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Abstract—We study multi-robot routing problems (MR-
LDR) where a team of robots has to visit a set of given targets
with linear decreasing rewards over time, such as required for
the delivery of goods to rescue sites after disasters. The objee
of MR-LDR is to find an assignment of targets to robots and a
path for each robot that maximizes the surplus, which is defined
to be the total reward collected by the team minus its total travel
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amount of computation and communication since informa-
tion is compressed into numeric bids that the robots can
compute in parallel. We therefore develop an auction-based
algorithm and demonstrate that it solves MR-LDR in seconds
and with a surplus that is comparable to the surplus found
by the mixed integer program with a 12 hour time limit.

cost. We develop a mixed integer program that solves MR-LDR

optimally with a flow-type formulation and can be solved faster II. PROBLEM DEFINITION: MR-LDR

than the standard TSP-type formulations but also show that "

solving MR-LDR optimally is NP-hard. We then develop an We now define MR-LDR formal_ly. A set of equally fast

auction-based algorithm and demonstrate that it solves MR- Fobots move on a connected undirected graph- (V, E),

LDR in seconds and with a surplus that is comparable to the whereV = R U S is the set of verticesR is the set of

surplus found by the mixed integer program with a 12 hour initial vertices of the robots and is the set of vertices

time fimit. of the targets. Each target € S has a reward function
fs(t) = (as — tbs)™, wherea,, by > 0, the ratios§= =

are the same for all targetsc S andx™ is an abbreviation

Teams of robots are more fault-tolerant and faster thd@" max(0,z). E C V' x V is the set of edges. Each edge
single robots. In this paper, we introduce multi-robot gt (5:5') € £ has a travel timel,,, > 0 and a travel cost
problems (MR-LDR) where a team of robots has to visit a séts’ = 0- We assume that the travel times and travel costs
of given targets with linear decreasing rewards over tinhe T Satisfy the triangle inequality.
objective of MR-LDR s to find an assignment of targets to_ With a slight abuse of notatiori; is also the set of robots.
robots and a path for each robot that maximizes the surplUs&ch robotr € 1t starts at its initial vertex at time zero and
which is defined to be the total reward collected by the teafien moves along the edges of the graph, which takes time
minus its total travel cost. Consider, for example, rescu@nd incurs cost. If the first robot visits target 5’ at time
sites in a geographic area that was hit by an earthquake ‘orthen the team receives rewafd(t) > 0. Note that the
hurricane. A team of robots has to visit these rescue sites fgWard is zero if and only it > d. The objective of MR-
deliver supplies to the victims. Delays in the deliveriegeha LDR is to find an assignment of targets to robots and a path
negative effects, for example, can result in inconveniencér €ach robot that maximizes the surplus, which is defined
deteriorating health and even death, which is modeled B§ be the total reward collected by the team minus its total
the linear decreasing rewards over time. travel cost. The robots might not visit all targets since the

We develop a mixed integer program that solves MR-LDF§ewa“_js become zero at timkand the robots thus have no
optimally with a flow-type formulation and can be solvedincentive to move at timel or later. _
faster than the standard TSP-type formulations. However, W& make the following assumptions without loss of gen-
we also show that solving MR-LDR optimally is NP-hard.€rality: (1) SN R = 0 since a target € 5 at an initial vertex
Auction-based algorithms have been used on actual robdt @ robot can always be visited at time zero, with reward
[8], [16] and have successfully been applied to simplefs(0) = as and travel cost zero. (2) Grapfi = (V,E)
kinds of multi-robot routing problems [10], [11], [12], 14 'S complet_e since the Floyd-Warshall algorithm can make it
They are decentralized algorithms and more fault-toleraf@mplete in timeO(|V]?).
than centralized algorithms. They can result in near-ogitim . RELATED WORK

solutions and are efficient in terms of both the required ) . _ o
MR-LDR is related to several combinatorial optimization

contraciroblems from the literature, as shown in Table I.

In the k-minimum weighted latency problenk{MWLP),
the objective is to findk subtours fork given initial vertices
of the robots that minimize the total weighted latency (=
visit times of the targets). Thu&-MWLP is a special case

I. INTRODUCTION
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TABLE |
LITERATURE REVIEW

f2(t)=a.-bat

fa(t)=as-bst

fi(t)=ai-bat
[ Multiple Robots Rewards Travel Costs
k-MWLP [15] yes always positive no
MCPTDR [5] no becomes zero no
DR-TSP [3] no always positive no
MR-LDR yes becomes zero yes

of MR-LDR where all reward functions are always positive rozabt

(d >> 0) and all travel costs are zero. The robots visit foa(t)=ans-bnst
all targets since all rewards are always positive and all

travel costs are zerdk-MWLP is a generalization of the Fig. 1. Star Graph

minimum latency problem (MLP) [2], whose objective is to
find a tour for a given initial vertex of a single robot that
minimizes the total unweighted latency. MLP is at least astar graphs where there is only a single robot and all travel
hard as the traveling salesperson problem (TSP) [2]. TH®sts are zero, see Figure 1. The initial vertex of the robot i
literature describes numerous approximation algorithars f O (the center of the star graph) and the vertices of the &rget
MLP [1], [2], [9]. The best algorithm is a 3.59-approximatio are 1, 2, ...,n (the terminal vertices of the star graph).
algorithm [4]. Then, R = {0} and S = {1,2,...,n}, f5(t) = (2Xzs —

In the maximum collection problem with time dependent®s)", dos = x5 andco, = 0. We now show that this MR-
rewards (MCPTDR), different from MR-LDR, there is only LDR instance has a solution with surplus® if and only
a single robot, the ratiog are not necessarily the same forif the subset sum problem has a solution. Without |035 of
all targetss € S and all travel costs are zero. The robot cargenerality, assume that the robot visits the tardets. .
visit all targets since all travel costs are zero but does ndfith k£ < n |n order. Then, the robot visits targetat VlSlt
necessarily have to visit all of them. The literature ddsasi  time 235", do. +do, and the resulting surplus before time
an exact branch-and-bound algorithm for MCPTDR and aX is
penalty-based heuristic that finds near-optimal solutimns
small MCPTDR instances [5]. k s—1

In the discounted-reward traveling salesman problem (DR- > @Xzs = (2 dowr + dos)s) "
TSP), different from MR-LDR, there is only a single robot, s=1 . s'=1 .
the fixed rewards are discounted by a constant factor after = Z(QX&US - (2 Z dos' + dos)xs)

each time unit and all travel costs are zero. The robot visits
all targets since all rewards are always positive and alktra k
costs are zero. The literature describes a constant-factor Z 2Xxs — Z Ty + Ts)Ts)
(6.75 + 9) approximation algorithm for DR-TSP [3]. s=1 s'=1

kE s—1

.
IV. COMPLEXITY = 2X) @ —(2) ) zomi+ sz
s=1

We now explain how difficult it is to solve MR-LDR and . e
some of its special cases optimally. MR-LDR is a combina- — QXZ% _ (Z z.)?
tion of TSP (travel costs) and MLP (rewards), two NP-hard
problems [13]. For example, solving MR-LDR optimally is
NP-hard even if there is only a single robot and all traveThus, the surplus depends only 37" =1 s Its maximum
costs are zero since MLP is a special case of MR-LDR whesalue X2 can be achieved if and only E re=X. B
there is only a single robot, all reward functions are ideaiti  This special case is important for three reasons: (1) It is a
and always positived(>> 0) and all travel costs are zero. realistic case that models robots that need to return to atdep
We now show that solving MR-LDR optimally remains NP-after visiting a target, for example, to pick up new supplies
hard on star graphs even if there is only a single robot arafter they have dropped off their supplies at a rescue &je. (
all travel costs are zero. It shows a difference betwedrMWLP and MR-LDR. We
Theorem 1:Solving MR-LDR optimally is NP-hard on have shown that solving MR-LDR optimally on star graphs
star graphs even if there is only a single robot and all travét NP-hard even if there is only a single robot and all travel
costs are zero. costs are zero. On the other hakdMWLP can be solved
Proof: We reduce from the subset sum problem, whicloptimally in polynomial time on star graphs if there is only
is NP-complete [7]. An instance of the subset sum problem single robot [15]. (3) It is one of the simplest special sase
is defined as follows: Given a set of positive integers=  for which solving MR-LDR optimally is NP-hard. In fact,
{z1,29,...,z,} and a positive integek, is there a seT’ C  the following theorem shows that MR-LDR can be solved
A such thaty ., x; = X? From such an instance of theoptimally in polynomial time on star graphs if we impose
subset sum problem, we construct an MR-LDR instance amly one additional restriction, namely that the decreasesr

s=1 s'=1



bs are the same for all targetsec S. b, of the targets that robat visits from the time directly
Theorem 2:MR-LDR can be solved optimally in polyno- before it visits targetj until it visits its last target.
mial time on star graphs if there is only a single rolgt= b The objective is to maximize surplus. Each robot starts
for every targets € S and all travel costs are zero. at its initial vertex, visits zero or more targets and resurn
Proof: Consider an MR-LDR instance on star graphso its initial vertex. The first term in the objective funatio
where there is only a single robdt, = b for every target would be the total reward if the total reward did not decrease
s € S and all travel costs are zero, see Figure 1. Withousver time, namely a reward af; for each visited targej.
loss of generality, assume théf; < dp2 < ... < do,. We  The second term is the decrease of the total reward over time
propose the following solution: The robot visits the tasgetbecause the total reward of the targets visited by a robat fro
1,2,...,k* in order, wherek* is the last target that it can the time directly before it visits targgtuntil it visits its last
visit before timed. Our proposed solution can be found intarget decreases by the flaw;, times the travel timel,;
time O(nlogn). The robot VISItS itssth target, namely target when it moves from vertex directly to vertex;j. The third
s, at visit timet} := 23°51, doy + do,. We claim that the term is the total travel cost where we do not count the travel
surplus cannot be larger if the assignment of targets to th@st when a robot returns to its initial vertex.
robot or the path of the robot is different. Assume that the The constraints are: (a) a vertex is left by at most one
robot visitsk targets before time/ and that it visits itssth  gpot: (b) the number of times a vertex is entered by a robot
target at visit timet,. {7 < ¢, andk < k* sincek” is the s equal to the number of times it is left by the same robot;
maximum number of targets that the robot can visit beforg) the difference of the flow of a robot that enters a tafget
time d. The resulting surplus is and leaves the same target is equabgtdf the robot enters
the target and zero otherwise; (d) if a robot does not move

k from vertex: directly to vertex;j then the flow of the robot
Z: (db—t:b)” from vertexi directly to vertexj is zero (M is any constant
B that is at least as large as the largest flow of any robot, such
whereas the surplus of our proposed solution is as M := ), qbr); (e) the total travel time of a robot is
at mostd (this inequality is in brackets since it is implied
k* k k* but can be used to strengthen the mixed integer program);
Z(db — i) = Z(db — i)t + Z (db—t:b)*. (f) flows are non-negative; and (g) assignments are binary.
s=1 s=1 s=k+1
(db — t:b)t > (db — tsb)™ for all s = 1,2,...,k since VI. AN AUCTION-BASED ALGORITHM
t* < ts. Furthermore(db—t:b)* > 0forall s = k+1,k+
., k*, which proves our claim. ] Since solving MR-LDR optimally is NP-hard, we need
to solve large MR-LDR instances suboptimally. Auction-
V. MIXED INTEGERPROGRAM based algorithms are decentralized algorithms and more

Although solving MR-LDR optimally is NP-hard, we need fault-tolerant than centralized algorithms. They can Iteisu
to solve at least small MR-LDR instances optimally to havaear-optimal solutions and are efficient in terms of both the
a gold standard. We thus model MR-LDR as a mixed integeequired amount of computation and communication since
program with a flow-type formulation (similar to [6] for information is compressed into numeric bids that the robots

MLP): can compute in parallel. We therefore develop an auction-
o based algorithm for MR-LDR in the following.
Maximize Z Z Z(ajyijr — dijxijr — cijyijr)
) i€V jeSTeR
subject to A. Ordering Rules
Z D vigr <1 i€V (a) Each robot has a set of targets assigned to it during and
]EfTE_R ‘ CeVrcR b after the auction. We now discuss ordering rules that the
;y’” - gyﬂ" Jewnre (®) " robot can use to determine in which order to visit these
Zx“ﬁ" _ Z Tjr = bi Zy“" keSreR o) targets to maximize its surplus, where its surplus is thal tot

v iev pym ( reward collected by the robot minus its total travel cost. We
ZTijr < Myijr 1€V,jeEV,reR (d) have already argued that solving MR-LDR optimally is NP-
[szijym <d re R} (e)  hard even if there is only a single robot. Thus, each robot
i€V jes needs to determine the order greedily in which it should visi
zijr >0 1€V,jeV,reR (
(

! , the targets. We consider five ordering rut@s, O,, ..., O;
yijr € {0,1} 1€V,jeV,reR.

)

) and definew,;(S’) to be the surplus of robet andd,.;(S")

to be its travel time if it orders the targets K according

to O; and then visits the targets in this order as long as its
surplus increases and does not visit the remaining targets:

The variables are: (1) the assignment varialle is one
if robot » moves from vertex directly to vertex; and zero
otherwise; and (2) the flow variablg;,. (= the flow of robot
r from vertex: directly to vertexj) is the sum of the values O;: Each robot visits the targets if in the order in which



they were assigned to .
02:

B. Auction

Each robot pretends that it has not been assigned anya| ropots use the same two ordering rules, namely

targets yet and then assigns itself repeatedly a targ§ling the auction andD; after the auction (although,
with its largest surplus gain per unit of travel timetgcpnically, O, is also used during the auction), written as
according toO, among all targets irb”. Let S, be the 0,10;. O; has to be run during every round and thus needs to
set of targets assigned to robotd, be its travel ime  pa gyfficiently fast, whileD; needs to be run less frequently.
ands, be the last vertex assigned to it. The robot Set§he auction then proceeds in several rounds. The robots are
Sy :=0, d, := 0 ands, := r, and then determines the \¢ higders and the targets are the goods. Initially, atjetr
targets € .5 with its largest surplus gain per time unit. 51 ynassigned. We consider three bidding rules to determin
which unassigned target a robot should bid on during the
current round:

The surplus gain per time unit of targefor robotr is
defined as follows (similar to [11]):

wr1(SrUs) — wr1(Sr)

as — bs (dr + dsrs) — Cs,s
dr1(SrUs) —dr1(Sr) '

dsrs

Bj:

The surplus gain of a target for a robot is thus the
increase in its surplus if it is assigned the target. Then,

the robot assigns itself the target with its largest
surplus gain per time unit by setting’ := S’ — s,
Sy = 8.Us, d, :=d, +ds,s ands, := s and repeats
the process untit’ = 0. It visits the targets in the order
in which it assigned them to itself.

Each robot visits the targets € S’ in nonincreasing
order of their initial rewards,.

03:

04:

Bs:

Each robot pretends that it has not been assigned any

targets yet and then assigns itself repeatedly a target
with the largest surplus loss per unit of travel time

according toO; among all targets ir$’. Let S, be the
set of targets assigned to rohgtd, be its travel time

and s, be the last vertex assigned to it. The robot sets

S, :=10,d,:=0ands, :=r, and then determines the
targets € S’ with the largest surplus loss per time unit.
The surplus loss per time unit of targefor robotr is
defined as follows (similar to [5] for MCPTDR), where
wh1 (X, z) is an abbreviation fow,1 (X Ux) —w,1(X):

w;l (ST7 S) — wwl"l(ST J S/v 5)

w5 s dp(SrUs) — dr1(Sr)
— min (_bsdsrs - Csrs) - (_bs(ds,ws’ + ds’s) - Cs/s) )
s'eS’'—s dy'ss

Each robot bids on the unassigned targewith the
largest initial rewarda,. Thus, all robots bid on the
same target. If at least one bid is submitted, then
bidding ends. If no bid is submitted, then the robots
bid on the unassigned target with the second-largest
initial reward, and so on until the robots bid on the
last unassigned target (similar to [12] for multi-robot
routing with rewards and disjoint time windows).

Each robot bids on the one unassigned tasgeith its
largest surplus loss per time unit accordingQg (Se-
quential Single-ltem Auction Based on Surplus Loss).
The surplus loss per time unit of targetfor robot r

is defined as follows, wherg’ is the set of unassigned
targets,S,. is the set of targets that have already been
assigned to robot in previous rounds and.., (X, x)

is an abbreviation fotv,1 (X U z) — w,1(X):

Wiy (Sr, 8) —wy1 (S- U s, s)
dr1(SrUs) —dr1(Sr)

1
s’eS’—s

Thus, each robot might bid on a different target.

Bs3: Each robot bids on the one unassigned target with its

3.

The surplus loss of a target for a robot is thus the
decrease in its surplus gain of the target if it visits the

best other target i$’. Then, the robot assigns itself the
targets with its largest surplus loss per time unit by
settingS’ := 5" — s, S, = S, Us, dp :=d, +ds, 5
and s, := s and repeats the process unffl = 0. It

visits the targets in the order in which it assigned them

to itself.
Each robot visits the targets 7 according toO;, O-,
..., O4 that results in its largest surplus.

Os:

1Some of our formulas require one to calculatg, (S’ U s) for a target
s that has not been assigned to robotn this case, we consider targeto

one to calculatav,1 (S’ U s’ U s) for targetss’ and s that have not been
assigned to robat. In this case, we consider targetsands to be assigned
(in this order) after the targets i’

largest surplus gain per time unit accordingQg (Se-
quential Single-ltem Auction Based on Surplus Gain).
The surplus gain per time unit of targetfor robot r

is defined as follows, wheré,. is the set of targets
that have already been assigned to robat previous
rounds:

w,-i(S,» U S) — ’LUr,-i(ST-)
0i(Sr Us) —dna(Sh)

@)

Thus, each robot might bid on a different target. (This
rule is equivalent to each robot bidding on all unas-
signed targets.)

Assume that robot has already been assigned the set of
targetssS,. in previous rounds and needs to bid on unassigned

targets during the current round. It bids its surplus gain per
time unit of the target according to Equation (1) if positive
and does not bid otherwise.

The largest bid submitted in the current round wins, and
the corresponding target is assigned to the corresponding
be assigned after the targetsSh. Similarly, some of our formulas require rgpot. All robots listen to the bids and determine the wilgnin
bid in parallel so that no central auctioneer is needed who
could become a bottleneck. Another round of the auction



TABLE Il
EXPERIMENTAL RESULTS

Experimental Setup Experiment 1 | Experiment 2 [ Experiment 3
Scaled Surplus (Upper Bound of MIP = 1)
B with Bs with B3 with B with B3 with B3 with B3 with B3 with
size d Cyl targets O5/05 01105 05105 MIP 01105 01105 01101 03/03 04104
5/25 small  small  random] 0.865 0.863 0.941 0.999 0.668 0.936] 0.926 0.743 0.872
cluster 0.891 0.849 0.932 0.995 0.756 0.942| 0.930 0.748 0.855
large random 0.850 0.858 0.940 0.999 0.689 0.934 0.924 0.778 0.875
cluster 0.908 0.865 0.929 0.985 0.779 0.934| 0.922 0.732 0.881
large  small random| 0.863 0.819 0.848 0.901 0.739 0.847| 0.840 0.637 0.845
cluster 0.881 0.852 0.875 0.923 0.849 0.863| 0.856 0.791 0.846
large random 0.859 0.811 0.848 0.902 0.734 0.844 0.838 0.636 0.844
cluster 0.881 0.832 0.875 0.993 0.849 0.864 0.857 0.788 0.834
average 0.875 0.844 0.898 0.955 0.758 0.896 0.887 0.732 0.856
10/50 small small random  0.762 0.763 0.794 0.819 0.585 0.792 0.783 0.591 0.769
cluster 0.699 0.669 0.721 0.734 0.527 0.718| 0.705 0.510 0.715
large  random| 0.765 0.765 0.796 0.834 0.586 0.800| 0.791 0.614 0.783
cluster 0.693 0.675 0.725 0.76( 0.531 0.718| 0.705 0.518 0.704
large small random 0.854 0.845 0.857 0.834 0.788 0.851 0.844 0.731 0.845
cluster 0.801 0.806 0.829 0.802 0.793 0.812 0.805 0.748 0.817
large  random| 0.851 0.829 0.854 0.864 0.783 0.848| 0.841 0.718 0.843
cluster 0.795 0.807 0.826 0.814 0.785 0.808| 0.800 0.735 0.814
average 0.777 0.770 0.800 0.808 0.672 0.793| 0.784 0.645 0.786
10/100 small small randon 0.564 0.594 0.620 0.633 0.362 0.617 0.614 0.341 0.587
cluster 0.558 0.567 0.602 0.541 0.367 0.600| 0.588 0.330 0.550
large random 0.557 0.576 0.615 0.629 0.360 0.612 0.609 0.346 0.583
cluster 0.534 0.554 0.597 0.541 0.363 0.593| 0.581 0.314 0.548
large  small random| 0.702 0.696 0.719 0.594 0.566 0.714| 0.709 0.395 0.684
cluster 0.728 0.734 0.755 0.622 0.662 0.749| 0.740 0.607 0.730
large random 0.698 0.693 0.720 0.615 0.563 0.711 0.706 0.397 0.688
cluster 0.718 0.727 0.749 0.594 0.658 0.745 0.737 0.606 0.731
average 0.632 0.643 0.672 0.596 0.488 0.668 0.661 0.417 0.638

the robot should not visit all targets assigned to it and khou

d,3=0.5, cy3=0 e o N A
visit the remaining targets in a different order.

fo(t) = 11-t
fa(t) = 11t VIl. EXPERIMENTAL RESULTS

We now evaluate the bidding and ordering rules experi-
4B .m0 dy;=6, mentally in a terrain of siz&00 x 100 for (1) 5 robots and
e 01=0 25 targets (5/25); (2) 10 robots and 50 targets (10/50); pr (3

10 robots and 100 targets (10/100). The initial vertices of
the robots are randomly chosen from the entire terrain. The
vertices of the targets are randomly chosen from eitheh@) t
Fig. 2. Example Graph entire terrain (random) or (2) the upper left and lower right
squares after the terrain was divided into nine equal sguare
(cluster). We use reward functions with either (1) time timi
) d = 50 (small) or (2) time limitd = 100 (large) and decrease
starts, and the process repeats until robots no longer b}%ﬂesbs that are uniformly chosen from 2, . . ., 20 for each
Then, each robot determines which targets assigned 1o it Ngtgets. The travel times are the Euclidean distances between
to visit and in which order to visit the remaining targets t9ne vertices. The travel costs are either () = 0.2d,y
maximize its surplus. The robot pretends from now on the{%mall) or (2) coy = dso (large). We average over 10
the targets assigned to it were assigned to it in the Ordg{siances for each parameter setting. The large runtime of

suggested by);. The targets that it does not visit accordingihe mixed integer program prevented us from using a larger
to O; become again unassigned. (If each robot perforn1§amp|e size.

this step only if it increases its surplus, then the auction )

is guaranteed to terminate.) Another round of the auctioft- Experiment 1

starts, and the process repeats. Eventually, each rolitst vis We first investigate the surplus achieved by the different
the targets assigned to it according@g. To understand the bidding rules if we use the most sophisticated ordering, rule
purpose of using); after the auction, consider the graphnamely Os, both during and after the auction. The left
from Figure 2 where there is only a single robot and alcolumns of Table Il evaluat®; with O5/O5, By with O1/05
travel costs are zero. The initial vertex of the robot is @sinceB; has to be used wit; during the auction since this
and the vertices of the targets are 1, 2 and 3. The robot édering rule provides the basis for computing the surplus
assigned the targets in the order 1, 3 and 2 if it uBgs loss per time unit),Bs with O5/O5 and our mixed-integer
with O, = O; during the auction. However, its surplus isprogram (MIP), that we solve with CPLEX 9.0. The auction-
maximized if it visits the targets in the order 2 and 3. Thushased algorithm solves the MR-LDR instances suboptimally

do1=4, ¢p;=0 fi(t) =11-t



in seconds. Our mixed-integer program with the flow-typalso showed that solving MR-LDR optimally is NP-hard. We
formulation solves them only suboptimally within the run-then developed an auction-based algorithm and demorttrate
time limit of twelve hours. (Its optimality gap is about 21.4that it solves MR-LDR in seconds and with a surplus that is
percent on average, meaning that its surplus is at most 2kdmparable to the surplus found by the mixed integer pro-
percent smaller than optimal on average.) A mixed-integgram with a 12 hour time limit. We showed that Sequential
program with the standard TSP-type formulation (where 8ingle-ltem Auctions Based on Surplus Gain (bidding rule
binary assignment variable is defined for each combinatioR3) result in a larger surplus than the other bidding rules. It
of target, robot and visit order) cannot solve them at alis sufficient if the robots assume during and after the anctio
(Its optimality gap is about 80 percent on average.) Thhat they visit the targets assigned to them in the order in
table reports the scaled surplus as a conservative estimatich they were assigned to them (ordering ralg) rather
where the upper bound of our mixed-integer program habkan the order that maximizes their surplus approximately

been scaled to one. The surplus Bf tends to be larger but is slower to compute.

than the surplus oB3; and B, and can even be larger than
the surplus of our mixed-integer program. We learn tBat
is the best bidding rule wittO5/O5. Its optimality gap is
about 21.0 percent on average.

(1]

. [2]

B. Experiment 2

We now investigate by how much the surplus decreases if
we use a less sophisticated ordering rule thgnduring the  [3]
auction. The center columns of Table Il evalu@te and B;
with two ordering rules during the auction at opposite end%‘”
of the spectrum, namely;/Os (where the robots assume
during the auction that they visit the targets in the order
in which they were assigned to them) aog/O5 (where
the robots re-order the targets after each round to maximize
their surplus approximately). The table does not shgw [6]
because it cannot be used with during the auction. Using
O; during the auction rather thafl; decreases the surplus [7]
by 17.3 percent on average fét, and by only 0.6 percent
on average forB3;. The surplus decreases the most Iy
whend is small. We have already identifiefd; as the best
bidding rule. We learn that it is sufficient to uge; with
0,/05 rather than the slowe®s/Os. Its optimality gap is
about 21.4 percent on average.

8]
El

[10]

C. Experiment 3

We now investigate by how much the surplus decreases
if we use a less sophisticated ordering rule thah after
the auction. The right columns of Table Il evalude with (11
01/01, 02/02, ey 04/04. B3 with 01/01 and 02/02
results in the same surplus sinég assigns the targets in
the same order a®,, namely based on the largest surpluélz]
gain per time unit. Using),/O; rather tharO/O5 decreases
the surplus by only 1.1 percent on average Bat We learn
that it is sufficient to useBs; with O,/O; rather than the
slower O,/0s. Its optimality gap is about 22.3 percent on
average.

(23]

[14]

VIII. CONCLUSIONS

In this paper, we studied multi-robot routing problemg15]
(MR-LDR) where a team of robots has to visit a set 0{16]
given targets with linear decreasing rewards over timeh suc
as required for the delivery of goods to rescue sites after
disasters. We developed a mixed integer program that solves
MR-LDR with a flow-type formulation and can be solved
faster than the usual TSP-type formulations. However, we
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