
RRT-Based Nonholonomic Motion Planning
Using Any-Angle Path Biasing

Luigi Palmieri Sven Koenig Kai O. Arras

Abstract— RRT and RRT* have become pop-
ular planning techniques, in particular for high-
dimensional systems such as wheeled robots with
complex nonholonomic constraints. Their planning
times, however, can scale poorly for such robots,
which has motivated researchers to study hierarchical
techniques that grow the RRT trees in more focused
ways. Along this line, we introduce Theta*-RRT that
hierarchically combines (discrete) any-angle search
with (continuous) RRT motion planning for non-
holonomic wheeled robots. Theta*-RRT is a variant of
RRT that generates a trajectory by expanding a tree
of geodesics toward sampled states whose distribution
summarizes geometric information of the any-angle
path. We show experimentally, for both a differen-
tial drive system and a high-dimensional truck-and-
trailer system, that Theta*-RRT finds shorter trajec-
tories significantly faster than four baseline planners
(RRT, A*-RRT, RRT*, A*-RRT*) without loss of
smoothness, while A*-RRT* and RRT* (and thus also
Informed RRT*) fail to generate a first trajectory
sufficiently fast in environments with complex non-
holonomic constraints. We also prove that Theta*-
RRT retains the probabilistic completeness of RRT
for all small-time controllable systems that use an
analytical steer function.

I. Introduction

Any-angle search is a family of discrete search tech-
niques which, unlike A* or Dijkstra’s algorithm, find
paths that are not constrained to grid edges. Daniel et
al. [1] introduce Theta*, an any-angle search technique
whose paths are only slightly longer than true short-
est paths. The authors show that the basic variant of
Theta* finds shorter paths than Field D*, A* with post
smoothing and A* on grids, see Fig. 2. Rapidly exploring
Random Trees (RRT) [2] is a sampling-based motion
planner that expands trees in the state space toward
newly sampled states. An optimal variant, RRT* [3],
rewires the trees based on the notion of cost. To improve
the performance of sampling-based motion planners, re-
cent research has combined them with discrete search
techniques [4, 5, 6, 7]. None of these studies, however,
combine any-angle search with RRT variants although
its properties (such as finding shorter paths than A*
with fewer heading changes) are likely beneficial for the
performance of the combination.
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Fig. 1. Theta*-RRT trees in two example environments used in
the experiments. Left: Maze environment. Right: Random map
environment. The trees (in blue) grow smoothly towards the goal
in a subspace centered around the any-angle path (in red).

In this paper, we present Theta*-RRT with the ob-
jective of rapidly generating smooth and short trajecto-
ries for high-dimensional nonholonomic wheeled robots.
Theta*-RRT is a hierarchical technique that combines
(discrete) any-angle search with (continuous) RRT mo-
tion planning. It improves the efficiency of RRT in
high-dimensional spaces substantially by transferring the
properties of the any-angle path to the final trajectory.
Theta*-RRT considers a continuous control space dur-
ing planning: It uses steer functions instead of random
control propagations to exploit as much knowledge of
the nonholonomic constraints of the system as possible
and to ensure both high planning efficiency and high
trajectory quality. Since heuristics can also be mislead-
ing and degrade planning performance, we prove that
Theta*-RRT retains the probabilistic completeness of
RRT for all small-time controllable systems that use an
analytical steer function. We evaluate the approach using
a 3D differential drive robot and a 8D truck-and-trailer
system. We compare it to four baseline planners: RRT,
RRT* (and thus also Informed RRT* [8] which behaves
like RRT* until a first trajectory is found), A*-RRT, and
A*-RRT* [7]. The evaluation shows that Theta*-RRT
is significantly faster and produces shorter high-quality
trajectories than those of the baselines.

The paper is structured as follows: We describe related
work in Sec. II and Theta*-RRT in Sec. III. We present
experiments in Sec. IV and discuss their results in Sec. V.
Probabilistic completeness of Theta*-RRT is proven in
Sec. VI.

II. Related Work

Prior research has combined discrete search with con-
tinuous sampling-based motion planning. For example,
Plaku et al. [4, 5] propose a planner where a search-
based planner finds a sequence of decomposition regions
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Fig. 2. Comparison of Theta* and A*. Left: The any-angle path
of Theta* (in red) is not constrained to grid edges. Right: The
grid path of A* (in red) is constrained to grid edges and part of a
different homotopy class. It is longer and has more heading changes.

that are then used to guide how RRT grows the tree.
Bekris and Kavraki propose the Informed Subdivision
Tree technique [6] that uses a heuristic to direct the
tree growth and improve the coverage of the state space.
In contrast to these two planners, Theta*-RRT biases
the tree growth mainly in the homotopy class found
by Theta* and considers a continuous control space
(by utilizing steer functions instead of a discrete set
of randomly generated control propagations) to exploit
as much knowledge of the nonholonomic constraints as
possible. Brunnen et al. [7] propose a two-phase motion
planner where A* finds a geometrically feasible path,
which then biases the tree growth of RRT*. This planner
is applied only to a high-dimensional holonomic robot,
where the RRT* vertices (sampled from a Gaussian
distribution centered around the A* path) are connected
using motion interpolation. In contrast, Theta*-RRT
focuses on more complex nonholonomic systems and uses
steer functions. Cowlagi and Tsiotras [9] propose a plan-
ner that constructs a discrete control set using expensive
model-predictive control techniques. In contrast, Theta*
adopts a continuous control space. Rickert et al. [10]
propose the EET planner for holonomic systems that
sacrifices probabilistic completeness by using workspace
information to continuously adjust the sampling behavior
of the planner. In contrast, Theta*-RRT is probabilisti-
cally complete.

III. Combining Any-Angle Search with RRT

Let X ⊂ Rd be the state space, U ⊂ Rm the control
space, and Xobs ⊂ X and Xfree = X \ Xobs the obstacle
and free spaces, respectively. A (control) system Σ on
state space X is a differential system such that

ẋ(t) = f(x(t))u+ g(x(t)) x(0) = xinit, (1)

where xinit ∈ X and, for all t, x(t) ∈ X and u(t) ∈
U . g describes the drift, and f describes the system
dynamics. Theta*-RRT is a feasible motion planner for
small-time controllable nonholonomic systems: It finds
controls u(t) ∈ U for t ∈ [0, T ] such that the unique
trajectory x(t) that satisfies Equation (1) connects a
given start state xinit ∈ Xfree to a given goal state
x(T ) = xgoal ∈ Xgoal ⊂ Xfree in the free space Xfree.

A. Geodesic Distance for Nonholonomic Wheeled Robots

Let us consider small-time controllable nonholonomic
systems.

Definition 1: System Σ is locally controllable from X
if the set of states reachable from X by an admissible
trajectory contains a neighborhood of X . It is small-time
controllable from X if, for any time T , the set of states
reachable from X before time T contains a neighborhood
of X .
For small-time controllable nonholonomic wheeled
robots, we define the geodesic distance DP(x1,x2) of two
states x1 and x2 to a path P through R2×S1. Consider a
path P and let x′1 and x′2 be the orthogonal projections
of x1 and x2 onto P and their Euclidean distances be
d1 = ‖x1−x′1‖ and d2 = ‖x2−x′2‖ (respectively). Then,
the geodesic distanceDP(x1,x2) is the sum of the lengths
of the geodesics from each of the two states to path P,
that is,

DP(x1,x2) = we (d1 + d2) + wθ
(
1− |qx1

· qx′1
|
)

+wθ
(
1− |qx2

· qx′2
|
)

(for parameters we and wθ), where qx1
and qx2

are the
quaternions of states x1 and x2, and qx′1

and qx′2
the

quaternions of the segments of path P to which x′1 and x′2
belong. The geodesic distance of two states is the smaller,
the closer they are to path P in Euclidean distance,
heading orientations and steering orientations.

B. Our Technique: Theta*-RRT

Theta*-RRT (detailed in Algorithm 1) first generates
a geometrically feasible any-angle path P using only
geometric information about the workspace. Then, it
computes the trajectory by growing a tree τ of smooth

Algorithm 1 Theta*-RRT

function Theta*-RRT(xinit , xgoal)
P ⇐ AnyAngleSearch(xinit , xgoal)
if P = ∅ then

return failure
end if
τ.AddNode(xinit)
g(xinit) ⇐ 0
k ⇐ 1
while k ≤ MAX_ITERATIONS do

xrand ⇐ AnyAngleSampling(X ,P)
xnear ⇐ NearestNeighborSearch(τ,xrand,P)
unew, σnew ⇐ Steer(xnear,xrand)
if σnew ∈ Xobs then
continue

end if
τ.AddNode(xrand)
τ.AddEdge(xnear,xrand,unew)
g(xrand) ⇐ g(xnear) + C(xnear,xrand)
if xrand ∈ Xgoal then

return ExtractTrajectory(xrand)
end if
k ⇐ k + 1

end while
return failure
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Fig. 3. Path-biased sampling strategy. Left: Example strip (in
grey) around an any-angle path (in orange), in which samples are
randomly generated. Black arrows are samples, and green arrows
are their projections onto the any-angle path. Blue sectors are the
angular ranges from which the sample orientations are drawn. The
mean sector orientations are computed as weighted averages of the
orientations of the any-angle path segments. The individual weight
contributions are evaluated in geodesic path coordinates along the
offset black line. Right: Resulting mean orientations around an
example any-angle path.

local geodesics around path P (path-biasing heuristic)
satisfying the system’s nonholonomic constraints. It re-
peatedly samples a state xrand mainly from a subspace
Xlocal ⊂ Xfree centered around path P. It then makes
xrand a new tree vertex and connects it to xnear, which
is selected among several ones as the vertex that connects
with minimum cost to xrand. The cost depends on the
length and smoothness of the trajectory from the candi-
date tree vertex to state xrand and the geodesic distance
of both vertices to the any-angle path. The subroutines
of Algorithm 1 are described below:

AnyAngleSearch(xinit , xgoal) uses Theta* to search
an eight-neighbor grid from start grid vertex sinit to
goal grid vertex sgoal, where S is the set of all grid
vertices. sinit ∈ S is the grid vertex that corresponds
to the start vertex xinit, and sgoal ∈ S is the grid
vertex that corresponds to the goal vertex xgoal. We
assume obstacles cells to be inflated so as to reflect
the robot shape. Theta* uses the consistent straight-
line distances as heuristics. It returns an any-angle path
P = {p1,p2, ...,pN} (a discrete Cartesian path) if one
exists and the empty path otherwise.

AnyAngleSampling(X ,P) samples mainly from a con-
nected subspace Xlocal ⊂ X according to a distribution
that conveys geometric information of path P and re-
turns the sampled state xrand. Concretely, the Cartesian
components of the samples are generated uniformly from
a strip with width W (for parameter W , called position
bias) centered around path P. To convert the any-angle
path into a smooth trajectory, the heading orientation
xθ and steering orientation xδ of the samples are gener-
ated uniformly from angular intervals centered around a
mean orientation ᾱ, which is a linear combination of the

orientations of the segments of path P, that is,

ᾱ =

N∑
i=1

wi α
i
p, (2)

where αip is the orientation of segment pipi+1. The
weights wi are calculated from trapezoidal member-
ship functions that are associated with each segment.
The functions are centered around the centers of their
segments with tails that overlap into the neighboring
segments such that their values at the path vertices
pi are exactly 0.5 and their slopes are no less than
a minimal slope δS (for parameter δS). The influence
of each membership function on a given sample x is
computed along geodesic path coordinates, obtained by
offsetting path P with the perpendicular distance of
x to P (see Fig. 3, left). The orientations xθ and xδ
of the samples are then generated uniformly from the
interval (ᾱ − ∆θ, ᾱ + ∆θ) (for parameter ∆θ, called
orientation bias). The components of the samples that
are not related to the workspace (such as velocities and
accelerations) are generated uniformly. Moreover with a
frequency funiform, this function generates uniformly a
sample from the entire Xfree (for parameter funiform).
NearestNeighborSearch(τ , xrand, P) returns the

tree vertex xnear that connects with minimum cost
C(xnear,xrand) to state xrand. Instead of determining
tree vertex xnear directly, Theta*-RRT determines a set
of tree vertices Xnear within distance δR from xrand (for
parameter δR). If this set is empty, it returns the tree
vertex nearest to xrand. Otherwise, it returns the tree
vertex from set Xnear that connects with minimum cost
C(xnear,xrand) to state xrand, that is,

xnear = arg min
x∈Xnear

C(x,xrand) (3)

with

C(x,xrand) = g(x) + Cσ +DP(x,xrand), (4)

where g(x) is the sum of the costs from the tree root
xinit to the tree vertex x and DP(x,xrand) the geodesic
distance of states x and xrand from path P. The cost Cσ
measures the length and smoothness of the trajectory σ
from tree vertex x to state xrand returned by the steer
function. It is defined as

Cσ =

Ne−1∑
i=0

wd||σi+1 − σi||+ wq (1− |qi+1 · qi|)2

(for parameters wd and wq), where Ne+ 1 is the number
of intermediate states σi on trajectory σ and qi are the
associated quaternions. The cost Cσ can be computed
on-line or very efficiently with a regression approach [11].
Steer(xnear, xrand) returns controls unew and a tra-

jectory σnew from state xnear to state xrand with termi-
nal time T . The analytical steer function connects any
pair of states and respects the topological property [12],
that is, for any ε > 0 there exists some η > 0 such
that, for any two states xnear ∈ X and xrand ∈ X with



Fig. 4. Differential drive system in polar coordinates: ρ is the
Euclidean distance between the Cartesian coordinates of the robot
pose (x, y, θ) and of the goal state, φ the angle between the x-axis
of the robot reference frame {Xr} and the x-axis of the goal state
frame {Xg}, α the angle between the y-axis of the robot reference
frame and the vector connecting the robot with the goal position,
v the translational and ω the angular robot velocity.

||xnear−xrand|| < η, it holds that ||xnear−σnew(t)|| < ε
for all t ∈ [0, T ]. If σnew is collision-free, it is added to τ
as the tree branch (or edge) that connects xnear to xrand.

IV. Experimental Setup

We now investigate how well Theta*-RRT performs
against the baseline planners RRT, A*-RRT, RRT* and
A*-RRT*. All planners extend their trees using steer
functions. RRT and RRT* sample in the entire state
space. RRT uses Cσ as distance metric, and RRT* uses
Cσ as cost function. A*-RRT and A*-RRT* sample along
A* paths. A*-RRT generates samples and selects the tree
vertex that connects to the sampled state with minimum
cost in the same way as Theta*-RRT. A*-RRT* gener-
ates the samples from a Gaussian distribution centered
around the A* path as in [7] and uses Cσ as cost function.

All experiments are carried out with a C++ imple-
mentation on a single core of an ordinary PC with a 2.67
GHz Intel i7 processor and 10 GB RAM. The weights
of the cost function and the parameters of the distance
metric are wd = we = wq = wθ = 0.5 and δS = δR = 4m.
funiform is set to 1 over 5000 samples.

A. Nonholonomic Systems

We consider two small-time controllable nonholonomic
systems, namely a 3-dimensional differential drive system
and an 8-dimensional truck-and-trailer system.

Differential drive system: We use a unicycle system
with state (x, y, θ), where (x, y) ∈ R2 is the Cartesian
position and θ ∈ [−π, π) is the heading orientation.
After a Cartesian-to-polar coordinate transformation, see
Fig.4, the equations of motions are

ρ̇ = − cosα v

α̇ =
sinα

ρ
v − ω

φ̇ = −ω,

(5)

where v and ω are the translational and the angular ve-
locities, respectively. For this system, we use the efficient
and smooth steer function POSQ [13]. Width and length
of the robot are set to 0.4m and 0.6m, respectively.

Truck-and-trailer system: In order to obtain
high-quality trajectories, we use the extended state

Fig. 5. Truck-and-trailer system: (x, y) ∈ R2 are the coordinates of
the trailer axle’s midpoint, θ0 and θ1 the orientations of the trailer
and truck, v the translational velocity of the truck, δ its steering
angle, d1 the distance between the front axle and the rear axle of
the truck, and d0 the distance between the trailer axle and the hitch
joint on the rear truck axle.

(x, y, θ0, θ1, v, v̇, δ, δ̇), where (x, y) ∈ R2 are the coor-
dinates of the trailer axle’s midpoint, θ0 and θ1 the
orientations of the trailer and truck, respectively, v the
translational velocity of the truck, v̇ its acceleration, δ
the steering angle of the truck and δ̇ its derivative, see
Fig. 5. The equations of motions are

ẋ = v cos(θ1 − θ0) cos θ0

ẏ = v cos(θ1 − θ0) sin θ0

θ̇0 =
v

d0
sin(θ1 − θ0)

θ̇1 =
v

d1
tan(δ).

(6)

For this system, we use the η4 splines [14] as steer
function since they are known to generate high-quality
trajectories for truck-and-trailer systems. We set d0 =
d1 = 1, width and length of the trailer to 0.4m and 0.6m
and the truck width to 0.4m.

B. Environments

To stress-test the planners and study how they behave
in environments of varying complexity, we design three
simulated test environments shown in Figs. 1 and 6.
The maze environment in Fig. 1 contains many different
homotopy classes, has local minima (such as U-shaped
obstacles) and narrow passages. Its size is 50m×50m.
The random environment contains randomly generated
square obstacles, its size is 50m×30m. The narrow cor-
ridor environment in Fig. 6 stresses the ability of the
planners to generate smooth trajectories in narrow cor-
ridors, its size is 25m×25m. The grid cell size for the
any-angle search is 1 m in all environments.

C. Performance Metrics

For each planner and environment, we perform
100 runs for the differential drive system and 50
runs for the truck-and-trailer system. We are solely
interested in the first trajectories found. We compute
the means and standard deviations of the following four
performance metrics for all planning problems that are
solved within the planning time limit of 1,000 seconds:
tree size Nv (measured in the number of stored tree
vertices), planning time Ts (measured in milliseconds or
seconds) and resulting trajectory length lp (measured



Fig. 6. Narrow corridor environment with the goal position (in
red) and the trees (in blue). Left: Tree of Theta*-RRT. Right:
Tree of RRT. Theta*-RRT generates a smaller tree than RRT,
which makes Theta*-RRT faster.
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Fig. 7. Performance trends for different strengths of the position
bias W (W = 1m in red, W = 4m in blue and W = 10m in
green) and orientation bias ∆θ in the maze environment for the
metrics planning time, roughness, tree size and trajectory length
(smaller values are better for all performance metrics).

in meters). Smoothness, although an intuitive concept,
is less straightforward to assess. In our previous work
[11, 13], we used performance metrics based on the
velocity profile of the robot (such as the average
speed arc lengths, velocity profile peaks or normalized
jerk). Here, we use a metric that is better suited for
measuring geometric trajectory smoothness and thus
human-perceived smoothness (namely how sharp the
turns are): roughness R, defined as the square of the
change in curvature κ of the robot, integrated along
the trajectory and normalized by the trajectory length L,

R =

∫ tl

t0

∣∣∣∣ 1L dκdt
∣∣∣∣2 dt.

A smaller roughness indicates smoother trajectories. We
also compute the percentage of trajectories found (prob-
lems solved) within the planning time limit.

D. Theta*-RRT Parameters

Prior to the main experiment, we analyze the impact of
the parameters W and ∆θ on the performance of Theta*-

RRT. Position bias W is related to the geometry of the
wheeled robot and should be set to a value no less than
the maximum value of its length and width. We use the
maze environment and the ranges W = {1m, 4m, 10m}
and ∆θ =

{
π
10 ,

π
2 , 2π

}
. For each pair of parameter values,

we compute the mean and standard deviation of the four
performance metrics over multiple runs. Fig. 7 shows the
results for the differential drive system. The results for
the truck-and-trailer system are qualitatively similar. We
observe three trends: (i) With a larger orientation and
position bias (that is, smaller ∆θ and W ), the trajectories
tend to be shorter and smoother, which is expected since
the trajectories then follow the any-angle paths more
closely. (ii) With a smaller orientation bias (that is, larger
∆θ), the tree sizes and planning times tend to be smaller.
The optimum is at the medium value W = 4m where the
value of ∆θ has almost no influence (but the optimum is
at the smallest value ∆θ = π

10 ). Given these trends, we
select the medium position bias W = 4m and the strong
orientation bias ∆θ = π

10 .

V. Experimental Results

The experimental results for Theta*-RRT and the four
baseline planners are given in Tables I-II. Smaller values
are better for all performance metrics. The best values
are highlighted in boldface. Theta*-RRT outperforms the
four baselines with respect to all performance metrics,
with only two exceptions. It is a close second with respect
to trajectory smoothness to RRT* for the differential
drive system in the random environment and to A*-RRT
for the truck-and-trailer system in the narrow corridor
environment. We make the following observations:

(i) The path-biasing heuristic of Theta*-RRT avoids
the time-consuming exploration of the entire state space
and thus results in small tree sizes and planning times.
This advantage comes at the cost of having to find an
any-angle path first but Tab. III shows that the runtime
of the discrete search is negligible compared to the overall
planning time. Theta*-RRT thus has an advantage over
RRT and RRT* that explore large parts of the state
space, especially in environments with local minima and
narrow passages. For this reason, RRT* (and even A*-
RRT*) fail to find any trajectory within 1,000 seconds
for the high-dimensional truck-and-trailer system in all
runs in two of the three environments.

(ii) The path-biasing heuristic of Theta*-RRT results
in trajectories that fall into good homotopy classes and
are thus short. Theta*-RRT thus has an advantage over
A*-RRT and A*-RRT*, whose path-biasing heuristics
suffer from the A* paths typically being in worse ho-
motopy classes than the Theta* paths, which results in
longer trajectories and thus also larger planning times
and tree sizes.

(iii) The sampling strategy of Theta*-RRT results in
smooth trajectories. Theta*-RRT thus has an advantage
over A*-RRT*, whose sampling strategy is not quite as
sophisticated.



Random environment
Planner Tree size Nv Planning time Ts [s] Trajectory length lp [m] Roughness R Problems solved
Theta*-RRT 54 ± 59 0.011 ± 0.007 43.11 ± 1.485 0.001 ± 0.003 100%
A*-RRT 49 ± 46 0.020 ± 0.01 44.16 ± 1.76 0.003 ± 0.004 100%
RRT 137 ± 150 0.09 ± 0.05 65.25 ± 13.54 0.009 ± 0.008 100%
RRT* 168 ± 154 9.57 ± 13.73 43.84 ± 1.45 0.00074 ± 0.00140 100%
A*-RRT* [7] 32 ± 34 0.40 ± 0.93 52.88 ± 19.0 0.0057 ± 0.0098 100%

Maze environment
Planner Tree size Nv Planning time Ts [s] Trajectory length lp [m] Roughness R Problems solved
Theta*-RRT 319 ± 164 0.19 ± 0.07 94.86 ± 2.74 0.0038 ± 0.0038 100%
A*-RRT 1470 ± 777 3.73 ± 4.8 98.45 ± 1.12 0.015 ± 0.007 100%
RRT 2615 ± 960 4.85 ± 4.62 139.16 ± 21.63 0.018 ± 0.01 100%
RRT* 658 ± 37 16.13 ± 0.34 129.61 ± 5.65 0.024 ± 0.01 100%
A*-RRT* [7] 356 ± 193 47.66 ± 48.47 96.57 ± 5.37 0.013 ± 0.009 100%

Narrow corridor environment
Planner Tree size Nv Planning time Ts [s] Trajectory length lp [m] Roughness R Problems solved
Theta*-RRT 1206 ± 258 8.16 ± 3.63 77.78 ± 1.44 0.0027 ± 0.004 100%
A*-RRT 1799 ± 715 18.84 ± 15.2 77.8 ± 1.33 0.023 ± 0.01 100%
RRT 8488 ± 1639 180.45 ± 58.55 78.36 ± 1.82 0.0069 ± 0.005 100%
RRT* 45310 ± 7012 2667.5 ± 481.7 79.47 ± 0.9 0.03 ± 0.008 100%
A*-RRT* [7] 3236 ± 572 309.4 ± 119.4 78.37 ± 0.65 0.0125 ± 0.006 100%

TABLE I

Experimental results: Trajectory quality and planning efficiency for the differential drive system.

Random environment
Planner Tree size Nv Planning time Ts [s] Trajectory length lp [m] Roughness R Problems solved
Theta*-RRT 52.2 ± 48.3 0.0547 ± 0.0790 44.331 ± 2.8418 0.0057 ± 0.0060 100%
A*-RRT 75.7 ± 52.4 0.1019 ± 0.0984 51.74 ± 7.89 3.4993 ± 8.8502 58%
RRT 836 ± 378 1.32 ± 0.84 66.96 ± 14.7 2.17 ± 2.00 100%
RRT* 3957 ± 2756 816.16 ± 656.58 52.39 ± 13.12 0.54 ± 1.01 76%
A*-RRT* [7] 3582 ± 3138 949.6 ± 823.7 49.30 ± 12.79 0.1013 ± 0.2647 100%

Maze environment
Planner Tree size Nv Planning time Ts [s] Trajectory length lp [m] Roughness R Problems solved
Theta*-RRT 522 ± 167 2.57 ± 1.50 98.59 ± 4.95 1.0073 ± 0.7226 100%
A*-RRT 661 ± 181 4.56 ± 2.0858 101.79 ± 8.26 1.1317 ± 1.0372 100%
RRT 4858 ± 1276 38.88 ± 15.83 126.34 ± 16.52 2.0788 ± 1.2985 100%
RRT* 0 ± 0 0 ± 0 0 ± 0 0 ± 0 0%− failed
A*-RRT* [7] 0 ± 0 0 ± 0 0 ± 0 0 ± 0 0%− failed

Narrow corridor environment
Planner Tree size Nv Planning time Ts [s] Trajectory length lp [m] Roughness R Problems solved
Theta*-RRT 1513 ± 492 20.87 ± 13.77 77.10 ± 6.75 2.15 ± 1.12 100%
A*-RRT 2139 ± 573 33.46 ± 16.74 79.66 ± 5.94 1.9352 ± 0.8722 100%
RRT 1794 ± 5473 733.98 ± 438.28 83.77 ± 7.04 2.31 ± 1.47 100%
RRT* 0 ± 0 0 ± 0 0 ± 0 0 ± 0 0%− failed
A*-RRT* [7] 0 ± 0 0 ± 0 0 ± 0 0 ± 0 0%− failed

TABLE II

Experimental results: Trajectory quality and planning efficiency for the truck-and-trailer system.

Additionally, we tested Theta*-RRT in a real-world
setting by deploying it on a passenger guidance robot for
complex and busy airport environments (Fig. 8).

VI. Probabilistic Completeness of Theta*-RRT

The results clearly demonstrate the benefit of Theta*-
RRT. However, its path-biasing heuristic – as any heuris-
tic – can mislead and even degrade the performance of
RRT, for example when the any-angle path is infeasible

Environments TTheta∗ [ms] TA∗ [ms]
Random 5.34 8.07
Maze 12.06 19.91
Narrow corridor 45.14 37.74

TABLE III

Experimental results: Planning times of Theta* and A*

to follow under kinodynamic constraints, although a
geometric solution (in the inflated grid world) exists. In
such cases, the probabilistic completeness, a key property
of RRT, is lost. In this section, we prove that Theta*-
RRT retains the probabilistic completeness for all small-
time controllable nonholonomic systems which use an an-
alytical steer function. Probabilistic completeness is well
established for systems with geometric constraints [15]
and kinodynamic systems under some strong assump-
tions (that is, forward simulations [2], uniform sampling
and optimal steering [16, 17] and holonomic systems with
state-space based interpolation [18]). Our proof follows
the one introduced in [2] but we consider a special class
of nonholonomic systems, namely systems that are small-
time controllable, see Definition 1.



Fig. 8. Theta*-RRT on a real differential drive robot. Right:
The robot guides a group of people. Left: The dots S and G (in
red) represent the start and goal positions (respectively). The any-
angle path (in green) is generated first, followed by the smooth
trajectory (in purple).

Theorem 1: Consider a small-time controllable non-
holonomic system. Define a non-zero and non-uniform
continuous sampling distribution fs over Xfree gener-
ated by the path-biasing technique. Let Theta*-RRT
use an analytical steer function that connects any pair
of states in X . Then, Theta*-RRT is probabilistically
complete since the probability of connecting the start
state xinit ∈ Xfree to the goal state xgoal ∈ Xfree, if
possible, approaches one asymptotically.

Proof: Let B(xi, ρ) denote the ball of radius ρ > 0
centered on xi ∈ Xfree. Consider all the tree vertices
∪i=0,..,k xi ∈ τ at iteration k. Since the volume Ω =
∪i=0,..,k B(xi, ρ ≥ δR > 0) is non-zero for the Lebesgue
metric the event of sampling a state xrand ∈ Ω will hap-
pen with probability one as the number of iterations goes
to infinity. Given that the system is small-time control-
lable, the connection (performed by the steer function) of
xrand to xnear (chosen among multiple vertices in τ), will
be successful and therefore (if collision free) xrand will be
added to τ . The set X̃k = {x ∈ Xfree\∀x ∈ τ} represents
the uncovered part of the space Xfree by τ . By induction
following the above property, as k approaches infinity,
µ(X̃k) (the volume of X̃k) approaches zero, therefore the
state xgoal will be added to τ with probability one.
Theorem 1 extends to RRT with any path-biasing heuris-
tic as long as it uses analytical steer functions for systems
that are small-time controllable since the proof does not
exploit any geometric properties of Xlocal.

VII. Conclusions

In this paper, we introduced Theta*-RRT, a hierarchi-
cal technique that combines (discrete) any-angle search
with (continuous) RRT motion planning for small-time
controllable nonholonomic wheeled robots. We evaluated
the approach using two different non-holonomic systems
in three different environments and compared it to four
different baseline planners, namely RRT, A*-RRT, RRT*
and A*-RRT*. The results show that Theta*-RRT finds
shorter trajectories significantly faster than the baselines
without loss of smoothness, while A*-RRT* and RRT*
(and thus also Informed RRT* [8]) fail to generate a first
trajectory sufficiently fast in environments with complex
nonholonomic constraints. We also proved that Theta*-
RRT retains the probabilistic completeness of RRT for

all small-time controllable systems that use an analytical
steer function.
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