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Abstract cost. ADOPT is an example. Some incomplete DCOP algo-
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Distributed Constraint Optimization (DCOP) is a key
technique for solving agent coordination problems. Be-
cause finding cost-minimal DCOP solutions is NP-hard,
it is important to develop mechanisms for DCOP search
algorithms that trade off their solution costs for smaller
runtimes. However, existing tradeoff mechanisms do not
provide relative error bounds. In this paper, we introduce
three tradeoff mechanisms that provide such bounds,
namely the Relative Error Mechanism, the Uniformly
Weighted Heuristics Mechanism and the Non-Uniformly
Weighted Heuristics Mechanism, for two DCOP algo-
rithms, namely ADOPT and BnB-ADOPT. Our exper-
imental results show that the Relative Error Mecha-
nism generally dominates the other two tradeoff mech-
anisms for ADOPT and the Uniformly Weighted Heuris-
tics Mechanism generally dominates the other two trade-
off mechanisms for BnB-ADOPT.

I ntroduction

rithms allow users to specify the sizeof the locally optimal
groups. These DCOP algorithms partition the DCOP prob-
lem into groups of at most agents and guarantee that their
DCOP solution is optimal within these groups. The class of
k-optimal algorithmd Pearce and Tambe, 2008 an exam-
ple. However, efficient implementations fbroptimal algo-
rithms are so far known only far < 3 [Bowringet al., 2009.

We therefore seek to improve the tradeoff mechanisms of
a subclass of complete DCOP algorithms, namely complete
DCOP search algorithms. ADOPT is, to the best of our
knowledge, the only complete DCOP search algorithm with
such a tradeoff mechanism. Its Absolute Error Mechanism
allows users to specify absolute error bounds on the salutio
costs, for example that the solution costs should be at most
10 larger than minimal. The downside of this tradeoff mech-
anism is that it is impossible to set relative error bounds, f
example that the solution costs should be at most 10 percent
larger than minimal, without knowing the optimal solution
costs. In this paper, we therefore introduce three tradeoff

Many agent coordination problems can be modeled as Disyechanisms that provide such bounds, namely the Relative
tributed Constraint Optimization (DCOP) problems, inelud Error Mechanism, the Uniformly Weighted Heuristics Mech-
ing the scheduling of meetingdlaheswararet al, 2004,  anism and the Non-Uniformly Weighted Heuristics Mecha-
the allocation of targets to sensors in sensor netwbMlis  nism. for two complete DCOP algorithms, namely ADOPT
et al, 2004 and the coordination of traffic lightilunges  and BnB-ADOPT[Yeoh et al, 2004. BnB-ADOPT is a
and Bazzan, 2008 Complete DCOP algorithms, such as yariant of ADOPT that uses a depth-first branch-and-bound
ADOPT [Modi et al, 2009, find globally optimal DCOP s0-  gearch strategy instead of a best-first search strategyand h
lutions but have a large runtime, while incomplete DCOP al-heen shown to be faster than ADOPT on several DCOP prob-
gorithms, such as DBAZhanget al, 200, find only locally  |ems[Yeohet al, 200d. Our experimental results on graph
optimal DCOP solutions but have a significantly smaller run-co|oring, sensor network scheduling and meeting schegiulin
time. Because finding optimal DCOP solutions is NP-hardyrgplems show that the Relative Error Mechanism generally
[Modi et al, 2009, it is important to develop mechanisms gominates the other two tradeoff mechanisms for ADOPT
for DCOP algorithms that trade off their solution costs for gnq the Uniformly Weighted Heuristics Mechanism gener-

smaller runtimes. Some complete DCOP algorithms, for exyjly dominates the other two tradeoff mechanisms for BnB-
ample, allow users to specify an error bound on the solutiol\popT.

*This material is based upon work supported by, or in part by, the
U.S. Army Research Laboratory and the U.S. Army Research Officee  DCOP Problems

under contract/grant number W911NF-08-1-0468 and by NSF una pcop problem is defined by a finite set of agents (or
der contract 0413196. The views and conclusions contained in thi§¥nonym0usly variablesy = {z1, x> x,}; a set of fi- '
1 - ) ) njs

document are those of the authors and should not be interpreted . ; .
representing the official policies, either expressed or implied, of th@Ite domainsD = {D1, Dy, ..., Dy}, where domainD; is
sponsoring organizations, agencies, companies or the U.S. goverfl€ set of possible values of agent € X; and a set of
ment. An earlier version of this paper without the Non-Uniformly binary constraints?” = {f1, fa,..., f }, Where constraint
Weighted Heuristics Mechanism and with many fewer experimentalf; : D;, x D;, — RT U co specifies its non-negative
results appeared in AAMAS 2008 as a short paper. constraint cost as a function of the values of distinct agent
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Figure 1: Example DCOP Problem

z;;,x;, € X that share the constraihtEach agent assigns () ©
itself repeatedly a value from its domain. The agents co-
ordinate their value assignments via messages that they ex-
change with other agents. A complete solution is an agent-
value assignment for all agents, while a partial solutioans
agent-value assignment for a subset of agents. The cost of
a complete solution is the sum of the constraint costs of all
constraints, while the cost of a partial solution is the sdim o
the constraint costs of all constraints shared by agents wit
known values in the partial solution. Solving a DCOP prob- _
lem optimally means to find its cost-minimal complete solu- Figure 3:h-Values for the Example
tion.

. solution (z; = 0,22 = 1,23 = 0) [=23] and the cost of
3 Constraint Graphsand Pseudo-Trees solution (z; = 0,75 = 1,73 = 1) [=15]. Thus, thef*-

DCOP problems can be represented with constraint graph\g’llue of nodee is 15. Thef*-value of the root node is the

: inimal solution cost. Since th¢*-values are unknown
whose vertices are the agents and whose edges are the ¢ [nima ’ '
straints. ADOPT and BnB-ADOPT transform constraint I%ZT danr('jnBr:E;'Ar\ggaﬁzhuesse ?_?]témigg'\f:{gemageg;
graphs in a preprocessing step into pseudo-trees. Pseudf J€S: Auring thei . They calculatefivalu
trees are spanning trees of constraint graphs with the ggope 10d€ Py summing the costs of all constraints that involve two
that edges of the constraint graphs connect vertices oty wi 29Nt With known values and adding a user-spedifiealue
their ancestors or descendants in the pseudo-trees. For geuristic) that estimates the sum of the unknown costsaf th
ample, Figure 1(a) shows the constraint graph of an examplgerlnalnlnfgtconsdtram;[:s, similarly to Iholvjvc%salcutl)?tes the
DCOP problem with three agents that can each assign itse altj(tar?e(})L-l :I ngo?f]‘o dg.g‘g ?I'Xhirgp'te el epsr(i lerr]r;,nz]islsume
the values zero or one, and Figure 1(c) shows the constrai e sum o\éthue cost of thle cc;nstraiﬁ'lt ts)fet\\//vetcjanla ’End y
costs. Figure 1(b) shows one possible pseudo-tree. The d gensdr;

S : " 1=8] and itsh-value. The ideak-values result irf-values that
ted line is part of the constraint graph but not the pseuée-tr are equal to the*-values. For our example DCOP problem,

I the idealh-value of nodes is 15— 8 = 7. Consistenh-values
4 Search Treesand Heuristics do not overestimate the ideatvalues. ADOPT originally
The operation of ADOPT and BnB-ADOPT can be visualizedused zerai-values but was later extended to use consistent
with AND/OR search treefMarinescu and Dechter, 20p5  /-values[Ali etal, 2009, while BnB-ADOPT was designed
We use regular search trees and terminology fron{aart ~ to use consistertt-values. We thus assume for now that the
etal, 1964 for our example DCOP problem since its pseudo-f-values are consistent.
tree is a chain. We refer to its nodes with the identifiers
shown in Figure 2(a). Its levels correspond to the agents5 ADOPT and BnB-ADOPT

A left branch that enters a level means that the corresponds . now give arextremely simplistidescription of the oper-

ing agent assigns itself the_ value zero, ‘.Emd a right brancQtion of ADOPT and BnB-ADOPT to explain their search

means that the corresponding agent assigns |ts§elf the V.al#s) inciples. For example, we assume that agents operate

ope. dFor_our exilrr(l)ple DE?P _ﬁ)_rhoble;m, ;[he p?rtlal 30“.”'0 equentially and information propagation is instantaseou

of nodee is (21 = 0,25 = 1). The f*-value of a node is Complete descriptions of ADOPT and BnB-ADOPT can be

the minimal cost of any complete solution that completes th‘?ound in[Modi et al, 2005: Yeohet al. 2008

partial SOIEt'on of the node_. For ou_r_example DCOP prob- We visualize theiopera,tion of ADbPT and BnB-ADOPT

lem, the f*-value of nodee is the minimum of the cost of on our example DCOP problem with the search trees shown
'Formulations of DCOP problems where agents are responsibllarI Flgures 4and 5. Unless mentioned O.therW'se’ We use the

for several variables each can be reduced to our formulftokoo, ~ consistenti-values from Figure 3(a), which result in tife

2001; Burke and Brown, 2006 Similarly, formulations of DCOP values from Figure 2(b). The nodes that are being expanded

problems where constraints are shared by more than two agents cafd their ancestors are shaded grey.

be reduced to our formulatidBacchuset al., 2003. ADOPT and BnB-ADOPT maintain lower bounds for all
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Figure 4: Simplified Execution Traces of ADOPT

grey nodes and their children, shown as the numbers in th6 Proposed Tradeoff M echanisms
nodes. ADOPT and BnB-ADOPT initialize the lower boundsW d that it is oft h inaful t

with the f-values and then always set them to the minimum.. ra]lrguel tat itis o enhmucl more meamhng u ho sgec-
of the lower bounds of the children of the nodes. Memory:fy the re atn;]g ﬁrror on tbe 30 ution rc}:o:;ts t t?n It € abso-
limitations prevent them from maintaining the lower bounds ute ﬁrrqr, w .'Ch caLmot. € hone wit It elA.so ute Error

of the other nodes, shown with crosses in the nodes. ADOPMh.eC anism without knowing the minimal solution costs. In

and BnB-ADOPT also maintain upper bounds, shownlas this section, we introduce three new tradeoff mechamsms
They always set them to the smallest costs of any completﬁIth th'|s property, namely the' Relative E_rror Mechanism,

solutions found so far. Finally, ADOPT maintains limitsgus 1€ Uniformly Weighted Heuristics Mechanism and the Non-

ally expressed as the thresholds of the root nodes), shomHn'formly Weighted Heuristics Mechanism.

asli. It always set them td plus the maximum of the

lower bounddb(r) and thef-valuesf(r) of the root nodes 6.1 Relative Error Mechanism

r [li := b+ max(lb(r), f(r))], whereb > 0 is a user- We can easily change the Absolute Error Mechanism of
specified absolute error bound. For consistency, we extendDOPT and BnB-ADOPT to a Relative Error Mechanism.
BnB-ADOPT to maintain these limits as well. ADOPT and BnB-ADOPT now set the limits times the

ADOPT expands nodes in a depth-first search order. It almaximum of the lower bound$(r) and thef-valuesf (r) of
ways expands the child of the current node with the smallegthe root nodes [li := p x max(lb(r), f(r))], wherep > 1
lower bound and backtracks when the lower bounds of all unis a user-specified relative error bound. ADOPT and BnB-
expanded children of the current node are larger than the limADOPT still terminate once the limits (that are now equal
its. This search order is identical to a best-first searclerord to p times the tightest lower bounds on the minimal solution
if one considers only nodes that ADOPT expands for the firstosts) are no smaller than the upper bounds. Thus, although
time. BnB-ADOPT expands nodes in a depth-first branch-currently unproven, they should terminate with solutiostso
and-bound order. It expands the children of a node in ordethat are at most times larger than minimal or, equivalently,
of their f-values and prunes those nodes whfisalues are  at most(p — 1) x 100 percent larger than minimal, which is
no smaller than the upper bounds. why we refer to this tradeoff mechanism as the Relative Error

ADOPT and BnB-ADOPT terminate once the limits (that Mechanism. The guarantee of the Relative Error Mechanism
are equal tob plus the tightest lower bounds on the min- with relative error boung is thus similar to the guarantee of
imal solution costs) are no smaller than the upper bound1e Absolute Error Mechanism with an absolute error bound
[li > ub].2 Thus, ADOPT and BnB-ADOPT terminate with b thatis equal tp — 1 times the minimal solution cost, except
solution costs that should be at mésrger than minimal, thatthe user does not need to know the minimal solution cost.
which is why we refer to this tradeoff mechanism as the Abso- Figures 4(b) and 5(b) show execution traces of ADOPT and
lute Error Mechanism. Figures 4(a) and 5(a) show executio®nB-ADOPT, respectively, with the Relative Error Mecha-
traces of ADOPT and BnB-ADOPT, respectively, with the nism withp = 2 for our example DCOP problem. For exam-
Absolute Error Mechanism with absolute error boung 0 ple, after ADOPT expands noden Step 3, the lower bound
for our example DCOP problem. Thus, they find the cost{=11] of unexpanded child of nodee is no larger than the
minimal solution. limit [=12]. ADOPT thus expands the child fF with the
- smallest lower bound in Step 4. The limit is now no smaller

>The unextended BnB-ADOPT terminates whéfr) = ub. than the upper bound and ADOPT terminates. However, after
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Figure 5: Simplified Execution Traces of BnB-ADOPT

ADOPT in Figure 4(a) expands nodein Step 3, the lower Graph Coloring Problems
bounds of all unexpanded children of nodlare larger than Depit of Agents and iiormednss of h-Values
the limit. ADOPT backtracks repeatedly, expands nodext L0

and terminates eventually in Step 6. Thus, ADOPT with the %05

Relative Error Mechanism with relative error boupd= 2 zor H H H H H H H H H
terminates two steps earlier than in Figure 4(a) but with-a so 05+

01 02 03 04 05 06 07 08 09 1.0

lution cost that is 2 larger. Normalized epth o Agets

Informedness of

6.2 Uniformly Weighted Heuristics M echanism Figure 6: Depth of Agents vs. Informednesshe¥alues
The h-values should be as close as possible to the ideal
h-values to minimize the runtimes of ADOPT and BnB- . .
ADOPT. We therefore multiply consisteitvalues with a @mple DCOP problem. Figure 3(b) shows the corresponding
user-specified constant weight> 1, which can result in h-values, and Figure 2(c) shows the correspondinglues.
them no longer being consistent, similar to what others hav&DOPT terminates two steps earlier than in Figure 4(a) but
done in the context of A* where they could prove that Ax With a solution cost that is 2 larger.
is then no longer guaranteed to find cost-minimal solution . . L .
but is still guaranteed to find solutions whose costs are a5§'3 Non-Uniformly Weighted Heuristics Mechanism
mostc times larger than minimdPohl, 1979. ADOPT and  Theh-values of agents higher up in the pseudo-tree are often
BnB-ADOPT use no error bounds, that is, either the Absodess informed than thie-values of agents lower in the pseudo-
lute Error Mechanism with absolute error boung: 0 or the  tree. The informedness df-values is defined as the ratio
Relative Error Mechanism with relative error boupd= 1. of the h-values and the idedl-values. We run experiments
They terminate once the lower bounds of the root nodes (thatsing the same experimental formulation and setufvis
can now be at most times larger than the minimal solution heswararet al, 2004; Yeohet al., 200§ on graph coloring
costs and thus, despite their name, are no longer lower Isoungroblems with 10 agents/vertices, density 2 and domairi-card
on the minimal solution costs) are no smaller than the upnality 3 to confirm this correlation. We use the preprocessin
per bounds. Thus, although currently unproven, ADOPT andramework DPZAIi et al, 2003, that calculates the-values
BnB-ADOPT should terminate with solution costs that are atby solving relaxed DCOP problems (that result from ignoring
mostc times larger than minimal. Therefore, the Uniformly backedges) with a dynamic programming approach. DP2 was
Weighted Heuristics Mechanism has similar advantages adeveloped in the context of ADOPT but applies unchanged to
the Relative Error Mechanism but achieves them differentlyBnB-ADOPT as well. Figure 6 shows the results. The y-axis
The Uniformly Weighted Heuristics Mechanism inflates the shows the informedness of thevalues, and the x-axis shows
lower bounds of branches of the search trees that are yet tbe normalized depth of the agents in the pseudo-tree. The
be explored and thus makes them appear to be less promigsformedness of thé-values indeed increases as the normal-
ing, while the Relative Error Mechanism prunes all remainin ized depth of the agents increases. Pearson’s correlation ¢
branches once the early termination condition is satisfied. efficient shows a large correlation with> 0.85. Motivated
Figures 4(c) and 5(c) show execution traces of ADOPTby this insight, we multiply consistetvalues with weights
and BnB-ADOPT, respectively, with the Uniformly Weighted that vary according to the depths of the agents, similar @atwh
Heuristics Mechanism with constant weight= 2 for our ex-  others have done in the context of fPohl, 1973. We set the



ADOPT BnB-ADOPT
Relative Error Bound| 1.0 1.2 1.4 1.6 1.8 2.0 2.2 2.4 2.6 2.8 3.0 1.0 1.2 1.4 1.6 1.8 2.0 2.2 2.4 2.6 2.8 3.0
AE Mechanism 508 | 515 | 547 | 568 | 571 | 577 | 577 | 577 | 577 | 577 | 577 508 | 518 | 545 | 569 | 573 | 579 | 579 | 579 | 579 | 579 | 579
RE Mechanism 508 | 513 | 543 | 558 | 571 | 572 | 577 | 577 | 577 | 577 | 577 508 | 515 | 544 | 559 | 572 | 573 | 579 | 579 | 579 | 579 | 579
UWH Mechanism 508 | 514 | 535 | 555 | 593 | 607 | 622 | 644 | 654 | 675 | 704 508 | 515 | 533 | 558 | 594 | 609 | 630 | 663 | 705 | 724 | 727
NUWH Mechanism 508 | 513 | 540 | 559 | 596 | 605 | 618 | 651 | 660 | 663 | 663 508 | 514 | 541 | 559 | 596 | 605 | 620 | 648 | 660 | 669 | 669

Sensor Network Scheduling — 9 Agents

ADOPT BnB-ADOPT
Relative Error Bound| 1.0 1.2 1.4 1.6 1.8 2.0 2.2 2.4 2.6 2.8 3.0 1.0 1.2 1.4 1.6 1.8 2.0 2.2 2.4 2.6 2.8 3.0
AE Mechanism 116 | 119 | 124 | 130 | 133 | 134 | 133 | 135 | 135 | 136 | 136 116 | 118 | 124 | 130 | 133 | 136 | 138 | 138 | 138 | 139 | 139
RE Mechanism 116 | 118 | 122 | 127 | 131 | 133 | 133 | 133 | 133 | 135 | 135 116 | 117 | 122 | 127 | 131 | 133 | 135 | 135 | 137 | 138 | 138

UWH Mechanism 116 | 119 | 124 | 130 | 139 | 144 | 148 | 154 | 153 | 155 | 160 116 | 118 | 126 | 134 | 142 | 148 | 153 | 158 | 156 | 160 | 165
NUWH Mechanism 116 | 118 | 125 | 133 | 141 | 144 | 148 | 152 | 159 | 162 | 165 116 | 118 | 126 | 135 | 143 | 148 | 151 | 156 | 162 | 163 | 166

Meeting Scheduling — 10 Agents

ADOPT BnB-ADOPT
Relative Error Bound| 1.0 1.2 1.4 1.6 1.8 2.0 2.2 2.4 2.6 2.8 3.0 1.0 1.2 1.4 1.6 1.8 2.0 2.2 2.4 2.6 2.8 3.0
AE Mechanism 54207| 54256| 56819 61326| 64204| 64380| 64539| 64539| 64539| 64539 64539|| 54207| 54221| 56018| 63149| 67681| 69326| 69732| 69863| 69863| 69863| 69863
RE Mechanism 54207| 54284| 54771| 57381| 60146| 62754| 63998| 64525| 64539| 64539 64539|| 54207| 54207| 54454| 56088| 61277| 64515| 67271| 68891| 69231| 69601| 69863

UWH Mechanism 54207| 54207| 54944| 57423| 62344| 64391| 64792| 66488| 67411| 67913| 68473|| 54207| 54207| 54733| 58410| 62636| 66160| 66812| 68253| 69541| 70389| 70840
NUWH Mechanism || 54207| 54207| 54697| 58071| 62022| 64342| 66065| 66987| 68216| 68010| 68481 || 54207| 54207| 54639| 58443| 63105| 66156| 67878| 69483| 70120| 70143| 70942

Graph Coloring — 10 Agents

ADOPT BnB-ADOPT
Relative Error Bound| 1.0 12 1.4 1.6 1.8 2.0 2.2 2.4 2.6 2.8 3.0 1.0 12 1.4 1.6 1.8 2.0 2.2 2.4 2.6 2.8 3.0
AE Mechanism 67675| 67795| 71744 78149| 79322| 79591 79591| 79591| 79591 79591 79591|| 67675| 67705| 71566| 78770| 82645| 83439| 83768| 83768| 83768| 83768| 83768
RE Mechanism 67675| 67700| 68894 73059| 77387| 78556| 79197| 79591| 79591 | 79591| 79591|| 67675| 67691| 68705| 72027| 77020| 80160| 82223| 82845| 83439| 83768| 83768

UWH Mechanism 67675| 67795| 68868| 73084| 76433| 77808| 79632| 80747| 80889| 82046| 83452|| 67675| 67675| 68543| 71864 76812| 80605| 81947| 82578| 82824| 82509| 82509
NUWH Mechanism || 67675| 67689| 69055| 72684| 75716 77863| 78658| 79431| 80787| 82109| 82580|| 67675| 67675| 67675| 67683| 67878| 69296| 69613| 70676| 72036| 72983| 73926

Graph Coloring — 12 Agents

ADOPT BnB-ADOPT
Relative Error Bound| 1.0 12 1.4 1.6 1.8 2.0 2.2 2.4 2.6 2.8 3.0 1.0 12 1.4 1.6 1.8 2.0 2.2 2.4 2.6 2.8 3.0
AE Mechanism N/A | 76669| 80699| 89978| 92415 93095| 93095| 93095 93095| 93095| 93095|| 76465| 76465 80231| 91334| 96922| 99717| 99717 99717| 99717| 99717| 99717
RE Mechanism N/A | N/A | 77411| 82443| 87841| 91373| 92907| 93095| 93095| 93095| 93095|( 76465| 76465| 77401| 80865| 87210( 93726| 97048| 98925 99166| 99717| 99717

UWH Mechanism N/A | N/A | 77285| 81422| 86407| 91124| 91881| 92713| 94694| 95195| 96683|| 76465 76465| 77064| 80848| 87589| 92584 95716| 97479| 97701| 97992| 97958
NUWH Mechanism || N/A | N/A | 77648| 81513| 86780| 89816| 91509| 93413| 94263| 94455| 95422|| 76465| 76465| 76465| 76479| 76837| 77334| 78424| 79773| 81234 82661| 84266

Graph Coloring — 14 Agents

Table 1: Experimental Results on the Solution Costs

weight of agent:; to 1+ (¢ —1) x (1 —d(z;)/N), wherecis by dividing them by the runtimes of the same DCOP algo-
a user-specified maximum weighl{;z; ) is the depth of agent rithm with no error bounds. We normalize the solution costs
x; in the pseudo-tree anli is the depth of the pseudo-tree. by dividing them by the minimal solution costs. We vary the
This way, the weights decrease with the depth of the agentselative error bounds from 1.0 to 4.0. We use the relative
Everything else is the same as for the Uniformly Weightederror bounds both as the relative error bounds for the Rela-
Heuristics Mechanism. The resulting weights are no largetive Error Mechanism, the constant weights for the Unifgrml
than the weights used by the Uniformly Weighted HeuristicsWeighted Heuristics Mechanism and the maximum weights
Mechanism with constant weight Thus, although currently for the Non-Uniformly Weighted Heuristics Mechanism. We
unproven, ADOPT and BnB-ADOPT should terminate with pre-calculate the minimal solution costs and use them to cal

solution costs that are at mastimes larger than minimal. culate the absolute error bounds for the Absolute Error Mech
anism from the relative error bounds.
7 Experimental Results Tables 1 and 2 tabulate the solution costs and runtimes of

. ADOPT and BnB-ADOPT with the different tradeoff mecha-
We compare ADOPT and BnB-ADOPT with the Abso nisms. We set the runtime limit to be 5 hours for each DCOP

lute Error Mechanism, the Relative Error Mechanism, the ; . : .
Uniformly Weighted Heuristics Mechanism and the Non_alg0r|thm. Data points for DCOP algorithms that failed to

: . g : terminate within this limit are labeled ‘N/A’ in the tabled/e
Uniformly Weighted Heuristics Mechanism. We use the I:)F)Zdid not tabulate the data for all data points due to space con-

preprocessing framework to generate thgalues. We run .

experiments using the same experimental formulation angtraints.

setup agMaheswararet al, 2004; Yeohet al, 2004 on Figure 7 shows the results on the graph coloring problems
graph coloring problems with 10, 12 and 14 agents/verticesyith 10 agents. We do not show the results on the graph
density 2 and domain cardinality 3; sensor network scheduleoloring problems with 12 and 14 agents, sensor network
ing problems with 9 agents/sensors and domain cardinalitgcheduling problems and meeting scheduling problems since
9; and meeting scheduling problems with 10 agents/meetinghey are similar. Figures 7(al) and 7(b1) show that the nor-
and domain cardinality 9. We average the experimental remalized solution cost increases as the relative error bound
sults over 50 DCOP problem instances each. We measure tlieeases, indicating that the solution quality of ADOPT and
runtimes in cycledModi et al, 2009 and normalize them BnB-ADOPT decreases. The solution quality remains signif-



ADOPT BnB-ADOPT

Relative Error Bound| 1.0 1.2 14 | 16 [18(20(22]|24|26(28(30(| 1.0 | 1.2 | 1.4 [16|18]|20[22(24|26]28]|3.0
AE Mechanism 5069 | 74 37 14 [ 131313 13| 13| 13| 13| 431 | 102 | 38 | 14| 13| 13| 13| 13| 13| 13| 13
RE Mechanism 5069 | 96 42 15 |14 (13|13 |13 |13 (13| 13|/ 431 | 123 | 49 | 15|14 | 13| 13| 13| 13| 13| 13
UWH Mechanism 5069 | 255 39 18 |14 (14|14 |13 |12(12|12|| 431| 95 | 38 | 19|14 | 14| 14| 13| 12| 12| 12
NUWH Mechanism || 5069 | 444 70 19 | 1515|1414 |14|12| 12|/ 431 | 118 | 49 | 20|17 | 16| 14| 14 | 14| 12| 12

Sensor Network Scheduling — 9 Agents

ADOPT BnB-ADOPT
Relative Error Bound| 1.0 1.2 14 | 16]18]20[22]24]|26[28[30]] 1.0 | 12| 14]16[18[20[22[24][26[28]3.0
AE Mechanism 8347 | 525 66 28 |18 (17|18 |17 18| 17| 17|/ 1180 578 | 94 | 39| 24 | 19| 18 | 17 | 17| 17 | 17
RE Mechanism 8347 | 1022 | 350 | 58 | 26 | 20| 21| 20| 18| 17| 18| 1180| 644 | 348 |100| 41 | 28 | 24| 24| 21| 19| 19

UWH Mechanism 8347 | 1482 | 160 | 29 | 25|20|19(19| 18| 18| 18| 1180| 344 | 133 | 41| 28 | 24| 23| 21| 19| 18| 18
NUWH Mechanism || 8347 | 2573 | 522 | 50 | 26 | 20| 22| 20| 19| 19| 18|/ 1180| 485 | 265 | 68 | 34 | 26 | 27 | 22 | 20 | 20 | 17

Meeting Scheduling — 10 Agents

ADOPT BnB-ADOPT
Relative Error Bound| 1.0 | 1.2 | 1.4 | 1.6 | 1.8]2.0] 2.2]2.4]2.6] 2.8]3.0|| 1.0 | 1.2 | 1.4 [ 1.6] 1.8] 2.0] 2.2] 24] 2.6] 2.8] 3.0
AE Mechanism 17566| 2606 | 152 | 31 | 26 | 21| 18| 18| 18| 18| 18| 703 | 665 | 260 | 47 | 21 | 19| 19| 19 | 19| 19 | 19
RE Mechanism 17566| 3819 | 1496 | 291 | 51 | 26| 22 (19| 19| 18 | 18 || 703 | 677 | 578 |304| 67 | 44 | 23| 19 | 19 | 19 | 19

UWH Mechanism 17566| 8625 | 2284 | 87 | 30| 20| 18|17 |17 | 17|17 || 703 | 523 | 318 |102| 38 | 21 | 18 | 18 | 17 | 17 | 17
NUWH Mechanism || 17566| 13804| 5665 | 808 | 44 | 22| 18 |18 | 17| 17| 17 || 703 | 636 | 487 |177| 48 | 23| 18 | 18 | 18 | 18 | 17

Graph Coloring — 10 Agents

ADOPT BnB-ADOPT
Relative Error Bound| 1.0 | 1.2 | 1.4 | 1.6 [ 1.8]2.0]2.2[2.4]2.6]2.8]3.0|| 1.0 | 1.2 | 14 [1.6] 1.8] 2.0] 2.2] 24| 2.6] 2.8] 3.0
AE Mechanism 42256| 6499 | 820 | 36 | 21 | 21| 21| 21| 21| 21| 21|[1007| 950 | 424 | 51 | 22 | 21| 21 | 21 | 21| 21 | 2L
RE Mechanism 42256| 7857 | 3557 | 1255\ 201| 36| 32 | 21| 21| 21 | 21|/ 1007| 983 | 793 |476|173| 64 | 40 | 27 | 21| 21 | 21

UWH Mechanism 42256| 18507| 4556 | 831 | 84 | 30|21 |20| 19| 19| 19| 1007| 745 | 436 |206| 68 | 35| 24| 22| 21| 21| 21
NUWH Mechanism || 42256 34009| 13226| 3222| 558| 29 | 28 | 20 | 19| 19 | 19 || 1007| 834 | 692 | 536|412 315| 244| 185| 150| 117| 93

Graph Coloring — 12 Agents

ADOPT BnB-ADOPT
Relative Error Bound| 1.0 | 1.2 | 1.4 | 1.6 [ 1.8]2.0]2.2[2.4]2.6]2.8]3.0|| 1.0 | 1.2 | 14 [1.6] 1.8]2.0] 2.2] 24] 2.6] 2.8] 3.0
AE Mechanism N/A 29983 712 | 53 | 20 | 24 | 24 | 24| 24 | 24 | 24 || 2048| 1956| 861 | 85 | 28 | 24 | 24 | 24 | 24 | 24 | 24
RE Mechanism N/A | N/A |16234|2687|102| 30 | 25 | 24 | 24 | 24 | 24 || 2048| 1994| 1678| 883| 204| 41 | 25 | 24 | 24 | 24 | 24

UWH Mechanism N/A | N/A | 8710 | 956 | 54 | 27 | 23| 22| 22| 22 | 22 || 2048| 1355| 683 |254| 73 | 30 | 24 | 23 | 23| 23| 23
NUWH Mechanism || N/A | N/A |49484|6712| 79 | 32| 22| 22| 22| 21 | 21 || 2048| 1581| 1197|879 618 442| 332| 230| 187| 151| 124

Graph Coloring — 14 Agents

Table 2: Experimental Results on the Runtimes

icantly better than predicted by the error bounds. For exam0.35 for the Relative Error Mechanism and about 0.40 for
ple, the normalized solution cost is less than 1.4 (rathem th the Non-Uniformly Weighted Heuristics Mechanism. This
3.0) when the relative error bound is 3.0. trend is consistent across the three DCOP problem classes.

Figures 7(a2) and 7(b2) show that the normalized runJ NUS: the Uniformly Weighted Heuristics Mechanism gener-
time decreases as the relative error bound increasesatadic 2!y dominates the other proposed or existing tradeoff mech
ing that ADOPT and BnB-ADOPT terminate earlier. In fact, anisms m.performance' and is thus the preferred choice. This
their normalized runtime is almost zero when the relative er!S  Significant result since BnB-ADOPT has been shown to

_be faster than ADOPT by an order of magnitude on several
'rb?[r)obgli_nd reaches about 1.5 for ADOPT and 2.0 for BnB DCOP problemgYeohet al,, 2009 and our results allow one

. . ) ~ to speed it up even further.
Figure 8 plots the normalized runtime needed to achieve

a given normalized solution cost. It compares ADOPT (top) :
and BnB-ADOPT (bottom) with the different tradeoff mech- 8 Conclusions
anisms on the graph coloring problems with 10 agents (left)in this paper, we introduced three mechanisms that trade
sensor network scheduling problems (center) and meetingff the solution costs of DCOP algorithms for smaller run-
scheduling problems (right). For ADOPT, the Absolute Errortimes, namely the Relative Error Mechanism, the Uniformly
Mechanism and the Relative Error Mechanism perform betteWeighted Heuristics Mechanism and the Non-Uniformly
than the other two mechanisms. However, the Relative Erro¥Weighted Heuristics Mechanism. These tradeoff mechanisms
Mechanism has the advantage over the Absolute Error Mectprovide relative error bounds and thus complement the-exist
anism that relative error bounds are often more desirableng Absolute Error Mechanism, that provides only absolute
than absolute error bounds. For BnB-ADOPT, on the otheerror bounds. For ADOPT, the Relative Error Mechanism is
hand, the Uniformly Weighted Heuristics Mechanism per-similar in performance to the existing tradeoff mechanisin b
forms better than the other three mechanisms. For exampléas the advantage that relative error bounds are often more
on graph coloring problems with 10 agents, the normalizedlesirable than absolute error bounds. For BnB-ADOPT, the
runtime needed to achieve a normalized solution cost of 1.08niformly Weighted Heuristics Mechanism generally domi-

is about 0.25 for the Uniformly Weighted Heuristics Mecha- nates the other proposed or existing tradeoff mechanisms in
nism, about 0.30 for the Absolute Error Mechanism, abouperformance and is thus the preferred choice. In general,



Graph Coloring - 10 Agents Graph Coloring - 10 Agents Graph Coloring - 10 Agents Graph Coloring - 10 Agents
Solution Quality Loss in ADOPT Computation Speedup in ADOPT Solution Quality Loss in BnB-ADOPT Computation Speedup in BnB-ADOPT
130 . 1.40 1.00 15
A 8
2125 P i ——AE Mechanism 2 s |2 ~——AE Mechanism
§ 120 ol RE Mechanism g 130 L b es £ 080 ) RE Mechanism
o = o E "
3 P UWH Mechanism 2 & 060 3 UWH Mechanism
N 115 P —— AE Mechanism -+ NUWH Mechanism N 120 P ——AE Mechanism § 040 Y = + NUWH Mechanism
g 110 P RE Mechanism E RE Mechanism 3 5
5 & UWH Mechanism 5 110 UWH Mechanism £ 020 3
2 105 P 2 " 5 3,
A -+ NUWH Mechanism -+ NUWH Mechanism ] O
1.00 + o 1.00 0.00 +
100 150 200 250 300 350 400 100 150 200 250 300 350  4.00 100 150 200 250 300 350 400 100 150 200 250 300 350  4.00
Relative Error Bound Relative Error Bound Relative Error Bound Relative Error Bound
(a1) (a2) (b1) (b2)
Graph Coloring - 10 Agents Sensor Network Scheduling - 9 Agents Meeting Scheduling - 10 Agents
Tradeoff Performance in ADOPT Tradeoff Performance in ADOPT Tradeoff Performance in ADOPT
100 + 100 + 100 +
A 1 4 1 8 —— AE Mech:
£ 080+ —— AE Mechanism E 080+ —— AE Mechanism E 0.80 ecnansm
H i RE Mechanism H RE Mechanism £ k RE Mechanism
£ 0603 UWH Mechanism & 0.60 ¢ UWH Mechanism 2 060 f, UwH Me‘:hi"‘s’“
2 - B 1 - ] B - + NUWH Mechanism
£ oo +_NUWH Mechanism Bowt + NUWH Boawf,
] 5 1 s 8
£ 1 £ 1 E \ .,
s LS S 5 020 &, 5 020 4 e
0.00 e L T U—— 0.00 Bt 2 s e bt oo _smbemmm e o b b 0.00 SRyt o wrkr bk s mhm
1.00 1.05 110 115 1.20 1.00 105 110 115 120 1.00 1.05 110 115 120
Normalized Costs Normalized Costs Normalized Costs
(al) (a2) (a3)
Graph Coloring - 10 Agents Sensor Network Scheduling - 9 Agents Meeting Scheduling - 10 Agents
Tradeoff Performance in BnB-ADOPT Tradeoff Performance in BnB-ADOPT Tradeoff Performance in BnB-ADOPT
1.00 1.00 ¢ 100 ¢
g —— AE Mechanism g 1 ——AE Mechanism g —— AE Mechanism
£ 080 - E 0.80 - k
£ 080 -§ RE Mechanism £ 0.80 RE Mechanism g 080 RE Mechanism
20604 R UWH Mechanism 2 060 ] UWH Mechanism 2 060+ UWH Mechanism
< - + NUWH Mechanism 3 -+ NUWH Fl L% = +_NUWH Mechanism
N 0.40 N 0.40 \“ N 0.40 3
3 - T T R
€ 020 TN E o020 - E 020 TRt
2 g SO 2 5 v 2 N
0.00 + g 0.00 + e 0.00 —
1.00 1.05 110 115 120 1.00 105 110 115 120 1.00 105 110 115 1.20
Normalized Costs Normalized Costs Normalized Costs

Figure 8: Experimental Results on the Tradeoff Performance

we expect our tradeoff mechanisms to apply to other DCOMMarinescu and Dechter, 20p3R. Marinescu and R. Dechter.
search algorithms as well since all of them perform search AND/OR branch-and-bound for graphical models. Rroceed-

and thus benefit from usingvalues to focus their searches.  ings of IJCA| pages 224229, 2005.
[Modi et al, 2009 P. Modi, W. Shen, M. Tambe, and M. Yokoo.
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