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Abstract

Partially Observable Markov Decision Process models
(POMDPs) have been applied to low-level robot control. We
show how to use POMDPs differently, namely for sensor-
planning in the context of behavior-based robot systems. This
is possible because solutions of POMDPs can be expressed as
policy graphs, which are similar to the finite state automata
that behavior-based systems use to sequence their behaviors.
An advantage of our system over previous POMDP naviga-
tion systems is that it is able to find close-to-optimal plans
since it plans at a higher level and thus with smaller state
spaces. An advantage of our system over behavior-based sys-
tems that need to get programmed by their users is that it can
optimize plans during missions and thus deal robustly with
probabilistic models that are initially inaccurate.

Introduction
Mobile robots have to deal with various kinds of uncertainty,
such as noisy actuators, noisy sensors, and uncertainty about
the environment. Behavior-based robot systems, such as
MissionLab (Endo et al. 2000), can operate robustly in
the presence of uncertainty (Arkin 1998). Its operation is
controlled by plans in form of finite state automata, whose
states correspond to behaviors and whose arcs correspond
to observations. These finite state automata have to be pro-
grammed by the users of the system at the beginning of a
mission. However, plans generated by humans are rarely op-
timal because they involve complex tradeoffs. Consider, for
example, a simple sensor-planning task, where a robot has
to decide how often to sense before it starts to act. Since the
sensors of the robot are noisy, it may have to sense multiple
times. On the other hand, sensing takes time. How often the
robot should sense depends on the amount of sensor noise,
the cost of sensing, and the consequences of acting based on
wrong sensor information.

In this paper, we develop a robot architecture that
uses Partially Observable Markov Decision Process models
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(POMDPs) (Sondik 1978) for planning and combines them
with MissionLab. POMDPs provide an elegant and theoret-
ically grounded way for probabilistic planning (Cassandra,
Kaelbling, & Littman 1994). So far, they have been used
mainly to solve low-level planning tasks for mobile robots
such as path following and localization (Fox, Burgard, &
Thrun 1998; Mahadevan, Theocharous, & Khaleeli 1998;
Cassandra, Kaelbling, & Kurien 1996; Simmons & Koenig
1995). In this paper, we show that POMDPs can also be
used to solve higher-level planning tasks for mobile robots.
The key idea behind our robot architecture is that POMDP
planners can generate policy graphs rather than the more
popular value surfaces. Policy graphs are similar to the fi-
nite state automata of MissionLab. An advantage of our
robot architecture is that it uses POMDPs in small state
spaces. When POMDPs are used for low-level planning, the
state spaces are often large and finding optimal or close-to-
optimal POMDPs becomes extremely time-consuming (Pa-
padimitriou & Tsitsiklis 1987). Thus, existing robot systems
have so far only been able to use greedy POMDP planning
methods that produce extremely suboptimal plans (Koenig
& Simmons 1998). Our robot architecture, on the other
hand, is able to find close-to-optimal plans.

In the following, we first give an example of sensor plan-
ning and then give overviews of behavior-based robotics and
POMDPs using this example. Next, we describe how our
robot architecture combines these ideas by transforming the
output of the POMDP planner (policy graphs) to the input
of MissionLab (finite state automata). Finally, we report on
two experiments that show that the ability to optimize plans
during missions is important because the resulting system is
able to deal robustly with probabilistic models that are ini-
tially inaccurate.

Example: Sensor Planning
We use the following sensor-planning example throughout
this paper, which is similar to an example used in (Cassan-
dra, Kaelbling, & Littman 1994). Assume that a police robot
attempts to find wounded hostages in a building. When it is
at a doorway, it has to decide whether to search the room.
The robot can either use its microphone to listen for ter-
rorists (OBSERVE); enter the room, look around, leave the
room, and proceed to the next doorway (ENTER ROOM
AND PROCEED); or move to the next doorway right away



(PROCEED). The cost of OBSERVE is always 5, and the
cost of PROCEED is always 50. Each room is occupied by
terrorists with probability 0.5. OBSERVE reports either that
the room is occupied by terrorists (OBSERVE OCCUPIED)
or not (OBSERVE EMPTY). Although the microphone al-
ways detects the absence of terrorists, it does not detect the
presence of terrorists with probability 0.2. Multiple obser-
vations are drawn independently from this probability distri-
bution, which is not completely unrealistic for sound. The
robot gets a reward for entering a room, as an incentive to
find wounded hostages. However, it also gets a penalty if
the room is occupied by terrorists since terrorists might de-
stroy it. If the room is not occupied by terrorists (ROOM
EMPTY), then ENTER ROOM AND PROCEED results in
a reward of 100. However, if the room is occupied by terror-
ists (ROOM OCCUPIED), then ENTER ROOM AND PRO-
CEED results in a penalty of 500. The main decision that the
robot has to make is how often to OBSERVE and, depend-
ing on the sensor observations, whether to PROCEED to the
next doorway right away or to first ENTER the ROOM AND
then PROCEED.

Behavior-Based Robotics
Behavior-based robotics uses a tight coupling between sens-
ing and acting to operate robustly in the presence of uncer-
tainty. The robot always executes a behavior such as “move
to the doorway” or “enter the room.” To sequence these be-
haviors, behavior-based robotics often uses finite state au-
tomata whose states correspond to behaviors and whose arcs
correspond to triggers (observations). The current state dic-
tates the behavior of the robot. When an observation is
made and there is an edge labeled with this observation that
leaves the current state, the current state changes to the state
pointed to by the edge. Since the finite state automata are
based on behaviors and triggers, the robot does not require
a model of the world or complete information about the cur-
rent state of the world. For example, a robot does not need
to know the number of doorways or the distances between
them.

We use a robot system based on MissionLab (Endo et al.
2000). MissionLab provides a large number of behaviors
and triggers with which users can build finite state automata,
that can then be executed on a variety of robots or in simu-
lation. The finite state automata have to be programmed by
the users of the system at the beginning of a mission. This
has the disadvantage that MissionLab cannot optimize the fi-
nite state automata during the mission, for example, when it
learns more accurate probabilities or when the environments
change. Furthermore, humans often assume that sensor are
accurate. Their plans are therefore often suboptimal. We
address this issue by developing a robot architecture which
uses a POMDP planner to generate plans based on proba-
bilistic models of the world.

POMDPs
POMDPs consist of a finite set of states S, a finite set of ob-
servations O, and an initial state distribution π. Each state
s ∈ S has a finite set of actions A(s) that can be executed
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Figure 1: POMDP

in it. The POMDP further consists of a transition function
p, where p(s′|s, a) denotes the probability with which the
system transitions from state s to state s′ when action a is
executed, an observation function q, where q(o|s, a) denotes
the probability of making observation o when action a is
executed in state s, and a reward function r, where r(s, a)
denotes the finite reward (negative cost) that results when ac-
tion a is executed in state s. A POMDP process is a stream
of <state, observation, action, reward> quadruples. The
POMDP process is always in exactly one state and makes
state transitions at discrete time steps. The initial state of
the POMDP process is drawn according to the probabilities
π(s). Thus, p(st = s) = π(s) for t = 1. Assume that
at time t, the POMDP process is in state st ∈ S. Then,
a decision maker chooses an action at from A(st) for exe-
cution. This results in reward rt = r(st, at) and observa-
tion ot ∈ O that is generated according to the probabilities
p(ot = o) = q(o|st, at). Next, the POMDP process changes
state. The successor state st+1 ∈ S is selected according to
the probabilities p(st+1 = s) = p(s|st, at). This process
repeats forever.

As an example, Figure 1 shows the POMDP that corre-
sponds to our sensor-planning task. The robot starts at a
doorway without knowing whether the room is occupied.
Thus, it is in state ROOM OCCUPIED with probability
0.5 and ROOM EMPTY with probability 0.5 but does not
know which one it is in. In both states, the robot can OB-
SERVE, PROCEED to the next doorway, or ENTER ROOM
AND PROCEED. OBSERVE does not change the state but
the sensor observation provides information about it. PRO-
CEED and ENTER ROOM AND PROCEED both result
in the robot being at the next doorway and thus again in
state ROOM OCCUPIED with probability 0.5 and ROOM
EMPTY with probability 0.5. The observation probabilities
and rewards of the actions are as described above.

Policy Graphs
Assume that a decision maker has to determine which ac-
tion to execute for a given POMDP at time t. The decision
maker knows the specification of the POMDP, executed the
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actions a1 . . . at−1, and made the observations o1 . . . ot−1.
The objective of the decision maker is to maximize the av-
erage total reward over an infinite planning horizon, which
is E(

∑∞
t=1[γt−1rt]), where γ ∈ (0, 1] is a discount factor.

The discount factor specifies the relative value of a reward
received after t action executions compared to the same re-
ward received one action execution earlier. One often uses
a discount factor slightly smaller than one because this en-
sures that the average total reward is finite, no matter which
actions are chosen. (We use γ = 0.99). In our case, the robot
is the decision maker who executes movement and sensing
actions and receives information about the state of the world
from inaccurate sensors, such as the microphone. We let
the robot maximize the average total reward over an infinite
horizon because it searches a large number of rooms.

It is a fundamental result of operations research that opti-
mal behaviors for the robot can be expressed either as value
surfaces or policy graphs (Sondik 1978). Value surfaces are
mappings from probability distributions over the states to
values. The robot calculates the expected value of the prob-
ability distribution over the states that results from the exe-
cution of each action and then chooses the action that results
in the largest expected value. Policy graphs are graphs where
the vertices correspond to actions and the directed edges cor-
respond to observations. The robot executes the action that
corresponds to its current vertex. Then, it makes an obser-
vation, follows the corresponding edge, and repeats the pro-
cess.

It is far more common for POMDP planners to use value
surfaces than policy graphs. However, policy graphs allow
us to integrate POMDP planning and behavior-based sys-
tems because of their similarity to finite state automata. As
an example, Figure 2 shows the optimal policy graph for our
sensor-planning task. This policy graph specifies a behavior
where the robot senses three times before it decides to en-
ter a room. If any of the sensing operations indicates that
the room is occupied, the robot decides to move to the next
doorway without entering the room.

Optimal policy graphs can potentially be large but often
turn out to be very small (Cassandra, Kaelbling, & Littman
1994). However, finding optimal or close-to-optimal pol-
icy graphs is PSPACE-complete in general (Papadimitriou
& Tsitsiklis 1987) and thus only feasible for small planning
tasks. We decided to use a POMDP planner that was devel-
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Figure 4: Finite State Automaton

oped by Hansen in his dissertation at the University of Mas-
sachusetts at Amherst (Hansen 1998). This POMDP planner
can often find optimal or close-to-optimal policy graphs for
our POMDP problems in seconds. We use the POMDP plan-
ner unchanged, with one small exception. We noticed that
many vertices of the policy graph are often unreachable from
the start vertex and eliminate these vertices using a simple
graph-search technique.

The Robot Architecture
Figure 3 shows a flow graph of our robot architecture. The
user inputs a POMDP that models the planning task. The
robot architecture then uses the POMDP planner to produce
a policy graph and removes all vertices that are unreachable
from the initial vertex. By mapping the actions of the policy
graph to behaviors and the observations to triggers, the pol-
icy graph is then transformed to a finite state automaton and
used to control the operation of MissionLab. The user still
has to input information but now only the planning task and
its parameters (that is, the probabilities and costs) and no
longer the plans. Once the finite state automaton is read into
MissionLab, we allow the user to examine and edit it, for ex-
ample, to add additional parts to the mission or make it part
of a larger finite state automaton. Figure 4 shows a screen-
shot of the policy graph from Figure 2 after it was read into
MissionLab and augmented with details about how to imple-
ment PROCEED (namely by marking the current doorway
and proceeding along the hallway until the robot is at an
unmarked doorway) and ENTER ROOM AND PROCEED
(namely by entering the room, leaving the room, marking
the current doorway, and proceeding along the hallway until



the robot is at an unmarked doorway). Furthermore, the user
decided that it was more robust to start with the behavior that
proceeds along the hallway because then the robot can start
anywhere in the hallway and not only at doorways.

Our robot architecture shows that it is possible to integrate
POMDP planning and behavior-based systems, by specify-
ing the solution of POMDPs in form of policy graphs. How-
ever, there are small semantic differences between policy
graphs and finite state automata. POMDPs assume that ac-
tions are discrete and that the robot makes an observation
after each action execution. Finite state automata assume
that behaviors are continuous and triggers can be observed
at any time during the execution of the behaviors. Two issues
need to be addressed in this context. First, we need Mission-
Lab to be able to deal with actions of finite duration. We
deal with this problem by adding an ACTION FINISHED
trigger to MissionLab. (This extension is not needed for
our sensing-planning task.) Second, we need to deal with a
potential combinatorial explosion of the number of observa-
tions. Most POMDP planners assume that every observation
can be made in every state. Consequently, every vertex in a
policy graph has one outgoing edge for each possible obser-
vation. However, the observations are n tuples if there are
n sensors and the number of observations can thus be large.
This is not a problem for finite state automata since obser-
vations that do not cause state transitions do not appear in
them. We deal with this problem by omitting subtasks from
the POMDP planning task that can be abstracted away or
are pre-sequenced and do not need to be planned. For exam-
ple, ENTER ROOM AND PROCEED is a macro-behavior
that consists of a sequence of observations and behaviors,
as shown in Figure 4. By omitting the details of ENTER
ROOM AND PROCEED, the observations IN ROOM, IN
HALLWAY, and MARKED DOORWAY do not need to be
considered during planning.

Experiments
We test the performance of our system, both analytically and
experimentally, by comparing the average total reward of its
plans (that is, optimal plans) against the plans typically gen-
erated by users. For our sensor-planning task, users typically
create plans that sense only once, no matter what the prob-
abilities and costs are. The robot executes ENTER ROOM
AND PROCEED if it senses ROOM EMPTY, otherwise it
executes PROCEED. We therefore use this plan as baseline
plan and compare the plans generated by our system against
it.

Analytical Results: To demonstrate that our system has
an advantage over the previous system because it is able
to optimize its plans during missions when it is able to
estimate the costs more precisely, we determine analyti-
cally how the average total reward of the baseline plan de-
pends on the reward x = r(s2, a1) for entering an occu-
pied room. Let k be the state directly before the robot
executes OBSERVE, l the state directly before it executes
ENTER ROOM AND PROCEED, and m the state directly
before it executes PROCEED. If the robot is in k, then it
incurs a cost of 5 for executing OBSERVE. It then transi-
tions from k to l with the probability with which the sensor
reports OBSERVE EMPTY, otherwise it transitions to m.
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Figure 5: Average Total Rewards vs. Reward for Entering
an Occupied Room (x) (Analytical)

Using the notation of Figure 1, the probability p(ot = o1)
with which the sensor reports OBSERVE EMPTY is p(ot =
o1) = q(o1|s1, a2)p(st = s1) + q(o1|s2, a2)p(st = s2) =
1.0 0.5 + 0.2 0.5 = 3/5. Consequently, the average total
reward v(k) of the baseline plan if the robot starts in k is
v(k) = −5+γ(3/5v(l)+2/5v(m)). Similar derivations re-
sult in a system of three linear equations in three unknowns:

v(k) = −5 + γ(3/5v(l) + 2/5v(m))

v(l) = 1/6x + 5/6 100 + γv(k)

v(m) = −50 + γv(k)

Solving this system of equations yields v(k) = 1241.21 +
4.97x. Figure 5 shows this graph together with the aver-
age total reward of the plans generated by our system, as a
function of x. As can be seen, the number of times a robot
has to sense OBSERVE EMPTY before it enters a room in-
creases as it becomes more expensive to enter an occupied
room. (The markers show when a change in plan occurs.)
The robot pays a cost for the additional sensing operations
but this decreases the probability of entering an occupied
room. Changing the plans as x changes allows the average
total reward of the plans generated by our system to deteri-
orate much more slowly than the average total reward of the
baseline plan. This result shows that our system has an ad-
vantage over the previous system because it is able to adapt
plans during missions when the costs can be estimated more
precisely. It also shows that our system has an advantage
over the previous system because humans are not good at
planning with uncertainty and thus their plans are rarely op-
timal. For example, the original sensor-planning problem
has x = −500 and the average total reward of the baseline
plan is only -1,246.24 whereas the average total reward of
the plan generated by our system is 374.98.

Similar results can be observed if the initial probabilities
are inaccurate. Figure 6 shows the average total reward of
the baseline plan together with the average total reward of
the plans generated by our system, as a function of the prob-
ability y = q(o2|s2, a2) with which the microphone cor-
rectly classifies an occupied room, for both x = −200 and
x = −500. As can be seen, the number of times a robot
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has to sense OBSERVE EMPTY before it enters a room in-
creases as the sensor becomes more noisy. This again allows
the average total reward of the plans generated by our sys-
tem to deteriorate much more slowly than the average total
reward of the baseline plan, demonstrating the advantages of
our system.

Experimental Results: We also performed a simulation
study with MissionLab to compare the average total reward
of the plans generated by our system against the baseline
plan, for y = 0.8 and both x = −200 and x = −500. We
used four rooms and averaged over ten runs. Figure 7 shows
the results. In both cases, the average total reward of the
baseline plan is much smaller than the average total reward
of the plans generated by our system. (The table shows that
the average total reward of the plans generated by our system
actually increased as it became more costly to enter an oc-
cupied room. This artifact is due to the reduced probability
of entering an occupied room, causing the situation to never
occur during our limited number of runs.) These results are
similar to the analytical results shown in Figure 5.

Conclusion
This paper reported on initial work that uses Partially Ob-
servable Markov Decision Process models (POMDPs) in the
context of behavior-based systems. The insight to making
this combination work is that POMDP planners can generate
policy graphs rather than the more popular value surfaces,
and policy graphs are similar to the finite state automata
that behavior-based systems use to sequence their behaviors.
This combination also keeps the POMDPs small, which
allows our POMDP planners to find optimal or close-to-
optimal plans whereas the POMDP planners of other robot

architectures can only find very suboptimal plans.
We used this insight to improve MissionLab, a behavior-

based system where the finite state automata had to be pro-
grammed by the users of the system at the beginning of the
mission. This had the disadvantage that humans are not good
at planning with uncertainty and thus their plans are rarely
optimal. In contrast, our robot architecture does not only
produce close-to-optimal plans but is also able to optimize
the finite state automata when it learns more accurate prob-
abilities or when the environment changes.

It is future work to study interfaces that allow users to eas-
ily input POMDPs, including probabilities and costs. Also,
we intend to implement sampling methods for adapting the
probabilities and costs of POMDPs during missions to be
able to update the plan during execution. Finally, it is fu-
ture work to scale up our robot architecture by developing
POMDP planners that are able to take advantage of the struc-
ture of the POMDP planning tasks and thus are more effi-
cient than current POMDP planners.
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