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Abstract

Multi-Agent Path Finding (MAPF) is an important practi-
cal problem found in many application settings, from logis-
tics and transportation to robotics and automation. In this pa-
per, we introduce the goals, designs and implementations of
the League of Robot Runners (LoRR) 1, a competition to
foster and advance this research area. LoRR aims to iden-
tify the core challenges for solving MAPF, develop suitable
benchmark instances, evaluate algorithmic performance and
track the state-of-the-art. The competition provides partici-
pants with a standardised system to develop, evaluate, and
compare algorithmic techniques. Submissions, solutions and
problem instances are all open sourced, to lower barriers, pro-
mote dissemination and enable further advancements.

Introduction
Multi-Agent Path Finding (MAPF), an important problem
for many new and emerging industrial applications. Re-
search on MAPF and closely related problem variants has
grown exponentially in recent years, including solvers, vi-
sualisations, and problem instances. Currently, there exist
many different models of the problem and algorithmic solu-
tions. Often these works place different emphasis on various
parts of the problem, leading to a diversity of perspectives
and solution techniques. For example, MAPF can be mod-
elled as a planning problem and solved by algorithms that
aim for optimal or near-optimality solutions. It can also be
modelled from a robotics perspective, where execution con-
siderations are considered the foremost priority. Although
each of these perspectives is valid, the divergence makes it
difficult for practitioners, esp. new entrants to the growing
field, to have a clear picture of the main challenges in the
area, the currently leading techniques and what is considered
state-of-the-art on those topics. Thus, LoRR aims to lower
the barrier for practitioners to enter this area by addressing
the following goals in its design and implementation:
Identifying core challenges: MAPF is often solved with a
simplified model, which causes a disconnection between the
abstract model and real executions when deploying solvers
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into real applications. Therefore, the first goal of LoRR is to
identify the challenges that cause the most “disconnections”.
In the first round of LoRR, we identify two main challenges:
(1) Turn actions: Robots are often modelled as unit action
cost and free turning cost in MAPF, which is disconnected
from real robot motions. The first challenge we identified is
turn actions, which are frequent actions in real applications
and account for the most increase in the achieved real exe-
cution cost (Zhang et al. 2023). (2) Online lifelong problem:
Typical MAPF solvers often solve a single-shot problem of-
fline while enough planning time is given upfront. We then
identify the problem to be online lifelong, where the time
that agents wait during planning is considered and frequent
replanning is needed to adapt typical solvers into practice.
Standardised benchmarks: MAPF solvers are often tested
using a common benchmark (Stern et al. 2019), which
misses some practical applications. Moreover, people often
generate individual benchmarks for different variants, mak-
ing tracking and reusing challenging. Thus, our second goal
is to develop standardised benchmarks with high degrees of
reproducibility. We consider different domains, map layouts,
and task distributions. This allows practitioners to readily
identify difficult yet meaningful MAPF challenges.
Common API: Working with different problem models,
languages, and programming habits, it is generally time-
consuming to evaluate/compare/reuse open-source MAPF
implementations due to interface variations. We developed
a standardised planning and visualisation system allowing
users to easily build, run, and visualise existing and new
planners through the provided system.
Tracking Progress: Evaluating solver performance poses
unique challenges due to implementation efforts. Our third
goal is let participants to simply compare their algorithms
against others through an online evaluation system. In addi-
tion, we archive and open-source the code implementations
for each round, which helps practitioners to understand, and
be inspired by these state-of-the-art techniques.

Problem Model
We follow most of the settings of a classical MAPF model
that agents are moving on a 4-connected grid map and time
is discredited into unit-size timesteps except that at each
timestep, each agent: (1) has a facing direction and (2) can



Figure 1: System Overview. Each component is explained in each section.

either perform 90◦ turns, wait or forward to the next empty
cell. We consider the problem to be online (solvers have a
tight timeout limit and agents wait when timeout) and life-
long (a new task appears when an agent finishes its current
task). The objective is maximising the total number of tasks
finished over a given time horizon.

Benchmarks
We create our online lifelong problem instances from
classical MAPF benchmarks (Stern et al. 2019) and two
industrial-inspired domains. Each instance includes a map
file, an agent file specifying initial configurations, and a task
file containing tasks. Maps feature a diverse range of lay-
outs and domains. For task generation, we employ various
task distribution methods like random and distance-based.
Classical Domains: Given a map, we generate problem in-
stances from the largest connected component on the map
with user-specified numbers of agents and tasks.
New Benchmarks: We develop new maps on two realis-
tic problem domains, called Fulfillment (where robots pick
up and deliver orders in a warehouse) and Sortation (where
robots sort and move orders in a mail sortation centre). We
also develop generators to generate these maps and the as-
sociated problem instances with user-specified parameters,
including map layouts, team size and task assignments.

Planning System
The planning system consists of a simulator and a planner.
Users need to implement their own algorithms in the plan-
ner. The planning system is written in C++, but users can
implement bindings for other programming languages. We
have provided a Python binding as an example.
Simulator: The simulator iteratively calls the planner for the
MAPF plan. It includes a validation component to check if
a MAPF plan is valid (i.e., does not contain conflicts or runs
into obstacles) and executes the plan based on its feasibility.
It also includes a task assignment component to decide what
happens to an agent after it reaches a target.
Planner: The interface between the simulator and the plan-
ner is designed to be simplistic and easy to understand.
Specifically, a user needs to implement the initialise
function for map pre-processing and the plan function for
planning, both subject to some given time limits. In case the
plan function does not terminate in time, the simulation

will proceed to the next timestep (with the plan function
running), and all agents will wait for the current timestep.
Input/Output: The planning system reads input from the
benchmark generator and produces an output file that
records the plans, planning errors, and simulation events.
Both the input and output files are standardised and well-
documented. In addition, the output can be used by PlanViz
for visualisation, which will be explained in the next section.

PlanViz
Although there are many tools for visualising a MAPF plan,
few of them help understand the errors of the plan, such as
collisions between agents and invalid actions. Thus, we de-
sign PlanViz to visualise both the MAPF plans (either one-
shot or lifelong) and the errors occured.

PlanViz contains a visualisation window and a UI panel
for controlling what to show in the visualisation window.
PlanViz can visualise: (1) locations (and movements) of
agents at each timestep, (2) paths of agents from their start
locations to locations at the planning horizon, (3) collisions
between pairs of agents, and (4) task assignment. For (3),
we label the colliding agents (either all collisions or some
pairs of colliding agents specified by the user) and jump to
one timestep before the collision occurs.For (4), we label
tasks as unassigned, currently assigned, assigned, and fin-
ished. This helps participants to better understand algorithm
performance for completing tasks. In addition, PlanViz can
also visualise paths from MAPF tracker (Shen et al. 2023)
for classical MAPF problems. We provide a simple format
transform between these two projects.

Evaluation and Code Archives
LoRR utilises an online evaluation platform that allows par-
ticipants to submit and evaluate implementations at any time
before the competition deadline. A leaderboard is dynami-
cally updated to track the progress of the competition.

At the end of the competition, we collect all the imple-
mentations submitted and open-source these implementa-
tions as a code archive. It includes the implementations for
each entry shown on the leaderboard and the implemen-
tations that produce the best solution on each benchmark
instance, together with the evaluation results. We believe
the code archive will not only foster further research in the
field but also provide a valuable resource for newcomers to
quickly get started with high-quality MAPF solver.
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