
The Fringe-Saving A* Search Algorithm - A Feasibility Study

Xiaoxun Sun
Computer Science Department

University of Southern California
Los Angeles, CA 90089-0781

xiaoxuns@usc.edu

Sven Koenig
Computer Science Department

University of Southern California
Los Angeles, CA 90089-0781

skoenig@usc.edu

Abstract

In this paper, we develop Fringe-Saving A*
(FSA*), an incremental version of A* that repeat-
edly finds shortest paths in a known gridworld from
a given start cell to a given goal cell while the
traversability costs of cells increase or decrease.
The first search of FSA* is the same as that of A*.
However, FSA* is able to find shortest paths dur-
ing the subsequent searches faster than A* because
it reuses the beginning of the immediately preceed-
ing A* search tree that is identical to the current A*
search tree. FSA* does this by restoring the content
of the OPEN list of A* at the point in time when an
A* search for the current search problem could de-
viate from the A* search for the immediately pre-
ceeding search problem. We present first experi-
mental results that demonstrate that FSA* can have
a runtime advantage over A* and Lifelong Planning
A* (LPA*), an alternative incremental version of
A*.

1 Introduction
Most research on heuristic search has studied how to solve
one-shot search problems. However, search is often a repet-
itive process where one needs to find shortest paths to series
of similar search problems because the world changes over
time. For example, the traffic conditions can change when
one drives to the airport and one might have to change the
current route if the radio reports additional congestion. In
this case, one has to replan for the new situation. Incremen-
tal search algorithms are often able to find shortest paths to
series of similar search problems faster than is possible by
solving each search problem independently, by re-using infor-
mation from the preceeding searches[Koeniget al., 2004b].
In this paper, we develop Fringe-Saving A* (FSA*), an in-
cremental version of A*[Hart et al., 1968] that repeatedly
finds shortest paths in a known gridworld from a given start
cell to a given goal cell while the traversability costs of cells
increase or decrease. However, FSA* is often able to find
shortest paths during the subsequent searches faster than A*
because it reuses the beginning of the immediately preceed-
ing A* search tree that is identical to the current A* search
tree. FSA* does this by restoring the content of the OPEN

list of A* at the point in time when an A* search for the
current search problem could possibly deviate from the A*
search for the immediately preceeding search problem be-
cause the A* search for the current search problem has en-
countered a changed edge cost. FSA* then restarts the A*
search at that point. In the following sections, we first de-
scribe which search problems FSA* solves. Second, we ex-
plain in detail how FSA* reuses information from the im-
mediately preceeding search to speed up the current search.
Finally, we present first experimental results that demonstrate
that FSA* can have a runtime advantage over A* and LPA*
[Koenig et al., 2004a], an alternative incremental version of
A*.

2 Search Problems and Notation
Fringe-Saving A* (FSA*) solves path-planning problems in
known finite gridworlds whose vertices correspond to the
cells and whose edge costs increase or decrease over time. In
this paper, we describe a version of FSA* that works on grid-
worlds of square cells that are either blocked or unblocked,
where one can always move from an unblocked cell to one of
the four adjacent cells with cost one, provided that the adja-
cent cell is unblocked. We use the following notation to be
able to state the search problems formally:S denotes the fi-
nite set of unblocked cells.Succ(s) ⊆ S denotes the set of un-
blocked cells that border unblocked cells ∈ S. FSA* repeat-
edly determines a shortest (unblocked) path from a given un-
blocked cellsstart ∈ S to a given unblocked goal cellsgoal ∈ S
with sstart 6= sgoal as the traversability of cells changes, al-
ways knowing which cells are currently unblocked.

3 A*
A* [Hart et al., 1968] is the most popular heuristic search al-
gorithm. It maintains three values for every cell: First, the
h-valueh(s) of a cell s is the user-given approximation of
the distance from the cell to the goal cell (= heuristic), which
we assume to be consistent, that is, it satisfies the trianglein-
equality[Pearl, 1985]. It is not changed during an A* search.
Second, the g-valueg(s) of a cell s is an approximation of
the distance from the start cell to the cell. It is changed dur-
ing the A* search. Finally, the parent pointerParent(s) of
a cell s points to its parent cell in the A* search tree. It is
also changed during the A* search. A* maintains two data



structures: First, the CLOSED list contains all cells that have
been expanded during the A* search. Initially, it is empty.
Second, the OPEN list contains all cells that have been gen-
erated but not yet expanded during the A* search. Initially,
it contains only the start cell with g-value zero. A* repeats
the following procedure: A* removes a cell with the smallest
sum of g-value and h-value from the OPEN list, inserts it into
the CLOSED list and expands it by performing the following
procedure for each unblocked adjacent cell. If the adjacent
cell is neither in the OPEN nor CLOSED list, then A* gen-
erates the adjacent cell by setting the g-value of the adjacent
cell to the g-value of the expanded cell plus one, setting the
parent pointer of the adjacent cell to the expanded cell, and
then inserting the adjacent cell into the OPEN list. If the ad-
jacent cell is in the OPEN list and the g-value of the expanded
cell plus one is smaller than the g-value of the adjacent cell,
then A* sets the g-value of the adjacent cell to the g-value
of the expanded cell plus one and sets the parent pointer of
the adjacent cell to the expanded cell. A* terminates imme-
diately when its OPEN list is empty or when it is about to
expand the goal cell. (For simplicity, we count the goal cell
as expanded.) Figure 1 shows the state of an A* search with
start cell D2 (marked S) and goal cell F6 (marked G) after
termination. We use the consistent Manhattan distance (the
sum of the absolute x and y distances between a cell and the
goal cell) as an approximation of the distance from a cell to
the goal cell. Every cell has its h-value in the lower left cor-
ner. Every generated cell also has its g-value in the upper left
corner, the sum of g-value and h-value in the upper right cor-
ner, and its parent pointer pointing to its parent cell in theA*
search tree. Every expanded cell also has its sequence number
in the lower right corner that indicates when it was expanded.
FSA* makes use of the following four properties of A*: First,
A* terminates. Second, the sum of g-value and h-value of the
sequence of expanded cells is monotonically nondecreasing
over time. Third, the g-value and parent pointer of any cell
are correct when it is expanded and then do not change any
longer, that is, the g-value of an expanded cell is equal to the
distance from the start cell to the cell (= the start distanceof
the cell) and a shortest path from the start cell to the cell can
be identified in reverse by following the parent pointers from
the cell to the start cell. This property implies that A* finds
a shortest path from the start cell to the goal cell if it termi-
nates because it is about to expand the goal cell. Fourth, no
path exists from the start cell to the goal cell if A* terminates
because its OPEN list is empty.

4 FSA*
Fringe-Saving A* (FSA*) is an incremental version of A*.
Figure 6 gives its pseudo code.1 The idea behind FSA* is

1The functionOPEN.Insert(s) inserts a cells into the OPEN
list; andOPEN.Pop(s) removes and returns a cell with the small-
est sum of g-value and h-value from the OPEN list. The fol-
lowing comments are meant to help the reader understand the
pseudo code better: 1) The initializations on lines{02-05} will
not actually be executed since memory cells are typically initial-
ized with zero. 2) When a cells is generated during the A*
search then line{24} setsGeneratedIteration(s) = Iteration to

81432

76321

65210

54321

654

81666

88666

88666

88888

101010

151579

1468

13321

121110

01234

12345

23456

34567

45678

1 32

E

D

C

B

A

4 5

4

6 7

F

G

G

S

Figure 1: Search Problem 1

simple. The first search of FSA* to determine a shortest path
from the start cell to the goal cell is the same as an A* search.
Now assume that the traversability of some cells changes and
consider another A* search to determine a shortest path from
the start cell to the goal cell. The second A* search ini-
tially expands the same cells in the same order as the first A*
search. FSA* restores the overall state of the first A* search
at the point in time when the second A* search could possibly
deviate from it, that is, when the second A* search encoun-
ters a cell whose traversability changed between the two A*
searches. FSA* then restarts the first A* search at that point
in time rather than performing the second A* search from
scratch. The state of an A* search is given by the content
of its OPEN and CLOSED lists and the g-values and parent
pointers of the cells contained in them. FSA* executes the
following steps.

Step 1 (Restoration of the CLOSED list): Assume that
there are two complete A* searches and thatExpandedId(s) is

indicate that the g-value of the cell is current. 3) Rather than
identifying the reusable cellss repeatedly by checking whether
ExpandedId(s) < BlockId(ExpandedIteration(s)), lines {55-56}
setGeneratedIteration(s) = Iteration for the reusable cellss that
could otherwise get re-generated by the A* search. This way, the
A* search knows that the g-values of these cells are current and,
since it cannot decrease their g-values, will not re-generate the cells.
Lines{55-56} can be implemented very efficiently as part of iden-
tifying and traversing the relevant part of the fringe. 4) Lines{43-
45} can be efficiently implemented with a linked list to skip those
elementsBlockId(i) for which no cell s with ExpandedId(s) <

BlockId(ExpandedIteration(s)) exists. 5) To be more efficient, our
implementation of FSA* traverses only the immediate outside of
the continuous area of reusable cells between the borders of the
gridworld in case the continuous area of reusable cells touches the
border. To this end, FSA* traverses the immediate outside of the
continuous area of reusable cells in the clockwise direction, start-
ing with the anchor cell, until it is about to leave the anchor cell
a second time in the same direction or reaches some cell of the
border. In the second case, it then traverses the immediate outside
of the continuous area in the counter-clockwise direction, starting
again with the anchor cell, until it reaches some (potentially dif-
ferent) cell of the border. The fourth gridworld in Figure 2 illus-
trates this process for the search problem from Figure 1. 6) To
be more efficient, our implementation of FSA* collapses the two
variablesGeneratedIteration(s) andExpandedIteration(s) into one
variableIteration(s) although this requires code changes that make
the pseudo code harder to understand.



1

6

5

1

8

8

151579

1468

13321

121110

1

2

3

1 32

E

D

C

B

A

4 5

4

6 7

F

G

G

S

1

6

5

1

8

8

11

2

3

1 32

E

D

C

B

A

4 5 6 7

F

G

anchor

G

S

1

6

5

1

8

8

11

2

3

1 32

E

D

C

B

A

4 5 6 7

F

G

add
fringefringe

fringe

anchor

G

S

1

6

5

1

8

8

11

2

3

1 32

E

D

C

B

A

4 5 6 7

F

G

add
fringefringe

fringe

anchor

G

S

Figure 2: Search Problem 1 (continued)

the sequence number of cells after the first A* search, that is,
that cells was expandedExpandedId(s)th during the first A*
search. (The start cell was expanded first. If cells was not ex-
panded during the first A* search, thenExpandedId(s) = ∞.)
Assume further that only one cells′ changed its traversabil-
ity between the two A* searches. We now determine a value
for m so that the second A* search expands at least every
cell s with ExpandedId(s) < m in the same order as the first
A* search. If cells′ became blocked, then the second A*
search expands at least every cells with ExpandedId(s) <
ExpandedId(s′) in the same order as the first A* search, that
is, every cell up to but not including cells′. Thus, we set
m := m(s′) := ExpandedId(s′). If cell s′ became un-
blocked, then the second A* search expands at least every cell
s with ExpandedId(s) < 1+min

s′′∈Succ(s′) ExpandedId(s′′)
in the same order as the first A* search, that is, every cell
up to and including the neighbor of cells′ that was ex-
panded first in the first A* search. Thus, we setm :=
m(s′) := 1 + min

s′′∈Succ(s′) ExpandedId(s′′). If several
cells s′ ∈ S′ changed their traversability between the two
A* searches, then the second A* search expands at least ev-
ery cell s with ExpandedId(s) < m := mins′∈S′ m(s′)
in the same order as the first A* search{32-42} (numbers
in curly braces refer to line numbers in the pseudo code).
Thus, these cells (which are guaranteed to be unblocked)
are in the new CLOSED list. We refer to them as reusable
cells. The first gridworld in Figure 2 illustrates this process
for the search problem from Figure 1 after cell C5 with se-
quence number 11 became blocked. All cells with sequence
numbers less than 11 are then reusable, as indicated in grey.
It turns out that maintaining the sequence numbers is more
complicated than discussed so far in case there are several
searches in a row because FSA* might have to reuse cells
from different searches. We would like a sequence num-
ber ExpandedId(s) to mean that cells would have been ex-
pandedExpandedId(s)th during the immediately preceeding
A* search if the immediately preceeding search had been a
complete A* search. Now consider the case where some
cell s was expanded during the first search, but the cell
was not reusable in the second search. Then, some other
cell might have received the same sequence number as cell
s during the second search, and FSA* might have to de-
termine during the third search that the sequence number
of cell s has become invalid. FSA* addresses this prob-

lem by maintaining the following global variables:Iteration
is the number of the current search, that is,Iteration =
i during the ith search. FSA* also maintains a value
BlockId(i) for the ith search and the valuesExpandedId(s)
andExpandedIteration(s) for every cells, initialized as fol-
lows: BlockId(0) = 0 and, for all cellss, ExpandedId(s) = 0
andExpandedIteration(s) = 0 {01,04-05}. FSA* then main-
tains the following invariant directly before theith search: If
ExpandedId(s) < BlockId(ExpandedIteration(s)) then cells
would have been expanded asExpandedId(s)th cell during
the immediately preceeding search if it had been a complete
search{28-30}. If FSA* determines that every cells with
ExpandedId(s) < m is reusable for theIterationth search,
then it proceeds as follows: First, it invalidates all cellswith
sequence numbers no smaller thanm by settingBlockId(i) :=
min(m, BlockId(i)) for all 1 ≤ i ≤ Iteration, which is much
faster than visiting all cells with invalid sequence numbers
{43-45}. Second, whenever it expands a cells during the
Iterationth search it setsExpandedIteration(s) := Iteration,
ExpandedId(s) := m and m := m + 1 {15-17}. Fi-
nally, it setsBlockId(Iteration) := ∞ {12} andIteration :=
Iteration+ 1 {48}.

Step 2 (Early Termination): If the goal cell is reusable,
then FSA* does not need to replan because the shortest path
from the start cell to the goal cell from the immediately pre-
ceeding search is also a shortest path for the current search
{75}. If the start cell is not reusable and blocked, then FSA*
terminates without replanning because there is no path from
the start cell to the goal cell. If the start cell is not reusable
and unblocked, then FSA* performs a complete A* search
from scratch.

Step 3 (Restoration of the OPEN list): The unblocked
and non-reusable cells that border one or more reusable cells
are in the new OPEN list. First, FSA* identifies the anchor
cell, a non-reusable cell that borders one or more reusable
cells, by following the parent pointers from the goal cell to
the start cell until it transitions from a non-reusable cellto
a reusable cell{50-53}.2 This non-reusable cell then is the
anchor cell. The second gridworld in Figure 2 illustrates this

2FSA* cannot follow the parent pointers from the goal cell to the
start cell if no path from the start cell to the goal cell existed in the
immediately preceeding search. Whether a path exists or not, it can
always simply follow a path from the goal cell to the start cell that
first greedily decreases the x and then the y distance to the start cell.



1 32

E

D

C

B

A

4 5 6 7

F

G

add
fringe

fringe

fringe

fringe fringe fringe

fringe

fringe

fringe

fringe
G

S

anchor

Figure 3: Search Problem 2

1

6

5

1

8

8

11

2

3

1 32

E

D

C

B

A

4 5 6 7

F

G

add
fringefringe fringe

anchor

S

G

Figure 4: Search Problem 3

process for the search problem from Figure 1, resulting in an-
chor cell C5. Second, FSA* identifies the cells that belong
to the relevant part of the new OPEN list (= fringe). The
reusable cells form a continuous area since they are all reach-
able from the start cell. FSA* can traverse the immediate out-
side of this continuous area (say, in the clockwise direction),
starting with the anchor cell, and insert all unblocked cells
that border one or more reusable cells into the relevant part
of the new OPEN list{54-66}. FSA* does not stop when it
reaches the anchor cell a second time but only when it is about
to leave the anchor cell a second time in the same direction.
The third gridworld in Figure 2 illustrates this process forthe
search problem from Figure 1. The cells C2, C3 and B4 form
the relevant part of the new OPEN list, as indicated in the fig-
ure. Figure 3 shows for a search problem different from our
main one that the termination condition is indeed important.
The start cell is E3 and the goal cell is B5. After cell C4 be-
came blocked, FSA* visits cells C4, D4 and C4 again when
it traverses the immediate outside of the continuous area of
reusable cells, at which point it does not stop since the an-
chor cell C4 was first left towards the south but is now left
towards the east. If it did stop, then it would not identify all
cells that belong to the relevant part of the new OPEN list.
Figure 4 shows for a search problem different from our main
one that not all cells in the new OPEN list are relevant. The
start cell is D2 and the goal cell is F6. After cell F5 became
blocked, cells E2, E3 and F3 are irrelevant, and thus not in-
cluded in the relevant part of the new OPEN list since the goal
cell is not in the region of unblocked cells that they are part
of and a shortest path from the start cell to a goal cell thus
cannot pass through them. From now on, we just refer to the
OPEN list when we mean the relevant part of the OPEN list.

Step 4 (Restoration of the G-Values and Parent Point-
ers): The g-values and parent pointers of all reusable cells
are guaranteed to be correct. However, the g-values and par-
ent pointers of cells in the new OPEN list are not necessarily
correct in the following two cases: First, if a cell in the new
OPEN list just became unblocked, then it was blocked before,
and its g-value and parent pointer thus have not been updated
in the preceeding searches and need to be corrected (Case 1).
Second, if the parent pointer of a cell in the new OPEN list
points to a cell that is not reusable, then the g-value and par-
ent pointer need to be corrected (Case 2). To understand Case
2, consider a complete A* search and assume that the g-value

543

66432

54311

43210

54321

888

68666

66666

66666

88888

1143

1022

98761

345

02234

12355

23456

34567

1 32

E

D

C

B

A

4 5

5

6 7

F

G

2 1

1 0

24

G

S

6

1

1

8

6

6

2

6

2

5

5

1 32

E

D

C

B

A

4 5 6 7

F

G

anchor

fringe

fringe fringe fringe

fringe

G

S

Figure 5: Search Problem 4

and parent pointer of an unblocked cell changed during the
A* search because the A* search first found a path from the
start cell to the cell in question and then found a shorter path
from the start cell to the cell in question. If the state of this
A* search needs to be restored at a point in time after the first
path was found but before the second path was found, then
the g-value and parent pointer of the cell in question need to
be corrected. Figure 5 (left and right) show for a search prob-
lem different from our main one that it is important to update
the g-values and parent pointers of the cells in the new OPEN
list. The start cell is C2 and the goal cell is E6. Figure 5 (left)
shows the first A* search. Figure 5 (right) shows the situa-
tion after cell C3 became blocked. The g-value and parent
pointer of cell D4 are incorrect and need to be corrected from
3 and C4, respectively, to 5 and E4. For Case 1 and 2, FSA*
findsanyreusable cell adjacent to the cell in question, sets the
g-value of the cell in question to the g-value of the reusable
cell plus one, and the parent pointer of the cell in question to
the reusable cell{58-63}. It is correct for Case 1 since a cell
in the new OPEN list that just became unblocked has exactly
one adjacent reusable cell. We prove the correctness for Case
2 in the next section.

Step 5 (Sorting the new OPEN list): This step is impor-
tant if the OPEN list is implemented as a binary heap because
transforming a set in one step into a binary heap is more effi-
cient than inserting the elements of the set one after the other
into an empty binary heap[Cormanet al., 1990].

Step 6 (Restarting A*): Finally, FSA* restarts A* with
the new OPEN and CLOSED lists{69}. A* is implemented
by the function ComputeShortestPath.

5 Theoretical Results
The correctness of the restoration of the g-values and parent
pointers of cells in the new OPEN list is not easy to see for
Case 2. We thus prove it in the following, making use of the
following theorem that is specific to the kinds of gridworlds
used in this paper. The result also implies that the g-value and
parent pointer of a cell in the new OPEN list are correct if the
parent pointer already points to a cell that is reusable.

Theorem 1 The parent pointer of any cells ∈ S can change
at most once during an A* search from one cell to another.
All expanded cells adjacent to a cell have the same g-value
before the parent pointer of the cell changes.



procedure Initialize()
{01} BlockId(0) := 0;
{02} Forall cellss
{03} GeneratedIteration(s) := 0;
{04} ExpandedIteration(s) := 0;
{05} ExpandedId(s) := 0;
{06} m := 0;
{07} OPEN := ∅;
{08} g(sstart) := 0;
{09} OPEN.Insert(sstart);
{10} GeneratedIteration(sstart) := 1;
{11} Iteration := 1;

function ComputeShortestPath()
{12} BlockId(Iteration) := ∞;
{13} While (OPEN 6= ∅)
{14} s := OPEN.Pop();
{15} ExpandedIteration(s) := Iteration;
{16} ExpandedId(s) := m;
{17} m := m+ 1;
{18} If (s = sgoal)
{19} Return True;
{20} Else
{21} Foralls′ ∈ Succ(s)
{22} If (GeneratedIteration(s) 6= Iteration Or g(s) + 1 < g(s’))
{23} g(s’) := g(s) + 1;
{24} GeneratedIteration(s′) := Iteration;
{25} Parent(s′) := s;
{26} OPEN.Insert(s′);
{27} Return False;

function CellReusable(s)
{28} If (ExpandedId(s) < BlockId(ExpandedIteration(s)))
{29} Return True;
{30} Return False;

procedure UpdateMazeTraversability()
{31} TmpBlockId:= ∞;
{32} Forall cellss whose traversability has changed
{33} If (s is blocked)
{34} If (CellReusable(s))
{35} If (ExpandedId(s) < TmpBlockId)
{36} TmpBlockId:= ExpandedId(s);
{37} Else
{38} Parent(s) := NULL;
{39} Foralls′ ∈ Succ(s)
{40} If (CellReusable(s′))
{41} If (ExpandedId(s′) + 1 < TmpBlockId)
{42} TmpBlockId:= ExpandedId(s′) + 1;
{43} Forall i = 1 . . . Iteration
{44} If (TmpBlockId< BlockId(i))
{45} BlockId(i) := TmpBlockId;
{46} m := BlockId(Iteration);

procedure RetrieveFringe()
{47} OPEN := ∅;
{48} Iteration := Iteration+ 1;
{49} s := sgoal;
{50} While (Not CellReusable(Parent(s)))
{51} s := Parent(s);
{52} If (s = sstart)
{53} Exit; /* there is no path */
{54} Moves around the area that contains exactly the cellss′ with CellReusable(s′)
{55} Foralls′ ∈ Succ(s) with CellReusable(s′)
{56} GeneratedIteration(s′) := Iteration;
{57} If (s is unblocked)
{58} If (Parent(s) = NULL Or (Not CellReusable(Parent(s))))
{59} Foralls′ ∈ Succ(s)
{60} If (CellReusable(s′))
{61} Parent(s) := s′;
{62} g(s) := g(s′) + 1;
{63} break;
{64} GeneratedIteration(s) := Iteration;
{65} OPEN.Insert(s);
{66} Until the initial cell is about to be left in the same direction again;

procedure Main()
{67} Initialize();
{68} Repeat
{69} If (Not ComputeShortestPath())
{70} Exit; /* there is no path */
{71} Repeat
{72} Identify the path using the parent pointers and use it;
{73} Wait for traversability changes;
{74} UpdateMazeTraversability();
{75} Until (BlockId(Iteration) ≤ ExpandedId(sgoal));
{76} RetrieveFringe();
{77} Until False;

Figure 6: Fringe Saving A* (FSA*)

Proof: Consider any unblocked cells ∈ S and any two
unblocked cellss′, s′′ ∈ S adjacent to cells. h(s′) − h(s′′)
is -2, 0 or 2 since the h-values are the Manhattan distances.
This means that all cells adjacent to cells together have at
most two different h-values. Now assume that cells′ was
expanded during an A* search and that cells was generated
during the expansion. Thus, the parent pointer of cells was
set to cells′. Assume further that cells′′ was expanded later
during the same A* search and that the parent pointer of cells
changed during the expansion. Thus, the parent pointer of cell
s was set to cells′′. Then,g(s′)+h(s′) ≤ g(s′′)+h(s′′) since
the sum of g-value and h-value of the sequence of expanded
cells is monotonically nondecreasing over time. Furthermore,
g(s′′) < g(s′) since otherwise the parent pointer of cells
would not have changed. Thus,g(s′′) + c = g(s′) for some
c > 0. Put together,g(s′′) + c + h(s′) = g(s′) + h(s′) ≤
g(s′′) + h(s′′) or, alternatively,h(s′) − h(s′′) ≤ −c < 0.
Sinceh(s′) − h(s′′) is -2, 0 or 2, it must be the case that
h(s′) − h(s′′) = −2 and thush(s′′) = h(s′) + 2. This
implies that−2 ≤ −c < 0. Since the start distances and thus
the g-values of cellss′ ands′′ cannot differ by one, it must
be the case thatg(s′′) − g(s′) = c = 2. This means that
the parent pointer of cells can change at most once during
an A* search becausec increases with every change. Now
consider any unblocked cells′′′ adjacent to cells that was
expanded before the parent pointer of cells changed. Then,
g(s′)+h(s′) ≤ g(s′′′)+h(s′′′) ≤ g(s′′)+h(s′′) since the sum
of g-value and h-value of the sequence of expanded cells is
monotonically nondecreasing over time. It holds thatg(s′) +
h(s′) = g(s′′) + 2 + h(s′′) − 2 = g(s′′) + h(s′′). Thus,
g(s′) + h(s′) = g(s′′′) + h(s′′′) = g(s′′) + h(s′′). Since
all cells adjacent to cells together have only two different h-
values,h(s′′′) must equal eitherh(s′) or h(s′′). Thus,g(s′′′)
must equal eitherg(s′) or g(s′′). g(s′′′) cannot equalg(s′′)
since otherwise the parent pointer of cells first had changed
to cell s′′′ and later could no longer have changed to cells′′.
Thus,g(s′′′) must equalg(s′), which means that all expanded
cells adjacent to cells have the same g-value before the parent
pointer of the cell changes.

We use this theorem as follows: During the course of an
A* search, the g-value of a cell cannot increase. Thus, when
restoring the (earlier) state of an A* search, the g-value ofa
cell cannot decrease. Assume that the parent pointer of a cell
in the new OPEN list points to a cell that is reusable. The
g-values of reusable cells are correct. Thus, the g-value of
the cell in question does not need to increase. It remains the
g-value of the reusable cell plus one. Thus, the g-value and
parent pointer of the cell in question remain correct. Now
assume that the parent pointer of a cell in the new OPEN list
points to a cell that is not reusable. Clearly, the parent pointer
needs to get corrected. Directly before it was set to the non-
reusable cell during the immediately preceeding A* search,it
pointed to some other cell with a larger g-value. At that point
in time, all expanded cells adjacent to the cell in question had
the same g-value according to Theorem 1, and the reusable
cells adjacent to the cell in question are a subset of them since
their sequence numbers are smaller than the sequence number
of the non-reusable cell. FSA* can therefore find any reusable



cell adjacent to the cell in question and set the g-value of the
cell in question to the g-value of the reusable cell plus one
and the parent pointer of the cell in question to the reusable
cell.

6 Related Work
Incremental A* (iA*) by Peter Yap (unpublished) reuses the
beginning of the immediately preceeding A* search tree that
is identical to the current A* search tree, like FSA*. It re-
stores the content of the OPEN list of A* by repeating the
A* search for the immediately preceeding search problem
until it deviates from the A* search for the current search
problem. Since the order of the cell expansions is already
known, iA* does not need to use an OPEN list to determine
the order of the cell expansions which makes the repeated A*
search faster than the original one. FSA* restores the con-
tent of the OPEN list of A* without repeating the A* search
for the immediately preceeding search problem. The main
difference of both search algorithms is that iA* traverses the
expanded cells while FSA* traverses the generated but not yet
expanded cells. The expanded cells form a continuous area of
cells, and the generated but not yet expanded cells basically
form the outside perimeter of this area. Since an area can
grow quadratically in the length of its perimeter, traversing
the cells on the perimeter can potentially be much more effi-
cient than traversing the cells in the area itself. There arethree
incremental versions of A* that operate according to prin-
ciples different from FSA* and iA*. Adaptive A*[Koenig
and Likhachev, 2006] runs A* unchanged but makes the h-
values more informed. It cannot handle edge cost decreases
and thus cannot always be used instead of FSA*. Lifelong
Planning A* (LPA*) [Koenig et al., 2004a] and Differential
A* [Trovato and Dorst, 2002] leave the h-values unchanged
but modify A*. They can handle edge cost increases and de-
creases and thus can be used instead of FSA*. They can be
viewed as transforming the A* search tree of the immedi-
ately preceeding search into the A* search tree of the current
search. We use LPA* instead of Differential A* because it
is more advanced and available at idm-lab.org/project-a.html.
LPA* can be slower than A* but tends to be more efficient
than A* when the search problems change only slightly and
the changes are close to the goal cell. It has been extended to
moving agents and then used on robots as part of D* Lite
[Koenig and Likhachev, 2005], which is a version of D*
[Stentz, 1995] that is simpler to understand, implement and
extend. We therefore compare FSA* against A*, iA* and
LPA* experimentally.

7 Experimental Evaluation
We performed experiments in 100 gridworlds of size1000 ×
1000. Their start and goal cells were randomly chosen and
obstacle density×100 percent of the cells were randomly
chosen to be blocked, whereobstacle densitywas between
zero and one. For each gridworld, we changed the traversabil-
ity of some cells and then found again a shortest path from
the start cell to the goal cell. If no path from the start cell to
the goal cell existed or after we had changed the traversabil-
ity of cells and found a new path for 100 times, we contin-

ued with the next gridworld. (The runtime includes the grid-
worlds without a path from the start cell to the goal cell.) The
pseudo code in Figure 6 exploits this assumption for simplic-
ity, for example, does not handle the case where the start cell
becomes unblocked. To maintain a constant obstacle den-
sity, we randomly changed the traversability ofchange rate
/2×100 percent of cells close to the goal cell from blocked to
unblocked and an equal number of cells close to the goal cell
from unblocked to blocked, wherechange ratewas between
zero and one. (This implies thatchange rate≤ 2× obstacle
density.) A cell was close to the goal cell if its Manhattan dis-
tance was no larger thanclosenesstimes the Manhattan dis-
tance of the start cell, whereclosenesswas between zero and
one. This way of changing the terrain was inspired by real-
time strategy games like Warcraft where one player often re-
peatedly attacks some other player. During these attacks, the
attacking player tries to reach the location of the defending
player. In the process, the attacking player destroys build-
ings of the defending player while the defending player builds
new buildings. Thus, the traversability of the terrain changes
around the destination of the attacking player, as simulated in
our experiments. We compared the runtime of FSA* against
the runtimes of A*, iA* and LPA* on a Pentium D 3.0 Ghz PC
with 2 GByte of RAM. It is worth pointing out that runtime
results always depend on the hardware, compiler and imple-
mentation, including the data structures, tie-breaking strate-
gies and coding tricks used. However, there is currently no
better testing methodology available since the three different
search algorithms work according to very different principles
and thus cannot be compared via proxies such as the num-
ber of expanded cells. All three search algorithms find short-
est paths and, to be fair, were implemented in very similar
ways. For example, they all used binary heaps to implement
the OPEN list. When deciding which cell to expand next,
they all broke ties among cells with the same smallest sum
of g-value and h-value in favor of a cell with the largest g-
value, since this tends to result in small runtimes. Table 1
reports their total runtimes overall searches they performed
(including the calculation of the traversability changes and
so on) forobstacle density= 0.25, showing the fastest run-
time in bold. We sayX > Y iff the following relationship
holds: “X runs consistently faster thanY for small values of
closeness. On the other hand,Y runs faster thanX for larger
values ofclosenessif the value ofchange rateis sufficiently
large. This threshold decreases as the value ofclosenessin-
creases.” The table then shows that FSA*> A*, FSA* >
iA* and LPA* > FSA*. We can explain these observations
as follows: First, the value ofchange rateincreases as we
go from top to bottom in the table, which increases the num-
ber of traversability changes. The overhead of preprocessing
each traversability change tends to be the smallest for A* (=
none), followed by iA*, FSA* and LPA*, roughly in that or-
der. This overhead gets amplified by the value ofchange rate.
Second, the value ofclosenessincreases as we go from left to
right in the table, which decreases the part of the immediately
preceeding A* search tree that can get reused. (Similarly, the
value ofchange rateincreases as we go from top to bottom in
the table, which to some extent also decreases the part of the
immediately preceeding A* search tree that can get reused.)



change closeness = 0.1 closeness = 0.2 closeness = 0.3 closeness = 0.4 closeness = 0.5 closeness = 0.6
rate A* iA* LPA* FSA* A* iA* LPA* FSA* A* iA* LPA* FSA* A* iA* LPA* FSA* A* iA* LPA* FSA* A* iA* LPA* FSA*
0.02 1.429 1.0140.260 0.726 1.359 1.1210.352 0.907 1.386 1.2790.492 1.142 1.551 1.4810.723 1.367 1.247 1.2560.930 1.215 1.604 1.6431.348 1.603
0.04 1.210 0.8640.293 0.620 1.366 1.1490.443 0.943 1.417 1.2990.628 1.145 1.440 1.4191.058 1.350 1.566 1.5901.382 1.537 1.683 1.736 1.830 1.704
0.06 1.302 0.9350.342 0.658 1.315 1.0810.525 0.898 1.341 1.2080.814 1.086 1.516 1.4881.272 1.411 1.662 1.685 1.8971.640 1.948 2.005 2.486 1.967
0.08 1.498 1.0830.400 0.767 1.322 1.1210.588 0.947 1.520 1.4111.016 1.274 1.474 1.457 1.5041.390 1.449 1.458 1.7281.409 1.889 1.953 2.647 1.927
0.10 1.102 0.8120.406 0.602 1.353 1.1580.664 0.966 1.492 1.3961.068 1.268 1.578 1.558 1.8361.484 1.882 1.922 2.807 1.883 2.013 2.079 3.053 2.053
0.12 1.159 0.9380.448 0.753 1.261 1.1130.707 0.962 1.589 1.4891.269 1.341 1.711 1.699 2.0431.637 1.909 1.947 2.8651.906 2.056 2.130 3.465 2.106
0.14 1.296 0.9760.487 0.727 1.320 1.1230.752 0.954 1.453 1.378 1.3861.272 1.995 2.013 2.6421.942 2.075 2.122 3.374 2.082 2.064 2.143 3.571 2.128
0.16 1.119 0.8780.449 0.673 1.425 1.2430.906 1.061 1.423 1.377 1.3831.291 1.780 1.776 2.3231.707 2.045 2.098 3.303 2.068 2.609 2.709 4.779 2.692
0.18 1.152 0.9110.482 0.717 1.406 1.2230.903 1.051 1.692 1.588 1.6101.444 1.624 1.618 2.4141.570 2.148 2.194 3.666 2.159 2.535 2.638 4.758 2.622
0.20 1.179 0.9390.478 0.740 1.482 1.3251.017 1.152 1.551 1.498 1.7321.403 1.817 1.825 2.7221.762 2.187 2.262 4.177 2.244 3.295 3.438 6.858 3.427
0.22 1.288 1.0490.567 0.839 1.214 1.0770.854 0.943 1.529 1.461 1.7331.355 1.822 1.842 2.8301.799 2.846 2.939 5.644 2.913 2.601 2.704 5.670 2.698
0.24 1.140 0.9110.523 0.730 1.620 1.4681.295 1.300 1.587 1.534 1.9631.447 1.807 1.823 2.7691.775 2.737 2.822 4.609 2.780 2.753 2.872 5.718 2.872
0.26 1.286 0.9910.550 0.739 1.341 1.215 1.0911.083 1.517 1.475 1.7441.393 1.926 1.953 2.9211.900 2.754 2.845 5.068 2.816 3.054 3.180 6.180 3.170
0.28 1.274 0.9850.568 0.762 1.432 1.327 1.2141.201 1.468 1.452 1.9211.381 2.196 2.215 3.6602.157 2.443 2.527 4.304 2.501 3.546 3.710 7.746 3.718
0.30 1.228 0.9790.588 0.777 1.537 1.319 1.1261.125 1.976 1.923 2.6391.808 2.343 2.394 3.9122.341 3.079 3.196 6.178 3.169 3.528 3.696 8.001 3.699
0.32 1.293 0.9840.554 0.757 1.646 1.485 1.4431.313 1.748 1.720 2.5371.638 2.075 2.118 3.5242.074 3.042 3.151 6.409 3.136 3.863 4.042 8.663 4.056
0.34 1.256 1.0190.571 0.813 1.395 1.290 1.2081.152 1.856 1.798 2.2401.685 2.692 2.714 4.6332.639 2.698 2.795 5.507 2.783 3.958 4.147 9.073 4.162
0.36 1.276 1.0220.631 0.792 1.534 1.418 1.4841.285 1.864 1.840 2.5691.751 2.297 2.336 4.0022.283 3.140 3.258 6.294 3.245 3.801 3.983 8.356 4.006
0.38 1.194 0.9740.602 0.779 1.546 1.369 1.2981.189 1.734 1.700 2.4971.613 2.284 2.338 4.178 2.299 3.178 3.299 6.405 3.269 3.670 3.844 7.794 3.853
0.40 1.332 1.0310.627 0.768 1.558 1.427 1.5371.279 1.793 1.765 2.5621.673 2.199 2.244 3.6192.198 2.651 2.735 5.148 2.705 3.847 4.032 8.653 4.046
0.42 1.176 0.9010.586 0.697 1.463 1.335 1.4251.203 2.142 2.114 3.1502.011 2.590 2.658 4.760 2.613 3.129 3.260 6.710 3.266 4.436 4.652 10.22 4.682
0.44 1.226 0.9900.627 0.797 1.542 1.427 1.5511.287 2.309 2.266 3.3172.163 1.978 2.017 3.634 1.991 4.006 4.159 8.875 4.151 5.080 5.332 11.74 5.369
0.46 1.212 0.9910.637 0.798 1.700 1.545 1.6941.367 1.890 1.833 2.6921.728 2.445 2.486 4.2122.430 3.938 4.113 9.138 4.134 4.291 4.497 9.456 4.523
0.48 1.333 1.0480.692 0.817 1.394 1.282 1.4191.146 2.113 2.044 2.8461.927 3.104 3.194 5.834 3.149 3.841 4.002 8.586 4.014 4.098 4.297 9.674 4.338
0.50 1.137 0.8870.578 0.693 1.415 1.324 1.4541.210 1.964 1.928 2.8141.846 2.852 2.916 5.309 2.871 3.715 3.879 7.843 3.885 4.909 5.151 11.02 5.193

Table 1: Experimental Results (in seconds)

The part of the immediately preceeding A* search tree that
actually gets reused tends to be the largest for LPA*, fol-
lowed by iA*, FSA* (= same as for iA*) and A* (= none),
roughly in that order. The overhead for identifying this part
of the reusable A* search tree follows the same trend. Over-
all, iA* is never the fastest search algorithm. As the value
of closenessincreases, there is a decreasing threshold for the
value ofchange ratebelow which LPA* is the fastest search
algorithm and a larger decreasing threshold for the value of
change rateabove which A* is the fastest search algorithm.
(LPA* becomes very slow with respect to all other search al-
gorithms if the values ofchange rateandclosenessare large.)
Between the two thresholds, FSA* is the fastest search al-
gorithm. Thus, our first feasibility study demonstrates that
FSA* can find shortest paths faster than A*, iA* and LPA*
in some situations and the principle behind it is thus worth
being studied further.

8 Conclusions
In this paper, we developed Fringe-Saving A* (FSA*), an in-
cremental version of A* that repeatedly finds shortest paths
in a known gridworld from a given start cell to a given goal
cell while the traversability costs of cells increase or decrease.
Our first feasibility study demonstrates that FSA* can find
shortest paths faster than A*, iA* and LPA* in some situa-
tions. It is future work to characterize these situations better
and improve the efficiency of FSA* further.

Acknowledgments
We thank Peter Yap, with whom Sven Koenig collaborated in 2003
during a visit to the Alberta Ingenuity Centre for Machine Learn-
ing at the University of Alberta. This collaboration on comparing
iA* and LPA* inspired our development of FSA* three years later,
at a time where no one seems to know the current whereabouts of
Peter. We also thank Ariel Felner for interesting discussions on

FSA*. The Intelligent Decision-Making Group is partly supported
by NSF awards to Sven Koenig under contracts IIS-0098807 and
IIS-0350584. The views and conclusions contained in this document
are those of the authors and should not be interpreted as representing
the official policies, either expressed or implied, of the sponsoring
organizations, agencies, companies or the U.S. government.

References
[Cormanet al., 1990] T. Corman, C. Leiserson, and R. Rivest.In-

troduction to Algorithms. MIT Press, second edition, 1990.

[Hartet al., 1968] P. Hart, N. Nilsson, and B. Raphael. A formal ba-
sis for the heuristic determination of minimum cost paths.IEEE
Transactions on Systems Science and Cybernetics, 2:100–107,
1968.

[Koenig and Likhachev, 2005] S. Koenig and M. Likhachev. Fast
replanning for navigation in unknown terrain.Transaction on
Robotics, 21(3):354–363, 2005.

[Koenig and Likhachev, 2006] S. Koenig and M. Likhachev. A new
principle for incremental heuristic search: Theoretical results.
In Proceedings of the International Conference on Autonomous
Planning and Scheduling, pages 402–405, 2006.

[Koeniget al., 2004a] S. Koenig, M. Likhachev, and D. Furcy.
Lifelong planning A*. Artificial Intelligence Journal, 155(1–
2):93–146, 2004.

[Koeniget al., 2004b] S. Koenig, M. Likhachev, Y. Liu, and
D. Furcy. Incremental heuristic search in artificial intelligence.
Artificial Intelligence Magazine, 25(2):99–112, 2004.

[Pearl, 1985] J. Pearl.Heuristics: Intelligent Search Strategies for
Computer Problem Solving. Addison-Wesley, 1985.

[Stentz, 1995] A. Stentz. The focussed D* algorithm for real-time
replanning. InProceedings of the International Joint Conference
on Artificial Intelligence, pages 1652–1659, 1995.

[Trovato and Dorst, 2002] K. Trovato and L. Dorst. Differential
A*. IEEE Transactions on Knowledge and Data Engineering,
14:1218–1229, 2002.


