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Abstract—The weighted constraint satisfaction problem
(WCSP) is a general and very useful combinatorial optimization
tool. Despite its importance, the task of generating the top
K solutions to it is understudied. One benefit of generating
the top K solutions is in creating a framework for “human-
in-the-loop AI”. Most real-world problems cannot be modeled
accurately/completely up front and, hence, generating the top K
solutions gives users a chance to exercise preferences that are
not explicitly included in the modeling phase. In this paper, we
first discuss the importance of generating the top K solutions to
WCSPs in various contexts. We then propose various approaches
to do so and empirically compare them. We include approaches
based on quadratization, pseudo-Boolean optimization, constraint
propagation, and integer linear programming. Together, they
cover all major algorithmic ingredients derived from constraint
programming (CP), artificial intelligence (AI), and operations
research (OR).

Index Terms—Weighted CSP; Top K Solutions.

I. INTRODUCTION

The weighted constraint satisfaction problem (WCSP) is
a combinatorial optimization problem and a generalization
of the constraint satisfaction problem (CSP). Each tuple in
a constraint—i.e., an assignment of values to all variables
in that constraint—is associated with a non-negative weight
(sometimes referred to as “cost”). The goal is to find an
assignment of values to all variables from their respective
domains such that the total weight is minimized [1].

More formally, the WCSP is defined by a triplet B =
〈X ,D, C〉, where X = {X1, X2, . . . , XN} is a set of N
variables, D = {D1, D2, . . . , DN} is a set of N domains
with discrete values, and C = {C1, C2, . . . , CM} is a set
of M weighted constraints. Each variable Xi ∈ X can be
assigned a value in its associated domain Di ∈ D. Each
constraint Ci ∈ C is defined over a certain subset of the
variables Si ⊆ X , called the scope of Ci. Ci associates a
non-negative weight with each possible assignment of values
to the variables in Si. (For notational convenience, we use Si

and Ci interchangeably throughout this paper when referring
to the variables participating in a weighted constraint, e.g.,

Xk ∈ Ci ≡ Xk ∈ Si.) The goal is to find an assignment of
values to all variables in X from their respective domains that
minimizes the sum of the weights specified by each weighted
constraint in C [1]. This combinatorial task can equivalently
be characterized by having to compute

argmin
a∈A(X )

∑
Ci∈C

ECi
(a|Ci), (1)

where A(X ) represents the set of all |D1|× |D2|× . . .×|DN |
complete assignments to all variables in X . a|Ci represents
the projection of a complete assignment a onto the subset of
variables in Ci. ECi

is a function that maps each a|Ci to its
associated weight in Ci.

The Boolean WCSP is the WCSP in which each domain
Di ∈ D has its cardinality restricted to be 2. Despite this
restriction, the Boolean WCSP is representationally as power-
ful as the WCSP, and it is also NP-hard to solve in general.
The (Boolean) WCSP can be used to model a wide range
of useful combinatorial problems. For example, in artificial
intelligence (AI), it can be used to model user preferences [2]
and combinatorial auctions. In bioinformatics, it can be used
to locate RNA motifs [3]. In statistical physics, the energy
minimization problem on the Potts model is equivalent to that
on its corresponding pairwise Markov random field [4], which
in turn can be modeled as the WCSP. In computer vision,
it can be used for image restoration and panoramic image
stitching [5], [6].

Despite the importance of the WCSP, the problem of
generating the top K solutions to it has not been studied much.
An important benefit of generating the top K solutions is in
creating a framework for “human-in-the-loop AI”. Most real-
world problems cannot be modeled accurately/completely up
front and, hence, generating the top K solutions gives users a
chance to exercise preferences that are not explicitly included
in the modeling phase. It also facilitates knowledge elicitation
since users can choose viable solutions and reject others,
declaring reasons for doing so that can then be incorporated
for further reasoning.



One example domain is in hypothesis selection over knowl-
edge graphs (KGs). A KG is an effective representation of
knowledge. It consists of a collection of knowledge elements,
each of which in turn is extracted from the web or other
sources. Information extractors that use natural language pro-
cessing techniques or other complex algorithms are usually
noisy. That is, the vast number of knowledge elements ex-
tracted from the web may not only be associated with different
confidence values but may also be inconsistent with each other.
Moreover, there might be additional domain knowledge avail-
able in the form of ontological constraints. Many applications
such as question-answering systems that are built on top of
large-scale KGs are required to generate the top K hypotheses,
i.e., coherent subgraphs of a KG that are consistent with the
ontological constraints and that are of high confidence values.
This problem can be reformulated as the problem of generating
the top K solutions to a WCSP [7].

A second related benefit is in quickly adapting to a dynam-
ically changing environment. Suppose a timetabling problem
is formulated and solved as a WCSP. If the top solution to
it becomes unviable due to an unexpected change in one of
the timetabling constraints or preferences, the next best viable
solution can be sought within the available list of top K
solutions before attempting to solve a new WCSP. Therefore,
generating the top K solutions serves as a caching of viable
solutions that can be used to adapt to unforeseen changes in the
environment. Such a framework is also very useful in planning
domains where new information gathered from the real world
at execution time can make certain plans unviable.

A third benefit is in computational physics. At the mi-
croscopic level, a material is composed of particles with
associated spins. The interactions between spins create fer-
romagnetic, anti-ferromagnetic or other interaction potentials
between them similar to those between variables in a WCSP.
However, the macroscopic observables of the material, like
its total magnetization, are not merely properties of a single
spin configuration but are instead properties of all possible
spin configurations summed via the Boltzmann equation of
statistical mechanics [8]. Since the Boltzmann equation in-
volves exponentials, under certain weak assumptions, it can be
approximated well using the top K solutions of the interaction
potentials. Generating the top K solutions of the interaction
potentials can be used to study macroscopic properties such
as magnetic hysteresis [9].

In this paper, we propose various approaches to generate the
top K solutions to WCSPs and empirically compare them. We
include approaches based on quadratization, pseudo-Boolean
optimization, constraint propagation, and integer linear pro-
gramming (ILP). Together, they cover all major algorithmic
ingredients derived from constraint programming (CP), AI,
and operations research (OR).

II. TOP K SOLUTIONS TO WCSPS

The task of generating the top K solutions S1,S2, . . . ,SK
needs a more formal specification since it can be conceived in
many ways. The following are some conceivable methods.

• Method A is to request the solutions S1,S2, . . . ,SK such
that S1 is the top solution, S2 is the second best solution
and differs from S1 in the assignment of values to at least
one of the N variables, S3 is the third best solution and
differs from both S1 and S2 in the assignment of values
to at least one of the N variables, and so forth.

• Method B is to request the solutions S1,S2, . . . ,SK such
that S1 is the top solution, S2 is the second best solution
and differs from S1 in the assignment of values to at
least d of the N variables, S3 is the third best solution
and differs from both S1 and S2 in the assignment of
values to at least d of the N variables, and so forth.

• Method C is to request the solutions S1,S2, . . . ,SK
such that the sum of their respective costs c1, c2, . . . , cK
is minimized and any two distinct Si, Sj differ in the
assignment of values to at least one of the N variables.

• Method D is to request the solutions S1,S2, . . . ,SK
such that the sum of their respective costs c1, c2, . . . , cK
is minimized and any two distinct Si, Sj differ in the
assignment of values to at least d of the N variables.

We first note that Methods A and C are equivalent but
Methods B and D are not equivalent for fixed K.1 Therefore,
in the rest of this paper, we focus on Methods A (≡ C) and
B, with Method B being more general. We omit discussion on
Method D noting that it requires a fixed value of K and is
equivalent to solving a larger WCSP with KN variables.

III. METHODOLOGIES

Methods to generate only the top solution to WCSPs have
been studied in a number of previous works. Many of these
successful methods, applicable to both Boolean and non-
Boolean variables, have been incorporated in Toulbar2 [10],
a state-of-the-art WCSP solver. Finding the top solution to
WCSPs can also be reformulated as the minimum weighted
vertex cover problem [11]–[13]. Moreover, for the special case
of Boolean variables, finding the top solution can also be done
via pseudo-Boolean optimization [14].

Despite the existence of many works for finding the top
solution, the problem of finding the top K solutions to WCSPs
is understudied.2 [7] uses heuristic methods to generate the top
K solutions but does not provide any theoretical guarantees.
Moreover, many methods, such as those based on analyzing
the variable-interaction graphs [16], are known to work specif-
ically for generating the top solution but are not applicable to
generating the top K solutions. This is because generating the
top K solutions involves global constraints even if the original
WCSP does not.

In this section, we provide methodologies to make the top
solution techniques for WCSPs applicable for generating the
top K solutions as well. We first note that in order to generate

1Suppose we have only two Boolean variables X1 and X2 with costs
c(X1 = 0, X2 = 0) = 1, c(X1 = 0, X2 = 1) = 2, c(X1 = 1, X2 = 0) =
2 and c(X1 = 1, X2 = 1) = 4. For K = 2 and d = 2, Methods B and D
produce different results.

2For CSPs, the equivalent problem of generating K solutions is relatively
well studied [15].



the kth solution for 1 ≤ k ≤ K, prohibitive constraints are
added in the kth iteration to prevent the top k − 1 solutions
found thus far. These prohibitive constraints are naturally
global constraints. They can be dealt with in different ways in
different frameworks.

A. Quadratization
A prohibitive constraint is required to enforce a difference

between the kth solution and each of the top k − 1 solutions
found thus far in the values assigned to at least d variables.
Stated directly in the language of weighted constraints, a
prohibitive constraint is a global constraint that involves all
variables. Therefore, its tabular representation is exponential
in N , rendering its explicit encoding for WCSP solvers
completely unviable.

To circumvent this problem, we propose the use of quadra-
tization. In essence, quadratization refers to the idea of de-
composing higher-arity interactions between variables to only
binary interactions between them but at the cost of introducing
auxiliary variables [17]. While quadratization is hard to study
for general functions, quadratization of functions on Boolean
variables has received more attention. Recent progress in this
field suggests that a symmetric function on Boolean variables
can be decomposed to a sum of quadratic functions on the
same Boolean variables plus a logarithmic number of auxiliary
Boolean variables [18].

This theory can be applied to WCSPs with only Boolean
variables. In such cases, the prohibitive global constraints are
in fact symmetric Boolean functions since they only specify
how many variables, as opposed to which variables, should
have differing assignments compared to each of the top k− 1
solutions found thus far. Therefore, these global constraints
can be decomposed to binary weighted constraints easily.

For a WCSP solver such as Toulbar2, the binary weighted
constraints coming from the decomposition of the prohibitive
global constraints have simple tabular representations. They
can be added to the set of original weighted constraints before
invoking the solver in the kth iteration to obtain the kth

solution. For WCSPs that have only unary and binary weighted
constraints, quadratic pseudo-Boolean optimization (QPBO)
solvers can be invoked [14]. Moreover, since the prohibitive
global constraints can also be decomposed to binary con-
straints, they can be added to the objective function in the
kth iteration to obtain the kth solution without compromising
the quadratic form.

B. ILP
Without loss of generality, we first assume that every vari-

able has a unique unary weighted constraint associated with
it. If there are multiple unary weighted constraints associated
with a variable, they can be combined into one; and if there
are no unary weighted constraints associated with a variable,
one with all weights set to zero can be introduced artificially.

Suppose we denote the top `th solution as follows: S` ≡
(X1 = v`X1

, X2 = v`X2
, . . . , XN = v`XN

}.3 Extending on

3For notational convenience, v`XN
will also be written as v`{XN}.

our previous work in [19], the problem of generating the kth

solution, for 1 ≤ k ≤ K, can be formulated as an ILP with
only Boolean variables as follows.

minimize
qCa :qCa ∈q

∑
C∈C

∑
a∈A(S(C))

wC
a q

C
a

s.t. qCa ∈ {0, 1} ∀qCa ∈ q∑
a∈A(S(C))

qCa = 1 ∀C ∈ C

∑
a∈A(S(C)):a|S(C′)=a′

qCa = qC
′

a′

∀C,C ′ ∈ C : |S(C ′)| = 1 ∧ S(C ′) ⊂ S(C),∀a′ ∈ A(S(C ′))∑
C∈C:|S(C)|=1

(1− qCv`
S(C)

) ≥ d ∀1 ≤ ` ≤ k − 1,

where q = {qCa | C ∈ C ∧ a ∈ A(S(C))}, and wC
a denotes

the weight of assignment a specified by constraint C. The
cardinality of q is

∑
C∈C

∏
X∈S(C) |D(X)|. The first line

represents the minimization of the sum of weights. The second
line represents the ILP constraints that enforce the Boolean
property for all qCa ’s. It consists of

∑
C∈C

∏
X∈S(C) |D(X)| =

O
(
|C|D̂Ĉ

)
ILP constraints, where Ĉ = maxC∈C |S(C)| and

D̂ = maxX∈X |D(X)|. The third line represents the ILP
constraints that enforce a unique assignment of values to
variables in each WCSP constraint. It consists of |C| ILP con-
straints, each of which has |A(S(C))| =

∏
X∈S(C) |D(X)| =

O
(
D̂Ĉ
)

variables. The fourth line represents the ILP con-
straints which enforce that every two assignments in two
WCSP constraints must be consistent on their shared vari-
ables. It consists of O

(
|C| · Ĉ · D̂

)
ILP constraints. Each

of these ILP constraints has O
(
D̂Ĉ−1

)
variables. The last

line represents the prohibitive global constraints that enforce
a difference from each of the top k − 1 solutions found thus
far in the values assigned to at least d variables. It consists of
k − 1 ILP constraints, each of which has N variables.

IV. EXPERIMENTAL RESULTS

We now provide experimental results that compare the
various methods for generating the top K solutions to WCSPs.
All experiments were run on a laptop with a 3.1GHz quad-
core Intel Core i7 processor and 16GB 2133MHz LPDDR3
memory. All running times are measured in seconds. We used
three datasets for the experiments: the UAI dataset, the Ising
model dataset, and the Erdös-Rényi dataset.

The UAI dataset is made available by the University of Cali-
fornia, Irvine via the link: http://sli.ics.uci.edu/∼ihler/uai-data/.
We used 17 available WCSP instances. These instances have
maximum domain size ≤ 10 with only unary and binary
weighted constraints.

The WCSP instances in the Ising model dataset were
generated as follows. We used a 40 × 40 2-dimensional
lattice structure of Ising spin variables. We considered nearest-
neighbor interactions without an external magnetic field. An



Name \ K 1 2 3 4 5 6

29 0.045406 0.099680 0.159102 0.216908 0.272228 0.324488
DSJC125 0.106832 0.217126 0.349660 0.458314 13.261575 37.407089
GEOM30a 3 0.010978 0.023778 0.034906 0.105019 0.196941 0.269005
GEOM30a 4 0.014780 0.031078 0.046270 0.059286 0.157992 0.227041
GEOM30a 5 0.016725 0.034106 0.054135 0.078917 0.096374 0.223302
driverlog01ac 0.097509 0.196127 0.285424 0.374978 0.469777 0.563200
driverlog02ac 876.335637 1777.000926 2523.380823 4066.095331 4951.544352 6052.300541
le450 5a 2 0.298482 0.592172 59.360335 166.525465 210.161505 265.589398
le450 5a 3 0.726636 1.443531 2.160011 408.277814 6252.195417 7797.841997
le450 5a 4 1.050851 2.168919 17.118558 18.248981 8031.845313 53194.151083
myciel5g 3 0.022384 0.047081 0.069788 0.723032 1.478215 2.262733
myciel5g 4 0.031199 0.063706 0.101349 0.132265 1.803422 4.224769
myciel5g 5 0.049457 0.096153 0.151467 0.206150 0.255206 7.421422
queen5 5 3 0.015450 0.030404 0.043798 0.622870 1.108807 1.609571
queen5 5 4 0.020579 0.042416 0.068729 0.090424 1.629419 2.786443
satellite01ac 50.114745 101.713977 153.408043 205.403035 258.982060 313.314846
satellite02ac 211.403276 437.370921 684.208177 958.824607 1207.126499 1487.134897

TABLE I: Gurobi on the UAI dataset with d = 1.

p \ K 1 2 3 4 5 6

0.0 0.638326 0.856472 7.123784 8.919827 16.910342 18.909787
0.1 75.948327 152.059466 236.236200 319.718994 431.744436 526.693602
0.2 88.022129 177.322234 281.253682 386.028938 616.844662 651.965991
0.3 90.149931 231.156042 338.193184 451.910688 605.158208 725.752342
0.4 96.800210 227.634564 339.146524 452.696057 600.612583 721.518038
0.5 91.156919 184.369873 290.984962 395.283319 531.946094 639.167596
0.6 92.009285 226.944586 324.766628 427.980900 599.313912 657.587034
0.7 94.771781 188.455620 297.191212 391.415626 652.865360 646.465575
0.8 93.545905 211.445277 323.273459 435.189458 582.965451 702.248596
0.9 84.854042 161.436855 253.349112 336.670010 465.082251 551.220683
1.0 0.716885 0.948226 12.168897 16.772620 19.766996 42.548012

TABLE II: Gurobi on the Ising model dataset with d = 1.

interaction between two nearest-neighbor spins can either be
ferromagnetic or anti-ferromagnetic. The control parameter p
determined the fraction of anti-ferromagnetic spin interactions.
We varied p from 0 to 1, with step size 0.1. For each of the 11
possible values of p, we averaged our results over 10 instances.

The WCSP instances in the Erdös-Rényi dataset were gen-
erated as follows. We first generated Erdös-Rényi graphs [20]
with 60 nodes each. Each node represents a Boolean variable,
and the probability parameter p determines the presence of
an edge between any two distinct nodes. An edge represents a
binary weighed constraint between the two variables represent-
ing its endpoint nodes. Each weight in a weighted constraint
was randomly chosen to be an integer in the interval [0, 4].
We varied p from 0.1 to 0.9 with step size 0.1.4

In our experiments, we compared the following solvers:
(a) the Gurobi Optimizer [21], using ILP formulations, (b)
Toulbar2 [10], a state-of-the-art WCSP solver, and (c) qp-
boMex [14], a state-of-the-art QPBO solver. To generate the
kth solution for 1 ≤ k ≤ K, prohibitive constraints are added
in the kth iteration to prevent the top k − 1 solutions. These
prohibitive constraints are global constraints. They were en-
coded as linear inequality constraints suitable for Gurobi or as
quadratic symmetric function constraints suitable for Toulbar2
and qpboMex. However, the quadratic symmetric function
constraints are applicable only for Boolean variables [18]. In
addition, qpboMex also allows only for Boolean variables.

In the first subsection, we compare different methods and
observe that Gurobi significantly outperforms other methods.
In the second subsection, we study the scaling behavior of
Gurobi with respect to increasing values of K and d.

p \ K 1 2 3 4 5 6

0.1 0.016447 0.031001 0.046962 0.062126 0.083085 0.103564
0.2 0.644113 1.207603 1.706096 2.155048 2.635259 3.104022
0.3 0.898389 1.613020 2.381056 3.180436 3.974385 4.785877
0.4 22.256275 43.734139 64.237934 81.844331 107.726265 130.647845
0.5 113.138839 217.982236 362.823347 512.906342 639.578730 757.373041
0.6 113.771927 286.496653 418.216053 533.634755 691.852802 817.851893
0.7 204.130670 384.311431 590.988404 781.153543 978.822693 1197.676624
0.8 203.865396 447.951235 726.605473 952.589703 1206.942405 1470.229164
0.9 1058.537818 2250.422945 3190.207245 4220.987575 5415.125955 6747.523805

TABLE III: Gurobi on the Erdös-Rényi dataset with d = 1.

p K = 1

0.1 0.012589
0.2 0.028718
0.3 0.038424
0.4 1.917937
0.5 26.899478
0.6 21.694742
0.7 70.020841
0.8 148.281038
0.9 1168.726508

TABLE IV: Toulbar2 on the Erdös-Rényi dataset with d = 1.

A. Comparison of Different Methods

Table I shows the performance of Gurobi on the UAI dataset
for different values of K with d = 1. The entries indicate the
cumulative time required to generate the top K solutions. On
all these instances, Toulbar2 failed to generate even the top
solution since the problem sizes were deemed to be too large.
qpboMex was applicable to only 1 instance ‘le450 5a 2’. It
took 0.075s for qpboMex to generate the optimal solution for
this case; but it failed to generate other suboptimal solutions.5

Table II shows the performance of Gurobi on the Ising
model dataset for different values of p and K with d = 1.
The entries indicate the cumulative time required to generate
the top K solutions; and a time limit of 300s was given to
each of the K iterations. On these instances, Toulbar2 was
able to generate only the top solution and only when p = 0 or
p = 1. Its average running time on the successful instances for
p = 0 and p = 1 was 0.286s and 0.285s, respectively. In all
other cases, it timed out. The performance of qpboMex was
very similar to that of Toulbar2. It was able to generate only
the top solutions and only when p = 0 or p = 1. Its average
running time on the successful instances for p = 0 and p = 1
was 0.042s and 0.041s, respectively.

Table III shows the performance of Gurobi on the Erdös-
Rényi dataset for different values of p and K with d = 1. The
entries indicate the cumulative time required to generate the
top K solutions; and a time limit of 1200s was given to each
of the K iterations. Toulbar2 was able to generate only the
top solution for each instance, with running times shown in
Table IV. In all other cases, it timed out. qpboMex could only
generate the top solution for one case, i.e., for p = 0.1. It took
0.004s for qpboMex to generate the optimal solution for this
case; but it failed to generate other suboptimal solutions.

From these results, it is easy to conclude that Gurobi is
currently the only viable method among the existing off-the-
shelf solvers for generating the top K solutions to WCSPs

4Without averaging over 10 instances for each possible value of p, we report
on 9 individual instances since they are indicative of the general trends.

5qpboMex returns a specific exit code to indicate that it cannot solve a
problem instance.



Name \ K 1 2 3 4 5 6

29 0.044889 0.093653 0.143490 0.187253 0.234077 0.279256
DSJC125 0.090875 0.183604 0.294834 0.389074 38.485259 73.381663
GEOM30a 3 0.009502 0.020100 0.029540 0.092820 0.157183 0.222529
GEOM30a 4 0.015141 0.029802 0.044493 0.056798 0.128169 0.194509
GEOM30a 5 0.016150 0.033638 0.053905 0.078138 0.094940 0.227355
driverlog01ac 0.103221 0.207878 0.306139 0.403821 0.498249 0.612439
driverlog02ac 867.613675 1907.417619 3108.379250 3704.813593 4463.120142 5483.314061
le450 5a 2 0.297118 0.599144 176.928288 435.679361 543.542576 879.377756
le450 5a 3 0.612869 1.246977 1.869716 Time Out Time Out Time Out
le450 5a 4 1.308174 2.558808 15.769929 16.902670 Time Out Time Out
myciel5g 3 0.022216 0.045431 0.067313 0.992660 2.797885 3.936749
myciel5g 4 0.032702 0.065108 0.103696 0.136518 4.206785 7.676406
myciel5g 5 0.048541 0.097438 0.153795 0.209105 0.254415 5.146981
queen5 5 3 0.015447 0.029199 0.043584 1.860184 4.377596 6.042508
queen5 5 4 0.030955 0.057675 0.085025 0.107589 3.161552 12.332942
satellite01ac 51.777251 101.707292 153.824613 204.074684 256.636463 310.895090
satellite02ac 208.870650 434.627622 655.586530 878.524620 1099.588159 1325.111695

TABLE V: Gurobi on the UAI dataset with d = 2.

Name \ K 1 2 3 4 5 6

29 0.044668 0.097963 0.155840 0.205683 0.255335 0.304775
DSJC125 0.091101 0.182812 0.297171 0.410300 26.060292 141.772509
GEOM30a 3 0.010676 0.022573 0.033179 0.091357 0.144641 0.199868
GEOM30a 4 0.015035 0.029429 0.043880 0.056533 0.159064 0.248232
GEOM30a 5 0.019166 0.042792 0.067256 0.096821 0.116154 0.247865
driverlog01ac 0.106663 0.216099 0.321633 0.412149 0.501990 0.617877
driverlog02ac 868.608740 1891.746099 2970.052148 3927.390976 4882.853929 5987.147603
le450 5a 2 0.301343 0.592013 968.398253 2198.892417 3315.096333 5003.164408
le450 5a 3 0.634132 1.274331 1.910956 Time Out Time Out Time Out
le450 5a 4 1.088893 2.215917 20.257083 21.391217 Time Out Time Out
myciel5g 3 0.022054 0.045229 0.067041 1.571629 2.455481 5.577489
myciel5g 4 0.036597 0.076109 0.124124 0.162250 5.096919 13.061579
myciel5g 5 0.057012 0.112605 0.178010 0.247078 0.294847 8.660527
queen5 5 3 0.015492 0.031395 0.046358 1.696383 7.339393 10.740527
queen5 5 4 0.021755 0.043642 0.069763 0.091862 4.289730 19.510938
satellite01ac 51.002272 99.963361 153.121990 204.057705 256.304444 307.728991
satellite02ac 257.838993 532.110179 806.995655 1083.737633 1359.451652 1621.945288

TABLE VI: Gurobi on the UAI dataset with d = 3.

even with d = 1. This might be in part due to the fact that
matrix manipulations help OR methods reason about global
constraints much more efficiently than other methods.

B. Further Experiments with Gurobi

Because Gurobi seems to be the only viable method for
generating the top K solutions, we were able to conduct
further exclusive experiments with it. In this subsection, we
report on two such kinds of experiments. First, we wanted to
understand how the running time of Gurobi scales with K,
retaining d = 1. Second, we wanted to understand how it
performs for higher values of d.

Figure 1 shows the scaling behavior of Gurobi on some
selected problem instances for increasing values of K and d =
1. For many instances, the scaling is linear, as in UAI 29 and
Erdös-Rényi p = 0.5. This is very encouraging since the added
complexity of generating the top K solutions leads to only a
linear increase in the running time of Gurobi, making it viable
for a human-in-the-loop AI framework. Of course, there are
some interesting exceptions, as in UAI le450 5a 3 and Ising
model p = 0. Here, the problem instances become harder—
not after the first but—after the third or fourth introduction of
prohibitive global constraints.

Tables V,VI&VII show the performance of Gurobi on the
UAI dataset for different values of K with d = 2, d = 3
and d = 4, respectively. The entries indicate the cumulative
time required to generate the top K solutions; and a time
limit of 3600s was given to each of the K iterations. Gurobi’s
ability to solve most of these problem instances is also
very encouraging from the perspective of human-in-the-loop
AI since users can control the desired “difference” between
solutions (hypotheses).

Name \ K 1 2 3 4 5 6

29 0.046694 0.105542 0.164010 0.216135 0.269785 0.322676
DSJC125 0.098438 0.193016 0.307094 0.398736 93.707280 277.215449
GEOM30a 3 0.010637 0.022767 0.033709 0.085857 0.135265 0.187612
GEOM30a 4 0.015244 0.029354 0.044004 0.056564 0.146394 0.213167
GEOM30a 5 0.017284 0.039570 0.061497 0.086970 0.103684 0.207135
driverlog01ac 0.106813 0.213720 0.331723 0.426196 0.522932 0.647410
driverlog02ac 873.423437 1747.764080 2735.096566 3689.474908 4672.599442 5461.077691
le450 5a 2 0.306906 0.606134 2182.485199 5146.494628 Time Out Time Out
le450 5a 3 0.610946 1.278551 1.905660 Time Out Time Out Time Out
le450 5a 4 1.080703 2.196142 18.394387 19.517824 Time Out Time Out
myciel5g 3 0.023438 0.048679 0.072588 3.167216 7.341393 11.570325
myciel5g 4 0.031082 0.066118 0.108446 0.140856 7.670225 17.986415
myciel5g 5 0.056299 0.109280 0.168188 0.223375 0.271757 10.809051
queen5 5 3 0.015610 0.030363 0.044272 3.047800 9.151658 15.738343
queen5 5 4 0.021841 0.044804 0.073067 0.095571 5.327037 26.360986
satellite01ac 50.773345 99.318204 152.345519 202.980463 256.221921 306.026177
satellite02ac 245.764104 519.915170 790.435468 1062.916955 1333.381003 1567.425389

TABLE VII: Gurobi on the UAI dataset with d = 4.

V. CONCLUSIONS AND FUTURE WORK

In this paper, we introduced the problem of generating the
top K solutions to WCSPs. While WCSPs themselves are used
to model a wide range of combinatorial optimization problems,
generating the top K solutions to them is important from the
perspective of “human-in-the-loop AI” and in computational
physics. Despite the significance of generating the top K
solutions, the problem is largely understudied in AI, theoretical
computer science and computational physics. In this paper, we
used various off-the-shelf methods and empirically compared
them on a variety of WCSP instances. We included methods
based on quadratization, pseudo-Boolean optimization, con-
straint propagation, and ILP. Together, they covered all major
algorithmic ingredients derived from CP, AI and OR. We found
that Gurobi alone is viable in producing the top K solutions
to WCSPs using an ILP formulation.

There are many avenues for future work. In terms of tech-
niques, we will develop new methods based on propagating
global constraints that encode symmetric functions. In terms
of applications, we will apply them to various problems in AI
and computational physics.

REFERENCES

[1] S. Bistarelli, U. Montanari, F. Rossi, T. Schiex, G. Verfaillie, and
H. Fargier, “Semiring-based CSPs and valued CSPs: Frameworks, prop-
erties, and comparison,” Constraints, vol. 4, no. 3, pp. 199–240, 1999.

[2] C. Boutilier, R. I. Brafman, C. Domshlak, H. H. Hoos, and D. Poole,
“CP-nets: A tool for representing and reasoning with conditional ce-
teris paribus preference statements,” Journal of Artificial Intelligence
Research, vol. 21, pp. 135–191, 2004.

[3] M. Zytnicki, C. Gaspin, and T. Schiex, “DARN! A weighted constraint
solver for RNA motif localization,” Constraints, vol. 13, no. 1, pp. 91–
109, 2008.

[4] J. S. Yedidia, W. T. Freeman, and Y. Weiss, “Understanding belief
propagation and its generalizations,” Exploring Artificial Intelligence in
the New Millennium, vol. 8, pp. 236–239, 2003.

[5] Y. Boykov, O. Veksler, and R. Zabih, “Fast approximate energy min-
imization via graph cuts,” IEEE Transactions on Pattern Analysis and
Machine Intelligence, vol. 23, no. 11, pp. 1222–1239, 2001.

[6] V. Kolmogorov, “Primal-dual algorithm for convex Markov random
fields,” Microsoft Research, Tech. Rep. MSR-TR-2005-117, 2005.

[7] K. Sun, K. Maddali, S. Salian, and T. K. S. Kumar, “Top K hypotheses
selection on a knowledge graph,” in Proceedings of the Thirty-Second
International FLAIRS Conference, 2019.

[8] M. Kardar, Statistical Physics of Particles. Cambridge University Press,
2007.

[9] S. L. Whittenburg, N. Dao, and C. A. Ross, “Micromagnetic studies
of hysteresis in nickel pillars,” Physica B: Condensed Matter, vol. 306,
no. 1, pp. 44–46, 2001.



(a) UAI 29 (b) UAI le450 5a 3

(c) Ising model p = 0 (d) Erdös-Rényi p = 0.5
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