
A Generalized Framework for Lifelong Planning A* Search
Maxim Likhachev

School of Computer Science
Carnegie Mellon University

Pittsburgh, PA 15213
maxim+@cs.cmu.edu

Sven Koenig
University of Southern California
Computer Science Department

Los Angeles, CA 90089
skoenig@usc.edu

Abstract

Recently, it has been suggested that Lifelong Planning A*
(LPA*), an incremental version of A*, might be a good heuris-
tic search-based replanning method for HSP-type planners.
LPA* uses consistent heuristics and breaks ties among states
with the same f-values in favor of states with smaller g-values.
However, HSP-type planners use inconsistent heuristics to
trade off plan-execution cost and planning time. In this pa-
per, we therefore develop a general framework that allows one
to develop more capable versions of LPA* and its nondeter-
ministic version Minimax LPA*, including versions of LPA*
and Minimax LPA* that use inconsistent heuristics and break
ties among states with the same f-values in favor of states with
larger g-values. We then show experimentally that the new ver-
sions of LPA* indeed speed it up on grids and thus promise to
provide a good foundation for building heuristic search-based
replanners.

Introduction
Heuristic search-based planning is a recent planning
paradigm on which very powerful symbolic planners are
based, as first demonstrated by HSP and its successor HSP
2.0 (Bonet & Geffner 2001). Heuristic search-based planners
typically assume that planning is a one-shot process. In real-
ity, however, planning is often a repetitive process where one
needs to solve series of similar planning tasks, for instance,
because the situation changes over time. An important exam-
ple is the aeromedical evacuation of injured people in crisis
situations where aftershocks can destroy additional air fields
(Kott, Saks, & Mercer 1999). Researchers have therefore de-
veloped replanning and plan reuse techniques that reuse in-
formation from previous planning episodes to solve series of
similar planning tasks much faster than is possible by solv-
ing each planning task from scratch. Examples include case-
based planning, planning by analogy, plan adaptation, trans-
formational planning, planning by solution replay, repair-
based planning, and learning search-control knowledge. Re-
cently, the SHERPA replanner (Koenig, Furcy, & Bauer 2002)
demonstrated that Lifelong Planning A* (LPA*) (Koenig &
Likhachev 2002b) promises to be a good heuristic search-
based replanning method for HSP-type planners. LPA* is
an incremental version of A* that uses consistent heuristics
and breaks ties among states with the same f-values in favor
of states with smaller g-values. Since LPA* uses consistent
heuristics, it finds minimum-cost plans. However, planners

Copyright c© 2005, American Association for Artificial Intelligence
(www.aaai.org). All rights reserved.

that find minimum-cost plans do not scale up to large do-
mains. Heuristic search-based planners therefore use incon-
sistent heuristics to trade off plan-execution cost and plan-
ning time. Unfortunately, LPA* with inconsistent heuristics
is neither efficient nor correct. In this paper, we therefore de-
velop Generalized LPA* (GLPA*), a framework that general-
izes LPA* and allows one to develop more capable versions
of LPA* and its nondeterministic version Minimax LPA*
(Likhachev & Koenig 2003), including versions of LPA* and
Minimax LPA* that use inconsistent heuristics and break ties
among states with the same f-values in favor of states with
larger g-values. We prove that the new versions of LPA*
expand every state at most twice and terminate, just like the
original version. We also derive bounds on the plan-execution
cost of the resulting plans. We then show experimentally that
the new versions of LPA* indeed speed it up on grids and thus
can speed up A* searches.

Lifelong Planning A* (LPA*)
We first describe Lifelong Planning A* (LPA*) (Koenig &
Likhachev 2002b), an incremental version of A* that uses
consistent heuristics and breaks ties among states with the
same f-values in favor of states with smaller g-values. LPA*
repeatedly determines a minimum-cost plan from a given start
state to a given goal state in a deterministic domain while
some of the action costs change. All variants of LPA* and
A* described in this paper search from the goal state to the
start state (backward search), with the exception of Figure 12.
A more detailed description of LPA* than the one given be-
low can be found in (Koenig, Likhachev, & Furcy 2004), that
also contains proofs that LPA* finds minimum-cost plans (in
form of paths) efficiently, for example, that the first search of
LPA* is identical to an A* search with the same heuristics
and tie-breaking strategy and that LPA* expands every state
at most twice per search episode.

Notation In the following,S denotes the finite set of states
of the domain. A(s) denotes the finite set of actions that
can be executed in states ∈ S. succ(s, a) ∈ S denotes
the successor that results from executing actiona ∈ A(s)
in states ∈ S. Similarly, Pred(s) := {s′ ∈ S|s =
succ(s′, a) for somea ∈ A(s′)} denotes the set of predeces-
sors of states ∈ S. 0 < c(s, a) ≤ ∞ denotes the cost of
executing actiona ∈ A(s) in states ∈ S. LPA* always deter-
mines a minimum-cost plan from a given start statesstart ∈ S
to a given goal statesgoal ∈ S, knowing both the domain and
the current action costs, where a minimum-cost plan is de-
fined to minimize the sum of the costs of the executed actions



The pseudo code uses the following functions to manage the priority queue: U.TopKey()

returns the smallest priority of all states in priority queueU . (If U is empty, then

U.TopKey() returns the largest possible priority, that is[∞;∞].) U.Pop() deletes the state

with the smallest priority in priority queueU and returns the state. U.Insert(s, k) inserts

states into priority queueU with priority k. U.Remove(s) removes states from priority

queueU . Finally, U.Update(s, k) sets the priority of states in the priority queue tok.

procedure Initialize()
{01} U = ∅;
{02} for all s ∈ S rhs(s) = g(s) = ∞;
{03} rhs(sgoal) = 0;
{04} UpdateState(sgoal);

procedure UpdateState(u)
{05} if (u 6= sgoal) rhs(u) = mina∈A(u)(c(u, a) + g(succ(u, a)));
{06} if (u ∈ U andg(u) 6= rhs(u)) U.Update(u, K(u));
{07} else if (u ∈ U andg(u) = rhs(u)) U.Remove(u);
{08} else if (u /∈ U andg(u) 6= rhs(u)) U.Insert(u, K(u));

procedure ComputePlan()
{09} while (U.TopKey() < K(sstart) or rhs(sstart) 6= g(sstart))
{10} u = U.Pop();
{11} if (g(u) > rhs(u))
{12} g(u) = rhs(u);
{13} for all s ∈ Pred(u) UpdateState(s);
{14} else
{15} g(u) = ∞;
{16} for all s ∈ Pred(u) ∪ {u} UpdateState(s);

procedure Main()
{17} Initialize();
{18} forever
{19} ComputePlan();
{20} Wait for changes in action costs;
{21} for all actions with changed action costsc(u, a)
{22} Update the action costc(u, a);
{23} UpdateState(u);

Figure 1: Backward Version of Lifelong Planning A*.

(plan-execution cost). Since the domain is deterministic, the
plan is a sequence of actions.

Local ConsistencyLPA* maintains two kinds of estimates
of the goal distancegd(s) of each states: a g-valueg(s) and
an rhs-valuerhs(s). The rhs-value of a state is based on the
g-values of its successors and thus potentially better informed
than the g-values. It always satisfies the following relation-
ship for all statess (Invariant 1 ):

rhs(s) =


0 if s = sgoal

mina∈A(s)(c(s, a) + g(succ(s, a))) otherwise.

A states is called locally consistent ifg(s) = rhs(s), oth-
erwise it is called locally inconsistent. If all states are lo-
cally consistent then all of their g-values are equal to their
respective goal distances, which allows one to find minimum-
cost plans from any state to the goal state greedily. How-
ever, LPA* does not maintain the local consistency of ev-
ery state after each search episode. Instead, it uses heuris-
tics h(s) to focus the search and computes only the g-values
that are relevant for computing a minimum-cost plan from
the start state to the goal state.h(s) approximates the cost
of a minimum-cost plan between the start state and states.
The heuristics need to be nonnegative and (backward) con-
sistent, that is, obey the triangle inequalityh(sstart) = 0
and h(s) ≤ h(s′) + c(s′, a) for all statess ∈ S, states
s′ ∈ Pred(s) and actionsa ∈ A(s′) with s = succ(s′, a).

Priority Queue LPA* maintains a priority queue that al-
ways contains exactly the locally inconsistent states (Invari-
ant 2). These are the states whose g-values LPA* potentially
needs to change to make them locally consistent. The priority
K(s) of states in the priority queue is always a vector with
two components:K(s) = [K1(s);K2(s)], whereK1(s) =
min(g(s), rhs(s)) + h(s) andK2(s) = min(g(s), rhs(s))
(Invariant 3 ). Thus, if its g-value or rhs-value changes, then
its priority needs to get re-computed. Priorities are compared
according to a lexicographic ordering. For example, a pri-
ority K = [K1;K2] is smaller than or equal to a priority
K ′ = [K ′

1;K
′
2] iff either K1 < K ′

1 or (K1 = K ′
1 and

K2 ≤ K ′
2).

Pseudo CodeThe main function Main() in the pseudo code
of LPA* in Figure 1 first calls Initialize() to initialize the vari-
ables{17}. (Numbers in curly brackets refer to line numbers
in the pseudo code.) Initialize() sets the initial g-values of all
states to infinity and sets their rhs-values to satisfy Invariant
1 {02-03}. Thus, the goal state is initially the only locally
inconsistent state and is inserted into the otherwise empty pri-
ority queue{04}. In an actual implementation, Initialize()
only needs to initialize a state when it encounters it during
the search and thus does not need to initialize all states up
front. Main() then calls ComputePlan() to find a minimum-
cost plan. ComputePlan() repeatedly removes the state with
the smallest priority from the priority queue and recalculates
its g-value (“expands the state”){10-16}. It thus expands the
locally inconsistent states in nondecreasing order of their pri-
orities. A locally inconsistent states is called locally over-
consistent iffg(s) > rhs(s). When ComputePlan() expands
a locally overconsistent states {12-13}, then it holds that
rhs(s) = gd(s), which implies thatK(s) = [f(s); gd(s)],
wheref(s) = gd(s)+h(s). During the expansion of the state,
ComputePlan() sets the g-value of the state to its rhs-value and
thus its goal distance{12}, which is the desired value and also
makes the state locally consistent. Its g-value then no longer
changes until ComputePlan() terminates. A locally inconsis-
tent states is called locally underconsistent iffg(s) < rhs(s).
When ComputePlan() expands a locally underconsistent state
{15-16}, then it simply sets the g-value of the state to infinity
{15}. This makes the state either locally consistent or over-
consistent. If the expanded state was locally overconsistent,
then the change of its g-value can affect the local consistency
of its predecessors{13}. Similarly, if the expanded state was
locally underconsistent, then it and its predecessors can be
affected{16}. ComputePlan() therefore calls UpdateState()
for each potentially affected state to ensure that Invariants 1-3
to continue to hold. UpdateState() updates the rhs-value of
the state to ensure that Invariant 1 holds{05}, adds it to or
removes it from the priority queue (if needed) to ensure that
Invariant 2 holds{07-08}, and updates its priority (if the state
remains in the priority queue) to ensure that Invariant 3 holds
{06}. LPA* expands states until the start state is locally con-
sistent and the priority of the state to expand next is no smaller
than the priority of the start state. Ifg(sstart) = ∞ after the
search, then there is no plan from the start state to the goal
state with finite plan-execution cost. Otherwise, one can find
a minimum-cost plan by starting insstart and always execut-
ing the actionarg mina∈A(s)(c(s, a) + g(succ(s, a))) in the



Figure 2: An Example (Koenig, Furcy, & Bauer 2002).

current states until s = sgoal (ties can be broken arbitrar-
ily). Main() then waits for changes in action costs{20}. To
maintain Invariants 1-3 if some action costs have changed, it
calls UpdateState(){23} for the states potentially affected by
the changed action costs, and finally recalculates a minimum-
cost plan by calling ComputePlan() again{19}, and iterates.

Example We use the four-connected grid in Figure 2 to
demonstrate how LPA* operates. The task is to find a path
from the start cell D1 to the goal cell A2 once (top figure)
and then a second time after cell B2 becomes blocked (re-
maining figures). All edge costs are either one (if the edges
connect two unblocked cells) or infinity. We use the sum of
the absolute difference of the x coordinates of two cells and
the absolute difference of their y coordinates (Manhattan dis-
tance) as heuristic approximation of their distance, resulting
in (forward and backward) consistent heuristics. Assume that
the g-values were computed as shown in the top figure during
initial planning, making all cells locally consistent. (A cell
is locally consistent iff its g-value equals its rhs-value, which
is computed based on the g-values of the neighboring cells.)
Consequently, the g-values of all cells are equal to their re-
spective goal distances. We now block cell B2, which makes
cell C2 locally underconsistent and thus locally inconsistent.
Locally inconsistent cells are shown in grey in the figure to-
gether with their priorities. During each iteration, LPA* now
expands one locally inconsistent state with the smallest pri-
ority. It sets the g-value of the state to infinity if the state
is locally underconsistent and to its rhs-value if it is locally
overconsistent. In the second case, it turns out that the new
g-value of the state is equal to its goal distance. Thus, LPA*

(a) 1st search (b) 2nd search
exp=56,max=1 exp=53,max=1

Figure 3: (a,b): A* with consistent heuristics (Manhattan Dis-
tance) and bad tie-breaking (A*-TB1).exp is the number of
state expansions, andmax is the maximum number of expan-
sions of the same state.

expands cell C2 during its first iteration and sets its g-value to
infinity, which makes cell D2 locally underconsistent since its
rhs-value depends on the g-value of cell C2. This way, LPA*
propagates local inconsistencies from cell to cell. The propa-
gation stops at cells D0 and D5 since their rhs-values do not
depend on the g-values of cells that LPA* has changed. LPA*
does not expand all cells but a sufficient number of them to
guarantee that one is able to trace a shortest path from the
start cell to the goal cell by starting at the start cell and al-
ways greedily decreasing the g-value of the current cell. This
example demonstrates how LPA* expands each cell at most
twice (namely once as locally underconsistent and once as
locally overconsistent), a property that is only guaranteed to
hold if the heuristics are (backward) consistent.

Naive Attempts at Extending LPA*
LPA* uses consistent heuristics and breaks ties among states
with the same f-values in favor of states with smaller g-values.
It is known, however, that A* tends to expand fewer states if it
uses inconsistent heuristics and breaks ties among states with
the same f-values in favor of states with larger g-values. We
try to apply the same ideas to LPA* since the first search of
LPA* is the same as that of A* with the same heuristics and
tie-breaking strategy, and both search algorithms thus expand
the same number of states. As example domain, we use the
four-connected grid from Figure 3. The task is to find a path
from the start cell S in the upper-left corner to the goal cell
G in the lower-right corner once and then a second time after
a cell on the previous cost-minimal path is blocked. All edge
costs are again either one or infinity. Our baseline algorithm is
A* that uses consistent heuristics and breaks ties among states
with the same f-values in favor of states with smaller g-values,
like LPA*. We refer to this tie-breaking strategy as “bad tie-
breaking” even though, in many cases, it does not matter how
ties are broken and all tie-breaking strategies are then equally
effective. We refer to A* with this tie-breaking strategy as
A*-TB1. A*-TB1 with consistent heuristics is guaranteed to
find a minimum-cost plan. In the example domain, remain-
ing ties are broken in the order W, N, E and S. We use again
the Manhattan distance as heuristic approximation of the dis-
tances. Figure 3(a) shows (in grey) the cells expanded by A*-
TB1 with the Manhattan distance, and Figure 3(b) shows the
cells expanded by the same search algorithm after we blocked
one of the cells on the initial path and ran it again. Remem-



(a) 1st search (b) 2nd search (c) 1st search (d) 2nd search
exp=18,max=1 exp=22,max=1 exp=18,max=1 exp=49,max=1

Figure 4: (a,b): A* with inconsistent heuristics (three times
the Manhattan Distance) and bad tie-breaking (A*-TB1).
(c,d): A* with consistent heuristics (Manhattan Distance) and
good tie-breaking (A*-TB2).

ber that all variants of LPA* and A* described in this paper
search from the goal state to the start state, with the exception
of Figure 12.

Inconsistent Heuristics

A* can be used with inconsistent heuristics without any
changes to the search algorithm. For heuristic search prob-
lems, these inconsistent heuristics are often derived from con-
sistent heuristics by multiplying all heuristics with the same
constantε > 1 to get them closer to the values they are sup-
posed to approximate (resulting in weighted heuristics). A*
then trades off plan-execution cost and planning time and thus
tends to expand fewer states than A* with consistent heuris-
tics, a property used by HSP-type planners (Bonet & Geffner
2001). While A* is no longer guaranteed to find a minimum-
cost plan, it still finds a plan whose plan-execution cost is
at most a factor ofε larger than minimal (Pearl 1985). Fig-
ure 4(a) shows the cells expanded by A*-TB1 with the Man-
hattan distance multiplied by three, and Figure 4(b) shows the
cells expanded by the same search algorithm after we blocked
the cell on the path and ran it again. It expands many fewer
states than A*-TB1 with the Manhattan distance, demonstrat-
ing the advantage of inconsistent heuristics.

One could be tempted to use LPA* with inconsistent
heuristics without any code changes. Figure 5(a) shows the
cells expanded by LPA* with the Manhattan distance mul-
tiplied by three, and Figure 5(b) shows the cells expanded
by the same search algorithm after we blocked the cell on
the path and ran it again. During the second search, it ex-
pands many cells more than twice (shown in dark grey) and
some states even ten times, different from LPA* with con-
sistent heuristics that is guaranteed to expand each state at
most twice. It expands almost five times more states than
A*-TB1 with the same heuristics and almost two times more
states than A*-TB1 with the Manhattan distance. Thus, LPA*
with inconsistent heuristics is less efficient than search from
scratch. Even worse, it turns out that LPA* with inconsis-
tent heuristics can return a plan of infinite plan-execution cost
even if a plan of finite plan-execution cost exists, different
from A* with inconsistent heuristics that is guaranteed to re-
turn a plan of finite plan-execution cost if possible. Thus,
LPA* with inconsistent heuristics is not even correct. LPA*
thus cannot be used with inconsistent heuristics without any
changes to the search algorithm.

(a) 1st search (b) 2nd search (c) 1st search (d) 2nd search
exp=18,max=1 exp=102,max=10 exp=18,max=1 exp=63,max=3

Figure 5: (a,b): A naive version of LPA* with inconsistent
heuristics (three times the Manhattan Distance) and bad tie-
breaking. (c,d): A naive version of LPA* with consistent
heuristics (Manhattan Distance) and good tie-breaking.

Good Tie-Breaking

A* that breaks ties among states with the same f-values in fa-
vor of larger g-values tends to expand fewer states than A*
that breaks ties in the opposite direction, for example when
there are several minimum-cost plans from the start state to
the goal state and a large number of states on these plans
have the same f-value as the goal state. This case occurs fre-
quently on grids. We refer to this tie-breaking strategy as
“good tie-breaking” and to A* with this tie-breaking strat-
egy as A*-TB2. A*-TB2 with consistent heuristics is guar-
anteed to find a minimum-cost plan. Figure 4(c) shows the
cells expanded by A*-TB2 with the Manhattan distance, and
Figure 4(d) shows the cells expanded by the same search al-
gorithm after we blocked the cell on the path and ran it again.
It expands fewer states than A*-TB1 with the Manhattan dis-
tance, demonstrating the advantage of good tie-breaking.

One could be tempted to create a version of LPA* with
good tie-breaking as follows: LPA* always expands the
state with the smallest priority in its priority queue. The
priority K(s) of states is a two element vectorK(s) =
[K1(s);K2(s)], whereK1(s) = min(g(s), rhs(s)) + h(s)
andK2(s) = min(g(s), rhs(s)). Thus, the first element of
the priority corresponds to the f-value of states and the sec-
ond one corresponds to the g-value of states. A naive attempt
at creating a version of LPA* with good tie-breaking is to
change the priority of states to K(s) = [K1(s);−K2(s)].
Figure 5(c) shows the cells expanded by our naive version of
LPA* with the Manhattan distance. However, it did not replan
at all after we blocked the cell on the path and ran it again
because no inconsistent state had a smaller priority than the
start state. Consequently, it returned a plan of infinite plan-
execution cost even though a plan of finite plan-execution cost
exists. It is thus incorrect. We fixed this problem by forcing it
to expand states until it found a plan with finite plan-execution
cost from the start state to the goal state. Figure 5(d) shows
the cells expanded by this version of LPA* with the Manhat-
tan distance after we blocked the cell on the path and ran it
again. It expands some states more than twice, different from
LPA* with consistent heuristics that is guaranteed to expand
each state at most twice. It expands more states than A*-
TB2 with the same heuristics and more states than A*-TB1
with the same heuristics and therefore is less efficient than
search from scratch. This behavior can be explained as fol-
lows: LPA* with good tie-breaking can repair some part A



of its search tree and only then detect that it also needs to re-
pair a part of its search tree closer to its root. After it has
repaired this part of its search tree, the best way of repairing
part A might have changed and it then has to repair part A
again, possibly resulting in a large number of expansions of
the states in part A. Thus, our naive versions of LPA* with
good tie-breaking are either incorrect or inefficient. The eas-
iest way of avoiding this problem is to repair the search tree
from the root to the leaves, which is exactly what LPA* with
bad tie-breaking does.

Generalized Lifelong Planning A* (GLPA*)
We now develop Generalized LPA* (GLPA*), a framework
that generalizes LPA* and its nondeterministic version Min-
imax LPA* (Likhachev & Koenig 2003) and allows one to
develop more capable versions of LPA* and Minimax LPA*,
including versions of LPA* and Minimax LPA* that use in-
consistent heuristics and good tie-breaking.

Notation We need to generalize some definitions
since GLPA* can operate in nondeterministic domains.
Succ(s, a) ⊆ S denotes the set of states that can result
from executing actiona ∈ A(s) in states. This set con-
tains only one element in deterministic domains, namely the
state succ(s, a). Similarly, Pred(s) := {s′ ∈ S|s ∈
Succ(s′, a) for somea ∈ A(s′)} denotes the set of predeces-
sors of states ∈ S. 0 < c(s, a, s′) ≤ ∞ denotes the cost
of executing actions ∈ A(s) in states ∈ S if the execu-
tion results in states′ ∈ S. Then, the smallest possible plan-
execution cost of any plan from states ∈ S to states′ ∈ S is
defined recursively in the following way:

c
∗
(s, s

′
) =

(
0 if s = s′

mina∈A(s) mins′′∈Succ(s,a)(c(s, a, s′′) + c∗(s′′, s′)) otherwise.

GLPA* always determines a best plan (in form of a pol-
icy) according to a given optimization criterion from the given
start state to the given goal state, knowing both the domain
and the current action costs. It gives one a considerable
amount of freedom when it comes to specifying the optimiza-
tion criterion. We borrow some notion from reinforcement
learning to explain how this is done: Assume that every state
s ∈ S has a V-valueV (s) associated with it. Every state-
action pairs ∈ S anda ∈ A(s) then has a valueQV (s, a) > 0
associated with it that is calculated from the action costs
c(s, a, s′) and the valuesV (s′) for all statess′ ∈ Succ(s, a).
(We call these valuesQV (s, a) because they are similar to Q-
values from reinforcement learning.) Thus, there is a function
F such thatQV (s, a) = F (c(s, a, ·), V (·)). This function
can be chosen arbitrarily subject only to the following three
restrictions on the valuesQV (s, a) for all statess ∈ S and
actionsa ∈ A(s) (Restriction 1):

• QV (s, a) cannot decrease ifV (s′) for ones′ ∈ Succ(s, a)
increases andV (s′′) for all s′′ ∈ Succ(s, a)−{s′} remains
unchanged,

• ε QV (s, a) ≥ Qε V (s, a) for all ε > 0, and

• QV (s, a) ≥ maxs′∈Succ(s,a)(c(s, a, s′) + V (s′)).

We then also define the valuesQg(s, a) =
F (c(s, a, ·), g(·)) and Qgd(s, a) = F (c(s, a, ·), gd(·))

The pseudocode uses the following functions to manage the priority queue: U.TopKey()

returns the smallest priority of all states in priority queueU . (If U is empty, then

U.TopKey() returns the largest possible priority.) U.Pop() deletes the state with the

smallest priority in priority queueU and returns the state. U.Insert(s, k) inserts states into

priority queueU with priority k. U.Remove(s) removes states from priority queueU .

Finally, U.Update(s, k) sets the priority of states in the priority queue tok. The predicate

NotYet(s) is a shorthand for “states has not been expanded yet as overconsistent during

the current call to ComputePlan().”

procedure Initialize()
{01} U = ∅;
{02} for all s ∈ S rhs(s) = g(s) = ∞;
{03} rhs(sgoal) = 0;
{04} UpdateState(sgoal);

procedure UpdateState(u)
{05} if (u 6= sgoal) rhs(u) = mina∈A(u) Qg(u, a);
{06} if (u ∈ U andg(u) 6= rhs(u)) U.Update(u, K(u));
{07} else if (u ∈ U andg(u) = rhs(s)) U.Remove(u);
{08} else if (u /∈ U andg(u) 6= rhs(u) and NotYet(u)) U.Insert(u, K(u));

procedure ComputePlan()
{09} while (U.TopKey() < K(sstart) or rhs(sstart) 6= g(sstart))
{10} u = U.Pop();
{11} if (g(u) > rhs(u))
{12} g(u) = rhs(u);
{13} for all s ∈ Pred(u) UpdateState(s);
{14} else
{15} g(u) = ∞;
{16} for all s ∈ Pred(u) ∪ {u} UpdateState(s);

procedure Main()
{17} Initialize();
{18} forever
{19} ComputePlan();
{20} for all inconsistent statess /∈ U U.Insert(s, K(s));
{21} Wait for changes in action costs;
{22} for all actions with changed action costsc(u, a, v)
{23} Update the action costc(u, a, v);
{24} UpdateState(u);

Figure 6: GLPA*: Generalized Lifelong Planning A*.

for the same functionF . The valuesQg(s, a) are maintained
by GLPA*, while the valuesQgd(s, a) are used to defined the
fixpointsgd(s) for all statess ∈ S as follows:

gd(s) =


0 if s = sgoal
mina∈A(s) Qgd(s, a) otherwise.

Since the domain is potentially nondeterministic, the
plan is a policy (a mapping from states to actions).
The best plan is defined to result from executing action
arg mina∈A(s) Qgd(s, a) in states ∈ S with s 6= sgoal. For
example, LPA* definesQg(s, a) = c(s, a, s′) + g(s′) for
Succ(s, a) = {s′}.

Local ConsistencyGLPA* maintains the same two kinds
of variables as LPA* for each states, which again estimate the
valuegd(s): a g-valueg(s) and an rhs-valuerhs(s). The rhs-
value always satisfies the following relationship (Invariant
1):

rhs(s) =


0 if s = sgoal
mina∈A(s) Qg(s, a) otherwise.

The definitions of local consistency, overconsistency and
underconsistency are exactly the same as for LPA*.

Priority Queue GLPA* maintains the same priority queue
as LPA* but the priority queue now always contains exactly



the locally inconsistent states that have not yet been expanded
as overconsistent during the current call to ComputePlan()
(Invariant 2 ). GLPA* gives one a considerable amount of
freedom when it comes to specifying the priorities of the
states, different from LPA*. The priorityK(s) of states is
calculated from the valuesg(s) andrhs(s). The calculation
of the priorityK(s) is subject only to the restriction that there
must exist a constant1 ≤ ε < ∞ so that for all statess, s′ ∈ S
(Restriction 2):

• if g(s′) ≥ rhs(s′), g(s) < rhs(s) and rhs(s′) ≥
c∗(s′, s) + g(s), thenK(s′) > K(s), and

• if g(s′) ≥ rhs(s′), g(s) > rhs(s) and rhs(s′) >
ε c∗(s′, s) + rhs(s), thenK(s′) > K(s).

We “translate” these restrictions as follows: There are two
cases when the priorityK(s) of some states has to be smaller
than the priorityK(s′) of some states′ (K(s′) > K(s)).
In both cases, states′ is either locally consistent or locally
overconsistent (g(s′) ≥ rhs(s′)). In the first case, state
s is locally underconsistent (g(s) < rhs(s)) and the rhs-
value of states′ might potentially depend on the g-value of
s (rhs(s′) ≥ c∗(s′, s) + g(s)). In the second case, states is
locally overconsistent and the rhs-value of states′ might po-
tentially overestimate the cost of an optimal plan from state
s′ to the goal state by more than a factor ofε based on the
rhs-value ofs (rhs(s′) > εc∗(s′, s) + rhs(s)).

The priority of a states in the priority queue always corre-
sponds toK(s) (Invariant 3 ). GLPA* compares priorities in
the same way as LPA*, namely according to a lexicographic
ordering, although priorities no longer need to be pairs.

Pseudo CodeThe pseudo code of GLPA* in Figure 6 is
very similar to the one of LPA*. There are only two dif-
ferences: First, GLPA* generalizes the calculation of the
rhs-values and the priorities, which gives one a considerable
amount of freedom when it comes to specifying the optimiza-
tion criterion and the order in which to expand states. Second,
the priority queue of GLPA* does not contain all locally in-
consistent states but only those locally inconsistent states that
have not yet been expanded as overconsistent during the cur-
rent call to ComputePlan(). This can be done by maintain-
ing an unordered list of states that are locally inconsistent but
not in the priority queue. The predicate NotYet(s) {08} is
therefore a shorthand for “states has not been expanded yet
as overconsistent during the current call to ComputePlan().”
However, GLPA* updates the priority queue to contain all
locally inconsistent states between calls to ComputePlan()
{20}.

Theoretical Analysis
We now prove the termination, efficiency and correctness of
GLPA*. When ComputePlan() expands a state as overcon-
sistent, then it removes the state from the priority queue and
cannot inserted it again since it does not insert states into
the priority queue that have already been expanded as over-
consistent. Thus, ComputePlan() does not expand a state
again after it has expanded the state as overconsistent. When
ComputePlan() expands a state as underconsistent, it sets the
g-value of the state to infinity. Thus, if it expands the state

again, it expands the state as overconsistent next and then can-
not expand it again. GLPA* thus provides the same guarantee
as LPA*, and the next theorem about the termination and ef-
ficiency of GLPA* follows:

Theorem 1 GLPA* expands every state at most once as un-
derconsistent and at most once as overconsistent during each
call to ComputePlan() and thus terminates.

The correctness of GLPA* follows from the following
lemma:

Lemma 1 Assume that ComputePlan() executes line{09}
and consider a stateu ∈ U for which g(u) ≥ rhs(u) and
gd(s) ≤ rhs(s) ≤ g(s) ≤ ε gd(s) for all statess ∈ S with
K(s) < K(u). Thengd(u) ≤ rhs(u) ≤ ε gd(u), and the
plan-execution cost is no larger thanrhs(u) if one starts inu
and always executes the actionarg mina∈A(s) Qg(s, a) in the
current states until s = sgoal.

The reason why GLPA* is correct is similar to the reason
why breadth-first search is correct. Whenever breadth-first
search expands a state with the smallest priority among all
states that have not been expanded yet, then the g-values of
all states with smaller priorities are equal to their respective
start distances. Consequently, the g-value of the expanded
state is also equal to its start distance. Similarly, whenever
ComputePlan() expands an overconsistent stateu with the
smallest priority among all inconsistent states that have not
been expanded yet, then all statess with K(s) < K(u) satisfy
gd(s) ≤ rhs(s) ≤ g(s) ≤ ε gd(s). According to the above
lemma, it then also holds thatgd(u) ≤ rhs(u) ≤ ε gd(u).
When the overconsistent stateu is expanded, its g-value is
set to its rhs-value and it then holds thatgd(u) ≤ rhs(u) ≤
g(u) ≤ ε gd(u). After ComputePlan() terminates, it holds
thatU.TopKey() ≥ K(sstart) andg(sstart) = rhs(sstart).
Thus, none of the statess with K(sstart) > K(s) are in
the priority queue and consequently they satisfygd(s) ≤
rhs(s) ≤ g(s) ≤ ε gd(s). The above lemma thus applies, and
the next theorem about the correctness of GLPA* follows:

Theorem 2 After ComputePlan() terminates, it holds that
gd(sstart) ≤ rhs(sstart) ≤ ε gd(sstart) and the plan-
execution cost is no larger thanrhs(sstart) if one starts in
sstart and always executes the actionarg mina∈A(s) Qg(s, a)
in the current states until s = sgoal.

The plan-execution cost of GLPA* is thus at most a factor
of ε larger than minimal.

Possible Instantiations of GLPA*
We defineQg(s, a) = maxs′∈Succ(s,a)(c(s, a, s′) + g(s′))
in deterministic and nondeterministic domains for all states
s ∈ S and actionsa ∈ A(s). This definition reduces to
Qg(s, a) = c(s, a, s′) + g(s′) for Succ(s, a) = {s′} in deter-
ministic domains, which is the definition used by LPA*. It is
easy to show that this choice ofQg(s, a) satisfies Restriction
1. We now show how to define the priorities for various sce-
narios so that the resulting choices ofK(s) satisfy Restriction
2. Consequently, the restrictions are not very limiting.

LPA* and Minimax LPA* It is easy to show that GLPA*
reduces to LPA* in deterministic domains and to Minimax



LPA* in nondeterministic domains if one calculatesK(s) in
the following way:

if (g(s) < rhs(s))

K(s) = [g(s) + h(s); g(s)]

else

K(s) = [rhs(s) + h(s); rhs(s)]

It is easy to show that this choice ofK(s) satisfies Re-
striction 2 with ε = 1 if the heuristics are nonnegative and
(backward) consistent, which now means thath(sstart) = 0
and h(s) ≤ h(s′) + c(s′, a, s) for all statess ∈ S, states
s′ ∈ Pred(s), and actionsa ∈ A(s′) with s ∈ Succ(s′, a).
This property implies thath(s) ≤ h(s′) + c∗(s′, s) for all
statess, s′ ∈ S.

• Assume thatg(s′) ≥ rhs(s′), g(s) < rhs(s) and
rhs(s′) ≥ c∗(s′, s)+g(s). Then, a)s 6= s′ since otherwise
we have the contradiction thatg(s) ≥ rhs(s) andg(s) <
rhs(s), b) rhs(s′) ≥ c∗(s′, s) + g(s) > g(s) sinces 6= s′

and thereforec∗(s′, s) > 0, and c)h(s′)+ c∗(s′, s) ≥ h(s)
since the heuristics are (backward) consistent. Put together,
it follows thath(s′)+rhs(s′) ≥ h(s′)+c∗(s′, s)+g(s) ≥
h(s) + g(s) andrhs(s′) > g(s), which impliesK(s′) =
[rhs(s′) + h(s′); rhs(s′)] > [g(s) + h(s); g(s)] = K(s).

• Assume thatg(s′) ≥ rhs(s′), g(s) > rhs(s) and
rhs(s′) > c∗(s′, s) + rhs(s). Then, a) rhs(s′) >
c∗(s′, s) + rhs(s) > rhs(s) sincec∗(s′, s) ≥ 0, and b)
h(s′) + c∗(s′, s) ≥ h(s) since the heuristics are (back-
ward) consistent. Put together, it follows thath(s′) +
rhs(s′) > h(s′) + c∗(s′, s) + rhs(s) ≥ h(s) + rhs(s)
andrhs(s′) > rhs(s), which impliesK(s′) = [rhs(s′) +
h(s′); rhs(s′)] > [rhs(s) + h(s); rhs(s)] = K(s).
According to Theorem 2, the plan-execution cost (worst-

case plan-execution cost) of GLPA* is minimal in determinis-
tic (nondeterministic) domains. It is easy to show that the first
search of GLPA* in deterministic domains expands exactly
the same states as A*-TB1 with the same consistent heuris-
tics if GLPA* and A*-TB1 break remaining ties in the same
way.

Inconsistent HeuristicsWe have argued that A* is often
used with inconsistent heuristics to trade off plan-execution
cost and planning time and then tends to expand fewer states
than A* with consistent heuristics. Assume that the heuristics
are nonnegative and (backward)ε-consistent, that is, satisfy
h(sstart) = 0 andh(s) ≤ h(s′) + ε ∗ c(s′, a, s) for all states
s ∈ S, statess′ ∈ Pred(s) and actionsa ∈ A(s′) with
s ∈ Succ(s′, a). One can then use GLPA* if one calculates
K(s) in the following way:

if (g(s) < rhs(s))

K(s) = [g(s) + hcons(s); g(s)]

else

K(s) = [rhs(s) + h(s); rhs(s)]

hcons(s) denotes any (backward) consistent heuristics, for
example, the zero heuristics. It is easy to show that this
choice ofK(s) satisfies Restriction 2 for the givenε. Ac-
cording to Theorem 2, the plan-execution cost (worst-case
plan-execution cost) of GLPA* is at most a factor ofε larger
than minimal in deterministic (nondeterministic) domains. It
is easy to show that the first search of GLPA* in determinis-
tic domains expands exactly the same states as A*-TB1 with

the same inconsistent heuristics if GLPA* and A*-TB1 break
remaining ties in the same way. We now give examples of
heuristics that are (backward)ε-consistent:

• In search, inconsistent heuristics are often derived from
(backward) consistent heuristicsho(s) by multiplying them
with a constantε > 1 (resulting in weighted heuristics).
Then, ho(sstart) = 0 and ho(s) ≤ ho(s′) + c(s′, a, s)
for all statess ∈ S, statess′ ∈ Pred(s) and ac-
tions a ∈ A(s′) with s ∈ Succ(s′, a). Consequently,
h(sstart) = ε ho(sstart) = 0 and h(s) = ε ho(s) ≤
ε ho(s′) + ε c(s′, a, s) ≤ h(s′) + ε c(s′, a, s) for all states
s ∈ S, statess′ ∈ Pred(s) and actionsa ∈ A(s′) with
s ∈ Succ(s′, a). The inconsistent heuristics are thus (back-
ward) ε-consistent. One can usehcons(s) = ho(s) for all
s ∈ S.

• In HSP-type planning, inconsistent heuristics are some-
times obtained by adding the values ofn (backward) con-
sistent heuristicsho

i (s) (Bonet & Geffner 2001). Then,
ho

i (sstart) = 0 and ho
i (s) ≤ ho

i (s
′) + c(s′, a, s) for all

statess ∈ S, statess′ ∈ Pred(s) and actionsa ∈
A(s′) with s ∈ Succ(s′, a). Consequently,h(sstart) =∑

i ho
i (sstart) = 0 andh(s) =

∑
i ho(s) ≤

∑
i ho(s′) +∑

i c(s′, a, s) ≤ h(s′) + n c(s′, a, s) for all statess ∈ S,
statess′ ∈ Pred(s) and actionsa ∈ A(s′) with s ∈
Succ(s′, a). The inconsistent heuristics are thus (back-
ward) ε-consistent forε = n. One can usehcons(s) =
maxi ho

i (s) for all s ∈ S.

• Sometimes the inconsistent heuristics are not derived
from (backward) consistent heuristics but it is known
that εl c

∗(sstart, s) ≤ h(s) ≤ εu c∗(sstart, s) for all
statess ∈ S and given constantsεl and εu, where
εl can be zero. Then,0 = εl c

∗(sstart, sstart) ≤
h(sstart) ≤ εu c∗(sstart, sstart) = 0 and h(s) ≤
εu c∗(sstart, s) ≤ εu (c∗(sstart, s

′) + c(s′, a, s)) =
εu c∗(sstart, s

′) + εu c(s′, a, s) = εu c∗(sstart, s
′) +

εu c(s′, a, s) − εl c
∗(sstart, s

′) + εl c
∗(sstart, s

′) = (εu +
(εu − εl)

c∗(sstart,s
′)

c(s′,a,s) ) c(s′, a, s) + εl c
∗(sstart, s

′) ≤ (εu +

(εu− εl)
maxs∈S c∗(sstart,s)

cmin
) c(s′, a, s)+ εl c

∗(sstart, s
′) =

ε c(s′, a, s) + εl c
∗(sstart, s

′) ≤ ε c(s′, a, s) + h(s′) for
all statess ∈ S, statess′ ∈ Pred(s) and actions
a ∈ A(s′) with s ∈ Succ(s′, a), where cmin =
mins∈S,a∈A(s),s′∈Succ(s,a) c(s, a, s′). The inconsistent
heuristics are thus (backward)ε-consistent forε = εu +
(εu − εl)

maxs∈S c∗(sstart,s)
cmin

.

Good Tie-Breaking We have argued that A* is often used
with good tie-breaking and then tends to expand fewer states
than A* with bad tie-breaking. One can use GLPA* in the
same way if one calculatesK(s) in the following way:

if (g(s) ≤ rhs(s))

K(s) = [g(s) + h(s); 0; g(s)]

else

K(s) = [rhs(s) + h(s); 1; h(s)]

It is easy to show that this choice ofK(s) satisfies Re-
striction 2 with ε = 1 if the heuristics are nonnegative and
(backward) consistent. According to Theorem 2, the plan-
execution cost (worst-case plan-execution cost) of GLPA* is



(a) 1st search (b) 2nd search (c) 1st search (d) 2nd search
exp=18,max=1 exp=22,max=2 exp=18,max=1 exp=49,max=2

Figure 7: (a,b): LPA* with inconsistent heuristics (three times
the Manhattan Distance) and bad tie-breaking (LPA*-TB1).
(c,d): LPA* with consistent heuristics (Manhattan Distance)
and good tie-breaking (LPA*-TB2).exp is the number of
state expansions, andmax is the maximum number of ex-
pansions of the same state.

minimal in deterministic (nondeterministic) domains. It is
easy to show that the first search of GLPA* in determinis-
tic domains expands exactly the same states as A*-TB2 with
the same consistent heuristics if GLPA* and A*-TB2 break
remaining ties in the same way.

Good Tie-Breaking and Inconsistent HeuristicsOne can
combine good tie-breaking and inconsistent heuristics that are
(backward)ε-consistent if one calculatesK(s) in the follow-
ing way:

if (g(s) < rhs(s))

K(s) = [g(s) + hcons(s); 0; g(s)]

else if(g(s) = rhs(s))

K(s) = [g(s) + h(s); 0; g(s)]

else

K(s) = [rhs(s) + h(s); 1; h(s)];

hcons(s) again denotes any (backward) consistent heuris-
tics, for example, the zero heuristics. It is easy to show that
this choice ofK(s) satisfies Restriction 2 for the givenε if
the heuristics are nonnegative and (backward)ε-consistent.
According to Theorem 2, the plan-execution cost (worst-case
plan-execution cost) of GLPA* is at most a factor ofε larger
than minimal in deterministic (nondeterministic) domains. It
is easy to show that the first search of GLPA* in determinis-
tic domains expands exactly the same states as A*-TB2 with
the same inconsistent heuristics if GLPA* and A*-TB2 break
remaining ties in the same way.

Illustration

We use the four-connected grid from Figure 3 to evaluate our
new versions of LPA*. Figure 7(a,b) shows the cells expanded
by the new version of LPA* with inconsistent heuristics, and
Figure 7(c,d) shows the cells expanded by the new version of
LPA* with good tie-breaking. The new versions of LPA* in-
deed expand each state at most twice and expand many fewer
states than our earlier naive modifications of LPA* but the
grid is not large enough to demonstrate that they expand fewer
states than search from scratch. We therefore present a larger
and more systematic case study in the following, where we
average over 100 much larger grids.

Experimental Evaluation
We use four-connected grids of size 200 by 200 cells, with the
exception of Figure 10 where we use eight-connected grids.
The start cell is at (20,20), and the goal cell is at (180,180).
We created 100 grids by randomly blocking 10 percent of the
cells (= 4,000 cells) and then changed each grid 500 times
in a row (resulting in one planning episode and 500 replan-
ning episodes) by changing the blockage status of 20 ran-
domly chosen blocked and 20 randomly chosen unblocked
cells, with one restriction: Since LPA* is generally more ef-
ficient than A* in situations where the changes occur around
the goal states of the search (Koenig, Furcy, & Bauer 2002),
we chose 90 percent of the blocked cells and 90 percent of
the unblocked cells within a distance of 50 cells from the goal
cell of the search. We chose the remaining cells from outside
of this region. We use two different heuristics. The strong
(weak) heuristics uses the sum (maximum) of the absolute
difference of the x coordinates of two cells and the absolute
difference of their y coordinates as heuristic approximation
of their distance. Both heuristics are (forward and backward)
consistent. The strong heuristics (Manhattan distance) dom-
inate the weak ones, which explains our choice of names.
We therefore expect all search algorithms to have a smaller
planning time with the strong heuristics than the weak heuris-
tics. The priority queues of all search algorithms are imple-
mented as binary heaps. (We could speed up A* by using
buckets instead of binary heaps but it is currently unclear how
to speed up LPA* in the same way.) Whenever we need a
variant of LPA* with consistent heuristics (that isε = 1) and
bad tie-breaking, we use the original version of LPA*. Oth-
erwise, we use one of the new versions of LPA*. All ver-
sions of LPA* use the optimizations described in (Koenig &
Likhachev 2002b). The versions of A* never expand any state
more than once per (re-)planning episode and do not replan
whenever all edges with changed costs are outside of their
previous search trees. As a consequence, their planning time
averaged over all (re-)planning episodes can be smaller than
their planning time averaged over the first planning episodes
only. All planning times are reported in milliseconds on a
Pentium 1.8 GHz PC.

Inconsistent Heuristics

We create inconsistent heuristics by multiplying either the
strong or the weak heuristics with the same constantε, where
ε ranges from 1.0 to 2.4. Tables 8, and 9 report for A*-TB1,
A*-TB2 and our new LPA* with bad tie-breaking (LPA*-
TB1) both the resulting planning time and the resulting plan-
execution cost averaged over both the first planning episode
and the 500 subsequent replanning episodes. We observe
the following trends: All search algorithms trade off plan-
execution cost and planning time. The planning time de-
creases and the plan-execution cost increases asε increases.
The decrease in planning time is more pronounced for the
inconsistent heuristics based on the weak heuristics than the
strong heuristics since the strong heuristics are more infor-
mative. Also, the decrease in planning time is more pro-
nounced for A*-TB1 and A*-TB2 than for LPA*-TB1 since
LPA*-TB1 is already much faster than A*-TB1 and A*-TB2



Planning Time
ε 1.0 1.2 1.4 1.6 1.8 2.0 2.2 2.4

A*-TB1 16.60 0.63 0.48 0.42 0.40 0.37 0.37 0.37
A*-TB2 1.73 0.41 0.38 0.38 0.37 0.37 0.37 0.37

LPA*-TB1 0.16 0.13 0.13 0.12 0.12 0.12 0.12 0.12

Plan-Execution Cost
ε 1.0 1.2 1.4 1.6 1.8 2.0 2.2 2.4

A*-TB1 320.07 330.74 333.93 335.08 335.82 336.19 336.39 336.58
A*-TB2 320.07 333.44 335.62 336.20 336.51 336.66 336.86 337.17

LPA*-TB1 320.07 330.35 334.66 336.48 337.33 337.82 338.19 338.40

Figure 8: Strong heuristics.

Planning Time
ε 1.0 1.2 1.4 1.6 1.8 2.0 2.2 2.4

A*-TB1 24.07 20.70 16.43 11.02 4.88 0.63 0.39 0.36
A*-TB2 23.96 20.69 16.34 11.21 4.72 0.47 0.31 0.30

LPA*-TB1 0.20 0.17 0.14 0.12 0.10 0.09 0.10 0.10

Plan-Execution Cost
ε 1.0 1.2 1.4 1.6 1.8 2.0 2.2 2.4

A*-TB1 320.07 320.07 320.07 320.08 320.08 320.12 320.14 320.15
A*-TB2 320.07 320.07 320.08 320.08 320.11 320.16 320.20 320.23

LPA*-TB1 320.07 320.07 320.07 320.08 320.08 320.09 320.17 320.19

Figure 9: Weak heuristics.

planning time planning time plan-execution cost
501 episodes initial episodes

A*-TB1 0.24 0.34 172.66
A*-TB2 0.24 0.35 174.87

LPA*-TB1 0.14 0.43 173.54

Figure 10: Planning time forε = 1 averaged over (a) 501 (re-
)planning episodes and (b) the initial planning episode only;
and plan-execution cost

for ε = 1. Overall, the planning times of LPA*-TB1 are al-
ways at least a factor of two smaller than the planning times
of A*-TB1 and A*-TB2, yet the resulting plan-execution
costs are comparable, demonstrating the advantage of the new
version of LPA* with inconsistent heuristics if the planning
times need to be small. We also created inconsistent heuris-
tics in a different way, namely by using the strong heuristics
on eight-connected (rather than four-connected) grids. The
strong heuristics are inconsistent on eight-connected grids but
ε-consistent forε = 2 since they are the sum of two consis-
tent heuristics, namely the absolute difference of the x co-
ordinates of two cells and the absolute difference of their y
coordinates. We usedhcons(s) = 0 for all s ∈ S. Table 10
reports for A*-TB1, A*-TB2 and LPA*-TB1 both the result-
ing planning time and the plan-execution cost. For the plan-
ning times, we report both an average over the first planning
episode and the 500 subsequent replanning episodes and an
average over the first planning episode only. For the plan-
execution time, we only report an average over the first plan-
ning episode and the 500 subsequent replanning episodes.
The plan-execution costs of all three search methods are about
the same but the planning time of LPA*-TB1 averaged over
all planning episodes is somewhat smaller than the ones of
A*-TB1 and A*-TB2. Note that the original version of LPA*
cannot be used with inconsistent heuristics because it is not
guaranteed to find plans of finite plan-execution cost even if
they exist.

strong heuristics strong heuristics weak heuristics weak heuristics
51 episodes initial episodes 51 episodes initial episodes

A*-TB1 16.65 16.15 24.08 23.49
A*-TB2 2.05 1.99 23.91 23.46

LPA*-TB1 0.78 18.83 0.97 27.23
LPA*-TB2 0.52 2.37 0.97 27.35

Figure 11: Planning time forε = 1 averaged over (a) 51 (re-
)planning episodes and (b) the initial planning episode only.

Good Tie-Breaking

Table 11 reports for A*-TB1, A*-TB2, the original version
of LPA* (with bad tie-breaking, LPA*-TB1) and the new ver-
sion of LPA* (with good tie-breaking, LPA*-TB2) with both
the strong and weak heuristics the planning time. For the
planning times, we report both an average over the first plan-
ning episode and the 50 subsequent replanning episodes and
an average over the first planning episode only. The plan-
ning time averaged over all planning episodes is likely to be
more important if the number of replanning episodes is large,
and the planning time averaged over the first planning episode
only is likely to be more important if the number of replan-
ning episodes is very small. Since the start and goal cells are
placed diagonally from each other and the density of blocked
cells is relatively small, there tends to be a large number of
minimum-cost paths from the start cell to the goal cell and
a large number of cells on these paths have the same f-value
as the goal cell. Thus, the tie-breaking strategy can make a
large difference. (In contrast, if the start and goal cells are
placed horizontally from each other, then there tends to be a
much smaller number of minimum-cost paths from the start
cell to the goal cell and the tie-breaking strategy makes much
less of a difference.) We do not report the plan-execution
costs since all search algorithms find cost-minimal paths. We
observe the following trends: A*-TB2 has smaller planning
times than A*-TB1. Therefore, there is no advantage of using
A*-TB1 over A*-TB2 and we thus compare the versions of
LPA* against A*-TB2. The original LPA*-TB1 corresponds
to the state of the art before our research. Its average plan-
ning time is much smaller than that of A*-TB2 if the number
of replanning episodes is large, but it is much larger than that
of A*-TB2 if the number of replanning episodes is small (and
the heuristics are strong). The reason for the latter fact is that
LPA*-TB1 and A*-TB1 expand exactly the same states dur-
ing the first search, and A*-TB1 in turn expands many more
states than A*-TB2 in domains where the tie-breaking strat-
egy makes a difference. (Also, LPA*-TB1 has some overhead
over A*-TB1 per state expansion.) Our new LPA*-TB2 reme-
dies this problem. Its planning time averaged over a large
number of replanning episodes is identical to that of LPA*-
TB1, and its planning time for the first planning episode is
comparable to that of A*-TB2. The first property implies that
there is no advantage of using LPA*-TB1 over LPA*-TB2,
demonstrating the advantage of the new version of LPA*. The
latter property implies that there is no advantage to the follow-
ing alternative to LPA*-TB2: To obtain good planning times
whether the number of replanning episodes is small or large,
one could use A*-TB2 for the first planning episode, pass the
priority queue and search tree from A*-TB2 to LPA*-TB1,



procedure Initialize()
{01} U = ∅;
{02} for all s ∈ S rhs(s) = g(s) = ∞;
{03} rhs(sstart) = 0;
{04} UpdateState(sstart);

procedure UpdateState(u)
{05} if (u 6= sstart) rhs(u) = mins∈S,a∈A(s):succ(s,a)=u(g(s) + c(s, a, u));
{06} if (u ∈ U andg(u) 6= rhs(u)) U.Update(u, K(u));
{07} else if (u ∈ U andg(u) = rhs(s)) U.Remove(u);
{08} else if (u /∈ U andg(u) 6= rhs(u) and NotYet(u)) U.Insert(u, K(u));

procedure ComputePlan()
{09} while (U.TopKey() < K(sgoal) or rhs(sgoal) 6= g(sgoal))
{10} u = U.Pop();
{11} if (g(u) > rhs(u))
{12} g(u) = rhs(u);
{13} for all s ∈ Succ(u) UpdateState(s);
{14} else
{15} g(u) = ∞;
{16} for all s ∈ Succ(u) ∪ {u} UpdateState(s);

procedure Main()
{17} Initialize();
{18} forever
{19} ComputePlan();
{20} for all inconsistent statess /∈ U U.Insert(s, K(s));
{21} Wait for changes in action costs;
{22} for all actions with changed action costsc(u, a, v)
{23} Update the action costc(u, a, v);
{24} UpdateState(v);

Figure 12: Forward Version of GLPA*.

and then use LPA*-TB1 for all replanning episodes. Table 11
suggests that this algorithm likely achieves planning times
similar to those of LPA*-TB2, but it is certainly much more
complicated to implement than LPA*-TB2.

GLPA* and HSP-Type Planning
The forward version of LPA* has been used as heuris-
tic search-based replanning method for HSP-type planners
(Koenig, Furcy, & Bauer 2002). In the following, we change
the search direction of GLPA* to obtain a forward version
of it for deterministic domains. The pseudo code of the for-
ward version of GLPA* in Figure 12 is the same as that of
GLPA* except that we exchanged the start state and goal state
and reversed all of the actions. It is suitable for HSP-type
planning because it can handle goal states that are only par-
tially defined and needs to determine only the predecessors
of those states that are already in the search tree, which is
trivial since their predecessors are already known. It is easier
to see the similarity of A* to the forward version of GLPA*
than the backward version of GLPA* because their search di-
rections are identical. For example, the valuesg(s) andh(s)
of the forward version of GLPA* correspond to the g-values
and h-values of A* for states, respectively. The heuris-
tics now need to be nonnegative and satisfyh(sgoal) = 0
and h(s) ≤ c(s, a, s′) + h(s′) for all statess ∈ S, states
s′ ∈ Succ(s) and actionsa ∈ A(s) with s′ = succ(s, a),
which is the same definition of (forward) consistency used in
the context of A*. The forward version of GLPA* can handle
planning problems with changing action costs and thus also
planning problems where actions become feasible or infeasi-
ble over time. One can extend it in the same way as one can
extend the backward version of LPA* to D* Lite (Koenig &
Likhachev 2002a), which allows it to handle planning prob-

lems with changing goal states as well. However, much work
remains to be done. For example, planning domains are much
larger than grids and might no longer completely fit into mem-
ory, in which case memory management becomes a problem.
Also, the quality of the heuristics for HSP-type planning can
be arbitrarily bad. Thus, it remains future work to build and
evaluate a heuristic search-based replanner that makes use of
GLPA* with inconsistent heuristics.

Conclusions
In this paper, we developed GLPA*, a framework that gener-
alizes an incremental version of A*, called LPA*, and allows
one to develop more capable versions of LPA* and its non-
deterministic version Minimax LPA*, including a version of
LPA* that uses inconsistent heuristics and a version of LPA*
that breaks ties among states with the same f-values in favor
of states with larger g-values. We showed experimentally that
GLPA* indeed speeds LPA* on grids and thus promises to
provide a good foundation for building heuristic search-based
replanners.

Acknowledgments
The Intelligent Decision-Making Group is partly supported by
NSF awards to Sven Koenig under contracts IIS-0098807 and IIS-
0350584. The views and conclusions contained in this document are
those of the authors and should not be interpreted as representing
the official policies, either expressed or implied, of the sponsoring
organizations, agencies, companies or the U.S. government.

References
Bonet, B., and Geffner, H. 2001. Planning as heuristic search.
Artificial Intelligence129(1-2):5–33.

Koenig, S., and Likhachev, M. 2002a. D* Lite. InProceedings of
the National Conference on Artificial Intelligence, 476–483.

Koenig, S., and Likhachev, M. 2002b. Incremental A*. In Di-
etterich, T.; Becker, S.; and Ghahramani, Z., eds.,Advances in
Neural Information Processing Systems 14. Cambridge, MA: MIT
Press.

Koenig, S.; Furcy, D.; and Bauer, C. 2002. Heuristic search-based
replanning. InProceedings of the International Conference on Ar-
tificial Intelligence Planning and Scheduling, 294–301.

Koenig, S.; Likhachev, M.; and Furcy, D. 2004. Lifelong Planning
A*. Artificial Intelligence155(1-2):93–146.

Kott, A.; Saks, V.; and Mercer, A. 1999. A new technique enables
dynamic replanning and rescheduling of aeromedical evacuation.
Artificial Intelligence Magazine20(1):43–53.

Likhachev, M., and Koenig, S. 2003. Speeding up the parti-game
algorithm. In Becker, S.; Thrun, S.; and Obermayer, K., eds.,Ad-
vances in Neural Information Processing Systems 15. Cambridge,
MA: MIT Press.

Pearl, J. 1985.Heuristics: Intelligent Search Strategies for Com-
puter Problem Solving. Addison-Wesley.


