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Abstract— We study multi-robot routing problems (MR-
LDR) where a team of robots has to visit a set of given targets
with linear decreasing rewards over time, such as required for
the delivery of goods to rescue sites after disasters. The objective
of MR-LDR is to find an assignment of targets to robots and a
path for each robot that maximizes the surplus, which is defined
to be the total reward collected by the team minus its total travel
cost. We develop a mixed integer program that solves MR-LDR
optimally with a flow-type formulation and can be solved faster
than the standard TSP-type formulations but also show that
solving MR-LDR optimally is NP-hard. We then develop an
auction-based algorithm and demonstrate that it solves MR-
LDR in seconds and with a surplus that is comparable to the
surplus found by the mixed integer program with a 12 hour
time limit.

I. I NTRODUCTION

Teams of robots are more fault-tolerant and faster than
single robots. In this paper, we introduce multi-robot routing
problems (MR-LDR) where a team of robots has to visit a set
of given targets with linear decreasing rewards over time. The
objective of MR-LDR is to find an assignment of targets to
robots and a path for each robot that maximizes the surplus,
which is defined to be the total reward collected by the team
minus its total travel cost. Consider, for example, rescue
sites in a geographic area that was hit by an earthquake or
hurricane. A team of robots has to visit these rescue sites to
deliver supplies to the victims. Delays in the deliveries have
negative effects, for example, can result in inconvenience,
deteriorating health and even death, which is modeled by
the linear decreasing rewards over time.

We develop a mixed integer program that solves MR-LDR
optimally with a flow-type formulation and can be solved
faster than the standard TSP-type formulations. However,
we also show that solving MR-LDR optimally is NP-hard.
Auction-based algorithms have been used on actual robots
[8], [16] and have successfully been applied to simpler
kinds of multi-robot routing problems [10], [11], [12], [14].
They are decentralized algorithms and more fault-tolerant
than centralized algorithms. They can result in near-optimal
solutions and are efficient in terms of both the required
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amount of computation and communication since informa-
tion is compressed into numeric bids that the robots can
compute in parallel. We therefore develop an auction-based
algorithm and demonstrate that it solves MR-LDR in seconds
and with a surplus that is comparable to the surplus found
by the mixed integer program with a 12 hour time limit.

II. PROBLEM DEFINITION: MR-LDR

We now define MR-LDR formally. A set of equally fast
robots move on a connected undirected graphG = (V,E),
where V = R ∪ S is the set of vertices,R is the set of
initial vertices of the robots andS is the set of vertices
of the targets. Each targets ∈ S has a reward function
fs(t) = (as − tbs)

+, whereas, bs > 0, the ratiosas

bs

= d
are the same for all targetss ∈ S andx+ is an abbreviation
for max(0, x). E ⊆ V × V is the set of edges. Each edge
(s, s′) ∈ E has a travel timedss′ > 0 and a travel cost
css′ ≥ 0. We assume that the travel times and travel costs
satisfy the triangle inequality.

With a slight abuse of notation,R is also the set of robots.
Each robotr ∈ R starts at its initial vertex at time zero and
then moves along the edges of the graph, which takes time
and incurs cost. If the first robot visits targets ∈ S at time
t, then the team receives rewardfs(t) ≥ 0. Note that the
reward is zero if and only ift ≥ d. The objective of MR-
LDR is to find an assignment of targets to robots and a path
for each robot that maximizes the surplus, which is defined
to be the total reward collected by the team minus its total
travel cost. The robots might not visit all targets since the
rewards become zero at timed and the robots thus have no
incentive to move at timed or later.

We make the following assumptions without loss of gen-
erality: (1)S∩R = ∅ since a targets ∈ S at an initial vertex
of a robot can always be visited at time zero, with reward
fs(0) = as and travel cost zero. (2) GraphG = (V,E)
is complete since the Floyd-Warshall algorithm can make it
complete in timeO(|V |3).

III. R ELATED WORK

MR-LDR is related to several combinatorial optimization
problems from the literature, as shown in Table I.

In the k-minimum weighted latency problem (k-MWLP),
the objective is to findk subtours fork given initial vertices
of the robots that minimize the total weighted latency (=
visit times of the targets). Thus,k-MWLP is a special case



TABLE I

L ITERATURE REVIEW

Multiple Robots Rewards Travel Costs

k-MWLP [15] yes always positive no
MCPTDR [5] no becomes zero no
DR-TSP [3] no always positive no
MR-LDR yes becomes zero yes

of MR-LDR where all reward functions are always positive
(d >> 0) and all travel costs are zero. The robots visit
all targets since all rewards are always positive and all
travel costs are zero.k-MWLP is a generalization of the
minimum latency problem (MLP) [2], whose objective is to
find a tour for a given initial vertex of a single robot that
minimizes the total unweighted latency. MLP is at least as
hard as the traveling salesperson problem (TSP) [2]. The
literature describes numerous approximation algorithms for
MLP [1], [2], [9]. The best algorithm is a 3.59-approximation
algorithm [4].

In the maximum collection problem with time dependent
rewards (MCPTDR), different from MR-LDR, there is only
a single robot, the ratiosas

bs

are not necessarily the same for
all targetss ∈ S and all travel costs are zero. The robot can
visit all targets since all travel costs are zero but does not
necessarily have to visit all of them. The literature describes
an exact branch-and-bound algorithm for MCPTDR and a
penalty-based heuristic that finds near-optimal solutionsfor
small MCPTDR instances [5].

In the discounted-reward traveling salesman problem (DR-
TSP), different from MR-LDR, there is only a single robot,
the fixed rewards are discounted by a constant factor after
each time unit and all travel costs are zero. The robot visits
all targets since all rewards are always positive and all travel
costs are zero. The literature describes a constant-factor
(6.75 + δ) approximation algorithm for DR-TSP [3].

IV. COMPLEXITY

We now explain how difficult it is to solve MR-LDR and
some of its special cases optimally. MR-LDR is a combina-
tion of TSP (travel costs) and MLP (rewards), two NP-hard
problems [13]. For example, solving MR-LDR optimally is
NP-hard even if there is only a single robot and all travel
costs are zero since MLP is a special case of MR-LDR where
there is only a single robot, all reward functions are identical
and always positive (d >> 0) and all travel costs are zero.
We now show that solving MR-LDR optimally remains NP-
hard on star graphs even if there is only a single robot and
all travel costs are zero.

Theorem 1:Solving MR-LDR optimally is NP-hard on
star graphs even if there is only a single robot and all travel
costs are zero.

Proof: We reduce from the subset sum problem, which
is NP-complete [7]. An instance of the subset sum problem
is defined as follows: Given a set of positive integersA =
{x1, x2, . . . , xn} and a positive integerX, is there a setT ⊆
A such that

∑
xi∈T xi = X? From such an instance of the

subset sum problem, we construct an MR-LDR instance on
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Fig. 1. Star Graph

star graphs where there is only a single robot and all travel
costs are zero, see Figure 1. The initial vertex of the robot is
0 (the center of the star graph) and the vertices of the targets
are 1, 2, . . . ,n (the terminal vertices of the star graph).
Then, R = {0} and S = {1, 2, . . . , n}, fs(t) = (2Xxs −
txs)

+, d0s = xs and c0s = 0. We now show that this MR-
LDR instance has a solution with surplusX2 if and only
if the subset sum problem has a solution. Without loss of
generality, assume that the robot visits the targets1, 2, . . . k
with k ≤ n in order. Then, the robot visits targets at visit
time 2

∑s−1

s′=1
d0s′ +d0s and the resulting surplus before time

2X is

k
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Thus, the surplus depends only on
∑k

s=1
xs. Its maximum

valueX2 can be achieved if and only if
∑k

s=1
xs = X.

This special case is important for three reasons: (1) It is a
realistic case that models robots that need to return to a depot
after visiting a target, for example, to pick up new supplies
after they have dropped off their supplies at a rescue site. (2)
It shows a difference betweenk-MWLP and MR-LDR. We
have shown that solving MR-LDR optimally on star graphs
is NP-hard even if there is only a single robot and all travel
costs are zero. On the other hand,k-MWLP can be solved
optimally in polynomial time on star graphs if there is only
a single robot [15]. (3) It is one of the simplest special cases
for which solving MR-LDR optimally is NP-hard. In fact,
the following theorem shows that MR-LDR can be solved
optimally in polynomial time on star graphs if we impose
only one additional restriction, namely that the decrease rates



bs are the same for all targetss ∈ S.
Theorem 2:MR-LDR can be solved optimally in polyno-

mial time on star graphs if there is only a single robot,bs = b
for every targets ∈ S and all travel costs are zero.

Proof: Consider an MR-LDR instance on star graphs
where there is only a single robot,bs = b for every target
s ∈ S and all travel costs are zero, see Figure 1. Without
loss of generality, assume thatd01 ≤ d02 ≤ . . . ≤ d0n. We
propose the following solution: The robot visits the targets
1, 2, . . . , k∗ in order, wherek∗ is the last target that it can
visit before timed. Our proposed solution can be found in
time O(n log n). The robot visits itssth target, namely target
s, at visit timet∗s := 2

∑s−1

s′=1
d0s′ + d0s. We claim that the

surplus cannot be larger if the assignment of targets to the
robot or the path of the robot is different. Assume that the
robot visitsk targets before timed and that it visits itssth
target at visit timets. t∗s ≤ ts and k ≤ k∗ sincek∗ is the
maximum number of targets that the robot can visit before
time d. The resulting surplus is

k
X

s=1

(db − tsb)
+

,

whereas the surplus of our proposed solution is

k∗

X

s=1

(db − t
∗

sb)+ =

k
X

s=1

(db − t
∗

sb)+ +

k∗

X

s=k+1

(db − t
∗

sb)+.

(db − t∗sb)
+ ≥ (db − tsb)

+ for all s = 1, 2, . . . , k since
t∗s ≤ ts. Furthermore,(db− t∗sb)

+ ≥ 0 for all s = k +1, k +
2, . . . , k∗, which proves our claim.

V. M IXED INTEGERPROGRAM

Although solving MR-LDR optimally is NP-hard, we need
to solve at least small MR-LDR instances optimally to have
a gold standard. We thus model MR-LDR as a mixed integer
program with a flow-type formulation (similar to [6] for
MLP):

Maximize
X

i∈V

X

j∈S

X

r∈R

(ajyijr − dijxijr − cijyijr)

subject to
X

j∈V

X

r∈R

yijr ≤ 1 i ∈ V (a)

X

i∈V

yijr =
X

k∈V

yjkr j ∈ V, r ∈ R (b)

X

i∈V

xikr −
X

j∈V

xkjr = bk

X

i∈V

yikr k ∈ S, r ∈ R (c)

xijr ≤ Myijr i ∈ V, j ∈ V, r ∈ R (d)
h

X

i∈V

X

j∈S

dijyijr ≤ d r ∈ R
i

(e)

xijr ≥ 0 i ∈ V, j ∈ V, r ∈ R (f)
yijr ∈ {0, 1} i ∈ V, j ∈ V, r ∈ R. (g)

The variables are: (1) the assignment variableyijr is one
if robot r moves from vertexi directly to vertexj and zero
otherwise; and (2) the flow variablexijr (= the flow of robot
r from vertexi directly to vertexj) is the sum of the values

bk of the targets that robotr visits from the time directly
before it visits targetj until it visits its last target.

The objective is to maximize surplus. Each robot starts
at its initial vertex, visits zero or more targets and returns
to its initial vertex. The first term in the objective function
would be the total reward if the total reward did not decrease
over time, namely a reward ofaj for each visited targetj.
The second term is the decrease of the total reward over time
because the total reward of the targets visited by a robot from
the time directly before it visits targetj until it visits its last
target decreases by the flowxijr times the travel timedij

when it moves from vertexi directly to vertexj. The third
term is the total travel cost where we do not count the travel
cost when a robot returns to its initial vertex.

The constraints are: (a) a vertex is left by at most one
robot; (b) the number of times a vertex is entered by a robot
is equal to the number of times it is left by the same robot;
(c) the difference of the flow of a robot that enters a targetk
and leaves the same target is equal tobk if the robot enters
the target and zero otherwise; (d) if a robot does not move
from vertexi directly to vertexj then the flow of the robot
from vertexi directly to vertexj is zero (M is any constant
that is at least as large as the largest flow of any robot, such
as M :=

∑
k∈S bk); (e) the total travel time of a robot is

at mostd (this inequality is in brackets since it is implied
but can be used to strengthen the mixed integer program);
(f) flows are non-negative; and (g) assignments are binary.

VI. A N AUCTION-BASED ALGORITHM

Since solving MR-LDR optimally is NP-hard, we need
to solve large MR-LDR instances suboptimally. Auction-
based algorithms are decentralized algorithms and more
fault-tolerant than centralized algorithms. They can result in
near-optimal solutions and are efficient in terms of both the
required amount of computation and communication since
information is compressed into numeric bids that the robots
can compute in parallel. We therefore develop an auction-
based algorithm for MR-LDR in the following.

A. Ordering Rules

Each robot has a set of targets assigned to it during and
after the auction. We now discuss ordering rules that the
robot can use to determine in which order to visit these
targets to maximize its surplus, where its surplus is the total
reward collected by the robot minus its total travel cost. We
have already argued that solving MR-LDR optimally is NP-
hard even if there is only a single robot. Thus, each robot
needs to determine the order greedily in which it should visit
the targets. We consider five ordering rulesO1, O2, . . . , O5

and definewri(S
′) to be the surplus of robotr anddri(S

′)
to be its travel time if it orders the targets inS′ according
to Oi and then visits the targets in this order as long as its
surplus increases and does not visit the remaining targets:

O1: Each robot visits the targets inS′ in the order in which



they were assigned to it.1

O2: Each robot pretends that it has not been assigned any
targets yet and then assigns itself repeatedly a target
with its largest surplus gain per unit of travel time
according toO1 among all targets inS′. Let Sr be the
set of targets assigned to robotr, dr be its travel time
andsr be the last vertex assigned to it. The robot sets
Sr := ∅, dr := 0 andsr := r, and then determines the
targets ∈ S′ with its largest surplus gain per time unit.
The surplus gain per time unit of targets for robot r is
defined as follows (similar to [11]):

wr1(Sr ∪ s) − wr1(Sr)

dr1(Sr ∪ s) − dr1(Sr)
=

as − bs(dr + dsrs) − csrs

dsrs

.

The surplus gain of a target for a robot is thus the
increase in its surplus if it is assigned the target. Then,
the robot assigns itself the targets with its largest
surplus gain per time unit by settingS′ := S′ − s,
Sr := Sr ∪ s, dr := dr + dsrs andsr := s and repeats
the process untilS′ = ∅. It visits the targets in the order
in which it assigned them to itself.

O3: Each robot visits the targetss ∈ S′ in nonincreasing
order of their initial rewardsas.

O4: Each robot pretends that it has not been assigned any
targets yet and then assigns itself repeatedly a target
with the largest surplus loss per unit of travel time
according toO1 among all targets inS′. Let Sr be the
set of targets assigned to robotr, dr be its travel time
andsr be the last vertex assigned to it. The robot sets
Sr := ∅, dr := 0 andsr := r, and then determines the
targets ∈ S′ with the largest surplus loss per time unit.
The surplus loss per time unit of targets for robot r is
defined as follows (similar to [5] for MCPTDR), where
w′

r1(X,x) is an abbreviation forwr1(X∪x)−wr1(X):

min
s′∈S′−s

w′

r1(Sr, s) − w′

r1(Sr ∪ s′, s)

dr1(Sr ∪ s) − dr1(Sr)

= min
s′∈S′−s

(−bsdsrs − csrs) − (−bs(dsrs′ + ds′s) − cs′s)

drss

.

The surplus loss of a target for a robot is thus the
decrease in its surplus gain of the target if it visits the
best other target inS′. Then, the robot assigns itself the
target s with its largest surplus loss per time unit by
settingS′ := S′ − s, Sr := Sr ∪ s, dr := dr + dsrs

and sr := s and repeats the process untilS′ = ∅. It
visits the targets in the order in which it assigned them
to itself.

O5: Each robot visits the targets inS′ according toO1, O2,
. . . , O4 that results in its largest surplus.

1Some of our formulas require one to calculatewr1(S′
∪ s) for a target

s that has not been assigned to robotr. In this case, we consider targets to
be assigned after the targets inS′. Similarly, some of our formulas require
one to calculatewr1(S′

∪ s′ ∪ s) for targetss′ and s that have not been
assigned to robotr. In this case, we consider targetss′ ands to be assigned
(in this order) after the targets inS′.

B. Auction

All robots use the same two ordering rules, namelyOi

during the auction andOj after the auction (although,
technically,Oj is also used during the auction), written as
Oi/Oj . Oi has to be run during every round and thus needs to
be sufficiently fast, whileOj needs to be run less frequently.
The auction then proceeds in several rounds. The robots are
the bidders and the targets are the goods. Initially, all targets
are unassigned. We consider three bidding rules to determine
which unassigned target a robot should bid on during the
current round:

B1: Each robot bids on the unassigned targets with the
largest initial rewardas. Thus, all robots bid on the
same target. If at least one bid is submitted, then
bidding ends. If no bid is submitted, then the robots
bid on the unassigned target with the second-largest
initial reward, and so on until the robots bid on the
last unassigned target (similar to [12] for multi-robot
routing with rewards and disjoint time windows).

B2: Each robot bids on the one unassigned targets with its
largest surplus loss per time unit according toO1 (Se-
quential Single-Item Auction Based on Surplus Loss).
The surplus loss per time unit of targets for robot r
is defined as follows, whereS′ is the set of unassigned
targets,Sr is the set of targets that have already been
assigned to robotr in previous rounds andw′

r1(X,x)
is an abbreviation forwr1(X ∪ x) − wr1(X):

min
s′∈S′−s

w′

r1(Sr, s) − w′

r1(Sr ∪ s′, s)

dr1(Sr ∪ s) − dr1(Sr)
.

Thus, each robot might bid on a different target.
B3: Each robot bids on the one unassigned target with its

largest surplus gain per time unit according toOi (Se-
quential Single-Item Auction Based on Surplus Gain).
The surplus gain per time unit of targets for robot r
is defined as follows, whereSr is the set of targets
that have already been assigned to robotr in previous
rounds:

wri(Sr ∪ s) − wri(Sr)

dri(Sr ∪ s) − dri(Sr)
. (1)

Thus, each robot might bid on a different target. (This
rule is equivalent to each robot bidding on all unas-
signed targets.)

Assume that robotr has already been assigned the set of
targetsSr in previous rounds and needs to bid on unassigned
targets during the current round. It bids its surplus gain per
time unit of the target according to Equation (1) if positive
and does not bid otherwise.

The largest bid submitted in the current round wins, and
the corresponding target is assigned to the corresponding
robot. All robots listen to the bids and determine the winning
bid in parallel so that no central auctioneer is needed who
could become a bottleneck. Another round of the auction



TABLE II

EXPERIMENTAL RESULTS

Experimental Setup Experiment 1 Experiment 2 Experiment 3
Scaled Surplus (Upper Bound of MIP = 1)

B1 with B2 with B3 with B1 with B3 with B3 with B3 with B3 with
size d c

ss′
targets O5/O5 O1/O5 O5/O5 MIP O1/O5 O1/O5 O1/O1 O3/O3 O4/O4

5/25 small small random 0.865 0.863 0.941 0.999 0.668 0.936 0.926 0.743 0.872
cluster 0.891 0.849 0.932 0.995 0.756 0.942 0.930 0.748 0.855

large random 0.850 0.858 0.940 0.999 0.689 0.934 0.924 0.778 0.875
cluster 0.908 0.865 0.929 0.985 0.779 0.934 0.922 0.732 0.881

large small random 0.863 0.819 0.848 0.901 0.739 0.847 0.840 0.637 0.845
cluster 0.881 0.852 0.875 0.923 0.849 0.863 0.856 0.791 0.846

large random 0.859 0.811 0.848 0.902 0.734 0.844 0.838 0.636 0.844
cluster 0.881 0.832 0.875 0.993 0.849 0.864 0.857 0.788 0.834

average 0.875 0.844 0.898 0.955 0.758 0.896 0.887 0.732 0.856

10/50 small small random 0.762 0.763 0.794 0.819 0.585 0.792 0.783 0.591 0.769
cluster 0.699 0.669 0.721 0.736 0.527 0.718 0.705 0.510 0.715

large random 0.765 0.765 0.796 0.836 0.586 0.800 0.791 0.614 0.783
cluster 0.693 0.675 0.725 0.760 0.531 0.718 0.705 0.518 0.704

large small random 0.854 0.845 0.857 0.834 0.788 0.851 0.844 0.731 0.845
cluster 0.801 0.806 0.829 0.802 0.793 0.812 0.805 0.748 0.817

large random 0.851 0.829 0.854 0.864 0.783 0.848 0.841 0.718 0.843
cluster 0.795 0.807 0.826 0.810 0.785 0.808 0.800 0.735 0.814

average 0.777 0.770 0.800 0.808 0.672 0.793 0.784 0.645 0.786

10/100 small small random 0.564 0.594 0.620 0.633 0.362 0.617 0.614 0.341 0.587
cluster 0.558 0.567 0.602 0.541 0.367 0.600 0.588 0.330 0.550

large random 0.557 0.576 0.615 0.629 0.360 0.612 0.609 0.346 0.583
cluster 0.534 0.554 0.597 0.541 0.363 0.593 0.581 0.314 0.548

large small random 0.702 0.696 0.719 0.594 0.566 0.714 0.709 0.395 0.684
cluster 0.728 0.734 0.755 0.622 0.662 0.749 0.740 0.607 0.730

large random 0.698 0.693 0.720 0.615 0.563 0.711 0.706 0.397 0.688
cluster 0.718 0.727 0.749 0.594 0.658 0.745 0.737 0.606 0.731

average 0.632 0.643 0.672 0.596 0.488 0.668 0.661 0.417 0.638

0

32

1
d01=4, c01=0

d02=5, c02=0

d13=6,

c13=0
d12=6.1, c12=0

d23=0.5, c23=0

f2(t) = 11-t

f3(t) = 11-t

f1(t) = 11-t

Fig. 2. Example Graph

starts, and the process repeats until robots no longer bid.
Then, each robot determines which targets assigned to it not
to visit and in which order to visit the remaining targets to
maximize its surplus. The robot pretends from now on that
the targets assigned to it were assigned to it in the order
suggested byOj . The targets that it does not visit according
to Oj become again unassigned. (If each robot performs
this step only if it increases its surplus, then the auction
is guaranteed to terminate.) Another round of the auction
starts, and the process repeats. Eventually, each robot visits
the targets assigned to it according toOj . To understand the
purpose of usingOj after the auction, consider the graph
from Figure 2 where there is only a single robot and all
travel costs are zero. The initial vertex of the robot is 0
and the vertices of the targets are 1, 2 and 3. The robot is
assigned the targets in the order 1, 3 and 2 if it usesB3

with Oi = O1 during the auction. However, its surplus is
maximized if it visits the targets in the order 2 and 3. Thus,

the robot should not visit all targets assigned to it and should
visit the remaining targets in a different order.

VII. E XPERIMENTAL RESULTS

We now evaluate the bidding and ordering rules experi-
mentally in a terrain of size100 × 100 for (1) 5 robots and
25 targets (5/25); (2) 10 robots and 50 targets (10/50); or (3)
10 robots and 100 targets (10/100). The initial vertices of
the robots are randomly chosen from the entire terrain. The
vertices of the targets are randomly chosen from either (1) the
entire terrain (random) or (2) the upper left and lower right
squares after the terrain was divided into nine equal squares
(cluster). We use reward functions with either (1) time limit
d = 50 (small) or (2) time limitd = 100 (large) and decrease
ratesbs that are uniformly chosen from1, 2, . . . , 20 for each
targets. The travel times are the Euclidean distances between
the vertices. The travel costs are either (1)css′ = 0.2dss′

(small) or (2) css′ = dss′ (large). We average over 10
instances for each parameter setting. The large runtime of
the mixed integer program prevented us from using a larger
sample size.

A. Experiment 1

We first investigate the surplus achieved by the different
bidding rules if we use the most sophisticated ordering rule,
namely O5, both during and after the auction. The left
columns of Table II evaluateB1 with O5/O5, B2 with O1/O5

(sinceB2 has to be used withO1 during the auction since this
ordering rule provides the basis for computing the surplus
loss per time unit),B3 with O5/O5 and our mixed-integer
program (MIP), that we solve with CPLEX 9.0. The auction-
based algorithm solves the MR-LDR instances suboptimally



in seconds. Our mixed-integer program with the flow-type
formulation solves them only suboptimally within the run-
time limit of twelve hours. (Its optimality gap is about 21.4
percent on average, meaning that its surplus is at most 21.4
percent smaller than optimal on average.) A mixed-integer
program with the standard TSP-type formulation (where a
binary assignment variable is defined for each combination
of target, robot and visit order) cannot solve them at all.
(Its optimality gap is about 80 percent on average.) The
table reports the scaled surplus as a conservative estimate,
where the upper bound of our mixed-integer program has
been scaled to one. The surplus ofB3 tends to be larger
than the surplus ofB1 andB2 and can even be larger than
the surplus of our mixed-integer program. We learn thatB3

is the best bidding rule withO5/O5. Its optimality gap is
about 21.0 percent on average.

B. Experiment 2

We now investigate by how much the surplus decreases if
we use a less sophisticated ordering rule thanO5 during the
auction. The center columns of Table II evaluateB1 andB3

with two ordering rules during the auction at opposite ends
of the spectrum, namelyO1/O5 (where the robots assume
during the auction that they visit the targets in the order
in which they were assigned to them) andO5/O5 (where
the robots re-order the targets after each round to maximize
their surplus approximately). The table does not showB2

because it cannot be used withO5 during the auction. Using
O1 during the auction rather thanO5 decreases the surplus
by 17.3 percent on average forB1 and by only 0.6 percent
on average forB3. The surplus decreases the most forB1

whend is small. We have already identifiedB3 as the best
bidding rule. We learn that it is sufficient to useB3 with
O1/O5 rather than the slowerO5/O5. Its optimality gap is
about 21.4 percent on average.

C. Experiment 3

We now investigate by how much the surplus decreases
if we use a less sophisticated ordering rule thanO5 after
the auction. The right columns of Table II evaluateB3 with
O1/O1, O2/O2, . . . , O4/O4. B3 with O1/O1 and O2/O2

results in the same surplus sinceB3 assigns the targets in
the same order asO2, namely based on the largest surplus
gain per time unit. UsingO1/O1 rather thanO1/O5 decreases
the surplus by only 1.1 percent on average forB3. We learn
that it is sufficient to useB3 with O1/O1 rather than the
slower O1/O5. Its optimality gap is about 22.3 percent on
average.

VIII. C ONCLUSIONS

In this paper, we studied multi-robot routing problems
(MR-LDR) where a team of robots has to visit a set of
given targets with linear decreasing rewards over time, such
as required for the delivery of goods to rescue sites after
disasters. We developed a mixed integer program that solves
MR-LDR with a flow-type formulation and can be solved
faster than the usual TSP-type formulations. However, we

also showed that solving MR-LDR optimally is NP-hard. We
then developed an auction-based algorithm and demonstrated
that it solves MR-LDR in seconds and with a surplus that is
comparable to the surplus found by the mixed integer pro-
gram with a 12 hour time limit. We showed that Sequential
Single-Item Auctions Based on Surplus Gain (bidding rule
B3) result in a larger surplus than the other bidding rules. It
is sufficient if the robots assume during and after the auction
that they visit the targets assigned to them in the order in
which they were assigned to them (ordering ruleO1) rather
than the order that maximizes their surplus approximately
but is slower to compute.
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