
A Case for Collaborative Construction
as Testbed for Cooperative Multi-Agent Planning∗

Sven Koenig
Department of Computer Science
University of Southern California

skoenig@usc.edu

T. K. Satish Kumar
Department of Computer Science
University of Southern California

tkskwork@gmail.com

Abstract

Cooperative multi-agent planning is an understudied but im-
portant area of AI planning due to the increasing importance
of multi-agent systems. In this paper, we make the case for
using collaborative construction as testbed for cooperative
multi-agent planning. Planning for single agents is already
difficult due to the large number of blocks and long plans.
Planning for multiple agents is even more difficult since it
needs to reason about how to achieve a high degree of par-
allelism without agents obstructing each other even though
many agents operate together in tight spaces. In previous
research, we developed a first (domain-dependent, centralized
and non-optimal) multi-agent planning method for this do-
main. Here, we explain the advantages of using collaborative
construction as multi-agent planning domain, formalize the
planning problem and relate it to existing planning problems
in the hope that other researchers will adopt it as testbed for
cooperative multi-agent planning.

Introduction
Cooperative multi-agent planning is an important area of
AI planning due to the increasing importance of multi-
agent systems. For example, teams of agents are more
fault-tolerant and allow for more parallelism than single
agents. Multi-agent planning promises to coordinate agents
much more efficiently than alternative coordination strate-
gies, such as — for example — behavior-based, stigmergy-
based or market-based methods, which are typically very
myopic. Yet, cooperative multi-agent planning is currently
understudied. For example, only two out of 20 sessions
at the International Conference on Automated Planning
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and Scheduling 2016 were on distributed and multi-agent
planning.

In this paper, we make the case for using collaborative
construction as testbed for cooperative multi-agent plan-
ning. Building on our previous research (Kumar, Jung, and
Koenig 2014; Cai et al. 2016), we suggest to simulate the
Harvard TERMES robots, actual robots that were inspired
by termites. Among many other species of animals, ter-
mites are capable of building mounds that are much larger
than themselves. Inspired by termites and their building
activities, the Harvard TERMES project investigated how
multiple robots can cooperate to build user-specified three-
dimensional structures much larger than themselves (Pe-
tersen, Nagpal, and Werfel 2011). The agents need to build
ramps to reach high places and avoid obstructing each
other. Currently, the TERMES robots coordinate using local
behavior-based and stigmergy-based rules, which make it
impossible for them to construct complex structures. Plan-
ning is required, even for single agents, to build structures
effectively since they need to build ramps to reach high
places, for example when building towers. Ramps consist of
many blocks and are time-consuming to build. Thus, agents
need to plan carefully when and where to build ramps and,
once built, how to utilize them best. Planning for single
agents is already difficult due to the large number of blocks
and long plans. Planning for multiple agents is even more
difficult since it needs to reason about how to achieve a high
degree of parallelism without agents obstructing each other
even though many agents operate together in tight spaces.
Furthermore, single agents no longer have to carry blocks
all the way to their destinations since agents can hand over
blocks to each other. For example, they can form bucket
brigades to transport blocks. Ideally, one would like to plan
for a large number of agents, such as one hundred agents or
more.

Advantages of Collaborative Construction
Advantages of using collaborative construction as testbed
for cooperative multi-agent planning include: The TERMES
robots are very simple to simulate and allow for determin-
istic and symbolic planning. Robotics domains are often
continuous domains with a substantial amount of sensor
and actuator uncertainty, while AI planning is often studied
in the context of symbolic domains without uncertainty.



Collaborative construction fits the latter assumptions well.
For example, the TERMES robots move on the blocks and
the environment is thus automatically discretized into square
cells. The TERMES robots use hardware features to achieve
close-to-perfect execution. For example, a white cross on
a black background of each block helps them to track
both their position and orientation. Moreover, a circular
indentation on each block helps them to turn in place without
accumulating drift. Collaborative construction is thus a good
domain for demonstrating the applicability of AI planning
to robot planning, which will help to bridge the current
gap in planning between AI and robotics. Collaborative
construction pushes the state-of-the-art of AI planning but is
not too difficult. There is a potential progression of research
from centralized planning for single agents, via centralized
planning for multiple agents to decentralized planning for
multiple agents. At the same time, collaborative construction
is also rich in structure that can be exploited for efficient
and effective planning. In particular, spatial constraints,
different from temporal constraints, are an understudied but
very important area of AI planning due to the increasing
importance of physical agents, such as robots, that operate in
tight spaces. Collaborative construction subsumes some pre-
viously studied planning problems with spatial constraints.
For example, parallelism comes with the overhead of having
to coordinate multiple agents so that they neither collide
with each other nor block each other. This introduces com-
binatorial problems akin to multi-agent path finding. Multi-
agent path finding is concerned with multiple agents having
to navigate effectively in tight spaces (Sharon et al. 2015;
Wilt and Botea 2014), such as spaces with long narrow
corridors where agents cannot pass each other. Multi-agent
path finding is often studied in the context of automated
warehouse domains, such as the Amazon fulfillment cen-
ters (Wurman, D’Andrea, and Mountz 2008), but is also
relevant for collaborative construction since ramps are time-
consuming to build and thus will typically be so narrow
to not let two agents pass each other. Overall, we expect
research on collaborative construction to yield insights into
spatial multi-agent planning that go well beyond collabora-
tive construction.

Hardware System
Our description of the TERMES hardware system follows
(Petersen, Nagpal, and Werfel 2011; Werfel, Petersen, and
Nagpal 2011; 2014), see Figure 1.1 It consists of small au-
tonomous mobile robots and a reservoir of passive “building
blocks,” simply referred to as “blocks.” The robots gather
blocks from the reservoir to collaboratively build a user-
specified structure. The robots are roughly of the same size
as the blocks. Yet, they can manipulate these blocks to build
structures that are much larger and taller than themselves.
They do so by stacking the blocks onto each other and
building ramps to scale to greater heights.

The robots are equipped with four small whegs that allow
for different kinds of locomotion using the same action

1See www.eecs.harvard.edu/ssr/projects/cons/termes.html for
more information.

of simply driving forward. The whegs allow the robots to
move on level ground, climb up one block (to reach higher
levels) and climb down one block (to reach lower levels)
without any additional hardware or software capabilities,
making this a reliable operation without complicated low-
level control and allowing one to focus on high-level plan-
ning. The robots can navigate on a partially built structure
(or the ground) without losing track of where they are or
falling down. They are equipped with an arm and a gripper
to facilitate picking-up, carrying and dropping-off blocks,
one at a time. Mechanical features of the blocks also help
the robots to perform these operations reliably with the use
of only one actuator. One case where actuation is often not
sufficiently accurate, which we ignore in the formalization
below, is that it is difficult for robots to drop off a block
directly between two other blocks (Petersen, Nagpal, and
Werfel 2011).

Formalization of Collective Construction
We are given a start configuration and a desired goal con-
figuration in form of user-specified 2D matrices of non-
negative integers, referred to as workspace matrices. The
cells of the matrices represent physical locations on a grid
frame of reference, and the non-negative integers represent
the heights of the towers (that is, vertical stacks of blocks)
that need to be constructed by stacking blocks at those cells.
(A height of zero means no tower, represented by a missing
number in our figures.) Thus, the configurations do not have
blocks that rest only partially on top of other blocks nor
completely enclosed spaces, such as rooms in a house. As
an example, consider an empty start configuration and a goal
configuration that represents a castle that consists of a tower
of height three surrounded by a wall of height one, as shown
in Figure 2(d).

At any intermediate stage, the top of a tower is called
reachable if and only if an agent, starting from the ground
level, can reach the top of that tower by repeatedly turning
left, turning right and driving forward. Turning left and
right turns the agent 90 degrees in place. Moving the agent
forward moves it to the neighboring tower in front of it as
long as the agent moves at most one block up or down.
Each agent can carry at most one block. The agent can pick
up a block from the top of a tower if and only if there
is a neighboring tower (in one of the four main compass
directions) of height one less, the top of which is reachable,
because it can then move to this neighboring tower and pick
up the block. The agent can drop off a block on top of a tower
if and only if there is a neighboring tower of equal height,
the top of which is reachable, because the agent can then
move to this neighboring tower and drop off the block. The
problem is to build a user-specified structure with a given
number of agents.

State-of-the-Art of Collective Construction
Currently, the TERMES robots coordinate using local
behavior-based and stigmergy-based rules (Petersen,
Nagpal, and Werfel 2011), which make it impossible
for them to construct complex structures. There has



Figure 1: The TERMES system consisting of robots, blocks and the reservoir [figure courtesy of (Petersen, Nagpal, and Werfel
2011)].

been a fair amount of theoretical work on collective
construction with different assumptions, including
– but not limited to – (Jones and Mataric 2004;
Grushin and Reggia 2008; Napp and Klavins 2010;
Yun and Rus 2010). Many of these models are abstractions
that do not model real hardware and often also make
additional simplifications to allow either for a theoretical
analysis or the development of simple planning methods.

Existing Planning Problems
The collective construction problem has similarities to the
blocksworld and logistics problems, both of which have
extensively been used in planning competitions (McDermott
2000). The blocksworld problem is concerned with building
towers of blocks. The constraints are due to the vertical
arrangements of blocks since only the top block of each
tower can be accessed. How the blocks are moved does not
impose any constraints, except that only a given number of
blocks can be moved at the same time. The logistics prob-
lem, on the other hand, is concerned with moving objects to
given cities. The constraints are due to how objects can be
moved from city to city, given by the transportation options
and their capacities. The spatial arrangement of objects
does not impose any constraints. Planning researchers have
also studied combinations of the blocksworld and logistics
domains (Ghallab, Nau, and Traverso 2016) where both
the spatial arrangement of objects and how they are moved
imposes constraints, for example, in the context of moving
containers in container terminals.

Collaborative construction imposes more constraints than
the blocksworld, logistics or container terminal problems
since blocks can be picked up from the tops of towers only
when certain spatial conditions hold, blocks can be put down
on tops of towers only when certain spatial conditions hold,
and they need to be carried from their pick-up locations
to their drop-off locations along spatially-feasible paths.
This presents a variety of issues not present in the existing
planning problems. For example, ramps of many blocks
need to be built to satisfy the spatial conditions, resulting
in long plans with many objects — which makes planning

very time consuming already for a single agent. Collective
construction with multiple agents is even more difficult since
one needs to figure out how to achieve a high degree of
parallelism even though the state space grows exponentially
in the number of agents and multiple agents can easily
obstruct each other in tight spaces.

Feasibility Study
No planning methods existed for collaborative construction
with agents that correspond to the Harvard TERMES robots.
We therefore considered it important to develop a planning
method for this domain in a feasibility study before advocat-
ing its use as testbed for cooperative multi-agent planning.
We assume in the following for simplicity that the reservoir
(that provides the blocks) is unlimited and that the start
configuration is empty, that is, all blocks are initially stored
in the reservoir.

One intuitive single-agent planning method, called the
tower-by-tower planning method, is to build the towers
one by one, starting from one of the corners, each time
constructing a ramp and then deconstructing it again. In
this approach, the agent needs to build a ramp consisting
of towers of heights h − 1, h − 2 . . . 1 to build a tower
of height h. The ramp is then deconstructed, resulting in
O(h2) total number of block (pick-up and drop-off) oper-
ations to build a tower of height h. This intuitive planning
method is correct, is complete, runs in polynomial time and
performs a polynomial number of block operations for any
user-specified structure. It demonstrates that any structure
can be built by one or more agents provided that there is
sufficient empty space around it. However, the tower-by-
tower planning method is not very effective even for simple
structures.

We therefore first developed a better single-agent plan-
ning method for this domain in a feasibility study. This
planning method attempts to minimize the total number
of block operations but is heuristic in nature, that is, is
not guaranteed to achieve its objective (Kumar, Jung, and
Koenig 2014). It is based on the idea of performing dynamic
programming on a tree that spans the cells of the workspace
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Figure 2: Shows an example of the phases of our planning
algorithm. (a) shows the empty workspace matrix, which
is the start configuration. (b) shows the workspace matrix
after Phase 1, which adds blocks. A ramp for the tower
and the tower itself have now been completely constructed,
while the wall has been partially constructed. (c) shows the
workspace matrix after Phase 2, which removes blocks. The
ramp has now been deconstructed. (d) shows the workspace
matrix after Phase 3 (goal configuration), which adds blocks.
The remainder of the wall has now been constructed, finish-
ing the goal configuration.

matrix and restricts the movements of the agent to the
edges of this tree. The use of dynamic programming allows
us to exploit common substructures and keep the number
of block operations small. We then generalized it to a
centralized multi-agent planning method (Cai et al. 2016).
In the remainder of this section, we discuss both our single-
agent planning method and its generalization.

Both planning methods operate on an undirected graph
constructed from the workspace matrix. Each vertex corre-
sponds to a cell, and each edge connects neighboring cells
in the four compass directions. A special vertex S represents
the reservoir and is connected to those vertices whose cells
are neighbors of the reservoir, for example, the vertices
whose cells are the boundary cells of the workspace matrix
(since an agent carrying a block to or from the reservoir must
cross the boundary of the workspace). The agents move on a
spanning tree of this graph, rooted at S, as shown in Figure
3. They build a user-specified structure in phases. They add
blocks to the structure in odd phases and remove blocks from
the structure in even phases.

Our single-agent planning method uses dynamic pro-
gramming on the spanning tree from its leaves to the root to
first decide on the heights of the towers in each cell and then
on the movements of the agent between the reservoir and the
cells where blocks need to be added or removed. Consider,
for example, a vertex in the spanning tree with two children
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S

Figure 3: Shows the spanning tree used for the example.

during a phase where blocks are added to the structure. If
dynamic programming has decided that towers of heights
three and five are needed in the cells that correspond to the
first and second child (respectively) of the vertex, then it can
deduce that a tower of height four is needed in the cell that
corresponds to the vertex itself since this height is necessary
for an agent to put down the block that builds the tower of
height five in the cell that corresponds to the second child.
Details are given in (Kumar, Jung, and Koenig 2014), and an
example is shown in Figure 2.

Our single-agent planning method is correct, is complete,
runs in polynomial time and performs a polynomial num-
ber of block operations for any user-specified structure.
It yields, within seconds, construction plans for problem
instances with many blocks that require only 50-60 per-
cent of block operations compared to the tower-by-tower
planning method. However, our planning method can be
improved. For example, its plan quality crucially depends
on the spanning tree since the movements of the agent are
restricted to the edges of the spanning tree, which can result
in longer paths for the agent than necessary. One can find
a good spanning tree for a given goal configuration in at
least two ways: First, one can use heuristics for choosing
good spanning trees. For example, minimum spanning trees
on edge-weighted graphs can reduce the total number of
block operations if the weight of an edge is the absolute
value of the difference between the heights of the cells
in the goal configuration that corresponds to the vertices
it connects. (All edges neighboring S have weight zero.)
Intuitively, a minimum spanning tree for this edge-weighted
graph finds paths with minimum height variations in the goal
configuration. Second, local search methods in an outer loop
of our planning method can improve the initial spanning tree
further over several iterations. Details are given in (Cai et al.
2016).

Our single-agent planning method can easily be gener-
alized to multi-agent planning. Spanning trees allow for
some parallelism in movements since the block operations
carried out in the cells that correspond to the vertices of one
subtree do not affect the operations for another subtree. For
agents moving outside of their subtrees, one can exploit that
multi-agent path finding is easier on trees and with identical
agents (Yu and LaValle 2012). One simple technique to
simplify coordination and avoid deadlocks is, for example,
to move the agents in phases. All agents move along the tree



from the reservoir during odd phases and to the reservoir
during even phases. Details are given in (Cai et al. 2016).

Conclusions
In this paper, we made a case for using collaborative con-
struction with agents that correspond to the Harvard TER-
MES robots as testbed for cooperative multi-agent planning.

We have developed a first multi-agent planning method
for this domain in a feasibility study. While elegant, it
has a number of disadvantages. For example, it is domain-
dependent, centralized, non-optimal, attempts to minimize
the total number of block operations (rather than, say, the
makespan, which is a more natural objective) and restricts
the movements of the agents to the edges of the spanning
tree, which can result in longer paths for the agents than
necessary. The spanning tree also limits the amount of
achievable parallelism for multiple agents. Agents can be as-
signed to different subtrees and then operate independently
within their subtrees but still need to coordinate outside of
their subtrees to avoid obstructing each other, for example,
when picking up blocks from the reservoir. Finally, single
agents do not have to carry blocks all the way to their
destinations since agents can hand over blocks to each other,
which our multi-agent planning method does not consider.
Domain-independent, distributed and/or optimal planning
raises a number of additional research issues that have not
been addressed yet.

A student project at Ben-Gurion University of the Negev
(Israel) recently encoded collaborative construction with the
TERMES robots in a MA-PDDL format (Kovacs 2012)
and used two existing (domain-independent) MA-STRIPS
planners from the 2015 CoDMAP competition on toy in-
stances that are much smaller than those that our (domain-
dependent) planning method has been applied to (Yogev
and Segal 2016). We predict that planning methods can be
developed that are more efficient and effective than the ones
existing one so far. Many different domain-dependent and
domain-independent planning methods with different ad-
vantages and disadvantages are imaginable, such as learning
a “ramp construction” macro to shorten the plan lengths and
make planning more efficient. Smart macros are needed in
this case since a crucial component of planning is to figure
out how to fit ramps into the available space and how to
amortize their construction and deconstruction effort among
several towers that need to be built.
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