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Abstract

In emerging network virtualization architectures, service
providers will be able to create many heterogeneous virtual
networks and offer customized end-to-end services by leasing
shared resources from infrastructure providers. The Virtual
Network Embedding (VNE) problem is central to such tech-
nology. It involves the proper allocation of CPU and band-
width resources available in a physical substrate network to
meet the demands of multiple virtual networks. Combinato-
rially, the VNE problem is a problem in resource manage-
ment that is NP-hard to solve. In this paper, we present a
novel version of the Conflict-Based Search (CBS) algorithm
for solving the VNE problem. Our approach, called VNE-
CBS, is inspired by the success of the CBS framework in the
Multi-Agent Path Finding domain. We successfully address
the unique challenges in applying the CBS framework to the
VNE problem, and, in doing so, we pave the way for over-
coming a crucial issue in Internet ossification via heuristic
search methods. On the theoretical front, we show that, un-
like many existing algorithms, our algorithm is complete and
optimal. On the experimental front, we show that our algo-
rithm significantly outperforms other state-of-the-art methods
on various benchmark instances for both the offline and on-
line versions of the VNE problem.

Introduction
The Internet ossification problem refers to the resistance of
the current Internet to architectural changes. Network virtu-
alization is an enabling technology that addresses this prob-
lem (Chowdhury and Boutaba 2009). It does so by modu-
larizing Internet service provision to (a) infrastructure provi-
sion and (b) end-to-end service provision. In other words, In-
frastructure Providers (InPs) are only concerned with man-
aging the physical infrastructure, and Service Providers
(SPs) are only concerned with gleaning resources from mul-
tiple InPs to create Virtual Networks (VNs) and provide end-
to-end services.

Network virtualization facilitates flexibility and diversity
since heterogeneous network architectures can be deployed
despite ossifications in the physical infrastructure. In ad-
dition, network virtualization facilitates increased security
and manageability. In a network virtualization environment,
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multiple SPs can create heterogeneous VNs and offer cus-
tomized end-to-end services to users by leasing shared re-
sources from one or more InPs without significant invest-
ment in the physical infrastructure (Feamster, Gao, and Rex-
ford 2007). The physical infrastructure managed by InPs is
often referred to as the Substrate Network (SN). Network
virtualization can also be used to evaluate multiple new net-
work protocols simultaneously on a shared experimental fa-
cility (Anderson et al. 2005).

Although network virtualization has many benefits, it
hinges on an efficient and effective coordination of SPs and
InPs. This translates to the need for an efficient and effec-
tive management of the SN capacities. The capacities of an
SN include its CPU capacity, i.e., the compute power on its
vertices, and its bandwidth capacity, i.e., the communication
capacities on its edges.

A request for SN capacities from an SP appears in the
form of a VN and is referred to as a Virtual Network Request
(VNR). In a VNR, vertices are annotated with their CPU re-
quirements, and edges are annotated with their bandwidth
requirements. Each VNR vertex is required to be mapped to
an SN vertex, and each VNR edge is required to be mapped
to an SN path. These mappings are required to satisfy vari-
ous constraints, such as CPU, bandwidth, and geographical
constraints.

The above problem of embedding VNRs in an SN is re-
ferred to as the Virtual Network Embedding (VNE) prob-
lem. It is a combinatorial problem that models the proper
management and allocation of shared resources on a net-
work. It is foundational to Edge Computing and 5G Net-
works. In these contexts, it feeds into Networking Slicing, a
mechanism used to provision resources across multiple in-
frastructures via a VN that meets certain quality-of-service
or service-level agreement requirements. The VNE problem
and its many variants are NP-hard (Yu et al. 2008).

In this paper, we present a novel Conflict-Based Search
(CBS) algorithm for efficiently solving the VNE problem.
Our approach is inspired by the success of the CBS frame-
work in the Multi-Agent Path Finding (MAPF) domain. The
MAPF problem (Stern et al. 2019) arises in many real-
world applications, including video games (Silver 2005),
automated warehousing (Wurman, D’Andrea, and Mountz
2008), multi-drone delivery (Choudhury et al. 2020), and
aircraft-towing vehicles (Morris et al. 2016).



In the MAPF problem, each agent is required to move
from a start vertex to a goal vertex on a directed or undi-
rected graph while avoiding collisions (also called conflicts)
with other agents. A conflict happens when two agents stay
at the same vertex or traverse the same edge in opposite di-
rections at the same time. Each action of an agent, such as
moving to a neighboring vertex or staying at its current ver-
tex, has a cost. One of the common objectives for the MAPF
problem is minimizing the sum of the travel costs of the
agents. Solving the MAPF problem optimally for this ob-
jective is NP-hard (Yu and LaValle 2013; Ma et al. 2016).

CBS is a two-level search algorithm for solving the MAPF
problem optimally (Sharon et al. 2015). It starts by planning
a path for each agent independently. If a conflict arises be-
tween two agents, CBS resolves it by branching on two pos-
sibilities, with each possibility spatiotemporally constrain-
ing the motion of one of the two conflicting agents. Thus, the
high-level search builds a conflict resolution tree, referred to
as the Constraint Tree (CT). Each CT node accumulates a
set of spatiotemporal constraints. The low-level search per-
forms single-agent pathfinding to compute optimal individ-
ual paths under the spatiotemporal constraints imposed by
the high level. The CBS search framework is the basis of
many successful MAPF solvers (Sharon et al. 2015; Barer
et al. 2014).

Recognizing the combinatorial similarities and the sub-
tle differences between the VNE problem and the MAPF
problem, we develop a CBS-based solver for the VNE prob-
lem, called VNE-CBS. On one hand, VNE-CBS exploits
the similarities between the VNE problem and the MAPF
problem. On the other hand, it also successfully addresses
the subtle differences and unique challenges in applying the
CBS framework to the VNE problem. We show that, un-
like many existing algorithms, VNE-CBS is complete and
optimal. We also develop a bounded-suboptimal version of
VNE-CBS that trades off optimality for increased efficiency.
Through a wide range of experiments, we show that our
CBS-based algorithms significantly outperform other state-
of-the-art methods on various benchmark instances, for both
the offline and online versions of the VNE problem.

Overall, the significance of our methodology is that it
paves the way for overcoming Internet ossification via
heuristic search methods.

Background
VNE-CBS relies on three major conceptual components:
VNE, MAPF, and CBS. In this section, we describe the
background literature relevant to each of them.

VNE
The VNE problem is essentially the problem of embedding
a VNR in a real physical SN such that the VNR vertices are
realized as SN vertices with satisfactory compute power and
the VNR edges are realized as SN paths with satisfactory
bandwidth capacity. Naturally, these mappings are required
to satisfy various constraints, such as: (a) For each SN ver-
tex, the sum of the CPU requirements of all VNR vertices
mapped to it should be no greater than its available CPU

capacity. (b) For each SN edge, the sum of the bandwidth
requirements of all VNR edges that utilize it should be no
greater than its available bandwidth capacity. Other require-
ments may also exist, such as: (c) Each VNR vertex may be
geographically constrained, having to be mapped to an SN
vertex within a specified subset of the SN vertices.

Overall, the VNE problem is a constrained resource al-
location problem. It can be reduced to the multiway sepa-
rator problem, making it NP-hard (Andersen 2002). There
are many variants of the above “core” VNE problem that
are also NP-hard (Yu et al. 2008). In particular, there are
several optimization variants of the VNE problem that are
defined for different metrics such as revenue, cost, ratio of
cost to revenue, acceptance ratio, and the running time of the
VNE algorithm. The revenue refers to the sum of CPU and
bandwidth capacities requested by a VNR, while the cost
refers to the CPU capacities and the bandwidth capacities
spent by the SN to map a VNR. The acceptance ratio refers
to the fraction of VNRs, from a sequence of VNRs, that can
be embedded in the SN.

In the offline version of the VNE problem, a collection of
VNRs are required to be embedded in the SN. The objective
is to maximize the acceptance ratio while heeding to other
metrics. In real-world scenarios, VNRs arrive in sequence at
different times and stay in the network for an arbitrary dura-
tion of time. This is the online version of the VNE problem.
In this case, reconfiguration may be necessary, i.e., it may be
necessary to backtrack on the embedding assignments made
for past VNRs to be able to accommodate new VNRs when
they arrive.

Several other variants of the VNE problem, be it offline
or online, can be defined using various other considera-
tions (Fischer et al. 2013). For example, delays can be con-
sidered in addition to bandwidth requirements. The path-
splitting version of the VNE problem allows for a VNR edge
to be realized using multiple SN paths—instead of a sin-
gle SN path—as far as the total bandwidth requirement is
satisfied. In the “redundant” version of the VNE problem,
an embedding requires additional resources for VNRs to ac-
commodate for potential substrate resource failures.

Many algorithms have been proposed to solve the core
VNE problem and its variants. Chowdhury, Rahman, and
Boutaba (2009) formulate the VNE problem with geograph-
ical constraints as a Mixed Integer Linear Programming
(MILP) problem. They further relax the MILP problem to
a Linear Programming (LP) problem and introduce two
new algorithms. These are a deterministic rounding algo-
rithm, called D-ViNE, and a randomized rounding algo-
rithm, called R-ViNE, that are used to heuristically retrieve a
solution from the fractional solution of the relaxed LP prob-
lem. D-ViNE and R-ViNE are used as standard baseline al-
gorithms for evaluating new VNE algorithms.

Some VNE algorithms use node ranking. For exam-
ple, drawing inspiration from Google’s Page Rank algo-
rithm, Cheng et al. (2011) sort the SN and VNR vertices and
map them according to their ranks. Then, they use rules to
map the VNR edges onto SN paths. Fischer et al. (2013) and
Cao et al. (2019) provide a detailed survey of the VNE prob-
lem, its variants, and a classification of existing approaches



for solving the VNE problem.
There are also several simulation tools available for eval-

uating VNE algorithms. ViNEYard (Chowdhury, Rahman,
and Boutaba 2012) is a popular VNE simulation tool that
uses the Georgia Tech Internet Topology Model (GT-ITM)
for generating problem instances. It has been used to vali-
date the D-ViNE and R-ViNE algorithms.

MAPF
In the MAPF problem, we are given a directed or undirected
graph G = (V,E) and a set of K agents 1, 2 . . .K. Each
agent j has a unique start vertex sj ∈ V and a unique goal
vertex gj ∈ V . At each time step, each agent can either move
to a neighboring vertex or wait at its current vertex, both with
unit cost. A solution of a MAPF problem instance is a set of
feasible paths, one path {sj0, s

j
1 . . . s

j
Tj
, sjTj+1 . . .} for each

agent j ∈ {1, 2 . . .K}, such that no two paths conflict. A
path for agent j is feasible if and only if, (a) it starts at the
start vertex of agent j, i.e., sj0 = sj ; (b) it ends at the goal
vertex of agent j and remains there, i.e., there exists a small-
est Tj such that sjTj

= gj and, for each t > Tj , sjt = gj ;
and (c) every action is a legal move or wait action, i.e., for
all t ∈ {0, 1 . . . Tj − 1}, (sjt , s

j
t+1) ∈ E or sjt = sjt+1. A

conflict between the paths of agents j and k is either a ver-
tex conflict (j, k, s, t), i.e., s = sjt = skt , or an edge conflict
(j, k, s1, s2, t), i.e., s1 = sjt = skt+1 and s2 = sjt+1 = skt .
The travel cost of agent j, (also called the cost of its path)
is the number of time steps Tj until it reaches its goal ver-
tex and stays there. One common objective is to minimize
the solution cost in the form of the flow time, given as the
sum of the travel costs of all agents (Yu and LaValle 2013;
Sharon et al. 2015). A variety of MAPF solvers have been
developed by different research groups, see (Wagner 2015)
and (Hoenig et al. 2016) for overviews.

CBS
CBS (Sharon et al. 2015) is an optimal MAPF solver. It
performs high-level and low-level searches. Each high-level
node (also called CT node) contains a set of constraints and,
for each agent, a feasible path that respects those constraints.
The root CT node has no constraints. The high-level search
of CBS is a best-first search that uses the costs of the CT
nodes as their f -values. The cost of a CT node is the sum
of the travel costs along its paths. When CBS expands a CT
node N , it checks whether the node is a goal node. A CT
node is a goal node if and only if none of its paths conflict.
If N is a goal node, then CBS terminates successfully and
outputs the paths in N as a solution. Thus, the fewer con-
flicts there are in CT nodes, the faster CBS terminates. Oth-
erwise, at least two paths conflict. CBS chooses a conflict
to resolve and generates two CT child nodes of N , called
N1 and N2. Both N1 and N2 inherit the constraints of N . If
the chosen conflict is a vertex conflict (j, k, s, t), then CBS
adds the vertex constraint (j, s, t) toN1 (that prohibits agent
j from occupying vertex s at time step t) and the vertex
constraint (k, s, t) to N2. If the chosen conflict is an edge
conflict (j, k, s1, s2, t), then CBS adds the edge constraint

(j, s1, s2, t) to N1 (that prohibits agent j from moving from
vertex s1 to vertex s2 between time steps t and t + 1) and
the edge constraint (k, s2, s1, t) to N2. During the genera-
tion of the CT node N , CBS performs a low-level search for
the agent i affected by the added constraint. The low-level
search for agent i is a best-first A* search that ignores all
other agents and finds a minimum-cost path from the start
vertex of agent i to its goal vertex that is both feasible and
respects the constraints of the CT node N that involve agent
i. Gordon, Filmus, and Salzman (2021) present a complex-
ity analysis of CBS.

Enhanced CBS (ECBS) (Barer et al. 2014) is a CBS-
based MAPF solver that invokes the power of focal search.
ECBS(w) is a w-suboptimal variant of CBS whose high-
level and low-level searches are focal searches rather than
best-first searches. ECBS(w) is w-suboptimal since it guar-
antees a solution with a cost that is no larger than a con-
stant suboptimality factor w times the optimal solution cost.
A focal search, like A* search, uses a list OPEN whose
nodes n are sorted in increasing order of their f -values
f(n) = g(n) + h(n), where h(n) are the primary heuristic
values. Unlike A* search, a focal search with suboptimal-
ity factor w also uses a list FOCAL of all nodes currently in
OPEN whose f -values are no larger than w times the cur-
rently smallest f -value in OPEN. The nodes in FOCAL are
sorted in increasing order of their secondary heuristic values.
While A* search expands a node in OPEN with the small-
est f -value, a focal search expands a node in FOCAL with
the smallest secondary heuristic value. Thus, the secondary
heuristic values should favor a node in FOCAL that is close
to a goal node to speed up the search and thus exploit the lee-
way afforded by the suboptimality factor that A* search does
not have available. If the primary heuristic values are ad-
missible (never overestimate the cost of reaching the goal),
then a focal search is w-suboptimal. The secondary heuris-
tic values can be inadmissible (may overestimate the cost
of reaching the goal). The high-level and low-level searches
of ECBS(w) are focal searches. During the generation of
a CT node N , ECBS(w) performs a low-level focal search
with OPENi(N) and FOCALi(N) for the agent i affected
by the added constraint. The high-level and low-level focal
searches of ECBS(w) use measures related to the number of
conflicts as secondary heuristic values. Thus, ECBS(w) with
a reasonably small value of w > 1 can expand the CT nodes
with fewer conflicts than the CT nodes chosen by CBS. This
often makes ECBS(w) find a solution CT node faster.

VNE: Problem Formulation and Example
In this paper, we focus on the core VNE problem with geo-
graphical constraints, as proposed in (Chowdhury, Rahman,
and Boutaba 2009). The SN is represented as an undirected
graphGs = (V s, Es, As

V , A
s
E). V

s is the set of SN vertices,
Es is the set of SN edges, As

V is a mapping from SN ver-
tices to their attributes, and As

E is a mapping from SN edges
to their attributes. The attributes of an SN vertex vs ∈ V s

are its CPU capacity CPU(vs) and its location LOC(vs). The
attribute of an SN edge es ∈ Es is its bandwidth capacity
BW(es). An SN path is a path in Gs.

A VNR is characterized by an undirected graph Gr =



Figure 1: Shows two VNRs, VNR-1 (blue) and VNR-2 (red), on the left side and the (physical) SN (black), with additional
fictitious vertices and edges, on the right side. The non-negative numbers annotating the VNR vertices represent their CPU re-
quirements. The non-negative numbers annotating the VNR edges represent their bandwidth requirements. The SN has vertices
(1), (2), (3), (4), and (5). The non-negative numbers annotating the SN vertices represent their CPU capacities. The non-negative
numbers annotating the SN edges represent their bandwidth capacities. There is a fictitious vertex on the right side for each
VNR vertex. Each such VNR vertex is connected to the SN vertices that it can possibly be mapped to via fictitious edges,
representing the geographical constraints. A feasible VNE solution, mapping each VNR vertex to exactly one SN vertex and
mapping each VNR edge to exactly one SN path, is shown with solid line segments with arrowheads at both ends. That is, the
VNR vertices A, B, C, D, and E are mapped to the SN vertices (1), (3), (4), (1), and (2), respectively; and the VNR edges A-B,
B-C, A-C, and D-E are mapped to the SN paths (1)-(2)-(3), (3)-(4), (1)-(5)-(4), and (1)-(3)-(2), respectively.

(V r, Er, Cr
V , C

r
E). V

r is the set of VNR vertices, Er is the
set of VNR edges, Cr

V is a mapping from VNR vertices to
their demands, and Cr

E is a mapping from VNR edges to
their demands. The popularly considered demands of a VNR
vertex vr ∈ V r are its CPU requirements CPU(vr), its lo-
cation LOC(vr), and the maximum allowed distance D(vr)
from its location to the location of the mapped SN vertex.
The popularly considered demand of a VNR edge er ∈ Er

is its bandwidth requirement BW(er).
Given a VNR Gr, a feasible VNE is a mapping VNE(·)

of VNR vertices to SN vertices and VNR edges to SN paths
such that

1. each VNR vertex vr ∈ V r is mapped to a unique SN
vertex VNE(vr) ∈ V s,

2. no two VNR vertices vri ∈ V r and vrj ∈ V r from the
same VNR are mapped to the same SN vertex vs ∈ V s,

3. for any VNR vertex vr ∈ V r:
CPU(vr) ≤ CPU(VNE(vr)) and
GEODIST(LOC(vr), LOC(VNE(vr))) ≤ D(vr),
where GEODIST(·, ·) is the geographical distance func-
tion between two locations,

4. each VNR edge (vri , v
r
j ) ∈ Er is mapped to an SN path

VNE((vri , v
r
j )) from VNE(vri ) to VNE(vrj ) in Gs, and

5. for any SN edge es ∈ Es:∑
er∈Er: es∈VNE(er)

BW(er) ≤ BW(es).

The revenue of a VNE mapping is defined as

∑
vr∈V r

CPU(vr) +
∑

er∈Er

BW(er), and its cost is defined as∑
vr∈V r

CPU(vr) +
∑

er∈Er

∑
es∈VNE(er)

BW(er). The cost of em-

bedding a VNR is larger or equal to its revenue.

In this paper, the VNE problem is to find a feasible
VNE mapping, if one exists, that minimizes the cost of the
mapping since the revenues of all feasible VNE mappings
are identical. Figure 1 shows an example of mapping two
VNRs to an SN. One commonly used way of formulating
the VNE problem as a “path coordination” problem is to
represent each VNR vertex vr ∈ V r as a fictitious vertex
vf ∈ V f in a graphical representation of the SN (Chowd-
hury, Rahman, and Boutaba 2009). Each fictitious vertex
vf ∈ V f inherits all attributes of the VNR vertex vr, such
as CPU(vr), LOC(vr), and D(vr). Each vf is connected via
fictitious edges (vf , vs) ∈ Ef to all SN vertices vs ∈ V s

with GEODIST(LOC(vf ), LOC(vs)) ≤ D(vf ). Each ficti-
tious edge has infinite bandwidth capacity and represents the
mapping of a VNR vertex to an SN vertex. This new graph
Gm is called the augmented graph, and a VNE mapping is
a set of paths on it. Its vertices are V s ∪ V f , and its edges
are Es ∪ Ef . Each path on Gm connects two fictitious ver-
tices with two fictitious edges (the mappings of a VNR ver-
tex to an SN vertex) and SN edges (the mapping of a VNR
edge to an SN path). Such a path cannot pass through any
fictitious vertices between the start and goal fictitious ver-
tices. The VNE problem can then be interpreted as a path
coordination problem with CPU and bandwidth constraints.



Figure 2: Shows VNR-3 and an example of CT nodes for
mapping VNR-3 to the SN graph from Figure 1. The root CT
node contains a VNE mapping with a vertex conflict since
fictitious vertex K is mapped to two SN vertices (4) and (5).
To resolve this vertex conflict, we create two child CT nodes.
The left-child CT node has a new constraint stopping ficti-
tious vertex K from being mapped to (5), and the red path
is rerouted to accommodate the new constraint. Similarly,
the right-child CT node has a new constraint stopping ficti-
tious vertexK from being mapped to (4), and the green path
is rerouted. The left-child CT node still has a vertex conflict
sinceK is mapped to (3) and (4), and this vertex conflict can
be resolved by expanding this CT node in the same manner.
The right-child node is a goal CT node with a feasible VNE
mapping since it has no conflicts.

Of course, additional constraints should be introduced to en-
force that each fictitious vertex chooses exactly one fictitious
edge incident on it for all its SN paths. Figure 1 illustrates
this mechanism.

As shown in the definition of the cost of a VNE mapping,
the amount of allocated CPU capacities is identical for all
feasible VNE mappings, and the cost of mapping each VNR
edge er ∈ Er is the bandwidth requirement BW(er) multi-
plied by the mapped SN path length. Thus, minimizing the
cost of a VNE mapping is the same as minimizing the sum
of the lengths of paths on Gm (corresponds to the sum of
costs in CBS).

VNE-CBS
We adapt the CBS framework to the VNE problem. A CT
node N now contains a VNE mapping N.mapping, and the
cost of the CT node N.cost becomes the cost of its VNE
mapping. A kind of “vertex conflict” arises when a VNR
vertex vr is mapped to two different SN vertices vs1 and
vs2. To resolve it, we create two child CT nodes, one with a
new constraint (vr, vs1) stopping vr from being mapped to vs1
and the other one (vr, vs2) stopping vr from being mapped
to vs2. Figure 2 presents an example of resolving a vertex
conflict. Another kind of “vertex conflict” arises when two
VNR vertices vr1 and vr2 from the same VNR are mapped to
the same SN vertex vs. To resolve it, we create two child
CT nodes, one with a new constraint (vr1, v

s) stopping vr1

Algorithm 1: VNE-CBS

1: Input: Gs, Gr, w
2: Gm ← augmented graph for Gs and Gr

3: NR ← empty CT node
4: NR.constraints← ∅
5: NR.mapping ← low-level paths found in Gm for all

VNR edges using Algorithm 2
6: NR.cost← cost(NR.mapping)
7: NR.num conf← number of conflicts in NR.mapping
8: OPEN = FOCAL = {NR}
9: while FOCAL 6= ∅ do

10: costold ← OPEN.top().cost
11: NT ← FOCAL.top()
12: Remove NT from OPEN and FOCAL
13: if NT .num conf = 0 then
14: return NT .mapping as solution
15: Conf← first conflict found in NT .mapping
16: Cons← generate constraints for resolving Conf
17: for c ∈ Cons do
18: NC ← copy of NT

19: Add c to NC .constraints
20: Update low-level paths in NC .mapping using

Algorithm 2 to accommodate constraint c
21: if update successful then
22: NC .cost← cost(NC .mapping)
23: NC .num conf← number of conflicts

in NC .mapping
24: OPEN← OPEN ∪ {NC}
25: if NC .cost ≤ w · OPEN.top().cost then
26: FOCAL← FOCAL ∪ {NC}
27: costnew ← OPEN.top().cost
28: for N ∈ OPEN do
29: if w · costold < N.cost ≤ w · costnew then
30: FOCAL← FOCAL ∪ {N}
31: return “No Solution”

from being mapped to vs and the other one (vr2, v
s) stop-

ping vr2 from being mapped to vs. A “bandwidth capacity
conflict” arises when a VNR edge er utilizes an SN edge
es that does not have sufficient bandwidth capacity to ac-
commodate BW(er). To resolve it, we take all VNR edges
in {er ∈ Er : es ∈ VNE(er)} and create a child CT node
for each such VNR edge with a new constraint that stops it
from utilizing es. We define N.constraints as the set of con-
straints imposed for resolving conflicts. The geographical
constraints are enforced while constructing the augmented
graph Gm and therefore not in N.constraints.

The VNE-CBS algorithm uses a high-level focal search
with suboptimality factor w ≥ 1, see Algorithm 1. VNE-
CBS takes three inputs: an SN graph Gs, a VNR graph Gr,
and a suboptimality factor w for minimizing the cost. On
Line 2, it uses Gs and Gr to create an augmented graph Gm

containing the fictitious vertices and edges, as described in
Figure 1. On Lines 3-7, it initializes the root CT node NR.
On Line 5, the low-level search finds a path from vf1 to vf2
on Gm for each VNR edge (vr1, v

r
2) where vf1 and vf2 are the



Algorithm 2: Low-Level Search

1: Input: vr1 , vr2 , Gm, N.constraints, N.mapping
2: vf1 , v

f
2 ← fictitious vertices for vr1 and vr2

3: nR ← vf1
4: nR.g ← 0
5: OPEN← {nR}
6: CLOSED← ∅
7: while OPEN 6= ∅ do
8: nT ← OPEN.top()
9: Remove nT from OPEN

10: if nT = vf2 and par(par(nT )) 6= vf1 then
11: return make path(nT ) as path
12: Neighbors← valid neighbors(nT )
13: for n ∈ Neighbors and n /∈ CLOSED do
14: n.g ← nT .g + 1
15: OPEN← OPEN ∪ {n}
16: CLOSED← CLOSED ∪ {nT }
17: return failure

fictitious vertices for vr1 and vr2 respectively. NR.mapping
is this set of paths, NR.cost is the cost of the mapping,
andNR.num conf is the number of violated constraints (also
called conflicts) corresponding to the number of conflicts in
CBS. On Line 8, VNE-CBS inserts NR into priority queues
OPEN and FOCAL. Here, the cost is used as the primary
heuristic, and the CT node with the smallest cost is main-
tained on top of the priority queue OPEN. Similarly, the
number of conflicts is used as the secondary heuristic, and
the CT node with the smallest number of conflicts is main-
tained on top of the priority queue FOCAL.

VNE-CBS then expands CT nodes until either a feasible
VNE mapping is found or FOCAL is empty. On Lines 10-12,
it retrieves the node with the smallest number of conflicts
from FOCAL and removes it from OPEN and FOCAL, fol-
lowing the standard focal search procedure. On Lines 13-14,
VNE-CBS returns a feasible mapping if no conflicts exist in
NR.mapping. Otherwise, on Lines 15-16, it finds a conflict
in NR.mapping and generates constraints Cons to resolve
it. It first checks the mapping of each VNR vertex and then
the mapping of each VNR edge. In case of the existence of
multiple conflicts, it prefers vertex conflicts over the other
conflicts and generates constraints for the first conflict in the
order of appearance.

On Lines 17-19, VNE-CBS creates a child CT node NC

for each constraint c ∈ Cons by making a copy of CT node
NT and adding the new constraint c to NC .constraints. On
Line 20, it updates NC .mapping to accommodate the added
constraint by recomputing the affected paths with the low-
level search procedure. If the path update succeeds, on Lines
22-24, VNE-CBS calculates the cost and number of conflicts
for child node NC and inserts NC into OPEN. On Lines 25-
26, following the standard focal search procedure, it inserts
child nodeNC into FOCAL ifNC .cost is withinw times the
cost of the top node in OPEN. On Lines 27-30, VNE-CBS
updates FOCAL in case the cost of the top node in OPEN
has increased as a result of the previous operations.

We now present the low-level search procedure, see Al-
gorithm 2, for finding a path from one fictitious vertex vf1
to another fictitious vertex vf2 in Gm in the presence of the
constraintsN.constraints where N is the CT node associated
with this low-level search. The fictitious vertices vf1 and vf2
represent the VNR vertices vr1 and vr2 , respectively. Each fic-
titious vertex vf ∈ V f inherits all attributes of the VNR ver-
tex vr, such that CPU(vf ) = CPU(vr), LOC(vf ) = LOC(vr),
and D(vf ) = D(vr). It starts from vf1 and performs a best-
first search until it finds a path to vf2 of minimum path length.

When expanding a node nT , Algorithm 2 considers it a
goal node if nT = vf2 and the parent (par(·)) of the parent
of nT is not vf1 , see Line 10. This prevents the case where
a path of length 3, i.e., 〈vf1 , vs, v

f
2 〉, gets returned as a so-

lution path, since such a path maps two VNR vertices from
the same VNR to the same SN vertex (resulting in a vertex
conflict). On Line 12, the function valid neighbors(·)
finds the valid neighbors of nT . When nT = vf1 , it finds
those SN vertices vs that satisfy CPU(vs) ≥ CPU(vf1 ). When
nT is an SN vertex vs and vf2 is one of the neighbors of nT ,
the function includes vf2 if CPU(vs) ≥ CPU(vf2 ). The geo-
graphical distance requirements of vf1 and vf2 are enforced
during the construction of the augmented graph. When nT
is an SN vertex, the function excludes the fictitious ver-
tices that are not vf2 , since a path is not allowed to go
through other fictitious vertices, and finds those SN vertices
vs that satisfy BW(es) ≥ BW(er), where es = (nT , v

s) and
er = (vr1, v

r
2). The function also excludes the neighboring

vertices that are ruled out by the constraints N.constraints.
On Lines 13-15, Algorithm 2 generates a child node for each
valid neighbor n.

Algorithm 2 uses a tie-breaking rule when selecting the
node with the minimum g-value from OPEN. When map-
ping vf1 and vf2 to SN vertices, it goes through the map-
ping of the other VNR vertices in N.mapping and counts
the number of different VNR vertices mapped to each SN
vertex. If more than one SN vertices have the same g-value,
it prefers the SN vertex that is mapped to different VNR ver-
tices the fewest number of times. Breaking ties in this way
reduces the number of potential vertex conflicts that the re-
turned solution path may cause in the VNE mapping. As a
result, it reduces the necessary number of CT node expan-
sions for finding a feasible VNE mapping.1

Since the VNE problem is NP-hard, in the worst case,
VNE-CBS expends an amount of work that grows expo-
nentially in the number of conflicts encountered. An upper
bound on the complexity of VNE-CBS is exponential both
in the size of the VNR and the size of the SN.

Theorem 1. VNE-CBS is complete and w-suboptimal. It is
complete and optimal for w = 1.

Proof. The formal proof will be available on http://idm-lab.
org in a longer version of the paper.

1VNE-CBS algorithms that use this tie-breaking rule will be
tagged with the label “tie” in the next section.



With a few modifications of VNE-CBS, it has the po-
tential to map T VNRs Gr

1, G
r
2 . . . G

r
T at once. Here, we

describe the idea of the modifications. The first step is to
merge all VNRs into a single VNR and mark VNR ver-
tices and edges from each VNR Gr

k with the VNR in-
dex k. On Line 15 of Algorithm 1, a vertex conflict does
not arise if two VNR vertices with different VNR in-
dices are mapped to the same SN vertex. Then we intro-
duce a new kind of conflict “CPU capacity conflict” that
arises when a VNR vertex is mapped to an SN vertex vs

such that
∑

vr∈V r
1 ∪V r

2 ...V r
T : VNE(vr)=vs

CPU(vr) > CPU(vs).

To resolve it, we take all VNR vertices in {vr ∈ V r
1 ∪

V r
2 . . . V

r
T : VNE(vr) = vs} and create a child CT node

for each such VNR vertex with a new constraint that stops it
from being mapped to vs.

Experiments
In this section, we present experimental results compar-
ing our VNE-CBS against D-ViNE, R-ViNE, G-SP, and
G-MCF, four popularly used VNE algorithms for the de-
fined core VNE problem. New VNE algorithms are com-
monly compared to these four algorithms in the VNE lit-
erature (Zheng et al. 2017; Yan et al. 2020). As mentioned
before, the deterministic VN embedding algorithm D-ViNE
and the randomized VN embedding algorithm R-ViNE are
rounding algorithms that heuristically retrieve a solution
from a fractional solution of an LP problem that can be
obtained in polynomial time. The LP problem comes from
a relaxation of the MILP formulation of the VNE prob-
lem (Chowdhury, Rahman, and Boutaba 2009). Both al-
gorithms produce path-splitting solutions. G-SP (Greedy-
Shortest Path) is a greedy algorithm that uses shortest path
algorithms for mapping VNR edges (Zhu and Ammar 2006).
G-MCF (Greedy-Multi-Commodity Flow) is a greedy algo-
rithm that uses multi-commodity flow algorithms for map-
ping VNR edges (Yu et al. 2008). We implemented our CBS-
based algorithms in C++ 2. The vanilla versions of our VNE-
CBS algorithm, with and without the tie-breaking rule, use
w = 1.00 and are labeled VNE-CBS-w1.00-tie and VNE-
CBS-w1.00, respectively. They are complete and optimal.
The suboptimal variants, with and without the tie-breaking
rules, use w = 1.01, 1.05, 1.10, 1.50, and 2.00 in the exper-
iments. We conducted experiments with the VNE simulator
ViNEYard (Chowdhury, Rahman, and Boutaba 2012). All
experiments were run on an AWS machine with 8 CPUs and
16GB RAM.

We used a standard methodology from the VNE literature
to generate VNE problem instances via Waxman graphs.
Waxman graphs (Waxman 1988) are frequently chosen in
simulations as topologies resembling communication net-
works. The SN topologies in our experiments are randomly
generated Waxman graphs with parameter values α = 0.5
and β = 0.2. We generated 5 SNs. Each SN has 100 vertices
in a 50× 50 grid space. The CPU and bandwidth capacities
of the SN vertices and edges are real numbers generated uni-

2https://github.com/YiZ7699/VNE-CBS

formly at random from the interval [50, 100].
The VNR topologies are also generated using this Wax-

man method. Following the experimental setup used in pre-
vious works (Chowdhury, Rahman, and Boutaba 2009; Yu
et al. 2008), we set the number of vertices in each VNR
to be an integer drawn uniformly at random from the in-
terval [2, 10]. The VNR vertices are located in the same
50 × 50 grid space as the SN vertices. Geographical con-
straints with threshold distance 15 (measured as Euclidean
distance) are used to specify the mappable SN vertices for
each VNR vertex. The CPU requirements of the VNR ver-
tices are real numbers drawn uniformly at random from the
interval [0, 20]. The bandwidth requirements of the VNR
edges are real numbers drawn uniformly at random from the
interval [0, 50]. VNRs generated in this way are used in Ta-
bles 1 and 5. We generated 2, 000 VNRs.

In order to stress test the various VNE algorithms, we
generated VNRs slightly differently in Tables 2, 3, and 4.
Table 2 sets the number of vertices in each VNR to be an in-
teger drawn uniformly at random from the interval [2, 20]
(instead of the interval [2, 10]). Table 3 sets the CPU re-
quirements of the VNR vertices to be real numbers drawn
uniformly at random from the interval [0, 50] (instead of the
interval [0, 20]). Table 4 sets the bandwidth requirements of
the VNR edges to be real numbers drawn uniformly at ran-
dom from the interval [0, 80] (instead of the interval [0, 50]).
Tables 2, 3, and 4 increase the difficulty of mapping VNRs
onto the SNs. They provide insights into the efficiency and
effectiveness of the various VNE algorithms for increasing
demand levels.

Tables 1, 2, 3, and 4 are used to test the VNE algorithms
in an offline setting. Figures 3, 4, 5, and 6 present the re-
sults of the suboptimal variants of VNE-CBS with different
w for the experimental settings in Tables 1, 2, 3, and 4, re-
spectively. In the figures, the data points at w = 1.00 cor-
respond to the performance of VNE-CBS-w1.00 and VNE-
CBS-w1.00-tie. In each run, we mapped each of the 2, 000
VNRs to each of the 5 SNs, and therefore there were 10, 000
VNE instances solved independently. The tables report the
results averaged over 5 runs for the number of solved in-
stances (# Solved), the number of instances for which the
algorithm timed out after 60 seconds (# Timeout), and the
number of instances for which the algorithm conclusively
returns the non-existence of solutions (# No Solution). We
use “-” in the # No Solution columns if an algorithm cannot
return the non-existence of solutions. All variants of VNE-
CBS are complete, i.e., # Solved + # Timeout + # No Solu-
tion is always equal to 10, 000. On the other hand, none of
the other state-of-the-art algorithms are complete, i.e., as in
Table 4, # Solved + # Timeout + # No Solution is not always
equal to 10, 000. The tables and figures also report results
averaged over all runs and all VNRs that are successfully
embedded by all algorithms. The reported metrics include
the average runtime, average cost, and the average number
of CBS nodes expanded in the high-level search (when rel-
evant). All variants of VNE-CBS significantly outperform
D-ViNE and R-ViNE in terms of runtime. They are also
competitive with G-MCF in terms of runtime, frequently
outperforming it. In addition, all versions of VNE-CBS sig-



Algorithm # Solved # Timeout # No Solution Avg Runtime (s) Avg Cost Avg # CT Nodes
D-ViNE 10,000 0 - 1.885 223.935 -
R-ViNE 10,000 0 - 1.904 224.765 -
G-SP 10,000 0 - 0.022 273.085 -
G-MCF 10,000 0 - 0.495 234.178 -
VNE-CBS-w1.00 9,432 568 0 0.829 141.613 130.899
VNE-CBS-w1.00-tie 9,616 384 0 0.627 141.613 91.400

Table 1: Offline Setting: number of VNR vertices ∈u [2, 10]; VNR vertex CPU requirement ∈u [0, 20]; VNR edge bandwidth
requirement ∈u [0, 50].

Figure 3: The results of the suboptimal variants of VNE-CBS for the experimental setting in Table 1.

Algorithm # Solved # Timeout # No Solution Avg Runtime (s) Avg Cost Avg # CT Nodes
D-ViNE 9,996 0 - 3.479 305.610 -
R-ViNE 9,996 0 - 3.475 304.969 -
G-SP 9,982 0 - 0.030 369.374 -
G-MCF 9,996 0 - 0.824 314.569 -
VNE-CBS-w1.00 5,334 4,666 0 2.043 188.664 192.310
VNE-CBS-w1.00-tie 5,813 4,187 0 1.719 188.664 166.603

Table 2: Offline Setting: number of VNR vertices ∈u [2, 20]; VNR vertex CPU requirement ∈u [0, 20]; VNR edge bandwidth
requirement ∈u [0, 50].

Figure 4: The results of the suboptimal variants of VNE-CBS for the experimental setting in Table 2.

Algorithm # Solved # Timeout # No Solution Avg Runtime (s) Avg Cost Avg # CT Nodes
D-ViNE 10,000 0 - 2.294 296.922 -
R-ViNE 10,000 0 - 2.293 297.112 -
G-SP 10,000 0 - 0.026 344.033 -
G-MCF 10,000 0 - 0.717 306.871 -
VNE-CBS-w1.00 9,378 622 0 0.873 217.628 109.340
VNE-CBS-w1.00-tie 9,553 447 0 0.658 217.628 78.575

Table 3: Offline Setting: number of VNR vertices ∈u [2, 10]; VNR vertex CPU requirement ∈u [0, 50]; VNR edge bandwidth
requirement ∈u [0, 50].

nificantly outperform all other algorithms in terms of cost.
However, the vanilla version of VNE-CBS solves fewer in-
stances compared to the four baseline algorithms since it ex-
plores all possible mappings until it finds a VNE mapping of
minimum cost. As shown in the figures, compared to VNE-
CBS-w1.00, the suboptimal variants with larger w solve sig-

nificantly more instances, have significantly better runtimes,
and expand significantly fewer CT nodes. The same trends
hold for VNE-CBS-w1.00-tie and the suboptimal variants of
it with larger w. Moreover, the VNE-CBS versions with the
tie-breaking rule are better than the corresponding vanilla
versions.



Figure 5: The results of the suboptimal variants of VNE-CBS for the experimental setting in Table 3.

Algorithm # Solved # Timeout # No Solution Avg Runtime (s) Avg Cost Avg # CT Nodes
D-ViNE 9,997 0 - 1.910 319.102 -
R-ViNE 9,996 0 - 1.896 320.026 -
G-SP 9,966 0 - 0.026 428.909 -
G-MCF 9,997 0 - 0.647 333.854 -
VNE-CBS-w1.00 9,213 786 1 0.779 188.019 147.290
VNE-CBS-w1.00-tie 9,423 576 1 0.624 188.015 107.690

Table 4: Offline Setting: number of VNR vertices ∈u [2, 10]; VNR vertex CPU requirement ∈u [0, 20]; VNR edge bandwidth
requirement ∈u [0, 80].

Figure 6: The results of the suboptimal variants of VNE-CBS for the experimental setting in Table 4.

Algorithm Avg Acceptance Ratio Avg Revenue Avg Cost Avg Revenue/Avg Cost Avg Runtime (s)
D-ViNE 0.987 293,680.8 491,697.3 0.597 3,852.128
R-ViNE 0.993 295,975.0 490,550.8 0.603 3,852.340
G-SP 0.967 285,677.1 604,714.6 0.472 39.632
G-MCF 0.969 286,858.4 494,049.2 0.581 1,043.922
VNE-CBS-w1.00 0.953 243,231.1 243,322.1 0.999 7,619.500
VNE-CBS-w1.00-tie 0.959 276,522.1 276,684.1 0.999 6,747.309

Table 5: Online Setting: number of VNR vertices ∈u [2, 10]; VNR vertex CPU requirement ∈u [0, 20]; VNR edge bandwidth
requirement ∈u [0, 50].

Figure 7: The results of the suboptimal variants of VNE-CBS for the experimental setting in Table 5.

Table 5 is used to test the VNE algorithms in an online
setting, and Figure 7 presents the performance of the sub-
optimal variants of VNE-CBS with different w for the same
experimental setting. Here, VNRs arrive dynamically, and
each successfully mapped VNR holds the CPU and band-
width capacities allocated to it on the SN until it departs at

the end of its lifetime. In this paper, mapping each VNR
does not reconfigure the mapping of the previous VNRs. If
an algorithm fails to map a VNR within the time limit (60
seconds), it rejects the VNR and embeds the next one. In the
online setting used for Table 5, VNRs arrive according to a
Poisson process at an average rate of 4 VNRs per 100 time



steps. The lifetime of each VNR is generated from an ex-
ponential distribution with an average of 1, 000 time steps.
In each run, corresponding to each of the 5 SNs, the 2, 000
generated VNRs arrive and depart in sequence. Table 5 and
Figure 7 report the results averaged over the 5 runs. The av-
erage revenue and average cost are the sum of the revenue
and cost of all successfully mapped VNRs averaged over the
5 runs. The average runtime is the runtime of embedding the
2, 000 VNRs averaged over the 5 runs. We observe that all
VNE algorithms have a high average acceptance ratio. Con-
sequently, they have very similar average revenues. But they
differ remarkably in their average cost, and, therefore, also
in their ratio of average revenue to average cost. The vari-
ous VNE algorithms also differ in their average runtime. All
variants of VNE-CBS significantly outperform the baseline
algorithms in terms of average cost and the ratio of average
revenue to average cost. VNE-CBS-w1.00 and VNE-CBS-
w1.00-tie have the best performance in terms of the ratio
of average revenue to average cost since they are optimal.
Their runtime and average acceptance ratios are lower than
those of the other variants and the baseline algorithms since
finding an optimal VNE is time-consuming and many in-
stances time out. In addition, VNE-CBS-tie with w = 2.00
has an average runtime of 698.742 seconds and is signifi-
cantly faster than all other non-greedy algorithms.

Conclusions and Future Work
In this paper, we presented VNE-CBS, a novel CBS-based
solver for the VNE problem. The VNE problem is an NP-
hard problem in resource management. It models the funda-
mental combinatorics in emerging network virtualization ar-
chitectures, by which service providers will be able to create
many heterogeneous virtual networks and offer customized
end-to-end services by leasing shared resources from infras-
tructure providers. The VNE problem involves the proper al-
location of CPU and bandwidth capacities in a physical SN
to meet the demands of multiple VNs.

VNE-CBS is inspired by the success of the CBS frame-
work in the MAPF domain, since both the VNE and MAPF
problems aim to find a set of paths in a graph while satisfy-
ing certain constraints. While VNE-CBS exploits the simi-
larities between the VNE problem and the MAPF problem, it
also addresses the subtle differences and unique challenges
in applying the CBS framework to the VNE problem. We
showed that, unlike many existing algorithms for solving
the VNE problem, VNE-CBS is complete and optimal. We
also developed a bounded-suboptimal version of VNE-CBS
that trades off optimality for increased efficiency. Finally,
through a wide range of experiments, we showed that our
CBS-based algorithms significantly outperform state-of-the-
art methods on various benchmark instances, for both the
offline and online versions of the VNE problem.

While there are many variants of the VNE problem, de-
pending on whether path-splitting is allowed, whether there
are additional considerations on sharing bandwidth beyond
just capacity constraints, and so forth, we focused on a core
version of the VNE problem as a starting point to (a) peel
the complexities of the richer versions of the problem and

(b) import AI techniques to solve problems in 5G technolo-
gies and network slicing. Overall, our methodology paves
the way for overcoming Internet ossification via heuristic
search methods. In principle, our CBS-based methodology
can be applied in any context where modularization of ser-
vices is required. In future work, we will generalize VNE-
CBS to solve other variants of the VNE problem using algo-
rithmic ideas similar to those developed in the MAPF litera-
ture.
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