
Speeding-up Any-Angle Path-Planning on Grids

Tansel Uras and Sven Koenig
Department of Computer Science
University of Southern California

Los Angeles, USA
{turas, skoenig}@usc.edu

Abstract

Simple Subgoal Graphs are constructed from grids by
placing subgoals at the corners of obstacles and con-
necting them. They are analogous to visibility graphs
for continuous terrain but have fewer edges and can be
used to quickly find shortest paths on grids. The vertices
of a Simple Subgoal Graph can be partitioned into dif-
ferent levels to create N-Level Subgoal Graphs, which
can be used to find shortest paths on grids even more
quickly by ignoring subgoals that are not relevant for
the search, which significantly reduces the size of the
graph being searched. Search using Two-Level Subgoal
Graphs was a non-dominated entry in the Grid-Based
Path Planning Competitions 2012 and 2013.
In this paper, we take advantage of the similarities be-
tween Subgoal Graphs and visibility graphs to show that
Subgoal Graphs can be used, with small modifications,
to quickly find “any-angle” paths, thus extending their
applicability. Any-angle paths are usually shorter and
more realistic looking than grid paths since the move-
ment along any-angle paths is not constrained to grid
edges. Our algorithm has the advantage that it is a sim-
ple extension of searching Subgoal Graphs and is up to
two orders of magnitude faster than Theta* and up to
an order of magnitude faster than Block A* (using 5 ×
5 blocks), two of the most well-known any-angle path-
planning algorithms, while still finding any-angle paths
of comparable lengths.

Introduction
Grids are often used in video games and robotics to dis-
cretize a continuous environment into a graph, which can
be searched with an optimal path-planning algorithm, such
as A* (Hart, Nilsson, and Raphael 1968), to find shortest
paths. Movement on grids is typically constrained to grid
edges and, as a result, the paths found (grid paths) can be un-
realistic looking and longer than shortest paths in the contin-
uous environment. One can address this issue by smoothing
grid paths by replacing local, sub-optimal parts of the paths
by straight lines (Thorpe 1984; Botea, Müller, and Schaef-
fer 2004). These smoothed paths can still be long, however,
since their homotopy often remains unchanged.

Copyright c© 2015, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

Any-angle path-planning algorithms, such as Theta*
(Nash et al. 2007; Daniel et al. 2010; Nash, Koenig, and
Tovey 2010; Nash 2012), Block A* (Yap et al. 2011b;
2011a) and Field D* (Ferguson and Stentz 2006), address
this issue by interleaving path smoothing with search. Simi-
lar to A*, they propagate information along grid edges dur-
ing search, but the movement is no longer constrained to
grid edges. Although they are not guaranteed to find short-
est paths in the continuous environment, the paths tend to
be shorter than smoothed grid paths. To find shortest any-
angle paths one can use visibility graphs (Lozano-Pérez and
Wesley 1979), Accelerated A* (Sislak, Volf, and Pechoucek
2009b; 2009a), or Anya (Harabor and Grastien 2013). Vis-
ibility graphs tend to have very high vertex degrees and, as
a result, searching them is usually slow. Accelerated A* is a
variant of Theta* that is only assumed to find shortest any-
angle paths. We are not aware of any work that evaluates
Anya’s efficiency.

The contribution of this paper is to show that Sub-
goal Graphs (Uras, Koenig, and Hernández 2013; Uras and
Koenig 2014) can, with small modifications, be used to
quickly find any-angle paths. For many search problems, the
graph is known beforehand and there is time to preprocess it
to make the search faster. Simple Subgoal Graphs are con-
structed from grids during a preprocessing phase by plac-
ing subgoals at the corners of obstacles and connecting pairs
of subgoals that are direct-h-reachable. The resulting graph
is essentially a sparser visibility graph that can be used to
find shortest grid paths. N-Level Subgoal Graphs are con-
structed from Simple Subgoal Graphs by partitioning the
subgoals into different levels (similar to Contraction Hierar-
chies (Geisberger et al. 2008; Dibbelt, Strasser, and Wagner
2014), which we discuss later), allowing the searches to ig-
nore many subgoals while still finding shortest grid paths.
We discuss the details of these algorithms and how they can
be used to find any-angle paths in the following sections.

Preliminaries
The algorithms described in this paper work on 8-neighbor
grids. Any-angle path-planning algorithms typically place
the vertices at the corners of the grid cells, rather than their
centers. A grid path is a sequence of cell corners where con-
secutive pairs of cell corners must belong to the same grid
cell. For the purpose of this paper, we define an any-angle

A B C D E F G H

1

2

3

4

5

6

Figure 1: Simple Subgoal Graph.

path as a sequence of cell corners where consecutive pairs
of cell corners have line-of-sight (the straight line between
them does not pass through the interior of blocked cells).

Simple Subgoal Graphs
Simple Subgoal Graphs (SSGs) are constructed from grids
whose vertices are placed at the centers of grid cells. In this
paper, however, we place the vertices of the grid at the cor-
ners of grid cells as any-angle path-planing algorithms typi-
cally do. Except for some small implementation details, this
does not change how SSGs are used.

We start with some definitions: A cell corner s is called
a subgoal if and only if it is a convex corner of an obsta-
cle, that is, exactly one or two of its four adjacent grid cells
are blocked and, in the latter case, the two blocked cells are
on the same diagonal. Two cell corners s and u are called
h-reachable if and only if there is a shortest grid path be-
tween them whose length is equal to the Octile distance (that
is, the length of a shortest grid path assuming the grid has
no blocked cells) between them. They are called direct-h-
reachable if and only if they are h-reachable and none of
the shortest grid paths between them pass through a subgoal
(except for s and u).

Simple Subgoal Graphs are constructed by adding edges
between all pairs of direct-h-reachable subgoals. The length
of each edge is the Octile distance between the subgoals it
connects. Figure 1 shows an example of an SSG. Observe
that B3 and F5 are h-reachable but not direct-h-reachable
(due to the subgoal at C4), so there is no edge between them.

To find shortest grid paths using SSGs, one connects the
given start and goal vertices s and g to all of their respective
direct-h-reachable subgoals and searches this graph with A*
to find a sequence of direct-h-reachable subgoals between s
and g, called a shortest high-level path. One can then deter-
mine a shortest grid path between consecutive subgoals to
find a shortest grid path between s and g. For instance, if we
were to use the SSG in Figure 1 to find a shortest grid path
between A2 and G4, we would add the edges (A2, B2), (A2,
B3) and (G4, G5) to the SSG and search this graph to find
the shortest high-level path A2-B3-C4-F5-G5-G4. Follow-
ing this high-level path on the grid, we obtain the shortest
grid path A2-B3-C4-D5-E5-F5-G5-G4.

Identifying all direct-h-reachable subgoals from a given
cell corner can be done efficiently with a dynamic program-

A B C D E F G H

1

2

3

4

5

Figure 2: Shortest grid paths and shortest any-angle path be-
tween B2 and G4.

ming algorithm that uses precomputed clearance values. Us-
ing this algorithm, SSGs can be constructed within millisec-
onds and the start and goal vertices can be connected to the
SSGs quickly before a search. Previous results indicate that,
using SSGs, one can find shortest grid paths∼24 times faster
than A* on some video game maps, while requiring only a
couple of MBs of extra memory to store the SSGs.

Any-Angle Simple Subgoal Graphs
We start this section by discussing the relationship between
direct-h-reachability and visibility. Figure 2 shows all short-
est grid paths between B2 and G4 with red dashed lines and
the shortest any-angle path between them with a solid blue
line. The shortest grid paths between B2 and G4 cover a
parallelogram-shaped area. If two cell corners s and u are
direct-h-reachable, then the parallelogram-shaped area be-
tween them, called P , cannot intersect with the interior of
any blocked cells. This is so, because, otherwise, the set of
blocked cells whose interiors intersect with P either cause
s and u to be no longer h-reachable, or introduce a subgoal
on one of the shortest paths between them (Uras, Koenig,
and Hernández 2013). The straight line between s and u tra-
verses only cells whose interiors intersect with P , which are
unblocked if s and u are direct-h-reachable. Therefore, if
two cell corners are direct-h-reachable, then they have line-
of-sight.

This property implies that all edges of an SSG are visi-
bility (graph) edges (connecting subgoals that have line-of-
sight). Therefore, the high-level path found by searching an
SSG is also an any-angle path. However, not all visibility
edges are included in an SSG. For instance, in Figure 1, there
is no edge between E2 and F5 even though they have line-of-
sight. Since SSGs can be used to find shortest grid paths and
since shortest grid paths are at most 8% longer than shortest
any-angle paths (Nash and Koenig 2013), we can consider
SSGs as sparser visibility graphs with a suboptimality bound
of 8% if one does not refine the high-level path.

We therefore make the following changes to use SSGs to
find short any-angle paths quickly: 1) The high-level paths
are already valid any-angle paths, so we do not need to re-
fine them into a low-level paths on the grid. 2) We use the
Euclidean distance rather than the Octile distance as edge
lengths and heuristics for the search. This results in shorter
any-angle paths because the search is now trying to mini-
mize the length of an any-angle path rather than the length

A B C D E F G H

1

2

3

4

5

6

Figure 3: A Two-Level Subgoal Graph constructed from the
Simple Subgoal Graph in Figure 1. The number of circles
around a cell corner depict the level of the subgoal. Dashed
lines are the original edges of the subgoal graph, and the
dotted line depicts the extra edge added to the graph during
partitioning.

of a grid path. 3) We use Theta* for the search instead of
A*. Theta* is a variant of A* that finds any-angle paths on
graphs embedded in 2D or 3D environment, such as SSGs.
When expanding a vertex s, Theta* checks for each succes-
sor u of s if the parent of s and u have line-of-sight. If so,
it sets the parent of u to the parent of s and sets the g-value
of u accordingly. This results in shorter any-angle paths be-
cause the search can generate shortcut edges that are not in
the graph.

(Any-Angle) N-Level Subgoal Graphs
N-Level Subgoal Graphs are constructed from SSGs by re-
peatedly performing the following procedure, called parti-
tioning, starting with the SSG: 1) Identify a maximal set of
subgoals S (also called local subgoals), such that removing
any subset of S from the graph does not increase the lengths
of shortest paths between the remaining subgoals. 2) Set the
level of all subgoals in S to i, where i is the number of times
partitioning has already been performed, including the cur-
rent instance. 3) Remove all subgoals s ∈ S from the graph
(along with their adjacent edges). 4) If S = ∅ or the re-
maining graph has no subgoals (or a user defined number of
levels have been created), set the level of all remaining sub-
goals to i+1 and stop. Otherwise, repeat the procedure with
the remaining graph.

One can allow partitioning to add new edges to the graph
(discussed below in more detail) in order to classify more
vertices as local subgoals. Figure 3 shows a Two-Level Sub-
goal Graph constructed from the SSG in Figure 1. Without
the extra edge between B3 and F5, removing C4 would in-
crease the length of a shortest path between B3 and F5 and,
therefore, C4 could not be classified as a local subgoal dur-
ing the first partitioning.

To find shortest paths using N-Level Subgoal Graphs, one
first connects the given start and goal vertices s and g to
all their respective direct-h-reachable subgoals, identifies all
subgoals reachable from s and g via ascending edges (edges
from a subgoal to higher-level subgoals, s and g are assumed
to have level 0 if they are not subgoals) and searches the

graph consisting of those subgoals and all highest-level sub-
goals (and the edges between them), thus ignoring other sub-
goals during the search. For instance, if one were to use the
Two-Level Subgoal Graph in Figure 3 to find a path between
A2 and G4, the graph searched would include B2 and G5 but
not C4 or E2. Without the extra edge between B3 and F5, C4
would be a highest-level subgoal and also be included in the
search.

If one does not specify a constraint on the edges that par-
titioning can add to the graph, it can add edges between
all pairs of subgoals and classify all subgoals as local sub-
goals, essentially creating a pairwise distance matrix, which
would require a lot of memory to store. Typically, N-Level
Subgoal Graphs require new edges to connect h-reachable
vertices. However, this is problematic for finding any-angle
paths since two vertices that are h-reachable do not necessar-
ily have line-of-sight. For example, in Figure 1, B2 and C4
are h-reachable but do not have line-of-sight. For the any-
angle version of N-Level Subgoal Graphs, we allow parti-
tioning to add edges only between vertices that have line-of-
sight to ensure that the high-level paths found by searching
N-Level Subgoal Graphs are also any-angle paths.

Generalizing beyond Grids
Even though SSGs are specific to grids, the idea of par-
titioning subgoals can be generalized to undirected graphs
(Uras and Koenig 2014). The generalized method is called
N-Level Graphs and can be modified to speed-up any-angle
path-planning for all undirected graphs embedded in 2D or
3D environments (such as navigation meshes or waypoint
graphs), by allowing the partitioning to add edges only be-
tween vertices that have line-of-sight.

Similarities to Contraction Hierarchies
N-Level Graphs are closely related to Contraction Hierar-
chies (CH) (Geisberger et al. 2008; Dibbelt, Strasser, and
Wagner 2014), a method that was developed before N-Level
Graphs. Both methods create a hierarchy among the ver-
tices of the original graph during a preprocessing phase,
which can be used to find shortest paths on the original
graph quickly by ignoring vertices that are not relevant for
the search. There are two main differences between the two
methods: 1) CH allow the addition of edges between any two
vertices; and 2) CH choose only a single vertex to remove
from the graph at a time (that is, |S| = 1), called contrac-
tion, resulting in a graph where each level contains a single
vertex.

Note that CH can also be modified to add edges only be-
tween vertices that have line-of-sight, although limiting the
edges that can be added to CH can prevent one from con-
tracting all the vertices, resulting in multiple vertices rather
than a single vertex at the highest level. The resulting CH
can then be used to find any-angle paths in the 2D or 3D
environment that the original graph is embedded in.

N-Level Graphs and CH have not been experimentally
compared yet and the trade-offs of the different design deci-
sions are therefore, at the moment, unknown. Such a com-
parison is beyond the scope of this paper and thus subject to
future work.

Average Runtime (ms) Average Path Length
A* Theta* Block A* Theta* Block

Grid S1 S2 SN Grid S1 S2 SN A* Grid S1 S2 SN Grid S1 S2 SN A*
bg512 11.52 0.16 0.11 0.09 22.69 0.42 0.24 0.16 4.51 238.64 237.66 237.52 237.52 237.27 237.29 237.29 237.36 237.23
DAO 18.18 0.88 0.48 0.26 36.01 1.95 0.93 0.45 7.21 397.71 393.64 393.38 393.55 393.11 392.94 392.93 393.31 393.04

starcraft 75.68 2.49 1.38 0.70 190.23 9.09 4.29 1.35 29.75 551.12 546.71 546.12 545.73 545.06 544.93 544.88 545.12 544.88
random10 19.67 7.93 7.92 7.93 11.22 4.82 4.81 4.81 6.34 325.10 320.82 320.82 320.82 319.00 319.09 319.09 319.09 319.03
random15 18.59 10.85 10.78 10.80 14.41 7.22 7.19 7.20 7.33 329.73 325.36 325.35 325.35 323.05 323.13 323.14 323.14 323.00
random20 17.95 13.07 12.86 12.88 17.54 9.10 8.99 9.00 8.31 330.24 325.85 325.82 325.82 323.13 323.26 323.27 323.27 323.05
random25 18.46 14.74 14.16 14.14 21.11 11.59 11.24 11.24 9.55 332.19 327.85 327.77 327.76 324.75 324.96 324.98 324.99 324.68
random30 18.73 15.30 14.17 13.94 24.84 12.61 11.86 11.74 10.67 328.32 324.21 324.05 324.02 320.90 321.19 321.25 321.28 320.86
random35 22.58 15.69 13.66 12.94 29.92 14.16 12.59 12.06 12.36 330.29 326.45 326.16 326.12 323.12 323.50 323.62 323.72 323.07
random40 20.50 10.50 8.32 7.14 25.92 10.92 8.73 7.52 10.06 301.68 298.62 298.30 298.30 295.88 296.29 296.53 296.84 295.86

room8 44.02 3.67 3.24 2.97 55.95 4.29 3.71 3.36 18.03 353.61 348.37 348.58 348.76 348.62 348.25 348.43 348.63 348.36
room16 47.53 1.03 0.91 0.83 63.52 1.35 1.17 1.06 18.64 358.68 354.37 354.48 354.57 354.61 354.34 354.43 354.54 354.48
room32 53.95 0.31 0.28 0.25 83.68 0.47 0.40 0.36 21.23 369.46 365.95 366.01 366.05 366.07 365.93 365.99 366.04 366.05
room64 65.56 0.11 0.10 0.09 131.19 0.19 0.16 0.14 24.80 404.39 401.65 401.69 401.72 401.69 401.64 401.68 401.71 401.72

maze4 149.28 3.14 1.85 0.21 207.87 3.66 2.02 0.18 60.22 1771.55 1759.78 1759.61 1759.60 1759.33 1759.43 1759.53 1759.59 1760.28
maze8 161.86 0.93 0.54 0.12 253.11 1.18 0.66 0.12 60.05 1798.85 1788.46 1788.14 1787.91 1787.51 1787.84 1787.94 1787.89 1788.02

maze16 171.19 0.29 0.18 0.07 318.84 0.41 0.23 0.08 60.39 1646.59 1639.57 1639.16 1638.90 1638.23 1638.60 1638.65 1638.78 1638.55
maze32 167.89 0.10 0.07 0.05 417.73 0.14 0.09 0.05 56.35 1198.77 1194.48 1194.09 1193.71 1193.43 1193.86 1193.70 1193.61 1193.62
GAME 42.09 1.44 0.80 0.42 101.09 4.78 2.26 0.79 16.57 432.31 428.72 428.34 428.23 427.73 427.62 427.59 427.85 427.62

ALL 79.18 2.96 2.34 1.90 149.61 4.25 2.76 1.79 30.03 811.15 805.76 805.48 805.36 804.62 804.69 804.71 804.85 804.74

Table 1: Experimental results.

Experimental Results
We compare the runtimes and resulting path lengths of A*
and Theta* on grids, SSGs (S1), Two-Level Subgoal Graphs
(S2) and N-Level Subgoal Graphs (SN). We also include
Block A* (using 5 × 5 blocks, which is the block size used
in (Yap et al. 2011b)) in our comparison, an any-angle path-
planning algorithm that partitions the grid into blocks of
equal sizes and uses a version of A* that expands blocks
rather than vertices. It uses pre-computed shortest any-angle
path lengths between all vertices on the perimeter of a block
to speed-up block expansions.

The experiments are run on a PC with a dual-core 3.2GHz
Intel Xeon CPU and 2GB of RAM. We use game maps,
maps with randomly blocked cells, room maps and maze
maps in our comparison, available from Nathan Sturtevant’s
repository.1 All variants of Subgoal Graphs use the Eu-
clidean distance as edge lengths. All searches use the Eu-
clidean distance as heuristics, except for A* on grids, which
uses the Octile distance. We smooth the paths found by
each algorithm in a post-processing step, using a simple
path smoothing method that provides a good trade-off be-
tween runtime and path length ((Daniel et al. 2010), Algo-
rithm 2). In Table 1, we report for each algorithm its aver-
age smoothed path length and runtime (including smooth-
ing time) on each type of map. The preprocessing time and
memory requirements of Subgoal Graph variants are similar
to previous results and therefore not reported.

The results show that the lengths of the paths found by
Theta* on Subgoal Graphs are comparable to those found
by Block A* and Theta* on grids. The paths found by A*
on grids are typically long, whereas the lengths of the paths
found by A* on Subgoal Graphs are closer to (but still longer

1http://movingai.com/benchmarks/

than) those found by Theta* and Block A*, which can be at-
tributed to Subgoal Graphs using the Euclidean distance as
edge lengths. The fastest algorithm on game, room and maze
maps is A* on Subgoal Graphs, followed by Theta* on Sub-
goal Graphs, Block A*, A* on grids and Theta* on grids,
in that order. Searches on N-Level Subgoal Graphs are typ-
ically faster than searches on SSGs (∼3 and 6 times faster
on game maps for A* and Theta*, respectively) and much
faster than searches on grids (∼100 and 128 times faster on
game maps for A* and Theta*, respectively), similar to pre-
vious results on Subgoal Graphs. On game maps, Theta* on
N-Level Subgoal Graphs is∼20 times faster than Block A*.
Theta* searches are faster than A* searches on maps with
randomly blocked cells, even though Theta* performs ex-
pensive line-of-sight checks with each expansion. This is
so because Theta* tends to perform fewer expansions per
search than A* (with∼ 60% fewer expansions on maps with
10% blocked cells) since it typically finds shorter paths.

Conclusions
We have shown how Subgoal Graphs can be used for finding
any-angle paths with some simple modifications. Our exper-
iments demonstrate that Subgoal Graphs can be used to find
any-angle paths of comparable lengths, but up to two orders
of magnitude faster than Theta* and up to an order of mag-
nitude faster than Block A* (using 5 × 5 blocks).

Acknowledgments
Our research was supported by NSF under grant numbers
1409987 and 1319966. The views and conclusions con-
tained in this document are those of the authors and should
not be interpreted as representing the official policies, either
expressed or implied, of the sponsoring organizations, agen-
cies or the U.S. government.

References
Botea, A.; Müller, M.; and Schaeffer, J. 2004. Near op-
timal hierarchical path-finding. Journal of Game Develop-
ment 1(1):7–28.
Daniel, K.; Nash, A.; Koenig, S.; and Felner, A. 2010.
Theta*: Any-angle path planning on grids. Journal of Ar-
tificial Intelligence Research 39:533–579.
Dibbelt, J.; Strasser, B.; and Wagner, D. 2014. Customizable
contraction hierarchies. arXiv preprint arXiv:1402.0402.
Ferguson, D., and Stentz, A. 2006. Using interpolation to
improve path planning: The Field D* algorithm. Journal of
Field Robotics 23(2):79–101.
Geisberger, R.; Sanders, P.; Schultes, D.; and Delling, D.
2008. Contraction hierarchies: Faster and simpler hierar-
chical routing in road networks. In Proceedings of the Inter-
national Conference on Experimental Algorithms, 319–333.
Harabor, D., and Grastien, A. 2013. An optimal any-angle
pathfinding algorithm. In Proceedings of the International
Conference on Automated Planning and Scheduling, 308–
311.
Hart, P.; Nilsson, N.; and Raphael, B. 1968. A formal basis
for the heuristic determination of minimum cost paths. IEEE
Transactions on Systems Science and Cybernetics 4(2):100–
107.
Lozano-Pérez, T., and Wesley, M. 1979. An algorithm for
planning collision-free paths among polyhedral obstacles.
Communications of the ACM 22(10):560–570.
Nash, A., and Koenig, S. 2013. Any-angle path planning.
Artificial Intelligence Magazine 34(4):85–107.
Nash, A.; Daniel, K.; Koenig, S.; and Felner, A. 2007.
Theta*: Any-angle path planning on grids. In Proceedings of
the AAAI Conference on Artificial Intelligence, 1177–1183.
Nash, A.; Koenig, S.; and Tovey, C. 2010. Lazy Theta*:
Any-angle path planning and path length analysis in 3D.
In Proceedings of the AAAI Conference on Artificial Intel-
ligence, 147–154.
Nash, A. 2012. Any-Angle Path Planning. Ph.D. Dis-
sertation, University of Southern California. http://idm-
lab.org/project-o.html.
Sislak, D.; Volf, P.; and Pechoucek, M. 2009a. Accelerated
A* path planning. In Proceedings of the International Joint
Conference on Autonomous Agents and Multiagent Systems,
1133–1134.
Sislak, D.; Volf, P.; and Pechoucek, M. 2009b. Accelerated
A* trajectory planning: Grid-based path planning compari-
son. In Proceedings of the Workshop on Planning and Plan
Execution for Real-World Systems at the International Con-
ference on Automated Planning and Scheduling, 74–81.
Thorpe, C. 1984. Path relaxation: Path planning for a mobile
robot. In Proceedings of the AAAI Conference on Artificial
Intelligence, 318–321.
Uras, T., and Koenig, S. 2014. Identifying hierarchies for
fast optimal search. In Proceedings of the AAAI Conference
on Artificial Intelligence, 878–884.

Uras, T.; Koenig, S.; and Hernández, C. 2013. Subgoal
graphs for optimal pathfinding in eight-neighbor grids. In
Proceedings of the 23rd International Conference on Auto-
mated Planning and Scheduling.
Yap, P.; Burch, N.; Holte, R.; and Schaeffer, J. 2011a. Any-
angle path planning for computer games. In Proceedings
of the Conference on Artificial Intelligence and Interactive
Digital Entertainment.
Yap, P.; Burch, N.; Holte, R.; and Schaeffer, J. 2011b. Block
A*: Database-driven search with applications in any-angle
path-planning. In Proceedings of the AAAI Conference on
Artificial Intelligence, 120–126.

