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Abstract

Autonomous mobile robots need good models
of their environment, sensors and actuators
to navigate reliably and efficiently. While
this information can be supplied by humans,
or learned from scratch through active ex-
ploration, such approaches are tedious and
time-consuming. Our approach is to pro-
vide the robot with the topological and ge-
ometrical constraints that are easily obtain-
able by humans, and have the robot learn
the rest while in the course of performing
its tasks. We present GROW-BW, an unsu-
pervised and passive distance learning algo-
rithm that overcomes the problem that the
robot can never be sure about its location
if it is not allowed to reduce its uncertainty
by asking a teacher or executing localization
actions. Advantages of GROW-BW include
that the robot can be used immediately to
perform navigation tasks and improves its
performance over time, focusing its attention
to routes that are more relevant for its tasks.
We demonstrate that GROW-BW can learn
good distance, sensor, and actuator models
with only a small amount of experience.

1 Introduction

We are interested in providing the technology for of-
fice or hospital delivery robots that are autonomous.
Assume that you have just purchased such a delivery
robot. Before it can be used, it must gain some knowl-
edge of its new environment. This can be achieved
by either providing the robot with the necessary in-
formation or letting it explore its environment au-

tonomously. Both methods have disadvantages. Pro-
viding the robot with the necessary information suffers
from the problem that some information is difficult or
impossible to provide by humans. The sensor and ac-
tuator models of the robot, for example, depend not
only on its environment, but also on characteristics of
the robot itself, and one cannot expect consumers to
be familiar with details of their newly purchased de-
livery robots. Other data could be provided by the
consumers, but might be cumbersome to obtain. If
they do not know the exact lengths of their corridors,
for example, they have to measure them – a task that
the robot could do itself. Letting the robot explore its
environment autonomously, a method that many re-
searchers have investigated [Kuipers and Byun, 1988]
[Basye et al., 1989] [Mataric, 1990] [Dean et al., 1992],
suffers from the problem that the robot cannot be used
immediately and, during exploration, is likely to get
into situations of confusion or danger that require hu-
man intervention, since it has no initial knowledge of
its environment. We therefore suggest combining both
methods: the robot is provided with some informa-
tion that is easily available to humans, and it then au-
tonomously learns the rest of the information needed
for reliable navigation while in the process of perform-
ing its delivery tasks.

We start by supplying the robot with a topological
map of its environment. A topological map speci-
fies landmarks (such as corridor junctions) and how
they connect. Such a map can easily be obtained from
a sketch drawn by people familiar with the environ-
ment. Figure 2 (center and right), for example, shows
a sketch of a corridor environment and the correspond-
ing topological map. Once equipped with a topological
map, the robot could use landmark-based navigation
to perform delivery tasks. However, landmark-based
navigation techniques suffer from the problem that im-
perfect sensors occasionally miss landmarks and even



Figure 1: Xavier and two screen shots of its user interface

Figure 2: Corridor environment, sketch, and corresponding topological map

perfect sensors are not able to distinguish between all
landmarks, such as corridor junctions of the same type
(perceptual aliasing problem).

The reliability and efficiency of the robot can be im-
proved by adapting its sensor and actuator models to
its environment and, a simpler task for people, by pro-
viding it with distance information. However, people
often err even with respect to distances – unless they
measure them. Although the sketch of Figure 2 (cen-
ter), for example, correctly specifies the topology, some
of the arc lengths are incorrect. It is therefore much
more reliable and convenient to let the robot learn
the distance, sensor, and actuator models itself. We
want the learning to be unsupervised (not to require
a teacher during learning, after it has been supplied
with the topological map) and passive (not to explic-
itly control the robot’s actions). Unsupervised, pas-
sive distance learning is not a trivial task, because the
robot can never be sure about its location: it has no
distance information available initially, its sensors and
actuators are noisy, and it cannot reduce the uncer-
tainty about its location by asking a teacher or execut-
ing localization actions. In fact, its positional uncer-
tainty may be quite significant. For example, Figures 1
(right) and 2 (left) show that after traveling some dis-

tance, the robot is unsure about its location (the sizes
of the circles are proportional to the probability mass
at each location). On the other hand, unsupervised,
passive learning has the advantages that the robot can
be used immediately to perform delivery tasks (since
it has a topological map available) and it does not re-
quire a separate training phase or (ideally) any exter-
nal help. In addition, the robot never stops learning:
whenever it moves, it gains more and more experience
with its environment which it continually uses to im-
prove its distance, sensor, and actuator models and, as
a consequence, also its navigation performance. Since
it gains more information about routes that the robot
traverses more often, learning focuses its attention to
routes that are more relevant for the delivery tasks.

In the next several sections, we describe our algorithm
for learning distances, sensor models, and actuator
models in an indoor office environment. We conclude
by presenting experimental results showing that the
algorithm can learn good models with only a small
amount of experience.

Our research is carried out on Xavier and its simulator
(Figure 1). Xavier is built on an RWI B24 base and
includes bump sensors, sonars, a laser range sensor,
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and a color camera on a pan-tilt head. Control, per-
ception, and planning are all carried out on two on-
board, multi-processing 486-based machines. Xavier
roams the corridors of our building and can be con-
trolled by users worldwide via its experimental World
Wide Web interface, that allows them to specify goal
locations and tasks that Xavier has to perform there.
The interface can be reached via Xavier’s homepage at
http://www.cs.cmu.edu/∼Xavier. Eventually, Xavier
will be used to deliver memos, letters, and printouts
between the offices in our building.

2 Our Distance Learning Approach

We have developed GROW-BW, an unsupervised, pas-
sive distance learning algorithm that uses an extension
of the Baum-Welch (BW) algorithm [Rabiner, 1986].
GROW-BW is an efficient algorithm that does not af-
fect the other components of the robot system (except
by making them operate more reliably) and can tune
the initial (“factory programmed”) sensor and actu-
ator models to better match the environment of the
robot while it learns the distances (despite the fact
that GROW-BW never knows the ground truth about
what the sensors were actually observing). Further-
more, it can take additional knowledge into account,
if available, such as equality constraints between the
lengths of corridors, bounds on the possible corridor
lengths, or subjective probability distributions over
them.

Instead of learning an exact corridor length, GROW-
BW learns a probability distribution over the possible
lengths, which is more robust to sensor and actuator
noise. Formally, for each corridor segment c, GROW-
BW learns a probability distribution pc over the pos-
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Figure 4: Four states representing one location

sible lengths of the corridor l ∈ [lmin(c), lmax(c)],
where lmin(c) and lmax(c) are the minimal and maxi-
mal bounds on the length of the corridor segment and
where “length” refers to the perceived length of the
corridor, which includes the dead-reckoning error of
the robot. Then, pc(l) is the probability with which
GROW-BW believes that the perceived length of cor-
ridor c is l.

Figure 3 illustrates the GROW-BW algorithm. First,
a topological map, augmented with sensor and actua-
tor models and an initial distance model (e.g., a uni-
form distribution over the possible corridor lengths),
is automatically compiled into a Partially Observable
Markov Decision Process (POMDP) model (©1 ). This
model is used directly by our probabilistic planning
[Koenig et al., 1995] and navigation methods [Sim-
mons and Koenig, 1995] to direct the robot to a given
goal location. Better distance, sensor, and actua-
tor models improve the navigation performance of the
robot. The robot therefore improves its models from
experience using an extension of the Baum-Welch al-
gorithm (©2 ). The experience is given in form of se-
quences of action and sensor reports (execution traces)
that are generated automatically whenever the robot
moves. The resulting POMDP has less distance uncer-
tainty and improved sensor and actuator models (©3 ).
Finally, it may be the case that lmax(c) � lmin(c). To
avoid having to consider all possible lengths initially
(or in cases where the given bounds do not actually in-
clude the real length), we use a hill-climbing technique
that iteratively changes the structure of the POMDP
based on the results of the extended Baum-Welch al-
gorithm (©4 ). It starts with a small bound lmax(c) and
grows it if necessary until there is a high probability
that the real corridor length is contained within the
bounds.

3 The POMDP Model

POMDPs are popular models for optimal decision
making in uncertain conditions [Cassandra et al., 1994]
[Parr and Russell, 1995]. Our POMDP incorporates
the distance uncertainty and the sensor and actua-
tor models of the robot. It is specified as a finite
set of states S, a set of actions V A(s) ⊆ V A, for
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Figure 5: Corridor of length 2 to 4 meters

each state s ∈ S, that can be executed in that state,
transition probabilities p(s′|s, va) for all s, s′ ∈ S and
va ∈ V A(s) (the probability that the successor state is
s′ if the robot executes action va in state s), and sensor
probabilities pvs(f |s) for all vs ∈ V S, f ∈ F (vs), and
s ∈ S (the probability that sensor vs reports feature
f when the robot is in state s). Each state encodes
both the location and orientation of the robot. We
discretize locations with a resolution of one meter and
orientations into the four compass directions (this as-
sumes that corridors are straight and perpendicular to
each other). Right and left turn actions are defined
for every state (Figure 4). Forward actions transition
from location to location, but are not defined for states
that face walls. All actions are nearly deterministic,
but there is a small chance that the robot ends up in
any of the three unintended orientations (not shown
in the figures).

The POMDP is compiled automatically from a topo-
logical map. The corridor part between two adjacent
junctions in the topological map is modeled as sets
of parallel chains that share their first and last states
(Figure 5). Each chain corresponds to one of the pos-
sible lengths l ∈ [lmin(c), lmax(c)] for that stretch of
corridor c. From each junction, forward actions have
probabilistic outcomes according to the probabilities
pc(l). Each forward transition after that is (nearly) de-
terministic. Thus, our POMDP model explicitly mod-
els distance uncertainty and differs in this respect from
a similar model by [Nourbakhsh et al., 1995], that does
not model distances at all. It can therefore be quite
large; the sizes of our POMDPs are typically on the
order of thousands of states. It is possible, however,
to reduce the number of states required to model a
corridor c from being quadratic in lmax(c)− lmin(c) to
being linear in lmax(c), at the cost of a loss in model

accuracy [Simmons and Koenig, 1995].

4 The Baum-Welch Algorithm

The Baum-Welch algorithm [Rabiner, 1986] is a simple
expectation maximization (EM) algorithm for learn-
ing POMDPs from observations. It is best known for
its application to speech recognition and handwriting
recognition, but it has also been applied in robotics, for
example to interpret tele-operation commands [Han-
naford and Lee, 1991; Yang et al., 1993]. In the fol-
lowing, we describe how we use the Baum-Welch algo-
rithm to improve the initial POMDP.

Whenever the robot moves, a sensor interpretation
module converts its continuous motion into discrete ac-
tion reports and produces reports of high-level features
from the raw sensor data. In the case of Xavier, for
example, the sensor interpretation module integrates
data from the wheel encoders over time to produce a
stream of discrete action reports (going forward one
meter, turning left ninety degrees, and turning right
ninety degrees). Similarly, sonar readings are bundled
into three “virtual sensors” that report observations
of walls and openings of various sizes (small, medium,
and large) in front of Xavier and to its immediate left
and right. An execution trace contains these action
and sensor reports in chronological order.

We use the Baum-Welch algorithm to estimate a
POMDP that better fits the given execution traces, in
the sense that the probability with which the POMDP
explains the sensor reports (given the action reports)
is increased. The Baum-Welch algorithm operates as
follows: It first uses the given POMDP and all infor-
mation contained in the execution traces to calculate,
for every point in time, a probability distribution over
all states that represents the belief that the robot was
in a certain state at a certain point in time. It then es-
timates an improved POMDP from these probability
distributions, using a maximum likelihood approach.
This estimation process is then repeated with the same
execution traces and the improved POMDP until some
termination criterion is satisfied. The run time of each
iteration of the Baum-Welch algorithm is linear in the
product of the total length of the given execution trace
and the size of the POMDP, typically being on the or-
der of seconds to minutes for our application.

We have extended the Baum-Welch algorithm to ad-
dress memory constraints and the problem that col-
lecting training data is time consuming:

• The Baum-Welch algorithm has to run on-board



the robot and shares its memory with many other
processes that run concurrently. To decrease the
amount of memory that it requires, we use a slid-
ing “time window” on the execution trace. Time
windows add a small overhead to the run time
and cause a small loss in precision of the improved
POMDP, but allow the memory requirements to
be dynamically scaled to the available memory.

• Given the relatively slow speed with which mobile
robots can move, we also want the Baum-Welch
algorithm to learn good models with as few corri-
dor traversals as possible. To reduce the amount
of training data that it needs to estimate good
models, we extended the learning algorithm to
take advantage of available prior knowledge, such
as geometrical constraints that can be deduced
from the topological map. One might know, for
example, that two corridors are the same length,
because both are intersected orthogonally by the
same pair of corridors. This decreases the num-
ber of parameters that have to be learned and
therefore the amount of training data needed to
prevent overfitting.

The original Baum-Welch algorithm uses frequency-
based estimates, but these are not very reliable when
the execution traces are short. To understand why,
consider the following analogy: If a fair coin is flipped
once and comes up head, the frequency-based estimate
is that it always comes up head. If this model were
used to predict future coin flips, one would be very sur-
prised if the coin came up tails next time – this would
be inconsistent with the learned model. Our extended
Baum-Welch algorithm solves this problem by using
Bayes’ rule (Dirichlet distributions) instead of frequen-
cies. For more details and an empirical evaluation of
the extended Baum-Welch algorithm, see [Koenig and
Simmons, 1996].

5 The GROW-BW Algorithm

The Baum-Welch algorithm improves the probabili-
ties of a POMDP, but never changes its structure (the
number of states and their connectivity). This poses a
problem, because the distance model is partly encoded
in the structure of the POMDP: the possible lengths
of a corridor are determined by the structure, while
the probability distribution over the possible lengths
is determined by the probabilities. Consequently, the
Baum-Welch algorithm cannot assign a positive proba-
bility pc(l) to corridor lengths l 6∈ [lmin(c), lmax(c)] nor

can it change the bounds. Thus, it cannot learn the
real corridor length if the bounds are off – but they
might not be known. Guessing lmin(c) is easy: we
can use the smallest positive length according to our
discretization granularity. Guessing lmax(c) is harder:
we could, of course, guess a ridiculously large value,
but this has the drawback that the POMDPs become
very large – and the memory requirements of distance
learning algorithms determine their tractability. In-
stead, we investigate learning algorithms that are able
to change the structure of the POMDP.

Alternatives to the Baum-Welch algorithm for learn-
ing POMDPs are described by [Chrisman, 1992], [Stol-
cke and Omohundro, 1993], and [McCallum, 1995],
among others. These algorithms are able to change
the structure of a POMDP, but have the disadvan-
tage that they either require a large amount of training
data, learn task-specific representations only, or can-
not utilize prior knowledge. Consequently, we have de-
signed a novel POMDP learning algorithm that we call
GROW-BW. GROW-BW achieves its power by utiliz-
ing the regularities in the structure of our POMDP
models of the corridors. It takes advantage of the
fact that the Baum-Welch algorithm learns a good
POMDP for the given structure, even if the struc-
ture is incorrect. This allows it to start with a small
POMDP, learn the best model for that structure, see
if the model is “good enough,” and grow the model if
not.

Initially, GROW-BW guesses a small upper bound
lmax(c) on the real corridor length (Figure 6). It then
compiles a POMDP and uses the extended Baum-
Welch algorithm to improve it. If the Baum-Welch
algorithm indicates that it is likely that the real cor-
ridor length is close to the upper bound, GROW-BW
increases the upper bound, adds a new parallel chain
to the corridor segment (Figure 5), and repeats the
procedure. In this way, if the initially chosen upper
bound was too small, it can be increased to fit the real
length of the corridor.

GROW-BW is a hill-climbing algorithm and, thus, can
suffer from myopic effects. Consider the most myopic
version of GROW-BW, that uses the parameter values
X = Y = Z = 0 (X is related to the initial difference
between lmin(c) and lmax(c), Y is related to the ranges
of lengths to consider when determining whether the
model is “good enough,” and Z is related to how much
to grow the model at each step). To simplify our ar-
gument, assume that a robot with (almost) perfect
sensors and actuators moves back and forth in the en-
vironment shown in Figure 7(A). If lmax(c) = 4 for all



The GROW-BW algorithm uses the following parame-
ters: X = 0, 1, 2, . . .; Y = 0, 1, 2, . . . , X; Z = 0, 1, 2, . . .,
and P ∈ (0, 1). In its simplest form, it uses X = Y =
Z = 0 and a small positive value for P .

1. For each corridor c: set lmax(c) := lmin(c) + X +
1. (If a lower bound lmin(c) on the real corridor
length is not known, use lmin(c) = 1.)

2. Compile a POMDP (see Section 3).

3. Use the extended Baum-Welch algorithm on the
POMDP and the given execution traces to deter-
mine improved pc(l) for all corridors c and cor-
ridor lengths l with lmin(c) ≤ l ≤ lmax(c) (see
Section 4).

4. For each corridor c: if
∑

l≥lmax(c)−Y
pc(l) ≥ P ,

then set lmax(c) := lmax(c) + Z + 1.

5. If any lmax(c) was changed in Step 4, then go to
Step 2, else stop.

Figure 6: The GROW-BW algorithm

8 meters

Figure 7: Example of myopic effects

corridor pieces, then the best fitting model is the one
where all traversed corridor pieces are four meters long.
(The robot expects to see a corridor opening every four
meters, but sees them only every eight meters. Thus,
it cannot explain four observations on each round-trip,
and no distance model whose corridors are at most four
meters long can do better.) This leads GROW-BW to
increase lmax(c) to five for all traversed corridor seg-
ments. However, at this point the model where all
corridor segments are four meters long is still among
the models that, of all models considered, explain the
observations best (another such model is the one where
adjacent corridor pieces of the main corridor alternate
between lengths three and five). If the Baum-Welch
algorithm learns this model, then GROW-BW stops
without having learned the real corridor lengths.

Note that we have constructed this example artificially
– the problem does not show up if the robot encounters
both ends of the main corridor while it moves forward
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Figure 8: Corridor with self-transitions

and backward. Despite the theoretical limitations of
hill-climbing, our experience with GROW-BW shows
that it appears to work well in practice. We attribute
this to architectural features of buildings – they are
usually constructed in a way that prevents people from
getting lost, which appears to dampen myopic effects.
However, it is possible that a problem similar to the
one described could show up in conjunction with of-
fice doors along a corridor. We therefore recommend
using a less myopic version of GROW-BW by setting
the parameters X , Y , and possibly Z to values that
are larger than the typical distance between adjacent
office doors. Similarly, P (the probability threshold
that triggers growing the model) has to be chosen small
enough to prevent GROW-BW from terminating pre-
maturely.

Other problems arise when the real corridor length is
greater than lmax(c), since then the execution traces
can be inconsistent with the POMDP, in the sense that
the model cannot explain the experience. One problem
this might lead to is that the position estimation com-
ponent of the navigation system may rule out all pos-
sible locations, leading the robot to become totally un-
certain as to where it is. The robot then has to explic-
itly relocalize itself, which may take a fair amount of
time. Another problem is that learning can no longer
take place. As an example, again consider the envi-
ronment shown in Figure 7 and assume that the robot
traverses the main corridor from beginning to end for a
total distance of 40 meters. This, however, is impossi-
ble according to a model that assumes lmax(c) = 4 for
all corridor pieces. We avoid both these problems by
having the POMDP compiler add self-transitions (with
a small probability Q) in both directions of the longest
chain in the POMDP representation of each corridor
segment (Figure 8). In this way, all corridor lengths l



with lmin(c) ≤ l have positive probability. This does
not mean, of course, that the GROW-BW algorithm is
no longer needed. Using such a POMDP directly with
the Baum-Welch algorithm would not work very well if
lreal(c) > lmax(c), because only the probabilities pc(l)
for lmin(c) ≤ l < lmax(c) can be specified individually.
The probabilities for lmax(c) ≤ l are exponentially de-
creasing according to the following formula:

pc(l) =



1 −

∑

lmin(c)≤l′<lmax(c)

pc(l
′)



 (1 − Q) Q
l−lmax(c)

.

6 Experiments

We use the prototypical corridor environment shown
in Figure 9(A) to illustrate the power of our learn-
ing algorithms. Remember that they discretize the
possible corridor lengths with a precision of one me-
ter. To match this assumption, all corridor lengths in
this environment are multiples of one meter. In many
ways, the environment is more complicated than what
we have available in our building. It has many par-
allel corridors and indistinguishable junctions, which
amplifies the perceptual aliasing problem. The exper-
iment uses the real-time Xavier simulator, a highly re-
alistic simulation of Xavier including noisy sensors and
actuators, that has the exact same interface as Xavier
itself, but allows us to make the experiments repeat-
able. It is not based on the POMDP model used for
navigation and consequently violates the independence
assumptions made by POMDP models (just like real-
ity). The learning algorithms can be used unchanged
on Xavier itself. In this case, the execution traces are
provided by Xavier instead of the simulator.

We do not inform the robot about its start location or
orientation, its route, or its destination. Instead, we
let it gain experience with the environment by guid-
ing it through every corridor once, using two execution
traces with different start locations. The only informa-
tion that it has available is the topological map, the
data from its sensors, and the following obvious equal-
ity constraints between corridor lengths: (These con-
straints are not necessary for the learning algorithms,
but they increase the quality of the learned models if
the number of corridor traversals is small [Koenig and
Simmons, 1996].)

lreal(c1) = lreal(c3) = lreal(c6) = lreal(c10)

lreal(c2) = lreal(c5) = lreal(c9)

lreal(c4) = lreal(c7) = lreal(c8)

lreal(c11) = lreal(c13)

lreal(c12) = lreal(c14) = lreal(c18) = lreal(c21)

lreal(c15) = lreal(c19)

lreal(c17) = lreal(c20)

Given this information, the task of the robot is to
annotate the topological map with distance informa-
tion and to adapt its initial sensor and actuator mod-
els to its environment. This learning task is particu-
larly hard, since we assume that the robot does not
even know its approximate start location or orienta-
tion. As a consequence, several different routes can
be consistent with the sensor data, especially since
the robot has noisy sensors and actuators and has
no initial estimates of the corridor lengths available.
For example, the probability that the left and right
virtual sensors overlook a corridor junction is about
fifty percent. This relatively high probability is due
to the sensors being quite conservative: they don’t re-
port features until they have collected sufficient evi-
dence. Also, since the virtual sensors are implemented
as asynchronous processes, they sometimes do not re-
port features in time.

Our first experiment uses the extended Baum-Welch
algorithm directly. To make sure that it is able to learn
the real corridor lengths, we estimate the minimal and
maximal corridor lengths cautiously to guarantee that
lreal(c) ∈ [lmin(c), lmax(c)]: we use lmin(c) = 2 meters
and lmax(c) = 14 meters for every corridor piece c.
The resulting POMDP has 6672 states and 80346 state
transitions. Figure 9(B) depicts the corridor lengths
with the largest probability pc(l) in the learned model:
all 21 predicted corridor lengths correspond to the real
corridor lengths.

Our second experiment uses GROW-BW with the pa-
rameters X = 0, Y = 0, Z = 1, P = Q = 0.05,
and lmin(c) = 2 meters for all corridor segments.
That is, the initial estimate for every corridor seg-
ment is lmax(c) = 3 meters and, if GROW-BW ex-
tends a corridor length, it increases it by two meters.
GROW-BW assumes a uniform probability distribu-
tion over the possible corridor lengths. Given this in-
formation, GROW-BW needs only four iterations to
converge. Figure 9(C) shows lmin(c) and lmax(c) for
the final model. The corresponding POMDP has only
1176 states and 16260 state transitions, and is thus
much smaller than the POMDP from our first experi-
ment (the POMDPs used in the first three iterations of
GROW-BW are, of course, even smaller). This is the
case, because GROW-BW stops to expand the upper
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Figure 9: Experimental results

bound of a corridor length when it is sufficiently sure
that it is larger than the real corridor length (where
the required amount of certainty is determined by the
parameters Y and P ). Because of the small sizes of
the POMDPs, GROW-BW is 1.84 times faster than
the extended Baum-Welch algorithm, although it has
to call the extended Baum-Welch algorithm repeat-
edly. The probabilities pc(l) that GROW-BW learns
are similar to those learned in the first experiment,
and the corridor lengths with the largest probability
pc(l) are even identical: again, all corridor lengths are
learned correctly.

We repeated both experiments eight more times with
different robot routes. The results are summarized
in Table 1. Each corridor length that, after learning,
does not have the largest probability among all possi-
ble lengths counts as one mistake in the column “cor-
ridors.” If several corridor lengths were constrained to
be identical, we count only one mistake per corridor
group in the column “groups.”

The POMDPs learned by GROW-BW were of the
same quality as the ones of the extended Baum-Welch
algorithm: The learned sensors and actuator models
were similar when we evaluated them according to a)
how much they reduced the positional uncertainty of
the robot and b) how much they increased the proba-
bility with which the POMDP could generate (or, syn-
onymously, explain) long simulator execution traces.
Furthermore, both algorithms learned good (although
not perfect) distance models with only one traversal of
each corridor: in all cases, they erred by only one meter
when they made a mistake. In general, they can learn
good distance models with one to three corridor traver-
sals, depending on how confusing the corridor environ-

ment is. Note that, although the dead-reckoning error
of our robot is not overly large, we cannot expect the
learning algorithms to learn all corridor lengths per-
fectly, because – for example – the robot sometimes
takes sharp and sometimes wide turns around corners
which affects the distances traveled along the corri-
dors.

The experiments show that the sizes of the POMDPs
produced by GROW-BW are roughly between four
and six times smaller than the size of the POMDP
that we used in conjunction with the extended Baum-
Welch algorithm. As a result, GROW-BW is al-
most two times faster than the extended Baum-Welch
algorithm.1 Thus, GROW-BW produces results sim-
ilar to those of the extended Baum-Welch algorithm,
but works on much smaller POMDPs and therefore
needs less memory and often less run time. The ef-
fect is even more pronounced when the models of our
building are used, since they are much larger than the
model used here. We could augment GROW-BW with
a post-processing step that prunes the final POMDP,
thus making it even smaller.

The corridor environment used in this example was ex-
tremely small and thus one could have used distance
learning methods with a runtime that is exponential in
the total length of the execution traces, such as meth-
ods that match the routes probabilistically against the
topological map (possibly combined with branch-and-

1The seventh experiment in Table 1 is an exception. It
contained a highly ambiguous execution trace and GROW-
BW expanded the upper bound of one corridor up to a
length of 21(!) meters, which required 10 iterations. We
could not replicate this phenomenon when we used execu-
tion traces that traversed each corridor more than once.



Table 1: Comparison of GROW-BW with the extended Baum-Welch algorithm

mistakes of mistakes of improvement improvement
ext. Baum-Welch GROW-BW in the number in run time

corridors groups corridors groups of states
(out of 21) (out of 8) (out of 21) (out of 8)

1 0 0 0 0 4.79× 1.80×
2 0 0 0 0 4.46× 1.76×
3 0 0 0 0 5.67× 1.67×
4 5 2 5 2 5.67× 2.08×
5 5 2 5 2 5.20× 1.99×
6 0 0 0 0 5.20× 1.97×
7 3 2 3 2 3.66× 0.53×
8 0 0 0 0 5.20× 1.78×

bound methods to prune the search space). GROW-
BW has two advantages over such methods: First, the
model that it learns (a POMDP) can directly be used
by our probabilistic planning and navigation meth-
ods. Thus, there is no need for a model transformation
that might degrade the quality of the model. Second
(and more importantly), the run-time of GROW-BW
is only linear in the length of the execution trace. We
have also used GROW-BW to learn environments in
which the successful execution of actions does not pro-
vide any information about the position of the robot,
namely for learning the distances between adjacent of-
fice doors and corridors in a long hallway that is tra-
versed by a robot that does not know its starting po-
sition.

7 Extensions

We have assumed that GROW-BW can be provided
with a correct topological map. Although this is a re-
alistic assumption for many robot learning scenarios,
weakening it broadens the application area of our al-
gorithm. Consequently, we are working on extending
GROW-BW to be able to correct slightly inaccurate
topological maps. We are also investigating whether
it can be combined with the passive topological map
learning approach by [Engelson and McDermott, 1992]

to extend its applicability to scenarios where a quali-
tative map is not available at all.

8 Conclusion

In this paper, we have described GROW-BW, a dis-
tance learning algorithm that annotates a given topo-
logical map with distance information. GROW-BW
uses an extension of the Baum-Welch algorithm as a
subroutine. It is an unsupervised (does not require a
teacher during learning) and passive (does not need

to control the robot at any time) learning method.
GROW-BW overcomes the problem that the robot can
never be sure about its location if it is not allowed
to reduce its uncertainty by asking a teacher or exe-
cuting localization actions. It has the advantage that
the robot can be used immediately to perform navi-
gation tasks, and autonomously improves its perfor-
mance over time as it gains more experience with its
environment, focusing its attention to routes that are
more relevant for its tasks. It works transparently with
the other components of the robot system, can adapt
the factory programmed sensor and actuator models to
the environment of the robot while it learns the dis-
tances, and is efficient. It uses sliding “time windows”
to minimize the amount of memory required, and as
much or as little additional knowledge as is available
to minimize the amount of experience required to learn
good models. It can utilize, for example, equality con-
straints on the lengths of two corridors, bounds on
the possible corridor lengths, or subjective probabil-
ity distributions over them. We demonstrated that
GROW-BW can learn good distance models with only
a small amount of experience, often with consider-
ably less space and time than can the extended Baum-
Welch algorithm, by itself.

In conclusion, GROW-BW learns quantitative infor-
mation that is difficult to obtain from humans (dis-
tances as well as sensor and actuator models), but is
able to utilize a large variety of qualitative (and quan-
titative) information that humans can easily provide.
In contrast, many other map learning approaches in
the literature attempt to learn maps from scratch, not
utilizing prior knowledge that is easily available.
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