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Abstract

In this paper, we study distributed algorithms for
cooperative agents that allow them to exchange
their assigned tasks in order to reduce their team
cost. We define a new type of contract, called
K-swaps, that describes multiple task exchanges
among multiple agents at a time, which general-
izes the concept of single task exchanges. We de-
sign a distributed algorithm that constructs all pos-
sibleK-swaps that reduce the team cost of a given
task allocation and show that each agent typically
only needs to communicate a small part of its local
computation results to the other agents. We then
demonstrate empirically thatK-swaps can reduce
the team costs of several existing task-allocation al-
gorithms significantly even ifK is small.

1 Introduction
We study distributed algorithms for (re-)allocating tasksto
cooperative agents, where tasks may have synergies with
each other and each task has to be assigned to exactly one
agent so that the resulting team cost is small (= team per-
formance is high). Researchers have developed several task-
allocation algorithms that do not re-allocate tasks once they
have assigned them to agents[Koenig et al., 2007; 2008;
Toveyet al., 2005]. In this paper, we develop a re-allocation
mechanism that allows the agents to exchange their assigned
tasks to reduce their team cost. Centralized task re-allocation
is inefficient in terms of both computation and communi-
cation since the central controller is the bottleneck of the
system. Instead, agents can negotiate with other agents.
Such negotiations are usually used in a competitive setting
where agents are self-interested and a contract is accepted
only if all participants are better off from the contract[Gol-
farelli et al., 1997; Thomaset al., 2004; Sandholm, 1998;
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Figure 1: Multi-Agent Routing Problem

Andersson and Sandholm, 1999]. In this paper, agents are co-
operative and always collaborate to minimize the team cost.
Thus, they consider all task exchanges that reduce their team
cost. We use the term negotiation here to describe the interac-
tion of cooperative agents. Many approaches repeatedly ex-
ecute single task exchanges that each decrease the team cost
[Golfarelli et al., 1997; Dias and Stentz, 2000], where single
task exchanges (or, synonymously, O-contracts[Sandholm,
1998]) transfer single tasks between two agents at a time. To
minimize the team cost, however, it might be necessary to
repeatedly execute multiple task exchanges among multiple
agents that decrease the team cost[Dias and Stentz, 2002;
Sandholm, 1998]. After describing task-allocation problems
formally, we therefore proposeK-swaps (for a given con-
stantK) as a new type of contract that describes multiple
task exchanges among multiple agents at a time. We then
present a distributed algorithm that constructs all possible K-
swaps that reduce the team cost of a given task allocation. Fi-
nally, we demonstrate empirically thatK-swaps can reduce
the team costs of several existing task-allocation algorithms
significantly even ifK is small.

2 Task-Allocation Problem
We follow [Koeniget al., 2007] to formalize task-allocation
problems: A task-allocation problem consists of a set of
agentsA = {a1 . . . am} and a set of tasksT = {t1 . . . tn}. If
any tuple(Ta1

. . . Tam
) of pairwise disjunct bundlesTai

⊆ T
for i = 1 . . . m (= no task is assigned to more than one
agent) satisfies∪m

i=1Tai
= T (= each task is assigned to at

least one agent), then it is asolution of the task-allocation
problem, with the meaning that agentai performs the tasks



Notation Explanation

sk partialk-swap
A(sk) set of agents that appear insk

{Ta}a∈A solution before task exchanges
{T ′

a
}a∈A solution after task exchanges
sk

a
singleton swap of agenta in sk

sk/sk

a
set of partial multi-swaps after
removing agenta from sk

Table 1: Notation

Tai
. Let ca(T ′) be theagent costof agenta ∈ A for per-

forming the tasksT ′ ⊆ T . There can be synergies among
tasks, that is,ca(T ′) + ca(T ′′) does not necessarily equal
ca(T ′ ∪ T ′′) even if T ′ ∩ T ′′ = ∅. We want to find a so-
lution of the task-allocation problem with a smallteam cost,
given by

∑
a∈A ca(Ta).

We study multi-agent routing problems as examples of
task-allocation problems, see Figure 1. Multi-agent rout-
ing problems are task-allocation problems where the tasks
are to visit given targets with exactly one agent each. The
terrain, the locations of all agents and the locations of all
targets are known. The agent cost of an agent to visit a
set of given targets corresponds, for example, to the mini-
mal fuel consumption that the agent needs to visit the tar-
gets from its current location. The team cost then corre-
sponds to the fuel consumption of all agents. Multi-agent
routing is a standard task for robot teams that needs to be
solved, for example, as part of de-mining, search-and-rescue
and taking rock probes on the moon[Dias et al., 2006;
Koenig et al., 2007]. In multi-agent routing without capac-
ity constraints, every agent can perform an arbitrary number
of tasks. In multi-agent routing with capacity constraints, ev-
ery agent can perform at most a given number of tasks (= its
capacity), for example, can take only a given number of rock
probes before its drill bit becomes useless due to wear and
tear.

3 K-Swaps
We now formalize the concept of task exchanges among
agents. Let{Ta}a∈A be the solution before the task ex-
changes and{T ′

a}a∈A be the solution after the task ex-
changes. We first define partialk-swaps, that describe multi-
ple task exchanges among multiple agents at a time. We then
discuss several operations that can be performed on partialk-
swaps and finally prove several properties of partialk-swaps.
Table 1 summarizes our notation.

3.1 Concepts
An out swapof agenta is a task exchange where taskt ∈ Ta

is transferred from agenta to some other agent, written as
(a,−, t,−). An in swap of agenta is a task exchange where
taskt′ /∈ Ta is transferred from some other agent to agenta,
written as(a,−,−, t′). An exchange swapis a task exchange
between two different agentsa and a′ where taskt ∈ Ta

is transferred from agenta to agenta′ and taskt′ ∈ Ta′ is
transferred from agenta′ to agenta, written as(a, a′, t, t′).
One (and only one) of the taskst or t′ in an exchange swap
can be empty, written as∅. Two exchange swaps(a, a′, t, ∅)
and(a, a′, ∅, t′) can be re-written as a single exchange swap

Figure 2: Multi-Agent Routing Problem on a Graph

(a, a′, t, t′). A set of exchange swaps iscompact iff it does
not contain pairs of exchange swaps that can be re-written as
single exchange swaps.

A partial k-swapsk describes the task exchanges of a set
of agentsA(sk) ⊆ A. It consists of a set of out swaps in
which tasks are transferred from agents inA(sk) to agents not
in A(sk), a set of in swaps in which tasks are transferred from
agents not inA(sk) to agents inA(sk) and a set of compact
exchange swaps in which tasks are transferred between agents
that are both inA(sk). Each agenta ∈ A(sk) must appear
at least once in in, out or exchange swaps ofsk. The valuek
is the number of exchange swaps insk. We sometimes refer
to a partialk-swap as a partial multi-swap if the value ofk is
unimportant.

A partial k-swapsk is complete iff its sets of out and in
swaps are both empty. A complete partialk-swap, called
completek-swap for short, describes exactlyk exchange
swaps among multiple agents. Completek-swaps thus gener-
alize single task exchanges, which are complete one-swaps
with one empty task in their exchange swap. Complete
k-swaps also generalize three contract types introduced in
[Sandholm, 1998], namely:

• Swap contracts: A swap contract is a complete one-swap
with two non-empty tasks in its exchange swap.

• Cluster contracts: A cluster contract is a completek-
swap with only two agentsa and a′ whose exchange
swaps are of the form(a, a′, t, ∅) with different taskst,
wherek is the size of the cluster.

• Multiagent contracts: A multiagent contract can be rep-
resented as a completek-swap withk + 1 agents for
k ≥ 2.

Proposition 1 For any task-allocation problem withn tasks
and any solution{Ta}a∈A of the task-allocation problem,
there always is a completen′-swapsn′

with n′ ≤ n that
changes{Ta}a∈A to a solution with the smallest team cost.

The gain of partial k-swapsk is the total decrease of the
agent costs of all agents inA(sk) after executingsk, that is,
gain(sk) =

∑
a∈A(sk)(ca(Ta) − ca(T ′

a)). sk is profitable
iff its gain is positive. The following proposition shows that
the team cost decreases when executing profitable complete
k-swaps.



Proposition 2 The team cost of the solution after executing
a completek-swapsk is equal to the team cost of the solution
before executingsk minus the gain ofsk.

Sometimes a completek-swap can decrease the team cost
of a given solution but no combination of profitable complete
k′-swaps withk′ < k can decrease it. Consider, for exam-
ple, the multi-agent routing problem without capacity con-
straints shown in Figure 2. The agentsa1 anda2 and targets
t1, . . . , tk are located on a graph, and the agents can move
only along the edges of the graph. The solution with the
smallest team cost is{T ∗

a1
= ∅, T ∗

a2
= {t1, . . . , tk}}. As-

sume that the given solution is{Ta1
= {t1, . . . , tk}, Ta2

=
∅}. The completek-swap{(a1, a2, t1, ∅), . . . , (a1, a2, tk, ∅)}
is profitable and changes the given solution to the solution
with the smallest team cost. However, there is no profitable
completek′-swap withk′ < k.

A partialk-swapsk is connectediff the graph is connected
whose vertices are the agents inA(sk) and whose edges con-
nect two vertices iff they represent agents that appear in an
exchange swap insk. A disconnected partialk-swapsk can
be viewed as a set of two or more connected partial multi-
swaps. In the following, all partial multi-swaps are assumed
to be connected unless mentioned otherwise.

3.2 Operations

An exchange swap(a, a′, t, t′) can bedecomposedinto an
in swap(a,−,−, t′) and an out swap(a,−, t,−) for agenta
and an in swap(a′,−,−, t) and an out swap(a′,−, t′,−) for
agenta′. An agenta ∈ A(sk) can beremoved from a par-
tial k-swapsk as follows: First, one decomposes all exchange
swaps insk that contain agenta and then removes all out and
in swaps that contain agenta from sk. These out and in swaps
form a partial zero-swap that contains only agenta, called the
singleton swapsk

a. After removing agenta from sk, the re-
maining part ofsk is a set of one or more partial multi-swaps,
denoted bysk/sk

a. Conversely, an in swap(a,−,−, t) and an
out swap(a′,−, t,−) can becombinedto an exchange swap
(a, a′, t, ∅). Such a pair of out and in swaps form aresolvable
pair .

A completek′-swapsk′

completesa partialk-swapsk iff
it results from adding out and in swaps tosk′

so that all out
and in swaps can be grouped into resolvable pairs, combining
each resolvable pair into an exchange swap and making all
exchange swaps compact. A partialk-swapsk is bounded
by K iff there is a completek′-swapsk′

with k′ ≤ K that
completes it. A partialk-swap is always bounded by the total
number of its in, out and exchange swaps although this bound
is not necessarily tight.

A partial g-swapsg and a partialh-swapsh arecombin-
able iff they satisfy the following conditions:

• A(sg) ∩ A(sh) = ∅.

• For each in swap(a,−,−, t) in sg or sh with t ∈ Ta′

for some agenta′ ∈ A(sg) ∪ A(sh), there must be an
out swap(a′,−, t,−) in sg or sh that forms a resolvable
pair with it.

• There must be at least one resolvable pair insg andsh.

The following operationcombine(sg, sh) combines a
combinable pair of a partialg-swapsg and a partialh-swap
sh to a new partialk-swapsk:

1. Add all exchange swaps insg andsh to the set of ex-
change swaps insk.

2. For each resolvable pair of an in swap(a,−,−, t) and
an out swap(a′,−, t,−) in sg andsh, add the exchange
swap(a, a′, ∅, t) to the set of exchange swaps insk.

3. Make the set of exchange swaps insk compact.

4. Add each in or out swap insg and sh that is not part
of a resolvable pair to the sets of in or out swaps ofsk,
respectively.

The new partialk-swapsk contains all exchange swaps in
sg andsh and one or more additional exchange swaps that
result from combining the resolvable pairs of out and in swaps
in sg andsh.

Proposition 3 If sk = combine(sg, sh) for combinable
multi-swapssg and sh, then sk has the following proper-
ties: 1) sk is connected, 2)A(sk) = A(sg) ∪ A(sh), 3)
gain(sk) = gain(sg) + gain(sh), and 4)k ≥ g + h + 1.

Proposition 4 For any agenta ∈ A(sk) in a partial k-swap
sk, if there arex partial multi-swaps insk/sk

a, then agenta
can constructsk by using thecombine operationx times to
combinesk

a with all partial multi-swaps insk/sk
a.

3.3 Properties
We now prove several properties of profitable partial multi-
swaps.

Theorem 1 For any profitable partialk-swapsk, there is at
least one agenta ∈ A(sk) so that the partial multi-swaps in
sk/sk

a are all profitable.

Proof Sketch: We prove the theorem by induction on the num-
ber x of non-profitable singleton swapssk

a for all a ∈ A(sk). It
holds trivially for x = 0: Pick any agenta ∈ A(sk). The partial
multi-swaps insk/sk

a are all profitable since they are all composed
of profitable singleton swaps. Assume that the statement holds for
all 0 ≤ x′ < x. It then also holds forx: There is at least one non-
profitable singleton swap. Consider any non-profitable singleton
swapsk

a. If the partial multi-swaps insk/sk
a are all profitable, then

the theorem holds. Otherwise, there is at least one non-profitable
partialg-swapsg ∈ sk/sk

a. sg contains at mostx−1 non-profitable
singleton swaps since it does not containsk

a. Combinesk
a with all

partial multi-swaps insk/sk
a except forsg to a new (connected) par-

tial h-swapsh, that is,sk = combine(sg, sh). Agenta is the only
agent inA(sh) that exchanges tasks with agents inA(sg). sh is
profitable according to Proposition 3 sincesg is not profitable but
sk is. Transform the partialk-swapsk to a new partialk′-swapsk′

by contractingsh to a new single agenta′, as follows: sk′

results
from sk by deleting all exchange swaps insh from sk and changing
every agent inA(sh) that appears in the remaining in, out and ex-
change swaps to agenta′. We define the gain ofsk′

a′ to be the gain of
sh, resulting insk′

a′ being a profitable singleton swap. Thus,sk′

con-
tains at mostx non-profitable singleton swaps, namely the ones in
sg, and is profitable since it has the same gain assk. There is at least
one agenta′′ ∈ A(sk′

) so that the partial multi-swaps insk′

/sk′

a′′



are all profitable according to the induction assumption. It must be
thata′′ 6= a′ since the non-profitableg-swapsg is the only partial
multi-swap insk′

/sk′

a′ . Transformsk′

back tosk by uncontracting
agenta′ to prove the theorem.

Assume that each agenta ∈ A is assigned an index
index(a) that orders all agents completely. Then, agent
a ∈ A(sk) is acoreof a partialk-swapsk iff the partial multi-
swaps insk/sk

a are all profitable and no agenta′ ∈ A(sk)
with index(a′) < index(a) has this property.

Proposition 5 Any profitable partialk-swapsk has exactly
one core.

4 Centralized Algorithm
We first present an algorithm for a central planner that con-
structs all profitable completek-swaps with1 ≤ k ≤ K
(which we also casually refer to asK-swaps) for a given so-
lution and user-defined constantK ≥ 1:

1. The central planner initializes the following sets to
empty: the setR of all profitable completek-swaps with
1 ≤ k ≤ K and the setSplanner of all partial multi-
swaps that it has constructed.

2. Each agenta ∈ A constructs all possible partial zero-
swaps bounded byK that contain only itself (these par-
tial zero-swaps contain at mostK in swaps, at mostK
out swaps, no exchange swaps and at least one in or out
swap) and sends them to the central planner.

3. The central planner adds all partial zero-swaps that it
receives from the agents toSplanner and repeats forK
rounds:

• The central planner combines every combinable
pair of partialg-swapsg ∈ Splanner and partialh-
swapsh ∈ Splanner and executes for the resulting
partialk-swapsk = combine(sg, sh):

– If sk is a profitable completek-swap bounded by
K, then the central planner addssk to R.

– If sk is not a completek-swap but bounded by
K, then the central planner addssk to Splanner.

Each agent sends all partial zero-swaps bounded byK that
contain only itself to the central planner in one round, which
can result in a communication bottleneck, and the central
planner then constructs all partialk-swaps (including all prof-
itable completek-swaps) bounded byK, which can result in
a computation bottleneck.

5 Distributed Algorithm
We therefore now present a distributed (synchronous) algo-
rithm where the agents construct all profitable completek-
swaps with1 ≤ k ≤ K for a given solution by sending only
profitable partial multi-swaps to the other agents and thus typ-
ically only a small part of their local computation results:

1. Initialize the setR of all profitable completek-swaps
with 1 ≤ k ≤ K to empty, and assign each agenta ∈ A
an indexindex(a) that orders all agents completely.

2. Each agenta ∈ A initializes the following sets to empty:
the setSlocal

a of all partial multi-swaps that it has con-
structed, the setSsend

a of all profitable partial multi-
swaps that it will send to all other agents and the set
Sreceive

a of all partial multi-swaps that it has received
from other agents.

3. Each agenta ∈ A constructs all possible partial zero-
swaps bounded byK that contain only itself, adds them
to Slocal

a and, if they are profitable, also toSsend
a . It then

sends all partial zero-swaps inSsend
a to all other agents

and setsSsend
a to empty.

4. Each agent repeats forK rounds:

• Each agenta adds each partial multi-swap that it
receives from the other agents toSreceive

a .
• Each agenta combines every combinable pair of

partial g-swapsg ∈ Sreceive
a and partialh-swap

sh ∈ Slocal
a as long as agenta is part of at least one

resolvable pair ofsg and sh and executes for the
resulting partialk-swapsk = combine(sg, sh):
– If sk is a profitable completek-swap bounded by

K and agenta is the core ofsk, then agenta adds
sk to R.

– If sk is not a completek-swap but bounded byK
andsk /∈ Slocal

a , then agenta addssk to Slocal
a

and, ifsk is profitable and agenta is the core of
sk, also toSsend

a .
• Each agenta sends all partial multi-swaps inSsend

a
to all other agents and setsSsend

a to empty.

The following theorem proves that the distributed algo-
rithm constructs all profitable completek-swaps with1 ≤
k ≤ K. Each profitable completek-swap is sent by some
agent to all other agents at most once since it can be sent only
by its unique corea. The core then stores it inslocal

a and does
not send it again.

Theorem 2 The core of any profitable partialk-swap
bounded byK with 0 ≤ k ≤ K has constructed it by the
end of thekth round.

Proof Sketch: We prove the theorem by induction onk. It holds
trivially for k = 0 according to Step 3. Assume that the statement
holds for all0 ≤ k′ < k. It then also holds fork: Every prof-
itable partialk-swapsk has a unique corea ∈ A(sk) according to
Proposition 5. Assume that there arex partial multi-swaps insk/sk

a.
These partial multi-swaps are all profitable according to Theorem 1.
Then, the following properties hold: 1)x ≥ 1 sincek ≥ 1 and there
are thus at least two agents inA(sk). 2) Each partial multi-swap in
sk/sk

a is bounded byK sincesk is bounded byK. 3)h ≤ k−x < k
for each partialh-swapsh in sk/sk

a becausesk containsk exchange
swaps and one needs to decompose at least one exchange swap for
each one of the resultingx partial multi-swaps. Put together, each
partial multi-swap insk/sk

a has been constructed by its core by the
end of the(k − x)th round according to the induction assumption
and was then sent to all other agents. Thus, agenta can constructsk

by using thecombine operation once in each one of thex rounds
following the(k − x)th round to combinesk

a, which it constructed
in Step 3, with all partial multi-swaps insk/sk

a according to Propo-
sition 4, which proves the theorem.



6 Applications
We have shown how to construct all profitable completek-
swaps with1 ≤ k ≤ K for a given solution and user-defined
constantK ≥ 1. We now present several applications, each
of which iteratively selects a profitable completek-swap and
executes it on the current solution to reduce the team cost of
the current solution, until the team cost of the current solution
cannot be reduced any longer:

• GREEDY: During each iteration, Greedy first uses the
distributed algorithm described in the previous section to
construct all profitable completek-swaps. It then selects
the profitable completek-swap with the highest gain and
executes it on the current solution.

• ROLLOUT: During each iteration, ROLLOUT first
uses the distributed algorithm described in the previous
section to construct all profitable completek-swaps. It
then evaluates each profitable completek-swap by hy-
pothetically executing it and then hypothetically using
GREEDY on the resulting solution. ROLLOUT then se-
lects the profitable completek-swap with the smallest
team cost for the solution resulting from the hypotheti-
cal experiment and executes it on the current solution.

7 Experiments
We now evaluate the benefit ofK-swaps for multi-agent
routing problems with capacity constraints on known eight-
neighbor planar grids of size51 × 51 with square cells that
are either blocked or unblocked. The grids resemble office
environments with walls and doors, as shown in Figure 1. We
set the capacities of all agents to the ratio of the number of tar-
gets and agents. We average over 25 instances with randomly
closed doors for each number of agents and targets. We con-
sider the following four existing task-allocation algorithms to
provide different initial solutions for each instance:

• Randomized Allocation: Randomized allocation ran-
domly assigns each unassigned task to an agent as long
as that assignment does not violate the capacity con-
straint of the agent.

• SSI Auctions: SSI auctions[Tovey et al., 2005] as-
sign tasks to agents in rounds. During each round, they
greedily assign an unassigned task to an agent so that the
team cost increases the least.

• Auctions with Regret Clearing: Auctions with regret
clearing[Koenig et al., 2008] assign tasks to agents in
rounds. During each round, they assign the unassigned
task with the largest regret to an agent so that the team
cost increases the least.

• Sequential Bundle-Bid Auctions: Sequential bundle-
bid auctions with bundle size two[Koeniget al., 2007]
assign tasks to agent in rounds. During each round,
they greedily assign two unassigned tasks to one or more
agents so that the team cost increases the least.

Each agent needs to solve a version of the Traveling Sales-
person Problem (TSP) in order to calculate its agent cost,
which is an NP-hard problem. We thus use a combination of

the two-opt and cheapest-insertion heuristics to approximate
its agent cost quickly. Table 2 tabulates our experimental re-
sults. The column “Minimal Cost” shows approximations of
the minimal team costs (measured in distance units), which
we calculated by solving a Mixed Integer Program with a two
hour runtime limit. A value is enclosed in square brackets iff
it is only an upper bound on the minimal team cost due to
the runtime limit. The runtime to calculate this gold standard
quickly increases with the problem size. For example, we are
not able to determine the minimal team costs for any of the
25 instances with 10 agents and 40 targets within the runtime
limit. The column “Initial Cost” shows the team cost of the
initial solution, which we generated via one of Randomized
Allocation, SSI Auctions, Auctions with Regret Clearing and
Sequential Bundle-Bid Auctions. The columns “Cost” and
“Time” show the team cost and runtime (measured in sec-
onds) of the resulting solution after using one of GREEDY
and ROLLOUT in conjunction withK-swaps on the initial
solution. Team costs that are no larger than the approxima-
tions of the minimal team costs are shown in bold.

We make the following observations: First,K-swaps with
larger values ofK result in smaller team costs but require
more runtime (an effort that is more pronounced for ROLL-
OUT) because the number of all profitable partialk-swaps
with 1 ≤ k ≤ K increases withK. Second,K-swaps pro-
duce solutions with different team costs if the initial solutions
are generated with different task-allocation algorithms,but
the difference diminishes asK increases. Third,K-swaps
can reduce the team costs of the initial solutions significantly.
For example, GREEDY with three-swaps and ROLLOUT
with two-swaps produce solutions with team costs that are
very close to the approximations of the minimal team costs,
no matter how the initial solutions are generated.

8 Conclusions

In this paper, we presented our initial research on improving
given task allocations by allowing cooperative agents to ex-
change their assigned tasks in order to reduce their team cost.
We defined a new type of contract, calledK-swaps, that de-
scribes multiple task exchanges among multiple agents at a
time, which generalizes the concept of single task exchanges.
We designed a distributed algorithm that constructs all pos-
sible k-swaps with1 ≤ k ≤ K for a given solution and
user-defined constantK ≥ 1 that reduce the team cost of
a given task allocation and showed that each agent typically
only needs to communicate a small part of its local compu-
tation results to the other agents. We then demonstrated em-
pirically that K-swaps can reduce the team costs of several
existing task-allocation algorithms significantly even ifK is
small.
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Initial Solutions Produced with SSI Auctions
3 2 6 166.2 176.1 166.4 (0.00) 166.2 (0.00) 166.2 (0.00) 166.2 (0.00) 166.2 (0.00)
3 4 12 229.1 265.1 243.4 (0.00) 233.8 (0.00) 229.1 (0.00) 242.2 (0.00) 232.6 (0.02)
3 6 18 265.8 323.1 276.1 (0.00) 268.2 (0.00) 266.9 (0.04) 272.8 (0.01) 266.3 (0.27)
3 8 24 [297.4] 369.8 314.9 (0.00) 308.4 (0.02) 299.6 (0.20) 308.2 (0.03) 299.6 (0.68)
3 10 30 [337.7] 420.5 367.7 (0.00) 350.4 (0.03) 340.4 (0.67) 354.6 (0.08) 338.7 (4.11)
4 2 8 187.4 201.6 189.2 (0.00) 188.4 (0.00) 187.4 (0.00) 189.3 (0.00) 188.4 (0.00)
4 4 16 264.4 303.5 277.3 (0.00) 274.2 (0.01) 269.3 (0.04) 274.5 (0.01) 266.6 (0.37)
4 6 24 [295.9] 375.4 333.1 (0.01) 308.1 (0.04) 303.2 (0.40) 321.2 (0.08) 300.7 (3.78)
4 8 32 [347.7] 436.2 372.3 (0.01) 360.1 (0.10) 351.9 (1.70) 363.8 (0.28) 347.7 (20.75)
4 10 40 [393.3] 488.4 427.8 (0.02) 402.0 (0.23) 386.1 (4.25) 417.2 (0.66) 384.7 (60.37)

Initial Solutions Produced with Auctions with Regret Clearing
3 2 6 166.2 169.6 166.2 (0.00) 166.2 (0.00) 166.2 (0.00) 166.2 (0.00) 166.2 (0.00)
3 4 12 229.1 246.6 235.8 (0.00) 230.4 (0.00) 229.4 (0.00) 233.6 (0.00) 230.0 (0.01)
3 6 18 265.8 307.0 278.5 (0.00) 272.7 (0.00) 270.5 (0.04) 274.8 (0.01) 269.1 (0.13)
3 8 24 [297.4] 348.6 313.7 (0.01) 307.1 (0.01) 303.5 (0.15) 307.6 (0.02) 300.7 (0.72)
3 10 30 [337.7] 405.6 359.7 (0.01) 347.6 (0.03) 340.6 (0.56) 350.6 (0.07) 338.4 (3.32)
4 2 8 187.4 199.6 188.4 (0.00) 188.4 (0.00) 187.4 (0.00) 188.4 (0.00) 187.4 (0.00)
4 4 16 264.4 302.6 278.6 (0.00) 272.0 (0.01) 269.0 (0.04) 276.8 (0.01) 269.1 (0.32)
4 6 24 [295.9] 353.0 323.3 (0.01) 315.4 (0.04) 304.2 (0.34) 316.0 (0.05) 303.6 (2.78)
4 8 32 [347.7] 401.2 372.2 (0.01) 362.6 (0.09) 356.3 (1.53) 363.8 (0.10) 352.9 (11.20)
4 10 40 [393.3] 467.7 405.3 (0.02) 397.3 (0.20) 389.8 (4.94) 398.3 (0.71) 387.1 (86.60)

Initial Solutions Produced with Sequential Bundle-Bid Auctions
3 2 6 166.2 171.4 166.7 (0.00) 166.2 (0.00) 166.2 (0.00) 166.6 (0.00) 166.2 (0.00)
3 4 12 229.1 259.1 238.2 (0.00) 231.4 (0.00) 229.5 (0.01) 235.9 (0.00) 230.4 (0.02)
3 6 18 265.8 309.5 275.9 (0.01) 271.6 (0.01) 266.2 (0.05) 273.9 (0.01) 268.1 (0.15)
3 8 24 [297.4] 362.7 315.8 (0.01) 306.8 (0.02) 301.6 (0.19) 307.6 (0.04) 298.9 (1.11)
3 10 30 [337.7] 412.0 357.5 (0.02) 347.3 (0.04) 340.3 (0.63) 350.9 (0.07) 338.2 (3.22)
4 2 8 187.4 207.6 190.1 (0.00) 188.1 (0.00) 187.4 (0.00) 189.2 (0.00) 188.1 (0.00)
4 4 16 264.4 304.5 278.5 (0.00) 272.4 (0.01) 268.0 (0.05) 277.0 (0.01) 266.8 (0.55)
4 6 24 [295.9] 363.3 325.5 (0.02) 309.0 (0.05) 303.4 (0.38) 316.5 (0.06) 301.4 (5.42)
4 8 32 [347.7] 426.1 372.7 (0.03) 361.1 (0.12) 351.4 (1.79) 364.8 (0.24) 348.6 (33.83)
4 10 40 [393.3] 505.7 420.2 (0.06) 399.2 (0.26) 390.1 (6.24) 401.6 (0.94) 383.9 (127.40)

Table 2: Experimental Results (N/A = runtime exceeded 500 seconds)
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