
Trail-Laying Robots for Robust Terrain Coverage

Jonas Svennebring
College of Computing

Georgia Institute of Technology
Atlanta, GA 30312-0280

jonas@cc.gatech.edu

Sven Koenig
College of Computing

Georgia Institute of Technology
Atlanta, GA 30312-0280
skoenig@cc.gatech.edu

Abstract— Robotics researchers have studied robots that
can follow the trails laid by other robots. We, on the other
hand, study robots that leave trails in the terrain to cover
closed terrain once or repeatedly. How to design such ant
robots has so far been studied only theoretically for gross
robot simplifications. In this paper, we describe for the first
time how to build physical ant robots that cover terrain. We
show that a modified version of node counting can model the
behavior of the ant robots and report on first experiments
that we performed to understand their behavior better. These
experiments confirm that our ant robots indeed cover terrain
robustly even if the trails are of uneven quality, the ant robots
are moved without realizing this, or some trails are destroyed.
Finally, we report the results of a large-scale experiment
where ten simulated ant robots covered a factory floor of
25 by 25 meters repeatedly over 85 hours without any ant
robots getting stuck.

I. I NTRODUCTION

How to cover terrain once or repeatedly is an important
problem in mobile robotics, for example, in the context
of mine sweeping, surveillance, surface inspection, and
guarding terrain. Consequently, researchers have devel-
oped many coverage methods. Most of these methods
assume that the robots know their location. The currently
popular POMDP-based robot architectures [5] attempt to
overcome this problem by providing robots with the best
possible location estimates [13]. However, this approach
is complicated and can be brittle for robots that are small
and cheap and thus have extremely noisy actuators and
sensors. In this paper, we therefore explore trail-laying
robots (ant robots) as an alternative to this approach. Our
inspiration came from those researchers who have studied
ant robots that can follow the trails laid by other ant robots,
similar to ants that lay and follow pheromone trails [1].
Ant robots that follow trails arrive at their destination with-
out having to know their exact location, which eliminates
solving difficult and time-consuming localization tasks.
They need only simple sensors, namely sensors that are
able to sense the trails, which are artificial landmarks that
can be carefully designed to simplify sensing. We utilize
a similar idea to build ant robots that cover closed terrain
once or repeatedly without knowing where they are in
the terrain. As before, they only have to leave trails in the
terrain and sense the trails in their neighborhood. Different
from before, however, they need to move away from the
trails rather then follow them.

In previous work, we and other researchers have studied
theoretically how to build ant robots for gross robot
simplifications. Unfortunately, the resulting approaches
are not very practical for implementations on physical
ant robots. In this paper, we describe for the first time
how to build physical ant robots that cover closed terrain
once or repeatedly. Our ant robots robustly cover terrain
even if they do not have any memory, do not know the
terrain, cannot maintain maps of the terrain, nor plan
complete paths. In particular, they cover terrain even if
the trails are of uneven quality, some ant robots are moved
without realizing this (say, by people running into them
and pushing them accidentally to a different location) or
some trails are destroyed.

We first discuss related work, the robot that we use and
how we augmented it with trail-laying and trail-sensing
hardware and ant-coverage software, and first experiments
that we performed to understand its behavior better. We
then show how a modified version of node counting can
model its behavior. Finally, we report the results of a large-
scale simulation experiment where ten ant robots covered
a factory floor of 25 by 25 meters repeatedly over 85 hours
without any ant robots getting stuck.

II. RELATED WORK

Empirical researchers have studied physical ant robots
that follow trails. Some researchers have imitated nature
closely [8] while others only got inspiration from it. The
ant robots have typically left short-lasting trails in the
terrain, such as heat trails, alcohol trails, and odor trails
[11], [12]. Some ant robots have also used virtual trails
only [3], [9], [14]. We, on the other hand, study ant robots
that leave actual trails in the terrain to cover it once
or repeatedly. The different task demands both longer-
lasting trails (to be able to mark terrain that has already
been covered) and different ant-coverage software. There
was an earlier effort by Gabrieli, Katan and Rogel at
the Technion to build terrain covering ant robots that lay
trails using an evaporating liquid but no results have been
reported on the success of this project.

III. T HEORETICAL FOUNDATION

Theoretical researchers have studied ant robots that
cover terrain for gross robot simplifications [6], [16]. For



0 0 0 0 0

0 0 0 0 0

0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

3 0 0 0 0

0 0 0 0 0

0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

3 1 0 0 0

2 0 0 0 0

0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

3 1 0 0 0

2 2 0 0 0

1 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

3 1 0 0 0

2 2 1 0 0

1 2 0 0

0 0 0 0 0 0

0 0 0 0 0 0

3 1 1 0 0

2 2 1 0 0

1 2 0 0

0 2 0 0 0 0

0 0 0 0 0 0

3 1 1 0 0

2 2 2 0 0

1 2 0 0

0 2 1 0 0 0

0 1 0 0 0 0

3 1 2 0 0

2 2 2 0 0

1 2 0 0

0 2 1 0 0 0

1 1 1 0 0 0

time step 0 time step 1 time step 2 time step 3

time step 4 time step 5 time step 6 time step 7

Fig. 1. Node Counting.

Fig. 2. Pebbles (left: birds-eye view; right: bottom view).

example, we have studied real-time search methods [7] for
this purpose in earlier work. Real-time search methods are
able to cover graphs repeatedly with a small cover time
[15], [6], which suggests that they can be used to build
ant robots that cover terrain once or repeatedly [6], [16].
The simplest real-time search method is probably node
counting [10]. Ant robots that use node counting work
as follows: Imagine that they operate on a four-connected
grid and can move to each of the four neighboring cells
of their current cell provided that the destination cell is
traversable. They associate a number with each cell that
corresponds to how often the cell has been visited by
them. These numbers can be interpreted as markings that
they leave at the cells. When an ant robot enters a cell,
it increases the number of the cell by one. It then moves
to the neighboring cell with the smallest number, breaking
ties randomly. Figure 1 demonstrates the behavior of three
ant robots that all use node counting. White cells are
empty and gray cells are blocked. If a cell contains an
ant robot, one of its corners is marked. Different corners
represent different ant robots. For simplicity, we make the
(unrealistic) assumption in the figure that the ant robots
move in a given sequential order and that several ant robots
can be in the same cell at the same time.

Single ant robots or teams of ant robots that use node
counting cover grids and, more generally, all strongly
connected graphs once or repeatedly. The ant robots do
not even need to communicate with each other except via
the markings. They only need to have very limited sensing
and computational capabilities and do not need to know or
learn a map of the terrain. They only have to leave mark-
ings in the terrain, sense markings at their neighboring

Fig. 3. Test Terrain (left: birds-eye view; right: top view).

cells, and change the marking of their current cell. Further-
more, ant robots that use node counting have advantages
over ant robots that use other methods to cover terrain.
For example, they navigate far more systematically than
ant robots that perform random walks and, different from
ant robots that use chronological backtracking (depth-first
search), can be suspended and restarted somewhere else,
without even knowing that they were moved or where they
got restarted. This is important because sometimes ant
robots might get pushed accidentally. Most of the time
they will not even realize this. Ant robots that use node
counting handle these situations automatically. It is known
that the cover time of ant robots that use node counting
can be exponential in (the square root of) the number
of vertices on strongly connected undirected graphs [6],
where the cover time is the time it takes to visit each vertex
at least once. It is currently unknown whether the cover
time is smaller on grids but experimental results indicate
that it increases only linearly with the number of cells on
grids and, for grids of a given size, remains small over time
as the terrain is covered repeatedly. Unfortunately, despite
these advantages, it is very difficult to build physical ant
robots based on node counting and other real-time search
methods. Their unrealistic assumptions include that the
ant robots only move in discrete steps, that the ant robots
have markings of a large number of different intensities
available, that they can mark cells uniformly, and so on.
Methods that cover continuous terrain [17] assume no
actuator or sensor noise or largely depend on random
motion. In this paper, we describe for the first time how to
build physical ant robots that cover closed terrain once or
repeatedly and demonstrate that they indeed cover terrain
robustly even if the trails are of uneven quality, the ant
robots are moved without realizing this, or some trails
are destroyed. Figure 2 (left) shows our prototype ant
robot, Pebbles, and Figure 3 (left) shows one of our test
environments.

IV. T HE ANT-COVERAGE HARDWARE

For our research, we use a Pebbles III robot from IS
Robotics, shown in Figure 2 (left) from birds-eye view
and Figure 2 (right) from below. Its size with the tracks
is 45 (width) by 44 (length) centimeters, and the size
of its main body is 26 by 41 centimeters. Its on-board
computer is based on a Motorola 68000 micro-controller



Fig. 4. Navigation Example.

that executes a special version of Common Lisp. It uses
several peripheral micro-controllers to control its sensors
and actuators, including its sonar sensors, its six infrared
proximeters (sensing obstacles in the front, front-left,
front-right, left, right, and rear of Pebbles), and its bump
sensors for obstacle avoidance as well as its two motors
for actuation. It navigates on two tracks and uses two re-
chargeable 7.2V NiCd batteries that enable it to operate
for about 30 minutes. We added both a trail-laying and a
trail-sensing mechanism to Pebbles. The new components
are marked in Figure 2 (right). Eventually, Pebbles will
lay trails by dripping a fluorescence or phosphorescence
substance. For the time being, however, it lays trails using
a black pen with a thick tip that is mounted below the
front center of its body (C). To detect trails, it uses two
one-dimensional arrays of proximeters (trail sensors) that
are mounted to the right (A) and left (B) of the pen, which
allows it to sense its trails right away and avoids it getting
trapped in local minima. Each trail-sensor array consists
of four Sharp 2L01 proximeters and covers an area of
about 4 by 1 centimeters. Each proximeter detects the
amount of light that is reflected from an LED via the
floor to it. This allows it to detect trails since there is
less surface reflection in darker areas, that is, on trails.
The signal from the proximeter is then sent through a
multiplexer to an analog-to-digital converter integrated
in an Atmel AVR Mega163 micro-controller (D) and
sampled approximately 2000 times a second. The value
that corresponds to the darkest area is stored until a read
command is sent from the external computer via an RS232
interface (E) approximately every five times a second. The
value is then thresholded, reported, and subsequently reset
to zero. This allows Pebbles to move fast without missing
trails.

V. THE ANT-COVERAGE SOFTWARE

The ant-coverage software on Pebbles implements a
schema-based navigation strategy [2] with two behaviors
that are active at the same time, namely an obstacle-
avoidance behavior and a trail-avoidance behavior. Pebbles
switches the schema-based navigation strategy off only in
the rare occasion when one of its bump sensors triggers,

that is, if it ran into an obstacle. In this case, it moves
away from the obstacle for a short time before it resumes
its normal operation. We use the example situation from
Figure 4 to explain the obstacle-avoidance behavior, the
trail-avoidance behavior, and their combination.

A. Obstacle-Avoidance Behavior

The obstacle-avoidance behavior moves Pebbles away
from walls and is fairly standard. The obstacle-avoidance
vector is the weighted sum of a number of vectors. There
is one vector for each obstacle sensor. It starts at the
obstacle sensor and points towards the center of Pebbles.
The length of the vector is inversely proportional to the
distance of the sensed obstacle from Pebbles. Its weight is
proportional to the importance of the obstacle sensor. The
weight of the front obstacle sensor is 1/10, the weight of
the rear obstacle sensor is 1/20, the weight of the front left
and front right obstacle sensors is 1/40, and the weight of
the left and right obstacle sensors is 1/55. The weights
reflect, for example, that obstacles in front of Pebbles
are more important than obstacles in its rear. The lines
in Figure 4 show the placement of the obstacle sensors
and the distance from Pebbles to the closest wall. The
front, front-left, left and rear obstacle sensors sense walls.
The resulting obstacle-avoidance vector has length 0.1367
and points about 137 degrees to the right of Pebbles,
suggesting to turn away from the walls to the left of it.

B. Trail-Avoidance Behavior

The trail-avoidance behavior moves Pebbles away from
trails. Its vector points away from trails with a fixed length
of 0.1. There are four proximeters in the left trail-sensor
array and four proximeters in the right trail-sensor array.
Each proximeter of the left (right) trail-sensor array that
senses a trail changes the angle of the vector by 17 degrees
to the right (left). Thus, if all eight proximeters sense
trails, then the vector points straight ahead. If all four
proximeters of the left trail-sensor array sense trails but
no proximeter of the right trail-sensor array senses a trail,
then the vector points 68 degrees to the right. A problem
with this approach is that the trail-sensor array observes
only a small area of the terrain. This makes it difficult for
Pebbles to determine a good trail-avoidance vector based
on the current information from the sensor array alone.
Pebbles therefore calculates the direction of the new trail-
avoidance vector as above but then adds the direction of
the old trail-avoidance vector to it, weighted with a decay
factor smaller than one. (If the resulting angle is larger
than 90 degrees to the left or right, it gets reduced to
90 degrees.) This way, the new trail-avoidance vector is
influenced not only by the current information from the
trail-sensor array but also the information from the trail-
sensor array in the recent past. If Pebbles continues to
detect trails on the same side, it turns more and more



Fig. 5. Trail-Avoidance Behavior (left: bad; right: good).

sharply away from that side. If it stops detecting trails, it
turns less and less sharply until it moves straight again.
The decay factor ensures that the influence of trails decays
over time, since they are further away from Pebbles and
their actual location is no longer known with certainty.
It cannot be set too low because otherwise Pebbles will
make many small turns when it senses a trail. These
turns need to be sharp to turn Pebbles sufficiently. Thus,
the motion of Pebbles will be jerky when it senses a
trail. On the other hand, the decay factor cannot be set
too high either because otherwise Pebbles will continue
to slowly turn even long after it has stopped sensing a
trail. We determined experimentally that a decay factor of
0.5 resulted in smooth trajectories that turn Pebbles for
only a short time after it senses a trail. So, if Pebbles
continuously senses a trail on its left (that is, exactly
one proximeter of its left trail-sensor array always senses
a trail), then Pebbles will eventually turn 34 degrees to
the right. Usually, the trail is no longer below its body
before it achieves this turn angle, resulting in turns of
only approximately 30 degrees before it moves straight
again. The following table gives a fictitious example (that
is different from the example from Figure 4) of exactly
how the direction of the trail-avoidance vector is computed
over time, assuming for simplicity that each trail is sensed
by only one proximeter at a time. All angles are relative
to Pebbles and were rounded to integers.

Time Event Old Angle New Angle
(in degrees) (in degrees)

0.0000
1 no trail 0.0000 0.0000+0.5×0.0000= 0.0000
2 trail on the right side 0.0000 −17.0000+0.5×0.0000= -17.0000
3 no trail -17.0000 0.0000−0.5×17.0000= -8.5000
4 trail on the right side -8.5000 −17.0000−0.5×8.5000= -21.2500
5 trail on the left side -21.2500 17.0000−0.5×21.2500= 6.3750
6 no trail 6.3750 0.0000+0.5×6.3750= 3.1875

For our main example, Figure 4 shows that the trail has
been under the right trail-sensor array for the last 10 to
15 centimeters. The resulting vector of the trail-avoidance
behavior has length 0.1 and points about 34 degrees to
the left of Pebbles, thus suggesting to turn away from the
sensed trail.

C. Combining the Behaviors

The obstacle-avoidance behavior and the trail-avoidance
behavior both produce their own recommendation for
how Pebbles should move. Pebbles always calculates the
weighted average of the obstacle-avoidance and trail-
avoidance vectors and moves in the direction of the

resulting vector with a speed that is proportional to the
length of this vector. The behavior of Pebbles is sensitive
to the choice of these weights, and we thus optimized them
by hand for the physical characteristics of Pebbles. The
weight of the obstacle-avoidance behavior is larger than
the weight of the trail-avoidance behavior since obstacle
avoidance is more important than trail avoidance. The
obstacle-avoidance behavior suggests to move right in
the example from Figure 4, whereas the trail-avoidance
behavior suggests to move left. This disagreement results
in a short overall vector and thus a slow speed of Pebbles,
which is desirable. The higher weight of the obstacle-
avoidance vector results in an overall vector of length
0.0410 that points about 114 degrees to the right of
Pebbles. Once Pebbles has turned away from the walls,
its speed increases again and its navigation behavior is
again mostly influenced by the trail-avoidance behavior.

The weight of the obstacle-avoidance behavior cannot
be set too low because otherwise Pebbles can run into
walls. On the other hand, it cannot be set too high
either because otherwise Pebbles does not cover terrain
close to walls and corners. Similarly, the weight of the
trail-avoidance behavior cannot be set too low because
otherwise Pebbles does not avoid previously covered ter-
rain well enough and the cover time thus increases. On
the other hand, it cannot be set too high either because
otherwise trails can become barriers for Pebbles that are
time consuming to cross and the cover time thus increases
as well. To understand this phenomenon, assume that a
trail separates two parts of a room that does not contain
other trails. This trail is hard to cross for Pebbles because
it gets repelled from it, as the last turn of Pebbles in
Figure 5 (left) shows. Furthermore, the trail gets reinforced
every time Pebbles approaches it but does not cross it.
The emerging barrier can only be crossed easily once
the trail density in the part of the room that Pebbles is
in has become sufficiently high. Thus, the weight of the
trail-avoidance behavior needs to get tuned carefully to
allow Pebbles to cross orthogonal trails. Then, Pebbles
first turns, say right, to turn away from the trail but
continues to move forward and thus crosses the trail before
turning. It then turns left, again to turn away from the
trail, and eventually continues on its old trajectory, as
shown in Figure 5 (right). If the weight of the trail-
avoidance behavior is tuned carefully, this behavior clearly
dominates, as shown in Figure 6.

VI. EXPERIMENTS

We conducted several experiments to evaluate the per-
formance of Pebbles. We used areas of sizes from 2 by
2.5 meters to 3 by 4.5 meters. Their floor was covered
with white paper, and they were surrounded with brown
cardboard walls.



Fig. 6. Start of First Terrain Coverage (equal time steps).

0 50 100 150 200 250 300 350
0

10

20

30

40

50

60

70

80

90

100

P
er

ce
nt

 o
f A

re
a 

C
ov

er
ed

Time (seconds)

Fig. 7. Area Covered.

A. Regular Coverage

We first verified that Pebbles indeed covers terrain
of different shapes multiple times without getting stuck,
including the one shown in Figure 3 (left). Figure 6 shows
the beginning of an example run in a simple rectangular
terrain, where we shaded the covered area by hand in
dark gray. We then measured the cover times for repeated
terrain coverage. We say that the first coverage of the
terrain is completed when each patch has been swept at
least once by the body of Pebbles (except for patches
close to walls). We say that an additional coverage of

the terrain is completed when each patch has been swept
at least once by the body Pebbles after the previous
coverage was completed. For example, Pebbles covered
an obstacle-free terrain of size 2 by 2.5 meters in 320
seconds. Figure 7 shows the covered area as a function
of time, until the first coverage is completed. Pebbles
covered terrain very quickly at the beginning (when it
is easy to find uncovered areas since there are so many
of them) but needed more time to find uncovered areas
towards the end of the first coverage. This is true for the
subsequent coverages as well. Pebbles needed 329 seconds
for the second coverage and 489 seconds for the third
coverage. The cover times increase because the terrain gets
saturated with trails. This causes two problems. It makes
it harder to place new trails and decreases the influence
of each newly placed trail on the navigation behavior of
Pebbles. Although more complex ant-coverage hardware
and software will certainly be able to shorten the cover
time, the current software of Pebbles does well given the
small sensor field. For example, it faired well compared
to a navigation behavior where Pebbles moves forward
(without laying trails) while avoiding obstacles. In this
case, Pebbles moved along the walls and covered about
50-60 percent of the terrain in 451 seconds but never
covered the terrain completely in a reasonable amount of
time.

B. Error Conditions during Coverage

One of the attractive properties of our ant-coverage
software is that it covers closed terrain robustly even in
situations where the trails are of uneven quality, where
Pebbles is moved without realizing this, and where some
trails are destroyed. We demonstrated the latter two prop-
erties earlier for rather unrealistic robot simulations [6]
and demonstrate in the following that they continue to
hold on Pebbles.

1) Trails of Uneven Quality:First, we measured the
cover time when the pen of Pebbles was nearly exhausted.
This is important because its pen is not constantly refilled
with ink and its trails thus get lighter over time and
harder to detect. This makes it more likely that Pebbles
misses trails. Since Pebbles moves at different speeds, the
pressure on the pen changes and the trails are not only
faint but also of uneven quality. Since the intensity of the
trails adds up over time, Pebbles continued to cover terrain
robustly although the resulting cover time of 573 seconds
is larger than the regular cover time of 320 seconds. Its
coverage became also more uneven since some trails were
stronger than others and became barriers for Pebbles.

2) Moving Pebbles:Second, we measured the cover
time when Pebbles was moved without realizing this. This
is important because people or other ant robots can easily
run into Pebbles and accidentally push it to a different
location. In the middle of a run, we moved Pebbles twice



trails after first coverage trails after tenth coverage

cl
ea

ni
ng

no
 c

le
an

in
g

with one ant robot with one ant robot

Fig. 8. Trails (with and without cleaning).

0 10 20 30 40 50 60 70 80 90 100
0

500

1000

1500

2000

2500

3000

Coverage Number

C
ov

er
 T

im
e 

(m
in

ut
es

)

Modified Node Counting

TeamBots Simulation of Pebbles

TeamBots Simualtion of Random Walk

C
ov

er
 T

im
e 

(s
te

ps
)

0 

20000 

16666 

13333 

10000 

6666 

3333 

Fig. 9. Cover Time.

by a couple of meters in a random direction. Pebbles
coped well with this problem since the ant-coverage
software does not need to know its current location. The
resulting cover time of 385 seconds is larger than the
regular cover time of 320 seconds but the difference is
not significant. This is not surprising since one of the
random displacements moved Pebbles to the start corner
(which increases the cover time) but the other one moved
Pebbles to a location that it had not covered before (which
decreases the cover time).

3) Removing Patches of Trails:Third, we measured
the cover time when some trails were destroyed. This is
important because trails can get destroyed accidentally due
to wind, dust, rain, humans, or other ant robots. After
Pebbles had covered about 90 percent of the terrain, we
randomly placed three sheets of paper of size 15 by 20
centimeters on areas that it had already covered and that
thus contained trails. Pebbles covered the three areas again
only 103 seconds later since it was drawn to each area
once it had sensed part of it and noticed that it did not
contain trails.

VII. C OMPUTATIONAL MODELS OFANT ROBOTS

So far, we have shown that our ant-coverage software
makes Pebbles cover closed terrain robustly. We confirmed

these results in TeamBots [4], a realistic robot simulator,
with only slight modifications to the ant-coverage soft-
ware. TeamBots has no battery limit and thus allowed
us to extend Figure 7 to a large number of coverages.
Note that the cover times of Pebbles cannot be compared
to the cover times in simulation since the simulation
uses its own clock, which doesnot correspond to actual
time. The top row of Figure 8 shows that the terrain
gets saturated with trails over time. (The square in the
lower left corner corresponds to the simulated Pebbles.)
The graph “TeamBots Simulation of Pebbles” in Figure 9
shows how this causes the cover time to increase for a
terrain of size 10 by 10 meters. Eventually, the terrain is
completely saturated with trails and the behavior of the
simulated Pebbles degrades to a random walk, resulting
in a cover time that is 40 times larger than the initial
cover time. The cover time of node counting (not shown
in the figure), on the other hand, remains small over
time since node counting does not model that the terrain
gets saturated with trails over time. We therefore modify
node counting to provide a better computational model of
Pebbles. Remember that ant robots that use node counting
increase the number of their current cell by one and then
move to the neighboring cell with the smallest number,
breaking ties randomly. Ant robots that use the modified
version of node counting, on the other hand, increase the
number of their current cell by one only with probability
(k− x)/k, wherex is the current number of the cell and
k is a constant (we usek = 170). Otherwise they leave
the number of their current cell unchanged. Then they
move to the neighboring cell with the smallest number,
breaking ties randomly. To understand the idea behind the
modified version of node counting, assume that each cell
is divided intok small areas that are initially unmarked.
Let x be the number of marked areas. If the ant robots
randomly select one area of their current cell and mark
it, then x increases by one with probability(k−x)/k, the
probability that the chosen area was unmarked. Otherwise,
x remains unchanged. The number of marked areas of each
cell corresponds to its number. Thus, the probability with
which ant robots that use the modified version of node
counting increase the number of a given cell gets smaller
and smaller over time, until the number of the cell isk
and then does not change any longer. The modified version
of node counting is a somewhat simplistic computational
model of Pebbles but does model that it becomes harder
and harder to add trails to areas that already contain a
large number of trails, and that the terrain eventually gets
saturated with trails and the behavior of Pebbles then
degrades to a random walk. The modified version of node
counting also models an interesting effect that we did not
anticipate. Figure 9 shows that the cover times of both
ant robots that use the modified version of node counting
(in an obstacle-free grid of size 15 by 15 cells) and the



0 10 20 30 40 50 60 70 80 90 100
0

50

100

150

200

250

300

350

400

450

500

C
ov

er
 T

im
e 

(m
in

ut
es

)

Coverage Number

TeamBots Simulation of Pebbles with Cleaning

TeamBots Simulation of Pebbles without Cleaning

Fig. 10. Cover Time.

simulated Pebbles (in an obstacle-free terrain of size 10
by 10 meters) peak and only then reduce to the cover
time of a random walk, at which point the cover time
does not change any longer. The modified version of node
counting predicted the peak first and only then did we run
experiments with our ant robots to verify it. We verified
the cover time of a random walk by saturating the terrain
with trails. It turns out that the peak is due to local minima
in the trail density. For example, consider an area that is
not completely saturated with trails but enclosed by areas
that are completely saturated. It then takes both ant robots
that use the modified version of node counting and the
simulated Pebbles a long time to leave this area, longer
than a random walk, since they first need to increase the
trail density in their area to that of the surrounding ones,
which takes time. This explains the peak. We assumed that
each cell was divided intok small areas. This number is
a parameter that determines how quickly the terrain gets
saturated. We determined it empirically for our example
to make the peaks of the cover times coincide.

VIII. S CALING UP

It is undesirable that the terrain gets saturated with trails
over time since this increases the cover time. Thus, the
trails need to either evaporate or get removed to keep
the cover time small in the long run. Evaporating trails
are problematic because the evaporation rate needs to get
optimized for each application, for example, the size of
the terrain. Thus, we propose to use long-lasting trails
that Pebbles removes itself. However, the pen that Pebbles
currently uses is not suited for this purpose. Instead, we
simulated trails that consist of drops of a fluorescence or
phosphorescence substance and used a cleaning method
that removes all trails in two cleaning areas. Depending
on the trail material, the trails could be removed with
brushes, vacuum cleaners, heat (for alcohol trails), and
light (for some photo chemicals) but it is future work for
us to build such hardware. The bottom row of Figure 8

Fig. 11. Large-Scale Simulation Study.

shows that this prevents the terrain from getting saturated
with trails and Figure 10 shows that the cover time remains
a small constant even after a large number of coverages in
a terrain of size 10 by 10 meters. We also confirmed that
the simulated Pebbles with the cleaning method continues
to cover closed terrain robustly even in situations where
it is moved without realizing this and where some trails
are destroyed.

We then performed a large-scale simulation study to
demonstrate that a large team of our ant robots with the
cleaning method covers a large terrain repeatedly over
long periods of time without ant robots getting stuck. We
placed ten ant robots into an area of 25 by 25 meters that
resembled a factory floor with two production lines and a
number of office rooms, shown in Figure 11. This complex
but very realistic environment is very difficult to cover due
to its many narrow passages. We stopped the experiment
after the ant robots had covered the factory floor for
85 hours without getting stuck. This result is important
because teams of ant robots cover closed terrain faster and
are more fault tolerant than single ant robots. The trails
also coordinate the ant robots implicitly and allow them
to cover terrain faster than without any communication.

IX. CONCLUSIONS

In this paper, we have described how to build physical
ant robots that leave trails in the terrain to cover closed
terrain once or repeatedly. The ant robots do not need to
be localized, which completely eliminates solving difficult
and time-consuming localization problems. We showed
that a modified version of node counting can model the
behavior of the ant robots and showed experimentally
that physical ant robots robustly cover terrain even if the
trails are of uneven quality, the ant robots are moved
without realizing this (say, by people running into them),
and some trails are destroyed. We also showed how ant



robots can keep the cover time small when repeatedly
covering terrain, namely by removing old trails. A large
team of simulated ant robots covered a large terrain re-
peatedly over long periods of time without any ant robots
getting stuck. We are now working on demonstrating
the advantages of teams of ant robots on physical ant
robots. The purpose of this article was to demonstrate
the robustness of our minimalistic ant robots despite their
limited ant-coverage hardware and simplistic ant-coverage
software. We are now working on ant-coverage software
that decreases the cover time of our ant robots even more
while continuing to let them cover closed terrain robustly
without knowing where they are. We are also working on
comparing our ant robots to other coverage algorithms,
including more traditional ones.

ACKNOWLEDGMENTS

We thank Ashwin Ram for making his hardware avail-
able to us. The Intelligent Decision-Making Group is
partly supported by NSF awards under contracts IIS-
9984827, IIS-0098807, and ITR/AP-0113881 as well as
an IBM faculty partnership award. The views and conclu-
sions contained in this document are those of the authors
and should not be interpreted as representing the official
policies, either expressed or implied, of the sponsoring
organizations and agencies or the U.S. government.

X. REFERENCES

[1] F. Adler and D. Gordon. Information collection and spread
by networks of patrolling ants.The American Naturalist,
140(3):373–400, 1992.

[2] R. Arkin. Behavior-Based Robotics. MIT Press, 1998.
[3] T. Balch and R. Arkin. Avoiding the past: A simple, but

effective strategy for reactive navigation. InInternational
Conference on Robotics and Automation, pages 678–685,
1993.

[4] T. Balch and A. Ram. Integrating robotics research with
JavaBots. InProceedings of the AAAI Spring Symposium,
1998.

[5] S. Koenig and R.G. Simmons. Xavier: A robot navigation
architecture based on partially observable Markov decision
process models. In D. Kortenkamp, R. Bonasso, and
R. Murphy, editors,Artificial Intelligence Based Mobile
Robotics: Case Studies of Successful Robot Systems, pages
91–122. MIT Press, 1998.

[6] S. Koenig, B. Szymanski, and Y. Liu. Efficient and
inefficient ant coverage methods.Annals of Mathematics
and Artificial Intelligence, 31:41–76, 2001.

[7] R. Korf. Real-time heuristic search.Artificial Intelligence,
42(2-3):189–211, 1990.

[8] D. Lambrinos, R. M̈oller, R. Labhart, R. Pfeifer, and
R. Wehner. A mobile robot employing insect strategies for
navigation. Robotics and Autonomous Systems, 30:39–64,
2000.

[9] D. Payton, M. Daily, B. Hoff, M. Howard, and C. Lee.
Autonomy-oriented computation in pheromone robotics.
In Proceedings of the Autonomous Agents Workshop on
Autonomy Oriented Computation, 2001.

[10] A. Pirzadeh and W. Snyder. A unified solution to coverage
and search in explored and unexplored terrains using indi-
rect control. InProceedings of the International Conference
on Robotics and Automation, pages 2113–2119, 1990.

[11] R. Russell. Odour Sensing for Mobile Robots. World
Scientific, 1999.

[12] R. Sharpe and B. Webb. Simulated and situated models
of chemical trail following in ants. InProceedings of
the International Conference on Simulation of Adaptive
Behavior, pages 195–204, 1998.

[13] S. Thrun. Probabilistic algorithms in robotics.Artificial
Intelligence Magazine, 21(4):93–109, 2000.

[14] R. Vaughan, K. Stoey, G. Sukhatme, and M. Mataric.
Whistling in the dark: Cooperative trail following in un-
certainty localization space. InProceedings of the Interna-
tional Conference on Autonomous Agents, pages 187–194,
2000.

[15] I. Wagner, M. Lindenbaum, and A. Bruckstein. Efficiently
searching a dynamic graph by a smell-oriented vertex
process.Annals of Mathematics and Artificial Intelligence,
24:211–223, 1998.

[16] I. Wagner, M. Lindenbaum, and A. Bruckstein. Distributed
covering by ant-robots using evaporating traces.IEEE
Transactions on Robotics and Automation, 15(5):918–933,
1999.

[17] I. Wagner, M. Lindenbaum, and A. Bruckstein. MAC
vs. PC: Determinism and randomness as complementary
approaches to robotic exploration of continuous unknown
domains. International Journal of Robotics Research,
19(1):12–31, 2000.


