
Greedy Mapping of Terrain∗

Sven Koenig Craig Tovey William Halliburton
College of Computing

Georgia Institute of Technology
Atlanta, GA 30332-0280, USA
{skoenig, ctovey }@cc.gatech.edu

Abstract
We study a greedy mapping method that always moves the

robot from its current location to the closest location that it has
not visited (or observed) yet, until the terrain is mapped. Although
one does not expect such a simple mapping method to minimize
the travel distance of the robot, we present analytical results that
show (perhaps surprisingly) that the travel distance of the robot is
reasonably small. This is interesting because greedy mapping has
a number of desirable properties. It is simple to implement and in-
tegrate into complete robot architectures. It does not need to have
control of the robot at all times, takes advantage of prior knowl-
edge about parts of the terrain (if available), and can be used by
several robots cooperatively.

1 Introduction

Mapping is an important task for mobile robots and a
large number of mapping methods have been developed for
them, both in robotics and in theoretical computer science
[7, 18, 11, 15, 3, 6, 10, 19, 20, 24, 2, 8, 9, 16, 25, 23, 4, 21,
22]. A good overview is given in [26]. In this paper, we
show that greedy mapping methods are easy to implement
and easy to integrate into complete robot architectures. At
the same time, planning is efficient and results in short travel
distances of the robot. We study Greedy Mapping, a simple
sensor-based planning method that always moves the robot
from its current location to the closest location that it has
not visited (or observed) yet, until the terrain is mapped.
Greedy Mapping assumes that the location of the robot is
always known, for example, from GPS data. It is greedy
because its plans quickly gain information but do not take
the long-term consequences of the movements into account.
Yet, we will show that the travel distances of the robot are
reasonably short. Greedy Mapping has the following desir-
able properties:

∗This work extends previous work by Sven Koenig and Yuri Smirnov.
William Halliburton programmed the robot and performed the experi-
ments. The Intelligent Decision-Making Group is partly supported by an
NSF Award under contract IIS-9984827. The views and conclusions con-
tained in this document are those of the authors and should not be inter-
preted as representing the official policies, either expressed or implied, of
the sponsoring organizations and agencies or the U.S. government.

• Theoretical Foundation: Greedy Mapping has a solid
theoretical foundation that allows one to characterize
its behavior analytically. For example, it is guaranteed
to map terrain under realistic assumptions and its plan-
execution time can be analyzed formally, as we show
in this paper.

• Simple Integration into Robot Architectures:
Greedy Mapping is simple to implement and integrates
well into complete robot architectures. It is robust with
respect to the inevitable inaccuracies and malfunctions
of other architecture components. For example, it does
not need to have control of the robot at all times. This
is important because search methods should only pro-
vide advice on how to act and work robustly even if
that advice is ignored from time to time [1]. For exam-
ple, if a robot has to re-charge its batteries during map-
ping, then it might have to preempt mapping and move
to a known power outlet. Once restarted, the robot
should be able to resume mapping from the power out-
let, instead of having to return to the location where
mapping was stopped (which could be far away) and
resume its operation from there. Greedy Mapping ex-
hibits this behavior automatically.

• Prior Knowledge: Greedy Mapping takes advantage
of prior knowledge about parts of the terrain (if avail-
able) since it uses all of its knowledge about the terrain
when determining which unvisited (or unobserved) lo-
cation is closest to the robot and how to get there
quickly. It does not matter whether this knowledge was
previously acquired by the robot or provided to it.

• Distributed Search: Mapping tasks can be solved
with several robots that each run Greedy Mapping
and share their maps, thereby decreasing the mapping
time. Cooperative mapping is a currently very active
research area [5, 27].

These advantages explain why Greedy Mapping is an
interesting mapping method to study. Greedy Mapping is
probably one of the first mapping methods that come to
mind when empirical robotics researchers quickly need to

= visited (known) vertex

= unvisited known vertex

= known edge

= a shortest path to a closest unvisited vertex

1 2 3

4 5 6

7 8 9

10 11 12

= current vertex of the robot

Figure 1: Possible Behavior of Greedy Mapping

implement a mapping method, and versions of it have been
used on robots. For example, it appears that a version of
Greedy Mapping has been used on a nomad-class tour-guide
robot that offered tours to museum visitors [28].

The contribution of this paper is to provide a theoretical
foundation for Greedy Mapping in form of an analysis of
the travel distance of the robot. Clearly, Greedy Mapping
is too simple a mapping method to minimize the travel dis-
tance. However, we derive bounds on the travel distance in
any terrain that show that the travel distance is reasonably
small. The purpose of this paper is to show that even sim-
ple mapping methods can perform well and thus to provide
some relief to empirical robotics researchers who want to
keep their navigation systems simple and thus do not want
to implement complex mapping methods on their robots.

2 Analysis of the Travel Distance

In the following, we analyze the travel distance of robots
that use Greedy Mapping. To make the mapping task as
hard as possible, we assume that the robot has no initial
knowledge of the topology of the map and that its sensors
provide information only about its close vicinity. We as-
sume, for clarity, that the robot is omni-directional, point-
sized, equipped with only a radial short-distance sensor, and
capable of error-free motion and sensing. The sensors on-
board the robot uniquely identify its location and the neigh-
boring unobstructed locations. This assumption is realistic,
for example, if the locations look sufficiently different or if
the robot has GPS or a similar localization method available.

To analyze the mapping problem formally, we formulate
it as a graph coverage problem similar to the one studied
in [12]. The robot has to map an initially unknown, finite,
undirected graph G = (V,E). The robot begins at some

designated start vertex. When the robot is at a vertex v, it
learns the vertices adjacent to v (that is, the vertices con-
nected to vertex v by an edge), and can identify these ver-
tices when it observes them again at a later point in time.
Greedy Mapping always moves the robot on a shortest path
from its current vertex to a closest unvisited vertex. It termi-
nates when it knows of no unvisited vertices. Greedy Map-
ping must terminate, since each time it moves from the cur-
rent vertex to the closest unvisited vertex, it visits one more
vertex, and there are only a finite number of them. At ter-
mination, Greedy Mapping has visited all vertices that can
be reached from the start location and thus has mapped the
connected component of the graph that contains the start lo-
cation. In the following, we assume without loss of general-
ity that the graph is strongly connected. In this case, Greedy
Mapping maps all of the graph. Figure 1 shows a possible
behavior of Greedy Mapping on a subset of a simple grid.
Note that Greedy Mapping is not constrained to working on
grids but can be used on arbitrary graphs, including Voronoi
diagrams [17].

In the following, we analyze the worst-case travel dis-
tance of Greedy Mapping as a function of the number of ver-
tices of the graph because a small worst-case travel distance
provides a good performance guarantee in all terrains. We
do not take the planning time into account because robots
move so slowly that the total problem solving time is com-
pletely dominated by the travel distance.

2.1 Lower Bound on the Travel Distance

A lower bound on the worst-case travel distance of
Greedy Mapping can be established by example. In this sec-
tion, we present a graph G = (V,E) for which the worst-
case travel distance of Greedy Mapping is Ω(log |V |

log log |V | |V |)
steps [13]. The graph makes Greedy Mapping traverse the
same path repeatedly forward and backward, and this travel
distance is large compared to the number of edges that are
necessary to mislead Greedy Mapping into this behavior.
Our example graph is planar since maps and other kinds of
graphs used in robotics often have this property.

Theorem 1 The worst-case travel distance of Greedy Map-
ping is Ω(log |V |

log log |V | |V |) steps on strongly connected undi-
rected graphs G = (V,E), even if they are planar.

Proof: Consider the planar graphG = (V, E) shown in Figure 2,
which is a variation of a graph in [14]. It consists of a stem with
several branches. Each branch consists of two parallel paths of the
same length that connect the stem to a single edge. The leaves at
the ends of these single edges are crucial to “fooling” Greedy Map-
ping. When the robot traverses one of the parallel paths, Greedy
Mapping might choose to return to the stem along the other path
without first exploring the leaf.

We say that the length of a branch is the length of each of its
two paths. The stem has length nn for some integer n ≥ 3 and

12

13

11 10

start

v4v3v2v1 v8v7v6v5 v10v9 v22v20v18v16v15v14v13v12v11 v26v24v0 v25v23v21v19v17

branches of

stem
1 2 3 4 5 6 7 8 9

unvisited vertices are visited
the order in which the remaining

Greedy Mapping

= visited vertex

= unvisited vertex

= edge traversed in at least one direction

= untraversed edge

v27=vnn

length 0

branches of
length 3

 is now here

Figure 2: Planar Graph G for n = 3

n travel distance |V | travel distance
|V |

3 207 80 2.587500
4 2279 778 2.929306
5 31253 9612 3.251457
6 515085 144014 3.576631
7 9928271 2542528 3.904882
8 219130987 51744018 4.234905
9 5448100629 1193201300 4.565953

10 150617283953 30753086422 4.897631
.

Table 1: Travel Distance of Greedy Mapping

consists of the vertices v0, v1, . . . , vnn . For each integer i with
1 ≤ i ≤ n there are nn−i branches of length

∑i−1

j=1
nj each

(including branches of length zero). These branches attach to the
stem at the vertices vj ni for integers j; if i is even, then 0 ≤ j ≤
nn−i−1, otherwise 1 ≤ j ≤ nn−i . There is one additional single
edge that attaches to vertex v0. The start vertex is vnn .

Greedy Mapping can choose to break ties so as to behave as fol-
lows: start at vertex vnn , traverse the whole stem and all branches,
but bypass all the leaves at their ends, and then traverse the addi-
tional edge attached to vertex v0, as shown in Figure 2. At this
point, Greedy Mapping again traverses the whole stem, visiting
the leaves of the branches of length 0. It then switches directions
and travels along the whole stem in the opposite direction, this
time visiting the leaves of the branches of length n, and so forth,
switching directions repeatedly. It completes its exploration when
it finally visits the leaf of the longest branch.

To summarize, the leaves at the ends of the branches are tried
out in the order indicated in Figure 2. The total travel distance is
Ω(nn+1) steps since the stem of length nn is traversed n+1 times.
To be precise, the total travel distance is (nn+3+3nn+2−8nn+1+
2n2−n+3)/(n2−2n+1) steps. It holds that |V | = Θ(nn) since
|V | = (3nn+2−5nn+1−nn+nn−1+2n2−2n+2)/(n2−2n+1).
This implies that n = Ω(log |V |

log log |V |) since, for all sufficiently large
n, it holds that

log(nn)

log log(nn)
=

n log n

log n+ log log n
≤ n log n

log n
= n.

It follows that the total travel distance is Ω(nn+1) =

Ω(n |V |) = Ω(log |V |
log log |V | |V |) steps.

We also performed a simulation that confirmed our theo-
retical results for n ≤ 6. Table 1 shows how the ratio of the
travel distance and the number of vertices increases as n in-
creases. Our graphs can be adapted to different assumptions
as well. For example, we have assumed that the robot can
identify only the vertices adjacent to its current vertex. The
graph can easily be adapted to sensors with larger looka-
heads, say of x vertices, by replacing each edge with x con-
secutive edges that are connected via x − 1 intermediate
vertices.

2.2 Discussion of the Lower Bound

No mapping method can be sure to omnisciently follow a
best possible path in hindsight. To judge how good its travel
distance is, we therefore need to compare it to other map-
ping methods. Depth-first search is such a method. It al-
ways moves the robot from its current vertex to an adjacent
unvisited vertex. If such a vertex does not exist, it leaves the
current vertex along the edge with which it was entered for
the first time (backtracking). It terminates when it knows
of no unvisited vertices. Its worst-case travel distance is at
most twice the number of vertices since each step either vis-
its a previously unvisited vertex (which can happen at most
once for each vertex) or backtracks from a vertex (which can
also happen at most once for each vertex). In the previous
section, we have shown that the worst-case travel distance
of Greedy Mapping is superlinear in the number of vertices.
Thus, it is not a worst-case optimal mapping method. How-
ever, it has advantages over depth-first search. For example,
depth-first search does not resume mapping from the power
outlet after a robot has moved to recharge itself but rather
requires the robot to return to the location where mapping
was stopped. Second, depth-first search cannot be used by
several robots cooperatively. Third, depth-first search does
not take advantage of prior knowledge about the graph to di-
rect the search, for example, if part of the terrain is already
known and thus does not need to get mapped. While depth-
first search can be modified to tackle some of these prob-
lems [31], these attempts have so far resulted in impractical
robot navigation methods.

2.3 Upper Bound on the Travel Distance

Even though the travel distance of Greedy Mapping is
not optimal in the worst case, it is our experience that it is
reasonably small in practice. In the following, we show that
the disadvantage of Greedy Mapping in terms of its worst-
case travel distance is small compared to the optimal worst-
case travel distance, which is linear in the number of ver-
tices. This justifies its use on mobile robots.

It is easy to see that the worst-case travel distance of
Greedy Mapping is at most |V |2 steps on strongly connected

undirected graphs G = (V,E). Since the robot always fol-
lows a shortest path to the closest unvisited vertex, it reaches
another previously unvisited vertex after at most |V | steps.
Since there are only |V | vertices, it can repeat this step at
most |V | times until it has visited all vertices, resulting in
the upper bound. However, this quadratic upper bound on
the worst-case travel distance of Greedy Mapping leaves a
large gap with the linear optimal worst-case travel distance.
We now narrow the gap by proving a tighter upper bound
of only O(|V |3/2) steps on strongly connected undirected
graphs G = (V,E).

Theorem 2 The worst-case travel distance of Greedy Map-
ping is O(|V |3/2) steps on strongly connected undirected
graphs G = (V,E).

Proof: Let ci (0 ≤ i ≤ |V |−1) denote the ith previously unvisited
vertex that Greedy Mapping visits. c0 is the start vertex of the
robot. Once Greedy Mapping has visited c|V |−1 , it has visited all
vertices at least once and stops. Let Li (1 ≤ i ≤ |V | − 1) denote
the number of steps when the robot moved from ci−1 to ci after it
visited ci−1 for the first time. Note that 0 ≤ Li ≤ |V |. Then, the
travel distance of Greedy Mapping is

∑|V |−1

i=1
Li steps.

Let div (0 ≤ i < |V | − 1, v ∈ V) denote the length of a
shortest path from v to the closest unvisited vertex directly after
the robot first visited ci. Note that 0 ≤ div ≤ |V | and that div is
nondecreasingin i. Furthermore, dici = Li+1 for 0 ≤ i < |V |−1.
Define φi =

∑
v∈V d

i
v (0 ≤ i < |V | − 1). Note that 0 ≤ φi ≤

|V |2 and that φi is nondecreasing in i. The main idea behind our
proof is that the travel distance of the robot is large only if many
of the Li are large. Each large Li results in large increases from
φi−2 to φi−1 . However, there is a limit on how large the φi can
get, which forces the travel distance of the robot to be small.

For all 0 ≤ z ≤ Li+1 (1 ≤ i < |V | − 1), there is at least one
vertex xz at a distance of z edges from vertex ci when the robot
visited ci for the first time. This is so, since the robot then moved
on a shortest path to ci+1 and the path had length Li+1 . Then,
Li+1 ≤ z + dixz because an unvisited vertex was only dixz steps
away from xz when the robot visited ci for the first time, and xz is
z steps away from ci. Furthermore, di−1

xz ≤ z because ci was still
unvisited when the robot visited ci−1 for the first time, and ci is z
steps away from xz (because the graph is undirected). Putting the
two inequalities together, it holds that dixz − di−1

xz ≥ Li+1 − 2z.
Since the div are nondecreasing in i, it holds for 1 ≤ i < |V |−1

that

φi − φi−1 ≥
Li+1∑

z=0

(dixz − di−1
xz)

≥
Li+1∑

z=0

max(Li+1 − 2z,0) ≥ (Li+1)2

4
.

Summing over i results in

|V |−2∑

i=1

(Li+1)2

4
≤ φ|V |−2 − φ0 ≤ |V |2 − 0 = |V |2.

We can now bound
∑|V |−1

i=2
Li. The values Li (2 ≤ i ≤

|V | − 1) are constrained by Li ≥ 0 and
∑|V |−1

i=2
(Li)

2 ≤ 4|V |2.

Calculus shows that maximizing
∑|V |−1

i=2
Li subject to these con-

straints is achieved byLi = 2|V |/
√
|V | − 2 ≤ 2

√
|V |+3 for all

2 ≤ i ≤ |V | − 1. Thus,
∑|V |−1

i=2
Li ≤ (|V | − 2)(2

√
|V |+ 3) ≤

2|V |3/2 + 3|V |. Finally, the travel distance of Greedy Mapping is∑|V |−1

i=1
Li = L1 +

∑|V |−1

i=2
Li ≤ 2|V |3/2 + 4|V |.

2.4 Discussion of the Upper Bound

Our analysis in the previous section showed that the
worst-case travel distance of Greedy Mapping, although not
optimal in the worst case, is reasonably small. It might be
even smaller on graphs with restricted topologies. For ex-
ample, on our robot, we use greedy mapping in conjunction
with regular grids. In this case, all vertices have a small
(bounded) degree. We currently do not know whether this
decreases the worst-case travel distance of Greedy Mapping
and, if so, by how much. Furthermore, the robot has some
initial knowledge of the topology of the map since it knows
that the graph is a subset of a regular grid. This allows the
robot to move to the closest unobserved cell rather than the
closest unvisited cell, which does not change our analytical
results. Assume, for example, the following scenario. The
robot operates on a graph whose vertices can be blocked.
The robot always observes the status of its current vertex
and all adjacent vertices, and can then move to any adja-
cent unblocked vertex. The robot knows which graph it
operates on but initially does not know which vertices are
blocked. It has to determine the status of each vertex (un-
less that is impossible from the start vertex of the robot).
To do this, it uses a version of Greedy Mapping that always
moves towards the closest unobserved vertex, that is, the
closest vertex with unknown status. This is the version of
Greedy Mapping that we implemented on a robot except
that we used a sensor with a much larger range. Now con-
sider graphs of the topology described in Section 2.1 except
that each leaf vertex (including the vertex at the end of the
edge attached to vertex v0) is replaced by an edge. All ver-
tices are unblocked. If n ≥ 6, then the version of Greedy
Mapping that always moves towards the closest unobserved
vertex behaves exactly as described in Section 2.1.

3 A Simple Implementation

We have implemented Greedy Mapping an a Nomad 150
robot using a Sick LMS200 laser scanner. The purpose
of the implementation was not to demonstrate a complete
and realistic mapping scenario. Rather, it was to show that
Greedy Mapping is easy to implement and easy to integrate
into complete robot architectures.

robot

start

Figure 3: The Maze

We used Greedy Mapping in conjunction with a simple
8-connected grid, the cells of which had a size of 10 cen-
timeters by 10 centimeters. All processing was performed
on-board the robot on a Toshiba Pentium MMX 233 MHz
laptop running Redhat 6.2 Linux. The robot interleaved
sensing, planning, and movement. Sensing consisted of a
full 180 degree scan with the laser scanner. Initially, all cells
of the grid were marked as unobserved. The cells that corre-
sponded to detected obstacles were marked as observed and
untraversable. Obstacles were surrounded by traversable
cells with a large cost, to bias the robot away from them.
The other cells swept by the sensor were marked as ob-
served and traversable. Cells at distance one from obsta-
cles had traversal cost ten, cells at distances two or three
from obstacles had traversal cost five, and cells at larger
distances from obstacles had traversal cost one. Planning
found a shortest path from the current location of the robot
to the closest unobserved cell, the first action of which was
executed. Then, the cycle repeated until all cells had been
observed or the shortest path to the closest unobserved cell
had infinite cost. The whole system was implemented by
one graduate student from scratch in a couple of days, which
demonstrated that Greedy Mapping is really easy to imple-
ment and integrate into complete robot architectures.

We used the robot to map a maze of size 28 by 20 feet
that we constructed out of polystyrene insulation on the
ground floor of our building. We let the robot map the maze
five times. All five experiments were successful. Figure 3
shows a top view of the maze. Figure 4 shows a snapshot
of the map during map building, together with the shortest
path from the current location of the robot to a closest unob-
served cell. The part of the maze that corresponds to the part
of the map shown in the screen shot is outlined in Figure 3.

The simple version of Greedy Mapping analyzed in this
paper assumes that there is neither position nor sensor un-
certainty. The assumption that there is no position uncer-
tainty makes Greedy Mapping well suited for outdoor nav-
igation in conjunction with GPS. This assumption was not

robot

start

obstacle
space close to obstacles
unknown
freespace

robot

start

Figure 4: Screen Shot of Part of the Map

justified in our experiments since the location of the robot
was estimated using a simple dead-reckoning technique.
The map shown in Figure 4 shows some of the resulting
inaccuracies. However, the runs were not long enough for
this to become a problem. The assumption that there is no
sensor uncertainty was justified. The Sick laser scanner is
highly accurate and has sufficient resolution and range ac-
curacy.

4 Conclusions

In this paper, we studied Greedy Mapping, a simple map-
ping method that always moves the robot to the closest loca-
tion that it has not visited (or observed) yet, until the terrain
is mapped. We analyzed the worst-case travel distance of
Greedy Mapping using a graph-theoretic framework. We
showed that the worst-case travel distance of Greedy Map-
ping is not optimal since it is superlinear in the number of
vertices while the worst-case travel distance of depth-first
search is only linear in the number of vertices |V |. How-
ever, we also showed that the worst-case travel distance of
Greedy Mapping is at most on the order of |V |3/2 steps in
general and thus that its performance disadvantage is small.
This upper bound provides a theoretical justification for us-
ing Greedy Mapping in practice especially since it has a va-
riety of advantages over alternative mapping methods. For
example, it is simple to implement and integrate into com-
plete robot architectures, resumes mapping from the power
outlet after the robot has moved to recharge itself instead of
having to return to the location where mapping was stopped
(which could be far away), takes advantage of prior knowl-
edge about parts of the terrain (if available), and can be used
by several robots cooperatively. In future work, we intend
to close the gap between the upper and lower bounds of the
worst-case travel distance that the results presented in this
paper were able to reduce but could not yet eliminate. We

also intend to analyze more complicated mapping methods
including those that can deal with sensor uncertainty and the
resulting position uncertainty [29, 30]. We believe that the
analysis presented here provides a good start for this venue.

References

[1] P. Agre and D. Chapman. Pengi: An implementation of a
theory of activity. In Proceedings of the National Conference
on Artificial Intelligence, pages 268–271, 1987.

[2] S. Albers and M. Henzinger. Exploring unknown envi-
ronments. SIAM Journal on Computing, 29(4):1164–1188,
2000.

[3] R. De Almeida and C. Melin. Exploration of unknown envi-
ronments by a mobile robot. Intelligent Autonomous Systems,
2:715–725, 1989.

[4] B. Awerbuch, M. Betke, R. Rivest, and M. Singh. Piecemeal
graph exploration by a mobile robot. Information and Com-
putation, 152(2):155 –172, 1999.

[5] W. Burgard, D. Fox, M. Moors, R. Simmons, and S. Thrun.
Collaborative multi-robot exploration. In Proceedings of the
International Conferenceon Robotics and Automation, pages
476–481, 2000.

[6] C. Choo, J. Smith, and N. Nasrabadi. An efficient terrain
acquisition algorithm for a mobile robot. In Proceedings of
the International Conference on Robotics and Automation,
pages 306–311, 1991.

[7] H. Choset. Sensor-Based Motion Planning: The Hierarchi-
cal Generalized Voronoi Graph. PhD thesis, California Insti-
tute of Technology, Pasadena (California), 1996.

[8] X. Deng, T. Kameda, and C. Papadimitriou. How to learn an
unknown environment; I: The rectilinear case. Journal of the
ACM, 45(2):215 –245, 1998.

[9] X. Deng and C. Papadimitriou. Exploring an unknown graph.
In Proceedings of the Symposium on Foundations of Com-
puter Science, pages 355–361, 1990.

[10] G. Dudek, P. Freedman, and S. Hadjres. Using local infor-
mation in a non-local way for mapping graph-like worlds.
In Proceedings of the International Conference on Artificial
Intelligence, pages 1639–1647, 1993.

[11] G. Dudek, M. Jenkin, E. Milios, and D. Wilkes. Robotic
exploration as graph construction. IEEE Transactions on
Robotics and Automation, 7(6):859–865, 1991.

[12] B. Kalyanasundaram and K. Pruhs. Constructing competitive
tours from local information. Theoretical Computer Science,
130:125–138, 1994.

[13] S. Koenig. Exploring unknown environments with real-time
search or reinforcement learning. In Proceedings of the
Neural Information Processing Systems, pages 1003–1009,
1999.

[14] S. Koenig and Y. Smirnov. Graph learning with a nearest
neighbor approach. In Proceedings of the Conference on
Computational Learning Theory, pages 19–28, 1996.

[15] B. Kuipers and Y. Byun. A robust, qualitative method for
robot spatial learning. In Proceedings of the National Con-
ference on Artificial Intelligence, pages 774–779, 1988.

[16] S. Kwek. On a simple depth-first search strategy for explor-
ing unknown graphs. In Proceedings of the Workshop on Al-
gorithms and Data Structures, volume 1272 of Lecture Notes
in Computer Science, pages 345 –353. Springer, 1997.

[17] J.-C. Latombe. Robot Motion Planning. Kluwer Academic
Publishers, 1991.

[18] J. Leonard, H. Durrant-Whyte, and I. Cox. Dynamic map
building for an autonomous mobile robot. International
Journal of Robotics Research, 11(4):286–298, 1992.

[19] V. Lumelsky and A. Stepanov. Path-planning strategies for
a point mobile automaton moving amidst unknown obstacles
of arbitrary shape. Algorithmica, 2:403–430, 1987.

[20] G. Oriolo, G. Ulivi, and M. Vendittelli. Real-time map build-
ing and navigation for autonomous robots in unknown envi-
ronments. IEEE Transactions on Systems, Man, and Cyber-
netics, 28(3):316–333, 1998.

[21] P. Panaite and A. Pelc. Exploring unknown undirected
graphs. Journal of Algorithms, 33(2):281 –295, 1999.

[22] C. Papadimitriou and M. Yannakakis. Shortest paths without
a map. Theoretical Computer Science, 84(1):127–150, 1991.

[23] L. Prasad and S. Iyengar. A note on the combinatorial struc-
ture of the visibility graph in simple polygons. Theoretical
Computer Science, 140(2):249–263, 1995.

[24] N. Rao. Algorithmic framework for learned robot navigation
in unknown terrains. IEEE Computer, 22(6):37–43, 1989.

[25] N. Rao. Robot navigation in unknown generalized polygonal
terrains using vision sensors. IEEE Transactions on Systems,
Man, and Cybernetics, 25(6):947–962, 1995.

[26] N. Rao, S. Hareti, W. Shi, and S. Iyengar. Robot navigation
in unknown terrains: Introductory survey of non-heuristic al-
gorithms. Technical Report ORNL/TM–12410, Oak Ridge
National Laboratory, Oak Ridge (Tennessee), 1993.

[27] K. Singh and K. Fujimura. Map making by cooperating mo-
bile robots. In Proceedings of the International Conference
on Robotics and Automation, pages 254–259, 1993.

[28] S. Thrun, A. Bücken, W. Burgard, D. Fox, T. Fröhlinghaus,
D. Hennig, T. Hofmann, M. Krell, and T. Schmidt. Map
learning and high-speed navigation in RHINO. In D. Ko-
rtenkamp, R. Bonasso, and R. Murphy, editors, Artificial In-
telligence Based Mobile Robotics: Case Studies of Success-
ful Robot Systems, pages 21–52. MIT Press, 1998.

[29] S. Thrun, W. Burgard, and D. Fox. A real-time algorithm for
mobile robot mapping with applications to multi-robot and
3D mapping. In Proceedings of the International Conference
on Robotics and Automation, pages 321–328, 2000.

[30] S. Thrun, D. Fox, and W. Burgard. Probabilistic mapping
of an environment by a mobile robot. In Proceedings of the
International Conferenceon Robotics and Automation, pages
1546–1551, 1998.

[31] I. Wagner, M. Lindenbaum, and A. Bruckstein. Distributed
covering by ant-robots using evaporating traces. IEEE Trans-
actions on Robotics and Automation, 15(5):918–933, 1999.

