
A Tree-Based Algorithm for Construction Robots

T. K. Satish Kumar∗
Computer Science Department

University of Southern California
tkskwork@gmail.com

Sangmook Jung
Computer Science Department

University of Southern California
sangmooj@usc.edu

Sven Koenig
Computer Science Department

University of Southern California
skoenig@usc.edu

Abstract

In this paper, we present a tree-based algorithm for construc-
tion robots. Inspired by the TERMES project of Harvard Uni-
versity, robots in this domain are required to gather construc-
tion blocks from a reservoir and build user-specified struc-
tures much larger than themselves. While the robots are of
roughly the same size as the blocks, they can scale greater
heights by using temporarily constructed ramps in the sub-
structures. In this paper, we consider the problem of min-
imizing the number of pickup and drop-off operations per-
formed on blocks in order to build user-specified structures.
Our polynomial-time algorithm heuristically solves this prob-
lem and is based on the idea of performing dynamic program-
ming on a spanning tree in the inner loop and searching for a
good tree to do so in the outer loop. Our algorithm performs
very well in simulation and scales easily to large problem in-
stances. For planning problems of this nature that are akin
to construction domains, we believe that valuable lessons can
be learned from comparing the success of our algorithm with
the failure of off-the-shelf planning technologies.

Introduction
While many tools and equipment are used for construction
tasks, humans are still directly involved in critical phases
of construction that can otherwise benefit from automation.
For example, automated planning and scheduling techniques
can be used to increase speed and decrease costs for con-
struction tasks. Furthermore, delegating the actual construc-
tion operations to robots can make it safer for humans in
hostile situations such as constructing shelter in disaster ar-
eas or on other planets.

Towards the goal of automated construction, teams of
smaller robots are often more effective than a few larger
robots. Smaller robots are usually cheaper, easier to pro-
gram, and easier to deploy. Despite their possibly limited
sensing and computational capabilities, teams of smaller
robots are more fault tolerant and provide more parallelism
than a few larger robots.

Many examples of collective construction are provided
in nature that are analogous to the capabilities of teams of
smaller robots. For instance, among many other species

∗Alias: Satish Kumar Thittamaranahalli
Copyright c© 2014, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

of animals, termites are capable of building mounds that
are much larger than themselves. Inspired by termites and
their building activities, the Harvard TERMES project in-
vestigated how teams of robots can cooperate to build user-
specified 3-dimensional structures much larger than them-
selves (Petersen, Nagpal, and Werfel 2011).

The TERMES hardware system consists of small au-
tonomous mobile robots and a reservoir of passive “build-
ing blocks”, simply referred to as “blocks”. The robots are
of roughly the same size as the blocks. Yet, they can ma-
nipulate these blocks to build tall structures by stacking the
blocks on each other and building ramps to scale greater
heights. Multiple robots should be able to cooperate in a
decentralized fashion to build a user-specified structure.

In this paper, we present a tree-based construction algo-
rithm for the TERMES robots; but we only consider the
problem of minimizing the number of pickup and drop-off
operations performed on blocks in order to build a user-
specified structure. The plan generated by our algorithm
can be executed either by a single robot or a team of robots
with proper coordination. However, because the coordina-
tion problem for multiple robots is not discussed completely
in this paper, we assume that a single robot executes the plan
generated by our algorithm. Our polynomial-time algorithm
heuristically solves the problem of minimizing the number
of pickup and drop-off operations on blocks and is based on
the following two-fold idea: (1) we perform dynamic pro-
gramming on a spanning tree in the inner loop; and (2) we
search for a good tree to do so in the outer loop.

Our algorithm performs very well in simulation and scales
easily to large problem instances. Besides being a useful
technique for the problem of automated construction, we be-
lieve that valuable lessons can be learned from comparing
the success of our algorithm with the failure of off-the-shelf
planning technologies for this problem domain.

Background
While there has been a fair amount of theoretical work on
collective construction, including but not limited to (Jones
and Mataric 2004; Grushin and Reggia 2008; Napp and
Klavins 2010), many of the assumptions made are largely
simplistic as they ignore constraints on robot movements
and/or the unreliability of actuators and other mechanical
components of the robot.

The TERMES robots, on the other hand, are capable of
three basic operations that succeed almost always. These
highly reliable operations provide a nice abstraction for con-
struction planning algorithms and allow us to reasonably as-
sume that the robots are ideal (Petersen, Nagpal, and Wer-
fel 2011). Moreover, as we will show later, these three ba-
sic operations suffice in enabling a robot to build any user-
specified structure.

The three basic operations of a TERMES robot are: (1)
climbing up or down blocks one block-height at a time;
(2) navigating with proper localization on a partially built
structure without falling down; and (3) lifting, carrying,
and putting down a block so as to attach it to or detach it
from a partially built structure. The robustness of the TER-
MES hardware system ensures the high reliability of these
three operations. A brief description of the TERMES hard-
ware system, borrowed from (Petersen, Nagpal, and Werfel
2011), is as follows.

The TERMES robot is equipped with 4 small whegs that
allow for different kinds of locomotion using the same action
of simply “driving forward”. The whegs allow the robot to
climb onto a block, get down from it, or just move on level
ground.1 In effect, the robot does not need any additional
hardware or software capabilities for climbing up or down
individual blocks, making this a very reliable operation.

In order to keep track of both position and orientation
while moving, turning, or climbing up or down blocks, the
TERMES robot uses 6 infrared sensors. Complementing
this, the blocks are marked with a white cross on a black
background. This pattern helps with the localization of both
position and orientation. Moreover, a circular indentation
on each block guides the robot when it turns in place with-
out accumulating drift. The indentation is small enough to
not obstruct the robot when it needs to move out of it.

The TERMES robot is equipped with an arm and a gripper
to facilitate picking up, carrying, and putting down blocks,
attaching them to, and detaching them from desired loca-
tions. Once again, mechanical features of the blocks, like the
use of Neodymium magnets, help the robot perform these
operations reliably with the use of only one actuator.

The footprint of a robot is less than that of the blocks;
and the robots gather blocks from a reservoir to collec-
tively build a user-specified structure. A nice schematic dia-
gram for the TERMES hardware system with detailed de-
scriptions can be found in (Petersen, Nagpal, and Werfel
2011). Lots of other resources like pictures, videos, and
published papers about the TERMES robots are available
on the Harvard website http://www.eecs.harvard.
edu/ssr/projects/cons/termes.html.

Problem Formulation
In this paper, we will assume that the reservoir is unlimited
and that the initial configuration is empty, that is, all blocks
are initially in the reservoir. Under these assumptions, we
will study the problem of minimizing only the total num-
ber of pickup and drop-off operations on blocks. Despite

1They also allow for locomotion on rough terrain.

these simplifying assumptions, we will argue later in the pa-
per that an efficient solution to this combinatorial problem is
central to many other variants of the collective construction
problem. Moreover, we will also argue that the tree-based
framework in which we solve this problem is important in
its own right since it lends itself naturally to reason about
these many variants.

We are given an empty initial configuration and a 2D ma-
trix of non-negative integers, referred to as the input matrix,
that represents the desired goal configuration. The cells of
the matrix represent physical locations, and the non-negative
integers represent the heights of the towers that need to be
constructed by stacking up blocks at those locations.2 At
any intermediate stage, the top of a tower is said to be reach-
able if and only if starting from the ground level, the robot
can reach the top of that tower by turning and driving for-
ward.3 A block can be placed on the top of a tower if and
only if there is a neighboring tower of equal height, the top
of which is reachable.4 A block can be removed from the
top of a tower if and only if there is a neighboring tower of
height 1 less, the top of which is reachable.5 Under these
restrictions, the problem is to build the final configuration
using as few add and remove operations, or equivalently, as
few pickup and drop-off operations on blocks as possible.

Many variants of the collective construction problem for
TERMES robots are NP-hard. For example, the euclidean
traveling salesman problem, which is NP-hard, is reducible
to optimal planning, even for a single robot, with a non-
empty initial configuration and costs associated with travers-
ing distances. Although many other variants of the collective
construction problem are also similarly NP-hard, the com-
plexity class to which the problem of minimizing the num-
ber of pickup and drop-off operations belongs is unknown.
We leave this complexity classification task for future work.

Without knowing the complexity class to which it be-
longs, we aim for a heuristic solution strategy for the prob-
lem of minimizing the number of pickup and drop-off oper-
ations. One naive approach to build a user-specified struc-
ture is to do it tower by tower starting from one of the cor-
ners. In this approach, we need to build a tower of height h
in conjunction with a ramp consisting of towers of heights
h− 1, h− 2 . . . 1. The extraneous towers should then be de-
constructed, resulting in O(h2) total number of pickup and
drop-off operations. This naive strategy is nowhere close to
optimal even for simple input instances.

We can do slightly better if we avoid deconstructing the
ramp completely after a tower is built. We can reuse parts
of the ramp for adjacent towers and follow the strategy of
completing the structure row by row or column by column.
As we will show later in the paper, this strategy corresponds

2A tower is a vertical stack of blocks standing at any location.
3Because of the whegs, driving forward includes moving on

level surface, climbing up a block, and climbing down a block.
4Two towers are said to be neighbors of each other when they

stand on adjacent cells. However, diagonally adjacent towers are
not considered neighbors since the robot cannot move diagonally
atop the towers.

5Level ground can be considered as a tower of height 0.

http://www.eecs.harvard.edu/ssr/projects/cons/termes.html
http://www.eecs.harvard.edu/ssr/projects/cons/termes.html

Algorithm 1: Procedure Compute-Workspace-Matrix
Input: an A× B matrix R of non-negative integers
Output: the workspace matrix W , and the offsets

1 (1) topBorder = argmin(1≤i≤A,1≤j≤B){i− R[i][j] + 1}
2 (2) bottomBorder = argmax(1≤i≤A,1≤j≤B){i + R[i][j]− 1}
3 (3) leftBorder = argmin(1≤i≤A,1≤j≤B){j − R[i][j] + 1}
4 (4) rightBorder = argmax(1≤i≤A,1≤j≤B){j + R[i][j]− 1}
5 (5) xoffset = −topBorder + 1
6 (6) yoffset = −leftBorder + 1
7 (7) workLength = bottomBorder− topBorder + 1

8 (8) workBreadth = rightBorder− leftBorder + 1

9 (9) Build the workLength× workBreadth workspace matrix W as follows:
10 (a) Initialize all entries to 0

11 (b) For each (1 ≤ i ≤ A, 1 ≤ j ≤ B):
12 (i) W [i + xoffset][j + yoffset] = R[i][j]

13 (10) Return:
14 (a) the workspace matrix W

15 (b) the offsets xoffset and yoffset

to performing dynamic programming on a particular kind of
spanning tree. Our empirical results show that this strategy
is also far from optimal and that we can do much better with
other kinds of spanning trees.

Of course, “blocks world” domains are well studied in
the area of automated planning and scheduling. Unfortu-
nately, however, we could not solve even small instances of
our construction problem using any of the state-of-the-art
planners from the 2011 International Planning Competition.
FastForward could not solve SAS formulations of our prob-
lem using any of the built-in heuristics (Richter, Westphal,
and Helmert 2011). The failure to generate even feasible
plans in more than a few minutes merely for 4 × 4 input
matrices prompted us to develop the specialized techniques
illustrated in this paper.

A Tree-Based Construction Algorithm
In this section, we will describe a tree-based construction
algorithm for the TERMES robots. The main idea is to per-
form dynamic programming on a tree spanning the cells of
a workspace matrix that represent physical locations on a
grid frame of reference. The use of dynamic programming
allows us to exploit common substructure and reduce the
number of operations on blocks significantly. Of course, two
questions need to be answered: (1) “how exactly do we per-
form the dynamic programming”; and (2) “how do we find
the best spanning tree for this purpose?” The first question is
answered in the inner loop of the algorithm, and the second
question is answered in the outer loop.

We will start by describing a few preprocessing steps that
construct the workspace matrix, its graphical representation,
and offset values for a frame of reference. In the next sub-
sections, we will describe the inner and outer loops, and we
will also present a proof of correctness.

The Workspace Matrix
Given an input matrix, our first task is to establish a frame of
reference that encompasses ramps that might be constructed

2
2

2

2
2

2 2

5

2
2
2
2

2 2 2 2 2

(a)

2
2

2

2
2

2 2

5

2
2
2
2

2 2 2 2 2

(b)

Figure 1: Shows an example for the working of Algorithm 1. (a) shows the input
matrix. (b) shows the workspace matrix. Blank cells indicate towers of height 0. The
calculated offsets are 2 each in the x-direction and y-direction.

S

all boundary cells

5

222

2

2

2

2 2 2 2 2

2

2

2

22

(a)
S

5

222

2

2

2

2 2 2 2 2

2

2

2

22

(b)

Figure 2: Shows the graphical representation for the example from Figure 1. (a)
shows the graph G. (b) shows a spanning tree of G that constitutes a spanning forest
for the cells of the workspace matrix when S is ignored. Only non-zero weights
annotating the nodes are shown.

at intermediate stages. We refer to this frame of reference
as the workspace matrix. The workspace matrix is a conser-
vative estimate of how much space is required around the
final structure during the course of its construction. The
workspace matrix is designed before we make decisions
about the directions in which the ramps should be built to
reach the towers. This means that the workspace matrix is
conservative in all directions.

It is easy to observe that a tower of height h can always be
manipulated by building a ramp that starts from a location
that is at most a Manhattan distance h − 1 away from the
location of the tower. One conservative way to build the
workspace matrix, therefore, is to include all neighborhood
cells of the specified structure with an x-coordinate or y-
coordinate that is at most h−1 away from the corresponding
x-coordinate or y-coordinate of any tower of height h in the
final configuration.6

Algorithm 1 shows the procedure for constructing the
workspace matrix and establishing a frame of reference
given an input matrix.7 The algorithm also outputs the off-
sets in the x-direction and y-direction that are used to relate
the input matrix to the frame of reference provided by the
workspace matrix. Figure 1 shows an example.

Graphical Representation
An undirected graphical representation of the workspace
matrix is relatively straightforward to construct. Each cell in
the matrix is represented by a node in the undirected graph.

6Measuring distance using the maximum of the differences in
x-coordinates and y-coordinates results in a rectangular workspace
matrix instead of an arbitrarily shaped boundary of cells.

7The indices of the matrices start from 1.

Algorithm 2: Procedure Build-All-Lists
Input: a node-weighted tree T spanning G

Output: an annotation of each node of T with a list of markers

1 (1) Initialize all lists to contain the single element 0
2 (2) Call Construct-List for T and its root node S

Algorithm 3: Procedure Construct-List
Input: the spanning tree T , and a node N in it
Output: an annotation of N with a list of markers

1 (1) If N is a leaf node in T :
2 (a) Add the user-specified height of the tower at that location to N ’s list
3 (b) Return
4 (2) Call Construct-List recursively for all of N ’s children
5 (3) Let len be the maximum length of the lists constructed for N ’s children
6 (4) For i = 2 . . . len, construct the i-th element LN (i) of the list for N as

follows:
7 (a) If i is even, set LN (i) to be max(LN (i− 1), gN (i)) where gN (i) is

the maximum of the i-th elements in the lists of N ’s children−1
8 (b) If i is odd, set LN (i) to be min(LN (i− 1), gN (i)) where gN (i) is the

minimum of the i-th elements in the lists of N ’s children
9 (5) Construct the last element as follows:

10 (a) If len is even and LN (len) is less than or equal to the user-specified height
h at N , then set LN (len) = h

11 (b) If len is even and LN (len) is greater than h, then add h to N ’s list
12 (c) If len is odd and LN (len) is greater than or equal to the user-specified

height h at N , then set LN (len) = h

13 (d) If len is odd and LN (len) is less than h, then add h to N ’s list

The nodes are then annotated with weights corresponding to
the entries in the workspace matrix. Two nodes are joined
by an undirected edge if and only if the corresponding cells
in the workspace matrix are a Manhattan distance of 1 away
from each other. In addition, a special node S is used to
represent the reservoir of blocks assumed to be relatively
far away from the site of construction. This special node
is made adjacent to only those nodes that correspond to the
boundary cells of the workspace matrix. This is indicative of
the fact that a robot carrying a block to or from the reservoir
must cross the boundary of the workspace.8

Figure 2 shows the graphical representation for the exam-
ple from Figure 1. We note that for any workspace matrix,
a spanning tree T on the graphical representation G induces
a spanning forest on the cells of the workspace matrix when
S is ignored.

The Inner Loop: Dynamic Programming
The inner loop of the algorithm solves the planning problem
by performing dynamic programming on the spanning tree
facilitated by the outer loop. Let T be this spanning tree
of G with S as the root. The nodes of the tree correspond to
cells in the workspace matrix and are annotated with weights
equal to the heights of the towers standing at those cells in
the user-specified structure.

The first stage of the inner loop transforms the weights on
the nodes of T to list annotations. Instead of a single inte-

8S need not have a weight assigned to it, but for simplicity, we
assign a weight of 0 to it.

ger, each node is now annotated with a list of non-negative
integers referred to as markers. Intuitively, the markers in-
dicate the variations in height that the tower standing at that
node has to go through in the course of constructing the user-
specified structure.

More formally, the lists of markers satisfy the following
properties: (1) the first marker in any list is always 0, indicat-
ing that we start from an empty initial configuration; (2) the
last marker in any list is equal to the height of the tower in
the user-specified structure at that node; (3) barring the first
and last marker, and when i is even, the i-th marker of the list
for node N , LN (i), is equal to max(LN (i−1), gN (i)) where
gN (i) is the maximum of the i-th markers for the children
of N minus 1 (only those children for which the i-th marker
exists are considered); (4) barring the first and last marker,
and when i is odd, the i-th marker of the list for node N ,
LN (i), is equal to min(LN (i − 1), gN (i)) where gN (i) is
the minimum of the i-th markers for the children of N (only
those children for which the i-th marker exists are consid-
ered); (5) for a node at height k in the tree, the length of the
list annotating it is no larger than k + 2; and (6) for any list,
consecutive markers in it define alternating non-decreasing
and non-increasing intervals of non-negative integers.

Algorithms 2 and 3 show how to construct the lists of
markers for each node in a given spanning tree T . Figures 3
and 4 show an example. Property 1 is ensured by step 1 of
Algorithm 2. Property 2 is ensured by step 5 of Algorithm 3.
Here, all steps 5(a), 5(b), 5(c) and 5(d) ensure that for any
node, the user-specified height in the final configuration gets
added as the last marker. Properties 3 and 4 are ensured by
steps 4(a) and 4(b) respectively of Algorithm 3. Property 5 is
ensured by steps 3, 4 and 5 of Algorithm 3 where the number
of iterations in step 4 depend on the value of ‘len’ derived
from step 3. Property 6 is ensured by the use of ‘max’ and
‘min’ operators in steps 4(a) and 4(b) of Algorithm 3 along
with the case analysis done in step 5 of Algorithm 3 for the
last marker.

Consecutive markers in a list can be viewed as specify-
ing intervals of non-negative integers. Because of steps 4(a)
and 4(b) in Algorithm 3, these intervals are alternating non-
decreasing and non-increasing in any list. The first inter-
val between the first and second markers of any list is non-
decreasing; the second interval between the second and third
markers of any list is non-increasing, and so on. In general,
the k-th interval contains a non-decreasing sequence of non-
negative integers between its end-point markers if k is odd,
and a non-increasing sequence if k is even.

In the next stage of the inner loop, the required plan is
generated by traversing a series of event trees in depth-first
order. Event trees are trees constructed from the original
spanning tree T and an interval for each node of T chosen
from its list annotation. The first event tree corresponds to
choosing the first interval for each node; the second event
tree corresponds to choosing the second interval for each
node; and so on. Of course, when the k-th interval is not
defined for a node, it is simply ignored. From Algorithm 3,
it is easy to see that the list generated for any node is no
longer than the list generated for its parent. This means that
the set of nodes for which the k-th interval is defined always

1
1

1

1
1

1 1

3

1
1
1
1

1 1 1 1 1

(a)

1

2

1

3

4

2 3 4 5

5

S

(b)

Figure 3: Shows a running example. (a) shows the input matrix, identical to its
workspace matrix. (b) shows the spanning tree T that we will use. (T is not the
optimal spanning tree. It is used merely to illustrate the working of the inner loop.)

S

N51

N41

N42

N32

N31

N21

N22 N11

N43

N33 N53

N23 N52

N55N44

N54

N45

N35

N34

N24

N25N14

N13

N12

N15

0

1

1

0

1

1

0 0

1

3

0

1

1

0

1

10

1

1

0

0

1

1

1

1

1

(a)

S

N51

N41

N42

N32

N31

N21

N22 N11

N43

N33 N53

N23 N52

N55N44

N54

N45

N35

N34

N24

N25N14

N13

N12

N15

(0,0,0,0)

(0,0,0,1)

(0,0,0,1)

(0,1,0)

(0,1)

(0,1)

(0,0) (0,2,0)

(0,1)

(0,3)

(0,0)

(0,1)

(0,1)

(0,0)

(0,1)

(0,1)(0,0)

(0,1)

(0,1)

(0,0)

(0,0)

(0,1)

(0,1)

(0,1)

(0,1)

(0,1)

(b)

Figure 4: Shows the working of Algorithm 3. (a) shows the spanning tree from
Figure 3(b) where node Nij corresponds to the cell in the ith row and jth column.
(b) shows the list of markers annotating each node.

forms a subtree of T .
When k is odd, we refer to the corresponding event tree

as a positive event tree. Traversing a positive event tree in
depth-first order generates actions in the plan that add blocks
to the structure. When k is even, we refer to the correspond-
ing event tree as a negative event tree. Traversing a negative
event tree in depth-first order generates actions in the plan
that remove blocks from the structure.

Any k-th event tree has a macro-structure and a micro-
structure. The macro-structure has super-nodes correspond-
ing to the nodes of T that have a k-th interval. The real nodes
of T , however, correspond to the different non-negative in-
tegers occurring in the k-th intervals of the super-nodes. The
edges between these nodes, constituting the micro-structure
of the event tree, are constructed by finding for each node, a
supporting node in the parent super-node.

We note that each node in the event tree corresponds to
a non-negative integer, referred to as the value of that node.
For a node with value v in a positive event tree, its support-
ing node in the parent super-node is the one with the lowest
value ≥ v − 1. Intuitively, this indicates that, in order to
create a tower of height v at that super-node by adding a
block on top of it, the height of the tower currently standing
at the parent super-node must be v−1. Similarly, for a node
with value v in a negative event tree, its supporting node in
the parent super-node is the one with the highest value ≤ v.
Intuitively, this indicates that, in order to create a tower of
height v at that super-node by removing a block from top
of it, the height of the tower currently standing at the parent

Algorithm 4: Procedure Generate-Plan
Input: the spanning tree T with root S, and the list annotations on T ’s nodes
Output: a sequence of actions for constructing the user-specified structure

1 (1) Let M be the maximum number of intervals in any list
2 (2) For k = 1 . . .M :
3 (a) If k is odd:
4 (i) Construct a positive event tree with super-nodes corresponding to the

nodes of T that have a k-th interval
5 (ii) Construct nodes corresponding to the different values in the k-th interval

of each super-node
6 (iii) For node with value v, construct an edge joining it to the node with the

lowest value≥ v − 1 in the parent super-node
7 (iv) Call Generate-Positive-Steps on this event tree
8 (b) If k is even:
9 (i) Construct a negative event tree with super-nodes corresponding to the

nodes of T that have a k-th interval
10 (ii) Construct nodes corresponding to the different values in the k-th interval

of each super-node
11 (iii) For node with value v, construct an edge joining it to the node with the

highest value≤ v in the parent super-node
12 (iv) Call Generate-Negative-Steps on this event tree

Algorithm 5: Procedure Generate-Positive-Steps
Input: a positive event tree E with root super-node S

Output: a sequence of actions that add blocks to the structure

1 (1) Traverse the tree E in depth-first order in such a way that a lower-valued
sibling is visited before a higher-valued sibling

2 (2) When a node n is visited, add a block at the corresponding super-node N if
the value of n is not the lowest in its interval

3 (3) The route between N and the reservoir is indicated by the path of
super-nodes between N and S in the event tree

super-node must be v. Rigorous arguments for the correct-
ness of the inner loop are presented below.

Figures 5 and 6 show positive and negative event trees for
the running example from Figures 3 and 4. Algorithms 4, 5
and 6 show the procedure for plan generation using positive
and negative event trees.

Proof of Correctness
We will now present formal arguments for the correctness
of the inner loop which work for any spanning tree. This
will prove the correctness of the algorithm as well since the
outer loop only produces a specific spanning tree for the in-
ner loop. We start with some preliminary observations.

Let the input matrix be of dimensions A×B with the max-
imum user-specified height for any tower being H . Con-
sider how the second markers are generated for each list.
None of them are negative as we take the ‘max’ with the first
markers in Algorithm 3. Now consider how the third mark-
ers are generated using the user-specified heights and ‘min’
with the second markers which are all non-negative. The
third markers are non-negative as well. Repeating this argu-
ment, it is easy to show that all markers are non-negative.
Moreover, since the markers are generated using the user-
specified heights, the ‘max’ operation, the ‘min’ operation,
and the ‘minus 1’ operation, no marker can be greater than
H . This means that no interval contains more than H+1 el-

Algorithm 6: Procedure Generate-Negative-Steps
Input: a negative event tree E with root super-node S

Output: a sequence of actions that remove blocks from the structure

1 (1) Traverse the tree E in depth-first order in such a way that a higher-valued
sibling is visited before a lower-valued sibling

2 (2) When a node n is visited, remove a block from the corresponding
super-node N if the value of n is not the highest in its interval

3 (3) The route between N and the reservoir is indicated by the path of
super-nodes between N and S in the event tree

0

N51

0

N41

1
N42

0 1 20
N32

0

0 1

N31

N21

N22 N11

N43

N23

N33

0 1 2 3 0 1

N53

0

N52

N54

N45

N35

N44

0 1

0 1

N55

0 1

0 1
N34

0
N24

N14

N13

N12

0 1

10

0 1

N25

N15

0

0
S

0

0

1

0 1 0 1 0 1

0 0 1

(a)

1
1

1

1

1 1

3

1
1
1
1

1 1 1 1
1 2

1

2

3

4

5

1 2 3 4 5

(b)

Figure 5: Shows the working of Algorithm 4. (a) shows the first (positive) event tree.
(b) shows the partial structure generated by its depth-first traversal.

ements. Furthermore, since the workspace matrix contains
a maximum of (A + 2H)(B + 2H) cells, the size of the
spanning tree T , the sizes of the event trees, the number of
event trees, and the total work done in traversing these trees,
all remain polynomial in A, B and H .

Lemma 1. The value of any marker for node N is no larger
than the maximum of the user-specified height at N and the
maximum marker values for its children minus 1.

Proof. We prove this by induction assuming that it is true
for all children of N , and then proving it for N . The second
marker for N is generated by a ‘max’ operation on the first
marker (equal to 0), the children markers minus 1, and po-
tentially the user-specified height at N . The second marker,
therefore, clearly satisfies the condition. The third marker
is generated from a ‘min’ operation on the second marker,
and therefore also satisfies this condition, and so forth. (The
base case for the induction is trivially true.)

Lemma 2. For a positive event tree, every node n of value
v in super-node N has a supporting node p of value v − 1
in the parent super-node P if v is not the first value in N ’s
interval.

Proof. Let the positive event tree correspond to some k-th
interval for an odd k. The k-th interval is non-decreasing,
and is defined between the k-th and k+1-th markers in each
list. Since v is not the first value in N ’s interval, LN (k) < v.
Also, since k is odd, by Algorithm 3 we have that LP (k) ≤
LN (k) < v. Now since k + 1 is even, from Algorithm 3
again, LP (k + 1) ≥ LN (k + 1)− 1 ≥ v − 1. Together, we
have that LP (k) ≤ v − 1 ≤ LP (k + 1). This means that

0

S

0

N42
1 0

N41

N51

2 1 0
N43

0

(a)

1
1

1

1

1 1

3

1
1
1
1

1 1 1 1

1

2

3

4

5

1 2 3 4 5

(b)

S 0

N41
0 1

N51
0 1

(c)

1
1

1

1

1 1

3

1
1
1
1

1 1 1 1

1

2

3

4

5

1 2 3 4 5

1
1
1

(d)

Figure 6: Shows the working of Algorithm 4. (a) shows the second (negative) event
tree. (b) shows the partial structure resulting from its depth-first traversal. (c) shows
the third and final (positive) event tree. (d) shows that the user-specified configuration
is achieved by the end of its depth-first traversal.

v − 1 should occur in the k-th interval of P . Finally, for a
positive event tree, since the support of n is defined as the
node in P with the lowest value ≥ v − 1, and since v − 1 is
included in this interval, node p in P with value v − 1 is in
fact the supporting node for n in N .

Lemma 3. For a negative event tree, every node n of value
v in super-node N has a supporting node p of value v in the
parent super-node P if v is not the first value in N ’s interval.

Proof. Similar to that of the previous lemma.

Lemma 4. For a positive event tree, every node n of value
v in super-node N has a supporting node p of value v − 1
or v in the parent super-node P if v is the first value in N ’s
interval.

Proof. Let the positive event tree correspond to some k-th
interval for an odd k. The k-th interval is non-decreasing,
and is defined between the k-th and k+1-th markers in each
list. Since v is the first value in N ’s interval, LN (k) = v.
Also, since k is odd, by Algorithm 3 we have that LP (k) ≤
LN (k) making LP (k) ≤ v. Now since k + 1 is even, from
Algorithm 3 again, LP (k + 1) ≥ LN (k + 1) − 1 ≥ v − 1.
Together, we have that LP (k) ≤ v, v − 1 ≤ LP (k + 1),
and LP (k) ≤ LP (k+1). This means that, if v− 1 does not
occur in the k-th interval of P , then LP (k) = v, enforcing
that v should occur in the interval. In effect, therefore, at
least one of v−1 or v should occur in the k-th interval of P ,
providing the required support for n.

Lemma 5. For a negative event tree, every node n of value
v in super-node N has a supporting node p of value v − 1
or v in the parent super-node P if v is the first value in N ’s
interval.

Proof. Similar to that of the previous lemma.

Theorem 1. Algorithm 4 generates a valid plan for the user-
specified structure.

Proof. Consider the depth-first traversal of the first event
tree (which is positive). From Algorithms 5 and 6, we note
that the actions that add blocks to the structure are generated

Algorithm 7: Procedure Reweight-Edges
Input: the graphical representation G of a workspace matrix W

Output: reweighted edges for G

1 (1) For each cell (i, j) in the workspace matrix W , compute the usefulness
factor u(i, j) as follows:

2 (a) u(i, j) = 0

3 (b) For each tower of height h at location (i′, j′) that casts a non-zero
shadow s on (i, j):

4 (i) u(i, j) = u(i, j) + s/h

5 (2) For each edge e in G:
6 (a) nmr = 1 + |difference in weights of its end-point nodes|
7 (b) dnr = 1 + sum of the usefulness factors of its end-point nodes
8 (c) weight of e = nmr/dnr

only in association with the non-first elements of each inter-
val. Consider one such element, say, node n with value v
in super-node N . Let the parent super-node be P . By con-
struction, P corresponds to a grid cell neighboring that of
N . Lemma 2 assures that the tower at P has the appropriate
height of v − 1 in order to allow for raising the height of
the tower at N from v − 1 to v by adding one more block
on it. Furthermore, Lemma 4 and Lemma 2 together as-
sure that if we trace the supporting nodes back to the root
S, we never encounter a height difference of more than 1.
This ensures that this path of super-nodes serves as a feasi-
ble route for the robot to reach N from the reservoir in order
to execute the action of adding a block at N . Now, since
all nodes are visited in a depth-first traversal, the heights of
the towers in various cells at the end of the traversal corre-
spond to the second markers in the list annotations of each
node. In conjunction with Lemma 3 and Lemma 5, similar
arguments can be used to prove that the state of the struc-
ture matches that of the third markers - or the final markers
when the third markers don’t exist - in each list annotation
after the depth-first traversal of the second event tree (which
is negative). Repeating this argument, we achieve the state
corresponding to the final markers for each list, that is, the
user-specified structure, when we are done traversing all the
event trees. Lemma 1 proves that no user-specified tower
can possibly create a non-zero marker at S. This proves the
sufficiency of the workspace as constructed by Algorithm 1.
Put together, the truth of the theorem is established.

The Outer Loop: Search for a Good Tree
The outer loop of the algorithm searches for a good span-
ning tree to be used in the inner loop. Clearly, one possible
spanning tree falls out of connecting all neighboring cells in
each row and connecting the first cell in each row to S. This
tree corresponds to the intuitive method of constructing the
structure row by row starting from one end. Of course, the
last cell of each row could have been connected to S instead
of the first cell of each row. Similarly, the columns could
have been chosen instead of the rows. All these correspond
to intuitive strategies for construction.

We note, however, that these options are only a few spe-
cific trees in the space of all trees spanning G. Other trees
can be used to yield much better results. Two such trees are
(a) the minimum spanning tree and (b) the reweighted min-

imum spanning tree. Both of them are, of course, heuris-
tic choices, but perform very well in practice. To construct
the minimum spanning tree, an edge-weighted graph is con-
structed from G where the weight of an edge is the abso-
lute value of the difference between the weights of its end-
point nodes. All edges incident on S are set to weight 0.
Intuitively, a minimum spanning tree for the edge-weighted
version of G finds paths in the user-specified structure with
minimum height variations.

Although the minimum spanning tree approach is much
better in practice than row by row or column by column
construction, the problem with it is that the edge weights
measure the height variations only among neighboring cells.
Two towers with a single gap between them do not influence
the edge weights in any way, when clearly, the ramp con-
structed for one can be used by the other. To address this
problem, we construct a variant of the minimum spanning
tree called the reweighted minimum spanning tree.

We say that a tower of height h at cell (x, y) casts a
shadow at cell (x′, y′) if h > |x − x′| + |y − y′|. When
a shadow is cast, the size of the shadow s is given by
h−|x−x′|− |y−y′|. Algorithm 7 presents a procedure for
reweighting the edges of G. The idea is to scale down the
weight of each edge in G by an amount that is proportional
to the “usefulness factors” of its end-point nodes. The use-
fulness factor of a cell in the workspace matrix (represented
as a node in G) is the sum of the relative shadow sizes9 cast
on it by all towers in the user-specified structure.

This heuristic way of reweighting the edges transfers in-
formation about a tower to farther nodes in the graph G than
just its immediate neighbors. When a user-specified struc-
ture consists of disconnected substructures, the reweighted
minimum spanning tree can construct long “backbone”
ramps that are useful for all disjoint substructures. The mini-
mum spanning tree heuristic typically does not produce such
backbones.

Empirical Evaluation
In this section, we provide an empirical evaluation of our al-
gorithms. As mentioned previously, none of the off-the-shelf
domain-independent planners were able to solve even small
instances of the construction problem. Our empirical results,
therefore, are a performance comparison between the tower
by tower (TBT) method, the row by row (RBR) method, the
minimum spanning tree (MST) heuristic, and the reweighted
minimum spanning tree (RMST) heuristic. We used three
categories of problem instances.

In the first category, we used structures generated at ran-
dom. Table 1 shows the comparative performances of TBT,
RBR, MST and RMST on 10× 10 randomly generated ma-
trices with a maximum height of 15. The percentage pa-
rameter indicates the fraction of empty locations where no
towers stand. 5 trials were used to generate the data in each
row. In each row, the median number10 of additions and re-
movals of blocks in the plans generated by each algorithm is
reported. Here, we see the superior performance of RMST

9the fractions s/h
10over these 5 trials

%Empty TBT RBR MST RMST
10 7537 4139 1799 1701
20 6977 3691 1627 1581
30 6332 3712 2226 1948
40 5712 3760 1968 1806
50 4106 3138 1852 1632
60 3452 3108 1964 1530
70 2751 2445 1691 1299
80 1583 1465 1159 0773
90 0812 0812 0770 0552

Table 1: Shows the relative performances of TBT, RBR, MST, and RMST on ran-
domly generated structures.

Building Model Matrix Max H TBT RBR MST RMST
Eiffel Tower 7× 7 15 845 845 781 509
Empire State 6× 8 15 3152 932 450 476

Taj Mahal 12× 12 6 896 384 352 350
Giza Pyramid 15× 15 8 2752 680 680 680
Disney Hall 22× 16 10 11091 2245 1493 1499

Table 2: Shows the relative performances of TBT, RBR, MST, and RMST on models
of world famous buildings.

in all cases. As the percentage of empty locations increases,
the number of disconnected substructures also increases, and
RMST begins to outperform even MST more and more.

In the second category, we designed LEGO models of
world famous buildings and gave them as input instances to
our algorithms. A sample of the empirical data is provided in
Table 2 where the total number of additions and removals of
blocks required by each algorithm is shown. Even for these
instances, MST and RMST outperformed RBR and TBT by
a large margin.

In the third category, we used handcrafted examples to
provide “worst-case” scenarios. Even here, we observed the
same trend. That is, MST and RMST outperformed RBR
and TBT by a large margin. RMST typically generates plans
that require only 45−60% of pickup and drop-off operations
on blocks compared to TBT and RBR.

Our tree-based algorithms solved all instances in less than
5 seconds each. The algorithms are implemented in Java.
All experiments were run on a single 2.3GHz quad-core (In-
tel Core i7) MacBook Pro machine with 16GB 1600MHz
memory. A separate visualization program is used to get
insights into the working of the algorithms.

A few resources including pictures of the LEGO build-
ing models, sample videos, and examples of generated
plans are available at https://www.dropbox.com/
s/o4m58ejtp2a0t32/icaps2014.zip.

Discussions
The problem of building a user-specified structure collec-
tively using a team of TERMES robots can be studied un-
der several different cost metrics and restrictions. Some of
these variants include: (a) whether we are interested in min-
imizing the number of operations on blocks, the total dis-
tance traveled by the robots, the total distance traveled by
them while carrying blocks, or some combination of these

for minimizing the total energy consumed; (b) whether we
are interested in minimizing the number of blocks drawn
from the reservoir by maximizing the reuse of blocks; (c)
whether we are given an empty or non-empty initial config-
uration; (d) whether the capacity of the reservoir is limited
or unlimited; (e) whether we are interested in minimizing the
makespan or the total number of operations in the plan; and
(f) whether pipelining is feasible in addition to parallelism,
that is, whether or not robots can be stationed in certain lo-
cations and handover blocks to each other.

In this paper, we chose to concentrate on the task of min-
imizing the number of pickup and drop-off operations on
blocks under the assumptions of an empty initial configura-
tion and an unlimited reservoir. However, in this section, we
will explain the importance of this core problem to the other
variants of the construction problem as well.

Consider the problem of maximizing the reuse of blocks.
That is, the additions and removals of blocks should be con-
nected to the reservoir as few times as possible. A good
heuristic solution to this problem is to first minimize the
number of pickup and drop-off operations and then perform
a post-processing step on the plan generated. This post-
processing step short-circuits consecutive pairs of addition
and removal of blocks connected to the reservoir. Of course,
maximizing the reuse of blocks also addresses the problem
of a limited reservoir.

Since the TERMES robots can carry at most one block
at a time, minimizing the number of pickup and drop-off
operations on blocks, followed by the post-processing step
of short-circuiting described above, serves as a good ini-
tial solution to the problem of minimizing the total distance
traveled. Moreover, since the maneuvering actions, pickup
and drop-off, consume more energy than other simpler ac-
tions, the methodology generates a good heuristic solution
for minimizing the total energy consumption as well.

The idea of using trees to minimize the number of pickup
and drop-off operations lends itself naturally to other consid-
erations of parallelism. Performing dynamic programming
on trees exploits common substructure in the inner loop.
Here, subtrees are independent of each other, that is, the op-
erations on blocks carried out at the locations correspond-
ing to the nodes of one subtree do not affect the operations
for another subtree. The search for a good tree on which
dynamic programming should be carried out is delegated to
the outer loop of the algorithm. In considerations of multiple
robots and effective parallelism, only the outer loop needs to
be modified to find “balanced” trees tailored to the objective
function and the constraints of the problem. Of course, in
the case of multiple robots, parallelism comes with the over-
head of having to coordinate the robots such that they don’t
collide with each other. This introduces combinatorial prob-
lems akin to multi-agent path finding. However, these prob-
lems can also be made simpler by computationally leverag-
ing the fact that multi-agent path finding is easier on trees
and with identical agents (Yu and LaValle 2012).

Being able to solve the collective construction problem
for a specified non-empty initial configuration has many im-
portant applications in reconfigurable modular robotics (Yun
and Rus 2010). Although a detailed discussion of this prob-

https://www.dropbox.com/s/o4m58ejtp2a0t32/icaps2014.zip
https://www.dropbox.com/s/o4m58ejtp2a0t32/icaps2014.zip

lem is beyond the scope of this paper, a relatively straightfor-
ward solution strategy falls out of the tree-based algorithm
for solving the collective construction problem for empty
initial configurations. To solve the collective construction
problem for a specified non-empty initial configuration and
a specified goal configuration, two instances of the construc-
tion problem are solved with empty initial configurations
and goal configurations corresponding to the specified non-
empty initial configuration and the specified goal configu-
ration separately. In a post-processing step, the plan gener-
ated for the first instance is reversed, and the steps are short-
circuited with those of the plan generated for the second in-
stance.

Conclusions and Future Work
In this paper, we presented a tree-based algorithm for con-
struction robots. Inspired by the TERMES project of Har-
vard University, robots in this domain are required to gather
construction blocks from a reservoir and build user-specified
structures much larger than themselves. Common to many
variants of the problem, we identified the core combina-
torial task of minimizing the number of pickup and drop-
off operations performed on blocks in order to build user-
specified structures. Our polynomial-time algorithm heuris-
tically solves this problem and is based on the idea of per-
forming dynamic programming on a spanning tree in the in-
ner loop, and the search for a good tree to do so in the outer
loop. Empirical results showed that our algorithm performs
very well in simulation and scales easily to large problem
instances. Besides being a useful technique for the problem
of automated construction, we believe that valuable lessons
can be learned from comparing the success of our algorithm
with the failure of off-the-shelf planning technologies for
this problem domain.

There are many avenues for future work. One important
direction is to conduct local search on trees in the outer loop.
This could not only lead to better solutions for the problem
addressed in this paper, but could also lead to a general prin-
ciple for solving the many variants of the construction prob-
lem. Lessons learned in the context of local search meth-
ods for solving other combinatorial problems, like SAT, can
be employed here as well. Other directions include adapt-
ing our techniques to specific construction tasks from real-
world domains and comparing them with other approximate
heuristic strategies like Ant Algorithms (Dorigo, Di’Caro,
and Gambardella 1999). Construction of more complex
structures such as with roofs, hollow enclosures and non-
uniform block sizes is also an interesting avenue for future
work.

Acknowledgements
We thank Marcello Cirillo, Tansel Uras and Liron Cohen
for their suggestions and helpful discussions, Tansel Uras
and Liron Cohen also for their help by experimenting with
general-purpose planners in our domain, and Radhika Nag-
pal for her interest in our project and her encouragement.
Our research was supported by NSF under grant number IIS-
1319966 and ONR under grant number N00014-09-1-1031.

The views and conclusions contained in this document are
those of the authors and should not be interpreted as repre-
senting the official policies, either expressed or implied, of
the sponsoring organizations, agencies or the U.S. govern-
ment.

References
[Dorigo, Di’Caro, and Gambardella 1999] Dorigo, M.;
Di’Caro, G.; and Gambardella, L. 1999. Ant algorithms for
discrete optimization. In Artificial Life, MIT Press, 1999.

[Grushin and Reggia 2008] Grushin, A., and Reggia, J.
2008. Automated design of distributed control rules for
the self-assembly of prespecified artificial structures. In
Robotics and Autonomous Systems, 56(4):334-359.

[Jones and Mataric 2004] Jones, C., and Mataric, M. 2004.
Automatic synthesis of communication-based coordinated
multi-robot systems. In Proceedings of the 2004 Interna-
tional Conference on Intelligent Robots and Systems.

[Napp and Klavins 2010] Napp, N., and Klavins, E. 2010.
Robust by composition: Programs for multi-robot systems.
In Proceedings of the 2010 IEEE International Conference
on Robotics and Automation.

[Petersen, Nagpal, and Werfel 2011] Petersen, K.; Nagpal,
R.; and Werfel, J. 2011. Termes: An autonomous robotic
system for three-dimensional collective construction. In
Proceedings of Robotics: Science and Systems.

[Richter, Westphal, and Helmert 2011] Richter, S.; West-
phal, M.; and Helmert, M. 2011. Lama 2008 and 2011.
In Proceedings of the 2011 International Planning Compe-
tition.

[Yu and LaValle 2012] Yu, J., and LaValle, S. 2012. Multi-
agent path planning and network flow. In Proceedings of the
10th Workshop on Algorithmic Foundations of Robotics.

[Yun and Rus 2010] Yun, S., and Rus, D. 2010. Adaptation
to robot failures and shape change in decentralized construc-
tion. In Proceedings of the 2010 IEEE International Confer-
ence on Robotics and Automation.

	Introduction
	Background
	Problem Formulation
	A Tree-Based Construction Algorithm
	The Workspace Matrix
	Graphical Representation
	The Inner Loop: Dynamic Programming
	Proof of Correctness
	The Outer Loop: Search for a Good Tree

	Empirical Evaluation
	Discussions
	Conclusions and Future Work
	Acknowledgements

