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INTRODUCTION

In pursuit-evasion problems, a team of mobile pursuers (or searchers) attempts to
capture one or more mobile evaders (fugitives, intruders) within a graph. For example,
the pursuers may represent soldiers, policemen, or robots. The evaders might be ter-
rorists, criminals, lost children, or even a poisonous gas. The graph may represent a
road map, building floor plan, cave system, pipe network, etc. Many distinct variations
of pursuit-evasion problems can be formulated by specifying the rules of movement for
the pursuers and for the evaders, the knowledge each opponent has about the other,
the rules of capture, the kind of graph, and the objective function. Typical objectives
include minimizing the number of pursuers, the distance travelled by pursuers, or the
elapsed time until capture. Because finiteness of the latter two objectives is equiva-
lent to optimization of the first objective, the complexity of the latter two problems is
bounded below by that of the first. However, optimization of the first objective is usu-
ally NP-hard for general graphs, hence the bulk of the graph-theoretic pursuit-evasion
literature focuses on that objective.

The following subsections discuss several of the most-studied pursuit-evasion varia-
tions. Other surveys on pursuit-evasion include [Bi91], [FoPe96], [Al04], [Ha07], [FoTh08],
[ChHoIs11], and [BoYa11]. Now there is also an entire book on this topic [BoNo11].
Throughout this section, except where explicitly specified otherwise, G will denote a
connected undirected graph or multigraph, possibly with loops.

9.5.1 Sweeping and Edge Search

FACT



Section 9.5. Pursuit-Evasion Problems 3

F1: Parsons [Pa78] describes the original pursuit-evasion problem. The following
definitions are adapted from [Pa78].

DEFINITIONS

D1: Consider an embedding of G in 3D space such that each vertex resides at a distinct
location and no two edges intersect except at a common endpoint. (For every G such
an embedding exists.) Let k denote the number of pursuers, and let P = (P1, . . . , Pk)
where each Pj : [0,∞)→ G is a continuous function. Then P is a sweep strategy for G
if for every continuous function E : [0,∞)→ G, there exists some pursuer j ∈ {1, . . . , k}
and time t such that Pj(t) = E(t). Here Pj(t) denotes the location within graph G of
pursuer j at time t, E(t) denotes the location of an evader at time t, and capture occurs
when Pj(t) = E(t).

D2: The sweep number of G, denoted sw(G), is the smallest k such that a sweep
strategy P = (P1, . . . , Pk) exists. The sweep problem on G is to determine sw(G),
and G is k-sweepable if sw(G) ≤ k.

FACTS

F2: Petrov [Pe82] independently develops another pursuit-evasion model, based on a
system of differential equations. See [Pe82] for details.

F3: Golovach [Go89] describes yet another formulation for pursuit-evasion. The
following definitions are adapted from [Go89].

DEFINITIONS

D3: An edge search operation is one of the following: p(x) = place a pursuer at
vertex x; r(x) = remove a pursuer from vertex x; and s(e, x, y) = slide a pursuer along
edge e from endpoint x to other endpoint y. (We may write s(e, x, y) as s(x, y) if only
one edge (x, y) exists, or as s(e) if the sliding direction is forced or inconsequential.)

D4: Initially every edge of G is contaminated (might contain an evader). An edge e =
(x, y) becomes clear if a pursuer slides along e from x to y while either (i) another pursuer
resides at x or (ii) every other edge incident to x is clear. If ever any unoccupied vertex
x is incident to a contaminated edge, then any clear edges incident to x immediately
become recontaminated. (So if a pursuer slides from x to y while neither (i) nor (ii)
holds, then edge (x, y) does not become clear.) An edge search strategy for G is any
sequence of edge search operations that ends with every edge of G being simultaneously
clear.

D5: The edge search number of G, denoted es(G), is the smallest number of
pursuers needed to implement any edge search strategy. The edge search problem on
G is to determine es(G), and G is k-edge-searchable if es(G) ≤ k.

FACT

F4: Golovach [Go89] shows that the formulations of Parsons, Petrov, and Golovach
are all equivalent problems. Therefore sw(G) = es(G) for every G.

EXAMPLES
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Figure 9.5.1: Typical graphs with edge search numbers 2 and 3.

E1: The graph in Figure 9.5.1(a) has edge search number 2. Here is a strategy that
clears this graph using 2 pursuers: p(1), p(1), s(a), s(b), s(c), s(d,1,2), s(e), s(f), s(3,2),
s(g), s(h,2,4), s(i), s(j), s(5,4), s(k), s(l,4,6), s(m), s(n).

E2: The graph in Figure 9.5.1(b) has edge search number 3. Here is a strategy
that clears this graph using 3 pursuers: p(1), p(2), p(2), s(a,2,1), s(b,1,2), s(c,2,1),
s(d), s(e,1,3), s(3,2), s(g), s(h,2,4), s(4,3), s(j), s(k,3,5), s(5,4), s(m), s(n,4,6), s(o,6,5),
s(p,5,6), s(q).

FACTS

F5: The edge search number es(G) = 1 if and only if G is a simple path. So es(G) = 1
if and only if G contains neither a cycle nor a vertex of degree 3 or more. Equivalently,
es(G) = 1 if and only if G contains neither of these two minimal forbidden minors: a
loop with one vertex and one edge, or a star with three edges.

F6: Megiddo et al [MeHaGaJoPa88] shows that es(G) ≤ 2 if and only if G contains
none of the minimal forbidden minors illustrated in Figure 9.5.2. This paper also pro-
vides a structural characterization for the 2-edge-searchable graphs, similar to the graph
in Figure 9.5.1(a).

F7: Megiddo et al [MeHaGaJoPa88] shows that if G is biconnected, then es(G)
≤ 3 if and only if G contains none of the minimal forbidden minors illustrated in
Figure 9.5.3. This paper also provides a structural characterization for the biconnected
3-edge-searchable graphs, similar to the graph in Figure 9.5.1(b), and also a more general
characterization for the non-biconnected 3-edge-searchable graphs.

EXAMPLES

E3: The graph in Figure 9.5.2(a) has edge search number 3: p(1), s(1,4), p(3), s(3,4),
r(4), s(4,5), p(2), s(2,6), p(7), s(7,6), s(6,5), s(5,8), s(5,8), s(8,9), s(8,10). However, if
edge (8,10) is removed, the resulting graph has edge search number 2: p(1), s(1,4), p(3),
s(3,4), s(4,5), s(4,5), s(5,8), s(8,9), r(9), s(5,6), p(2), s(2,6), s(6,7).

E4: The graph in Figure 9.5.2(b) has edge search number 3: p(1), s(1,2), p(2), s(2,3),
s(2,4), p(5), s(5,3), s(3,4), s(4,6). However, if edge (4,6) is removed, the resulting graph
has edge search number 2: p(1), s(1,2), p(2), s(2,3), s(2,4), s(4,3), s(3,5).
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Figure 9.5.2: Forbidden minors for graphs with edge search number ≤ 2.
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Figure 9.5.3: Forbidden minors for biconnected graphs with edge search number ≤ 3.

E5: The graph in Figure 9.5.2(c) has edge search number 3: p(1), p(1), p(1), s(a),
s(b,1,2), s(c). However, if edge c is removed, the resulting graph has edge search number
2: p(1), p(1), s(a), s(b).

E6: The graph K4 in Figure 9.5.3(a) has edge search number 4: p(1), p(1), p(1),
s(1,2), s(1,3), s(1,4), p(3), s(3,2), s(2,4), s(4,3). However, if edge (3,4) is removed, the
resulting graph has edge search number 3: p(1), p(1), p(1), s(1,2), s(1,3), s(1,4), s(3,2),
s(2,4).

E7: The graph in Figure 9.5.3(b) has edge search number 4: p(1), p(1), p(1), s(1,3),
s(1,5), s(1,7), p(2), s(2,3), r(3), s(3,8), p(4), s(4,5), s(5,8), s(8,7), s(7,6). However, if
edge (6,7) is removed, the resulting graph has edge search number 3: p(2), s(2,3), p(3),
s(3,1), s(3,8), p(1), s(1,7), s(7,8), s(1,5), s(8,5), s(5,4).

E8: The graph in Figure 9.5.3(c) has edge search number 4: p(1), p(1), p(1), p(1),
s(a), s(b,1,2), s(c,1,2), s(g), s(h,2,3), s(i,2,3), s(d,3,1), s(e), s(f). However, if edge i is
removed, the resulting graph has edge search number 3: p(1), p(1), s(a), p(2), s(b,2,1),
s(c,1,2), s(g), s(h,2,3), s(d,3,1), s(e,1,3), s(f).

FACTS

F8: Megiddo et al [MeHaGaJoPa88] proves that the decision version of the edge
search problem is NP-complete for arbitrary graphs G.
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F9: For every n ≥ 4, es(Kn) = n, where Kn denotes a complete graph (or clique)
with n vertices.

F10: Megiddo et al [MeHaGaJoPa88] presents a linear-time algorithm for computing
es(G) when G is a tree.

F11: There exist polynomial-time algorithms for computing es(G) when G is a split
graph, an interval graph, or a cograph.

REMARK

R1: It currently remains unresolved whether or not polynomial-time algorithms exist
for computing es(G) when G is a permutation graph, an outerplanar graph, a series-
parallel graph, or a planar graph.

FACTS

F12: Parsons [Pa78] shows that if G is a tree and k ≥ 2, then es(G) ≥ k if and only
if G has a vertex v with degree d ≥ 3 such that splitting v into d vertices each having
degree 1 yields a forest in which at least three trees have edge search number at least
k − 1.

F13: Let Tk denote a smallest tree such that es(Tk) = k. Then T1 has a single edge,
T2 is a star with three edges, and T3 is the tree shown in Figure 9.5.2(a). In general for
k ≥ 2, Tk may be formed from three copies of Tk−1 by choosing one leaf from each copy
of Tk−1 and fusing together these three vertices.

F14: Let mk denote the number of edges in Tk. Then m1 = 1, m2 = 3, and m3 = 9.
In general for k ≥ 2, it follows that mk = 3mk−1, so mk = 3k−1. Hence if T is any tree
with m edges, then es(T ) ≤ 1 + log3m.

F15: LaPaugh [La93] shows that recontamination is not useful for edge search. That
is, es(G) pursuers can always clear G using an edge search strategy in which no clear
edge ever becomes recontaminated.

REMARK

R2: LaPaugh’s result that recontamination is not useful applies only to edge search but
not to sweeping. This is because edge search permits arbitrary removal and placement of
a pursuer, which essentially allows pursuers to jump between any vertices of the graph.
However, sweeping requires each pursuer to move continuously through the graph, and
therefore may require a pursuer to traverse (and unintentionally clear) a contaminated
edge.

EXAMPLE

E9: The graph in Figure 9.5.4 illustrates that recontamination is sometimes useful for
sweeping. First note that this graph has edge search number 3 as follows: p(1), p(1),
p(1), s(a), s(b,1,2), s(c,1,2), r(2), r(2), p(3), p(3), s(f), s(g), s(3,4), s(4,2), s(j), s(e),
s(2,5), s(h), s(5,7), r(7), p(6), s(i), r(6), r(6), p(7), p(7), s(l), s(m,7,8), s(n). However,
this solution requires jumping to avoid recontamination. That is, rather than removing
two pursuers from vertex 2 and placing them on vertex 3, instead let these two pursuers
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Figure 9.5.4: Recontamination can be useful for sweeping.

slide along edges d and g to reach vertex 3. Then edge d is temporarily cleared, but
later it becomes recontaminated when both pursuers depart from vertex 4. Because
sweeping only permits moving along edges (no jumping), the graph in Figure 9.5.4 has
sweep number 3, but every sweep strategy with 3 pursuers requires recontamination to
occur.

DEFINITIONS

D6: A search strategy is monotonic if recontamination does not occur.

D7: A search strategy is internal if no pursuer is ever removed from a vertex (so
jumping does not occur).

D8: A search strategy is connected if the set of clear edges always induces a connected
subgraph.

FACT

F16: Barriere et al [BaFrSaTh03] provides inequalities that show the relationships
between the numbers of pursuers needed to clear a graph when one or more of these
constraints (m = monotonic, i = internal, c = connected) are required during edge
search. In particular, es(G) = m(G) = i(G) ≤ mi(G) ≤ c(G) = ic(G) ≤ mc(G) =
mic(G).

9.5.2 Node Search and Mixed Search

FACT

F17: Kirousis et al [KiPa85], [KiPa86] introduce a variation of pursuit-evasion that
lacks sliding and that has a novel rule for clearing edges (capturing evaders). The
following definitions are adapted from [KiPa86].

DEFINITIONS
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D9: A node search operation is one of the following: p(x) = place a pursuer at
vertex x, and r(x) = remove a pursuer from vertex x.

D10: Initially every edge of G is contaminated. An edge e = (x, y) becomes clear if
pursuers simultaneously occupy both endpoint vertices x and y. As previously stated
with edge search, if ever an unoccupied vertex x is incident to a contaminated edge,
then all clear edges incident to x become recontaminated. A node search strategy
for G is any sequence of node search operations that ends with every edge of G being
simultaneously clear.

D11: The node search number of G, denoted ns(G), is the smallest number of
pursuers needed to implement any node search strategy. The node search problem
on G is to determine ns(G), and G is k-node-searchable if ns(G) ≤ k.

FACTS

F18: Kirousis et al [KiPa86] shows that recontamination is not useful for node search.
That is, ns(G) pursuers can always clear G using a node search strategy in which no
clear edge ever becomes recontaminated.

F19: Bienstock et al [BiSe91] unifies edge search and node search into a more general
framework called mixed search. The following definitions are adapted from [BiSe91].

DEFINITIONS

D12: Mixed search operations are same as edge search operations: p(x) = place
a pursuer at vertex x; r(x) = remove a pursuer from vertex x; and s(e, x, y) = slide a
pursuer along edge e from endpoint x to other endpoint y.

D13: Initially every edge of G is contaminated. As with edge search, edge e = (x, y)
becomes clear if a pursuer slides along e from x to y while either (i) another pursuer
resides at x or (ii) every other edge incident to x is clear. Also, as with node search,
edge e = (x, y) becomes clear if pursuers simultaneously occupy both endpoint vertices
x and y. Recontamination may occur same as with edge search and node search. A
mixed search strategy for G is any sequence of mixed search operations that ends
with every edge of G being simultaneously clear.

D14: The mixed search number of G, denoted ms(G), is the smallest number of
pursuers needed to implement any mixed search strategy. The mixed search problem
on G is to determine ms(G), and G is k-mixed-searchable if ms(G) ≤ k.

FACTS

F20: Bienstock et al [BiSe91] shows that recontamination is not useful for mixed
search. Thus ms(G) pursuers can always clear G using a mixed search strategy in which
no clear edge ever becomes recontaminated.

F21: For any G, construct Ge and Gn by replacing each edge of G with two edges
in series or with two edges in parallel, respectively. Bienstock et al [BiSe91] show that
es(G) = ms(Ge) and ns(G) = ms(Gn), so edge search and node search both reduce to
mixed search. Therefore the recontamination result for mixed graphs in [BiSe91] implies
the previous recontamination results for edge search in [La93] and for node search in
[KiPa86].
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F22: [KiPa86] and [BiSe91] provide inequalities that show the relationships between
the edge search, node search, and mixed search numbers. Combining those inequali-
ties yields that max{es(G), ns(G)} − 1 ≤ ms(G) ≤ min{es(G), ns(G)}, so these three
parameter values are always within one of each other.

EXAMPLES

E10: If G is a path with at least one edge then es(G)=1, ns(G)=2, and ms(G)=1.

E11: If G is a loop with one vertex and one edge then es(G)=2, ns(G)=1, and
ms(G)=1. Here is a (trivial) node search strategy that requires only 1 pursuer: p(1).

E12: If G is a cycle with two vertices and two edges then es(G)=ns(G)=ms(G)=2.

E13: If G is a cycle with at least three edges then es(G)=2, ns(G)=3, and ms(G)=2.

E14: If G is a star with at least three edges then es(G)=ns(G)=ms(G)=2.

E15: If G is the graph in Figure 9.5.2(c) then es(G)=3, ns(G)=2, and ms(G)=2. Here
is a node search strategy that requires only 2 pursuers: p(1), p(2).

E16: If G is K4 then es(G)=ns(G)=ms(G)=4.

E17: If G is the graph in Figure 9.5.5(a) then es(G)=5, ns(G)=4, and ms(G)=4.
Here is a node search strategy that requires only 4 pursuers: p(1), p(3), p(5), p(2), r(2),
p(4), r(4), p(6).

E18: If G is the graph in Figure 9.5.5(b) then es(G)=2, ns(G)=3, and ms(G)=2.

E19: If G is the graph in Figure 9.5.5(c) then es(G)=3, ns(G)=3, and ms(G)=2. Here
is a mixed search strategy that requires only 2 pursuers: p(4), p(3), s(3,1), r(1), p(5),
s(5,2), r(2), p(6), s(6,7).
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Figure 9.5.5: Examples for edge search, node search, and mixed search.

FACTS

F23: There exist polynomial-time algorithms for computing ns(G) and ms(G) when
G is a split graph, an interval graph, a cograph, or a permutation graph.
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F24: There exist polynomial-time algorithms for computing ns(G) when G is a tree,
an outerplanar graph, or a series-parallel graph.

REMARKS

R3: It currently remains unresolved whether or not polynomial-time algorithms exist
for computing ms(G) when G is a tree, an outerplanar graph, or a series-parallel graph.

R4: It currently remains unresolved whether or not polynomial-time algorithms exist
for computing ns(G) and ms(G) when G is a planar graph.

FACTS

F25: Kirousis et al [KiPa86] proves that the decision version of the node search
problem is NP-complete for arbitrary graphs G.

F26: Bienstock et al [BiSe91] proves that the decision version of the mixed search
problem is NP-complete for arbitrary graphs G.

F27: Kirousis et al [KiPa86] shows that for every G, ns(G) is exactly one plus the
vertex separation of G. Subsequently, Kinnersley [Ki92] shows that the vertex separation
of G always equals the pathwidth of G, hence ns(G) is exactly one plus the pathwidth
of G.

terminology note: See Section 2.4 of this Handbook for a definition of pathwidth.

FACTS

F28: Suppose the evader is visible, that is, the evader’s position is always known to
the pursuers. In this situation Seymour et al [SeTh93] shows that the fewest pursuers
needed to implement a node search strategy is exactly one plus the treewidth of G.

F29: Suppose instead that the (invisible) evader is lazy, that is, the evader can only
move immediately before a pursuer is placed on the vertex where it resides (so that if the
evader did not move it would be captured). In this situation Dendris et al [DeKiTh97]
shows that the fewest pursuers needed to implement a node search strategy is again
exactly one plus the treewidth of G.

terminology note: See Section 2.4 of this Handbook for a definition of treewidth.

9.5.3 Cops-and-Robbers
The cops-and-robbers problem differs from the previously considered pursuit-evasion

problems in several significant ways: both the cops (pursuers) and the robber (evader)
must reside only at vertices, the cops and robber take alternating turns; and everybody’s
location is visible to everyone else.

FACT

F30: Nowakowski et al [NoWi83] and Quilliot [Qu83] each independently originates
the cops-and-robbers problem. However, each only considers the special case when there
is only one cop.
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F31: Aigner et al [AiFr84] extends the cops-and-robbers problem to permit multiple
cops. The following definitions are adapted from [AiFr84].

DEFINITIONS

D15: A cops-and-robbers game on G proceeds as follows. There are two players,
C (a team of k cops) and R (a robber). C begins by placing each of the k cops at any
vertex of G. (C is permitted to place more than one cop at the same location.) Next,
R places the robber at any vertex. The players continue alternating turns. On C’s
turns, each cop either remains at its present location or moves to an adjacent vertex
(so multiple cops may move simultaneously). Similarly, on R’s turns, the robber either
remains at its present location or moves to an adjacent vertex. Both C and R always
know the locations of all participants. A cop captures the robber if the cop resides at
the same vertex as the robber, and in this case player C wins the game. Player C has
a winning strategy if no matter what choices R makes, player C can eventually win the
game. Otherwise, if the robber can indefinitely avoid capture no matter what choices
C makes, then player R wins the game.

D16: The cop number of G, denoted c(G), is the smallest number of cops k needed
for player C to win the cops-and-robbers game on G. The cops-and-robbers problem
on G is to determine c(G), and G is k-cop-winnable if c(G) ≤ k.

EXAMPLES

E20: If G is a tree, then c(G) = 1. Player C’s winning strategy is for the cop to move
toward the robber along the shortest path that connects them.

E21: If G is a complete graph (or clique), then c(G) = 1.

E22: If G is a cycle with at least four edges, then c(G) = 2.

E23: If G is a complete bipartite graph Kp,q with p ≥ 2 and q ≥ 2, then c(G) = 2.
Player C initially places one cop on each side of the bipartition.

E24: If G is the graph shown in Figure 9.5.6(a) (the 3-cube), then c(G) = 2. If
C places cops at vertices {1, 8} then a robber placed at any vertex can be captured
immediately. But if only one cop is available, then no matter where it is placed, the
robber can always escape to a vertex that is not adjacent to the cop’s location.

E25: If G is the graph shown in Figure 9.5.6(b) (Petersen’s graph), then c(G) = 3. If
C places cops at vertices {2, 5, 6} then a robber placed at any vertex can be captured
immediately. But if only two cops are available, then no matter where they are placed,
the robber can always escape to a vertex that is not adjacent to either cop’s location.

E26: If G is a p-by-q grid graph with p ≥ 2 and q ≥ 2, then c(G) = 2. (Figure 9.5.6(c)
illustrates a 4-by-4 grid graph.) Cop 1 moves toward the row of the robber, but if
already on the same row, then cop 1 moves toward the column of the robber. Cop 2
moves toward the column of the robber, but if already on the same column, then cop 2
moves toward the row of the robber.

DEFINITIONS
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Figure 9.5.6: Examples for cops-and-robbers problem.

D17: Let N[v] denote the closed neighborhood of vertex v. Then v is a corner vertex
if there exists some other vertex u with N[v] ⊆ N[u].

D18: G is dismantlable if there exists a sequence of removing corner vertices
that ends when only one vertex remains. Such a sequence is called an elimination
ordering.

FACTS

F32: Nowakowski et al [NoWi83] and Quilliot [Qu83] each develops a characterization
of the graphs G with c(G) = 1, as follows: c(G) = 1 if and only if G is dismantlable.

F33: If G is a chordal graph, then c(G) = 1. (A chordal graph always has a simplicial
vertex v such that N[v] is a clique, and any such v is a corner vertex.)

F34: Clarke [Cl02] shows that if G is an outerplanar graph then c(G) ≤ 2.

F35: Theis [Th11] shows that if G is a series-parallel graph then c(G) ≤ 2.

F36: Aigner et al [AiFr84] shows that if G is a planar graph then c(G) ≤ 3.

F37: Schroeder et al [Sc01] shows that if G is a toroidal graph (can be embedded in
a torus) then c(G) ≤ 4.

F38: Joret et al [JoKaTh10] shows that if G is a treewidth-k graph then c(G)
≤ bk2 c+ 1.

F39: Frankl [Fr87] shows that if G is a d-cube then c(G) = dd+1
2 e.

F40: Aigner et al [AiFr84] shows that if G is a graph with girth (length of smallest
cycle) ≥ 5, then c(G) ≥ the minimum degree of any vertex in G.

F41: Fomin et al [FoGoKr08] proves that the cops-and-robbers problem is NP-hard
for arbitrary graphs G.

F42: Goldstein et al [GoRe95] shows that if the initial location of each cop is specified
as part of the problem instance, then this variation of the cops-and-robbers problem is
EXPTIME-complete.
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F43: Chung et al [ChHoIs11] gives a pseudo-polynomial-time dynamic programming
algorithm for solving the cops-and-robbers problem when the number of cops is fixed.
The algorithm’s running time is O(n2k+2), where n is the number of vertices in G and
k is the number of cops.

F44: Llewellyn et al [LlToTr89] shows that it is NP-complete to determine whether k
cops can capture an infinitely fast robber if the cops are placed sequentially but cannot
move once placed.

REMARKS

R5: The complexity status of the decision version of the (standard) cops-and-robbers
problem currently remains unresolved. Is it NP-complete? Is it EXPTIME-complete?

R6: Another currently unresolved question is known as Meyniel’s conjecture: Is
c(G) in O(

√
n) for connected graphs G? Chiniforooshan [Ch08] shows that c(G) is

in O(n/ log n), which is currently the best known bound. (Here again n denotes the
number of vertices of G.)

9.5.4 Additional Variations
The previous subsections have discussed some of the best-known pursuit-evasion

problems such as sweeping, edge search, node search, mixed search, and cops-and-
robbers. The current subsection discusses some of the many possible additional varia-
tions that can be constructed by increasing or restricting the capabilities of the pursuers
and/or the evader, and/or by modifying the kind of graph structure through which the
pursuers and evaders move.

FACT

F45: Nowakowski [No93], Dyer [Dy04], Barat [Ba06], Alspach et al [AlDyHaYa07],
and Yang et al [YaCa07-a] [YaCa07-b] examine the sweeping, edge search, node search,
and mixed search problems when G is a directed graph or multidigraph. Different
variants occur depending on which participants must obey the specified edge directions.

DEFINITIONS

D19: In directed sweeping, both the pursuers and the evader must obey the specified
edge directions.

D20: In undirected sweeping, both the pursuers and the evader may ignore the
edge directions (so they can traverse each edge in either direction).

D21: In weak sweeping, the pursuers must obey the edge directions, but the evader
may ignore these directions.

D22: In strong sweeping, the evader must obey the edge directions, but the pursuers
may ignore these directions.

FACT
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F46: Let d(G), u(G), w(G), and s(G) denote the minimum number of pursuers needed
to capture an evader using directed, undirected, weak, or strong sweeping, respectively.
Dyer [Dy04] shows these inequalities: s(G) ≤ min{d(G), u(G)} and max{d(G), u(G)}
≤ w(G).
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Figure 9.5.7: Directed graph examples.

EXAMPLES

E27: If G is a directed path then d(G)=1, u(G)=1, w(G)=1, and s(G)=1.

E28: If G is the graph in Figure 9.5.7(a) then d(G)=2, u(G)=1, w(G)=2, and s(G)=1.

E29: If G is the graph in Figure 9.5.7(b) then d(G)=2, u(G)=2, w(G)=2, and s(G)=1.

E30: If G is the graph in Figure 9.5.7(c) then d(G)=2, u(G)=2, w(G)=2, and s(G)=1.
For strong sweeping, one pursuer can clear G by starting at vertex 1 and then traversing
each edge in a backward direction.

E31: If G is the graph in Figure 9.5.7(d) then d(G)=2, u(G)=2, w(G)=2, and s(G)=2.

E32: If G is the graph in Figure 9.5.7(e) then d(G)=2, u(G)=3, w(G)=3, and s(G)=1.
For strong sweeping, one pursuer can clear G by starting at vertex 1 and then traversing
edges a, b, c each in a backward direction.

E33: If G is the graph in Figure 9.5.7(f) then d(G)=2, u(G)=3, w(G)=3, and s(G)=2.

E34: If G is the graph in Figure 9.5.7(g) then d(G)=3, u(G)=3, w(G)=4, and s(G)=1.

FACTS

F47: Dyer [Dy04] shows that s(G) = 1 if and only if each strongly connected compo-
nent of G is either a single vertex or a cycle or a subdivision (homeomorphism) of one
of the graphs shown in Figure 9.5.7(c) or (e).
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F48: Gottlob [GoLeSc03] examines pursuit-evasion when G in a hypergraph. This
variation is known as robber-and-marshals. The robber (evader) resides in a vertex,
and each marshal (pursuer) resides in a hyperedge. Capture occurs when any marshal
occupies a hyperedge that is incident to the robber’s vertex.

F49: Barriere et al [BaFlFrSa02], Kolling et al [KoCa08] [KoCa10], Daniel et al
[DaBoKoTo10], and Borie et al [BoToKo11] consider pursuit-evasion on graphs in which
each vertex and each edge has a specified width. These vertex and edge widths represent
the number of pursuers needed to guard or clear each vertex or edge. The latter two
papers also consider graphs where each edge may have a specified length.

F50: Kolling et al [KoCa08] [KoCa10] define a variation of node search known as the
Graph-Clear problem, and also present a polynomial-time algorithm for Graph-Clear
on trees.

F51: Fomin et al [FoGo00] [FoHeTe05], Daniel et al [DaBoKoTo10], and Borie et
al [BoToKo11] consider variations of pursuit-evasion with different objectives such as
minimizing the elapsed time until capture, or the total distance travelled by all the
pursuers, or the sum of the times that each pursuer is present in the graph.

F52: Daniel et al [DaBoKoTo10] presents a pseudo-polynomial-time heuristic algo-
rithm called ESP for edge search on series-parallel graphs.

F53: Borie et al [BoToKo11] develops polynomial-time and pseudo-polynomial-time
algorithms, and also NP-completeness and strong NP-completeness results, for several
variations of sweeping on an assortment of graph classes.
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Figure 9.5.8: Examples for sweeping with specified vertex and edge widths.

EXAMPLES
Each vertex and edge in the graphs of Figure 9.5.8 is labeled with both its name and

its width. Each edge in these graphs has length 1, and each pursuer travels at speed 1.
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E35: The graph in Figure 9.5.8(a) can be cleared with 2 pursuers: Both pursuers
start at vertex u and depart u simultaneously. In parallel, one pursuer clears edge a,
and one pursuer clears edge b. Finally both pursuers arrive at v simultaneously. The
total distance travelled is 2, and the elapsed time is 1.

E36: The graph in Figure 9.5.8(b) can be cleared with 3 pursuers: All pursuers start
at vertex u. One pursuer guards u while the other two pursuers depart from u, clear
edge a, and arrive at v. One pursuer guards v while the other pursuer departs from
v, clears b, and arrives at u. Finally two pursuers depart from u, clear c, and arrive
at v. The total distance travelled is 5, and the elapsed time is 3. [Alternatively, if 4
pursuers are available, this graph can be cleared in elapsed time 2. Or, if 5 pursuers are
available, the graph can be cleared in elapsed time 1.]

E37: The graph in Figure 9.5.8(c) can be cleared with 3 pursuers: All pursuers start
at vertex u and depart u simultaneously; two pursuers clear edge a, while the third
pursuer clears edge b. When the first two pursuers arrive at v, one guards v while the
other travels through the graph toward w. Two pursuers arrive at w simultaneously and
clear w. Next these two pursuers depart w simultaneously; one clears d while the other
travels through the graph toward v. When two pursuers reside at v, they both depart
v and clear c. Finally all three pursuers arrive at x simultaneously. The total distance
travelled is 10, and the elapsed time is 6. [Alternatively, if 4 pursuers are available, this
graph can be cleared with total distance 6 and elapsed time 2, as follows: In parallel,
two pursuers travel from u to x along edges a and c, while another pursuer travels from
u to x along edges b and d. The fourth pursuer remains stationary at w.]

E38: The graph in Figure 9.5.8(d) can be cleared with 10 pursuers: Initially, 2
pursuers reside at vertex u, 3 pursuers reside at vertex v, and 5 pursuers reside at
vertex x. In parallel, these 10 pursuers clear edges a, b, and d respectively, and all
pursuers arrive at vertex z simultaneously. Next, again in parallel, 4 pursuers clear edge
c, while the other 6 pursuers clear edge e. The total distance travelled is 20, and the
elapsed time is 2. [Alternatively, if 20 pursuers are available, this graph can be cleared
in elapsed time 1.]

E39: The graph in Figure 9.5.8(e) can be cleared with 11 pursuers: All pursuers
start at vertex u, and one pursuer remains stationary to guard u. In parallel, 2 pursuers
clear edge a, 3 pursuers clear edge b, and 5 pursuers clear edge d. These 10 pursuers
arrive at vertex v simultaneously. Next, again in parallel, 4 pursuers clear edge c, while
6 pursuers clear edge e. The total distance travelled is 20, and the elapsed time is 2.
[Alternatively, if 20 pursuers are available, this graph can be cleared in elapsed time 1.]

E40: The graph in Figure 9.5.8(f) can be cleared with 25 pursuers: 3 pursuers start
at vertex u, 18 pursuers start at vertex x, and 4 pursuers start in the center of edge d.
These last 4 pursuers clear edge d; 2 pursuers travel toward u, and 2 pursuers travel
toward x. When they arrive, the 5 pursuers at u clear u, and the 20 pursuers at x clear
x. Next, 5 pursuers depart from u; 2 pursuers clear edge a, and 3 pursuers clear edge
b. Simultaneously, 20 pursuers depart from x; 8 pursuers clear edge e, and 12 pursuers
clear edge f. When they arrive, the 10 pursuers at v clear v, and the 15 pursuers at w
clear w. Finally, in parallel, 6 pursuers depart v along edge c, and 6 pursuers depart
w along c. Eventually these 12 pursuers will meet in the middle of edge c. The total
distance travelled is 35, and the elapsed time is 2.

FACTS
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F54: Sugihara et al [SuSu89], Dawes [Da92], Neufeld [Ne96], Tanaka [Ta96], Du-
mitrescu et al [DuKoSuZy08], and Munteanu et al [MuBo10] study sweeping on p-by-q
grid graphs such that the evader becomes visible to any pursuer that occupies the same
row or column, the pursuers can communicate information such as the evader’s position,
and the ratio of the speeds of the evader and pursuers is fixed or bounded.

F55: Hahn et al [HaMa06], [Ha07] describe an exponential-time algorithm for solving
the cops-and-robbers problem on directed graphs when the number of cops is fixed.

F56: Goldstein et al [GoRe95] shows that the cops-and-robbers problem is EXPTIME-
complete for directed graphs.

F57: The literature considers many additional variants of pursuit-evasion, some of
which we briefly mention here:

• The pursuers and/or evader must begin at specified locations within the graph.

• A pursuer can see and/or capture the evader if within distance at most ε.

• Pursuers are non-uniform (different speeds, visibility, and/or capture capabilities).

• Evaders can capture/destroy pursuers.

• Evaders move randomly rather than adversarially, for example, via a Markovian
random walk.

• The pursuers’ strategy is randomized rather than deterministic.

• The pursuers’ strategy yields capture with high probability rather than guaranteed
capture.

• The pursuers’ strategy performs well in average-case rather than worst-case.

• The algorithm that produces the pursuers’ strategy is approximate or heuris-
tic/experimental rather than optimal.

• The size and/or structure of the graph is not known in advance.

• The environment is a geometric space rather than a graph; for example, a circle,
convex polygon, non-convex polygon, or any other 2D or 3D region (bounded or
unbounded, possibly containing holes or obstacles).
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