1

The Fringe-Saving A* Search Algorithm - A Feasibility Study

Xiaoxun Sun
Computer Science Department
University of Southern California
Los Angeles, CA 90089-0781
xiaoxuns@usc.edu

Abstract

In this paper, we develop Fringe-Saving A*
(FSAY*), an incremental version of A* that repeat-
edly finds shortest paths in a known gridworld from
a given start cell to a given goal cell while the
traversability costs of cells increase or decrease.
The first search of FSA* is the same as that of A*.
However, FSA* is able to find shortest paths dur-
ing the subsequent searches faster than A* because
it reuses the beginning of the immediately preceed-
ing A* search tree that is identical to the current A*
search tree. FSA* does this by restoring the content
of the OPEN list of A* at the point in time when an
A* search for the current search problem could de-
viate from the A* search for the immediately pre-
ceeding search problem. We present first experi-
mental results that demonstrate that FSA* can have
a runtime advantage over A* and Lifelong Planning
A* (LPA*), an alternative incremental version of
A*,

Introduction

Sven Koenig
Computer Science Department
University of Southern California
Los Angeles, CA 90089-0781
skoenig@usc.edu

list of A* at the point in time when an A* search for the
current search problem could possibly deviate from the A*
search for the immediately preceeding search problem be-
cause the A* search for the current search problem has en-
countered a changed edge cost. FSA* then restarts the A*
search at that point. In the following sections, we first de-
scribe which search problems FSA* solves. Second, we ex-
plain in detail how FSA* reuses information from the im-
mediately preceeding search to speed up the current search.
Finally, we present first experimental results that denratest
that FSA* can have a runtime advantage over A* and LPA*
[Koenig et al., 20044, an alternative incremental version of
A*,

2 Search Problemsand Notation

Fringe-Saving A* (FSA*) solves path-planning problems in
known finite gridworlds whose vertices correspond to the
cells and whose edge costs increase or decrease over time. In
this paper, we describe a version of FSA* that works on grid-
worlds of square cells that are either blocked or unblocked,
where one can always move from an unblocked cell to one of
the four adjacent cells with cost one, provided that the-adja
cent cell is unblocked. We use the following notation to be

Most research on heuristic search has studied how to solvgy|e tg state the search problems formaflydenotes the fi-
one-shot search problems. However, search is often a rep&jjte set of unblocked cellSucés) C S denotes the set of un-
itive process where one needs to find shortest paths to serigfcked cells that border unblocked cele S. ESA* repeat-

of similar search problems because the world changes ovefy|y determines a shortest (unblocked) path from a given un-
time. For example,_ the traffic condl'glons can change whetygcked cellssiar € S to a given unblocked goal caloa € S

one drives to the airport and one might have to change thgiip, ssart 7 Sgoal @S the traversability of cells changes, al-

current route if the radio reports additional congestion. | ways knowing which cells are currently unblocked.
this case, one has to replan for the new situation. Incremen-

tal search algorithms are often able to find shortest paths t A*
series of similar search problems faster than is possible b

solving each search problem independently, by re-usimg-inf A* [Hartet al, 1969 is the most popular heuristic search al-
mation from the preceeding search&seniget al., 20044. gorithm. It maintains three values for every cell: First th
In this paper, we develop Fringe-Saving A* (FSA*), an in- h-valueh(s) of a cell s is the user-given approximation of
cremental version of A{Hart et al, 1969 that repeatedly the distance from the cell to the goal cell (= heuristic), ethi
finds shortest paths in a known gridworld from a given startwe assume to be consistent, that is, it satisfies the triangle
cell to a given goal cell while the traversability costs oise equality[Pearl, 198% It is not changed during an A* search.
increase or decrease. However, FSA* is often able to findSecond, the g-valug(s) of a cell s is an approximation of
shortest paths during the subsequent searches faster than the distance from the start cell to the cell. It is changed dur
because it reuses the beginning of the immediately preceeig the A* search. Finally, the parent pointearen{(s) of

ing A* search tree that is identical to the current A* searcha cell s points to its parent cell in the A* search tree. lItis
tree. FSA* does this by restoring the content of the OPENalso changed during the A* search. A* maintains two data

structures: First, the CLOSED list contains all cells theatéh 1234567
been expanded during the A* search. Initially, it is empty.
Second, the OPEN list contains all cells that have been gen-
erated but not yet expanded during the A* search. Initially,
it contains only the start cell with g-value zero. A* repeats
the following procedure: A* removes a cell with the smallest
sum of g-value and h-value from the OPEN list, inserts it into
the CLOSED list and expands it by performing the following
procedure for each unblocked adjacent cell. If the adjacent
cell is neither in the OPEN nor CLOSED list, then A* gen-
erates the adjacent cell by setting the g-value of the adface
cell to the g-value of the expanded cell plus one, setting the)
parent pointer of the adjacent cell to the expanded cell, and Figure 1: Search Problem 1
then inserting the adjacent cell into the OPEN list. If the ad

jacent cell is in the OPEN list and the g-value of the expanded . ' .
JceII plus one is smaller than the g-va?ue of the adjacgni CeIIS|mple. The first search of FSA* to determine a shortest path

then A* sets the g-value of the adjacent cell to the g-valu rom the start cell to the goal cell is the same as an A* search.
of the expanded cell plus one and sets the parent pointer ow assume that the traversability of some cells changes and

the adjacent cell to the expanded cell. A* terminates imme_consider another A* search to determine a shortest path from

* Ni-
diately when ts OPEN ist is empty or when it is about o\ S50 T4 T8 ' BO% fok 08 S0 e first A
expand the goal cell. (For simplicity, we count the goal cell ea¥ch IOFSA* restores the overall state of the first A* search
as expanded.) Figure 1 shows the state of an A* search with :

start cell D2 (marked S) and goal cell F6 (marked G) afterdt the point in time when the second A* search could possibly

; . . . g
termination. We use the consistent Manhattan distance (thg}ewate from it, that is, when the second A* search encoun

. .
sum of the absolute x and y distances between a cell and {HErs & cell whose traversability changed between the wo A

goal cell) as an approximation of the distance from a cell tOsearches. FSA* then restarts the first A* search at that point

the goal cell. Every cell has its h-value in the lower left-cor " time rather than performlng INE SeconduA s Searchyirom
ner. Every generated cell also has its g-value in the upfter leSCraich. The state of an A* search is given by the content
corner, the sum of g-value and h-value in the upper right corpf its OPEN and CLOSED lists and the g-vallies and parent
ner, and its parent pointer pointing to its parent cell inAtie pointers of the cells contained in them. FSA* executes the

search tree. Every expanded cell also has its sequence numigliowing steps.

in the lower right corner that indicates when it was expanded Step 1 (Restoration of ihe CLOSED lisl): Assume that
FSA* makes use of the following four properties of A*: First, there are two complete A*searches and thgpandedids) is

A* terminates. Second, the sum of g-value and h-value ofthe——— ——— _
sequence of expanded cells is monotonically nondecreasirjgdicate that the g-value of the cell is current. 3) Rather than

; ; ~ ; identifying the reusable cells repeatedly by checking whether
over time. Third, the g-value and parent pointer of any Ce”Expandedlds) < Blockld Expandediteratiofs)), lines {55-56}

are correct _Nhen it is expanded and then do n_ot change a@étGeneratedlteratio(B) = Iteration for the reusable cells that
longer, that is, the g-value of an expanded cell is equaldo tho 4 otherwise get re-generated by the A* search. This way, the
distance from the start cell to the cell (= the start distasfce ax search knows that the g-values of these cells are current and,
the cell) and a shortest path from the start cell to the cell casince it cannot decrease their g-values, will not re-generate the cells.
be identified in reverse by following the parent pointersifro Lines {55-56} can be implemented very efficiently as part of iden-
the cell to the start cell. This property implies that A* finds tifying and traversing the relevant part of the fringe. 4) Li{d8-

a shortest path from the start cell to the goal cell if it termi 45} can be efficiently implemented with a linked list to skip those
nates because it is about to expand the goal cell. Fourth, riRjementsBlockid(i) for which no cell s with Expandedids) <

path exists from the start cell to the goal cell if A* termieat BlockldExpandediteratiof)) exists. 5) To be more efficient, our
because its OPEN list is empty implementation of FSA* traverses only the immediate outside of

the continuous area of reusable cells between the borders of the
gridworld in case the continuous area of reusable cells touches the
4 FSA* border. To this end, FSA* traverses the immediate outside of the
. continuous area of reusable cells in the clockwise direction, start-
Fringe-Saving A* (FSA*) is an incremental version of A*. jng with the anchor cell, until it is about to leave the anchor cell
Figure 6 gives its pseudo codeThe idea behind FSA* is a second time in the same direction or reaches some cell of the
- border. In the second case, it then traverses the immediate outside
1The functionOPENInser((s) inserts a cells into the OPEN of the continuous area in the counter-clockwise direction, starting
list; and OPEN Pop(s) removes and returns a cell with the small- again with the anchor cell, until it reaches some (potentially dif-
est sum of g-value and h-value from the OPEN list. The fol-ferent) cell of the border. The fourth gridworld in Figure 2 illus-
lowing comments are meant to help the reader understand thieates this process for the search problem from Figure 1. 6) To
pseudo code better: 1) The initializations on ling2-05 will be more efficient, our implementation of FSA* collapses the two
not actually be executed since memory cells are typically initial-variablesGeneratedlteratiofs) andExpandedIteratiofs) into one
ized with zero. 2) When a cel} is generated during the A* variablelteration(s) although this requires code changes that make
search then ling24} setsGeneratedlteratiofs) = Iteration to the pseudo code harder to understand.

©
®

|
v
S
Iy
I
4
I

> e
~No| oo e

8
1
7
0
6
1
5
2
4

Vool BRo
wowlsn|aklon)~

@ Mmoo w >

1 2 3456 7 1 2 3 456 7 1 2 345 6 7 12 345 6 7

anchol

fringe fringe

@ Mmoo On wm >
@ Mmoo O wm >
@ Mmoo w >
@ MmO wm >

Figure 2: Search Problem 1 (continued)

the sequence number of celéfter the first A* search, thatis, lem by maintaining the following global variableleration
that cells was expande@xpandedIds)th during the first A* is the number of the current search, that ligration =
search. (The start cell was expanded first. If ggllas notex- ¢ during theith search. FSA* also maintains a value
panded during the first A* search, thErpandedids) = oc.) Blockld(7) for the ith search and the valu&xpandedIds)
Assume further that only one ceil changed its traversabil- andExpandedlteratiots) for every cells, initialized as fol-
ity between the two A* searches. We now determine a valudows: Blockld(0) = 0 and, for all cellss, ExpandedIids) = 0

for m so that the second A* search expands at least evergndExpandedlteratiofs) = 0 {01,04-05. FSA* then main-
cell s with Expandedlds) < m in the same order as the first tains the following invariant directly before thith search: If
A* search. If cells’ became blocked, then the second A* Expandedids) < Blockld(Expandedlteratiofs)) then cells
search expands at least every celvith Expandedids) < would have been expanded BgpandedIds)th cell during
ExpandedIds’) in the same order as the first A* search, thatthe immediately preceeding search if it had been a complete
is, every cell up to but not including cedl. Thus, we set search{28-30}. If FSA* determines that every cell with

m := m(s’) := Expandedlds’). If cell s’ became un- Expandedlds) < m is reusable for thdterationth search,
blocked, then the second A* search expands at least evéry ceéhen it proceeds as follows: First, it invalidates all celish

s with Expandedlids) < 14+min, cSycgs) Expandedids”) sequence numbers no smaller thaby settingBlockld(z) :=

in the same order as the first A* search, that is, every celin(m, Blockld(:)) for all 1 < i < Iteration, which is much
up to and including the neighbor of cell that was ex- faster than visiting all cells with invalid sequence nunsber
panded first in the first A* search. Thus, we set := {43-45. Second, whenever it expands a celluring the
m(s') = 1+ mins”ESUCQs/) ExpandedIds”). If several Iterationth search it setExpandediteratiofs) := Iteration,

cells s’ € ' changed their traversability between the two EXPandedids) = m andm := m + 1 {15-17. Fi-

A* searches, then the second A* search expands at least ef@!!¥: it setsBlockid(Iteration) := oo {12} andlteration :=

ery cell s with Expandedlds) < m := mingcg m(s’) lteration + 1 {48} o .

in the same order as the first A* sear¢82-42} (numbers Step 2 (Early Termination): If the goal cell is reusable,

in curly braces refer to line numbers in the pseudo code)in€n FSA* does not need to replan because the shortest path
Thus, these cells (which are guaranteed to be unblocked om the start cell to the goal cell from the immediately pre-
are in the new CLOSED list. We refer to them as reusabl&€€ding search is also a shortest path for the current search
cells. The first gridworld in Figure 2 illustrates this prese {75}: If the start cellis not (eusable and bIOCk?d’ then FSA*
for the search problem from Figure 1 after cell C5 with se-terminates without replanning because there is no path from
quence number 11 became blocked. All cells with sequencg"e start cell to the goal ceill. If the start cell is not iedeab
numbers less than 11 are then reusable, as indicated in gré§ld unblocked, then FSA* performs a complete A* search
It turns out that maintaining the sequence numbers is mordOM scraich. , o

complicated than discussed so far in case there are severalStéP 3 (Restoration of the OPEN list): The unblocked
searches in a row because FSA* might have to reuse cel@nd non-reusable cells that border one or more reusabte cell
from different searches. We would like a sequence num@re in the new OPEN list. First, FSA* identifies the anchor
ber ExpandedIds) to mean that cels would have been ex- cell, a non-reusable cell that borders one or more reusable
pandedExpandedids)th during the immediately preceeding cells, by followm_g _the parent pointers from the goal cell to
A* search if the immediately preceeding search had been the start cell until it transitions from a non-reusable ¢ell
complete A* search. Now consider the case where som@ reusable cel{50-53}.2 This non-reusable cell then is the
cell s was expanded during the first search, but the cel@nchor cell. The second gridworld in Figure 2 illustrates th
was not reusable in the second search. Then, some othef—————]

cell might have received the same sequence number as cell _FSA* cannot follow the parent pointers from the goal cell to the

s during the second search, and FSA* might have to deStart cell if no path from the start cell to the goal cell existed in the

i ine during the third h that th b immediately preceeding search. Whether a path exists or not, it can
ermine during the third searc a* € sequence num earlways simply follow a path from the goal cell to the start cell that
of cell s has become invalid. FSA* addresses this probis; greedily decreases the x and then the y distance to the start cell.

12 3 45 6 7 1 2 345 6 7 1 2 3456 7 12 345 6 7

A A A A

B B B B ‘M-

C C fringe| fringe| fringe| C C S aniho

D D Il s D DN

E E E |
- i a i ===yl
G G G G

Figure 3: Search Problem 2Figure 4: Search Problem 3 Figure 5: Search Problem 4

and parent pointer of an unblocked cell changed during the
* search because the A* search first found a path from the
start cell to the cell in question and then found a shorten pat

process for the search problem from Figure 1, resulting in an
chor cell C5. Second, FSA* identifies the cells that belon
to the relevant part of the new OPEN list (= fringe). The

reusable cells form a continuous area since they are alhreacf'&ggqeg‘rihs;aégggI,:g%éhrzgt%uég g’tjsszoir?t. "Lf tErr]rfeS;?téer ?hget?ilrst
able from the start cell. FSA* can traverse the immediate out P

side of this continuous area (say, in the clockwise diregtio {)hath Y\v/als fougg bu: t:ﬁfor?nih? sfet%ond ﬁ"’i‘:]h wastiforl]Jrr:d, tdhfn
starting with the anchor cell, and insert all unblocked <ell € g-vaiue and parent pointer ot the cetl in question need o

that border one or more reusable cells into the relevant paﬁe corrected. Figure 5 (left and right) show for a search-prob
of the new OPEN lis{54-66}. FSA* does not stop when it em different from our main one that it is important to update
reaches the anchor cell a second time but only when it is abo{f€ 9-values and parent pointers of the cells in the new OPEN
to leave the anchor cell a second time in the same directio ;i%v-\ll—gfhsetiir:sie,g *'Ssggrigd tlihiel?r(()aaISC(?i" ;?t)ESGHc'):vL%utrﬁeStinltel:fa-
The third gridworld in Figure 2 illustrates this process thoe 'on after cell C3 becam 'bl gk d Thg val nd parent
search problem from Figure 1. The cells C2, C3 and B4 fornf'O" &fter ce ecame blocked. he g-valu€ and pare
the relevant part of the new OPEN list, as indicated in the figi20Inter Of cell D4 are incorrect and need to be corrected from
ure. Figure 3 shows for a search problem different from ow? and C4, respelctlvel:y, o5 and Eﬁ' Folrl Case 1 gnd 2, FS;?
main one that the termination condition is indeed important indsanyreusable cell adjacent to the cell in question, sets the

The start cell is E3 and the goal cell is B5. After cell C4 be-9-Value of the cell in question to the g-value of the reusable
: cell plus one, and the parent pointer of the cell in question t

s .
came blocked, FSA visits cells C4, D4 and C4 again Whe'}pe reusable cell58-63}. It is correct for Case 1 since a cell

it traverses the immediate outside of the continuous area X :
reusable cells, at which point it does not stop since the an! the new OPEN list that just became unblocked has exactly

chor cell C4 was first left towards the south but is now Ieftgne ahdjacent reusable cell. We prove the correctness fer Cas
o . . . the next section.

towards the east. If it did stop, then it would not identify al n . N .

cells that belong to the relevant part of the new OPEN list, St€P 5 (Sorting the new OPEN list): This step is impor-

Figure 4 shows for a search problem different from our maintant if the OPEN list is implemented as a binary heap because

one that not all cells in the new OPEN list are relevant. Thetr_ansforming aset in one step into a binary heap is more effi-
start cell is D2 and the goal cell is F6. After cell F5 becameCient than inserting the elements of the set one after ther oth

blocked, cells E2, E3 and F3 are irrelevant, and thus not inlNto an empty bmary heﬂﬂ:o_rmanet al. 1990' .o
cluded in the relevant part of the new OPEN list since the goal téP 6 (Restarting A*): Finally, FSA restarts A* with
cell is not in the region of unblocked cells that they are parth® new OPEN and CLOSED lis{§9}. A*is implemented
of and a shortest path from the start cell to a goal cell thu®Y the function ComputeShortestPath.

cannot pass through them. From now on, we just refer to the

OPEN list when we mean the relevant part of the OPEN list.5 Theoretical Results

St.ep 4 (Restoration of the G-Values and Parent Point- Thg correctness of the restoration of the g-values and paren
ers): The g-values and parent pointers of all reusable cell$,ginters of cells in the new OPEN list is not easy to see for

are guaranteed to be correct. However, the g-values and paf,ge 2. \We thus prove it in the following, making use of the
ent pointers of cells in the new OPEN list are not necessarilyqiowing theorem that is specific to the kinds of gridworlds
correct in the following two cases: First, if a cell in the new | saq in this paper. The result also implies that the g-vaide a

OPEN list just became unblocked, then it was blocked beforey,rent pointer of a cell in the new OPEN list are correct if the
and its g-value and parent pointer thus have not been updatefhent pointer already points to a cell that is reusable.
in the preceeding searches and need to be corrected (Case 1).

Second, if the parent pointer of a cell in the new OPEN listTheorem 1 The parent pointer of any cedl€ S can change
points to a cell that is not reusable, then the g-value and paat most once during an A* search from one cell to another.
ent pointer need to be corrected (Case 2). To understand Casd expanded cells adjacent to a cell have the same g-value
2, consider a complete A* search and assume that the g-valueefore the parent pointer of the cell changes.

procedure I nitialize()

{01} Blockld(0) := 0;

{02} Forall cellss

{03} Generatedlteratiofis) := 0;
{04} Expandediteratiofs) := 0;
{05} Expandedids) := 0;

{06} m:=0;

{07} OPEN:= §;

{08} g(sstart) := 0;

{09} OPENInsert(sstart);

{10} Generatedlteratiofsstart) := 1;
{11} Iteration := 1;

function ComputeShortestPath()

{12} Blockid(Iteration) := oo;

{13} While (OPEN# 0)

{14} s := OPENPop();

{15} Expandedlteratiofis) := Iteration;
{16} Expandedlds) := m;

{17} m:=m+1;

{18} If (s = sgoa|)

{19} Return True;

{20} Else

{21} Forall s’ € Sucds)

{22} If (GeneratedIteratiofis) # lterationOr g(s) + 1 < g(s’))
{23} g(s) = g(s) + 1; _

{24} Generatedlteratiofis”) := Iteration;

{25} Paren(s’) := s;

{26} OPENInsert(s’);

{27} Return False;

function CellReusable(s)

{28} If (Expandedids) < Blockld(Expandediteratiofs)))
{29} Return True;

{30} Return False;

procedure UpdateM azeTr aver sability ()

{31} TmpBlockld:= co;

{32} Forall cellss whose traversability has changed
{33} If (s is blocked)

{34} If (CellReusablés))

{35} If (Expandedlids) < TmpBlockid

{36 TmpBlockld:= Expandedids);

{37 Else

{38 Paren{(s) := NULL;

{39} Foralls’ € Sucds)

{40} If (CellReusablés’))

{41} If (Expandedids’) + 1 < TmpBlocklg
{42} TmpBlockld:= Expandedids’) + 1;
{43} Forallz = 1. .. Iteration

{44 If (TmpBlockld< Blockld(z))

{45 Blockld(z) := TmpBlockid

{46} m := Blockld(Iteration);

procedure RetrieveFringe()

{47} OPEN:= 0;

{48} Iteration := Iteration + 1;

{49} s := Sgoal’

{50} While (Not CellReusabl@Paren(s)))
51} s := Paren(s);

152} If (s = sstart)

{53 Exit; /* there is no path */

{54} Move s around the area that contains exactly the c€liith CellReusable{’)
{55} Foralls’ € Sucgs) with CellReusablés”)

{56 Generatedlteratiofs”) := lteration;

{57} If (s is unblocked)

{58} If (Paren{(s) = NULL Or (Not CellReusabl@Parent(s))))
{59} Forall s’ € Sucgs)

{60 If (CellReusablés’))

{61 Paren((s) := s’;

{62 g(s) == g(s") +1;

{63} break;

{64} Generatedlteratiofs) := Iteration;

{65} OPENInsert(s);
{66} Until the initial cell is about to be left in the same direction again;

procedure Main()

{67} Initialize();

{68} Repeat

{69} If (Not ComputeShortestPath)

{70} Exit; /* there is no path */

{71} Repeat

{72} Identify the path using the parent pointers and use it;
{73} Wait for traversability changes;

{74} UpdateMazeTraversability;

{75} Until (Blockld(Iteration) < Expandedlajsgoap);

{76} RetrieveFringé);
{77} Until False;

Figure 6: Fringe Saving A* (FSA*)

Proof: Consider any unblocked cedl € S and any two
unblocked cells’, s” € S adjacent to celk. h(s’) — h(s")
is -2, 0 or 2 since the h-values are the Manhattan distances.
This means that all cells adjacent to celtogether have at
most two different h-values. Now assume that célivas
expanded during an A* search and that eellas generated
during the expansion. Thus, the parent pointer of eellas
set to cells’. Assume further that celt’ was expanded later
during the same A* search and that the parent pointer okcell
changed during the expansion. Thus, the parent pointetlof ce
swas setto cely”. Then,g(s")+h(s") < g(s”)+h(s"”) since
the sum of g-value and h-value of the sequence of expanded
cells is monotonically nondecreasing over time. Furtheeno
g(s") < g(s') since otherwise the parent pointer of cell
would not have changed. Thugs”) + ¢ = g(s) for some
¢ > 0. Puttogetherg(s”) + ¢ + h(s') = g(s') + h(s') <
g(s") + h(s") or, alternatively,h(s’) — h(s") < —c < 0.
Sinceh(s’) — h(s"”) is -2, 0 or 2, it must be the case that
h(s") — h(s") = —2 and thush(s”) = h(s’) + 2. This
implies that—2 < —c¢ < 0. Since the start distances and thus
the g-values of cells’ ands” cannot differ by one, it must
be the case thaj(s”) — g(s’) = ¢ = 2. This means that
the parent pointer of celt can change at most once during
an A* search becauseincreases with every change. Now
consider any unblocked cedl” adjacent to celk that was
expanded before the parent pointer of cethanged. Then,
g(s")+h(s") < g(s")+h(s") < g(s"”)+h(s") since the sum
of g-value and h-value of the sequence of expanded cells is
monotonically nondecreasing over time. It holds tihat) +
h(s') = g(s")+ 2+ h(s") — 2 = g(s") + h(s"). Thus,
g9(s") + h(s") = g(s"") + h(s"") = g(s") + h(s"). Since
all cells adjacent to cell together have only two different h-
values,h(s"") must equal eithek(s’) or h(s”). Thus,g(s"’)
must equal eitheg(s’) or g(s”). g(s") cannot equay(s”)
since otherwise the parent pointer of cefirst had changed
to cell s and later could no longer have changed to gl
Thus,g(s"") must equay(s’), which means that all expanded
cells adjacent to cell have the same g-value before the parent
pointer of the cell changesm

We use this theorem as follows: During the course of an
A* search, the g-value of a cell cannot increase. Thus, when
restoring the (earlier) state of an A* search, the g-valua of
cell cannot decrease. Assume that the parent pointer of a cel
in the new OPEN list points to a cell that is reusable. The
g-values of reusable cells are correct. Thus, the g-value of
the cell in question does not need to increase. It remains the
g-value of the reusable cell plus one. Thus, the g-value and
parent pointer of the cell in question remain correct. Now
assume that the parent pointer of a cell in the new OPEN list
points to a cell that is not reusable. Clearly, the paremniteoi
needs to get corrected. Directly before it was set to the non-
reusable cell during the immediately preceeding A* sedtch,
pointed to some other cell with a larger g-value. At that poin
in time, all expanded cells adjacent to the cell in questiae h
the same g-value according to Theorem 1, and the reusable
cells adjacent to the cell in question are a subset of theoe sin
their sequence numbers are smaller than the sequence number
of the non-reusable cell. FSA* can therefore find any rewsabl

cell adjacent to the cell in question and set the g-value®f thued with the next gridworld. (The runtime includes the grid-
cell in question to the g-value of the reusable cell plus onevorlds without a path from the start cell to the goal cell. eTh
and the parent pointer of the cell in question to the reusableseudo code in Figure 6 exploits this assumption for simplic

cell. ity, for example, does not handle the case where the stéart cel
becomes unblocked. To maintain a constant obstacle den-
6 Redated Work sity, we randomly changed the traversabilityabfange rate

/2x100 percent of cells close to the goal cell from blocked to
unblocked and an equal number of cells close to the goal cell
from unblocked to blocked, wherhange ratevas between
zero and one. (This implies thehange rate< 2x obstacle

Incremental A* (iA*) by Peter Yap (unpublished) reuses the
beginning of the immediately preceeding A* search tree tha
is identical to the current A* search tree, like FSA*. It re-

stores the content of the OPEN list of A* by repeating theygngjv) A cell was close to the goal cell if its Manhattan dis-
A* search for the immediately preceeding search problemy-q \yas no larger thartosenessimes the Manhattan dis-
until it deviates from the A* search for the current searchi, o of the start cell. whemosenessvas between zero and
problem_. *Smce the order of the cell EXpansions 1s alreqdyme_ This way of chémging the terrain was inspired by real-
known, iA* does not need to use an OPEN list to determing;q sirategy games like Warcraft where one player often re-
the order of the cell expansions which malies the repeated Al_geatedly attacks some other player. During these attauks, t
search faster than_ the 0r|*g|n_al one. FSA_ restoref the co attacking player tries to reach the location of the defegdin
Fent r?f the OZEN :'St of A V(‘j”.thOUt repﬁatlngblthe A iearch_ layer. In the process, the attacking player destroys build
or the immediately preceeding search problem. The maify, g of the defending player while the defending playerdsiil
difference of both search algorithms is that iA* traverdes t new buildings. Thus, the traversability of the terrain ajes

expanded cells while FSA* traverses the genera;ed but ot Y&round the destination of the attacking player, as simdlate
expanded cells. The expanded cells form a continuous area [JI’ experiments. We compared the runtime of FSA* against

cells, and the generated but not yet expanded cells basical he runtimes of A*. iA* and LPA* on a Pentium D 3.0 Ghz PC

form the outside perimeter of this area. Since an area ca}ii, » GByte of RAM. It is worth pointing out that runtime
grow quadratically in the length of its perimeter, ravBGsi oq1ts always depend on the hardware, compiler and imple-
the cells on the perimeter can potentlally be much more ef'ﬁ'mentation, including the data structures, tie-breakimgtst
plentthanttrlavers!ng thefcgllsﬂl]n :he arezi itself. Tglerer:me _gies and coding tricks used. However, there is currently no
|r.1c|rem§.rf1fa verfsmnsF%A* é".:*pefde a.cco'rwirllg 0 PNN-petter testing methodology available since the three reiffe
Clpdeikfll errt]ant ;%r&s A%n ! h. gpglve K oer;]lg h search algorithms work according to very different prifesp

and Liknhachev, runs A* unchanged but makes the - o4 1h,s cannot be compared via proxies such as the num-

vaI(;Jeﬁ more inforrr|1ed. Itg:annotdh'andlededgtla:g%it df?r?asﬁﬁr of expanded cells. All three search algorithms find short
and thus cannot always be used instead o - LITE0NGa gt paths and, to be fair, were implemented in very similar

Planning A* (LPA*) [Koenig et al, 20044 and Differential .- - :
ys. For example, they all used binary heaps to implement
A [Trovato and Dorst, 2003eave the h-values unchanged y¢"opeN fist. When deciding which cell to expand next,

but modify A*. They can handle edge cost increases and Olethey all broke ties among cells with the same smallest sum

c_reas(ejs and thufs can be #se'&j*insteaﬂ of FSA}*.hTh.ey ca(r;_ Bf g-value and h-value in favor of a cell with the largest g-
viewed as transforming the A* search tree of the Immedi- 5 o “since this tends to result in small runtimes. Table 1

ately preceeding search into the A* search tree of the Ctjrrenreports their total runtimes oveil searches they performed

search. \(/jVe usedLPAg ins'gle%(il of I?(jiffe:egtial ’/A‘* beﬁﬁﬁsﬁ It including the calculation of the traversability changesi a
Is more advanced and available at idm-lab.org/projedia.h o, oy forobstacle density 0.25, showing the fastest run-
LPA* can be slower than A* but tends to be more efficient ;. in bold. We sayX > Y iff the following relationship

than A* when the search problems change only slightly and,5|qs. «x ryns consistently faster than for small values of

the changes are close to the goal cell. It has been eXtendedéR)senessOn the other hand/’ runs faster tharX for larger
. * B e

moving agents and then used on robots as part of D* Litg 5| es ofclosenesif the value ofchange ratds sufficiently

{goenig aggBLri]khgchgv, |2005 Whigh Is adversicl)n of D* 4large. This threshold decreases as the valudasfenesin-
tentz, 1 that Is simpler to understand, imp ement an creases.” The table then shows that FS)Q*A*, FSA* >

extend. We therefore compare FSA* against A, iA* and iA* and LPA* > FSA*. We can explain these observations

LPA* experimentally. as follows: First, the value ofhange rateincreases as we
. . go from top to bottom in the table, which increases the num-
7 Experimental Evaluation ber of traversability changes. The overhead of preprosgssi

We performed experiments in 100 gridworlds of sl#80 x each traversability g:hange tends to be the small'est for A* (=
1000. Their start and goal cells were randomly chosen and'one), followed by iA*, FSA* and LPA*, roughly in that or-
obstacle densityx100 percent of the cells were randomly der. This overhead gets amplified by the valuelunge rate
chosen to be blocked, whembstacle densityvas between Second, the value afosenesscreases as we go from left to
zero and one. For each gridworld, we changed the traversabilight in the table, which decreases the part of the immelgiate
ity of some cells and then found again a shortest path fronPreceeding A* search tree that can get reused. (Simildudy, t
the start cell to the goal cell. If no path from the start cell t Value ofchange raténcreases as we go from top to bottom in
the goal cell existed or after we had changed the traversabifhe table, which to some extent also decreases the part of the
ity of cells and found a new path for 100 times, we contin-immediately preceeding A* search tree that can get reused.)

change closeness = 0.1 closeness = 0.2 closeness = 0.3 closeness = 0.4 closeness = 0.5 osenessk 0.6
rate A* iA* LPA* FSA* A* iA* LPA* FSA* A* iA* LPA* FSA* A* iA* LPA* FSA* A* iA* LPA* FSA* A* jA* LPA* FSA*
0.02 | 1.429 1.0140.260 0.726 | 1.359 1.1210.352 0.907 | 1.386 1.2790.492 1.142 | 1.551 1.4810.723 1.367 | 1.247 1.2560.930 1.215 | 1.604 1.6431.348 1.603
0.04 | 1.210 0.8640.293 0.620 | 1.366 1.1490.443 0.943 | 1.417 1.2990.628 1.145 | 1.440 1.4191.058 1.350 | 1.566 1.5901.382 1.537 | 1.683 1.736 1.830 1.704
0.06 | 1.302 0.9350.342 0.658 | 1.315 1.0810.525 0.898 | 1.341 1.2080.814 1.086 | 1.516 1.4881.272 1.411 | 1.662 1.685 1.8971.640 | 1.948 2.005 2.486 1.967
0.08| 1.498 1.0830.400 0.767 | 1.322 1.1210.588 0.947 | 1.520 1.4111.016 1.274 | 1.474 1.457 1.5041.390 | 1.449 1.458 1.728.409 | 1.889 1.953 2.647 1.927
0.10| 1.102 0.8120.406 0.602 | 1.353 1.1580.664 0.966 | 1.492 1.3961.068 1.268 | 1.578 1.558 1.836.484 | 1.882 1.922 2.807 1.883 2.013 2.079 3.053 2.053
0.12| 1.159 0.9380.448 0.753 | 1.261 1.1130.707 0.962 | 1.589 1.4891.269 1.341 | 1.711 1.699 2.043..637 | 1.909 1.947 2.865..906 | 2.056 2.130 3.465 2.106
0.14 | 1.296 0.9760.487 0.727 | 1.320 1.1230.752 0.954 | 1.453 1.378 1.3861.272 | 1.995 2.013 2.6421.942 | 2.075 2.122 3.374 2.082 2.064 2.143 3.571 2.128
0.16 | 1.119 0.8780.449 0.673 | 1.425 1.2430.906 1.061 | 1.423 1.377 1.383.291 | 1.780 1.776 2.323.707 | 2.045 2.098 3.303 2.068 2.609 2.709 4.779 2.692
0.18| 1.152 0.9110.482 0.717 | 1.406 1.2230.903 1.051 | 1.692 1.588 1.610.444 | 1.624 1.618 2.4141.570 | 2.148 2.194 3.666 2.159 2.535 2.638 4.758 2.622
0.20| 1.179 0.9390.478 0.740 | 1.482 1.3251.017 1.152 | 1.551 1.498 1.732.403 | 1.817 1.825 2.7221.762 | 2.187 2.262 4.177 2.244 3.295 3.438 6.858 3.427
0.22| 1.288 1.0490.567 0.839 | 1.214 1.0770.854 0.943 | 1.529 1.461 1.733..355 | 1.822 1.842 2.830L.799 | 2.846 2.939 5.644 2.913 2.601 2.704 5.670 2.698
0.24| 1.140 0.9110.523 0.730 | 1.620 1.4681.295 1.300 | 1.587 1.534 1.963.447 | 1.807 1.823 2.769.775 | 2.737 2.822 4.609 2.780| 2.753 2.872 5.718 2.872
0.26 | 1.286 0.9910.550 0.739 | 1.341 1.215 1.091.083 | 1.517 1.475 1.744.393 | 1.926 1.953 2.9211.900 | 2.754 2.845 5.068 2.816 3.054 3.180 6.180 3.170
0.28| 1.274 0.9850.568 0.762 | 1.432 1.327 1.214.201 | 1.468 1.452 1.9211.381 | 2.196 2.215 3.66@.157 | 2.443 2.527 4.304 2.501 3.546 3.710 7.746 3.718
0.30| 1.228 0.9790.588 0.777 | 1.537 1.319 1.1261..125 | 1.976 1.923 2.639.808 | 2.343 2.394 3.912.341 | 3.079 3.196 6.178 3.169 3.528 3.696 8.001 3.699
0.32| 1.293 0.9840.554 0.757 | 1.646 1.485 1.443.313 | 1.748 1.720 2.5371.638 | 2.075 2.118 3.52£2.074 | 3.042 3.151 6.409 3.136| 3.863 4.042 8.663 4.056
0.34| 1.256 1.0190.571 0.813 | 1.395 1.290 1.208..152 | 1.856 1.798 2.240.685 | 2.692 2.714 4.632.639 | 2.698 2.795 5.507 2.783 3.958 4.147 9.073 4.162
0.36| 1.276 1.0220.631 0.792 | 1.534 1.418 1.4841.285 | 1.864 1.840 2.569.751 | 2.297 2.336 4.002.283 | 3.140 3.258 6.294 3.245 3.801 3.983 8.356 4.006
0.38| 1.194 0.9740.602 0.779 | 1.546 1.369 1.298..189 | 1.734 1.700 2.497.613 | 2.284 2.338 4.178 2.299 3.178 3.299 6.405 3.269 3.670 3.844 7.794 3.853
0.40| 1.332 1.0310.627 0.768 | 1.558 1.427 1.537.279 | 1.793 1.765 2.5621.673 | 2.199 2.244 3.612.198 | 2.651 2.735 5.148 2.705 3.847 4.032 8.653 4.046
0.42| 1.176 0.9010.586 0.697 | 1.463 1.335 1.425.203 | 2.142 2.114 3.15@.011 | 2.590 2.658 4.760 2.613 3.129 3.260 6.710 3.266 4.436 4.652 10.22 4.682
0.44 | 1.226 0.9900.627 0.797 | 1.542 1.427 1.5511.287 | 2.309 2.266 3.312.163 | 1.978 2.017 3.634 1.991 4.006 4.159 8.875 4.151] 5.080 5.332 11.74 5.369
0.46| 1.212 0.9910.637 0.798 | 1.700 1.545 1.6941.367 | 1.890 1.833 2.692.728 | 2.445 2.486 4.212.430 | 3.938 4.113 9.138 4.134 4.291 4.497 9.456 4.523
0.48| 1.333 1.0480.692 0.817 | 1.394 1.282 1.419.146 | 2.113 2.044 2.8461.927 | 3.104 3.194 5.834 3.149 3.841 4.002 8.586 4.014] 4.098 4.297 9.674 4.338
0.50 | 1.137 0.8870.578 0.693 | 1.415 1.324 1.454.210 | 1.964 1.928 2.8141.846 | 2.852 2.916 5.309 2.871) 3.715 3.879 7.843 3.885 4.909 5.151 11.02 5.193

Table 1: Experimental Results (in seconds)

The part of the immediately preceeding A* search tree thaFSA*. The Intelligent Decision-Making Group is partly supported

actually gets reused tends to be the largest for LPA*, fol-by NSF awards to Sven Koenig under contracts 11S-0098807 and

lowed by iA*, FSA* (= same as for iA*) and A* (= none), 11S-0350584. The views and conclusions contained in this document

roughly in that order. The overhead for identifying thistpar are those of the authors and should not be interpreted as representing

of the reusable A* search tree follows the same trend. Overthe official policies, either expressed or implied, of the sponsoring

all, iA* is never the fastest search algorithm. As the valueorganizations, agencies, companies or the U.S. government.

of closenesincreases, there is a decreasing threshold for the

value ofchange ratebelow which LPA* is the fastest search References

algorithm and a Iarge_r decrgasing threshold for the Va.lue 0FCormanet al, 1990 T. Corman, C. Leiserson, and R. Rivest-

(C[‘sxg% rateabove Wh'cl:h A* 'Itithe fasttetst Sltlaa':ﬁh algorltumi troduction to AlgorithmsMIT Press, second edition, 1990.
ecomes very slow with respect to all other search al- .

gorhms i he vlues ahange ratandclosenesare farge.) 414, 1968 P Hart . Mison, ana, Raphae, 4 fornaoa

Between the two thresholds, FSA* is the fastest search al- 1 4nsactions on Systems Science and Cyberne2id©0-107,

gorithm. Thus, our first feasibility study demonstratesttha 19gg.

.FSA* cail .f'nd .ShorteSt paths .fas.ter than.A*’.lA.* and LPA* [Koenig and Likhachev, 2005S. Koenig and M. Likhachev. Fast

in some situations and the principle behind it is thus worth replanning for navigation in unknown terrainTransaction on

being studied further. Robotics 21(3):354-363, 2005.
. [Koenig and Likhachev, 2006S. Koenig and M. Likhachev. A new
8 Conclusions principle for incremental heuristic search: Theoretical results.

In this paper, we developed Fringe-Saving A* (FSA*), anin- In Proceedings of the International Conference on Autonomous
cremental version of A* that repeatedly finds shortest paths Planning and Schedulingages 402-405, 2006.

in a known gridworld from a given start cell to a given goal [Koeniget al, 20043 S. Koenig, M. Likhachev, and D. Furcy.
cell while the traversability costs of cells increase orrdase. Lifelong planning A*. Artificial Intelligence Journal 155(1—
Our first feasibility study demonstrates that FSA* can find 2):93-146, 2004,

shortest paths faster than A%, iA* and LPA* in some situa- [Koeniget al, 20044 S. Koenig, M. Likhachev, Y. Liu, and

tions. It is future work to characterize these situationtdoe D. Furcy. Incremental heuristic search in artificial intelligence.
and improve the efficiency of FSA* further. Artificial Intelligence Magazing25(2):99-112, 2004.

[Pearl, 1985 J. Pearl.Heuristics: Intelligent Search Strategies for
Acknowledgments Computer Problem SolvingAddison-Wesley, 1985.

4 Stentz, 199 A. Stentz. The focussed D* algorithm for real-time
replanning. InProceedings of the International Joint Conference
on Artificial Intelligence pages 1652-1659, 1995.

[Trovato and Dorst, 20Q2K. Trovato and L. Dorst. Differential
. |IEEE Transactions on Knowledge and Data Engineering
14:1218-1229, 2002.

We thank Peter Yap, with whom Sven Koenig collaborated in 200
during a visit to the Alberta Ingenuity Centre for Machine Learn-
ing at the University of Alberta. This collaboration on comparing
iA* and LPA* inspired our development of FSA* three years later,
at a time where no one seems to know the current whereabouts of
Peter. We also thank Ariel Felner for interesting discussions on

