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Abstract
Planners need to become faster as we seek to tackle in-
creasingly complicated problems. Much of the recent
improvements in computer speed is due to multi-core
processors. For planners to take advantage of these
types of architectures, we must adapt algorithms for par-
allel processing. There are a number of planning do-
mains where state expansions are slow. One example
is robot motion planning, where most of the time is de-
voted to collision checking. In this work, we present
PA*SE, a novel, parallel version of A* (and weighted
A*) which parallelizes state expansions by taking ad-
vantage of this property. While getting close to a linear
speedup in the number of cores, we still preserve com-
pleteness and optimality of A* (bounded sub-optimality
of weighted A*). PA*SE applies to any planning prob-
lem in which significant time is spent on generating
successor states and computing transition costs. We
present experimental results on a robot navigation do-
main (x,y,heading) which requires expensive 3D colli-
sion checking for the PR2 robot. We also provide an
in-depth analysis of the algorithm’s performance on a
2D navigation problem as we vary the number of cores
(up to 32) as well as the time it takes to collision check
successors during state expansions.

Introduction
Over the past few years, improvements to CPUs have mostly
been in the form of additional cores instead of faster speed.
In order to harness the power of these advancements in hard-
ware, we must adapt algorithms for an ever more parallel
computer. Heuristic search is one of the core tools in the
field of artificial intelligence. In this work, we focus on
the commonly used best-first search, A* (Hart, Nilsson, and
Raphael 1968). The original A* algorithm is serial, as are
most of its variants and extensions. Parallelizing A* is diffi-
cult because of the complex dependencies between pairs of
states in the graph being searched.

A* guarantees completeness and when a solution is found,
it is cost-minimal. A* also has a low worst case complex-
ity, ensuring that any state will only be expanded at most
once (provided the heuristics are consistent). However, at
any given point in the search, A* only allows a state from
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the set of states with the minimal priority (f-value) to be
expanded from the OPEN list (this contains the states the
search has discovered but hasn’t expanded yet). In this work,
we derive a new expansion rule which generalizes the origi-
nal one and allows many more states to be expanded without
harming guarantees on completeness or optimality. Conse-
quently, these states can be expanded in parallel. Like A*,
each state only needs to be expanded at most once.

The new expansion rule is defined in terms of pairwise
state independence relationships. If a state s is independent
of another state s′, then the expansion of s′ cannot lead to a
shorter path to s and, therefore, it is safe to expand s before
s′. If the independence relationship holds in both directions
(s′ is also independent of s), then we know that s and s′ can
be expanded in parallel. When choosing a state for expan-
sion, there may be several independence checks that need
to be run on a candidate state in order to confirm that it is
safe to expand. Performing these checks before each expan-
sion takes some time and, therefore, the proposed method,
PA*SE (Parallel A* for Slow Expansions), is best suited
for domains where state expansions are slow. That way, the
overhead is dominated by the expansion time and a speedup
can be achieved by parallelizing state expansions.

A good example of such a domain is robot motion plan-
ning with full-body collision checking. Expansions in this
domain are slow because, when generating a successor, the
planner must check that the body of the robot does not col-
lide with any obstacles. This requires expensive collision
checking of the mesh representing the body of the robot with
the obstacles in the environment (typically represented as a
3D point cloud).

In this paper, we present PA*SE, a parallel version of A*,
followed by a version with a relaxed independence check
that allows for higher parallelization of expansions at the
cost of optimality, and finally a parallel version of weighted
A*. We provide theoretical analyses of the algorithms. Our
experimental results on up to 32 processors show a near-
linear speed up over A* and weighted A*. Finally, we show
the benefits of our algorithm on (x,y,heading) motion plan-
ning with full-body collision checking.

Related Work
The first work toward parallel A* was likely a parallel ver-
sion of Dijkstra’s algorithm (Quinn 1986). This algorithm



always lets threads expand the cheapest states in OPEN
in parallel and may expand states before they have a mini-
mal cost from the source state. This is resolved by allowing
states to be re-expanded. As usual, the search terminates
when there is nothing left to expand.

Around the same time, a similar approach was applied to
A* (Irani and Shih 1986) (Leifker and Kanal 1985). The
approach works like the parallel Dijkstra algorithm above
but, as usual, the states are sorted differently in the OPEN
list and the termination condition is a bit trickier since ex-
panding all states in the graph would defeat the efficiency of
A*. This approach is the most similar to ours. We compare
against this method in our experiments.

A similar approach starts with few threads and if the gaol
is not found within a certain number of expansions, the
search is restarted with more threads (Vidal, Bordeaux, and
Hamadi 2010). While the approach worked well in practice,
the algorithm provides no guarantees on solution quality.

PRA* (Parallel Retracting A*) provides a dramatically
different approach by giving each processor its ownOPEN
list (Evett et al. 1995). A hashing function is used to map ev-
ery state in the graph to a processor. Upon generation, a state
is hashed and then sent to its appropriate core. Every core
expands states in its OPEN list but locking of these lists
must be used in order to pass a generated successor state to
another processor.

Parallel Structured Duplicate Detection (PSDD)
uses a state abstraction function to group states into
“nblocks” (Zhou and Hansen 2007). Processors take entire
nblocks (in parallel) and are allowed to expand all states
in them without locking because the algorithm ensures
that neighboring nblocks are not chosen to be expanded in
parallel.

Parallel Best-NBlock-First (PBNF) combines the last two
approaches by running PRA* but with a hashing function
based on state abstraction from PSDD (Burns et al. 2010).
This avoids much of the locking time experienced by PRA*.
This approach has also been extended to weighted (bounded
sub-optimal) and anytime search. We compare against this
method in our experiments.

HDA* (Hash Distributed A*) is also based on the hashing
idea from PRA* (Kishimoto, Fukunaga, and Botea 2009).
However, an asynchronous message passing system allows
the hashed states to be delivered to their receiving proces-
sor without causing the transmitting thread to block while
waiting for a lock.

Yet another direction is to run multiple serial planning al-
gorithms in parallel (Valenzano et al. 2010). The planners
should either be diverse or at least use different parame-
ters. The solution quality of this approach is bounded by
the worst solution quality bound from the set of algorithms
run in parallel. Clearly, in this approach states are expanded
multiple times since all planners run completely indepen-
dently of one another.

All of these approaches have to allow for states to be re-
expanded (possibly many times) in order to guarantee op-
timality (or bounded sub-optimality in the case of weighted
search). All of them could potentially expand an exponential
number of states, especially in the case of weighted A* (it is

possible that the work in (Valenzano et al. 2010) could have
a bounded number of expansions, depending on the planners
used). Our approach to parallel A* and weighted A* ensures
that a state never has to be expanded more than once while
maintaining the same guarantees on solution quality as their
serial counterparts. This can significantly reduce the num-
ber of expansions and in our domains where expansions are
time-consuming, this can greatly reduce planning times.

Algorithm
We start by presenting a parallel version of A* (PA*SE) and
then present two simple variants that can improve planning
speed. The variants are no longer optimal but still guaran-
tee that the worst case solution cost is bounded. A key at-
tribute of all of these algorithms is that no state will be ex-
panded more than once. We show experimentally, how this
improves planning speed.

Definitions and Assumptions
First, we list some definitions and notation that will help
explain PA*SE.

• G(V,E) is a finite graph where V is the set of vertices
(or states) in the graph and E is the set of directed edges
connecting pairs of vertices in V .

• sstart is the start state.

• sgoal is the goal state.

• c(u, v) is the cost of the edge from vertex u to vertex v.

• The g-value, g(s), is the cost of the cheapest path from
sstart to s found by the algorithm so far.

• g∗(s) is the minimum cost from sstart to s.

• h(s) is a consistent heuristic. It is guaranteed not to over-
estimate the distance to the goal and satisfies the triangle
inequality.

• OPEN is an ordered list of states the search has gener-
ated but has not expanded yet.

• CLOSED is the set of states the search has expanded (it
is used to prevent re-expansion).

The objective of A* is to find a path (sequence of edges) that
connects sstart to sgoal. A* does this by repeatedly expand-
ing the state in OPEN with the smallest f-value, defined as
f(s) = g(s) + h(s).

In addition to the above definitions, we assume that there
also exists a heuristic h(s, s′) that can quickly provide an
estimate of the cost between any pair of states. We re-
quire h(s, s′) to be forward-backward consistent, that is,
h(s, s′′) ≤ h(s, s′) + h(s′, s′′)∀s, s′, s′′ and h(s, s′) ≤
c∗(s, s′)∀s, s′, where c∗(s, s′) is the cost of a shortest path
from s to s′ (Koenig and Likhachev 2005). This property
typically holds if heuristics are consistent. For example, the
heuristic h(s, s′) = h(s)−h(s′) is guaranteed to be forward-
backward consistent. As described later, our algorithm also
makes use of a set BE, which contains the states currently
being expanded in parallel.



Prior work: Parallel A* with Re-expansions
Parallel A* (PA*) (Irani and Shih 1986) operates as follows:
• Threads take turns removing the state with the smallest

f-value from the OPEN list by locking the OPEN list.
• Once a thread has a state it expands it in parallel with the

other threads.
• After a thread generates the successors of its state (and

g-values), it puts them in the OPEN list after locking it.
It’s well known that A* (with consistent heuristics) never
expands any state more than once because upon expansion,
a state has an optimal g-value (g(s) = g∗(s)). Therefore, it
never happens that, later in the search, a shorter path is found
to a state that has already been expanded. However, parallel
A* does not maintain this guarantee. States may not have
optimal g-values upon expansion is because they may be ex-
panded out of order. For example, suppose the OPEN list
currently looks like this: (s1, s2, . . . ). Now assume that two
threads expand s1 and s2 in parallel but s2 finishes first and
generates s3. Since s2 was not at the front of theOPEN list
its g-value may not have been optimal. The expansion of s1
might have directly lowered the g-value of s2 (if s1 has an
edge to s2) or it could generate successors that would have
been placed in the OPEN list ahead of s2 and would have
eventually led to a reduction of g(s2). Therefore, parallel
A* will have to expand s2 several times to guarantee that
it finds a shortest path to it. Even worse, any time s2 gets
re-expanded because its g-value decreases, any of its suc-
cessors, such as s3, that were expanded previously, might
have to be re-expanded again. This can lead to lots of states
being expanded many times.

PA*SE
Our version of parallel A* obeys the invariant that, when a
state is expanded, its g-value is optimal. Therefore, every
state is expanded at most once, which provides a speedup
over the previous approach (PA*) in our experiments. It does
this by only choosing states for expansion that can not have
their g-value lowered subsequently during the expansion of
other states. This holds for any state in BE or the OPEN
list, as well as any other state that might later be inserted
into OPEN . In this sense, PA*SE is a generalization of
the A* expansion rule which only guarantees that the state
with the minimum f-value cannot have its g-value lowered
in the future. We show that there are often many states that
have this property and therefore can be expanded in parallel.

A state s is “safe to expand” for A* if we can guarantee
that its g-value is already optimal. This is equivalent to say-
ing that there is no state currently being expanded (in BE),
nor in the OPEN list that can lead to a reduction of the
g-value of s. We define s to be independent of state s′ iff
g(s)− g(s′) ≤ h(s′, s). We then define state s to be safe to
expand if

g(s)− g(s′) ≤ h(s′, s)∀s′ ∈ OPEN ∪BE. (1)

The left-hand side of this inequality is an upper bound on
the cost of a path from s′ to s that could reduce the g-value
of s. On the right-hand side of the inequality we have our

forward-backward consistent heuristic. We know that a path
from s′ to smust cost at least h(s′, s). So if this lower bound
on the cost of the path is at least as large as the maximum
cost path that can lower the g-value of s, then we know that
there is no path of sufficiently small cost from s′ to s. There-
fore, s is independent of s′ and can safely be expanded be-
fore s′. If the opposite is also true (s′ is independent of s), s
and s′ can be expanded in parallel.

With this rule, we can choose states to expand in parallel
and guarantee that every state we expand has an optimal g-
value and therefore no state will need to be expanded more
than once. However, the check to see if s is safe to expand
is quite expensive. To determine if we can expand s safely,
we have to check whether s is independent of every state in
OPEN ∪BE, which could be many states. It turns out that
we only need to check that s is independent of states with f-
values less that f(s). This is similar to how A* can expand a
state with the smallest f-value without worrying that it may
be affected by states in OPEN with larger f-values. As we
prove in Theorem 2, if f(s′) ≥ f(s), then s is independent
of s′ and can be expanded before s′. We can therefore update
Equation 1 with a more efficient version.

g(s)− g(s′) ≤ h(s′, s) (2)

∀s′ ∈ {a ∈ OPEN |f(a) < f(s)} ∪BE.
This dramatically reduces the number of independence
checks that need to be performed.

Algorithm 1 PA*SE Thread
1: LOCK
2: while sgoal does not satisfy Equation 2 do
3: remove an s from OPEN that has the smallest f(s) among

all states in OPEN that satisfy Equation 2
4: if such an s does not exist then
5: UNLOCK
6: wait until OPEN or BE change
7: LOCK
8: continue
9: end if

10: insert s into BE
11: insert s into CLOSED
12: UNLOCK
13: S := getSuccessors(s)
14: LOCK
15: for all s′ ∈ S do
16: if s′ has not been been generated yet then
17: f(s′) := g(s′) :=∞
18: end if
19: if s′ /∈ CLOSED and g(s′) > g(s) + c(s, s′) then
20: g(s′) := g(s) + c(s, s′)
21: f(s′) := g(s′) + h(s′)
22: insert/update s′ in(to) OPEN with f(s)
23: end if
24: end for
25: remove s from BE
26: end while
27: UNLOCK

Algorithm 1 shows how we apply our independence rule
to A* in order to make it parallel. Most of the algorithm



is identical to A*. On line 3, we remove a state from the
OPEN list for expansion that has the lowest possible f-
value that is also safe to expand. Then after a state is se-
lected, it is marked as “being expanded” by adding it to
BE on line 10. Line 13 shows the expensive expansion step
where the successors of s are generated and the costs of the
edges to them are computed. Lines 15-24 show the typical
A* relaxation step where, if a shorter path to a successor is
found, its g-value and f-value are reduced accordingly and it
is placed/updated in OPEN . Line 25 shows that, when an
expansion is finished, we remove the state from the BE list.
The search terminates when the goal can be safely expanded.
In the case of no solution, the algorithm is also allowed to
terminate if the OPEN list is empty and all threads are idle
(BE is empty).

Most of the lines in the algorithm occur under lock be-
cause they manipulate the OPEN list. However, due to the
expensive expansions on line 13, most of the time, the algo-
rithm is lock-free, allowing for parallelism. The only other
time it is lock-free is, if on line 3, an independent state is
not found. This can only be caused by conflicts from other
states that are simultaneously being expanded. In this case,
the thread unlocks until one of the other threads puts its suc-
cessors into the OPEN list and releases the state it has ex-
panded (lines 4-9).

In the algorithm, all threads take turns locking the
OPEN list and running independence checks. Since a
thread must check a candidate for expansion against all
states currently being expanded (the BE list), the more
threads are currently expanding states, the longer it takes to
run the independence checks for an additional thread. For an
additional thread to provide a speed-up, it needs to be able
to run the independence checks and remove a state from the
OPEN list before any of the threads currently expanding
states finish. Otherwise, the thread that finished expanding
could just as easily grab a new state as the additional thread.
Therefore, the number of threads PA*SE can support is ul-
timately limited by how long an expansion takes. The more
time-consuming expansions are, the more threads the algo-
rithm can support. Robot motion planning is an ideal do-
main for PA*SE because expanding a state frequently re-
quires expensive collision checking to generate successors.

It is important to note that, in the presented approach, a
thread searching the OPEN list for a state to expand may
have a candidate fail an independence check. The algorithm
then just moves on to the next state in the OPEN list since
it may still be possible for a state with a larger f-value to
pass all of its independence checks. However, the farther
down the list we look, the more checks need to be run (this
is why the algorithm starts with the state with the smallest
f-value). Verifying a state farther down the OPEN list is
more expensive (since more checks need to be run) and may
also be less likely to succeed (because, with more checks,
there are more chances to fail since it only has to fail once
to not have independence). Therefore, the algorithm starts
with the state with the smallest f-value. The next section
discusses how to increase the likelihood of states early in
the OPEN list passing their checks.

Relaxing the Independence Rule
In this section, we introduce a modification that makes it
much easier for states to pass the independence checks. The
PA*SE algorithm remains the same. We simply modify the
rule (used on Lines 2 and 3) for checking independence as
follows.

g(s)− g(s′) ≤ εph(s′, s) (3)

∀s′ ∈ {a ∈ OPEN |f(a) < f(s)} ∪BE.
All that has changed is that the lower bound on the cost from
s′ to s has been inflated by a chosen parameter εp ≥ 1.0.
Clearly, the larger the parameter, the easier it is to satisfy the
independence rule (unless the heuristic is the zero heuris-
tic). However, when the weight is larger than 1, states are
no longer guaranteed to have an optimal g-value when they
are expanded. While it may be higher than optimal, we can
show that the g-value is bounded (Theorem 3). Specifically,
upon expansion of a state s, g(s) ≤ εpg

∗(s). It’s important
to note that this bound holds even though we only allow each
state to be expanded at most once.

wPA*SE
Additionally, PA*SE works with the weighted A* algo-
rithm (Pohl 1970). Weighted A* expands states according
to the priority f(s) = g(s) + wh(s). The heuristic is in-
flated by a weight w ≥ 1.0 which causes the search to be
more goal directed. In practice, weighted A* tends to find
solutions significantly faster than A* even for weights close
to 1. While the optimal solution is not guaranteed anymore,
it has been shown that g(s) ≤ wg∗(s) even when only al-
lowing each state to be expanded once (Likhachev, Gordon,
and Thrun 2003). Weighted A* allows for an increase in
speed at the expense of solution quality. This is especially
useful for domains where finding optimal solutions requires
too much time or memory, such as high dimensional motion
planning problems.

It turns out that PA*SE and weighted A* can be com-
bined trivially. We simply use our algorithm (with εp) but
use the weighted A* computation of the f-value. The only
constraint is that εp ≥ w.1 The bound on the solution quality
remains εp as we prove in the next section.

Theoretical Analysis
We now analyze PA*SE and wPA*SE for arbitrary values
of εp ≥ 1 and w ≥ 1.

Theorem 1 When wPA*SE that performs independence
checks against BE and the entire OPEN list chooses state s
for expansion, then g(s) ≤ λg∗(s), where λ = max(εp, w).

Proof sketch: Assume, for sake of contradiction, that g(s) >
λg∗(s) directly before state s is expanded and, without loss
of generality, that g(s′) ≤ λg∗(s′) for all states s′ se-
lected for expansion before s. Consider any cost-minimal
path τ(sstart, s) from sstart to s and let sm be the state in

1Actually we can have w > εp but then we have to run inde-
pendence checks against all states in OPEN



OPEN ∪ BE closest to sstart on τ(sstart, s). sm is no
farther away from sstart on τ(sstart, s) than s since s is in
the OPEN list. Thus, let τ(sstart, sm) and τ(sm, s) be the
subpaths of τ(sstart, s) from sstart to sm and from sm to s,
respectively.

If sm = sstart then it holds that g(sm) ≤ λg∗(sm) since
g(sstart) = g∗(sstart) = 0. Otherwise, let sp be the pre-
decessor of sm on τ(sstart, s). sp has been expanded since
every state closer to sstart on τ(sstart, s) than sm has been
expanded (since every unexpanded state on τ(sstart, s) dif-
ferent from sstart is either in OPEN ∪ BE or has a state
closer to sstart on τ(sstart, s) that is in OPEN ∪ BE).
Thus, g(sp) ≤ λg∗(sp) according to our assumption about
all states selected for expansion before s. Then,

g(sm) ≤ g(sp) + c(sp, sm)

≤ λg∗(sp) + c(sp, sm)

≤ λg∗(sm),

where the first step holds due to the g-value update of
sm when sp was expanded and the last step holds due
to sp being the predecessor of sm on the cost-minimal
path τ(sstart, s), which implies that g∗(sm) = g∗(sp) +
c(sp, sm). In either case, g(sm) ≤ λg∗(sm).

We use cost(τ) to denote the cost of any path τ . Then,
λcost(τ(sstart, sm)) = λg∗(sm) ≥ g(sm) (4)

and
λcost(τ(sm, s)) ≥ εph(sm, s), (5)

where the last inequality holds since h(sm, s) ≤
cost(τ(sm, s)) (because h(sm, s) satisfies forward-
backward consistency and thus is admissible) and εp ≤ λ
(because λ = max(εp, w)). Adding Inequalities 4 and 5
yields
λcost(τ(sstart, s)) = λcost(τ(sstart, sm)) + cost(τ(sm, s))

≥ g(sm) + εph(sm, s).

We assume that wPA*SE performs independence checks
against BE and the entire OPEN list and chose s to be
expanded. Thus,

εph(sm, s) ≥ g(s)− g(sm)

g(sm) + εph(sm, s) ≥ g(s),
according to our independence rule. Then,

λg∗(s) = λcost(τ(sstart, s))

≥ g(sm) + εph(sm, s)

≥ g(s).
Contradiction. �
Theorem 2 Assume that w ≤ εp and consider any two
states s and s′ in the OPEN list. s is independent of s′ if
f(s) ≤ f(s′).
Proof sketch:

f(s) ≤ f(s′)
g(s) + wh(s) ≤ g(s′) + wh(s′)

g(s) ≤ g(s′) + w(h(s′)− h(s))
≤ g(s′) + wh(s′, s, )

≤ g(s′) + εph(s
′, s),

where the second-to-last step holds due to the forward-
backward consistency of the heuristic. Thus, state s is in-
dependent of state s′ per definition. �

Theorem 2 shows that wPA*SE does not need to perform
independence checks against BE and the entire OPEN list
provided that w and εp are chosen so that w ≤ εp. Also,
Theorem 2 implies the expansion rule of serial A* since it
states that any state in the OPEN list with the smallest f-
value is independent of all other states in the OPEN list.

Theorem 3 Assume that w ≤ εp. If wPA*SE chooses sgoal
for expansion, then g(sgoal) ≤ εpg∗(sgoal).
Proof sketch: The theorem directly follows from Theo-
rem 1 for a version of wPA*SE that performs indepen-
dence checks against BE and he entire OPEN list since
λ = max(εp, w) = εp. Theorem 2 shows that the behav-
ior of wPA*SE does not change if it performs independence
checks against BE and only those states in the OPEN list
whose f-values are smaller than the f-value of the state con-
sidered for expansion, which reduces the computation time
substantially. �

We still need to prove that wPA*SE finds a path from
sstart to sgoal whose cost is no greater than εpg∗(sgoal) if
a path from sstart to sgoal exists and otherwise terminates
with failure. This proof makes use of Theorem 3 and is oth-
erwise similar to the equivalent proof of serial weighted A*.

Experimental Results
For our experiments, we first show how PA*SE success-
fully accelerates planning in a robot motion planning do-
main that requires expensive collision checking. Then, on a
grid search domain, we provide a thorough analysis of the
algorithm and how it is affected by various parameters.

An important implementation detail is that, while A* typ-
ically implements the OPEN list as a heap, in PA*SE we
must be able to access all states in order by f-value, not just
the minimum one. Therefore, maintaining OPEN as a data
structure that is fully sorted (e.g. bucket list or balanced
binary tree) may be advantageous. In our experiments, we
used a red-black tree. While this may not be as efficient as a
heap in practice, the runtime of operations performed on the
OPEN list are negligible compared to how expensive the
expansions are.

Robot Navigation
Our domain is robot navigation (x,y,heading) with 3D colli-
sion checking. The heading dimension is important when
moving a robot that is not shaped like a cylinder (which
could just be represented as a point robot in (x,y). The PR2
robot has a square base and two large arms. When carry-
ing objects, the arms may need to pass over a counter or
stool. This kind of motion would be illegal using 2D colli-
sion checking which projects the robot down to a footprint
and the obstacles to the ground plane. Therefore, in clut-
tered environments, it is crucial to reason about the true 3D
model of the robot’s body.

In general, robot motion planning is an ideal domain for
PA*SE. These types of problems have time-consuming ex-
pansions because, in order to generate a successor for a state,
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Fig. 8. A collection of poses used for planner performance testing. From an
initial pose (pose 0, drawn in red), plans were attempted from each pose to
the next in sequence. The paths vary in length, ranging up to approximately
26m. Some poses involve arm configurations in which the arms are extended
over a work surface, waste basket, or bench.

tests.
A sequence of planning operations was performed from

one goal pose to the next using the poses shown in Figure 8.
SBPL was used to compute plans, and performance was
compared against the distance field collision checker cur-
rently used by SBPL. A median motion planner speedup of
44% was obtained when replacing the existing distance field
collision checker with the depth map based collision checker,
as shown in Table I. Ultimately, the performance impact of
the depth space collision checker varied significantly due
to incomplete depth map coverage of viable trajectories
between candidate poses resulting from the independent
creation of depth maps and test poses. Table I includes the
number of collision queries made by the planner, which
may be used to normalize collision checker performance to
determine that the depth space collision checker responded
to an average of 37,778 collision queries per planner-second,
while the distance field checker responded to an average of
21,874 queres per planner-second. Even with planner over-
head, and without carefully matching depth map coverage
with anticipated trajectories, replacing the collision checker
offers a substantial motion planning speedup.

V. DISCUSSION

A. Preprocessing

The need to preprocess depth maps before making use of
them in the collision checker does impose some overhead
at startup. In the above experiments, each image took an
average of 283ms to run through the point dilation process.
A batch interface for handling depth maps can process
each image in parallel, as the operations are completely

DS Checks DS Plan Time (s) DF Checks DF Plan Time (s)
86755 3.48 84928 4.72
94066 3.92 55596 3.82
46235 3.02 51129 4.01

238438 7.58 242938 11.18
150354 4.52 175505 8.4
245379 6.35 261691 11.21
428771 7.81 572486 23.22
347225 6.52 459096 17.76
677963 11.77 532298 21.72
117058 4.38 143680 6.43
313338 5.85 309542 11.49
234237 6.49 330320 15.16
466615 15.49 147883 7.19
624163 12.73 555691 23.32

TABLE I
MOTION PLANNER PERFORMANCE WITH THE DEPTH SPACE (DS) AND

DISTANCE FIELD (DF) COLLISION CHECKERS.

independent. The current preprocessor is entirely CPU based,
but it is likely that a GPU variant could significantly improve
performance without requiring any exotic techniques. In any
implementation, this startup overhead compares favorably
with the 10-15s required to initialize the distance field used
for the large point cloud collected for these experiments
(⇠1M points over a volume spanning 40m ⇥ 21m ⇥ 2m).

B. View Selection

The experiments described here relied on manual selection
of views from which depth maps were captured. The only
requirement of depth map view selection is to capture any
free space a part of the robot might occupy, and there
is little penalty for selecting too many views. While the
limitation that plans may only be computed between fully
observed locations is not onerous, coverage of intervening
spaces is more difficult to quantify. The effect of insufficient
coverage is visible in the second to last test reported in
Table I. The planner attempted more than three times as
many collision checks with the depth space checker due to
an overly conservative estimate of free space resulting from a
lack of depth map coverage. Note, however, that the distance
field approach considers unobserved space as free because it
is based entirely on positive evidence of occupancy, while the
depth space approach is based on positive evidence of free
space. This makes the depth space collision checker naturally
more conservative, but also more realistic as it relies on fewer
assumptions about the safety of the world.

For applications making use of a separately-constructed
point cloud, manual view selection could be replaced by
an automated selection of depth map vantage points that
takes into consideration intended usage of the environment.
Such a mechanism would involve moving a camera around
the environment to best frame anticipated robot poses in
the environment, similar to techniques used for third-person
cameras in 3D video games.

An important note when comparing depth space collision
detection to a uniformly sampled distance field is that spatial
resolution is not constant in the depth space representation

CONFIDENTIAL. Limited circulation. For review only.

Preprint submitted to 2013 IEEE International Conference on

Robotics and Automation. Received September 17, 2012.

(a) The 3D environment and the states used for starts
and goals (a)

(b)

Fig. 8. A collection of poses used for planner performance testing. From an
initial pose (pose 0, drawn in red), plans were attempted from each pose to
the next in sequence. The paths vary in length, ranging up to approximately
26m. Some poses involve arm configurations in which the arms are extended
over a work surface, waste basket, or bench.

tests.
A sequence of planning operations was performed from

one goal pose to the next using the poses shown in Figure 8.
SBPL was used to compute plans, and performance was
compared against the distance field collision checker cur-
rently used by SBPL. A median motion planner speedup of
44% was obtained when replacing the existing distance field
collision checker with the depth map based collision checker,
as shown in Table I. Ultimately, the performance impact of
the depth space collision checker varied significantly due
to incomplete depth map coverage of viable trajectories
between candidate poses resulting from the independent
creation of depth maps and test poses. Table I includes the
number of collision queries made by the planner, which
may be used to normalize collision checker performance to
determine that the depth space collision checker responded
to an average of 37,778 collision queries per planner-second,
while the distance field checker responded to an average of
21,874 queres per planner-second. Even with planner over-
head, and without carefully matching depth map coverage
with anticipated trajectories, replacing the collision checker
offers a substantial motion planning speedup.

V. DISCUSSION

A. Preprocessing

The need to preprocess depth maps before making use of
them in the collision checker does impose some overhead
at startup. In the above experiments, each image took an
average of 283ms to run through the point dilation process.
A batch interface for handling depth maps can process
each image in parallel, as the operations are completely

DS Checks DS Plan Time (s) DF Checks DF Plan Time (s)
86755 3.48 84928 4.72
94066 3.92 55596 3.82
46235 3.02 51129 4.01

238438 7.58 242938 11.18
150354 4.52 175505 8.4
245379 6.35 261691 11.21
428771 7.81 572486 23.22
347225 6.52 459096 17.76
677963 11.77 532298 21.72
117058 4.38 143680 6.43
313338 5.85 309542 11.49
234237 6.49 330320 15.16
466615 15.49 147883 7.19
624163 12.73 555691 23.32

TABLE I
MOTION PLANNER PERFORMANCE WITH THE DEPTH SPACE (DS) AND

DISTANCE FIELD (DF) COLLISION CHECKERS.

independent. The current preprocessor is entirely CPU based,
but it is likely that a GPU variant could significantly improve
performance without requiring any exotic techniques. In any
implementation, this startup overhead compares favorably
with the 10-15s required to initialize the distance field used
for the large point cloud collected for these experiments
(⇠1M points over a volume spanning 40m ⇥ 21m ⇥ 2m).

B. View Selection

The experiments described here relied on manual selection
of views from which depth maps were captured. The only
requirement of depth map view selection is to capture any
free space a part of the robot might occupy, and there
is little penalty for selecting too many views. While the
limitation that plans may only be computed between fully
observed locations is not onerous, coverage of intervening
spaces is more difficult to quantify. The effect of insufficient
coverage is visible in the second to last test reported in
Table I. The planner attempted more than three times as
many collision checks with the depth space checker due to
an overly conservative estimate of free space resulting from a
lack of depth map coverage. Note, however, that the distance
field approach considers unobserved space as free because it
is based entirely on positive evidence of occupancy, while the
depth space approach is based on positive evidence of free
space. This makes the depth space collision checker naturally
more conservative, but also more realistic as it relies on fewer
assumptions about the safety of the world.

For applications making use of a separately-constructed
point cloud, manual view selection could be replaced by
an automated selection of depth map vantage points that
takes into consideration intended usage of the environment.
Such a mechanism would involve moving a camera around
the environment to best frame anticipated robot poses in
the environment, similar to techniques used for third-person
cameras in 3D video games.

An important note when comparing depth space collision
detection to a uniformly sampled distance field is that spatial
resolution is not constant in the depth space representation
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(b) A close-up of some of the start and goal states

Figure 1: The domain used for our robot experiments. There
are 17 numbered poses shown. Our 16 trials came from
planning between consecutively numbered poses.

(a) (b)

Fig. 4. The spheres making up a collision model for the PR2 are drawn
in green when free of collision, and red when they intersect with world
geometry.

(a) (b)

Fig. 5. Point clouds allow for flexibility in defining the optics used to
capture depth maps.

depth maps are then run through the dilation procedure
defined above before being handed over to the collision
checker. This progression is shown in Figure 3, where the
visualization of the dilated view has had its hues renormal-
ized to better show the depth variation in the scene. The
dilated view is then used as a backdrop for collision geometry
rendering. Figure 4 shows a debug view of the scenario with
a set of PR2 collision spheres fully rendered. Note that the
collision information – indicated by the spheres’ red/green
coloration – is derived from a single depth map pixel lookup
per sphere.

C. Virtual Flexibility

When views are produced from virtual camera locations,
the intrinsic parameters of the camera may be adjusted to
better meet the needs of the environment. Much like a convex
mirror mounted above a corner on a road, one may place a
wide-angle camera in a strategic location to capture more of
a scene. Figure 5 shows two images obtained of the same
corridor taken first with a camera with a 90� field of view,
and then with a 180� field of view. The wider angle means
that more of the environment is packed into the same number
of pixels, thus creating a distinct tradeoff between per-image
coverage and spatial resolution. The use of virtual cameras
allows for total flexibility in the optics; the only requirement
is that the collision checker implements the same optical
model.

IV. EXPERIMENTAL RESULTS

A sphere-based collision model was constructed for the
PR2, Figure 6. This model is not fully conservative – parts of
the PR2 are not covered by the green spheres of the collision
geometry – but is sufficient to prevent the kinds of collisions

(a) (b)

Fig. 6. A collision model used for planning. The model consists of 139
10cm radius spheres.

Fig. 7. An example motion plan computed with the SBPL planner and
depth space collision checker.

the PR2 would otherwise experience moving around a multi-
room laboratory setting. This model faithfully expresses all
possible articulations of the PR2, and may be posed and
checked for collisions against a single depth map in 6.7µs
(for a collision check rate of 150KHz) on a laptop with a
first generation Intel Core i5 CPU at 2.53GHz. Performance
scales linearly with the complexity of the collision model.

As a test of the real-world performance of the depth space
collision checker, it was integrated with the ROS search-
based planning library (SBPL) motion planner[12] to search
for trajectories that guide the PR2 across flat ground, but
require more than 2D collision checking to be successful.
The aim is to look beyond numbers quantifying raw collision
checker performance by comparing the depth space collision
checker against the distance field collision checker as used
by the cutting edge SBPL motion planner. The SBPL planner
is competitive with the top-performing published motion
planners for mobile manipulators [11], and currently uses
a dense representation of a distance field computed from a
point cloud for collision checking.

Figure 7 gives a flavor for the kinds of trajectories being
computed. This path was computed in 5.81s using the depth
space collision checker on a first generation Core i7 CPU,
involved 347,934 collision checks, and is approximately 30m
in length. The path includes a section during which the PR2
sweeps its arms over a bench, navigation through a standard
doorway, and a conclusion with the PR2’s arms extended
over a work surface in a small lab. When setting aside
planning to just consider forward kinematics and collision
checking, the computer used for this and the remainder of the
tests can perform 23,386 collision checks per second using
the SBPL distance field checker, and up to 80,257 checks
per second using the depth space collision checker when
benchmarked under the system load used for the remaining
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Figure 2: A visualization of a path found by our planner

the edge connecting them must be collision checked. Colli-
sion checks usually have to be performed at a high resolution
making the expansions even more expensive.

We ran 16 planning scenarios on a 3D map built with the
PR2’s depth sensors. Figure 1 shows the 3D map and the
poses used for the start and goal states. Figure 2 shows a
path found by our planner. For our heuristic we ran a 2D
Dijkstra search from the goal position. In order to be admis-
sible, it checks a point robot against obstacle cells in a grid.
It only marks a cell in the 2D map as an obstacle if the entire
z-column is blocked in the 3D map (such as by a wall). It
also assumes that the robot incurs no cost for rotation (since
it is not a dimension in this search). This heuristic is particu-
larly informative because it takes some obstacle information
into account. However, it cannot provide pairwise heuristic
information which we need for the heuristic h(s, s′). For
this we use the maximum of the Euclidean distance between
the positions and the angular distance between the headings.
Since the units of these are different, we convert both of
them to the time it takes the robot to execute that motion

Figure 3: Speedup of wPA*SE over weighted A* (withw =
1.5, the point in the lower left) using various weights and
threads

(which is the same as what our cost function is). We ran our
experiments on an Intel Core i7 with 8 cores.

Figure 3 shows how performance of PA*SE improves
over serial weighted A*. The points in this plot are com-
puted by taking the time weighted A* with w = 1.5 took to
find a solution over the time wPA*SE took to find a solution.
Values larger than 1.0 represent a speedup. The effect of in-
creasing the number of threads on the speedup is captured
by the slope of each individual curve, while the effect of in-
creasing the weights is captured by the upward shift of the
entire curve. Increasing the number of threads or the weights
improves the runtime and the highest speedup is achieved by
increasing both.

Grid Search Domain
In these experiments, we ran our planner on a much larger
set of trials while varying important parameters such as εp,
w, the number of threads, and the time it takes to expand
a state. We investigate how each of these parameters af-
fects the performance of our planner. We ran these trials
on a simpler 2D grid domain with 8-connected cells. We
selected 20 maps from a commonly used pathfinding bench-
mark database (Sturtevant 2012). Four kinds of maps each
represent a quarter of the set (Figure 4). We ran one trial
for each map (we chose one of the most difficult ones from
the benchmark set). Unlike the robot motion planning ex-
periment, here we artificially set the amount of time it takes
to expand a state by having the thread do some unimportant
computations for the specified amount of time.

We chose Euclidean distance as both our heuristic h(s)
and heuristic h(s, s′). This heuristic is fast to compute and
never returns a zero estimate for any pair of distinct states.
We ran our experiments on an Amazon EC2 computer with
an Intel Xeon E5-2680v2 (32 cores).

Figure 5 shows the result of our first experiment. Here
we set εp = w = 1.0 and vary the number of threads to
see how performance improves over serial A*. The points
in this plot are computed by taking the time A* took to find
a solution over the time PA*SE took to find a solution. So,
values larger than 1.0 represent a speedup. The plot shows a
near linear speedup in the number of threads. 32 threads (the



(a) Mazes (b) Random

(c) Baldur’s Gate (d) StarCraft

Figure 4: The four types of maps used in our experiments

Figure 5: Speedup of PA*SE over serial A* for different
numbers of threads

largest we tried) produce on average a 29 times speedup. In
this experiment, we had each expansion take 0.0005s (which
is common in robotics).

Figure 6 shows how reducing the expansion time affects
how many threads PA*SE can support. This experiment
also has εp = w = 1.0. The speedups are shown with
respect to serial A*. When the expansion time drops to
0.00005s, it is faster to run 16 threads than 32. When the ex-
pansion time drops to 0.00001s, 4 threads are almost as fast
as 16. It seems that the speedup provided by PA*SE is close
to linear as long as the time per expansion is large enough
to support that number of threads. Having more threads, can
actually slow down the algorithm

Figure 7 shows the results from an experiment showing
the effect of the two parameters w and εp. Each curve’s
speedup is computed with respect to running with the same
number of threads on the same map, but with both weights
set to 1.0. We can see that, in general, w produces speedups.
Although the extent depends on the map type (on the maze

Figure 6: Speedup over serial A* for different expansion
times

Figure 8: Speedup of wPA*SE over weighted PA* (w is the
weight used for both approaches)

maps we have very little improvement due to the poor
heuristic). On the other hand, we see that εp has relatively
little impact, probably because the threads are already busy
so the relaxed independence checks do not help much.

Comparisons
We compare PA*SE to parallel A* that allows re-
expansions (Irani and Shih 1986). This approach was not
extended to weighted A* in their paper, but the modifica-
tions are trivial (just change the priority function to inflate
the heuristic term in the f-value). In this experiment, we set
expansion time to 0.0005s We set εp = w to maintain the
same theoretical bound that the other approach has.

Figure 8 shows our speedups against weighted PA*,
which allows re-expansions. Once again, values larger
than 1.0 indicate a speedup. The data seems to suggest
that wPA*SE doesn’t perform better than this approach as
the number of threads increase However, we get a larger
speedup asw increases. Presumably, the reason is that as the
sub-optimality bound gets larger, states are more likely to be
expanded multiple times in the other approach. Once again,
being able to increasew is crucial in high-dimensional prob-
lems such as robot motion planning in order to achieve faster



(a) Mazes (b) Random (c) From Baldur’s Gate (d) From StarCraft

Figure 7: Speedup produced for different weights. The y-axes are speedups and x-axes are weight w. Each curve’s speedup is
computed with respect to running with the same number of threads and on the same map, but with both weights set to 1.0

Figure 9: Cost improvement over weighted PA* (w is the
weight used for both approaches)

planning times. Increasing this weight seems to help us
more than the other approach. It seems that this relation-
ship is relatively invariant to the number of threads. The
expansion “speedups” have almost the exact same ratios to
the time speed-ups. In fact, all expansion “speedup” ratios
differ by more than 0.1 of their corresponding speed-up ra-
tio.

While wPA*SE has the same theoretical bound on the
solution quality as weighted PA*, in practice the solution
costs need not be the same. Intuitively, since PA* re-
expands states when cheaper paths to them are found while
wPA*SE does not do that, it should result in a better solu-
tion quality than wPA*SE. In Figure 9, we see how our path
quality compares. The data points are the average cost im-
provement of wPA*SE compared to allowing re-expansions
(a value of 2 means that our path is 2 times cheaper). We can
see that, for w = 1.0, the ratio is 1 since both approaches
are optimal and, therefore, always result in the same solu-
tion cost. However, as the weight increases, their cost gets
cheaper compared to ours. We can see that, on average, their
costs are no better than 90% of ours. In return wPA*SE can
run over 3 times faster by not allowing re-expansions.

We also compared against PBNF (Parallel Best nBlock
First) (Burns et al. 2010). This is a state of the art algo-
rithm for parallelizing A* and weighted A*. For the optimal
searches, we used Safe PBNF and for weighted search we

Figure 10: Speedup of PA*SE over PBNF (w is the weight
used for both approaches)

used wPBNF. The algorithm has a few parameters in addi-
tion to the sub-optimality bound. To tune these, we started
with the values suggested by the authors for 2D grid search
and then did a gradient descent search to minimize their
planning times. It is important to note that we tuned the
parameters on an 8-core desktop before running it on the
32-core Amazon EC2 computer. It is possible that there is a
better set of parameters when using more than 8 threads.

Figure 10 shows our speedups over PBNF. Varying the
number of threads does not affect our speedup for 8 or fewer
threads. However, we do see a speedup for 16 and 32 threads
(though it is possible that PBNF needed a different set of pa-
rameters for these). Regardless of the number of threads, our
speedup gets larger as w increases. Again, this is likely due
to the fact that, as the sub-optimality bound increases, states
are more likely to be expanded several times. Also, with the
exception of 32 threads, our speedup is not as large as what
we saw against parallel A* with re-expansions (the previous
experiment). PBNF finds lower cost paths than PA*SE. The
graph is almost identical to the one from the previous ex-
periment (about 90% of our cost at best) and is omitted for
space reasons.

Discussion
It is important to note that PA*SE targets domains where ex-
pansions are time consuming. In robotics domains, this is of-



ten the case due to collision checking, running inverse kine-
matics, or computing complicated cost functions for mo-
tions.

In many domains, one could cache the results of these ex-
pensive computations the first time a state is expanded so
that re-expansions of states are negligible in comparison.
When this is possible, PA*SE will not have a significant
speedup over PA*.

However there are many domains where caching is not
possible. For instance, when memory is constrained due to
a large graph, caching the cost of each edge that the search
encounters may not be possible. This is especially true for
graphs with high branching factors.

Additionally, there are planners commonly used in
robotics where caching is not possible because the g-value or
parent of the expanded state affects its successors. This hap-
pens because the parent of the state (or the g-value) upon ex-
pansion affects what is collision checked. Therefore, when
a state is re-expanded the computation will have to be done
from scratch. For example, Theta* (Daniel et al. 2010) per-
forms collision checks which depend on the parent of the
expanded state. SIPP (Phillips and Likhachev 2011) gen-
erates successors which depend on the g-value of the ex-
panded state. In the approach presented by (Barraquand and
Latombe 1991), collision checking depends on the parent of
the expanded state.

Conclusion
In this work, we presented PA*SE, parallel variants of
A* and weighted A*, that do not require states to be re-
expanded. Our approach is applicable to any planning do-
main where state expansions (that is, generating successors
and computing their edge costs) account for most of the
planning time. Robot motion planning is one such prob-
lem. The key to our algorithm is to use state independence
checks to ensure that a state can expanded safely because
no other remaining state can lower its g-value. We prove
that PA*SE returns a minimal cost path and when relaxing
the independence checks the sub-optimality can be bounded.
We also present a parallel version of weighted A*, which
finds a solution with a cost that is bounded by a user chosen
parameter. We have shown experimentally that PA*SE can
lead to linear speedups in the number of processors (as long
as the expansions take sufficient time).

One of the interesting theoretical discoveries is that our
independence rule is actually a generalization of the A* ex-
pansion rule. A* only allows states with a minimum f-value
to be expanded, while our theory shows that this rule can be
looser. It is future work to consider dramatically different
heuristic search algorithms that take advantage of our more
relaxed expansion rule.
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