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Multi-agent path finding (MAPF) considers the problem
of planning collision-free paths for numerous agents from
their current position to their assigned goal, in a potentially
obstacle-ridden environment. MAPF is a central problem in
robotics, with applications in automated distribution centers,
airplane taxiing, as well as multi-agent search and rescue [,
2, 3]. However, as the number of agents in the system
grows, so does the combinatorial complexity of coordinating
them, and MAPF remains a NP-hard problem even when
approximating optimal solutions [4} [5]. To mitigate the curse
of dimensionality associated with coupled approaches (e.g.,
simple A*), where a single planner plans paths for all agents in
their joint configuration space, the community recently focused
on dynamically-coupled approaches that only extend the con-
figuration space of the agents when necessary (usually around
collisions between individual paths) [6l [7, I8, 9]. Since these
dynamically-coupled planners remain centralized, they often
come with provable performance guarantees, such as path
optimality or completeness, i.e., the planner will always find
a solution to a problem if a solution exists. When producing
bounded-suboptimal paths, our prior works in dynamically-
coupled planners can handle up to 200 agents [6] in uniform-
randomly generated grid worlds. In this context, recent works
have also focused on fully decoupled approaches, where
each agent plans its own path [10, [11} [12] to handle larger
teams. However, since joint actions cannot be considered, the
resulting paths are usually suboptimal. Moreover, deadlocks
can also appear in fully decoupled MAPF, making most of
these approaches incomplete [[13].

In this context, our recent work, PRIMAL [14]], focused
on fully decoupled MAPF by combining distributed rein-
forcement learning (RL) and imitation learning (IL) from a
dynamically-coupled planner. By relying on a good collabora-
tive reward structure, careful training, and demonstrations of
(joint) collaboration from the centralized planner, we obtain
an essentially single-agent policy allowing agents to plan
individual collision-free paths to their goal, while exhibiting
implicit collaboration. This policy, once trained, can be copied
onto an arbitrary number of agents, and we show successful
MAPF for up to 1024-agent teams in grid worlds with rela-
tively low obstacle density. However, as the grid size becomes
smaller, and/or the obstacle density larger, PRIMAL starts
to struggle since it cannot exhibit the complex coordinated
movements needed to complete such problems, and is usually
outperformed by dynamically-coupled planners. However, we

note that even when PRIMAL does not allow all agents to
reach their goal, it usually brings most agents to their goal and
gets a handful of them close to it (see Fig[l] for an example).
Building upon this observation, and as a natural way to bridge
the gap between decoupled and dynamically-coupled planners,
this work investigates the combined use of PRIMAL and a
centralized complete planner (here, ODrM* [8]), to finally
obtain fast, scalable, and complete MAPF.

Specifically, we propose to use PRIMAL for a fixed number
of time steps, during which agents plan their path individually
based on their current state (in their local observation range,
here 10 x 10). After this first phase, and only if all agents are
not already on goal, we rely on a short instance of central-
ized, dynamically-coupled planning by running the bounded-
suboptimal version of ODrM* (¢ = 3) for a maximum of 5
seconds, to try and get all remaining agents to on goal. ODrM*
is ran from the current state of the system at the end of the
first phase, and plans for all agents, since those resting on goal
might need to move away to let other agents reach their goal.

Figure [2] shows the result of this combined learning- and
search-based MAPF approach to the same experiments we
previously considered in [[14]. For each team size, we measure
the success rate over the same (randomly generated) 100
experiments across all planners. We consider three key cases:
a case with a medium-size world with high obstacle density,
one with a small world with medium obstacle density, and
finally one with a large world with high obstacle density. These
example have been handpicked to show the advantage and
limits of our approach. We also note that results for cases
where PRIMAL particularly shines (low obstacle densities)
are not affected by the additional use of a dynamically-
coupled planner. We believe that this effect can be explained
by the fact that empty environments are particularly difficult
for a dynamically-coupled planner, since most agents end up
colliding, often resulting in fully coupled planning.

The first observation from these results is that adding 5s
of ODrM* planning cannot really help with cases involving
512 agents and more, since these cases most likely require
longer planning times, even just for the few agents not already
resting on their goal. Similarly, in the third example involving
large worlds (80 x 80) with high obstacle density (30%), we
note that, although adding a step of centralized planning after
running PRIMAL gets the success rates of small teams (up
to 32 agents) to 100%, the performance of ODrM* drops
drastically for teams larger than 64 agents, and centralized



Figure 1.
coded squares) are planning paths to their goal (same-colored circles) in a 40 X
40 discrete grid world with 30% uniform-randomly placed obstacles (grey
squares). Top: Initial state. Bottom: State after 256 time steps of decentralized
path planning using PRIMAL. This second problem is finally solved in less
than 3s using ODrM*, adding 28 movements (i.e., time steps).

Key frames along an example problem, where 128 agents (color-

planners outperform our combined approach for these larger
teams. However, for small to medium worlds (40 and 20 x 20)
and relatively high obstacle densities (20-30%), our com-
bined approach is both able to significantly improve over
the success rate of PRIMAL, and even outperform all other
planners (top plots in Fig. 2). These results seem to indicate
that our combined approach allows for highly scalable, as
well as complete MAPF, where we supplement decoupled
(and potentially online) path planning with a form of online
deadlock detection and centralized planning. Although our
current deadlock detection method is relatively simple, only
relying on a maximal number of steps PRIMAL is allowed
to run before switching to ODrM*, we believe that such a
combined approach could be valuable for actual deployments
in automated warehouses, where numerous agents may not be
driving fast enough to prevent the seldom execution of 5s of
centralized planning.

Future works of this combined approach will first focus on
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Figure 2.  Success rates of the different planners in the three selected key

scenarios. Our combined approach (light blue) outperforms all other planners
in the two top plots (medium to high obstacle density in small to medium
worlds), even though in these cases PRIMAL particularly struggles by itself.
In the bottom plot, involving a large world with high obstacle density, our
combined approach helps significantly for smaller teams (up to 32 agents) but
cannot help beyond that and is outperformed by the other centralized planners.

a more advanced dead/livelock detection approach, to further
reduce the time during which PRIMAL is used without really
bringing more agents to their goal. In doing so, our goal will
be to try ans answer the question of “how should agents
planning paths in a decentralized manner realize that they
are stuck and need centralized help to reach their goal?”
As a first step, we envision that, by observing the fact that
the state of the system (or even the individual agents’ states)
is similar to a previously observed state, we will be able to
detect oscillations in the system characteristic of a deadlock,
and start the use of centralized planning earlier. Second,
we would like to investigate another approach to combine
decoupled and dynamically-coupled planning. Specifically, we
will be looking at using PRIMAL as the single-agent policies
in M*, and then let the M* planner detect and backtrack
when a collision is detected. Combining both approaches in
this manner will involve several new challenges, especially
since PRIMAL is essentially an online path planning algorithm
(making backtracking nontrivial), but this combination should
provide us with very fast, yet provably complete (and maybe
bounded-suboptimal) MAPF planners.
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