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Abstract E=

In this paper, we study distributed algorithms for
cooperative agents that allow them to exchange X
their assigned tasks in order to reduce their team :
cost. We define a new type of contract, called
K-swaps, that describes multiple task exchanges B
among multiple agents at a time, which general- .o
izes the concept of single task exchanges. We de- e
sign a distributed algorithm that constructs all pos-
sible K-swaps that reduce the team cost of a given
task allocation and show that each agent typically
only needs to communicate a small part of its local
computation results to the other agents. We then  Andersson and Sandholm, 199¢h this paper, agents are co-

Figure 1: Multi-Agent Routing Problem

demonstrate empirically that'-swaps can reduce operative and always collaborate to minimize the team cost.
the team costs of several existing task-allocational-  Thus, they consider all task exchanges that reduce their tea
gorithms significantly even i is small. cost. We use the term negotiation here to describe the mtera

tion of cooperative agents. Many approaches repeatedly ex-
: ecute single task exchanges that each decrease the team cost

1 Introduction [Golfarelli et al., 1997; Dias and Stentz, 200@vhere single
We study distributed algorithms for (re-)allocating tasés task exchanges (or, synonymously, O-contrd&andholm,
cooperative agents, where tasks may have synergies witfoog) transfer single tasks between two agents at a time. To
each other and each task has to be assigned to exactly oRgnimize the team cost, however, it might be necessary to
agent so that the resulting team cost is small (= team pefepeatedly execute multiple task exchanges among multiple
formance is high). Researchers have developed several tasgfgents that decrease the team d@%as and Stentz, 2002;
allocation algorithms that do not re-allocate tasks oneg th Sandholm, 1998 After describing task-allocation problems
have assigned them to agertoenig et al, 2007; 2008; formally, we therefore propos&-swaps (for a given con-
Toveyet al, 2004. In this paper, we develop a re-allocation stant k) as a new type of contract that describes multiple
mechanism that allows the agents to exchange their assigneégkk exchanges among multiple agents at a time. We then
tasks to reduce their team cost. Centralized task re-ditota present a distributed algorithm that constructs all pdsdgib
is inefficient in terms of both computation and communi- swaps that reduce the team cost of a given task allocatien. Fi
cation since the central controller is the bottleneck of thenally, we demonstrate empirically thaf-swaps can reduce
system. Instead, agents can negotiate with other agentghe team costs of several existing task-allocation algorst
Such negotiations are usually used in a competitive settingignificantly even ifK is small.
where agents are self-interested and a contract is accepteé:J

only if all participants are better off from the contrdGol- _ i
farelli et al, 1997; Thomast al, 2004; Sandholm, 1998; 2 Task-Allocation Problem
We follow [Koenig et al., 2007 to formalize task-allocation

*This material is based upon work supported by, or in part by, th%roblems A task-allocation ;
: : - problem consists of a set of
U.S. Army Research Laboratory and the U.S. Army Research Offic gentsA = {a; ... a,,} and aset of task& = {t, ...t }. If

under contract/grant number W911NF-08-1-0468 and by NSF un- A g

der contract 0413196. The views and conclusions contained in thiggy ,tUple(Tal ... T,,,) of pairwise disjunct bundleg,, C T
document are those of the authors and should not be interpreted 4" ¢ = 1...m (= no task is assigned to more than one
representing the official policies, either expressed or implied, of thedgent) satisfies);”, T,, = T' (= each task is assigned to at
sponsoring organizations, agencies, companies or the U.S. goverlgast one agent), then it issolution of the task-allocation
ment. problem, with the meaning that agent performs the tasks



Notation | Explanation
%

I

s partial k-swap
A(s®) set of agents that appear i 1
{To}taca solution before task exchanges
{T!}aca | solution after task exchanges ket
k

singleton swap of agentin s*

“a

sk /sh set of partial multi-swaps after
removing agent. from s* t
Table 1: Notation 1
e Lo
T.,. Letc,(T") be theagent costof agenta € A for per- as 2 T4
forming the tasksl” C T. There can be synergies among
tasks, that iscq(T") + c,(1") does not necessarily equal Figure 2: Multi-Agent Routing Problem on a Graph

co(T"UT") evenifT" N T" = (. We want to find a so-
lution of the task-allocation problem with a smehm cost . o
given by>" . 4 ca(Tu). (a,d,t, t’_). A set of exchange swaps e@mpactiff it doe_s

We study multi-agent routing problems as examples ofot contain pairs of exchange swaps that can be re-written as
task-allocation problems, see Figure 1. Multi-agent routSingle exchange swaps.
ing problems are task-allocation problems where the tasks A partial k-swaps* describes the task exchanges of a set
are to visit given targets with exactly one agent each. Thef agentsA(s*) C A. It consists of a set of out swaps in
terrain, the locations of all agents and the locations of alWhich tasks are transferred from agentsli@*) to agents not
targets are known. The agent cost of an agent to visit & A(s*), a set of in swaps in which tasks are transferred from
set of given targets corresponds, for example, to the miniagents not ind(s*) to agents inA(s*) and a set of compact
mal fuel consumption that the agent needs to visit the tarexchange swaps in which tasks are transferred betweersagent
gets from its current location. The team cost then correthat are both ind(s*). Each agent € A(s*) must appear
sponds to the fuel consumption of all agents. Multi-agentat least once in in, out or exchange swaps’ofThe valuek
routing is a standard task for robot teams that needs to bis the number of exchange swapssih We sometimes refer
solved, for example, as part of de-mining, search-anddeesc to a partialk-swap as a partial multi-swap if the valuelofs
and taking rock probes on the modBias et al, 2006; unimportant.
Koenig et al, 2007. In multi-agent routing without capac- A partial k-swaps” is completeiff its sets of out and in
ity constraints, every agent can perform an arbitrary numbeswaps are both empty. A complete partiakwap, called
of tasks. In multi-agent routing with capacity constrajie&  complete k-swap for short, describes exactky exchange
ery agent can perform at most a given number of tasks (= itswaps among multiple agents. Completswaps thus gener-
capacity), for example, can take only a given number of roclalize single task exchanges, which are complete one-swaps
probes before its drill bit becomes useless due to wear andith one empty task in their exchange swap. Complete
tear. k-swaps also generalize three contract types introduced in

[Sandholm, 1998 namely:

3 K-Swaps e Swap contracts: A swap contract is a complete one-swap
We now formalize the concept of task exchanges among  with two non-empty tasks in its exchange swap.

agents. Let{T,}.ca be the solution before the task ex-
changes andT,}.ca be the solution after the task ex-
changes. We first define partialswaps, that describe multi-
ple task exchanges among multiple agents at a time. We then
discuss several operations that can be performed on partial

e Cluster contracts: A cluster contract is a complete
swap with only two agenta and a’ whose exchange
swaps are of the forrfu, ’, ¢, ) with different taskg,
wherek is the size of the cluster.

swaps and finally prove several properties of paftiaivaps. e Multiagent contracts: A multiagent contract can be rep-
Table 1 summarizes our notation. resented as a completeswap withk + 1 agents for
k> 2.

3.1 Concepts

An out swapof agenta is a task exchange where task 7, Proposition 1 For any task-allocation problem with tasks
is transferred f_rom agent to some other agent, written as and any solution{T,},c4 of the task-allocation problem,
(a,—,t,—). Anin swap of agenta is a task exchange where there always is a complete’-swap s™ with n’ < n that

taski’ ¢ T, is transferred from some other agent to agent  changes{7, },c 4 to a solution with the smallest team cost.
written as(a, —, —, t'). Anexchange swayis a task exchange

between two different agents and o’ where taskt € 7, The gain of partial k-swaps” is the total decrease of the

is transferred from agent to agenta’ and taskt’ € T,  is  agent costs of all agents i(s*) after executings*, that is,
transferred from agent’ to agenta, written as(a,da’,t,#').  gain(s*) = 3 ,cary(ca(Ta) — ca(T3)). s* is profitable

One (and only one) of the task®r ¢’ in an exchange swap iff its gain is positive. The following proposition showsath

can be empty, written && Two exchange swaps, a’, ¢, 0) the team cost decreases when executing profitable complete
and(a,d’,0,t") can be re-written as a single exchange swapk-swaps.



Proposition 2 The team cost of the solution after executing The following operationcombine(s9, s") combines a
a completek-swaps” is equal to the team cost of the solution combinable pair of a partiaj-swaps?¢ and a partiah-swap
before executing® minus the gain o§*. s™ to a new partiak-swaps*:

Sometimes a completeswap can decrease the team cost 1. Add all exchange swaps if ands” to the set of ex-
of a given solution but no combination of profitable complete change swaps is.

k'-swaps withk’ < k can decrease it. Consider, for exam- 2. For each resolvable pair of an in swap —, —, ) and
ple, the multi-agent routing problem without capacity con- an out swagia’, —, ¢, —) in s ands”, add the exchange
straints shown in Figure 2. The agentsanda, and targets swap(a,d’, 0, t) to the set of exchange swapssif
t1,...,t, are located on a graph, and the agents can move3 Make th t of h - i

only along the edges of the graph. The solution with the ™ akethe s'e o exchange §wap$ ompaF;.
smallest team cost i1y = 0,7, = {t1,...,tx}}. As- 4. Add each in or out swap is’ ands” that is not part
sume that the given solution {§,, = {t1,...,tx},Tu, = of a resolvable pair to the sets of in or out swaps/of
0}. The completd-swap{ (a1, az,t1,0),..., (a1, az, tx, 0)} respectively.

is profitable and changes the given solution to the solution Tha new partiak-swaps* contains all exchange swaps in
with the sr/nallest te_am/cost. However, there is no profitablgs and s» and one or more additional exchange swaps that
completek’-swap withk’ < k. _ result from combining the resolvable pairs of out and in ssvap
A partial k-swaps” is connectediff the graph is connected i 49 ands”.
whose vertices are the agentsAns*) and whose edges con- . & . g b .
nect two vertices iff they represent agents that appear in aR™oposition 3 If s . Combine(s ;") for combinable
exchange swap is*. A disconnected partial-swaps* can ~ Multi-swapss? and s", thens* has the following proper-
be viewed as a set of two or more connected partial multifiéS: 1) s™ is connected, 2)A(s”) = A(s?) U A(s"), 3)

. . . : kY _ : - h
swaps. In the following, all partial multi-swaps are assdme 9%in(s") = gain(s?) + gain(s"), and 4)k > g+ h + 1.
to be connected unless mentioned otherwise. Proposition 4 For any agentz € A(s*) in a partial k-swap
_ sk, if there arex partial multi-swaps ins* /s, then agent
3.2 Operations can constructs® by using thecombine operationz times to
N . ! s
An exchange swaga, a’, t,') can bedecomposednto an combines; with all partial multi-swaps ins”/sg.
H /
in swap(a, —, —,t') and an out swafa, —, t, —) for agenta 3.3 Properties

and an in swaga’, —, —, t) and an out swapu’, —, ¢', —) for . i . .
agenta’. An agenta € A(s*) can beremoved from a par- We now prove several properties of profitable partial multi-
tial k-swaps” as follows: First, one decomposes all exchangeSWaps.

swaps ins* that contain agent and then removes all out and Theorem 1 For any profitable partialk-swaps*, there is at

in swaps that contain agemfrom s*. These outand in swaps |east one agent € A(s*) so that the partial multi-swaps in
form a partial zero-swap that contains only agertalled the g+ /s are all profitable.

singleton swaps®. After removing agent from s*, the re-
maining part ofs* is a set of one or more partial multi-swaps,
denoted by* /s*. Conversely, an in swaf, —, —, ) and an
out swap(a’, —, ¢, —) can becombinedto an exchange swap
(a,a’,t,0). Such a pair of out and in swaps formesolvable

Proof Sketch: We prove the theorem by induction on the num-
ber z of non-profitable singleton swapg for all a € A(s*). It
holds trivially for z = 0: Pick any agent. € A(s*). The partial
multi-swaps ins* /s are all profitable since they are all composed
pair. of profitable singleton swaps. Assume that the statement holds for

, i . i all 0 < 2’ < z. It then also holds fox: There is at least one non-
) A completek 'SV‘_/apS comp'letesa pam/alk:-swapg iff profitable singleton swap. Consider any non-profitable singleton
it results from adding out and in swaps4b so that all out  swaps*. If the partial multi-swaps i /s" are all profitable, then
and in swaps can be grouped into resolvable pairs, combininge theorem holds. Otherwise, there is at least one non-profitable
each resolvable pair into an exchange swap and making qyartia|g_swapsg € s*/s*. 57 contains at most — 1 non-profitable
exchange swaps compact. A partkaisyvapsk is bounded  gingleton swaps since it does not contafn Combines® with all
by K iff there is a completé’-swaps* with ¥’ < K that partial multi-swaps in* /s* except fors? to a new (connected) par-
completes it. A partiak-swap is always bounded by the total tial h-swaps”, that is,s* = combine(s?, s"). Agenta is the only
number of its in, out and exchange swaps although this bounggent inA(s") that exchanges tasks with agentsAfs?). s" is

is not necessarily tight. profitable according to Proposition 3 singg is not profitable but
A partial g-swaps? and a partiah-swaps” arecombin-  s* is. Transform the partidt-swaps* to a new partiak’-swaps"*’
ableiff they satisfy the following conditions: by contractings” to a new single agent’, as follows: s*" results
o A(s9) N A(sh) = 0. from s* by de_'letln% all exchange S\_Napssh from s_k and changing
every agent inA(s") that appears in the remaining in, out and ex-
e For each in swafa, —, —,t) in s9 or s" with t € T, change swaps to agesft We define the gain of*; to be the gain of

for some agent’ € A(s%) U A(s"), there must be an
out swap(a’, —, ¢, —) in s9 or s" that forms a resolvable
pair with it.

s", resulting ins*, being a profitable singleton swap. Ths¥, con-
tains at most: non-profitable singleton swaps, namely the ones in
s9, and is profitable since it has the same gais"asThere is at least

e There must be at least one resolvable paiimnds”. one agent”” € A(s"') so that the partial multi-swaps ist” /s*,,



are all profitable according to the induction assumption. It must be 2. Each agent € A initializes the following sets to empty:

thata” # a’ since the non-profitablg-swaps? is the only partial the setSlec@! of all partial multi-swaps that it has con-
multi-swap ins*’ /s¥,. Transforms* back tos* by uncontracting structed, the seb:°"¢ of all profitable partial multi-
agenta’ to prove the theorem.m swaps that it will send to all other agents and the set
_ . . Srecerve of all partial multi-swaps that it has received
Assume that each ageat € A is assigned an index from other agents.

indew(ag that orders all agents completely. Then, agent
a € A(s") is acoreof a partialk-swaps* iff the partial multi-
swaps ins*/sk are all profitable and no agent ¢ A(s")
with index(a’) < index(a) has this property.

3. Each agent. € A constructs all possible partial zero-
swaps bounded bi( that contain only itself, adds them
to Slecal and, if they are profitable, also &5°"<. It then
sends all partial zero-swaps #{"“ to all other agents

Proposition 5 Any profitable partialk-swaps® has exactly and setss:e" to empty.

one core. 4. Each agent repeats féf rounds:

e Each agent: adds each partial multi-swap that it

4 Centralized Algorithm receives from the other agentsggeceive.

We first present an algorithm for a central planner that con- e Each agent combines every combinable pair of

structs all profitable complete-swaps withl < k < K partial g-swaps? € Sreceive and partialh-swap

(which we also casually refer to ds-swaps) for a given so- sh € Slocal a5 long as agentis part of at least one

lution and user-defined constalit> 1: resolvable pair ofs? and s" and executes for the

1. The central planner initializes the following sets to resulting partiak-swaps® = combine(s?, s"):

empty: the seR of all profitable completé-swaps with — If 5" is a profitable complete-swap bounded by
1 < k < K and the sefS,,n.. Of all partial multi- K and agent is the core of*, then agent adds
swaps that it has constructed. s*to R.

— If s¥ is not a complet&-swap but bounded b
ands® ¢ Slocal then agent addss” to Sloca!
and, if s* is profitable and agent is the core of
sk, also toSsend,

e Each agent sends all partial multi-swaps i e
to all other agents and sef§°"? to empty.

The following theorem proves that the distributed algo-

rithm constructs all profitable complefeswaps withl <

k < K. Each profitable complete-swap is sent by some

e The central planner combines every combinableagent to all other agents at most once since it can be sent only
pair of partialg-swaps? € Spianner @nd partialh- by its unique core. The core then stores it ¥j°°*! and does
swaps” € Spianner and executes for the resulting not send it again.

partial k-swaps" = combine(s?, s"): Theorem 2 The core of any profitable partialk-swap
— If s¥ is a profitable complete-swap bounded by bounded byK with 0 < k£ < K has constructed it by the
K, then the central planner adsfsto R. end of thekth round.

— If s* is not a completés-swap but bounded by  Proof Sketch: We prove the theorem by induction @n It holds
K, then the central planner adef$to Spianner.  trivially for k = 0 according to Step 3. Assume that the statement

Each agent sends all partial zero-swaps boundeil Hyat holds for gIIO <K k< k. It thgn also holds fof: Every .prof-
contain only itself to the central planner in one round, hic 1t2bl€ partialk-swaps™ has a unique core € A(s") according to
can result in a communication bottleneck, and the centrafl70POSition 5. Assume that there arpartial multi-swaps ins" /s,
planner then constructs all partiaswaps (including all prof- These partial multi-swaps are all profitable according to Theorem 1.

itable complete:-swaps) bounded b, which can result in Then, the following properties hold: ) > 1 sincek > 1 and there
a computation bottleneck ' are thus at least two agents.r(s*). 2) Each partial multi-swap in

5" /s¥ is bounded by’ s}inces: iskbounded k?K Nh<k—x<k

. L. . for each partiah-swaps” in s” /s, because” containsk exchange

5 Distributed Algorlthm swaps ar?d one neegs to dec{)mpose at least one exchangegswap for
We therefore now present a distributed (synchronous) algosach one of the resulting partial multi-swaps. Put together, each
rithm where the agents construct all profitable complete partial multi-swap ins® /s* has been constructed by its core by the
swaps withl < k < K for a given solution by sending only end of the(k — x)th round according to the induction assumption
profitable partial multi-swaps to the other agents and s t - and was then sent to all other agents. Thus, ageah construct”

ically only a small part of their local computation results: by using thecombine operation once in each one of therounds
following the (k — z)th round to combine”, which it constructed

in Step 3, with all partial multi-swaps isf' /s¥ according to Propo-
sition 4, which proves the theorenm

2. Each agent € A constructs all possible partial zero-
swaps bounded b that contain only itself (these par-
tial zero-swaps contain at mo&t in swaps, at mosk’
out swaps, no exchange swaps and at least one in or out
swap) and sends them to the central planner.

3. The central planner adds all partial zero-swaps that it
receives from the agents $),;4nner and repeats fof’
rounds:

1. Initialize the setR of all profitable complete&-swaps
with 1 < k < K to empty, and assign each agent A
an indexindex(a) that orders all agents completely.



6 Applications the two-opt and cheapest-insertion heuristics to appratém
its agent cost quickly. Table 2 tabulates our experimemtal r
d sults. The column “Minimal Cost” shows approximations of
hthe minimal team costs (measured in distance units), which
we calculated by solving a Mixed Integer Program with a two
6}our runtime limit. A value is enclosed in square brackdts if
it is only an upper bound on the minimal team cost due to
the runtime limit. The runtime to calculate this gold stamta
quickly increases with the problem size. For example, we are
e GREEDY: During each iteration, Greedy first uses the not able to determine the minimal team costs for any of the
distributed algorithm described in the previous section ta25 instances with 10 agents and 40 targets within the runtime
construct all profitable completeswaps. It then selects limit. The column “Initial Cost” shows the team cost of the
the profitable completke-swap with the highest gain and initial solution, which we generated via one of Randomized
executes it on the current solution. Allocation, SSI Auctions, Auctions with Regret Clearingdan

e ROLLOUT: During each iteration, ROLLOUT first Se_quential Bundle-Bid Auctions. Thg columns “Cosfc” and
uses the distributed algorithm described in the previous | /Me” show the team cost and runtime (measured in sec-
section to construct all profitable compléteswaps. It ©nds) of the resulting solution after using one of GREEDY
then evaluates each profitable completswap by hy- and ROLLOUT in conjunction withi{-swaps on the |n|t|a!
pothetically executing it and then hypothetically using solution. Team costs that are no larger than the approxima-
GREEDY on the resulting solution. ROLLOUT then se- tions of the minimal team costs are shown in bold.
lects the profitable complete-swap with the smallest ~ We make the following observations: Firgt-swaps with

team cost for the solution resulting from the hypotheti-larger values ofi’ result in smaller team costs but require
cal experiment and executes it on the current solution. More runtime (an effort that is more pronounced for ROLL-

OUT) because the number of all profitable partiaéwaps

. with 1 < k£ < K increases withK. Second,K-swaps pro-
7 Experiments duce solutions with different team costs if the initial saas
We now evaluate the benefit af-swaps for multi-agent are generated with different task-allocation algorithimst
routing problems with capacity constraints on known eight-the difference diminishes a& increases. ThirdK-swaps
neighbor planar grids of sizel x 51 with square cells that can reduce the team costs of the initial solutions signifigan
are either blocked or unblocked. The grids resemble officé=or example, GREEDY with three-swaps and ROLLOUT
environments with walls and doors, as shown in Figure 1. Wavith two-swaps produce solutions with team costs that are
set the capacities of all agents to the ratio of the numbereft very close to the approximations of the minimal team costs,
gets and agents. We average over 25 instances with randomfy matter how the initial solutions are generated.
closed doors for each number of agents and targets. We con-
sider the following four existing task-allocation algdurits to 8 Conclusions

provide different initial solutions for each instance:
In this paper, we presented our initial research on impigvin
domly assigns each unassigned task to an agent as lof#}/€" task allocations by allowing cooperative agents to ex

as that assignment does not violate the capacity Corevange' their assigned tasks in order to reduce their team cos
straint of the agent. e defined a new type of contract, call&dswaps, that de-

) ] scribes multiple task exchanges among multiple agents at a

e SSI Auctions SSI auctions[Tovey et al, 2009 as-  time, which generalizes the concept of single task excrange
sign tasks to agents in rounds. During each round, theyye designed a distributed algorithm that constructs alt pos
greedily assignan unassigned task to an agent so that thgh|e k-swaps withl < k < K for a given solution and
team cost increases the least. user-defined constart > 1 that reduce the team cost of

e Auctions with Regret Clearing: Auctions with regret ~a given task allocation and showed that each agent typically
clearing[Koenig et al., 2004 assign tasks to agents in on!y needs to communicate a small part of its local compu-
rounds. During each round, they assign the unassignef@tion results to the other agents. We then demonstrated em-

task with the largest regret to an agent so that the tearfirically that K'-swaps can reduce the team costs of several
cost increases the least. existing task-allocation algorithms significantly everifis

small.

We have shown how to construct all profitable complete
swaps withl < k& < K for a given solution and user-define
constantX’ > 1. We now present several applications, eac
of which iteratively selects a profitable compléteswap and
executes it on the current solution to reduce the team cost
the current solution, until the team cost of the currenttsatu
cannot be reduced any longer:

e Randomized Allocation Randomized allocation ran-

e Sequential Bundle-Bid Auctions Sequential bundle-
bid auctions with bundle size twl&oeniget al, 2007
assign tasks to agent in rounds. During each roundReferences
they greedily assign two unassigned tasks to one or morFAndersson and Sandholm, 19981, Andersson and

agents so that the team cost increases the least. T. Sandholm. Time-quality tradeoffs in reallocative nego-
Each agent needs to solve a version of the Traveling Sales- tiation with combinatorial contract types. Froceedings
person Problem (TSP) in order to calculate its agent cost, of the National Conference on Atrtificial Intelligence
which is an NP-hard problem. We thus use a combination of pages 3-10, 1999.



Capacity | Agents | Targets || Minimal Initial GREEDY ROLLOUT
Cost Cost One-Swaps Two-Swaps Three-Swaps One-Swaps Two-Swaps
Cost Time Cost Time Cost Time Cost Time Cost Time
Initial Solutions Produced with Randomized Allocation
3 2 6 166.2 220.2 180.8 (0.00)| 166.2 (0.00) | 166.2 (0.00) || 175.6 (0.00) | 166.2 (0.01)
3 4 12 229.1 427.9 259.1 (0.00) | 240.5 (0.00)| 232.1 (0.01)| 2324 (0.03) | 229.1 (0.56)
3 6 18 265.8 635.4 333.1 (0.00)| 283.9 (0.01)| 267.9 (0.08)|| 271.5 (0.33) | 265.8 (15.48)
3 8 24 [297.4] | 862.3 || 396.5 (0.01)| 3329 (0.02)| 303.3 (0.25)| 307.1 (1.67)| 297.4  (79.46)
3 10 30 [337.7] 1070.5 || 443.3 (0.01)| 375.6 (0.05)| 3453 (1.07)| 339.6 (6.56) | 335.5 (296.20)
P 2 8 187.4 2733 || 196.3 (0.00)| 188.4 (0.00)| 187.4 (0.00) || 191.2 (0.00) | 187.4 (0.02)
4 4 16 264.4 513.1 || 299.1 (0.00)| 2885 (0.01)| 271.5 (0.08) || 272.2 (0.35) | 264.4  (22.62)
4 6 24 [295.9] 771.9 376.8 (0.01)| 3395 (0.07)| 313.1 (0.56)|| 303.2 (4.02) | 295.9 (312.27)
4 8 32 [347.7] 1011.1 || 469.1  (0.02) | 401.8 (0.21)| 3723 (2.72)|| 356.3 (23.40)| N/A N/A
4 10 40 [393.3] | 1274.2 || 532.7 (0.03)| 458.1 (0.50)| 417.5 (9.14)|| 393.6 (94.48)| NI/A N/A
Initial Solutions Produced with SSI Auctions
3 2 6 166.2 176.1 166.4 (0.00) | 166.2 (0.00) | 166.2 (0.00) || 166.2 (0.00) | 166.2 (0.00)
3 4 12 229.1 265.1 || 243.4 (0.00)| 233.8 (0.00)| 229.1 (0.00) || 242.2 (0.00) | 232.6 (0.02)
3 6 18 265.8 323.1 || 276.1 (0.00)| 268.2 (0.00)| 266.9 (0.04)| 272.8 (0.01) | 266.3 0.27)
3 8 24 [297.4] 369.8 3149 (0.00) | 308.4 (0.02)| 299.6 (0.20)|| 308.2 (0.03) | 299.6 (0.68)
3 10 30 [337.7] 420.5 367.7 (0.00)| 350.4 (0.03)| 340.4 (0.67)|| 354.6 (0.08) | 338.7 (4.11)
4 2 8 187.4 201.6 189.2 (0.00)| 188.4 (0.00)| 187.4 (0.00) || 189.3 (0.00) | 188.4 (0.00)
4 4 16 264.4 303.5 277.3 (0.00) | 2742 (0.01)| 269.3 (0.04)|| 2745 (0.01) | 266.6 (0.37)
4 6 24 [295.9] 375.4 333.1 (0.01)| 308.1 (0.04)| 303.2 (0.40)|| 321.2 (0.08) | 300.7 (3.78)
4 8 32 [347.7] | 436.2 || 372.3 (0.01)| 360.1 (0.10)| 351.9 (1.70)| 363.8 (0.28) | 347.7  (20.75)
4 10 40 [393.3] 488.4 427.8 (0.02) | 402.0 (0.23) | 386.1 (4.25) 417.2 (0.66) | 384.7 (60.37)
Initial Solutions Produced with Auctions with Regret Clearing
3 2 6 166.2 169.6 || 166.2 (0.00) | 166.2 (0.00) | 166.2 (0.00) || 166.2  (0.00) | 166.2 (0.00)
3 4 12 229.1 246.6 || 2358 (0.00)| 230.4 (0.00)| 229.4 (0.00)|| 233.6 (0.00) | 230.0 (0.01)
3 6 18 265.8 307.0 2785 (0.00) | 272.7 (0.00)| 270.5 (0.04)|| 274.8 (0.01) | 269.1 (0.13)
3 8 24 [297.4] 348.6 313.7 (0.01)| 307.1 (0.01)| 303.5 (0.15)|| 307.6 (0.02) | 300.7 (0.72)
3 10 30 [337.7] 405.6 359.7 (0.01)| 347.6 (0.03)| 340.6 (0.56)|| 350.6 (0.07) | 338.4 (3.32)
4 2 8 187.4 199.6 188.4 (0.00)| 188.4 (0.00)| 187.4 (0.00) || 188.4 (0.00) | 187.4 (0.00)
4 4 16 264.4 302.6 || 2786 (0.00)| 272.0 (0.01)| 269.0 (0.04)|| 276.8 (0.01) | 269.1 (0.32)
4 6 24 [295.9] | 353.0 || 323.3 (0.01)| 3154 (0.04)| 304.2 (0.34)| 316.0 (0.05) | 303.6 (2.78)
4 8 32 [347.7] 401.2 3722 (0.01)| 362.6 (0.09)| 356.3 (1.53)|| 363.8 (0.10) | 352.9 (11.20)
4 10 40 [393.3] 467.7 405.3 (0.02) | 397.3 (0.20) | 389.8 (4.94) || 398.3 (0.71) | 387.1 (86.60)
Initial Solutions Produced with Sequential Bundle-Bid Auctions

3 2 6 166.2 171.4 166.7 (0.00) | 166.2 (0.00) | 166.2 (0.00) || 166.6 (0.00) | 166.2 (0.00)
3 4 12 229.1 259.1 238.2 (0.00) | 231.4 (0.00)| 229.5 (0.01)|| 235.9 (0.00) | 230.4 (0.02)
3 6 18 265.8 309.5 2759 (0.01)| 271.6 (0.01)| 266.2 (0.05)|| 273.9 (0.01) | 268.1 (0.15)
3 8 24 [297.4] | 362.7 || 3158 (0.01)| 306.8 (0.02)| 301.6 (0.19)| 307.6 (0.04) | 298.9 (1.11)
3 10 30 [337.7] | 4120 || 3575 (0.02)| 347.3 (0.04)| 340.3 (0.63)| 350.9 (0.07) | 338.2 (3.22)
4 2 8 187.4 207.6 || 190.1 (0.00)| 188.1 (0.00)| 187.4 (0.00) || 189.2 (0.00) | 188.1 (0.00)
4 4 16 264.4 3045 || 2785 (0.00)| 272.4 (0.01)| 268.0 (0.05)|| 277.0 (0.01) | 266.8 (0.55)
4 6 24 [295.9] 363.3 3255 (0.02)| 309.0 (0.05)| 303.4 (0.38)|| 316.5 (0.06) | 301.4 (5.42)
4 8 32 [347.7] 426.1 372.7 (0.03)| 361.1 (0.12)| 3514 (1.79)|| 364.8 (0.24) | 348.6 (33.83)
4 10 40 [393.3] 505.7 420.2 (0.06) | 399.2 (0.26) | 390.1 (6.24) || 401.6 (0.94) | 383.9 (127.40)

Table 2: Experimental Results (N/A = runtime exceeded 500rs@s)
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