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Abstract

Grids are often used to represent maps in video games. In
this paper, we propose a method for preprocessing eight-
neighbor grids to generate subgoal graphs and show how
subgoal graphs can be used to find shortest paths fast. We
place subgoals at the corners of obstacles (similar to visibility
graphs) and add those edges between subgoals that are neces-
sary for finding shortest paths, while ensuring that each edge
connects only subgoals that are easily reachable from one an-
other. We describe a method for finding shortest paths by first
finding high-level paths through subgoals and then shortest
low-level paths between consecutive subgoals on the high-
level path. Our method was one of ten entries in the Grid-
Based Path Planning Competition 2012. Among all optimal
path planners, ours was the fastest to find complete paths and
required the least amount of memory.

Introduction
Grids with obstacles consisting of blocked cells are often
used to represent maps in video games, and pathfinding on
these maps usually needs to be fast. One can often prepro-
cess maps before a game is released or while a map is loaded
into memory, to speed up path planning on these maps. The
data produced by preprocessing should use only a small
amount of memory, and, in case the maps are generated dur-
ing runtime, preprocessing should be fast.

In this paper, we propose a method for preprocessing
eight-neighbor grids that lets us perform fast searches to find
shortest paths. During preprocessing, we generate a subgoal
graph that is similar to visibility graphs used for discretizing
continuous environments (Lozano-Pérez and Wesley 1979).
We place subgoals at the corners of obstacles and add those
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edges between subgoals that are necessary for finding short-
est paths, while ensuring that each edge connects only sub-
goals that are easily reachable from one another. During
search, we connect the given start and goal cells to the sub-
goal graph and find a shortest high-level path between them
on the modified subgoal graph. We then determine a shortest
low-level path by finding shortest paths between consecutive
subgoals on the high-level path. Preprocessing can be done
fast, and the memory requirements are fairly low. For exam-
ple, on maps from the game StarCraft, which are the largest
game maps in our benchmark with sizes up to 1024× 1024,
preprocessing takes less than 50 milliseconds, the amount of
stored data is around 2.35 megabytes (including the maps),
and shortest paths are found about 25 times faster than with
A* on average. We also introduce a more sophisticated ver-
sion of subgoal graphs where the subgoals are partitioned
into local and global subgoals. During search, local sub-
goals that are not needed to connect the start and goal cells to
the subgoal graph are ignored, resulting in an even smaller
graph to search. The preprocessing of StarCraft maps now
takes 6.7 seconds, the amount of stored data decreases to
2.15 megabytes, and shortest paths are found about 85 times
faster than with A* on average. We can also use an addi-
tional 5.5 megabytes and 20 seconds during preprocessing
to compute the pairwise distances between global subgoals
to be around 165 times faster than with A* on average.

Methods for preprocessing grids have been studied be-
fore and can be grouped into several categories. Hierarchi-
cal abstractions (Botea, Müller, and Schaeffer 2004; Sturte-
vant and Buro 2005) reduce the size of the search space.
They enable path planning to find high-level paths over ab-
stract nodes and then refine them to low-level paths on the
grid, which are not always optimal. More informed heuris-
tics (Björnsson and Halldórsson 2006; Cazenave 2006;
Sturtevant et al. 2009) guide the searches better to expand
fewer states. Dead-end detection and other pruning methods
(Björnsson and Halldórsson 2006; Goldenberg et al. 2007;
Pochter et al. 2010) identify areas on the grid that do not
need to be explored to find a shortest path. Another ap-
proach is to use subgoaling to reduce search to backtrack-
free hill climbing (Bulitko, Björnsson, and Lawrence 2010;
Hernández and Baier 2011). Some recent methods do not fit
these categories. Compressed Path Databases (CPD) (Botea
2011) calculate and compress shortest paths between all



pairs of cells during preprocessing and therefore avoid
searching altogether during runtime. However, their mem-
ory requirements can be high even with high compression
factors. Symmetry reducing methods (Harabor and Grastien
2010) identify and eliminate path symmetries on grids. For
example, Jump Point Search (JPS) (Harabor and Grastien
2011) performs symmetry reduction during runtime (with-
out any preprocessing) to find shortest paths faster than
Hierarchical Pathfinding A* (Botea, Müller, and Schaeffer
2004).

Our method is a hybrid between hierarchical abstractions
and symmetry reducing methods: It is hierarchical because
we first find a high-level path and then refine it to a low-level
path. It is symmetry reducing because an edge of the sub-
goal graph can correspond to many shortest paths between
the subgoals that it connects (which cannot happen on vis-
ibility graphs because the straight line between vertices is
the only shortest path between them). Our method does not
abstract groups of cells, but rather all shortest paths between
cells, which is similar to what JPS does. The jump points of
JPS are similar to our subgoals, except that the agent always
moves on a straight line from one jump point to the next one
and thus moves in only one direction whereas the agent can
move from one subgoal to the next one in a combination of
two directions.

Our method was one of ten entries in the Grid-Based Path
Planning Competition 2012 (GPPC 2012). Other entries in-
cluded CPD and JPS as optimal path-planning methods, as
well as several other optimal and suboptimal path-planning
methods. On game maps and mazes, among all path plan-
ners, ours was the fastest to find complete paths and required
the least amount of memory, except for one suboptimal en-
try which found paths that are around 50 percent longer than
shortest paths. On the other maps, among all optimal path
planners, ours was the fastest to find complete paths and re-
quired the least amount of memory.

Preliminaries and Notation
We use C to denote the set of cardinal directions (North,
East, South, West) and D to denote the set of diagonal di-
rections (NorthEast, SouthEast, SouthWest, NorthWest). We
assume that an agent operates on an eight-neighbor grid with
obstacles consisting of blocked cells. The agent moves from
grid center to grid center and can move to an unblocked cell
in any cardinal or diagonal direction, with one exception:
It can move diagonally only if both associated cardinal di-
rections are also unblocked since we assume that it has the
same diameter as a grid cell. For example, in Figure 1(a),
the agent cannot move diagonally from C3 to B2 because
B3 is blocked. The respective lengths of cardinal and diago-
nal moves are 1 and

√
2.

We distinguish between paths and trajectories as follows:
A trajectory between two cells s and s′ is a series of moves
on the grid that would take an agent from s to s′ if all obsta-
cles were removed. A path is a trajectory that takes an agent
from s to s′ on the actual grid.

We use the octile distance as heuristic h(s, s′), that es-
timates the distance between cells s and s′. The octile dis-
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Figure 1: Eight-neighbor grids and subgoals

tance between s and s′ is the length of a shortest trajectory
between the cells. Let dx and dy denote the respective dis-
tances between s and s′ along the x and y axes. Then, the
octile distance between s and s′ is

√
2 × min(dx, dy) +

|dx− dy| because a shortest trajectory between s and s′ has
exactly min(dx, dy) diagonal and |dx−dy| cardinal moves,
for a total of max(dx, dy) moves.

We introduce the following notation to formalize such
reasoning. Given a cell s, a direction d and an integer k,
we use s+ kd to denote the cell s′ that is reached from s on
a trajectory with k moves in direction d. Similarly, we use
s+kd+mc = s′+mc to denote the cell that is reached from
s′ on a trajectory with m moves in direction c. Therefore, we
also use d = c1+c2 to denote that adding two perpendicular
cardinal directions c1 and c2 results in the corresponding di-
agonal direction d (for example, North + East = NorthEast).

Key Idea
Instead of finding a shortest path from a given start cell to a
given goal cell, we identify a sequence of cells, called sub-
goals, such that an agent moves on a shortest path from the
given start cell to the given goal cell if it always moves on
a shortest path to the next subgoal. The idea is to split the
overall path-planning problem into several easier ones that
can be solved simply by moving in the direction of the next
subgoal. We generate a subgoal graph from a given grid dur-
ing preprocessing to be able to identify suitable sequences of
subgoals during search. Assume, for example, that an agent
needs to move on a shortest path from B5 to I5 on the grid
from Figure 1(b). A suitable sequence of subgoals then is
G8, I8 and I5.

Simple Subgoal Graphs
In this section, we describe simple subgoal graphs, where
we put subgoals at the corners of obstacles because they
can then be used to circumnavigate obstacles. We add edges
between subgoals that are direct-h-reachable from one an-
other, resulting in a simple subgoal graph. These edges are
sufficient for finding shortest paths and easy to follow. To
find a shortest path between given start and goal cells, we
connect them to their respective direct-h-reachable subgoals
and then find a shortest (high-level) path between the start
and goal cells on the modified subgoal graph. We then find
the shortest (low-level) path between the start and goal cells
on the grid by first finding shortest paths on the grid between



Algorithm 1 Constructing simple subgoal graphs

1: procedure ConstructSubgoalGraph()
2: VS := ES := ∅;
3: for all unblocked cells s do
4: for all perpendicular cardinal directions c1 and c2 do
5: if s+ c1 + c2 is blocked then
6: if s+ c1 and s+ c2 are unblocked then
7: VS := VS ∪ {s};
8: for all s ∈ VS do
9: S ←GetDirectHReachable(s);

10: for all s′ ∈ S do
11: ES := ES ∪ {(s, s′)};
12: GS := (VS , ES);

consecutive subgoals on the path and then appending them.
We now formally define simple subgoal graphs:
Definition 1. An unblocked cell s is a subgoal iff there are
two perpendicular cardinal directions c1 and c2 such that
s+ c1+ c2 is blocked and s+ c1 and s+ c2 are not blocked.
Definition 2. Two cells s and s′ are h-reachable iff there
is a path of length h(s, s′) between them. Two h-reachable
cells are safe-h-reachable iff all shortest trajectories be-
tween them are also paths. Two h-reachable cells s and s′

are direct-h-reachable iff none of the shortest paths between
them contains a subgoal s′′ 6∈ {s, s′}.

Definition 3. A simple subgoal graph GS = (VS , ES) is
an undirected graph where VS is the set of subgoals and ES

is the set of edges connecting direct-h-reachable subgoals.
The lengths of the edges are the octile distances between
subgoals they connect.

Figure 1(b) shows a grid with subgoals and the connec-
tions between them. A, B, C and D are the subgoals. A-B,
B-C and C-D are direct-h-reachable. A-C is safe-h-reachable
but not direct-h-reachable since there is a shortest path be-
tween A and C through B. B-D is h-reachable but not safe-h-
reachable since the path D5-E5-F5-G6-H7-I8 is blocked. A-
D is not even h-reachable. Any two direct-h-reachable cells
s and s′ are also safe-h-reachable, for the following reason:
If s and s′ were not safe-h-reachable, then there would exist
an obstacle that blocks at least one shortest trajectory be-
tween them. This obstacle would either block all shortest
trajectories between them (and they would not be direct-h-
reachable) or would introduce a subgoal that lies on one of
the shortest paths between them, contradicting the definition
of direct-h-reachability.

Algorithm 1 shows how to construct simple subgoal
graphs. GetDirectHReachable(s) (explained in the next sec-
tion) returns the set of subgoals that are direct-h-reachable
from cell s. Algorithm 2 shows how to find a shortest path
between a given start cell s and a given goal cell s′. We
first call TryDirectPath(s, s′) to try to find a shortest path be-
tween s and s′ fast by arbitrarily choosing a shortest trajec-
tory between s and s′ and checking whether it is also a path
(Lines 14-16). If it is, then we have found a shortest path
between them. Otherwise, we conclude that s and s′ are not
safe-h-reachable and thus also not direct-h-reachable. (Veri-
fying that s and s′ are not direct-h-reachable is important, as
we will explain later.) We then call FindAbstractPath(s, s′)

Algorithm 2 Searching simple subgoal graphs

1: procedure ConnectToGraph(cell s)
2: if s 6∈ VS then
3: VS := VS ∪ {s};
4: S ← GetDirectHReachable(s);
5: for all s′ ∈ S do
6: ES := ES ∪ {(s, s′)};

7: function FindAbstractPath(cells s, s′)
8: ConnectToGraph(s);
9: ConnectToGraph(s′);

10: Π← find a shortest path from s to s′ over the modified graph;
11: restore original graph;
12: return Π;

13: function FindPath(cells s, s′)
14: π ← TryDirectPath(s, s′);
15: if π 6= nopath then
16: return π;
17: Π← FindAbstractPath(s,s′);
18: if Π = nopath then
19: return nopath;
20: π := emptypath;
21: for all segments (si, si+1) in Π, in increasing order of i do
22: π := append(π,FindHReachablePath(si, si+1));
23: return π;

to connect s and s′ to the simple subgoal graph by adding
edges between them and all of their respective direct-h-
reachable subgoals (Lines 8-9), use an A* search (Hart,
Nilsson, and Raphael 1968) to find a shortest path be-
tween s and s′ on the modified subgoal graph and return
this high-level path. We then call FindHReachablePath(si,
si+1) for each segment (si, si+1) of the high-level path
to compute the corresponding low-level path. This func-
tion (whose pseudocode is omitted) performs a depth-first
search from si to si+1 that considers only moves in the two
directions needed to find a path of length h(si, si+1). Let
dx and dy denote the respective distances between si and
si+1 along the x and y axes. Then, the runtime complex-
ity of FindHReachablePath(si, si+1) is O(dx × dy) since
at most dx× dy cells lie on shortest trajectories between si
and si+1 (see, for example, cells C3 and I6 in Figure 1(a))
and depth-first search expands every such cell at most once.
If si and si+1 are safe-h-reachable (which is always the
case in simple subgoal graphs), the runtime complexity is
O(max(dx, dy)) since depth-first search finds a path with-
out backtracking and thus expands at most max(dx, dy)
nodes.

Theorem 1. FindPath(s,s′) from Algorithm 2 finds a short-
est path between cells s and s′ on the grid.

Proof. We first show that there exists a shortest path between any
reachable cells s and s′ that can be divided into segments between
subgoals (plus s and s′), where each segment connects h-reachable
cells. Consider any shortest path between s and s′. If the length of
the path is h(s, s′), then s and s′ are h-reachable and the path has
the required property. Otherwise, every shortest trajectory between
s and s′ is blocked by at least one obstacle. Thus, every shortest
path between s and s′ needs to circumnavigate at least one obstacle
and therefore contains some subgoal s′′. The shortest path is then
divided into two segments, a shortest path between cells s and s′′
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Figure 2: Direct-h-reachable area

and a shortest path between cells s′′ and s′, and the procedure is
recursively applied to both segments until all segments connect h-
reachable cells.

We now show that there exists a shortest path between any h-
reachable cells s and s′ that can be divided into segments between
subgoals (plus s and s′), where each segment connects direct-h-
reachable cells. Consider any shortest path between cells s and s′.
If they are also direct-h-reachable, then the path has the required
property. Otherwise, there exists a shortest path between them that
contains some subgoal s′′ according to the definition of direct-h-
reachable. This path is then divided into two segments, a short-
est path between h-reachable cells s and s′′ and a shortest path
between h-reachable cells s′′ and s′, and the procedure is recur-
sively applied to both segments until all segments connect direct-
h-reachable cells.

Combining the two steps shows that there exists a shortest path
between any two reachable cells that can be divided into segments
between subgoals (plus s and s′), where each segment connects
direct-h-reachable subgoals. The modified subgoal graph on Line
10 of Algorithm 2 contains all subgoals (plus s and s′) and all
direct-h-reachable edges between them, except possibly for an edge
between s and s′ if neither s nor s′ are subgoals (because Connect-
ToGraph only adds edges to direct-h-reachable subgoals). There-
fore, Line 10 finds a shortest high-level path between s and s′ un-
less s and s′ are direct-h-reachable but neither of them is a sub-
goal. However, TryDirectPath(s,s′) on Line 14 would already have
found a shortest path between them if they were direct-h-reachable,
which proves the theorem.

Finding Direct-H-Reachable Subgoals
An important part of constructing and searching simple sub-
goal graphs is identifying all direct-h-reachable subgoals
from a given unblocked cell s. This is done by exploring
the direct-h-reachable area around s, that contains all cells
that are direct-h-reachable from s. The exploration can be
sped up by precomputing clearance values for cells in each
direction, which are their distances to obstacles or subgoals.
GetDirectHReachable(s) from Algorithm 3 uses these clear-
ance values to find direct-h-reachable subgoals fast from any
given unblocked cell s. We use Figure 2(a) (with subgoals A
to F) as running example to explain the method. Figure 2(b)
shows part of a larger example to get a better picture of how
the direct-h-reachable area looks like. In both figures, the
direct-h-reachable area is given by the colored cells.

We first describe the idea behind clearance values.
Clearance(s, d) computes how many moves an agent can
make from cell s in direction d until it either reaches a
subgoal or can no longer move due to a blocked cell.

Algorithm 3 Finding direct-h-reachable subgoals

1: function Clearance(cell s, direction d)
2: i := 0
3: while true do
4: if movement not possible from s+ id to s+ id+ d then
5: return i;
6: i := i+ 1;
7: if IsSubgoal(s+ id) then
8: return i;

9: function GetDirectHReachable(cell s)
10: S := ∅;
11: for all directions d do
12: if IsSubgoal(s+Clearance(s, d)× d) then
13: S := S ∪ {s+Clearance(s, d)× d};
14: for all diagonal directions d do
15: for all cardinal directions c associated with d do
16: max←Clearance(s, c);
17: diag ←Clearance(s, d);
18: if IsSubgoal(s+max× c) then
19: max := max− 1;
20: if IsSubgoal(s+ diag × d) then
21: diag := diag − 1;
22: for i = 1 . . . diag do
23: j :=Clearance(s+ id, c);
24: if j ≤ max and IsSubgoal(s+ id+ jc) then
25: S := S ∪ {s+ id+ jc};
26: j := j − 1;
27: if j < max then
28: max := j;
29: return S;

s+Clearance(s, d) × d is always an unblocked cell ac-
cording to the definition of the clearance values. For ex-
ample, in Figure 2(a), Clearance(s,North) = 5 and
Clearance(s, East) = 4. The clearance values can be pre-
computed and cached since they do not depend on the loca-
tions of the start and goal cells.

GetDirectHReachable(s) works in two phases. The first
phase (Lines 11-13) uses the clearance values of cell s in
each direction to find direct-h-reachable subgoals that can be
reached via moves in only a single direction. For example,
when the function checks the North direction of cell s in Fig-
ure 2(a), it checks whether cell s+Clearance(s,North) ×
North = s + 5North = B2 contains a subgoal. Since
it does not, no subgoal is added to the set S of direct-h-
reachable subgoals. When the function checks the North-
East direction, it finds that E4 contains B and adds it to S.
Any subgoal found this way is direct-h-reachable from s be-
cause there is only a single shortest trajectory to any cell on
the same horizontal, vertical or diagonal line as s, and this
shortest trajectory is also a path that does not contain sub-
goals according to the definition of the clearance values. In
Figure 2(a), D is also direct-h-reachable from s but C and E
are not since B and D are subgoals on shortest paths between
s and C and E, respectively.

The second phase (Lines 14-28) finds direct-h-reachable
subgoals that can be reached via moves in two directions.
In Figure 2(b), the yellow dot represents s. The black lines
are explored in the first phase while the green areas are ex-
plored in the second phase. There are eight areas to explore,



one for each of the combination of a cardinal and a diagonal
direction (for example, the North-NorthEast area).

The exploration uses the following key observations:
First, for cells s and s′ = s + id + jc with i, j > 0 to
be direct-h-reachable, both s′ − c = s + id + (j − 1)c and
s′ − d = s+ (i− 1)d+ jc must be direct-h-reachable from
s (because, if a shortest trajectory between s and s′ − c (or
s′−d) were not a path or contained a subgoal, then one could
extend this trajectory to a shortest trajectory between s and
s′ that would not be a path or contained a subgoal, which
contradicts the definition of direct-h-reachability). Second,
for s and s′ to be direct-h-reachable, neither s′−c nor s′−d
can contain a subgoal (because otherwise there would exist
a shortest path between s and s′ through a subgoal, which
contradicts the definition of direct-h-reachability).

We now explain Lines 16-28 in the context of exploring
the East-NorthEast area around s = B7 in Figure 2(a), which
is done by sweeping it with horizontal lines from West to
East starting with cells on the NorthEast diagonal line. Vari-
able max contains an upper bound on the length of the hor-
izontal line swept currently, which is usually equal to the
length of the horizontal line swept last (due to the first ob-
servation, namely that s and a cell s′ are direct-h-reachable
only if s and s′ − d are also direct-h-reachable). In case
the horizontal line swept last ended with a subgoal, variable
max is decremented by one (due to the second observation,
namely that s and a cell s′ are direct-h-reachable only if
s′ − d does not contain a subgoal). Variable max is set to
Clearance(s, East) = 4 (Line 16) and then decremented to
3 since F7 contains a subgoal (Lines 18-19). Variable diag
contains an upper bound on the length of the diagonal line
and thus on the number of horizontal lines to sweep. It is set
to Clearance(s,NorthEast) = 3 (Line 17) and then decre-
mented to 2 since E4 contains a subgoal (Lines 20-21). We
sweep the first horizontal line, starting with C6. The clear-
ance value of C6 in the East direction is 6, which is larger
than variable max = 3 (Line 24). Thus, three cells to the
East of C6 are direct-h-reachable from s, namely D6, E6 and
F6. (G6 is not direct-h-reachable from s since there exists a
shortest path between s and G6 through D.) We then sweep
the second horizontal line, starting with D5. The clearance
value of D5 in the East direction is 3, which is equal to vari-
able max = 3. Thus, three cells to the East of D5 are direct-
h-reachable from s, namely E5, F5 and G6.. G5 contains
F. Therefore, F is added to the set S of direct-h-reachable
subgoals and variable max is decremented to 2 (Lines 23-
28). We do not sweep additional horizontal lines because the
limit given by variable diag = 2 has been reached.

By precomputing the clearance values, the runtime of
identifying all direct-h-reachable subgoals from a cell s
is linear in the sum of the four clearance values of s in
the diagonal directions because, when exploring an area,
GetDirectHReachable(s) only looks up clearance values of
cells that lie on the diagonal line bordering the area. Our
implementations store only clearance values in the cardinal
directions. Clearance values in the diagonal directions are
used only in the first phase of GetDirectHReachable(s) but
the runtime of their calculation during search is also linear
in the sum of the four clearance values of s in the diagonal

Algorithm 4 Constructing two-level subgoal graphs

1: function CostOtherPath(subgoals s, s′, s′′)
2: G′T := ((VT ∪ {s′, s′′}) \ {s}, ET );
3: return the cost of a shortest path from s′ to s′′ over G′T ;

4: function IsNecessaryToConnect(subgoals s, s′, s′′)
5: if IsHReachable(s′, s′′) then
6: return false;
7: if CostOtherPath(s, s′, s′′) ≤ h(s, s′) + h(s, s′′) then
8: return false;
9: return true;

10: procedure PruneSubgoal(subgoal s)
11: VT := VT \ {s};
12: for all (s, s′), (s, s′′) ∈ ET do
13: if h(s′, s′′) = h(s, s′) + h(s, s′′) then
14: if CostOtherPath(s, s′, s′′) > h(s, s′) + h(s, s′′) then
15: ET := ET ∪ {(s′, s′′)};

16: procedure PruneSubgoals()
17: VT := VS ; ET := ES ;
18: for all s ∈ VT , in any order do
19: necessary := false;
20: for all (s, s′), (s, s′′) ∈ ET do
21: if IsNecessaryToConnect(s, s′, s′′) then
22: necessary := true;
23: break;
24: if ¬necessary then
25: PruneSubgoal(s)
26: GT := (VT , ET );

directions.

Two-Level Subgoal Graphs
In this section, we describe two-level subgoal graphs, that
ignore parts of simple subgoal graphs depending on the lo-
cations of the start and goal cells. After constructing a simple
subgoal graph, the subgoals are partitioned into global sub-
goals (in VT ) and local subgoals (in VS \VT ). Edges connect
(local or global) subgoals. Only global subgoals are part of
a two-level subgoal graph. Before an A* search, the local
subgoals that are needed to connect the start and goal cells
to the two-level subgoal graph (because they are direct-h-
reachable from the start or goal cells) are temporarily made
global subgoals. The A* search then ignores all remaining
local subgoals as well as edges not between global subgoals.

Definition 4. A two-level subgoal graph GT = (VT , ET )
for a given simple subgoal graph GS = (VS , ES) is an undi-
rected graph with the following properties:

(a) VT ⊆ VS , and ES ⊆ ET ⊆ VS × VS .
(b) For all (s, s′) ∈ ET , s and s′ are h-reachable.
(c) For all s, s′ ∈ VS , the distance between s and s′ in the

two-level subgoal graph G′
T = (VT∪{s, s′}, ET ) is equal

to the distance of s and s′ on the simple subgoal graph.

Algorithm 4 shows how to construct two-level subgoal
graphs from simple subgoal graphs. The global subgoals and
edges of the initial two-level subgoal graph are equal to the
subgoals and edges, respectively, of the given simple sub-
goal graph. For each global subgoal s of the two-level sub-
goal graph, we check whether it is needed to connect one or



more pairs of its neighboring (local or global) subgoals. s
is not needed to connect its neighboring subgoals s′ and s′′

(Lines 4-9) iff (a) there is a path between s′ and s′′ through
only global subgoals, excluding s, that is no longer than
h(s′, s)+h(s, s′′) or (b) s′ and s′′ are h-reachable. If s is not
needed to connect any pair of its neighboring subgoals, we
prune it by removing it from VT (so that it becomes a local
subgoal) and add edges between all pairs of its neighbor-
ing subgoals that satisfy Condition (b) but not Condition (a)
(Lines 10-15). The initial two-level subgoal graph satisfies
the properties of Definition 4, and the above transformations
preserve them.

The two-level subgoal graph resulting from a given simple
subgoal graph depends on the order in which the global sub-
goals are checked. Consider the simple subgoal graph in Fig-
ure 1(b) for illustration, with subgoals A,B,C,D and edges
A-B, B-C and C-D. We check the subgoals in the order A,
B, C and D. A has only one neighboring subgoal and is thus
trivially not needed to connect any pair of its neighboring
subgoals. Consequently, A is pruned. B has only one pair of
neighboring subgoals, namely (A,C), which satisfies Con-
dition (b) but not (a). Consequently, B is pruned and edge
A-C is added. C has three pairs of neighboring subgoals, of
which the pair (A,D) does not satisfy Conditions (a) and (b).
Thus, C is not pruned. Finally, D has only one neighbor-
ing subgoal and is thus trivially not needed to connect any
pair of its neighboring subgoals. Consequently, D is pruned.
The resulting two-level subgoal graph has one global sub-
goal (C) and one additional edge (A-C). If we had checked
the subgoals in the order D, C, B and A, then the resulting
two-level subgoal graph has one global subgoal (B) and one
additional edge (B-D). Figure 3(a) shows a simple subgoal
graph for part of a larger example (together with all edges
between subgoals), and Figure 3(b) shows the resulting two-
level subgoal graph (together with all edges between global
subgoals).

Finding a shortest path between a given start cell s and a
given goal cell s′ with a two-level subgoal graph is similar
to finding a shortest path with a simple subgoal graph. Al-
gorithm 5 shows how to connect s and s′ to the two-level
subgoal graph. FindPath and FindAbstractPath from Algo-
rithm 2 are used without any modifications, except that Find-
AbstractPath now uses the modified two-level subgoal graph
instead of the modified simple subgoal graph. The compu-
tation of the low-level path might take longer for two-level
subgoal graphs than for simple subgoal graphs because the
edges now connect h-reachable but not necessarily direct-
h-reachable cells and the depth-first search thus might have
to backtrack. However, our experimental results show that
this increase in runtime is usually offset by the decrease in
runtime due to having to search smaller graphs.

Theorem 2. FindPath(s,s′) from Algorithm 2 that uses Con-
nectToGraph from Algorithm 5 finds a shortest path between
cells s and s′ on the grid.

Proof. Consider any high-level shortest path between s and s′ on
the modified simple subgoal graph. Let s′′ and s′′′ denote the first
and last subgoals on the path, respectively. The path can be divided
into three segments, namely (a) the direct-h-reachable edge be-

Algorithm 5 Searching two-level subgoal graphs

1: procedure ConnectToGraph(cell s)
2: if s 6∈ VT then
3: VT := VT ∪ {s};
4: if s 6∈ VS then
5: S ← GetDirectHReachable(s);
6: for all s′ ∈ S do
7: ET := ET ∪ {(s, s′)};
8: if s′ 6∈ VT then
9: VT := VT ∪ {s′};

(a) Simple subgoal graph (b) Two-level subgoal graph

Figure 3: Simple and two-level subgoal graphs

tween s and s′′, (b) the shortest path between s′′ and s′′′ and (c) the
direct-h-reachable edge between s′′′ and s′. (a) and (c) are part of
the modified two-level-subgoal graph since ConnectToGraph con-
nects both s and s′ to all of their (local or global) direct-h-reachable
subgoals. The distance between s′′ and s′′′ on the two-level sub-
goal graph with s′′ and s′′′ added is equal to their distance on
the simple subgoal graph according to Property (c) of Definition
4. Thus, the distance between s and s′ on the modified two-level
subgoal graph is no larger than their distance on the modified sim-
ple subgoal graph and thus also no larger than their distance on the
grid according to Theorem 1 (and it cannot be longer per construc-
tion).

Other Improvements and Trade-offs
Discarding edges between local subgoals in two-level sub-
goal graphs: Edges between local subgoals can be up to
70 percent of all edges. Any shortest high-level path that
contains an edge between local subgoals does not contain
any other subgoals. Thus, an edge between local subgoals
is relevant only if one of them is direct-h-reachable from
the start cell and the other one is direct-h-reachable from
the goal cell. We can discard all edges between local sub-
goals at the cost of giving up completeness, a loss that
can be mitigated somewhat as follows: After a search for
a high-level path between two cells s and s′, we pick lo-
cal subgoals s′′ and s′′′ such that s and s′′ are direct-h-
reachable, s′ and s′′′ are direct-h-reachable, and the sums
h(s, s′′) + h(s′′, s′) and h(s, s′′′) + h(s′′′, s′) are minimal.
If the sum h(s, s′′) + h(s′′, s′′′) + h(s′′′, s′) is smaller than
the length of the path found by the search, then we check
whether s′′ and s′′′ are h-reachable. If they are, then we use
s−s′′−s′′′−s′ as the shortest high-level path. (Special cases
apply if s or s′ are local or global subgoals.) This method
does well in practice, rarely misses shortest high-level paths



and mostly misses them in easy instances. In cases where
we fail to find a path, we try to find local subgoals s′′ and
s′′′ such that s and s′′ are direct-h-reachable, s′ and s′′′ are
direct-h-reachable, and s′′ and s′′′ are h-reachable. If we find
such a pair, then we use s − s′′ − s′′′ − s′ as the high-level
path. This ensures that we never fail to find a path between
s and s′, if there exists one.
Precomputing pairwise distances: For simple subgoal
graphs, we can precompute all pairwise distances between
subgoals, which might result in feasible memory require-
ments since the number of subgoals is often much smaller
than the number of unblocked cells. To find a shortest high-
level path between cells s and s′, we pick subgoals s′′ and
s′′′ such that s′′ = s or s′′ is direct-h-reachable from s,
s′′′ = s′ or s′′′ is direct-h-reachable from s′, and the sum of
h(s, s′′), the precomputed distance between s′′ and s′′′ and
h(s′′′, s′) is minimal. Finding the minimizing subgoals s′′

and s′′′ requires a number of distance lookups, each of which
takes constant time. For two-level subgoal graphs, we can
proceed similarly by precomputing all pairwise distances
between global subgoals, which requires even less memory
than storing all pairwise distances between subgoals. We do
not need to store the shortest paths themselves since they
can be found fast with an A* search that uses the pairwise
distances as heuristics.

Implementation Details
Edges: We store all subgoals (plus the start and goal cell)
in a (subgoal) array together with lists of their neighboring
subgoals on the subgoal graph, with the following excep-
tion: For an edge between a global and a local subgoal in
two-level subgoal graphs, we store the global subgoal as a
neighboring subgoal of the local subgoal but not vice versa.
This way, a search does not reach a local subgoal from a
global subgoal by default. Only when a local subgoal is tem-
porarily added to the two-level subgoal graph, we store the
local subgoal also as a neighboring subgoal of the global
subgoal. Our data structure makes it easy to add subgoals
and edges to subgoal graphs, remove them again and look
up neighboring subgoals.

Clearance values: For all unblocked cells that are not sub-
goals, we store their clearance values in all cardinal direc-
tions. For all subgoals, we store pointers to their locations in
the subgoal array instead because we do not need their clear-
ance values during runtime. We use 8 bits to store each clear-
ance value. For cells whose clearance values are too large to
store in 8 bits, we simply store the highest possible value k.
If a cell s has the highest possible clearance value k in direc-
tion d when we look up its clearance value during runtime,
we also look up the clearance value of the cell k moves away
from s in direction d. We keep repeating this procedure un-
til we reach a cell with a clearance value below k, at which
point we add up the clearance values of all visited cells and
return the results as the clearance value of s in direction d.

Search: We implement the search as a standard A* search
with a binary heap as the priority queue. We store the values
needed by the A* search, such as the g-values and parent
pointers, in the subgoal array and initialize them lazily dur-
ing runtime.

Memory (MB) Prep Time (ms) Solution Time per Map (s)
Map type S TL TLP S TL TLP A* S TL TLP

bg512 1.12 1.10 1.20 10 225 292 2.149 0.060 0.043 0.038
DAO 0.61 0.59 0.89 5 179 535 3.541 0.252 0.087 0.032

starcraft 2.35 2.15 7.67 34 6,746 26,008 44.132 1.678 0.518 0.267
wc3maps512 1.15 1.13 1.39 13 260 386 4.380 0.071 0.054 0.047

maze1 2.19 2.17 - 40 67 - 120.360 36.189 30.062 -
maze2 1.80 1.76 - 33 61 - 199.727 18.843 12.449 -
maze4 1.35 1.32 20.68 22 44 75,885 264.360 7.028 3.030 0.967
maze8 1.15 1.15 2.96 17 24 1,903 329.499 2.536 1.380 0.762

maze16 1.10 1.09 1.25 14 17 67 334.355 1.018 0.754 0.587
maze32 1.08 1.08 1.09 13 14 15 241.170 0.357 0.402 0.373

random10 4.39 4.55 - 97 636 - 4.423 1.679 1.527 -
random15 4.66 4.76 - 98 509 - 7.142 3.004 2.551 -
random20 4.62 4.65 - 96 411 - 9.468 4.154 3.354 -
random25 4.39 4.38 - 92 337 - 11.336 5.078 3.876 -
random30 4.06 4.02 - 88 274 - 12.700 5.666 3.987 -
random35 3.64 3.58 - 81 220 - 15.813 6.941 4.486 -
random40 2.55 2.50 - 46 117 - 24.345 10.813 6.397 -

room8 1.52 1.53 - 25 45 - 19.072 0.846 0.709 -
room16 1.19 1.19 11.27 16 22 28,024 20.840 0.218 0.195 0.055
room32 1.10 1.10 1.67 14 15 351 24.394 0.085 0.086 0.048
room64 1.08 1.08 1.11 13 13 18 32.613 0.058 0.079 0.069

Table 1: Results of different subgoal graphs

Experimental Evaluation
We first compare A*, simple subgoal graphs (S), two-level
subgoal graphs (TL) and two-level subgoal graphs with pair-
wise distances (TLP). For TL and TLP, we discard all edges
between local subgoals. A* uses the same data structures as
our subgoal graph variants. The experiments were run on a
dual quad-core Xeon E5430 PC with a 2.66GHz CPU and
16GB of RAM. We compare the methods on different map
types1, namely maps from the games Baldur’s Gate II and
Warcraft III (resized to 512 × 512), maps from the game
Dragon Age: Origins (ranging from 22×28 to 1260×1104),
maps from the game StarCraft (ranging from 384 × 384 to
1024 × 1024), room maps (of varying room sizes), maze
maps (of varying corridor widths), and maps with randomly
blocked cells (of varying blockage percentages), all of size
512 × 512. We did not run TLP on all map types due to
its long preprocessing times (of more than 30 minutes per
map). For each map type, Table 1 shows the average amount
of memory for the cached subgoal graph (except for A*), the
average preprocessing time (except for A*) and the average
time to solve all instances on a map. The results show that,
in general, TLP is faster than TL, and TL is faster than S. S
speeds up A* by factors from 2.2 (on maps with 25 percent
randomly blocked cells) to 675.5 (on maze maps with cor-
ridor width 32). Preprocessing to generate subgoal graphs
for S and TL is usually fast, except for StarCraft maps due
to them containing many diagonal walls, which results in
many local subgoals. Overall, subgoal graphs speed up A*
the most on structured maps (such as room and maze maps,
especially as their room sizes and corridor widths increase)
because they result in few subgoals.

Not shown in Table 1 are the following results: First, TL
and TLP find shortest paths in almost all cases even though

1All maps are available from Nathan Sturtevant’s repository at
http://movingai.com/benchmarks/.



Memory (MB) Runtime per Instance (ms) Path Length
Entry Pre Post Total Max 20 Total %

BFS 11.5 17.0 1.141 1.140 1.140 298.3 1.15
BlockA* 58.0 64.1 0.482 0.482 0.482 298.3 1.15
CPD-full 3,040.1 3,043.2 0.050 0.045 0.006 258.7 1.00

CPD-mbm 67.8 81.7 0.190 0.006 0.016 258.7 1.00
JPS-offline 79.7 82.7 0.343 0.343 0.343 258.7 1.00
JPS-online 63.5 67.4 2.437 2.437 2.437 258.7 1.00

PDH 17.7 23.6 0.128 0.009 0.017 302.8 1.16
PPQ 47.3 50.9 0.830 0.830 0.830 259.1 1.00
SUB 12.8 16.7 0.024 0.024 0.024 258.7 1.00
Tree 11.9 16.2 0.004 0.004 0.004 303.6 1.51

Table 2: GPPC results on game maps
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Figure 4: GPPC optimal planners on game maps
they cannot guarantee optimality since all edges between lo-
cal subgoals are discarded, The average length of the paths
found by TL and TLP is no more than 1 percent longer
than the average shortest path length. Second, the percent-
age of the total runtime spent by ConnectToGraph varies a
lot with the map type. On maze maps, for example, where
the direct-h-reachable areas around cells are small and total
runtimes are high, ConnectToGraph uses only around 0.07
percent of the total runtime of TL. On Baldur’s Gate maps
with open spaces and small total runtimes, ConnectToGraph
uses around 31 percent of the total runtime of TL.

We also show preliminary results from the Grid Based
Path Planning Competition (GPPC) 20122. We only show
results for game maps since some of the other entries did not
solve all instances on other types of maps. These game maps
include some maps from our experiment as well as maps
from the game Dragon Age II. SUB is our entry. We entered
TL instead of TLP since the preprocessing time and memory
requirements of TLP do not scale well with the number of
subgoals. The other entries that solved all instances on game
maps are as follows: BFS performs breadth-first search with-
out considering diagonal moves. Block A* (BlockA*) pre-
computes all paths in 3×3 blocks of cells and then performs
an A* search over blocks rather than cells. Compressed Path
Databases (CPD-full and CPD-mbm) precompute the di-
rections of the first moves for all pairs of start and goal
cells and compress the resulting tables, with different com-
pression factors. Jump Point Search (JPS-online and JPS-
offline) performs symmetry detection, online and offline.
Precomputed Direction Heuristics (PDH) partition the grid

2http://movingai.com/GPPC/

into areas and store distances between areas. Pseudo-Priority
Queues (PPQ) use search with a pseudo-priority queue to ac-
cess the best node in the open list fast. Finally, Tree Cache
(TREE) caches a spanning tree to make the search needed to
return a path between cells on the spanning tree trivial. More
information on most entries can be found in the online pro-
ceedings of the International Symposium on Combinatorial
Search 20123. The competition was run on a dual quad-core
Xeon E5620 PC with a 2.4GHz CPU and 12GB of RAM.
The entries could report individual moves one at a time or
complete paths. Table 2 (Sturtevant 2012) reports memory,
time and suboptimality statistics. Two memory statistics are
reported, namely the average amount of memory for cached
information and the average amount of memory needed dur-
ing the search. Three time statistics are reported, namely the
average time to find a complete path, the average maximum
time to report a move and the average time to report the first
twenty moves. Excluding TREE, whose paths are around 50
percent longer than shortest paths, our entry was the fastest
to find complete paths and requires the least amount of mem-
ory. Figure 4 (Sturtevant 2012) shows a graph plotting the
average time to find complete paths versus the memory re-
quirements of all (near) optimal entries.

Conclusions and Future Work

We developed a new method for preprocessing eight-
neighbor grids to generate subgoal graphs, that can be used
to find shortest paths fast. Simple subgoal graphs and two-
level subgoal graphs are specialized data structures for eight-
neighbor grids with uniform movement costs and specific
diagonal movement rules. However, the pruning idea be-
hind generating two-level subgoal graphs from simple sub-
goal graphs generalizes beyond this scenario. For example,
generating simple subgoal graphs from grids can be viewed
as an application of the same pruning idea. Initially, the
graph corresponds to the grid. We then repeatedly prune
cells and add edges to ensure that the properties of Definition
4 continue to hold with the change that edges now need to
connect direct-h-reachable subgoals instead of h-reachable
ones. The subgoals of the simple subgoal graph correspond
to the global subgoals, and the rest of the cells correspond
to the local subgoals. The edges of the simple subgoal graph
correspond to the edges between global subgoals. The edges
that connect cells to their direct-h-reachable subgoals corre-
spond to edges between local and global subgoals although
simple subgoal graphs compute them during runtime using
GetDirectHReachable rather than store them.

Future research includes extending two-level subgoal
graphs to n-level subgoal graphs with 1st to nth level sub-
goals instead of only local and global subgoals, develop-
ing more sophisticated pruning rules for obtaining two-
level subgoal graphs from simple subgoal graphs that prune
the maximum number of cells, and applying our pruning
ideas to additional domains, such as grids with non-uniform
movement costs and lattices for motion planning.

3http://www.aaai.org/Library/SOCS/socs12contents.php
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