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Abstract

The increasing demand for same-day delivery and the com-
mitment of e-commerce companies to this service raise a
number of challenges in logistics. One of these challenges for
fulfillment centers is to coordinate hundreds of mobile robots
in their automated warehouses efficiently to allow for the re-
trieval and packing of thousands of ordered items within the
promised delivery deadlines. We formulate this challenge as
the new problem of Deadline-Aware Multi-Agent Tour Plan-
ning, where the objective is to coordinate robots to visit mul-
tiple picking stations in congested warehouses to allow as
many orders to be packed on time as possible. To solve it, we
propose LaRge NeighbOrhood Search for DEadline-Aware
MulTi-Agent Tour PlAnning (ROSETTA). We conduct ex-
tensive experiments to evaluate ROSETTA with up to 350
robots in simulated warehouses inspired by KIVA systems.
We show that it increases the number of orders completed on
time by up to 38% compared to several baseline algorithms
and also significantly outperforms them in terms of through-
put and station utilization.

1 Introduction

E-commerce companies, such as Amazon and Alibaba, have
increasingly leveraged multi-robot systems to automate their
warehouse operations (Wurman, D’Andrea, and Mountz
2008). Instead of human operators walking around in stor-
age areas to fetch inventory items, mobile agents transport
them from storage areas to stations where workers pick the
ordered items. However, the recent trend in e-commerce to
promise faster deliveries poses a number of technical chal-
lenges for these systems. For instance, Amazon focuses on
same-day delivery with promises to deliver orders in as little
as five hours (Alexander 2020). The same is true for other
e-commerce companies, such as Jingdong (Moon 2013).
The key challenge arises from having tighter deadlines.
Instead of having several hours before a customer order
leaves the building, e-commerce companies have only a few
minutes to prepare the order, resulting in a smaller mar-
gin for error. Therefore, they need to plan and schedule the
movement of the agents carefully to ensure that the order
deadlines are met. Another challenge is resource contention.
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Figure 1: An illustrative example of the planning problem
in warehouses for same-day delivery. The agents are repre-
sented by the shapes that correspond to the items they carry.
There are two picking stations on the perimeter of the ware-
house that each need certain items by a given deadline. The
red-circle agent can first visit Station 2 and then Station 1
(Tour 1) or first Station 1 and then Station 2 (Tour 2).

A single agent might be needed at multiple stations. For ex-
ample, an agent carrying a popular item, such as bananas, is
likely needed at several stations that process grocery orders.
Optimally sequencing these visits is critical in ensuring that
the maximum number of deadlines are met. Figure 1 shows
an illustrative example of a warehouse with two picking sta-
tions. On the one hand, each picking station needs a set of
items by a given deadline, requiring the relevant agents to
visit the station on time. On the other hand, agents, such as
the ones represented by the red circle and the blue square,
need to visit more than one station, requiring the system to
decide on the order in which the agents visit them. Motivated
by this application, we formulate and solve a large-scale
Deadline-Aware Multi-Agent Tour Planning (DA-MATP)
problem for inventory-laden mobile robots (which we call
agents) in a shared environment, where they need to visit
multiple locations by given deadlines.

DA-MATP is a generalization of multi-agent path finding
(MAPF) (Stern et al. 2019), the popular problem of plan-
ning collision-free paths for a team of agents. In the classical
MAPF problem, time is discretized into time steps, and, at
each time step, every agent can either move to an adjacent
vertex or wait at its current vertex in the graph. The objective
is to find a set of paths on the graph, one for each agent, that
moves each agent from its given start vertex to its given goal



vertex without collisions and minimizes the flowtime or the
makespan. The DA-MATP problem can be formulated as a
MAPF problem with two main differences from the classical
MAPF problem. First, instead of having a unique goal ver-
tex, each agent has a set of goal vertices to visit, each by a
given deadline. It is up to the planner to determine the order
in which the agent visits these goal vertices. Second, instead
of minimizing the flowtime or makespan, the objective is to
maximize the number of tasks completed by their deadlines.

Our first contribution is to introduce and formally de-
fine the DA-MATP problem. Our second contribution is to
propose LaRge NeighbOrhood Search for DEadline-Aware
MulTi-Agent Tour PIAnning (ROSETTA), an efficient and
effective algorithm for solving the DA-MATP problem.
Solving it for commercial warehouses requires planning for
hundreds of agents over time horizons of 30 to 60 min-
utes. It takes a classical MAPF solver a few minutes to plan
paths at this scale, without reasoning about the goal order-
ings (Li et al. 2021b). To deal with the added complexity of
DA-MATP, we adopt a two-stage planning framework. We
first use ROSETTA to construct a goal ordering, or a four,
for each agent that minimizes the number of missed dead-
lines. We then use a MAPF algorithm (Li et al. 2021b) to
refine these tours to paths in real-time during execution on a
rolling-time-horizon basis. As its name suggests, ROSETTA
leverages large neighborhood search (LNS) (Ahuja et al.
2002) to compute high-quality tours by first finding an initial
set of tours quickly and then reducing the number of missed
deadlines over time. Our third contribution is to develop a
novel service time estimator (STE) that allows ROSETTA to
construct high-quality tours without any path planning. STE
uses simple models of station processing rates and agent
motion to predict the queuing delays (i.e., the times spent
waiting to be serviced at picking stations) and travel times
of agents, respectively. This hierarchical approach allows
ROSETTA to compute high-quality tours for tens of stations
and hundreds of agents under a minute.

In our experiments, we use simulated warehouses inspired
by KIVA systems (Wurman, D’ Andrea, and Mountz 2008)
to evaluate ROSETTA. We compare ROSETTA to several
baselines and show that it significantly outperforms them in
terms of not only the number of on-time tasks (our main ob-
jective) but also other important metrics that reflect service
quality but that ROSETTA does not directly optimize, such
as the throughput and station utilization.

2 Related Work

Besides the classical MAPF problem (Stern et al. 2019),
another closely related problem to DA-MATP is the multi-
agent pickup and delivery (MAPD) problem, which is an
extension to MAPF with pickup and delivery tasks. A so-
lution to a MAPD instance determines the assignments of
tasks to each agent and their orders so as to minimize the
flowtime or makespan (Liu et al. 2019; Farinelli, Contini,
and Zorzi 2020). Multi-goal planning has been studied in
the context of lifelong MAPF (Li et al. 2021b) and lifelong
MAPD (Ma et al. 2017, 2019), where the goal orderings are
either not part of the decision space or determined online.
Optimal MAPF algorithms (Surynek 2021; Ren, Rathinam,

and Choset 2021) have been proposed where the goal order-
ings are part of the decision space. None of these algorithms
solve our problem directly since they minimize the flowtime
or makespan and do not scale beyond 35 agents. They also
find collision-free paths, whereas ROSETTA plans tours
which are refined into collision-free paths during execution.
Ma et al. (2018) study a variant of MAPF with a single dead-
line where they maximize the number of agents that reach
their given goal vertices before the deadline. MAPD with
deadlines have also been studied where each task has its
own deadline. The state-of-the-art is a greedy algorithm (Wu
et al. 2021) that assigns tasks to agents greedily on the fly to
maximize the number of tasks completed by their deadlines.
DA-MATP is different from MAPD with deadlines in that
our tasks do not require pickup actions. However, in this
paper, we adapt their algorithm ST-SAP (Wu et al. 2021),
introduced in Section 4, and compare it to ROSETTA.

LNS is a popular algorithm to solve planning and rout-
ing problems, such as vehicle routing (Ropke and Pisinger
2006; Azi, Gendreau, and Potvin 2014) and traveling sales-
man (Smith and Imeson 2017) problems. It has also recently
been applied to solve the classical MAPF problem (Li et al.
2021a, 2022; Huang et al. 2022).

3 DA-MATP

In this section, we formulate the Deadline-Aware Multi-
Agent Tour Planning (DA-MATP) problem. Solving it re-
quires finding a tour for each of k agents A = {ay,...,ax}
that allows them to finish a set of tasks 7 cooperatively on
a 2D four-neighbor grid map, where an agent is a mobile
robot that carries a large number of identical inventory items.
The grid map is represented as an unweighted directed graph
G = (V, E). Each agent q; has a start vertex s; € V. A sub-
set of vertices Vg C V are goal vertices. Time is discretized
into equidistant time steps [7] = {1,2,...,T}. An agent
can either move to an adjacent vertex or stay at its current
vertex from one time step to the next. At any goal vertex, an
agent can perform a picking action for ¢ time steps, i.e., if
the agent starts a picking action at time step ¢, it has to be
at the goal vertex from time step ¢ to ¢ + § — 1 so that the
human operator can pick up the required inventory items.
Tasks and Deadlines. A task 7 € T is specified by a tuple
(ar,vr,d;) consisting of an agent a, € A, a goal vertex
v; € Vg and a task deadline d. € [T]. We say that task
T is on-time if agent a, arrives at goal vertex v, and starts
a picking action at or before time step d,, otherwise task
7 is late (meaning that it misses the deadline). We say that
task 7 is completed if agent a arrives at goal vertex v, and
performs a picking action at or before time step 7', even if
the task is late. Multiple tasks can be completed by an agent
at a goal vertex simultaneously with one picking action.
Warehouses typically have a separate stow process to
top up agents with new inventory (Wurman, D’ Andrea, and
Mountz 2008). We ignore the stow process in this paper and
assume that agents are pre-filled with sufficient inventory in
the initial state. We assume that each agent has sufficient
capacity to hold all items required by 7 since storage con-
tainers used in KIVA systems consist of a stack of trays and
typically have a large capacity. We also assume that an agent



carries exactly one type of items in large numbers and that it
takes a human operator approximately the same amount of
time to pick up all required items from an agent at a picking
station. However, ROSETTA can also be applied to the case
where agents carry heterogeneous items and/or the picking
time is a linear function of the number of items.

Path Planning and Execution. The movement of the
agents in DA-MATP is subject to the following constraints:
(1) no more than one agent can be at the same vertex at the
same time step, and (2) no agent can travel along an edge if
another agent is traveling along the same edge in the oppo-
site direction (if it exists) at the same time step. A collision
occurs when either one of the movement constraints is vio-
lated. A tour p; or, synonymously, a goal ordering for agent
a; is a sequence of goal vertices indicating the order of the
goal vertices that agent a; visits. During execution, a set of
tours P = {p; : i € [k]} is passed to a MAPF solver, which
generates a set of collision-free paths, one per agent, such
that the agents visit the goal vertices in accordance with their
tours. We assume that DA-MATP instances are well-formed
instances (Cap, Vokiinek, and Kleiner 2015; Ma et al. 2017),
a class of instances that is important for warehouse logistics.
In a well-formed DA-MATP instance, there exists a path
between the start vertex of any agent and any goal vertex
that traverses no other start and goal vertices. Then, a set of
collision-free paths always exists for any given set of tours
(Cép, Vokiinek, and Kleiner 2015).

Optimization Objective. The objective of DA-MATP is
to find a set of tours {p; : ¢ € [k]} such that the num-
ber of on-time tasks is maximized during execution. More
concretely, every agent a; follows a collision-free path ;.
We let 7, = {(a/,v',d') € T : &’ = a;} be the tasks of
agent a; and ¢;, be the time step when agent a; starts a
picking action at goal vertex v when following 7; (w.l.o.g.,
we assume that each agent performs a picking action at
most once at each goal vertex and let ¢; , = oo if agent
a; never performs a picking action at goal vertex v at or be-
fore time step T'). From them, we can infer a score function
R; = ZTE% 1[t;», < d] for agent a; which gives a score
of 1 for each on-time task. The objective then is to maximize
the score across all agents, i.e., ZaieA R;.

4 Single-Agent Planning Algorithms

In this section, we discuss two single-agent planning (SAP)
algorithms: ST-SAP optimizes for the short term, and LT-
SAP optimizes for the long term.

ST-SAP is a myopic algorithm adapted from (Wu et al.
2021) that determines the tour for each agent on the fly by
assigning the next goal vertex to the agent every time it fin-
ishes a picking action at its current goal vertex. Suppose that
agent a; finishes a picking action at time step t at goal vertex
v € V. For each v/ € V4 that has not yet been visited by
the agent but has at least a task for it, ST-SAP first finds the
task with the soonest deadline £, whose goal vertex is v’ and
that the agent can complete on-time if it follows the shortest
path from v to v" without being blocked by other agents. If
no such task exists, #, is set to co. Among the goal vertices
with the soonest deadline V¢ = arg min, ¢y, {t, }, ST-SAP

d;=14 d, =20 d;=14 d; =20 d,=14 d; =20

tiw, =7 i, =2 by, =7 tip, =2 tip, =5 tip, =20
L1, = 11 gty w2 T 24 {20, = 10At2,17 =5 L2y, =8 tap, =2

a

4

Y, =13 Q. =19 4, =13 Od, = 19 o= 13 \Ord, =19
b, =12 ty,, =17 tip, =12 tyy, =17 tip, =10 "ty =15
by, =6 iy, =19 top, =15 tyy, =20 top, =13 t2p, =18

(a) (b) (©

Figure 2: A DA-MATP instance. (a) shows the optimal tour
(shown in brown) and a suboptimal tour (shown in blue) for
one agent a;. With two agents a; and ag, (b) shows the sub-
optimal tours of LT-SAP (both agents follow their shortest
paths to complete their tours, except that ao waits at its start
vertex for 3 time steps) and (c) shows the optimal tours (both
agents follow their shortest paths to complete their tours, ex-
cept that as waits at the second cell in the top row at time
step 5 to avoid a collision with a;).

breaks ties in favor of the closest one, i.e., it chooses the next
goal vertex from arg min,cyy {dist(v,v’)}. Any remaining
ties are broken uniformly at random.

ST-SAP runs in polynomial time but is myopic. It opti-
mizes only for the short term, i.e., it constructs the tours on
the fly based on only the tasks with the soonest deadline. We
therefore also propose LT-SAP, another SAP algorithm that
optimizes for the long term by taking into account all tasks
in the future. Specifically, LT-SAP plans an individually op-
timal tour for each agent as if it were the only agent on the
graph. Since it is NP-hard to plan the individually optimal
tour even for a single agent, we instead use the same local
search that finds a suboptimal tour used in ROSETTA in our
experiments, which is introduced in Section 6.2.

5 A Motivating Example of DA-MATP

In this section, we motivate ROSETTA by showing an ex-
ample of a DA-MATP instance that demonstrates the inef-
fectiveness of both SAP algorithms.

Figure 2 shows a DA-MATP instance on a grid map with
a 4 x 5 empty area. The four cells off the map perimeter
labeled v1, ..., vq are goal vertices. Agents can move from
a cell to any of its four adjacent cells. Consider time horizon
T = 25, and assume that picking actions are executed in § =
1 time step. Each agent has to execute one task at each goal
vertex, and the deadlines at vy, vo, vs and vy are 14, 20, 13
and 19, respectively, for both agents. Figure 2a shows a DA-
MATP instance with one agent a;. The path planner finds
paths that minimize the sum of the travel time of the agents.
The optimal tour for a; (shown in brown) is (ve, v1, vs, v4).
The agent arrives at vy, v, v3 and vy at time step 7,2,12
and 17, respectively, and completes all tasks on time. This
is the tour of LT-SAP. The tour of ST-SAP (shown in blue)
is (vs, v1,v4,v2). It arrives at v1,v2,v3 and vy at time step
11,24, 6 and 19, respectively, and misses the deadline at v5.

Figures 2b and 2c show the same DA-MATP instance with



one more agent as. The tours of LT-SAP for both agents are
the same (vy,v1,v3,v4). Agent ay arrives at vy, vy, v3 and
vy at time step 7,2, 12 and 17, respectively, and completes
all tasks on time. Agent ay arrives at v, v2, v3 and v, at time
step 10, 5, 15 and 20, respectively, and misses the deadline at
vs and v,4. Figure 2c shows an optimal solution on the same
DA-MATP instance with two agents, demonstrating that, if
we could coordinate both agents smartly, it is possible to
complete all tasks on time.

6 ROSETTA

To overcome the weaknesses of SAP algorithms for DA-
MATP, we propose ROSETTA, which is a multi-agent plan-
ning algorithm that takes into account all tasks and opti-
mizes for the long term. ROSETTA is shown in Algorithm
1. ROSETTA takes as input the grid map represented as a
directed unweighted graph G, the set of agents A with their
start vertices, the set of goal vertices Vg, the time horizon
[T'] and the set of tasks 7 (Line 1). ROSETTA first computes
an initial solution with prioritized planning (PP) (Line 3). If
there is time remaining, it applies adaptive LNS (Ropke and
Pisinger 2006) to improve the solution (Lines 5-15). LNS
is a local search algorithm that, in each iteration, destroys
and re-optimizes a part of the solution. We propose two de-
stroy heuristics for ROSETTA to determine which part of the
solution to destroy, namely, a random heuristic and a goal-
based heuristic, that generate a subset of agents whose tours
will be removed from the solution and then replanned. Adap-
tive LNS effectively selects one of the destroy heuristics by
maintaining a weight vector w for them (Lines 4 and 11). In
each iteration of LNS, ROSETTA selects a destroy heuristic
‘H (Line 6) and uses H to generate an agent set A’ (Line 7).
It then removes the tours P~ of all agents in A’ (Line 8)
from the solution and uses PP to replan them (Line 10). If
the replanned tours P+ improve the solution (Line 12), then
ROSETTA replaces P~ with P™ (Line 13). Finally, it passes
the set of tours P (Line 16) to a MAPF solver to gener-
ate collision-free paths w.r.t. P in real-time. In experiments,
we use RHCR (Li et al. 2021b), a lifelong MAPF algorithm
to plan such paths. ROSETTA is designed to produce high-
quality tours fast (typically in under a minute) (Lines 1-15)
and then collision-free paths during execution (Line 16) in
a longer time, upper bounded by the length of time horizon
[T] (typically [T'] spans 30-60 minutes).

ROSETTA relies on a service time estimator during plan-
ning (Lines 2, 3, 7 and 10). To determine the exact score of
a given set of tours, ROSETTA could call a MAPF solver
to plan the path of each agent w.r.t. its tour. However, plan-
ning such paths for hundreds of agents and hundreds of time
steps on large graphs can take several minutes, which lim-
its the scalability of LNS since it has to plan the paths for
a subset of agents in every iteration. We thus propose the
novel notion of a service time estimator (STE) to estimate
the score. The novelties of the STE are three-fold: (1) In a
warehouse, the stations are usually the most congested ar-
eas on a warehouse floor. Thus, the STE does not precisely
consider all collisions. Instead, it only considers collisions
at the stations. (2) As for the travel times from one station to
another, they usually have smaller variances. Thus, the STE

Algorithm 1: ROSETTA

1: Input: A DA-MATP instance I (a graph G, agents A
with start vertices, goal vertices Vg, a time horizon [T
and tasks 7).
Initialize service time estimator STE on G and V.
P = {p, : i € [k]} + prioritizedPlanning(I, A,STE)
Initialize the weight w of the destroy heuristics
while runtime limit not exceeded do
H < selectDestroyHeuristic(w)
A’ + selectAgentSet(I,H,STE)
P~ « {pi o GA/}
STE' «+ STE > Backup the STE
P+ «+ prioritizedPlanning(I, A’,STE) © Update
STE with P
11: Update the weights w of the destroy heuristics
12: if PT has a higher estimated score than P~ then

VXN

—_

13: P+ (P\P)uPt > Accept P
14: else
15: STE « STFE’ > Restore STE

16: Pass P to a MAPF solver for execution

approximates them using the shortest distance from one to
the other divided by a constant speed. (3) More importantly,
the STE enables multi-agent planning for DA-MATP since it
implicitly considers the interaction between agents. In con-
trast, LT-SAP estimates the travel times of agents without
considering the other agents. Specifically, ROSETTA’s STE
keeps track of the estimated arrival time and the queuing de-
lay of each agent at each goal vertex to estimate the service
time (i.e., the time when the agent finishes the picking ac-
tion at its last goal vertex) and its score given its tour and the
other agents’ tours. A STE models the congestion at each
goal vertex via a time table.

In the following, we first describe the implementation of
the STE in ROSETTA. We then introduce prioritized plan-
ning with a STE (called on Lines 3 and 10 in Algorithm 1)
and the two destroy heuristics of LNS in ROSETTA.

6.1 Service Time Estimator

In this subsection, we describe the implementation of the
STE. The STE, denoted by STE, maintains a set of agents
ASTE and the set of already-planned tours {p; : a; €
ASTE}. It also maintains a time table @), for each v € Vg,
which is an array of length T'. @), records the index of the
agent that performs a picking action at goal vertex v at each
time step (or zero if no such agent exists). Given a tour
p; = (v1,...,0,) of an agent a;, a STE supports three types
of operations: (1) estimate the service time and score for a;
given tour p; and the tours of the agents in ASTE; (2) add the
tour of agent a; into STE; and (3) remove the tour of agent
a; from STE. Given the graph G and goal vertices Vg, we
initialize a STE (Line 2 in Algorithm 1) by setting ASTE = ()
and @, to zeros for all v € Vi;. We also pre-compute the all-
pair distances between vertices in Vg on graph G to speed
up the computation later.

Estimating the Service Time and Score for a; Given Tour
p; and the Tours of the Agents in A5TE, To estimate the



Algorithm 2: Estimate the service time and score of a tour

1: Input: STE, a picking action duration ¢ and a tour p; =
(v1,...,vn) of agent a;.
2: Retrieve v, ASTE and time tables {Q, : v € Vg} from
STE
if a; € ASTE then
return the estimated service time and score for a;
Vo < S;
ti < 0,R; « 0
for j < 1tomdo
i 1 + [dist(v;_ 1 vj)/'ﬂ
Find the minimum ¢;. vy 2 t; s.t. [tl v i\iﬂ)j +0) is
not occupied in Q,;
10: Ri — Rri— the number of tasks completed on time
atv; at Lfiﬂ,j by a;
11: £i<_fi,vj+6_1
12: Save the estimated service time ¢; and score Ri in STE
and return them

YRR AW

Algorithm 3: prioritizedPlanning(I, AP? STE)

1: Input: a DA-MATP instance I, a set of agents A" C
A and STE.
Retrieve ASTE
for a; € APP N ASTE do
Remove the tour of a; from STE
Randomly shuffle AP > Obtain a random priority
order
PPP
for a; € APP in descending order of their priorities do
p; < findSingleAgentSuboptimalTour(7, a;, STE)
Add tour p; to STE
PPP . pPP U {pz}
return P°P

._.
YRR

—

service time for a;, the STE separately estimates (1) the
travel time needed to get from one goal vertex to the next
one and (2) the time that the agent spends waiting after “ar-
riving at” a goal vertex (it does not precisely arrive at the
goal vertex; instead, it waits at some vertices as close to the
goal vertex as possible) before it performs the picking ac-
tion, i.e., the delay due to queuing at the goal vertex. As
shown in Algorithm 2, we first retrieve the information from
STE (Line 2) and initialize both the estimated service time
#; and score R; to 0 (Line 6). We then iterate through all goal
vertices v; in order of their visits according to tour p; (Line

7) and estimate the “arrival” time t; of agent a; at v; based
on the pre-computed distance dist(v;_1, v;) from v;_; to v;
and a constant speed 0 < v < 1 (Line 8). y represents the
average number of vertices an agent traverses per time step
in the presence of other agents. Setting v = 1 assumes no
interference from other agents. In practice, however, agents
wait in place to let other agents pass, slowing them down.
We determine ~ experimentally. Once agents arrive at their
next goal vertices at 7;, they queue up behind other agents

Algorithm 4: findSingleAgentSuboptimalTour(/, a;,STE)

1: Input: a DA-MATP instance I, an agent a; and STE
2: Generate a random tour p; = (v1, ..., v,,) for agent a;
3: I-?i < estimate the score of p; with STE

4: improvementFound < True

5: while improvementFound do

6: improvementFound < False

7: for each feasible k-opt operation o (-) do

8: pA; — o(pi)

9: R} + estimate the score of p; with STE
10: if R} > R, then
11: Replace p;, R; with ol R;
12: improvementFound < True
13: break

14: return p;

that visit the vertices as well. To capture this queueing de-
lay, we look for the next available § consecutive time steps
starting at time step ;, i.e., time steps that are marked as
zero (unoccupied) in time table Q,, . Let [fi,,,,j , i:iﬂ)j +0) be
the time interval found (Line 9), where tAmj is the estimated
time step when agent a; starts the picking action at v;. We

then updatet and R; accordingly (Lines 10-11). Finally, we

return ¢; and R as the estimated service time and score for
agent a; (Line 12).

Adding a Tour to STE. To add a tour p; = (v1,...,Um)
of agent a; to STE, we use Algorithm 2. The only changes
we make are to update Astg < Aste U {a;} and mark the
time intervals of picking actions as occupied by agent a; in
the time table (on Line 9 in Algorithm 2).

Removing a Tour from STE. To remove a tour p; =
(v1,...,0m) of agent a; from STE, we update Astp +
Aste \ {a;}. We mark the time steps occupied by agent a;
in the time table @,,; of each goal vertex v; as unoccupied.

6.2 Prioritized Planning with STE

In this subsection, we introduce Prioritized Planning (PP)
with a STE in ROSETTA. Prioritized planning (Silver 2005)
is a popular algorithm for MAPF that efficiently finds sub-
optimal solutions. ROSETTA first uses PP to find an initial
solution and then replans tours repeatedly (Lines 3 and 10 in
Algorithm 1). We show the pseudocode of PP with STE in
Algorithm 3. PP first removes the tours of all agents that it
will replan from STE (Lines 3-4). (When PP is used to find
an initial solution, these two lines do nothing since ASTE
is empty.) It then randomly shuffles the agents in APP to
obtain a random priority order (Line 5) and initializes the
solution PPP to () (Line 6). Next, it iterates over all agents
in APP in descending order of their priorities (Line 7). For
each agent a,, it plans a suboptimal tour p; that maximizes
the estimated score }A%L w.r.t. STE (Line 8) and updates both
STE (Line 9) and PPP (Line 10) accordingly. Finally, PP
returns PPP once it has (re)planned a tour for all agents in
APP (Line 11).
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Figure 3: An empty warehouse map adapted from (Wurman, D’ Andrea, and Mountz 2008) with 32 picking stations spread
around the perimeter. Grey cells are obstacles. Yellow, pink and green cells correspond to vertices of graph G that the agents
can traverse and occupy. Every arrow pointing from one cell to an adjacent one indicates the direction of the corresponding
edge. Pink cells are the eject cells of picking stations where humans interact with the agents and correspond to goal vertices.

algorithms 250 agents 300 agents 350 agents
#on-time throughput #on-time throughput #on-time throughput

ST-SAP 1,880 2,787 2,102 3,252 2,213 3,622

LT-SAP 2,379 (+26.5%) | 3,199 (+14.8%) | 2,478 (+17.9%) | 3,447 (+06.0%) | 2,501 (+13.0%) | 3,507 (-03.2%)
Ay ROSETTA-init | 2,435 (+29.5%) | 3,249 (+16.6%) | 2,736 (+30.1%) | 3,708 (+14.0%) | 2,866 (+29.5%) | 3,956 (+09.2%)

ROSETTA-30 | 2,441 (+29.8%) | 3,244 (+16.4%) | 2,742 (+30.4%) | 3,720 (+14.4%) | 2,891 (+30.4%) | 3,991 (+10.2%)

ROSETTA-60 | 2,445 (+30.1%) | 3,246 (+16.5%) | 2,760 (+31.3%) | 3,744 (+15.1%) | 2,952 (+33.3%) | 4,109 (+13.4%)

ST-SAP 2,190 2,801 2,489 3,334 2,638 3,639

LT-SAP 2,508 (+14.5%) | 3,211 (+14.6%) | 2,677 (+07.6%) | 3,571 (+07.1%) | 2,542 (-03.6%) | 3,452 (-05.1%)
Aol ROSETTA-init | 2,549 (+16.3%) | 3,255 (+16.2%) | 2,880 (+15.7%) | 3,719 (+11.5%) | 3,007 (+14.0%) | 3,952 (+08.6%)

ROSETTA-30 | 2,558 (+16.8%) | 3,246 (+15.9%) | 2,895 (+16.3%) | 3,740 (+12.2%) | 3,066 (+16.2%) | 3,982 (+09.4%)
ROSETTA-60 | 2,562 (+17.0%) | 3,250 (+16.0%) | 2,905 (+16.7%) | 3,768 (+13.0%) | 3,100 (+17.5%) | 4,117 (+13.1%)
ST-SAP 2,502 2814 2,883 3,286 3,141 3,648
LT-SAP 2,708 (+08.2%) | 3,228 (+14.7%) | 2,822 (-02.1%) | 3,453 (+05.1%) | 3,003 (-:01.5%) | 3,506 (-03.9%)
A3 ROSETTA-init | 2,739 (+09.5%) | 3,262 (+15.9%) | 3,085 (+07.0%) | 3,703 (+12.7%) | 3,214 (+02.3%) | 3,940 (+08.0%)
ROSETTA-30 | 2,749 (+09.9%) | 3,260 (+15.8%) | 3,094 (+07.3%) | 3,715 (+13.1%) | 3,227 (+02.7%) | 3,932 (+07.8%)
ROSETTA-60 | 2,747 (+09.8%) | 3,253 (+15.6%) | 3,119 (+08.2%) | 3,764 (+14.5%) | 3,347 (+06.6%) | 4,126 (+13.1%)
ST-SAP 2,633 2,815 3,045 3,281 3,350 3,643
LI-SAP 2,882 (+09.5%) | 3,235 (+14.9%) | 3,047 (+00.0%) | 3,495 (+06.5%) | 3,051 (-09.0%) | 3,562 (-02.2%)
A4 ROSETTA-init | 2,900 (+10.6%) | 3,267 (+16.1%) | 3,264 (+07.2%) | 3,703 (+12.9%) | 3,425 (+02.2%) | 3,941 (+08.2%)
ROSETTA-30 | 2,913 (+10.6%) | 3,266 (+16.0%) | 3,280 (+07.7%) | 3,725 (+13.5%) | 3,429 (+02.4%) | 3,938 (+08.1%)
ROSETTA-60 | 2,914 (+10.7%) | 3,264 (+15.9%) | 3,309 (+08.7%) | 3,777 (+15.1%) | 3,571 (+06.6%) | 4,141 (+13.7%)

Table 1: The number of on-time tasks (denoted by “#on-time”) and the throughput on the empty warehouse map averaged over
50 instances. The numbers in parentheses are the improvements (in percent) over ST-SAP. The entries with the best performance
are shown in bold.

k-opt operations, which is one of the most effective heuris-
tics for solving the deadline-TSP and its variants (Lin and
Kernighan 1973; Helsgaun 2009). Algorithm 4 uses this ap-
proach to find a suboptimal tour for each agent. It takes as in-
put a DA-MATP instance, an agent a; and STE. It first gen-
erates an initial tour p; for the agent (Line 3) and estimates
its score R; with STE (Line 4). It then repeatedly applies «-
opt operations to improve the tour until no improvement can
be found any longer (Lines 5-13). A x-opt operation o (p;)
replaces x edges of the tour with another x edges to form a
new tour. In our experiments, we use Kk = 3.

The missing piece of Algorithm 3 is how to plan a sub-
optimal tour p; for agent a; (Line 8). This subproblem is
a variant of the traveling salesman problem with deadlines
(Bansal et al. 2004) on a complete weighted directed graph
G; Tsp, where the vertices are the start vertex s; of a; and the
goal vertices relevant for the agent. The cost of each edge in
G; Tsp is dynamic and depends on the time the agent starts
traversing it (which can be estimated with the STE). We use
a local search algorithm to solve this subproblem as follows.

Given a complete weighted directed graph, a start vertex
on the graph and a deadline for each vertex, the deadline-
TSP is to find a path starting at the start vertex that visits as
many vertices by their deadlines as possible. The deadline-
TSP has been studied theoretically, and approximation algo-
rithms have been proposed for it (Bansal et al. 2004; Wen,
Xu, and Zhang 2012). We adopt a local search approach with

6.3 Destroy Heuristics

In this subsection, we describe two destroy heuristics that
generate the subset of agents A’ to replan in LNS (Line
7 in Algorithm 1), namely a random heuristic and a goal-



algorithms 250 agents 300 agents 350 agents
#on-time throughput #on-time throughput #on-time throughput

ST-SAP 1,833 2,756 2,036 3,209 2,116 3,534

LT-SAP 2,349 (+28.2%) | 3,160 (+14.7%) | 2,442 (+19.9%) | 3,398 (+05.9%) | 2,427 (+14.7%) | 3,526 (-00.2%)
A ROSETTA-init | 2,430 (+32.6%) | 3,244 (+17.7%) | 2,712 (+33.2%) | 3,643 (+13.5%) | 2,818 (+33.2%) | 3,843 (+08.7%)

ROSETTA-30 | 2,434 (+32.8%) | 3,223 (+17.0%) | 2,724 (+33.8%) | 3,665 (+14.2%) | 2,870 (+35.6%) | 4,007 (+13.4%)

ROSETTA-60 | 2,439 (+33.1%) | 3,236 (+17.4%) | 2,750 (+35.1%) | 3,733 (+16.3%) | 2,912 (+37.6%) | 4,034 (+14.1%)

ST-SAP 2,138 2,764 2,419 3,233 2,557 3,581

LT-SAP 2,485 (+16.2%) | 3,188 (+15.3%) | 2,562 (+06.0%) | 3,380 (+04.5%) | 2,619 (+02.4%) | 3,537 (-01.2%)
Aol ROSETTA-init | 2,539 (+18.7%) | 3,242 (+17.3%) | 2,846 (+17.7%) | 3,669 (+13.5%) | 2,967 (+16.0%) | 3,881 (+08.4%)

ROSETTA-30 | 2,546 (+19.1%) | 3,232 (+16.9%) | 2,874 (+18.8%) | 3,703 (+14.5%) | 3,010 (+17.7%) | 4,033 (+12.6%)

ROSETTA-60 | 2,544 (+19.0%) | 3,226 (+16.7%) | 2,881 (+19.1%) | 3,739 (+15.7%) | 3,050 (+19.3%) | 4,045 (+13.0%)

ST-SAP 2,459 2,781 2,827 3,240 3,058 3,577

LT-SAP 2,660 (+08.2%) | 3,171 (+14.0%) | 2,798 (-0.01%) | 3,435 (+06.0%) | 2,740 (-10.4%) | 3,464 (-03.2%)
Asl ROSETTA-init | 2,724 (+10.8%) | 3,243 (+16.6%) | 3,075 (+08.8%) | 3,691 (+13.9%) | 3,172 (+03.7%) | 3,858 (+07.9%)

ROSETTA-30 | 2,739 (+11.4%) | 3,247 (+16.7%) | 3,089 (+09.3%) | 3,710 (+14.5%) | 3,269 (+06.9%) | 3,974 (+11.1%)

ROSETTA-60 | 2,740 (+11.4%) | 3,249 (+16.8%) | 3,086 (+09.2%) | 3,714 (+14.6%) | 3,304 (+08.0%) | 4,048 (+13.2%)

ST-SAP 2,578 2,767 2,991 3,231 3,271 3,566

LT-SAP 2,851 (+10.6%) | 3,204 (+15.8%) | 2,982 (-00.3%) | 3,423 (+05.9%) | 2,971 (-09.2%) | 3,482 (-02.4%)
A4 ROSETTA-init | 2,886 (+11.9%) | 3,236 (+16.9%) | 3,211 (+07.4%) | 3,634 (+12.5%) | 3,339 (+02.1%) | 3,822 (+07.2%)

ROSETTA-30 | 2,891 (+12.1%) | 3,254 (+17.6%) | 3,240 (+08.3%) | 3,663 (+13.4%) | 3,442 (+05.2%) | 3,960 (+11.0%)

ROSETTA-60 | 2,902 (+12.6%) | 3,261 (+17.9%) | 3,263 (+09.1%) | 3,713 (+14.9%) | 3,527 (+07.8%) | 4,085 (+14.6%)

Table 2: The number of on-time tasks (denoted by “#on-time”) and the throughput on the warehouse map with 10% randomly
blocked cells averaged over 50 instances. The numbers in parentheses are the improvements (in percent) over ST-SAP. The

entries with the best performance are shown in bold.

based heuristic. We impose an upper bound &’ on the num-
ber of agents. The random heuristic obtains A’ by sam-
pling k" agents from A uniformly at random without re-
placement. The goal-based heuristic randomly samples goal
vertex v € Vg and time step ¢ € [T], then looks up the time
table @, maintained by the STE and obtains A’ by includ-
ing the k" agents that perform picking actions at v at the time
steps closest to t. If there are not enough agents, it includes
all agents that perform picking actions at v.

7 Empirical Evaluation

In this section, we demonstrate the effectiveness of
ROSETTA through extensive experiments. We implement
ROSETTA in C++ and conduct our experiments on 2.4 GHz
CPUs with 16 GB RAM. We compare ROSETTA to both
ST-SAP and LT-SAP on simulated warehouses inspired by
KIVA systems (Wurman, D’ Andrea, and Mountz 2008). We
also compare it to prioritized planning with a STE (denoted
by ROSETTA-init), which is the initial solution found by
ROSETTA (Line 3 of Algorithm 1). We show the empty
warehouse map in Figure 3, which is a 79 x 25 grid map with
32 picking stations surrounding a 71 x 17 empty area. We
also run experiments on the same warehouse map with 10%
randomly blocked cells in the 71 x 17 empty area. To gener-
ate a DA-MATP instance, we construct a graph G = (V, E)
whose vertices V' correspond to the non-obstacle cells (in-
cluding eject, travel and storage cells that are all traversable)
and whose edges F correspond to the arrows in Figure 3.
The goal vertices Vg correspond to the eject cells (shown
in pink). There are k agents, and the start vertex of each
agent is randomly sampled from the storage cells (shown
in green). We use a time horizon of 7' = 600 time steps,

and each picking action takes 6 = 5 time steps. For each
task 7 = (a,,vr,d;), ar,v, and d, are drawn uniformly
at random from A, Vg and A,, respectively, where we use
the deadline distributions A; = {50,100, 150,...,600},
Ay = {100,200,...,600}, As = {200,400,600} and
A, = {300,600}. We generate 50 instances for each A;
and each number of agents & € {250,300, 350}. For k =
250, 300 and 350, we generate | 7| = 3,333, 4,000 and 4,666
tasks, respectively.

For our evaluation, we use RHCR (Li et al. 2021b), a life-
long MAPF algorithm. RHCR plans collision-free paths for
agents with given tours on a rolling-horizon basis. For LT-
SAP and ROSETTA, RHCR uses the tours that they gener-
ate; and for ST-SAP, RHCR uses the greedy rule to deter-
mine the next goal vertex on the fly during execution. Once
an agent completes all its tasks, RHCR routes it back to its
start vertex to avoid staying, and thus causing congestion,
at the picking station. We evaluate the number of on-time
tasks, the throughput (i.e., the number of completed tasks)
and the station utilization (i.e., the number of time steps
where a picking station is occupied) to evaluate the algo-
rithms. We use ROSETTA with a runtime limit of 30 and
60 seconds, denoted by ROSETTA-30 and ROSETTA-60,
respectively. We use k&’ = 8 as an upper bound on the cardi-
nality of the agent sets generated by the destroy heuristics.
We experiment with &' € {4,8,16} on a separate set of in-
stances for validation, and ¥’ = 8 performed the best. We
use A = 0.8 as travel speed of the agents for both LT-SAP
and ROSETTA. We will also show that different choices of
A can outperform both ST-SAP and LT-SAP.

Results. Table 1 shows the number of on-time tasks and
the throughput for the empty warehouse map shown in Fig-



algorithms | task time [ utilization | #picking
250 agents

ST-SAP 49.2 351 2,246

LT-SAP 33.8 410 2,626

ROSETTA-60 33.3 416 2,649
300 agents

ST-SAP 50.2 408 2,607

LT-SAP 36.5 435 2,778

ROSETTA-60 36.1 469 3,000
350 agents

ST-SAP 51.8 450 2,876

LT-SAP 39.7 436 2,787

ROSETTA-60 39.0 491 3,139

Table 3: The number of time steps that an agent takes to
travel from one goal vertex to the next one (denoted by “task
time”), station utilization (denoted by “utilization”) and the
total number of picking actions (denoted by “#picking”) per-
formed by the agents on the empty warehouse map with
deadline distribution A; averaged over 50 instances. The en-
tries with the best performance are shown in bold.

ure 3 for different numbers of agents & and deadline distri-
butions A; averaged over 50 instances. Table 2 shows the
same results for the same warehouse map with 10% random
obstacles generated in the 71 x 17 empty area. The initial
solution of ROSETTA (denoted by ROSETTA-init) already
delivers better performance than ST-SAP and LT-SAP in all
cases w.r.t. both metrics. Given additional time to run LNS,
ROSETTA improves the solution quality further. For exam-
ple, ROSETTA-60 completes 6.6% to 33.3% more tasks on
time than ST-SAP on the empty warehouse map and 7.8%
to 37.6% more on the warehouse map with 10% randomly
blocked cells. ROSETTA-60 also increases the throughput
by at least 13.0% in all cases, even though it does not at-
tempt to optimize this metric.

We compare ROSETTA to ST-SAP and LT-SAP in more
details on the empty warehouse map with deadline distri-
bution A;. Table 3 shows the number of time steps that an
agent needs to travel from its current goal vertex to the next
one, the station utilization measured by the number of time
steps that a goal vertex is occupied and the number of pick-
ing actions performed by the agents. ROSETTA shortens
the agents’ travel time between picking stations, coordinates
agents to visit more of them and thus increases the station
utilization compared to both ST-SAP and LT-SAP.

The runtimes for ST-SAP, LT-SAP and ROSETTA-init
are 1.4, 1.8 and 2.8 seconds, respectively, averaged over in-
stances with 350 agents across four deadline distributions
(the runtime is not sensitive to different deadline distribu-
tions) tested on the empty warehouse map. ROSETTA-30
(ROSETTA-60) achieves a 30.4% (33.3%) improvement on
the number of on-time tasks in 30 (60) seconds. This runtime
is acceptable in practice since we need to run a DA-MATP
algorithm only once every 30-60 minutes, depending on the
time horizon. Given the output of ROSETTA, RHCR needs
on average 90, 310 and 735 seconds to plan collision-free
paths of 250, 300 and 350 agents, respectively. The run-
time on the warehouse map with 10% randomly blocked

algorithms 30 agents
#on-time | throughput
ST-SAP 2,116 3,534
LT-SAP (v =1) 2,201 3,537
A; | ROSETTA-60 (v = 1) 2,230 3,842
LT-SAP (v = 0.8) 2,427 3526
ROSETTA-60 (7 = 0.8) 2,912 4,034
ST-SAP 2,557 3,581
LT-SAP (y =1) 2,570 3,496
As [ ROSETTA-60 (v = 1) 2,656 3,859
LT-SAP (y = 0.8) 2,619 3,537
ROSETTA-60 (v = 0.8) 3,050 4,045
ST-SAP 3,058 3,577
LT-SAP (v =1) 2,634 3,477
A3z [ ROSETTA-60 (v = 1) 3,122 3,801
LT-SAP (v = 0.8) 2,740 3,464
ROSETTA-60 (y = 0.8) 3,304 4,048
ST-SAP 3,271 3,566
LT-SAP (y =1) 2,903 3,402
A4 | ROSETTA-60 (v = 1) 3,306 3,807
LT-SAP (y = 0.8) 2,971 3,482
ROSETTA-60 (v = 0.8) 3,527 4,085

Table 4: The number of on-time tasks (denoted by “#on-
time”) and the throughput on the warehouse map with 10%
randomly blocked cells averaged over 50 instances. The en-
tries with the best performance are shown in bold.

cells are similar and therefore omitted. We also observe that
ROSETTA coordinates the movements of the agents more
evenly across the areas around the picking stations than ST-
SAP. For ST-SAP, the areas around some picking stations
are on average more congested than those around the others.

Table 4 shows the numbers of on-time tasks and the
throughput for v+ = 0.8 and 1 on the warehouse map with
10% randomly blocked cells for 350 agents and different
deadline distributions A;. Setting v = 1 corresponds to us-
ing the lengths of the shortest paths of agents as a proxy
for their estimating travel times. The table shows that, while
ROSETTA with v = 1 still outperforms ST-SAP, ROSETTA
with v = 0.8 performs even better, demonstrating the advan-
tage of tuning .!

8 Conclusion

Motivated by same-day delivery promises of e-commerce
companies, we proposed the new challenge of coordinat-
ing multiple agents in warehouses to visit multiple goal
locations by given deadlines in form of the DA-MATP
problem. We designed the novel multi-agent planning al-
gorithm ROSETTA that uses travel and queuing time es-
timates to decouple multi-agent tour planning from multi-
agent path finding, allowing it to scale to realistic problem
sizes. Empirical evaluations on realistic warehouse maps
showed that ROSETTA outperformed two baselines signif-
icantly in terms of the resulting number of tasks completed
by their deadlines, the throughput and the station utilization.

"We also tried A € {0.6,0.7,0.8,0.9,1} and A = 0.8 still
performed the best. It also aligns with the travel speed of agents
derived from RHCR’s simulations.
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