate up the pseudo-tree un-

til they reach the root agent. The purpose of RESPONSE messages is to enable the

agents to identify themselves as potentially affected agents if they have Properties

1, 2 or 3 and to trigger the root agent to send STOP messages.

When a leaf agent receives a QUERY message, it identifies itself as a potentially

affected agent if it has Properties 1 or 2 by setting its amAffected flag to true

[Lines 15-17]. It then sends a RESPONSE message to its parent agent with the

information whether it is a potentially affected agent [Line 18]. When an agent

receives a RESPONSE message from one of its child agents, if it has Properties 1

or 2 or that child agent is a potentially affected agent (and it thus has Property

3), then it identifies itself as a potentially affected agent [Lines 19-20]. After an

agent receives a RESPONSE message from each one of its child agents, it sends

a RESPONSE message to its parent agent with the information whether it is a

potentially affected agent [Lines 21-22].

• STOP messages: STOP messages propagate down the pseudo-tree until they

reach the leaf agents. The purpose of the STOP messages is to end the procedure.

After the root agent receives a RESPONSE message from each one of its child

agents, every agent must have identified itself as a potentially affected agent if it

has Properties 1, 2 or 3. The root agent then purges all its cached information units,

creates a new information unit and caches the current context and the lower and

upper bounds initialized to their default values if it is a potentially affected agent,

sends a STOP message to each one of its child agents and restarts the DCOP

163

a1

a2

a3

a4

a5

a6

a7

(a) Initial pseudo-tree

a1

a7

a6

a5

a3

a4

a2

(b) DFS pseudo-tree

a1

a2

a3

a6

a7

a4

a5

(c) Mobed pseudo-tree

a1

a5

a6

a7

a3

a4

a2

(d) HARP pseudo-tree

Figure 6.4: DFS, Mobed and HARP Pseudo-trees after Removal of the Constraint be-
tween Agents a4 and a5

algorithm to solve the current static DCOP problem [Lines 23-27]. When an agent

receives a STOP message, it does the same [Lines 28-31].

6.2.3 Incremental Pseudo-tree Reconstruction Algorithms

Before solving the current static DCOP problem, DCOP search algorithms may need

to reconstruct their pseudo-trees to reflect the changes from the previous static DCOP

problem to the current static DCOP problem. For example, if a new agent is added

to the DCOP problem, then a DCOP search algorithm needs to add that agent to its

pseudo-tree.

164

6.2.3.1 Existing Pseudo-tree Reconstruction Algorithms

Finding optimal pseudo-trees is NP-hard (Arnborg, Corneil, & Proskurowski, 1987). As

a result, researchers have developed greedy distributed algorithms to reconstruct pseudo-

trees.

• Distributed Depth-First Search (DFS) Algorithm: The distributed DFS al-

gorithm constructs the pseudo-tree for each static DCOP problem from scratch. It is

a distributed algorithm that constructs the pseudo-tree by traversing the constraint

graph using DFS with the max-degree heuristic (Collin & Dolev, 1994; Hamadi,

Bessière, & Quinqueton, 1998).1 It chooses the agent with the largest number of

constraints and makes it the root agent of the pseudo-tree. The root agent is now

the current agent. The DFS algorithm then repeatedly performs the following oper-

ations: It chooses the agent with the largest number of constraints among all agents

not in the pseudo-tree that are constrained with the current agent and makes this

agent a child agent of the current agent. This agent is now the current agent. The

algorithm backtracks if no such agent exists and terminates when the pseudo-tree

contains all agents. For example, Figure 6.4(a) shows an example initial pseudo-

tree, and Figure 6.4(b) shows the pseudo-tree reconstructed by the distributed DFS

algorithm after the constraint between agents a4 and a5 was removed.

• Multiagent Organization with Bounded Edit Distance (Mobed) Algo-

rithm: The Mobed algorithm constructs pseudo-trees with small edit distances
1The distributed DFS algorithm can use other heuristics to construct pseudo-trees as well, but we

describe the max-degree heuristic because it is commonly used by many DCOP search algorithms including
ADOPT and NCBB.

165

between subsequent static DCOP problems (Sultanik, Lass, & Regli, 2009). The

edit distance between two pseudo-trees is the smallest number of parent-child rela-

tionships that must be re-assigned, added or deleted in order for both pseudo-trees

to become isomorphic. It requires another algorithm such as the distributed DFS

algorithm to construct the pseudo-tree of the first static DCOP problem. For each

new agent that is added to the DCOP problem, Mobed identifies an insertion point

in the pseudo-tree of the previous static DCOP problem and adds the new agent

to the pseudo-tree at that insertion point. For each agent that is removed from

the DCOP problem, Mobed removes that agent from the pseudo-tree and makes all

child agents of the removed agent the child agents of the parent agent of the removed

agent. For each constraint that is added or removed, Mobed removes and adds all

agents that share that constraint. For example, Figure 6.4(c) shows the pseudo-tree

reconstructed by the Mobed algorithm after the constraint between agents a4 and

a5 was removed.

6.2.3.2 HARP Pseudo-tree Reconstruction Algorithm

The Mobed algorithm constructs pseudo-trees with small edit distances. On the other

hand, the distributed DFS algorithm constructs its pseudo-trees from scratch, which

can have large edit distances. Therefore, there is usually a larger number of unaffected

agents in the Mobed pseudo-trees than in the DFS pseudo-trees. For example, in our

example pseudo-trees of Figure 6.4, there is one unaffected agent (= agent a7) in the

Mobed pseudo-tree and there are no unaffected agents in the DFS pseudo-tree. On the

other hand, DFS pseudo-trees can have smaller depths than Mobed pseudo-trees. For

166

procedure HARP()
[01] sentSTART := amAffected := false;
[02] pseudoID := agentID;
[03] loop forever
[04] if(message queue is not empty)
[05] pop msg off message queue;
[06] When Received(msg);
[07] if(!sentSTART and detected changes in its constraints)
[08] sentSTART := true;
[09] Send(START) to pa(a) if a is not root;
[10] Send(QUERY) to each c ∈ C(a) if a is root;

procedure When Received(START)
[11] if(!sentSTART)
[12] sentSTART := true;
[13] Send(START) to pa(a) if a is not root;
[14] Send(QUERY) to each c ∈ C(a) if a is root;

procedure When Received(QUERY)
[15] Send(QUERY) to each c ∈ C(a);
[16] if(a is a leaf)
[17] if(detected changes in its constraints)
[18] amAffected := true;
[19] Send(RESPONSE, a, amAffected) to pa(a);

procedure When Received(RESPONSE, c, amAffectedc)
[20] if(amAffectedc or detected changes in its constraints)
[21] amAffected := true;
[22] if(received a RESPONSE message from each c′ ∈ C(a))
[23] Send(RESPONSE, a, amAffected) to pa(a) if a is not root;
[24] Send(PSEUDOID, pseudoID, amAffected) to each c′ ∈ C(a) if a is root;

procedure When Received(PSEUDOID, pseudoIDp, amAffectedp)
[25] if(!amAffected and amAffectedp)
[26] Send(CONSTRAINT, a, SCP (a)) to each p ∈ SCP (a);
[27] else
[28] if(!amAffectedp)
[29] pseudoID := pseudoIDp;
[30] Send(PSEUDOID, pseudoID, amAffected) to each c ∈ C(a) if a is not leaf;
[31] Send(PSEUDOID-ACK) to pa(a) if a is leaf;

procedure When Received(PSEUDOID-ACK)
[32] if(received a PSEUDOID-ACK message from each c ∈ C(a))
[33] Send(PSEUDOID-ACK) to pa(a) if a is not root;
[34] if(a is root)
[35] Send(STOP) to each c ∈ C(a);
[36] run distributed DFS algorithm to reconstruct the pseudo-tree for the current static DCOP problem;

procedure When Received(CONSTRAINT, c, SCP c)
[37] artificially constrain a with each p ∈ SCP c;
[38] Send(CONSTRAINT-ACK) to c;

procedure When Received(CONSTRAINT-ACK)
[39] if(received a CONSTRAINT-ACK message from each p ∈ SCP (a))
[40] Send(PSEUDOID, pseudoID, amAffected) to each c ∈ C(a) if a is not leaf;
[41] Send(PSEUDOID-ACK) to pa(a) if a is leaf;

procedure When Received(STOP)
[42] Send(STOP) to each c ∈ C(a);
[43] run distributed DFS algorithm to reconstruct the pseudo-tree for the current static DCOP problem;

Figure 6.5: Pseudocode of HARP

167

b1

b2

b3

b4

b5

b6

b6

(a) Assigning pseudo-IDs

b1

b2

b3

b4

b5

b6

b6

New artificial
constraint

Group of agents
with the same
pseudo-ID

(b) Artificially constraining
agents b1 and b5

b1

b5

b6 b3

b4

b2

Pseudo-agent
which consists of
agents a6 and a7

(c) Constructing DFS
pseudo-tree

Figure 6.6: HARP Pseudo-tree Reconstruction Steps

example, in our example pseudo-trees of Figure 6.4, the depth of the DFS pseudo-tree is

one smaller than the depth of the Mobed pseudo-tree. Pseudo-trees with smaller depths

are desirable since they have a larger number of independent subtrees, or synonymously, a

larger number of independent subproblems. Thus, there is a tradeoff between the depths

and edit distances of pseudo-trees.

We therefore introduce the Hybrid Algorithm for Reconstructing Pseudo-trees

(HARP), an incremental pseudo-tree reconstruction algorithm that reuses parts of the

pseudo-tree of the previous static DCOP problem to construct the pseudo-tree of the

current static DCOP problem. It combines the principles and strengths of the Mobed

and distributed DFS algorithms. Like the Mobed algorithm, HARP aims to preserve

the parent-child relationships of unaffected agents in the pseudo-tree, and like the dis-

tributed DFS algorithm, HARP reconstructs the part of the pseudo-tree with the affected

agents from scratch. Affected agents are agents from the previous static DCOP prob-

lem that are guaranteed to be potentially affected agents in the current static DCOP

168

problem regardless of the choice of pseudo-tree reconstruction algorithm. They are (1)

the agents that share an added constraint, deleted constraint or constraint with changed

costs with another agent (Property 1 in Section 6.2.2) and (2) their ancestor agents in

the pseudo-tree of the previous static DCOP problem (Property 3). (Other agents might

become potentially affected agents as well but that depends on the choice of pseudo-tree

reconstruction algorithm and is thus not guaranteed.)

HARP operates on the pseudo-tree of the previous static DCOP problem to identify

the affected agents and calls the distributed DFS algorithm to construct the pseudo-

tree of the current static DCOP problem in such a way that non-affected agents are

unaffected agents in the current static DCOP problem. Recall that unaffected agents are

agents that are not potentially affected agents. For example, imagine that the constraint

between agents a4 and a5 of Figure 6.4(a) is removed. The affected agents are agents a4

and a5 since they have Property 1 and agents a1, a2 and a3 since they have Property 3.

Figure 6.6 shows the steps of HARP to reconstruct the pseudo-tree for the current static

DCOP problem. HARP assigns a unique pseudo-ID to all agents in the problem with the

exception that, all agents in an unaffected subtree are assigned the same pseudo-ID. An

unaffected subtree is a subtree that has only unaffected agents. In our example, HARP

assigns agents a1, a2, a3, a4 and a5 the pseudo-IDs b1, b2, b3, b4 and b5, respectively.

HARP assigns agents a6 and a7 the same pseudo-ID b6 since they are in an unaffected

subtree. Figure 6.6(a) shows the pseudo-tree with the pseudo-ID of each agent. For each

group of agents with the same pseudo-ID that is not in a larger group of agents with the

same pseudo-ID, HARP artificially constrains all their parent and pseudo-parent agents

that are not in the group to each other. In our example, HARP artificially constrains

169

agents a1 (with pseudo-ID b1) and a5 (with pseudo-ID b5) since agent a1 is a pseudo-

parent agent of agent a7 and agent a5 is a parent agent of agent a6. Figure 6.6(b) shows

the pseudo-tree with the new artificial constraint.

HARP then runs the distributed DFS algorithm except that it treats all agents with

the same pseudo-ID as a single pseudo-agent and sets pseudo-agents as child agents

of the current agent only if every affected agent that is constrained with the current

agent is already in the pseudo-tree. Therefore, pseudo-agents are leaf agents in the new

pseudo-tree because every agent that they are constrained with was chosen first due to

the artificial constraints. Therefore, non-affected agents do not have Properties 2 and

3 because pseudo-agents are leaf agents and all agents in a pseudo-agent thus have the

same descendant agents, which are non-affected agents themselves, in the new pseudo-

tree. Non-affected agents do not have Property 1 either because they are affected agents

otherwise. Therefore, all non-affected agents are unaffected agents in the current static

DCOP problem. Figure 6.6(c) shows the resulting pseudo-tree with pseudo-agents in

our example, and Figure 6.4(d) shows the pseudo-tree with actual agents. The HARP

pseudo-tree has the same depth as the DFS pseudo-tree and has two unaffected agents

(= agents a6 and a7) compared to one unaffected agent in the Mobed pseudo-tree and no

unaffected agents in the DFS pseudo-tree.

There are two phases in the HARP algorithm. The first phase identifies affected agents

and is very similar to how the ReuseBounds procedure identifies potentially affected

agents. The second phase assigns pseudo-IDs to agents and imposes artificial constraints

between agents before calling the distributed DFS algorithm to reconstruct the pseudo-

tree. Figure 6.5 shows the pseudocode of the HARP algorithm. The code is identical for

170

every agent except that the variable a is a “self” variable that points to the agent itself.

Each agent by default identifies itself as an unaffected agent by setting its amAffected

flag to false [Line 1] and sets its pseudo-ID to its unique agent-ID [Line 2]. The HARP

algorithm uses eight types of messages:

• START messages: START messages propagate up the pseudo-tree until they

reach the root agent. The purpose of START messages is to start the algorithm

and to trigger the root agent to send QUERY messages.

Each agent with Property 1 sends a START message to its parent agent [Lines 7-9].

When an agent receives a START message, if it did not send a START message

earlier (on Line 9), then it sends a START message to its parent agent [Lines 11-13].

• QUERY messages: QUERY messages propagate down the pseudo-tree until they

reach all leaf agents. The purpose of QUERY messages is to trigger leaf agents to

send RESPONSE messages.

If the root agent has Property 1, it sends a QUERY message to each one of its child

agents [Line 10]. When the root agent receives its first START message, if it did

not send QUERY messages earlier (on Line 10), then it sends a QUERY message

to each one of its child agents [Line 14].

• RESPONSE messages: RESPONSE messages propagate up the pseudo-tree un-

til they reach the root agent. The purpose of RESPONSE messages is to enable

the agents to identify themselves as affected agents if they have Properties 1 or 3

and to trigger the root agent to send PSEUDOID messages.

171

When a leaf agent receives a QUERY message, it identifies itself as an affected agent

if it has Property 1 by setting its amAffected flag to true [Lines 16-18]. It then sends

a RESPONSE message to its parent agent with the information whether it is an

affected agent [Line 19]. When an agent receives a RESPONSE message from one

its child agents, if it has Property 1 or that child agent is an affected agent (and

it thus has Property 3), then it identifies itself as an affected agent [Lines 20-21].

After an agent receives a RESPONSE message from each one of its child agents, it

sends a RESPONSE message to its parent agent with the information whether it is

an affected agent [Lines 22-23].

• PSEUDOID messages: PSEUDOID messages propagate down the pseudo-tree

until they reach all leaf agents. The purpose of the PSEUDOID messages is to

enable the agents in an unaffected subtree to assign themselves the same pseudo-ID

(= the pseudo-ID of the root of the unaffected subtree).

After the root agent receives a RESPONSE message from each one of its child

agents, every agent must have identified themselves as affected agents if they have

Properties 1 or 3. The root agent then sends a PSEUDOID message to each one

of its child agents with its pseudo-ID and the information whether it is an affected

agent [Line 24]. When an agent receives a PSEUDOID message from its parent

agent, there are the following three cases:

– If it is an affected agent (and it is thus not in an unaffected subtree), then it

sends a PSEUDOID message to each one of its child agents with its pseudo-ID

and the information that it is an affected agent [Line 30].

172

– If it is an unaffected agent but its parent agent is an affected agent (and it is

thus the root of an unaffected subtree), then it eventually sends a PSEUDOID

message to each one of its child agents with its pseudo-ID and the informa-

tion that it is an unaffected agent [Line 40]. (We describe the reasons in the

CONSTRAINT and CONSTRAINT-ACK messages bullet.)

– If both its parent agent and itself are unaffected agents (and it is thus in an

unaffected subtree but is not the root of the subtree), then it sets its pseudo-

ID to the pseudo-ID in the message and sends a PSEUDOID message to each

one of its child agents with its pseudo-ID and the information that it is an

unaffected agent [Lines 27-30].

• CONSTRAINT and CONSTRAINT-ACK messages: The purpose of CON-

STRAINT and CONSTRAINT-ACK messages is to impose artificial constraints

between all ancestor agents p ∈ SCP (a) of the root agent a of an unaffected sub-

tree.

When an agent receives a PSEUDOID message, if it is an unaffected agent but its

parent agent is an affected agent (and it is thus the root of an unaffected subtree),

then it sends a CONSTRAINT message, which contains its identity and the set

SCP (a), to each ancestor agent p ∈ SCP (a) [Lines 25-26]. When an agent receives

a CONSTRAINT message, it artificially constrains itself with all agents in the set

in the message and sends a CONSTRAINT-ACK message to the sender of the

CONSTRAINT message [Lines 37-38]. After an agent a receives a CONSTRAINT-

ACK message from each ancestor agent p ∈ SCP (a), it sends a PSEUDOID message

173

to each one of its child agents if it is not a leaf agent and a PSEUDOID-ACK message

to its parent agent otherwise [Lines 39-41].

• PSEUDOID-ACK messages: PSEUDOID-ACK messages propagate up the

pseudo-tree until they reach the root agent. The purpose of PSEUDOID-ACK

messages is to inform the root agent that each agent in an unaffected subtree has

assigned itself the pseudo-ID of the root agent of the subtree, to inform the root

agent that all the parent and pseudo-parent agents of the agents in each unaffected

subtree that are not in the subtree themselves are artificially constrained with each

other and to trigger the root agent to send STOP messages.

When a leaf agent receives a PSEUDOID message, it sends a PSEUDOID-ACK

message to its parent agent [Lines 31 and 41]. After an agent receives a PSEUDOID-

ACK message from each one of its child agents, it sends a PSEUDOID-ACK message

to its parent agent [Lines 32-33].

• STOP messages: STOP messages propagate down the pseudo-tree until they

reach the leaf agents. The purpose of the STOP messages is to stop this phase of

the HARP algorithm and start the distributed DFS algorithm.

After the root agent receives a PSEUDOID-ACK message from each one of its child

agents, each agent in an unaffected subtree must have the same pseudo-ID and all

their parent and pseudo-parent agents that are not in the unaffected subtree are

artificially constrained with each other. The only exception is the case where the

subtree is part of a larger unaffected subtree. The root agent then sends a STOP

message to each one of its child agents and runs the distributed DFS algorithm

174

to reconstruct the pseudo-tree for the current static DCOP problem [Lines 34-36].

When an agent receives a STOP message, it does the same [Lines 42-43].

6.3 Correctness, Completeness and Complexity

In this section, we prove the correctness and completeness of the ReuseBounds procedure

and the HARP algorithm when used by BnB-ADOPT. Their correctness and complete-

ness when used by ADOPT can be proven very similarly. We also describe their space

and message complexities.

6.3.1 Correctness and Completeness

We provide the proofs of the ReuseBounds procedure in Section 6.3.1.1 and the proofs

of the HARP algorithm in Section 6.3.1.2. All the lemmas and theorems in this section

hold only if there are changes in the dynamic DCOP problem since the ReuseBounds

procedure and the HARP algorithm is used as pre-processing steps before solving each

new (but not the first) static DCOP problem. We thus do not explicitly state them later.

6.3.1.1 ReuseBounds Procedure

We follow the assumptions in Sections 3.3.1 and 5.3.1 and assume that each agent a uses

the following equations for all values d, all child agents c and all contexts Xa to initialize

its bounds.

175

• If Xa is incompatible with the context of any cached information unit, then

lba,c
Xa(d) := w · ha,c

Xa(d) (3.20)

uba,c
Xa(d) := ∞ (3.21)

where the weight w is a floating point number that satisfies 1 ≤ w < ∞ and the

heuristic values ha,c
Xa(d) are floating point numbers that satisfy

0 ≤ ha,c
Xa(d) ≤ γc

Xa∪(a,d) (3.22)

• If Xa is compatible with the context IXa of a cached information unit I, then

lba,c
Xa(d) := I lba,c

IXa(d) (5.4)

uba,c
Xa(d) := Iuba,c

IXa(d) (5.5)

where I lba,c
IXa(d) and I lba,c

IXa(d) are the bounds in information unit I.

The only exception is the case where agent a is about to start solving a new (but not the

first) static DCOP problem, in which case agent a does the following before solving the

static DCOP problem.

176

• If an agent a is a potentially affected agent, then it purges all its cached information

units, creates a new information unit and caches the current context and the lower

and upper bounds initialized to their default values for that context.

• If agent a is a non-potentially affected agent, then it uses the following equations

for all values d, all child agents c, all contexts IXa and all information units I to

initialize its bounds.

I lba,c
IXa(d) := I l̂b

a,c
IXa(d) (6.1)

Iuba,c
IXa(d) := I ûb

a,c
IXa(d) (6.2)

where I l̂b
a,c
IXa(d) and I ûb

a,c
IXa(d) are the bounds in information unit I of the previous

static DCOP problem.

Due to this exception, the proof of Lemma 4 is no longer correct. However, we provide

a more general proof of Lemma 4 at the end of this subsection that shows that the

lemma still holds. All other definitions, lemmas and theorems of Sections 3.3.1 and 4.3.1

continue to hold when potentially affected agents in BnB-ADOPT purge their cached

information units and the other agents in BnB-ADOPT initialize the bounds in their

cached information units with the bounds in the corresponding cached information unit

from the previous static DCOP problem before solving the current static DCOP problem.

All line numbers in this subsection refer to the line numbers in Figure 6.3.

177

Definition 3 An agent a is a potentially affected agent iff the gamma costs γa
Xa and

γa
Xa(d) for some context Xa and value d of agent a can change between the previous and

current static DCOP problems.

Lemma 9 If one or more of the descendant agents of an arbitrary agent a are potentially

affected agents, then agent a is a potentially affected agent as well.

Proof by induction on the depth of the agent in the pseudo-tree: The lemma holds for leaf

agents since they do not have descendant agents (induction basis). Now assume that the

lemma holds for all agents at depth d in the pseudo-tree (induction assumption). We show

that it then also holds for all agents a at depth d− 1 in the pseudo-tree (induction step).

If agent a is a leaf agent, then this case is identical to the induction basis. Otherwise, if

one or more of the descendant agents of agent a are potentially affected agents (premise

of the lemma), then there must exist at least one child agent c ∈ C(a) that is a potentially

affected agent according to our induction assumption. Thus, the gamma costs γc
Xc for

some context Xc of child agent c can change between the previous and current static

DCOP problems. Therefore, the gamma costs γa
Xa(d) and γa

Xa can also change between

the previous and current static DCOP problems according to Equations 3.1 and 3.2.

Agent a is thus a potentially affected agent according to Definition 3.

Lemma 10 If an arbitrary agent a shares an added constraint, deleted constraint or

constraint with changed constraint costs with another agent in the current static DCOP

problem, then agent a is a potentially affected agent.

178

Proof: There are the following two cases.

• Case 1: Agent a shares an added constraint, deleted constraint or constraint with

changed constraint costs with an ancestor agent. Thus, the delta costs δa
Xa(d) for

some context Xa and value d of agent a can change between the previous and

current static DCOP problems. (The delta cost δa
Xa(d) is the sum of the constraint

costs of all constraints that involve both agent a and one of its ancestor agents

p ∈ SCP (a), under the assumption that agent a takes on value d and the agents

p ∈ SCP (a) take on the values in context Xa.) Therefore, the gamma costs γa
Xa(d)

and γa
Xa can also change between the previous and current static DCOP problems

according to Equations 3.1 and 3.2. Therefore, agent a is a potentially affected

agent according to Definition 3.

• Case 2: Agent a shares an added constraint, deleted constraint or constraint with

changed constraint costs with a descendant agent c. Thus, the descendant agent c is

a potentially affected agent according to Case 1. Therefore, agent a is a potentially

affected agent according to Lemma 9.

Lemma 11 If the set of child agents C(a) of an arbitrary agent a changes between the

previous and current static DCOP problems, then agent a is a potentially affected agent.

Proof: The gamma costs γa
Xa(d) for some context Xa and value d of agent a can change

between the previous and current static DCOP problems according to Equation 3.1 since

the set of child agents C(a) of agent a changes between the previous and current static

DCOP problems according to the premise of the lemma. Therefore, the gamma costs

179

γa
Xa for context Xa of agent a can also change between the previous and current static

DCOP problems according to Equation 3.2. Agent a is thus a potentially affected agent

according to Definition 3.

Lemma 12 An arbitrary agent a is a potentially affected agent iff it shares an added

constraint, deleted constraint or constraint with changed constraint costs with another

agent in the current static DCOP problem; its set of child agents C(a) changes between

the previous and current static DCOP problems; or one or more of its descendant agents

are potentially affected agents.

Proof: We first prove the lemma for the “if” direction. If agent a shares an added

constraint, deleted constraint or constraint with changed constraint costs with another

agent in the current static DCOP problem, then agent a is a potentially affected agent

according to Lemma 10. If the set of child agents C(a) of agent a changes between the

previous and current static DCOP problems, then agent a is a potentially affected agent

according to Lemma 11. If one or more of the descendant agents of agent a are potentially

affected agents, then agent a is a potentially affected agent according to Lemma 9.

We now prove by contradiction the lemma for the “only if” direction. Let agent a be

a potentially affected agent that does not share an added constraint, deleted constraint or

constraint with changed constraint costs with another agent in the current static DCOP

problem; whose set of child agents remains unchanged between the previous and current

static DCOP problems; and that does not have any descendant agents that are potentially

affected agents. The gamma costs

180

γa
Xa(d) = δa

Xa(d) +
∑

c∈C(a)

γc
Xa∪(a,d) (Eq. 3.1)

= δa
Xa(d) +

∑

c∈C(a)

γc
Xc (Lemma 1)

γa
Xa = min

d∈Dom(a)
{γa

Xa(d)} (Eq. 3.2)

for context Xa and value d of agent a in the previous static DCOP problem can change

to

γ̂a
Xa(d) = δ̂a

Xa(d) +
∑

c∈Ĉ(a)

γ̂c
Xa∪(a,d) (Eq. 3.1)

= δ̂a
Xa(d) +

∑

c∈Ĉ(a)

γ̂c
Xc (Lemma 1)

γ̂a
Xa = min

d∈Dom(a)
{γ̂a

Xa(d)} (Eq. 3.2)

in the current static DCOP problem, respectively, according to Definition 3. However,

δ̂a
Xa(d) = δa

Xa(d) for all contexts Xa and values d of agent a (because agent a does not

share an added constraint, deleted constraint or constraint with changed constraint costs

with another agent in the current static DCOP problem), Ĉ(a) = C(a) (because the set of

child agents of agent a remains unchanged between the previous and current static DCOP

problems) and γ̂c
Xc = γc

Xc for all contexts Xc of each child agent c ∈ C(a) according to

Definition 3 (because all child agents are non-potentially affected agents). Therefore, the

181

gamma costs γa
Xa(d) and γa

Xa of agent a cannot change, which implies that agent a is an

non-potentially affected agent and thus contradicts our assumption.

Lemma 13 In the ReuseBounds procedure, each agent eventually sends a QUERY mes-

sage to each one of its child agents unless it is a leaf agent.

Proof: Let agent a be the agent with the smallest depth among all agents with Properties

1 or 2. (There must be at least one agent with Properties 1 or 2 for each static DCOP

problem because the problem is identical to the previous static DCOP problem otherwise.)

There are the following two cases.

• Case 1: Agent a is the root agent, in which case it sends a QUERY message to each

one of its child agents [Line 9].

• Case 2: Agent a is not the root agent, in which case it sends a START message to

its parent agent pa(a) [Line 8], which sends a START message to its parent agent

pa(pa(a)) when it receives a START message [Line 12], and so on until the root

agent receives a START message. The root agent then sends a QUERY message to

each one of its child agents [Line 13].

Therefore, the root agent sends QUERY messages in both cases. Every other agent sends

a QUERY message to each one of its child agents when it receives a QUERY message

[Line 14]. The only exception are leaf agents, which do not have child agents.

Lemma 14 In the ReuseBounds procedure, each agent eventually sends a RESPONSE

message to its parent agent unless it is the root agent.

182

Proof: Each leaf agent eventually receives a QUERY message from its parent agent

according to Lemma 13. When it receives that QUERY message, it sends a RESPONSE

message to its parent agent [Line 18]. Every other agent sends a RESPONSE message

to its parent agent after it has received a RESPONSE message from each one of its child

agents [Lines 21-22]. The only exception is the root agent, which does not have a parent

agent.

Lemma 15 In the ReuseBounds procedure, each potentially affected agent eventually sets

its amAffected flag to true.

Proof by induction on the depth of the agent in the pseudo-tree: A potentially affected

leaf agent a has changes in its constraints (= it shares an added constraint, deleted

constraint or constraint with changed constraint costs with another agent) according to

Lemma 12 since it does not have any descendant agents. It also eventually receives a

QUERY message from its parent agent according to Lemma 13. When it receives that

QUERY message, it sets its amAffected flag to true [Lines 16-17] (induction basis). Now

assume that the lemma holds for all agents at depth d in the pseudo-tree (induction

assumption).

We show that it then also holds for all agents at depth d − 1 in the pseudo-tree

(induction step). If agent a is a leaf agent, then this case is identical to the induction

basis. Otherwise, agent a eventually receives a RESPONSE message from each one of

its child agents according to Lemma 14. If agent a has changes in its constraints or its

set of child agents C(a), then it sets its amAffected flag to true when it receives its first

RESPONSE message [Lines 19-20]. If agent a has a potentially affected descendant agent,

183

then it has a potentially affected child agent c according to our induction assumption.

Agent a sets its amAffected flag to true when it receives the response message from that

child agent c [Lines 19-20].

Lemma 16 In the ReuseBounds procedure, an agent is a potentially affected agent if it

sets its amAffected flag to true.

Proof: If an agent a sets its amAffected flag to true, then it must have either (a) detected

changes in its constraints (= it shares an added constraint, deleted constraint or constraint

with changed constraint costs with another agent) or its set of child agents C(a) or (b)

received a RESPONSE message from a potentially affected child agent, which is equivalent

to having a potentially affected descendant agent [Lines 17 and 20]. Agent a is thus a

potentially affected agent according to Lemmas 10, 11 and 9.

Lemma 17 In the ReuseBounds procedure, an agent is a potentially affected agent iff it

sets its amAffected flag is to true.

Proof: If an agent is a potentially affected agent, its amAffected flag is eventually set

to true according to Lemma 15. If an agent sets its amAffected flag to true, then it is a

potentially affected agent according to Lemma 16.

Lemma 18 The ReuseBounds procedure eventually restarts the DCOP algorithm to solve

the current static DCOP problem.

Proof: The root agent eventually receives a RESPONSE message from each one of its

child agents according to Lemma 14. After it has received all those RESPONSE messages,

184

if it is a potentially affected agent, then it purges all its cached information units, creates

a new information unit and caches the current context and the lower and upper bounds

initialized to their default values for that context. The root agent then sends a STOP

message to each one of its child agents and restarts the DCOP algorithm to solve the

current static DCOP problem (even if it is a non-potentially affected agent) [Lines 23-

27]. When an agent receives a STOP message from its parent agent, it does the same

[Lines 28-31]. Therefore, each agent eventually receives a STOP message.

We now provide the proof of Lemma 4, which uses Lemmas 17 and 18.

Proof of Lemma 4 by induction on the number of static DCOP problems solved: The

lemma holds for the first static DCOP problem using the proof in Section 5.3.1 since the

exception described above does not apply to the first static DCOP problem (induction

basis). Now assume that the lemma holds after a number of static DCOP problems have

been solved (induction assumption). We show that it then also holds for the current

(= new) static DCOP problem by induction on the number of times that agent a changes

its context or updates its bounds lba,c
Xa(d) and uba,c

Xa(d) for an arbitrary value d and an

arbitrary child agent c after agent a initializes its bounds (induction step): There are the

following two cases.

• If agent a is a potentially affected agent, then the lemma holds after agent a with

context Xa initializes its bounds for the first time since

185

lba,c
Xa(d) = w · ha,c

Xa(d) (Eq. 3.20)

≤ w · γc
Xa∪(a,d) (Eq. 3.22)

≤ ∞

= w · uba,c
Xa(d) (Eq. 3.7)

• If agent a is a non-potentially affected agent, then the lemma holds after agent a

with context Xa initializes its bounds for the first time since

lba,c
Xa(d) = I lba,c

IXa(d) (Eq. 5.4)

= I l̂b
a,c
IXa(d) (Eq. 6.1)

≤ w · γc
Xa∪(a,d) (induction assumption and Lemma 17)

uba,c
Xa(d) = Iuba,c

IXa(d) (Eq. 5.5)

= I ûb
a,c
IXa(d) (Eq. 6.2)

≥ γc
Xa∪(a,d) (induction assumption and Lemma 17)

where I lba,c
IXa(d) and I lba,c

IXa(d) are the bounds in information unit I whose context

IXa is compatible with context Xa.

Agent a eventually initializes its bounds for the first time since the ReuseBounds proce-

dure eventually restarts the DCOP algorithm according to Lemma 18. (induction basis).

186

Now assume that the lemma holds after agent a changed its context (and either cached

or purged its bounds) or updated its bounds a number of times (induction assumption).

We show that it then also holds after agent a changes its context or updates its bounds

one more time (induction step). There are the following three cases (where we split the

operations after receiving a COST message into three parts).

• Case 1: The lemma holds when agent a changes its context from Xa to X̂a after

receiving a VALUE or COST message and the two contexts are compatible since

agent a then does not change its bounds and thus

lba,c

X̂a
(d) = lba,c

Xa(d) (premise of case)

≤ w · γc
Xa∪(a,d) (induction assumption)

= w · γc
X̂a∪(a,d)

(Lemma 1)

uba,c

X̂a
(d) = uba,c

Xa(d) (premise of case)

≥ γc
Xa∪(a,d) (induction assumption)

= γc
X̂a∪(a,d)

(Lemma 1)

after receiving the VALUE or COST message.

• Case 2: The lemma holds when agent a updates its bounds from lba,c
Xa(d) and

uba,c
Xa(d) to l̂b

a,c
Xa(d) and ûb

a,c
Xa(d), respectively, after receiving a COST message from

some child agent c with bounds LBc
Xc and UBc

Xc and context Xc that is compatible

with its context Xa and in which agent a has value d since

187

l̂b
a,c
Xa(d) = max{lba,c

Xa(d), LBc
Xc} (Eq. 3.8)

≤ max{w · γc
Xa∪(a,d), w · γc

Xc}

(induction assumption and premise of lemma)

= max{w · γc
Xa∪(a,d), w · γc

Xa∪(a,d)} (Lemma 1)

= w · γc
Xa∪(a,d)

ûb
a,c
Xa(d) = min{uba,c

Xa(d), UBc
Xc} (Eq. 3.11)

≥ min{γc
Xa∪(a,d), γ

c
Xc} (induction assumption and premise of lemma)

= min{γc
Xa∪(a,d), γ

c
Xa∪(a,d)} (Lemma 1)

= γc
Xa∪(a,d)

after receiving the COST message.

• Case 3: The lemma holds when agent a changes its context from Xa to X̂a after

receiving a VALUE or COST message and the two contexts are incompatible. There

are the following two cases.

– Case 3a: If context X̂a is incompatible with the context of any cached infor-

mation unit, then agent a reinitializes its bounds according to Equations 3.20

and 3.7, and this case is thus identical to the induction basis.

– Case 3b: If context X̂a is compatible with the context IXa of a cached infor-

mation unit I, then agent a updates its bounds from lba,c
Xa(d) and uba,c

Xa(d) to

188

the bounds I lba,c
IXa(d) and Iuba,c

IXa(d) in information unit I, respectively. The

lemma holds since

lba,c

X̂a
(d) = I lba,c

IXa(d) (Eq. 5.4)

≤ w · γc
Xa∪(a,d) (induction assumption)

= w · γc
X̂a∪(a,d)

(Lemma 1)

uba,c

X̂a
(d) = Iuba,c

IXa(d) (Eq. 5.5)

≥ γc
Xa∪(a,d) (induction assumption)

= γc
X̂a∪(a,d)

(Lemma 1)

Thus, lba,c
Xa(d) ≤ w · γc

Xa∪(a,d) ≤ w · uba,c
Xa(d) at all times for all values d ∈ Dom(a) and all

child agents c ∈ C(a), and the lemma thus holds for the current static DCOP problem.

6.3.1.2 HARP Pseudo-tree Reconstruction Algorithm

All line numbers in this subsection refer to the line numbers in Figure 6.5.

Definition 4 An agent a from the previous static DCOP problem is an affected agent a

iff it is guaranteed to be a potentially affected agent in the current static DCOP problem.

An agent is an unaffected agent otherwise.

Definition 5 A subtree of a pseudo-tree is an unaffected subtree iff it is a strict subtree

and it contains only unaffected agents.

189

Corollary 2 If one or more of the descendant agents of an arbitrary agent a are affected

agents, then agent a is an affected agent as well.

Corollary 3 If an arbitrary agent a shares an added constraint, deleted constraint or

constraint with changed constraint costs with another agent in the current static DCOP

problem, then agent a is an affected agent.

Corollary 4 An arbitrary agent a is an affected agent iff it shares an added constraint,

deleted constraint or constraint with changed constraint costs with another agent in the

current static DCOP problem or one or more of its descendant agents are affected agents.

Corollary 5 In the HARP algorithm, each agent eventually sends a QUERY message to

each one of its child agents unless it is a leaf agent.

Corollary 6 In the HARP algorithm, each agent eventually sends a RESPONSE mes-

sage to its parent agent unless it is the root agent.

Corollary 7 In the HARP algorithm, each affected agent sets its amAffected flag to true.

Corollary 8 In the HARP algorithm, an agent is an affected agent if it sets its

amAffected flag to true.

Corollary 9 In the HARP algorithm, an agent is an affected agent iff it sets its

amAffected flag is to true.

The proofs of Corollaries 2, 3, 4, 5, 6, 7, 8, and 9 follow the proofs of Lemmas 9, 10, 12,

13, 14, 15, 16 and 17, respectively, since agents send START, QUERY and RESPONSE

messages and set their respective amAffected flags in the same way in both the HARP

algorithm and the ReuseBounds procedure.

190

Lemma 19 In the HARP algorithm, each agent eventually sends a PSEUDOID message

to each one of its child agents unless it is a leaf agent.

Proof: The root agent eventually receives a RESPONSE message from each one of

its child agents according to Corollary 6. After it has received all those RESPONSE

messages, it sends a PSEUDOID message to each one of its child agents [Line 24]. When

a child agent c receives a PSEUDOID message, there are the following two cases.

• Case 1: If agent c is an affected agent or its parent agent is an unaffected agent,

then it sends a PSEUDOID message to each one of its child agents [Line 30].

• Case 2: Otherwise, agent c sends a CONSTRAINT message to each ancestor agent

p ∈ SCP (c) [Line 26], which eventually replies with a CONSTRAINT-ACK message

to agent c [Line 38]. Agent c sends a PSEUDOID message to each one of its child

agents after it has received a CONSTRAINT-ACK message from each ancestor

agent p ∈ SCP (c) [Lines 39-40].

Therefore, agent c sends PSEUDOID messages in both cases. Every other agent sends

a PSEUDOID message to each one of its child agents according to the conditions in the

above two cases when it receives a PSEUDOID message. The only exception are the leaf

agents, which do not have child agents.

Lemma 20 In the HARP algorithm, each agent eventually sends a PSEUDOID-ACK

message to its parent agent unless it is the root agent.

191

Proof: Each leaf agent a eventually receives a PSEUDOID message from its parent

agent according to Lemma 19. When it receives that PSEUDOID message, there are the

following two cases.

• Case 1: If agent a is an affected agent or its parent agent is an unaffected agent,

then it sends a PSEUDOID-ACK message to its parent agent [Line 31].

• Case 2: Otherwise, agent a sends a CONSTRAINT message to each ancestor agent

p ∈ SCP (a) [Line 26], which eventually replies with a CONSTRAINT-ACK mes-

sage to agent a [Line 38]. Agent a sends a PSEUDOID-ACK message to its parent

agent after it has received a CONSTRAINT-ACK message from each ancestor agent

p ∈ SCP (a) [Lines 39 and 41].

Therefore, agent a sends PSEUDOID-ACK messages in both cases. Every other agent

sends a PSEUDOID-ACK message to its parent agent after it has received a PSEUDOID-

ACK message from each one of its child agents [Lines 32-33]. The only exception is the

root agent, which does not have a parent agent.

Lemma 21 In the HARP algorithm, if an unaffected subtree S of a pseudo-tree is not

part of a larger unaffected subtree, then the root agent of subtree S has a parent agent

that is an affected agent.

Proof by contradiction: Assume that the lemma does not hold and choose an agent a

that is the root of an arbitrary unaffected subtree S that is not part of a larger unaffected

subtree. The agent then cannot be the root of the pseudo-tree and thus has a parent

agent. There are the following two cases.

192

• Case 1: Agent a does not have any sibling agents in the pseudo-tree or all the

sibling agents of agent a are unaffected agents. Since the parent agent of agent a

is an unaffected agent according to our assumption, the subtree S must be part

of a larger unaffected subtree that is rooted at the parent agent of agent a, which

contradicts our assumption.

• Case 2: Agent a has a sibling agent a′ that is an affected agent. The parent agent

of agent a is an unaffected agent according to our assumption, but it has a child

agent a′ that is an affected agent, which contradicts Corollary 2.

Lemma 22 If an unaffected subtree S of a pseudo-tree is not part of a larger unaffected

subtree, then the HARP algorithm eventually artificially constrains all ancestor agents

p ∈ SCP (a) of the root agent a of subtree S to each other.

Proof: The root agent a of subtree S is an unaffected agent according to the premise of

the lemma and Definition 5, and it has a parent agent that is an affected agent according

to Lemma 21. Furthermore, the parent agent eventually sets its amAffected flag to true

according to Corollary 7 and does not set it to false later, and agent a eventually receives

a PSEUDOID message from its parent agent according to Lemma 19. When it receives

that PSEUDOID message, it sends a CONSTRAINT message to each ancestor agent

p ∈ SCP (a) [Line 26]. Each ancestor agent artificially constraints itself with all agents

in SCP (a) when it receives a CONSTRAINT message from agent a [Line 37].

Lemma 23 In the HARP algorithm, each agent a sends at most |C(a)| QUERY mes-

sages, one to each one of its child agents.

193

Proof by induction on the depth of the agent in the pseudo-tree: The lemma holds for

the root agent because it sets its sentSTART flag to false at the start of the HARP

algorithm [Line 1] and sets it to true [Lines 8 and 12] before it sends a QUERY message

to each one of its child agents [Lines 10 and 14] (induction basis). Now assume that the

lemma holds for all agents at depth d in the pseudo-tree (induction assumption). We

show that it then also holds for all agents at depth d + 1 in the pseudo-tree (induction

step). Each agent sends a QUERY message to each one of its child agents only when

it receives a QUERY message [Line 15]. Therefore, the lemma holds since each agent

receives at most one QUERY message from its parent agent according to our induction

assumption.

Lemma 24 In the HARP algorithm, each agent sends at most one RESPONSE message.

Proof by induction on the depth of the agent in the pseudo-tree: Each leaf agent sends

a RESPONSE message to its parent agent only when it receives a QUERY message

[Line 19]. Therefore, the lemma holds for the leaf agents since each leaf agent receives

at most one QUERY message from its parent agent according to Lemma 23 (induction

basis). Now assume that the lemma holds for all agents at depth d in the pseudo-tree

(induction assumption). We show that it then also holds for all agents a at depth d−1 in

the pseudo-tree (induction step). If agent a is a leaf agent, then this case is identical to the

induction basis. Otherwise, agent a sends a RESPONSE message to its parent agent only

after it has received a RESPONSE message from each one of its child agents [Lines 22-23].

Therefore, the lemma holds since each agent receives at most one RESPONSE message

from each one of its child agents according to our induction assumption.

194

Lemma 25 In the HARP algorithm, if an agent a receives at most one PSEUDOID

message from its parent agent, then it sends at most |SCP (a)| CONSTRAINT messages,

one to each ancestor agent p ∈ SCP (a), and receives at most |SCP (a)| CONSTRAINT-

ACK messages, one from each ancestor agent p ∈ SCP (a).

Proof: Each agent a sends a CONSTRAINT message to each ancestor agent p ∈ SCP (a)

only when it receives a PSEUDOID message [Line 26], and each agent only sends a

CONSTRAINT-ACK message when it receives a CONSTRAINT message [Line 38].

Therefore, the lemma holds since agent a receives at most one PSEUDOID message

from its parent agent according to the premise of the lemma.

Lemma 26 In the HARP algorithm, each agent a sends at most |C(a)| PSEUDOID

messages, one to each one of its child agents.

Proof by induction on the depth of the agent in the pseudo-tree: The root agent sends

a PSEUDOID message to each one of its child agents only after it has received a RE-

SPONSE message from each one of its child agents [Line 24]. Therefore, the lemma holds

for the root agent since it receives at most one RESPONSE message from each one of

its child agents according to Lemma 24 (induction basis). Now assume that the lemma

holds for all agents at depth d in the pseudo-tree (induction assumption). We show that

it then also holds for all agents at depth d + 1 in the pseudo-tree (induction step). There

are the following two cases.

• Case 1: If an agent a is an affected agent or its parent agent is an unaffected agent,

then agent a sends a PSEUDOID message to each one of its child agents only when

195

it receives a PSEUDOID message [Line 30]. Therefore the lemma holds for this

case since agent a receives at most one PSEUDOID message from its parent agent

according to our induction assumption.

• Case 2: Otherwise, agent a sends a PSEUDOID message to each one of its child

agents only after it has received a CONSTRAINT-ACK message from each ancestor

agent p ∈ SCP (a) [Line 41]. Therefore, the lemma holds for this case since agent

a receives at most one CONSTRAINT-ACK message from each ancestor agent

p ∈ SCP (a) according to Lemma 25.

Lemma 27 In the HARP algorithm, each agent can set its pseudo-ID only before it

sends its PSEUDOID messages and can set it at most twice, once on Line 2 and once on

Line 29.

Proof: Each agent sets its pseudo-ID to its unique agent-ID at the start of the HARP

algorithm [Line 2] and sets it again only before it sends a PSEUDOID message to each one

of its child agents if both its parent agent and itself are unaffected agents [Lines 27-29].

Therefore, the lemma holds because each agent sends at most one PSEUDOID message

to each one of its child agents according to Lemma 26.

Lemma 28 If an unaffected subtree S of a pseudo-tree is not part of a larger unaffected

subtree, then the agents in subtree S have the same pseudo-ID as the root agent of the

subtree.

Proof by induction on the depth of the agent in subtree S: The lemma holds for the root

agent of the subtree since it sets its pseudo-ID to its agent-ID at the start of the HARP

196

algorithm [Line 2] and does not set it again later. It does not set it on Line 29 because its

parent agent is an affected agent according to Lemma 21 (induction basis). Now assume

that the lemma holds for all agents at depth d in the subtree (induction assumption).

We show that it then also holds for all agents at depth d+1 in the subtree (induction

step). When agent a receives a PSEUDOID message from its parent agent, it sets its

pseudo-ID to the pseudo-ID of its parent agent if its parent agent and itself are unaffected

agents [Lines 27-29]. Therefore, agent a sets its pseudo-ID to the pseudo-ID of the root

agent of subtree S since agent a eventually receives a PSEUDOID message according to

Lemma 19, the pseudo-ID of its parent agent is the pseudo-ID of the root agent according

to our induction assumption and both its parent agent and itself are unaffected agents

according to Definition 5. Furthermore, agent a cannot set its pseudo-ID later since it

sets its pseudo-ID at most twice according to Lemma 27.

Lemma 29 HARP eventually restarts the distributed DFS algorithm starts to reconstruct

the pseudo-tree for the current static DCOP problem.

Proof: The root agent eventually receives a PSEUDOID-ACK message from each one

of its child agents according to Lemma 20. After it has received all those PSEUDOID-

ACK messages, it sends a STOP message to each one of its child agents and starts the

distributed DFS algorithm to reconstruct the pseudo-tree for the current static DCOP

problem [Lines 34-36]. When an agent receives a STOP message from its parent agent,

it does the same [Lines 42-43]. Therefore, each agent eventually receives a STOP mes-

sage.

197

Theorem 7 The HARP algorithm is correct and complete.

Proof: In the HARP algorithm, if an unaffected subtree S of a pseudo-tree is not part

of a larger unaffected subtree, then all agents in subtree S eventually have the same

pseudo-ID and all their parent and pseudo-parent agents that are not in subtree S are

eventually artificially constrained with each other according to Lemmas 28 and 22. These

conditions are sufficient for the distributed DFS pseudo-tree reconstruction algorithm to

construct a valid pseudo-tree. HARP eventually starts the DFS algorithm to reconstruct

the pseudo-tree according to Lemma 29. Therefore, the HARP algorithm is correct and

complete.

6.3.2 Complexity

We measure the space complexity of the ReuseBounds procedure and the HARP algorithm

in the number of floating point numbers. In addition to the cached information units,

every agent needs to store all its constraints and their costs to check if it has Property

1, it needs to store the identity of all its child agents to check if it has Property 2,

and it needs to store one variable to check if it has Property 3. (The three properties are

described in Section 6.2.2.) There are O(|A|) constraints for each agent, and each (binary)

constraint have O(maxDom2) number of costs, where maxDom := maxa′∈A |Dom(a′)| is

the maximum domain cardinality over all agents a′ ∈ A. Thus, the space complexity of

every agent a in the ReuseBounds procedure is O(|A| ·maxDom|A|+1 + |A| ·maxDom2 +

|C(a)|+1) = O(|A| ·maxDom|A|+1 + |A| ·maxDom2 + |A|+1) = O(|A| ·maxDom|A|+1).

The first term is the space complexity to cache all information units, and the second,

198

third and fourth terms are the space complexities needed to check for Properties 1, 2

and 3, respectively. The space complexity of every agent in the HARP algorithm is

O(|A| · maxDom|A|+1 + |A| · maxDom2 + 1) = O(|A| · maxDom|A|+1) since it does not

need to check for Property 2.

We measure the message complexity in the number of floating point numbers as

well. The complexity of START, QUERY, RESPONSE, PSEUDOID, PSEUDOID-ACK,

CONSTRAINT-ACK and STOP messages is O(1) since START, QUERY, PSEUDOID-

ACK, CONSTRAINT-ACK and STOP messages contain one floating point number and

RESPONSE and PSEUDOID messages contain three floating point numbers. The com-

plexity of CONSTRAINT messages is O(|A|) since it contains two floating point numbers

and the set of ancestor agents SCP (a) of the sending agent a. Therefore, the message

complexity of the ReuseBounds procedure and the HARP algorithm is O(1) and O(|A|),

respectively.

6.4 Experimental Evaluation

We now compare ADOPT and BnB-ADOPT with and without the ReuseBounds proce-

dure and the DP2 pre-processing framework described in Section 3.4 with the distributed

DFS, Mobed and HARP pseudo-tree reconstruction algorithms described in Section 6.2.3.

6.4.1 Metrics

We measure the runtimes in cycles. We do not measure the runtimes in NCCCs because

the number of cycles reflects the number of NCCCs; the number of constraint checks

and the number of messages sent in each cycle are very similar for both ADOPT and

199

BnB-ADOPT. We do not measure the solution costs found by the algorithms since they

all find cost-minimal solutions. We vary the number of information units that the agents

can cache using the cache factor metric from 0.0 to 1.0.

6.4.2 Problem Types

As described in Section 2.1.5, we run our experiments on four problem types, namely

graph coloring, sensor network, meeting scheduling and combinatorial auction problems.

• Graph coloring problems: We use the same experimental setup as Section 3.4.2

except that we set the number of agents (= vertices to color) to 10 and the density

to 2. Each agent always has five possible values (= colors). All costs are randomly

generated from 0 to 10,000.

• Sensor network problems: We use the same experimental setup as Section 3.4.2

except that we set the number of agents (= targets to track) to 12. Each agent

always has five values (= time slots).

• Meeting scheduling problems: We use the same experimental setup as Sec-

tion 3.4.2 except that we set the number of agents (= meetings to schedule) to 10.

Each agent always has five values (= time slots).

• Combinatorial auction problems: We use the same experimental setup as

Section 3.4.2 except that we set the number of agents (= bids to consider) to 25.

Each agent always has two values (= bid results).

200

We consider the following five types of changes.

• Type 1: Changes in the Costs of a Constraint: We randomly choose a

constraint and randomly change its costs.

• Type 2: Removal of a Constraint: We randomly choose a constraint and

remove it.

• Type 3: Addition of a Constraint: We randomly choose two agents that are not

sharing a constraint and add a constraint with randomly generated costs between

them.

• Type 4: Removal of an Agent and its Constraints: We randomly choose an

agent and remove it and its constraints.

• Type 5: Addition of an Agent and its Constraints: We add a new agent

and two new constraints with randomly generated costs. Each new constraint is

between the new agent and a randomly chosen agent.

We average the experimental results over 50 dynamic DCOP problem instances for each

change. We change each dynamic DCOP problem in the following three ways.

• Change 1: We change the dynamic DCOP problem with one change of each type

in the order described above. Therefore, each dynamic DCOP problem consists of

six static DCOP problems – the first is the initial randomly generated problem, the

second problem is the first problem with one Type 1 change, the third problem is

the second problem with one Type 2 change and so on.

201

• Change 2: We change the dynamic DCOP problem with one change of each

type in a random order. Therefore, each dynamic DCOP problem consists of six

static DCOP problems – the first is the initial randomly generated problem, the

second problem is the first problem with one randomly chosen type change, the third

problem is the second problem with one different randomly chosen type change and

so on.

• Change 3: We change the dynamic DCOP problem with one Type 1 change

five times. Therefore, each dynamic DCOP problem consists of six static DCOP

problems – the first is the initial randomly generated problem, the second problem is

the first problem with one Type 1 change, the third problem is the second problem

with another Type 1 change and so on.

We average the experimental results over 50 dynamic DCOP problem instances for each

change.

6.4.3 Experimental Results

Figure 6.7 shows our experimental results for ADOPT and BnB-ADOPT with the Reuse-

Bounds procedure and the pseudo-tree reconstruction algorithms on graph coloring prob-

lems with Change 1. We make the following observations:

• Figures 6.7(a,b) show that the runtimes of ADOPT and BnB-ADOPT decrease as

the cache factor increases. As described in Section 5.4.3, the reason for this behavior

is that they need to re-expand fewer nodes when they cache more information.

202

Graph Coloring .
ADOPT .

1000

10000

100000

1000000

0 0.2 0.4 0.6 0.8 1

Cache Factor
C

yc
le

s

Mobed
Mobed + ReuseBounds
DFS
DFS + ReuseBounds
HARP
HARP + ReuseBounds

(a)

Graph Coloring .
BnB-ADOPT .

1000

10000

0 0.2 0.4 0.6 0.8 1

Cache Factor

C
yc

le
s

Mobed
Mobed + ReuseBounds
DFS
DFS + ReuseBounds
HARP
HARP + ReuseBounds

(b)

Graph Coloring
ADOPT

0%

10%

20%

30%

40%

0 0.2 0.4 0.6 0.8 1

Cache Factor

S
p

ee
d

u
p

Mobed
DFS
HARP

(c)

Graph Coloring
BnB-ADOPT

0%

10%

20%

30%

0 0.2 0.4 0.6 0.8 1

Cache Factor

S
p

ee
d

u
p

Mobed
DFS
HARP

(d)

Mobed Algorithm

0%

10%

20%

30%

40%

50%

0 0.2 0.4 0.6 0.8 1

Cache Factor

Size of reusable search tree
Speedup (ADOPT)
Speedup (BnB-ADOPT)

(e)

Distributed DFS Algorithm

0%

5%

10%

15%

20%

25%

30%

35%

0 0.2 0.4 0.6 0.8 1

Cache Factor

Size of reusable search tree
Speedup (ADOPT)
Speedup (BnB-ADOPT)

(f)

HARP Algorithm

0%

10%

20%

30%

40%

50%

60%

0 0.2 0.4 0.6 0.8 1

Cache Factor

Size of reusable search tree
Speedup (ADOPT)
Speedup (BnB-ADOPT)

(g)

Figure 6.7: Experimental Results Comparing ADOPT and BnB-ADOPT with the Reuse-
Bounds Procedure and the Pseudo-tree Reconstruction Algorithms on Graph Coloring
Problems with Change 1

• The runtimes of ADOPT and BnB-ADOPT are smaller with the ReuseBounds

procedure than without the procedure. Figures 6.7(c,d) show the speedup gained

203

Meeting Scheduling .
ADOPT .

1000

10000

100000

0 0.2 0.4 0.6 0.8 1

Cache Factor
C

yc
le

s

Mobed
Mobed + ReuseBounds
DFS
DFS + ReuseBounds
HARP
HARP + ReuseBounds

(a)

Meeting Scheduling .
BnB-ADOPT .

100

1000

10000

0 0.2 0.4 0.6 0.8 1

Cache Factor

C
yc

le
s

Mobed
Mobed + ReuseBounds
DFS
DFS + ReuseBounds
HARP
HARP + ReuseBounds

(b)

Sensor Network .
ADOPT .

1000

10000

100000

1000000

0 0.2 0.4 0.6 0.8 1

Cache Factor

C
yc

le
s

Mobed
Mobed + ReuseBounds
DFS
DFS + ReuseBounds
HARP
HARP + ReuseBounds

(c)

Sensor Network .
BnB-ADOPT .

100

1000

10000

0 0.2 0.4 0.6 0.8 1

Cache Factor

C
yc

le
s

Mobed
Mobed + ReuseBounds
DFS
DFS + ReuseBounds
HARP
HARP + ReuseBounds

(d)

Combinatorial Auction .
ADOPT .

100

1000

10000

100000

0 0.2 0.4 0.6 0.8 1

Cache Factor

C
yc

le
s

Mobed
Mobed + ReuseBounds
DFS
DFS + ReuseBounds
HARP
HARP + ReuseBounds

(e)

Combinatorial Auction .
BnB-ADOPT .

100

1000

0 0.2 0.4 0.6 0.8 1

Cache Factor

C
yc

le
s

Mobed
Mobed + ReuseBounds
DFS
DFS + ReuseBounds
HARP
HARP + ReuseBounds

(f)

Figure 6.8: Experimental Results Comparing ADOPT and BnB-ADOPT with the Reuse-
Bounds Procedure and the Pseudo-tree Reconstruction Algorithms on Sensor Network,
Meeting Scheduling and Combinatorial Auction Problems with Change 1 (1)

with the ReuseBounds procedure. We calculate the speedup by taking the difference

in the runtimes with and without the ReuseBounds procedure and normalizing it

by the runtime without the ReuseBounds procedure. The figures show that the

speedup of ADOPT and BnB-ADOPT increases as the cache factor increases for all

three pseudo-tree reconstruction algorithms. The reason for this behavior is that

the unaffected agents can cache and reuse more lower and upper bounds from the

previous static DCOP problems as the cache factor increases.

204

Meeting Scheduling
ADOPT

0%

10%

20%

30%

40%

50%

0 0.2 0.4 0.6 0.8 1

Cache Factor
S

p
ee

d
u

p

Mobed
DFS
HARP

(a)

Meeting Scheduling
BnB-ADOPT

0%

10%

20%

30%

40%

0 0.2 0.4 0.6 0.8 1

Cache Factor

S
p

ee
d

u
p

Mobed
DFS
HARP

(b)

Sensor Network
ADOPT

0%

10%

20%

30%

40%

0 0.2 0.4 0.6 0.8 1

Cache Factor

S
p

ee
d

u
p

Mobed
DFS
HARP

(c)

Sensor Network
BnB-ADOPT

0%

10%

20%

30%

0 0.2 0.4 0.6 0.8 1

Cache Factor

S
p

ee
d

u
p

Mobed
DFS
HARP

(d)

Combinatorial Auction
ADOPT

0%

10%

20%

30%

40%

50%

0 0.2 0.4 0.6 0.8 1

Cache Factor

S
p

ee
d

u
p

Mobed
DFS
HARP

(e)

Combinatorial Auction
BnB-ADOPT

0%

10%

20%

30%

40%

50%

0 0.2 0.4 0.6 0.8 1

Cache Factor

S
p

ee
d

u
p

Mobed
DFS
HARP

(f)

Figure 6.9: Experimental Results Comparing ADOPT and BnB-ADOPT with the Reuse-
Bounds Procedure and the Pseudo-tree Reconstruction Algorithms on Sensor Network,
Meeting Scheduling and Combinatorial Auction Problems with Change 1 (2)

• Figures 6.7(e-f) give insight into the reasons for the increase in speedup. They com-

pare the size of the reusable search tree (= sum of the cache size of all unaffected

agents normalized by the sum of the cache size of all agents) to the speedups of

ADOPT and BnB-ADOPT with the ReuseBounds procedure. The Pearson’s co-

efficient shows that there is a correlation of speedup and the size of the reusable

search tree with ρ > 0.65.

205

Graph Coloring .
ADOPT .

1000

10000

100000

1000000

0 0.2 0.4 0.6 0.8 1

Cache Factor
C

yc
le

s

Mobed
Mobed + ReuseBounds
DFS
DFS + ReuseBounds
HARP
HARP + ReuseBounds

(a)

Graph Coloring .
BnB-ADOPT .

1000

10000

0 0.2 0.4 0.6 0.8 1

Cache Factor

C
yc

le
s

Mobed
Mobed + ReuseBounds
DFS
DFS + ReuseBounds
HARP
HARP + ReuseBounds

(b)

Graph Coloring
ADOPT

0%

10%

20%

0 0.2 0.4 0.6 0.8 1

Cache Factor

S
p

ee
d

u
p

Mobed
DFS
HARP

(c)

Graph Coloring
BnB-ADOPT

0%

10%

20%

0 0.2 0.4 0.6 0.8 1

Cache Factor

S
p

ee
d

u
p

Mobed
DFS
HARP

(d)

Figure 6.10: Experimental Results Comparing ADOPT and BnB-ADOPT with the
ReuseBounds Procedure and the Pseudo-tree Reconstruction Algorithms on Graph Col-
oring Problems with Change 2

Graph Coloring .
ADOPT .

1000

10000

100000

1000000

0 0.2 0.4 0.6 0.8 1

Cache Factor

C
yc

le
s

Mobed
Mobed + ReuseBounds
DFS
DFS + ReuseBounds
HARP
HARP + ReuseBounds

(a)

Graph Coloring .
BnB-ADOPT .

1000

10000

0 0.2 0.4 0.6 0.8 1

Cache Factor

C
yc

le
s

Mobed
Mobed + ReuseBounds
DFS
DFS + ReuseBounds
HARP
HARP + ReuseBounds

(b)

Graph Coloring
ADOPT

0%

10%

20%

30%

40%

0 0.2 0.4 0.6 0.8 1

Cache Factor

S
p

ee
d

u
p

Mobed
DFS
HARP

(c)

Graph Coloring
BnB-ADOPT

0%

10%

20%

30%

40%

0 0.2 0.4 0.6 0.8 1

Cache Factor

S
p

ee
d

u
p

Mobed
DFS
HARP

(d)

Figure 6.11: Experimental Results Comparing ADOPT and BnB-ADOPT with the
ReuseBounds Procedure and the Pseudo-tree Reconstruction Algorithms on Graph Col-
oring Problems with Change 3

206

• Figures 6.8 and 6.9 show that the trend for graph coloring problems carries over to

sensor network, meeting scheduling and combinatorial auction problems as well.

• Figure 6.10 shows our experimental results for ADOPT and BnB-ADOPT with the

ReuseBounds procedure and the pseudo-tree reconstruction algorithms on graph

coloring problems with Change 2. The figure shows that the trend for graph coloring

problems with Change 1 carries over to graph coloring problems with Change 2.

• Figure 6.11 shows our experimental results for ADOPT and BnB-ADOPT with the

ReuseBounds procedure and the pseudo-tree reconstruction algorithms on graph

coloring problems with Change 3. The runtimes of ADOPT and BnB-ADOPT

with the DFS and Mobed algorithms are identical for each cache factor. Mobed

does not reconstruct the pseudo-tree for the current static DCOP problem when

the problem is changed with a Type 1 change. DFS reconstructs the exact same

pseudo-tree for the current static DCOP problem as the pseudo-tree for the previous

static DCOP problem since all the agents are constrained in the exact same way

for both static DCOP problems. Unlike the graph coloring problems with Changes

1 and 2, the speedups of ADOPT and BnB-ADOPT with the DFS and Mobed

algorithms are larger than the speedups with the HARP algorithm. However, the

other trends, namely ADOPT and BnB-ADOPT is faster with the ReuseBounds

procedure than without it and the speedups increases with the cache factor, still

carry over.

207

• ADOPT with the HARP algorithm and the ReuseBounds procedure is up to 42%

faster than ADOPT with the DFS algorithm. BnB-ADOPT with the HARP algo-

rithm and the ReuseBounds procedure is up to 38% faster than BnB-ADOPT with

the DFS algorithm.

Overall, the ReuseBounds procedure experimentally speeds up ADOPT and BnB-

ADOPT for all three pseudo-tree reconstruction algorithms and the speedup increases as

the cache factor increases. In general, we expect the ReuseBounds procedure to apply to

other DCOP search algorithms with other pseudo-tree reconstruction algorithms as well

since all DCOP search algorithms perform search and maintain lower and upper bounds

on the solution costs. We also expect the HARP algorithm to apply to other DCOP

algorithms that operate on pseudo-trees.

6.5 Summary

This chapter modeled a dynamic DCOP problem as a sequence of static DCOP problems

and introduced an incremental procedure and an incremental pseudo-tree reconstruction

algorithm that allow ADOPT and BnB-ADOPT to reuse information from searches of

similar static DCOP problems to guide their search to potentially solve the current static

DCOP problem faster. The ReuseBounds procedure is an incremental procedure that

allows some agents in ADOPT and BnB-ADOPT to reuse the lower and upper bounds

from the previous static DCOP problem to solve the current static DCOP problem.

The HARP algorithm is an incremental pseudo-tree reconstruction algorithm that reuses

208

parts of the pseudo-tree of the previous static DCOP problem to construct the pseudo-

tree of the current static DCOP problem. Our experimental results show that ADOPT

and BnB-ADOPT with the ReuseBounds procedure and the HARP algorithm terminate

faster when they reuse more information. Therefore, these results validate the hypothe-

sis that DCOP search algorithms that reuse information from searches of similar static

DCOP problems to guide their search can have runtimes that decrease as they reuse more

information.

209

Chapter 7

Conclusions

The distributed constraint optimization (DCOP) model is becoming popular for formu-

lating and solving agent-coordination problems. As a result, researchers have developed

several DCOP algorithms that use search techniques. For example, Asynchronous Dis-

tributed Constraint Optimization (ADOPT) is one of the pioneering DCOP search algo-

rithms that has been widely extended. However, solving large problems efficiently become

an issue because solving DCOP problems optimally is NP-hard. This dissertation makes

the following four contributions:

• In Chapter 3, we investigated how DCOP search algorithms can be sped up by using

an appropriate search strategy. We introduced Branch-and-Bound ADOPT (BnB-

ADOPT), an extension of ADOPT that changes the search strategy of ADOPT from

memory-bounded best-first search to depth-first branch-and-bound search. Exper-

imental results show that BnB-ADOPT tends to be faster than ADOPT when the

heuristic values are poorly informed since ADOPT needs to repeatedly reconstruct

partial solutions that it purged from memory. In large DCOP problems, where

the heuristic values are often poorly informed, BnB-ADOPT is up to one order of

210

magnitude faster than ADOPT, validating the hypothesis that DCOP search algo-

rithms that employ depth-first branch-and-bound search can be faster than DCOP

search algorithms that employ memory-bounded best-first search. Additionally,

BnB-ADOPT has great potential as a DCOP search algorithm since heuristic val-

ues are often poorly informed for complex DCOP problems, such as DCOP problems

with large numbers of agents, large domains, large numbers of constraints or large

ranges of constraint costs.

• In Chapter 4, we investigated how DCOP search algorithms can be sped up by

sacrificing solution optimality. We introduced an approximation mechanism, called

the Weighted Heuristics mechanism, that uses weighted heuristic values to trade off

solution costs for smaller runtimes. The new approximation mechanism provides

relative error bounds and thus complements existing approximation mechanisms

that only provide absolute error bounds. Our experimental results show that, when

ADOPT and BnB-ADOPT use the Weighted Heuristics mechanism, they terminate

faster with larger weights, validating the hypothesis that DCOP search algorithms

that use weighted heuristic values can have runtimes that decrease as larger weights

are used. Additionally, the Weighted Heuristics mechanism performs better than

the existing approximation mechanisms when used by BnB-ADOPT.

• In Chapter 5, we investigated how DCOP search algorithms can be sped up by

using more memory to cache information. We formalized the caching problem for

DCOP search algorithms and introduced the MaxPriority, MaxEffort and MaxU-

tility DCOP-specific caching schemes, which allow ADOPT and BnB-ADOPT to

211

cache DCOP-specific information when they have more memory available and ter-

minate faster with larger amounts of memory. These three caching schemes uses

additional knowledge of the operation of ADOPT and BnB-ADOPT in the form

of the lower and upper bounds that every agent maintains. Experimental results

show that the MaxEffort and MaxUtility schemes speed up ADOPT more than

the currently used generic caching schemes, and the MaxPriority scheme speeds

up BnB-ADOPT at least as much as the currently used generic caching schemes.

Therefore, these results validate the hypothesis that DCOP-specific caching schemes

can reduce the runtime of DCOP search algorithms at least as much as the currently

used generic caching schemes.

• In Chapter 6, we investigated how DCOP search algorithms can be sped up by

reusing information gained from solving similar DCOP problems. We modeled

dynamic DCOP problems as sequences of static DCOP problems and introduced

the ReuseBounds procedure and the Hybrid Algorithm for Reconstructing Pseudo-

trees (HARP). The ReuseBounds procedure is an incremental procedure that allows

ADOPT and BnB-ADOPT to reuse bounds from the previous static DCOP problem

to solve the current static DCOP problem. The HARP algorithm is an incremental

pseudo-tree reconstruction algorithm that reuses parts of the pseudo-tree of the

previous static DCOP problem to construct the pseudo-tree of the current static

DCOP problem. Experimental results show that ADOPT and BnB-ADOPT with

the ReuseBounds procedure and the HARP algorithm terminate faster when they

reuse more information. Therefore, these results validate the hypothesis that DCOP

212

search algorithms that reuse information from searches of similar DCOP problems to

guide their search can have runtimes that decrease as they reuse more information.

Therefore, this dissertation demonstrates that DCOP search algorithms can be sped

up by applying the insights gained from centralized search algorithms. For future work,

we list other possible approaches used by centralized search algorithms to speed up their

search that might be applicable to DCOP search algorithms:

• Centralized approximation algorithms are desirable for solving large problems where

finding cost-minimal solutions might be slow. However, it can be the case where

there is still time available after the first solution is found. Therefore, researchers

have developed centralized anytime search algorithms that find sequences of im-

proving solutions as long as there is time available. ARA* (Likhachev, Gordon, &

Thrun, 2003) and AWA* (Hansen & Zhou, 2007) are examples of anytime search

algorithms that run repeated Weighted A* searches with decreasing weights.

• Researchers have developed other centralized approximation algorithms aside from

Weighted A* that trade off solution costs for smaller runtimes. For example, Op-

timistic Search (Thayer & Ruml, 2008) is an algorithm that runs a Weighted A*

search to find a suboptimal solution and tightens the error bound after finding

the solution. Another example is EES (Thayer & Ruml, 2010), which is an algo-

rithm that uses different heuristic values to guide its search and quality guarantee.

Researchers have shown that both algorithms can be faster than Weighted A* in

sliding tile puzzles and traveling salesman problems (Thayer & Ruml, 2008, 2010).

213

• Researchers have developed pre-processing techniques to provide well-informed

heuristic values to speed up centralized search algorithms. For example, pattern

databases store heuristic values for common states in a problem as lookup tables in

memory (Culberson & Schaeffer, 1998; Felner, Korf, & Hanan, 2004; Felner, Korf,

Meshulam, & Holte, 2007). They have been used to speed up the search for cost-

minimal solutions in Rubik’s Cube (Korf, 1997), sliding tile puzzles (Korf & Felner,

2002) and multiple sequence alignment problems (Zhou & Hansen, 2004).

These approaches might be applicable to DCOP search algorithms since they use

heuristic values to guide their search. Therefore, these approaches can be interesting

avenues to investigate to speed up DCOP search algorithms further.

214

Bibliography

Ali, S., Koenig, S., & Tambe, M. (2005). Preprocessing techniques for accelerating the
DCOP algorithm ADOPT. In Proceedings of the International Joint Conference on
Autonomous Agents and Multiagent Systems (AAMAS), pp. 1041–1048.

Arnborg, S., Corneil, D., & Proskurowski, A. (1987). Complexity of finding embeddings
in a k-tree. SIAM Journal of Discrete Mathematics, 8 (2), 277–284.

Atlas, J., & Decker, K. (2007). A complete distributed constraint optimization method
for non-traditional pseudotree arrangements. In Proceedings of the International
Joint Conference on Autonomous Agents and Multiagent Systems (AAMAS), pp.
736–743.

Bacchus, F., Chen, X., van Beek, P., & Walsh, T. (2002). Binary vs. non-binary con-
straints. Artificial Intelligence, 140 (1-2), 1–37.

Bayardo, R., & Miranker, D. (1995). On the space-time trade-off in solving constraint
satisfaction problems. In Proceedings of the International Joint Conference on Ar-
tificial Intelligence (IJCAI), pp. 558–562.

Bowring, E., Pearce, J., Portway, C., Jain, M., & Tambe, M. (2008). On k-optimal
distributed constraint optimization algorithms: New bounds and algorithms. In
Proceedings of the International Joint Conference on Autonomous Agents and Mul-
tiagent Systems (AAMAS), pp. 607–614.

Bowring, E., Tambe, M., & Yokoo, M. (2006). Multiply-constrained distributed constraint
optimization. In Proceedings of the International Joint Conference on Autonomous
Agents and Multiagent Systems (AAMAS), pp. 1413–1420.

Bowring, E., Yin, Z., Zinkov, R., & Tambe, M. (2009). Sensitivity analysis for distributed
optimization with resource constraints. In Proceedings of the International Joint
Conference on Autonomous Agents and Multiagent Systems (AAMAS), pp. 633–
640.

215

Brito, I., & Meseguer, P. (2010). Improving DPOP with function filtering. In Proceed-
ings of the International Joint Conference on Autonomous Agents and Multiagent
Systems (AAMAS), pp. 141–158.

Burke, D. (2008). Exploiting Problem Structure in Distributed Constraint Optimisation
with Complex Local Problems. Ph.D. thesis, National University of Ireland, Cork
(Ireland).

Burke, D., & Brown, K. (2006). Efficiently handling complex local problems in distributed
constraint optimisation. In Proceedings of the European Conference on Artificial
Intelligence (ECAI), pp. 701–702.

Carpenter, C., Dugan, C., Kopena, J., Lass, R., Naik, G., Nguyen, D., Sultanik, E., Modi,
P., & Regli, W. (2007). Intelligent systems demonstration: Disaster evacuation
support. In Proceedings of the AAAI Conference on Artificial Intelligence (AAAI),
pp. 1964–1965.

Chakrabarti, P., Ghosh, S., Acharya, A., & DeSarkar, S. (1989). Heuristic search in
restricted memory. Artificial Intelligence, 47, 197–221.

Chechetka, A., & Sycara, K. (2006a). An any-space algorithm for distributed constraint
optimization. In Proceedings of the AAAI Spring Symposium on Distributed Plan
and Schedule Management, pp. 33–40.

Chechetka, A., & Sycara, K. (2006b). No-commitment branch and bound search for
distributed constraint optimization. In Proceedings of the International Conference
on Autonomous Agents and Multiagent Systems (AAMAS), pp. 1427–1429.

Choxi, H., & Modi, P. (2007). A distributed constraint optimization approach to wireless
network optimization. In Proceedings of the AAAI-07 Workshop on Configuration,
pp. 1–8.

Collin, Z., & Dolev, S. (1994). Self-stabilizing depth first search. Information Processing
Letters, 49, 297–301.

Culberson, J., & Schaeffer, J. (1998). Pattern databases. Computational Intelligence,
14 (3), 318–334.

Davin, J., & Modi, P. (2006). Hierarchical variable ordering for multiagent agreement
problems. In Proceedings of the International Joint Conference on Autonomous
Agents and Multiagent Systems (AAMAS), pp. 1433–1435.

Dechter, R. (Ed.). (2003). Constraint Processing. Morgan Kaufmann.

216

Dechter, R., & Dechter, A. (1988). Belief maintenance in dynamic constraint networks.
In Proceedings of the National Conference on Artificial Intelligence (AAAI), pp.
37–42.

Dechter, R., & Pearl, J. (1985). Generalized best-first search strategies and the optimality
of A*. Journal of the Association for Computing Machinery, 32 (3), 505–536.

Farinelli, A., Rogers, A., Petcu, A., & Jennings, N. (2008). Decentralised coordination
of low-power embedded devices using the Max-Sum algorithm. In Proceedings of
the International Joint Conference on Autonomous Agents and Multiagent Systems
(AAMAS), pp. 639–646.

Felner, A., Korf, R., & Hanan, S. (2004). Additive pattern database heuristics. Journal
of Artificial Intelligence Research, 22, 279–318.

Felner, A., Korf, R., Meshulam, R., & Holte, R. (2007). Compressed pattern databases.
Journal of Artificial Intelligence Research, 30, 213–247.

Fitzpatrick, S., & Meertens, L. (2003). Distributed coordination through anarchic opti-
mization. In Lesser, V., Ortiz, C., & Tambe, M. (Eds.), Distributed Sensor Networks:
A Multiagent Perspective, pp. 257–295. Kluwer.

Freuder, E., & Quinn, M. (1985). Taking advantage of stable sets of variables in con-
straint satisfaction problems. In Proceedings of the International Joint Conference
on Artificial Intelligence (IJCAI), pp. 1076–1078.

Gershman, A., Meisels, A., & Zivan, R. (2009). Asynchronous Forward-Bounding for
distributed COPs. Journal of Artificial Intelligence Research, 34, 61–88.

Goldman, C., & Zilberstein, S. (2004). Decentralized control of cooperative systems:
Categorization and complexity analysis. Journal of Artificial Intelligence Research,
22, 143–174.

Greenstadt, R. (2009). An overview of privacy improvements to k-optimal DCOP algo-
rithms (extended abstract). In Proceedings of the International Joint Conference
on Autonomous Agents and Multiagent Systems (AAMAS), pp. 1279–1280.

Greenstadt, R., Grosz, B., & Smith, M. (2007). SSDPOP: Improving the privacy of
DCOP with secret sharing. In Proceedings of the International Joint Conference on
Autonomous Agents and Multiagent Systems (AAMAS), pp. 1098–1100.

Grinshpoun, T., & Meisels, A. (2008). Completeness and performance of the APO algo-
rithm. Journal of Artificial Intelligence Research, 33, 223–258.

217

Gutierrez, P., & Meseguer, P. (2010). Saving redundant messages in BnB-ADOPT. In
Proceedings of the AAAI Conference on Artificial Intelligence (AAAI), pp. 1259–
1260.

Hamadi, Y., Bessière, C., & Quinqueton, J. (1998). Distributed intelligent backtracking.
In Proceedings of the European Conference on Artificial Intelligence (ECAI), pp.
219–223.

Hansen, E., & Zhou, R. (2007). Anytime heuristic search. Journal of Artificial Intelligence
Research, 28, 267–297.

Hart, P., Nilsson, N., & Raphael, B. (1968). A formal basis for the heuristic determination
of minimum cost paths. IEEE Transactions on Systems Science and Cybernetics,
SSC4 (2), 100–107.

Hirayama, K., & Yokoo, M. (1997). Distributed partial constraint satisfaction problem.
In Proceedings of the International Conference on Principles and Practice of Con-
straint Programming (CP), pp. 222–236.

Hirayama, K., & Yokoo, M. (2000). An approach to over-constrained distributed con-
straint satisfaction problems: Distributed hierarchical constraint satisfaction. In
Proceedings of the International Conference on Multi-Agent Systems (ICMAS), pp.
135–142.

Hirayama, K., & Yokoo, M. (2005). The distributed breakout algorithms. Artificial
Intelligence, 161 (1-2), 89–115.

Junges, R., & Bazzan, A. (2008). Evaluating the performance of DCOP algorithms in a
real world, dynamic problem. In Proceedings of the International Joint Conference
on Autonomous Agents and Multiagent Systems (AAMAS), pp. 599–606.

Kiekintveld, C., Yin, Z., Kumar, A., & Tambe, M. (2010). Asynchronous algorithms for
approximate distributed constraint optimization with quality bounds. In Proceed-
ings of the International Joint Conference on Autonomous Agents and Multiagent
Systems (AAMAS), pp. 133–140.

Koenig, S., & Likhachev, M. (2002). D* Lite. In Proceedings of the National Conference
on Artificial Intelligence (AAAI), pp. 476–483.

Koenig, S., & Likhachev, M. (2005). Adaptive A*. In Proceedings of the International
Joint Conference on Autonomous Agents and Multiagent Systems (AAMAS), pp.
1311–1312.

218

Koenig, S., Likhachev, M., & Furcy, D. (2004a). Lifelong Planning A*. Artificial Intelli-
gence, 155 (1–2), 93–146.

Koenig, S., Likhachev, M., Liu, Y., & Furcy, D. (2004b). Incremental heuristic search in
artificial intelligence. AI Magazine, 25 (2), 99–112.

Koenig, S., Likhachev, M., & Sun, X. (2007). Speeding up moving-target search. In
Proceedings of the International Joint Conference on Autonomous Agents and Mul-
tiagent Systems (AAMAS), pp. 1136–1143.

Korf, R. (1993). Linear-space best-first search. Artificial Intelligence, 62 (1), 41–78.

Korf, R. (1997). Finding optimal solutions to Rubik’s Cube using pattern databases.
In Proceedings of the National Conference on Artificial Intelligence (AAAI), pp.
700–705.

Korf, R., & Felner, A. (2002). Disjoint pattern database heuristics. Artificial Intelligence,
134 (1-2), 9–22.

Kumar, A., Faltings, B., & Petcu, A. (2009). Distributed constraint optimization with
structured resource constraints. In Proceedings of the International Joint Confer-
ence on Autonomous Agents and Multiagent Systems (AAMAS), pp. 923–930.

Kumar, A., Petcu, A., & Faltings, B. (2008). H-DPOP: Using hard constraints for search
space pruning in DCOP. In Proceedings of the AAAI Conference on Artificial
Intelligence (AAAI), pp. 325–330.

Lass, R., Kopena, J., Sultanik, E., Nguyen, D., Dugan, C., Modi, P., & Regli, W. (2008).
Coordination of first responders under communication and resource constraints
(short paper). In Proceedings of the International Joint Conference on Autonomous
Agents and Multiagent Systems (AAMAS), pp. 1409–1413.

Lesser, V., Ortiz, C., & Tambe, M. (Eds.). (2003). Distributed Sensor Networks: A Mul-
tiagent Perspective. Kluwer.

Leyton-Brown, K., Pearson, M., & Shoham, Y. (2000). Towards a universal test suite
for combinatorial auction algorithms. In Proceedings of the ACM Conference on
Electronic Commerce (EC), pp. 66–76.

Likhachev, M., Gordon, G., & Thrun, S. (2003). ARA*: Anytime A* with provable
bounds on sub-optimality. In Advances in Neural Information Processing Systems
16 (NIPS).

219

Lisỳ, V., Zivan, R., Sycara, K., & Péchoucek, M. (2010). Deception in networks of mobile
sensing agents. In Proceedings of the International Joint Conference on Autonomous
Agents and Multiagent Systems (AAMAS), pp. 1031–1038.

Maheswaran, R., Pearce, J., & Tambe, M. (2004). Distributed algorithms for DCOP: A
graphical game-based approach. In Proceedings of the International Conference on
Parallel and Distributed Computing Systems (PDCS), pp. 432–439.

Mailler, R. (2004). A Mediation-based Approach to Cooperative, Distributed Problem
Solving. Ph.D. thesis, University of Massachusetts at Amherst, Amherst (United
States).

Mailler, R., & Lesser, V. (2004). Solving distributed constraint optimization problems
using cooperative mediation. In Proceedings of the International Joint Conference
on Autonomous Agents and Multiagent Systems (AAMAS), pp. 438–445.

Marinescu, R., & Dechter, R. (2007). Best-first AND/OR search for graphical models. In
Proceedings of the AAAI Conference on Artificial Intelligence (AAAI), pp. 1171–
1176.

Marinescu, R., & Dechter, R. (2009). AND/OR branch-and-bound search for combinato-
rial optimization in graphical models. Artificial Intelligence, 173 (16-17), 1457–1491.

Matsui, T., Matsuo, H., & Iwata, A. (2005). Efficient methods for asynchronous dis-
tributed constraint optimization algorithm. In Proceedings of the International
Conference on Artificial Intelligence and Applications (AIA), pp. 727–732.

Matsui, T., Silaghi, M., Hirayama, K., Yokoo, M., & Matsuo, H. (2009). Directed soft arc
consistency in pseudo trees. In Proceedings of the International Joint Conference
on Autonomous Agents and Multiagent Systems (AAMAS), pp. 1065–1072.

Matsui, T., Silaghi, M., Hirayama, K., Yokoo, M., & Matsuo, H. (2008). Resource con-
strained distributed constraint optimization with virtual variables. In Proceedings
of the AAAI Conference on Artificial Intelligence (AAAI), pp. 120–125.

Meisels, A., Kaplansky, E., Razgon, I., & Zivan, R. (2002). Comparing performance
of distributed constraints processing algorithms. In Proceedings of the Distributed
Constraint Reasoning Workshop, pp. 86–93.

Modi, P. (2003). Distributed Constraint Optimization for Multiagent Systems. Ph.D.
thesis, University of Southern California, Los Angeles (United States).

220

Modi, P., & Ali, S. (2004). Distributed constraint reasoning under unreliable communi-
cation. In Zhang, W., & Sorge, V. (Eds.), Frontiers in Artificial Intelligence and
Applications, Vol. 112, pp. 141–150. IOS Press.

Modi, P., Shen, W.-M., Tambe, M., & Yokoo, M. (2005). ADOPT: Asynchronous dis-
tributed constraint optimization with quality guarantees. Artificial Intelligence,
161 (1-2), 149–180.

Neller, T. (2002). Iterative-refinement for action timing discretization. In Proceedings of
the National Conference on Artificial Intelligence (AAAI), pp. 492–497.

Ottens, B., & Faltings, B. (2008). Coordinating agent plans through distributed constraint
optimization. In Proceedings of the ICAPS-08 Workshop on Multiagent Planning.

Pearce, J. (2007). Local Optimization in Cooperative Agent Networks. Ph.D. thesis,
University of Southern California, Los Angeles (United States).

Pearce, J., Maheswaran, R., & Tambe, M. (2006). Solution sets for DCOPs and graphical
games. In Proceedings of the International Joint Conference on Autonomous Agents
and Multiagent Systems (AAMAS), pp. 577–584.

Pearce, J., & Tambe, M. (2007). Quality guarantees on k-optimal solutions for distributed
constraint optimization problems. In Proceedings of the International Joint Con-
ference on Artificial Intelligence (IJCAI), pp. 1446–1451.

Pearl, J. (1985). Heuristics: Intelligent Search Strategies for Computer Problem Solving.
Addison-Wesley.

Pearl, J., & Kim, J. (1982). Studies in semi-admissible heuristics. IEEE Transactions on
Pattern Analysis and Machine Intelligence, 4 (4), 391–399.

Pecora, F., Modi, P., & Scerri, P. (2006). Reasoning about and dynamically posting n-
ary constraints in ADOPT. In Proceedings of the Distributed Constraint Reasoning
Workshop, pp. 57–71.

Petcu, A. (2007). A Class of Algorithms for Distributed Constraint Optimization. Ph.D.
thesis, Swiss Federal Institute of Technology (EPFL), Lausanne (Switzerland).

Petcu, A., & Faltings, B. (2005a). Approximations in distributed optimization. In Pro-
ceedings of the International Conference on Principles and Practice of Constraint
Programming (CP), pp. 802–806.

221

Petcu, A., & Faltings, B. (2005b). A scalable method for multiagent constraint optimiza-
tion. In Proceedings of the International Joint Conference on Artificial Intelligence
(IJCAI), pp. 1413–1420.

Petcu, A., & Faltings, B. (2005c). Superstabilizing, fault-containing multiagent com-
binatorial optimization. In Proceedings of the National Conference on Artificial
Intelligence (AAAI), pp. 449–454.

Petcu, A., & Faltings, B. (2007). MB-DPOP: A new memory-bounded algorithm for
distributed optimization. In Proceedings of the International Joint Conference on
Artificial Intelligence (IJCAI), pp. 1452–1457.

Petcu, A., Faltings, B., & Mailler, R. (2007). PC-DPOP: A new partial centralization
algorithm for distributed optimization. In Proceedings of the International Joint
Conference on Artificial Intelligence (IJCAI), pp. 167–172.

Petcu, A., Faltings, B., & Parkes, D. (2008). M-DPOP: Faithful distributed implementa-
tion of efficient social choice problems. Journal of Artificial Intelligence Research,
32, 705–755.

Pohl, I. (1970). First results on the effect of error in heuristic search. Machine Intelligence,
5, 219–236.

Pohl, I. (1973). The avoidance of (relative) catastrophe, heuristic competence, genuine
dynamic weighting and computational issues in heuristic problem solving. In Pro-
ceedings of the International Joint Conference on Artificial Intelligence (IJCAI),
pp. 12–17.

Pynadath, D., & Tambe, M. (2002). The communicative multiagent team decision prob-
lem: Analyzing teamwork theories and models. Journal of Artificial Intelligence
Research, 16, 389–423.

Russell, S. (1992). Efficient memory-bounded search methods. In Proceedings of the
European Conference on Artificial Intelligence (ECAI), pp. 1–5.

Sandholm, T. (2002). Algorithm for optimal winner determination in combinatorial auc-
tions. Artificial Intelligence, 135 (1-2), 1–54.

Schiex, T., & Verfaillie, G. (1994). Nogood recording for static and dynamic constraint
satisfaction problems. International Journal of Artificial Intelligence Tools, 3 (2),
187–207.

222

Schurr, N., Okamoto, S., Maheswaran, R., Scerri, P., & Tambe, M. (2005). Evolution of
a teamwork model. In Sun, R. (Ed.), Cognition and Multi-Agent Interaction: From
Cognitive Modeling to Social Simulation, pp. 307–327. Cambridge University Press.

Silaghi, M., Landwehr, J., & Larrosa, J. (2004). Asynchronous branch & bound and A*
for disWCSPs with heuristic function based on consistency-maintenance. In Zhang,
W., & Sorge, V. (Eds.), Frontiers in Artificial Intelligence and Applications, Vol.
112, pp. 49–62. IOS Press.

Silaghi, M., Lass, R., Sultanik, E., Regli, W., Matsui, T., & Yokoo, M. (2008). The oper-
ation point units of distributed constraint solvers. In Proceedings of the Distributed
Constraint Reasoning Workshop, pp. 1–16.

Silaghi, M., & Yokoo, M. (2009). ADOPT-ing: Unifying asynchronous distributed op-
timization with asynchronous backtracking. Autonomous Agents and Multi-Agent
Systems, 19 (2), 89–123.

Stentz, A. (1995). The focussed D* algorithm for real-time replanning. In Proceedings
of the International Joint Conference on Artificial Intelligence (IJCAI), pp. 1652–
1659.

Stranders, R., Delle Fave, F., Rogers, A., & Jennings, N. (2010). A decentralised coor-
dination algorithm for mobile sensors. In Proceedings of the AAAI Conference on
Artificial Intelligence (AAAI), pp. 874–880.

Stranders, R., Farinelli, A., Rogers, A., & Jennings, N. (2009a). Decentralised coordi-
nation of continuously valued control parameters using the Max-Sum algorithm.
In Proceedings of the International Joint Conference on Autonomous Agents and
Multiagent Systems (AAMAS), pp. 601–608.

Stranders, R., Farinelli, A., Rogers, A., & Jennings, N. (2009b). Decentralised coor-
dination of mobile sensors using the Max-Sum algorithm. In Proceedings of the
International Joint Conference on Artificial Intelligence (IJCAI), pp. 299–304.

Sultanik, E., Lass, R., & Regli, W. (2009). Dynamic configuration of agent organizations.
In Proceedings of the International Joint Conference on Artificial Intelligence (IJ-
CAI), pp. 305–311.

Sun, X., & Koenig, S. (2007). The Fringe-Saving A* search algorithm – a feasibility
study. In Proceedings of the International Joint Conference on Artificial Intelligence
(IJCAI), pp. 2391–2397.

223

Sun, X., Koenig, S., & Yeoh, W. (2008). Generalized Adaptive A*. In Proceedings of
the International Joint Conference on Autonomous Agents and Multiagent Systems
(AAMAS), pp. 469–476.

Sun, X., Yeoh, W., & Koenig., S. (2009a). Dynamic Fringe-Saving A*. In Proceedings of
the International Joint Conference on Autonomous Agents and Multiagent Systems
(AAMAS), pp. 891–898.

Sun, X., Yeoh, W., & Koenig, S. (2009b). Efficient incremental search for moving target
search. In Proceedings of the International Joint Conference on Artificial Intelli-
gence (IJCAI), pp. 615–620.

Sun, X., Yeoh, W., & Koenig, S. (2010a). Generalized Fringe-Retriving A*: Faster moving
target search on state lattices. In Proceedings of the International Joint Conference
on Autonomous Agents and Multiagent Systems (AAMAS), pp. 1081–1087.

Sun, X., Yeoh, W., & Koenig, S. (2010b). Moving Target D* Lite. In Proceedings of
the International Joint Conference on Autonomous Agents and Multiagent Systems
(AAMAS), pp. 67–74.

Thayer, J., & Ruml, W. (2008). Faster than Weighted A*: An optimistic approach to
bounded suboptimal search. In Proceedings of the International Conference on
Automated Planning and Scheduling (ICAPS), pp. 355–362.

Thayer, J., & Ruml, W. (2010). Finding acceptable solutions faster using inadmissible
information. In Proceedings of the Symposium on Combinatorial Search (SoCS).

Ueda, S., Iwasaki, A., & Yokoo, M. (2010). Coalition structure generation based on
distributed constraint optimization. In Proceedings of the AAAI Conference on
Artificial Intelligence (AAAI), pp. 197–203.

Vinyals, M., Pujol, M., Rodriguez-Aguilarhas, J., & Cerquides, J. (2010). Divide-and-
coordinate: DCOPs by agreement. In Proceedings of the International Joint Con-
ference on Autonomous Agents and Multiagent Systems (AAMAS), pp. 149–156.

Vinyals, M., Rodŕıguez-Aguilar, J., & Cerquides, J. (2009). Generalizing DPOP: Action-
GDL, a new complete algorithm for DCOPs (extended abstract). In Proceedings of
the International Joint Conference on Autonomous Agents and Multiagent Systems
(AAMAS), pp. 1239–1240.

Yeoh, W., Felner, A., & Koenig, S. (2009). IDB-ADOPT: A depth-first search DCOP al-
gorithm. In Oddi, A., Fages, F., & Rossi, F. (Eds.), Recent Advances in Constraints,
Vol. 5655 of Lecture Notes in Artificial Intelligence, pp. 132–146. Springer.

224

Yeoh, W., Felner, A., & Koenig, S. (2010). BnB-ADOPT: An asynchronous branch-and-
bound DCOP algorithm. Journal of Artificial Intelligence Research, 38, 85–133.

Yeoh, W., Sun, X., & Koenig, S. (2009a). Trading off solution quality for faster com-
putation in DCOP search algorithms. In Proceedings of the International Joint
Conference on Artificial Intelligence (IJCAI), pp. 354–360.

Yeoh, W., Varakantham, P., & Koenig, S. (2009b). Caching schemes for DCOP search
algorithms. In Proceedings of the International Joint Conference on Autonomous
Agents and Multiagent Systems (AAMAS), pp. 609–616.

Yokoo, M. (Ed.). (2001). Distributed Constraint Satisfaction: Foundation of Cooperation
in Multi-agent Systems. Springer.

Yokoo, M., Durfee, E., Ishida, T., & Kuwabara, K. (1998). The distributed constraint sat-
isfaction problem: Formalization and algorithms. IEEE Transactions on Knowledge
and Data Engineering, 10 (5), 673–685.

Yokoo, M., Durfee, E., Ishida, T., & Kuwabara, K. (1992). Distributed constraint satisfac-
tion for formalizing distributed problem solving. In Proceedings of the International
Conference on Distributed Computing Systems (ICDCS), pp. 614–621.

Zhang, W. (2000). Depth-first branch-and-bound versus local search: A case study. In
Proceedings of the National Conference on Artificial Intelligence (AAAI), pp. 930–
935.

Zhang, W., & Korf, R. (1995). Performance of linear-space search algorithms. Artificial
Intelligence, 79 (2), 241–292.

Zhang, W., Xing, Z., Wang, G., & Wittenburg, L. (2003). An analysis and application of
distributed constraint satisfaction and optimization algorithms in sensor networks.
In Proceedings of the International Joint Conference on Autonomous Agents and
Multiagent Systems (AAMAS), pp. 185–192.

Zhou, R., & Hansen, E. (2004). Space-efficient memory-based heuristics. In Proceedings
of the National Conference on Artificial Intelligence (AAAI), pp. 677–682.

Zivan, R. (2008). Anytime local search for distributed constraint optimization. In Pro-
ceedings of the AAAI Conference on Artificial Intelligence (AAAI), pp. 393–398.

Zivan, R., Glinton, R., & Sycara, K. (2009). Distributed constraint optimization for large
teams of mobile sensing agents. In Proceedings of the International Conference on
Intelligent Agent Technology (IAT), pp. 347–354.

225

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /All
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /Unknown

 /Description <<
 /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000500044004600200064006f007400e900730020006400270075006e00650020007200e90073006f006c007500740069006f006e002000e9006c0065007600e9006500200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200061006d00e9006c0069006f007200e90065002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
 /ENU (Use these settings to create PDF documents with higher image resolution for improved printing quality. The PDF documents can be opened with Acrobat and Reader 5.0 and later.)
 /JPN <FEFF3053306e8a2d5b9a306f30019ad889e350cf5ea6753b50cf3092542b308000200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e0020006d00690074002000650069006e006500720020006800f60068006500720065006e002000420069006c0064006100750066006c00f600730075006e0067002c00200075006d002000650069006e0065002000760065007200620065007300730065007200740065002000420069006c0064007100750061006c0069007400e400740020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d00610020007200650073006f006c007500e700e3006f00200064006500200069006d006100670065006d0020007300750070006500720069006f0072002000700061007200610020006f006200740065007200200075006d00610020007100750061006c0069006400610064006500200064006500200069006d0070007200650073007300e3006f0020006d0065006c0068006f0072002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e0030002000650020007300750070006500720069006f0072002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f8006a006500720065002000620069006c006c00650064006f0070006c00f80073006e0069006e006700200066006f00720020006100740020006600e50020006200650064007200650020007500640073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e0020006d00650074002000650065006e00200068006f0067006500720065002000610066006200650065006c00640069006e00670073007200650073006f006c007500740069006500200076006f006f0072002000650065006e0020006200650074006500720065002000610066006400720075006b006b00770061006c00690074006500690074002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006e0020006d00610079006f00720020007200650073006f006c00750063006900f3006e00200064006500200069006d006100670065006e00200070006100720061002000610075006d0065006e0074006100720020006c0061002000630061006c006900640061006400200061006c00200069006d007000720069006d00690072002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f0069006400610061006e0020006c0075006f006400610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e002000740075006c006f0073007400750073006c00610061007400750020006f006e0020006b006f0072006b006500610020006a00610020006b007500760061006e0020007400610072006b006b007500750073002000730075007500720069002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a00610020004100630072006f006200610074002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000500044004600200063006f006e00200075006e00610020007200690073006f006c0075007a0069006f006e00650020006d0061006700670069006f00720065002000700065007200200075006e00610020007100750061006c0069007400e00020006400690020007300740061006d007000610020006d00690067006c0069006f00720065002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f80079006500720065002000620069006c00640065006f00700070006c00f80073006e0069006e006700200066006f00720020006200650064007200650020007500740073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e00740020006d006500640020006800f6006700720065002000620069006c0064007500700070006c00f60073006e0069006e00670020006f006300680020006400e40072006d006500640020006600e50020006200e400740074007200650020007500740073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

