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Abstract
We study pursuit-evasion problems where a number of
pursuers have to clear a given graph. We study when
polynomial-time algorithms exist to determine how many
pursuers are needed to clear a given graph and how a
given number of pursuers should move on the graph to
clear it with either a minimum sum of their travel dis-
tances or minimum task-completion time. We generalize
prior work to both unit-width arbitrary-length and unit-
length arbitrary-width graphs and derive both algorithms
and complexity results for a variety of graph topologies.
In this context, we describe a polynomial-time algorithm,
called CLEARTHETREE, that is much shorter and algo-
rithmically simpler than the state-of-the-art algorithm for
the minimum pursuer problem on trees. Our theoreti-
cal research lays a firm theoretical foundation for pursuit
evasion on graphs and informs practitioners about which
problems are easy and which ones are hard.

1 Introduction
We study a standard formulation of pursuit-evasion problems
from the literature where the pursuers and evaders move on
the edges of a given graph and are able to stop or change di-
rections anywhere on edges [Parsons, 1976]. The pursuers
know the graph but not how many evaders are present. They
must catch all evaders despite zero visibility. Evaders can
move infinitely fast but cannot pass by a sufficiently large
group of pursuers in the same location. The necessary group
size is called the width of a vertex or edge. Prior work has
focused on graphs where all vertex and edge widths and all
edge lengths are one. We generalize these results to unit-
width arbitrary-length and unit-length arbitrary-width graphs.
The rules of the game are as follows:

• Initially the entire graph G is contaminated (evaders may reside
anywhere within G).

• Each pursuer may start and finish at any location in G.

• Each pursuer may travel along edges of G, but may not travel
outside G.
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• The width w(e) of edge e is the least number of pursuers that
can clear (decontaminate) e by traversing e simultaneously.

• The width w(v) of vertex v is the least number of pursuers
needed to guard v when v is incident upon both cleared and
contaminated edges.

Our paper addresses open questions of when polynomial-
time algorithms exist to determine how many pursuers are
needed to clear a given graph (Minimum Pursuer Problem)
and how a given number of pursuers should move on the
graph to clear it with either a minimum sum of travel dis-
tances or a minimum task-completion time (Minimum Dis-
tance and Time Problems). We do this by studying simple
graph topologies, including paths, cycles, stars, trees, two-
vertex multigraphs, series-parallel graphs and cliques. Our
results are negative in many cases, which suggests that it is
important to develop heuristic approaches for these cases. In
the other cases, we outline polynomial-time algorithms. In
particular, we describe CLEARTHETREE, a linear-time al-
gorithm that is algorithmically much simpler than the state-
of-the-art algorithm for the minimum pursuer problem on
trees [Megiddo et al., 1988]. Our new algorithm provides
an important stepping stone towards polynomial-time algo-
rithms for more general graph topologies.

Previously, it has been shown that polynomial-time algo-
rithms for many combinatorial graph problems on trees (that
is, treewidth-1 graphs) and series-parallel graphs (treewidth-
2 graphs) can be generalized to polynomial-time algorithms
on treewidth-k graphs for every k [Arnborg et al., 1991;
Borie et al., 1992; Courcelle and Mosbah, 1993]. Real-world
graphs often have small treewidth; for example, one author’s
office building is treewidth-2 and another’s is treewidth-3,
and Mammoth Cave is treewidth-4. So treewidth-k graphs
for k > 1 are realistic models for pursuit-evasion problems
in buildings and cave systems, also streets and computer net-
works. It remains future work to determine whether our al-
gorithms can indeed be generalized to treewidth-k graphs for
arbitrary k.

1.1 Related Work
Previous work on this problem has focused on the minimum
pursuer problem for unit-width graphs. The decision version
of the minimum pursuer problem is in NP for general graphs
[LaPaugh, 1993], and this result can be extended to show
that the decision versions of all problems in this paper are



in NP. The minimum pursuer problem is NP-hard on general
graphs but can be solved in linear time on trees [Megiddo et
al., 1988], interval graphs [Kirousis and Papadimitriou, 1985]
and grid graphs [Ellis and Warren, 2008]. For example, an m-
by-n grid graph can be cleared by min(m, n) + 1 pursuers.

Many other variations of the pursuit-evasion problem have
been considered in the literature. Some focus on the questions
of minimizing the number of pursuers, time, or distance, as
we do, but make different assumptions about movement or
capture. In node searching problems, pursuers and evaders
jump from vertex to adjacent vertex in a fraction of or a single
time step, and an evader is captured if at some time it is at the
same vertex as a pursuer [Kirousis and Papadimitriou, 1986;
Bienstock and Seymour, 1991]. Our edge searching prob-
lem is more suited to robot, vehicle, or human movement
for which an edge traversal has a physical meaning. In the
robotics and AI literature, progress has been made on ques-
tions of perimeter guarding [Agmon et al., 2008a; 2008b]. In
this line of research, guards move along edges, as in our prob-
lem, but intruder speeds are bounded and intruder movement
may not be restricted to the graph. Capture is different since
guards detect intruders within some given radius of capture.
In these problems, it is usually impossible to guarantee that
the perimeter will not be breached. Instead, the goal is to
minimize the probability or expected time to success for the
intruders, usually by means of a randomized strategy that is
not predictable and has desirable game-theoretic properties.
See [Pita et al., 2008] for an application to airport security,
and references therein for underlying theory. Other research
includes both land and aerial pursuers, for example [Vidal et
al., 2002].

1.2 Preliminaries
Figure 1 summarizes our results. The class of two-vertex
graphs are multigraphs; that is, multiple edges exist be-
tween the two vertices. The two starred entries are found in
[Megiddo et al., 1988], although we do give an alternate proof
for one of these in Subsection 3.2. Each other result is either
derived directly in Section 2 or 3, or can be inferred from a
derived result in conjunction with the following relations.

Proposition 1 If algorithm A solves problem Q on graph
class C, then algorithm A also solves problem Q for any sub-
class of C, aside from the issue of recognizing membership
in the subclass. Conversely, if problem Q is NP-hard for
polynomial-time recognizable graph class C, then problem Q
remains NP-hard for any superclass of C.

Paths and stars are subclasses of trees; trees, cycles, and
two-vertex graphs are subclasses of series-parallel graphs;
trees, cycles, and cliques are subclasses of general graphs;
and series-parallel graphs are subclasses of multigraphs.
Membership in each of these classes can be determined in
linear time.

Proposition 2 Suppose the minimum pursuer problem is NP-
hard for some graph class C. Then, the minimum distance and
time problems are also NP-hard for graph class C. Moreover,
there cannot exist any polynomial-time approximation algo-
rithms for these latter problems unless P=NP.

Proof: Minimum distance and minimum time are each fi-
nite iff the number of pursuers is sufficient to clear the graph.
So, if any such approximation algorithm A exists, then the
minimum pursuer problem could be solved in polynomial
time by checking whether A returns a finite value. 2

Section 2 describes our algorithms and complexity re-
sults for unit-length arbitrary-width graphs, and Section 3
describes our results for unit-width arbitrary-length graphs.
We use the following notation. Let G = (V,E) denote a
graph, where n = |V | and m = |E|. Each edge e has a
length L(e), that represents both the traversal distance and
time. Each edge e also has a width w(e), that denotes the
number of pursuers needed to clear it, and each vertex v has
a width w(v), that denotes the number of pursuers needed to
guard it. We consider both decision and optimization versions
of the minimum pursuer, distance and time problems. For ex-
ample, the decision version of the minimum pursuer problem
is to determine whether a given number of pursuers can clear
a given graph, and the optimization version is to determine
the minimum number of pursuers.

2 Unit-Length Arbitrary-Width Graphs
This section considers only graphs for which all L(e) = 1.
Note that each w(v) ≥ 1 and w(e) ≥ 1.

2.1 Complexity Results
In the following theorems, we will reduce from the NP-
complete partition problem [Garey and Johnson, 1979].
An instance of partition is defined by positive integers
(a1, . . . , an). Let k =

∑n
i=1 ai/2. The partition problem

asks whether there exists any X ⊆ {1, . . . , n} such that
Σ{ai : i ∈ X} = k = Σ{ai : i 6∈ X}.
Theorem 3 The minimum pursuer problem is NP-hard for
stars.

Proof: Let (a1, . . . , an) be an instance of partition, and let
k =

∑n
i=1 ai/2. Construct a star G = (V,E) as follows. Let

V = {vi : 1 ≤ i ≤ n} ∪ {z}, and let E = {(vi, z) : 1 ≤ i ≤
n}. Let w(vi) = 1 for 1 ≤ i ≤ n, and let w(z) = k. Also let
w(vi, z) = ai for 1 ≤ i ≤ n. We claim that G can be cleared
using k pursuers iff the partition instance has a solution.

“If” direction: Let the partition problem have solution X ⊆
{1, . . . , n}. For all i ∈ X , ai pursuers start at vi, clear edge
(vi, z), and simultaneously arrive at z. Then, for all i 6∈ X , ai

pursuers exit z simultaneously, clear edge (vi, z), and arrive
at vi.

“Only if” direction: Suppose the pursuit-evasion problem
has a solution. Since there are only w(z) = k pursuers, no
edge can be cleared while z is guarded. Let X = {ai : (vi, z)
is cleared before k pursuers reach z}. Then Σi∈Xai = k =
Σi 6∈Xai, and the partition instance must have a solution. 2

Theorem 4 The minimum pursuer problem is NP-hard for 2-
vertex multigraphs.

Proof: Let (a1, . . . , an) be an instance of partition, and
let k =

∑n
i=1 ai/2. Construct a 2-vertex graph G = (V,E)

as follows. Let V = {y, z}, and let E = {e1, e2, . . . , en}.
Let w(y) = 1 and let w(z) = k. Also let w(ei) = ai for



Unit-Length Arbitrary-Width Graphs Unit-Width Arbitrary-Length Graphs
Minimum Minimum Minimum Minimum Minimum Minimum
Pursuer Distance Time Pursuer Distance Time

Paths P Pseudo-P Pseudo-P P P P
Cycles P Pseudo-P Pseudo-P P P P
Stars NP-Complete, Pseudo-P NP-Complete Strongly NP-Complete P P Strongly NP-Complete
Trees NP-Complete NP-Complete Strongly NP-Complete P* (Open) Strongly NP-Complete

Two-Vertex Graphs NP-Complete, Pseudo-P NP-Complete Strongly NP-Complete P P Strongly NP-Complete
Series-Parallel Graphs NP-Complete NP-Complete Strongly NP-Complete (Open) (Open) Strongly NP-Complete

Cliques NP-Complete NP-Complete NP-Complete P P Strongly NP-Complete
General Graphs NP-Complete NP-Complete Strongly NP-Complete NP-Complete* NP-Complete Strongly NP-Complete

Figure 1: Summary of Results

1 ≤ i ≤ n. We claim that G can be cleared using k + 1
pursuers iff the partition instance has a solution.

“If” direction: Suppose the partition problem has a solu-
tion X ⊆ {1, . . . , n}. Start all k + 1 pursuers at vertex y;
one pursuer will remain at y throughout. For all i ∈ X , ai

pursuers clear edge ei and simultaneously arrive at z. Then,
for all i 6∈ X , ai pursuers exit z simultaneously, clear edge
ei, and arrive at y.

“Only if” direction: Suppose the pursuit-evasion problem
has a solution. Because w(z) = k and there are only k + 1
pursuers, the edges cleared before z is cleared and after z is
cleared must form a solution to the partition problem. 2

Theorem 5 The minimum pursuer problem is NP-hard for
cliques.

Proof: Let (a1, . . . , an) be an instance of partition, and let
k =

∑n
i=1 ai/2. Construct a clique G = (V,E) as follows.

Let V = {vi : 1 ≤ i ≤ n} and E = {(vi, vj) : 1 ≤ i < j ≤
n}. Let each w(vi) = aik, and let each w(vi, vj) = aiaj . We
claim that G can be cleared using k2 pursuers iff the partition
instance has a solution.

“If” direction: Suppose the partition problem has a solu-
tion X ⊆ {1, . . . , n}. Initially place a2

i pursuers at vi for
each i ∈ X . Also place 2aiaj pursuers midway along the
edge (vi, vj) for all i, j ∈ X . Note that this is a total of
k2 pursuers. Along each of these edges, aiaj pursuers move
in each direction, all reaching the endpoints simultaneously.
Now there are aik pursuers at each vertex vi such that i ∈ X .
Next aiaj pursuers simultaneously traverse each edge (vi, vj)
such that i ∈ X , j 6∈ X . Now there are ajk pursuers at each
vertex vj such that j 6∈ X . Finally, aiaj pursuers traverse
from each endpoint of edge (vi, vj) for i, j 6∈ X , until they
meet somewhere in the middle of each edge.

“Only if” direction: Suppose the pursuit-evasion problem
has a solution. Consider any moment of time at which some
set Y of vertices simultaneously becomes cleared (possibly
|Y | = 1). Let X denote the vertices cleared before Y and let
Z denote the vertices cleared after Y . Let p(X) = Σ{ai :
vi ∈ X}, and similarly for Y and Z. During any solu-
tion, there must exist some such sets X , Y , and Z for which
p(X) ≤ k and p(X ∪ Y ) > k. But p(X ∪ Y ∪ Z) = 2k,
so p(Z) < k. At this particular moment of time, for each
x ∈ X , either x is guarded or for all z ∈ Z the edge (x, z)
is guarded. Also, by assumption, each y ∈ Y becomes
guarded. Therefore p(X)p(Z) + p(Y )k ≤ k2, or equiv-
alently p(X)p(Z) + [2k − p(X) − p(Z)]k ≤ k2. Hence
[p(X) − k][p(Z) − k] ≤ 0, from whence we must have
p(X) = k, and X is a solution to the partition instance. 2

In subsequent theorems, we will reduce from the strongly
NP-complete 3-partition problem [Garey and Johnson, 1979].
An instance of 3-partition is defined by positive integers
(x1, . . . , x3n). Let k =

∑3n
i=1 xi/n. The 3-partition prob-

lem asks whether there exists any partition of (x1, . . . , x3n)
into n groups of 3 elements each, such that each group has
sum exactly k.

Theorem 6 The minimum time problem is strongly NP-hard
for stars, even when all w(v) = 1.

Proof: Let (x1, . . . , x3n) be an instance of 3-partition, and
let k =

∑3n
i=1 xi/n. Construct a star G with 3n + 2 edges

e1, . . . , e3n+2. The first 3n edges have w(ei) = xi. The
remaining two edges have w(e3n+1) = w(e3n+2) = k + 1.
All the vertices have w(v) = 1.

We claim that G can be cleared with k + 1 pursuers in time
2n+2 iff the given 3-partition instance has a solution. Essen-
tially, subject to the given constraints, G can only be cleared
as follows: Clear edge e3n+1 using all k + 1 pursuers. Leave
one pursuer at the central vertex. Clear three edges in par-
allel using exactly k pursuers, which then return to the cen-
tral vertex. Repeat the previous step n times, until all edges
e1, . . . , e3n are cleared. Finally clear edge e3n+2 using all
k + 1 pursuers. 2

In both the previous and following proofs, the two “ex-
tra” edges must be the first and last edge cleared, which then
forces all other edges to be traversed twice.

Theorem 7 The minimum time problem is strongly NP-hard
for 2-vertex graphs, even when all w(v) = 1.

Proof: Let (x1, . . . , x3n) be an instance of 3-partition, and
let k =

∑3n
i=1 xi/n. Construct a graph G with 2 vertices

y, z and 3n + 2 edges e1, . . . , e3n+2. The first 3n edges have
w(ei) = xi. The remaining two edges have w(e3n+1) =
w(e3n+2) = k+1. Both the vertices have w(y) = w(z) = 1.

We claim that G can be cleared with k + 2 pursuers in
time n + 2 iff the given 3-partition instance has a solution.
The justification is similar to that given above for stars: First
place one pursuer at vertex y. Then clear edge e3n+1 using
k + 1 pursuers. Leave another pursuer at vertex z. Clear
three edges in parallel using exactly k pursuers. Repeat the
previous step n times, until all edges e1, . . . , e3n are cleared.
Finally clear edge e3n+2 using k + 1 pursuers. 2

2.2 Algorithmic Results
Theorem 8 The minimum pursuer problem can be solved in
linear time for paths.



Proof: Let G = (V,E) be a path, and let r =
max({w(v) : v ∈ V } ∪ {w(e) : e ∈ E}). It is not difficult
to see that r pursuers is both necessary and sufficient. All r
pursuers start at one endpoint of the path, and move together
until they reach the other endpoint. 2

Theorem 9 The minimum pursuer problem can be solved in
polynomial time for cycles.

Proof: Denote the cycle G by (v1, e1, . . . , vn, en) =
(x1, x2, . . . , x2n−1, x2n). First construct a digraph G′ =
(V ′, E′) as follows. Let X = V ∪ E, and initially define
V ′ = X × X . So V ′ corresponds to the possible borders
between cleared and contaminated portions of the cycle G;
that is, vertex (xi, xj) in G′ means that the clockwise path
from xi to xj is clear in G. E′ contains edges from (xi, xj)
to (xi−1, xj) and to (xi, xj+1), and these edges correspond
to advancing the border.

For each xi ∈ V , E′ also contains edges from (xi, xi) to
(xi−1, xi+1) and from (xi+1, xi−1) to (xi, xi). Note that we
do not add similar edges to E′ when xi ∈ E.

Split each vertex (xi, xi) into a source and sink, so that
|V ′| = 4n2 + 2n. Each source represents a possible start-
ing location for the pursuers, and each sink represents a final
location after the cycle has been cleared.

Now define a function w′ on V ′ as follows: w′(xi, xi) =
w(xi), and w′(xi, xj) = w(xi)+w(xj) when i 6= j. Observe
that w′ represents the number of pursuers needed to guard the
border, that is, the width of the border.

Finally, the minimum number of pursuers needed to clear
the cycle equals the minimum possible maximum value of
w′ encountered along any source-to-sink path in G′. This
bottleneck value of w′, and also the optimal path that yields
such w′, can be obtained via dynamic programming. 2

See Figure 2 for an example of Theorem 9. The cycle G1

with widths w as given reduces to the digraph G′1, with val-
ues for function w′ also given. The bottleneck value of w′

is 2, which can be obtained along two source-to-sink paths:
(a, a)→ (f, e)→ (b, b), and (b, b)→ (e, f)→ (a, a).

Also see Figure 3 for another example of Theorem 9. Cycle
G2 has widths w as given. The bottleneck value of w′ is 3,
which can be obtained along two source-to-sink paths in G′2.
One such optimal path is shown, and the other is its opposite.
Note that in the middle of the solution sequence, one pursuer
will travel from d to b and then back to d. So using 3 pursuers,
the minimum distance is 10 and the minimum time is 6.

Theorem 10 The minimum distance problem can be solved
in pseudo-polynomial time for paths.

Proof: Denote the path by (v1, e1, v2, . . . , en−1, vn) =
(x1, x2, x3, . . . , x2n−2, x2n−1). Minimum distance can be
obtained by marching along the path from v1 to vn, with pos-
sibly some pursuers halting or new pursuers starting at each
point. For 0 ≤ i ≤ 2n − 1 and 0 ≤ j ≤ k ≤ r, define
D(i, j, k) as the minimum distance needed to clear the sub-
path (x1, . . . , xi) such that j pursuers have halted and k total
pursuers have been used. We give a recursive definition of
D(i, j, k) such that the solution D(2n − 1, r, r) can be com-
puted in O(nr2) time using dynamic programming. For all
i, j, k, let D(i, j, k) be the minimum of these four values:

 
 

G1’ 

f,1 

e,1 

G1 a,2 b,2 

a,a,2 e,e,1 b,b,2 f,f,1 

a,e,3 e,b,3 b,f,3 f,a,3 

f,e,2 a,b,4 e,f,2 b,a,4 

f,b,3 a,f,3 e,a,3 b,e,3 

b,b,2 f,f,1 a,a,2 e,e,1 

Figure 2: First Example for Theorem 9

 
 

g,2 

f,1 

G2’ optimal path : 

h,2 

e,1 

G2 a,3 c,3 

b,2 

d,1 

e,h,3 e,d,2 b,d,3 f,d,2 f,g,3 c,c,3 a,a,3 

Figure 3: Second Example for Theorem 9

• If i = 0 then 0 else∞. (Initialization.)

• If i > 0 and k−j ≥ w(i) then D(i−1, j, k)+(k−j) ·L(xi)
else ∞. (This corresponds to clearing the vertex or edge xi.
For convenience, say L(xi) = 0 when xi ∈ V .)

• If j > 0 then D(i, j − 1, k) else ∞. (This corresponds to
halting a pursuer at xi.)

• If k > 0 then D(i, j, k − 1) else ∞. (This corresponds to
starting a new pursuer at xi.) 2

Theorem 11 The minimum distance problem can be solved
in pseudo-polynomial time for cycles.

Proof sketch: Combine the ideas in the proofs of Theo-
rems 9 and 10. Given cycle G, construct G′ to have nodes of
the form (xi, xj , k, l, m) where xi and xj are as in Theorem
9, k is the number of halted pursuers, l is the number of pur-
suers at xi, and m is the number of pursuers at xj . Each node
must satisfy w(xi) ≤ l, w(xj) ≤ m, and k + l + m ≤ r. As
a special case, when i = j, there are two nodes (a source and
a sink) each having the form (xi, xi, k, l).

Each edge (y′, z′) in G′ corresponds to a valid pursuer
move, and is assigned a weight W (y′, z′) equal to the shortest
distance that pursuers must travel in G to transition from state
y′ to state z′. The minimum distance solution for the pursuit-
evasion problem in G will be the minimum total weight along
any source-to-sink path in G′. The running time is O(n2r3).
2

Theorem 12 For any fixed number r of pursuers, the mini-
mum time problem can be solved in pseudo-polynomial time
for both paths and cycles.



Proof sketch: Similar to Theorem 11, but more compli-
cated. At most r different border vertices and/or edges can
be guarded, so at most r disjoint segments of the cycle can be
cleared. Construct G′ so that each node corresponds to a set
of at most r disjoint segments, the number of pursuers guard-
ing each border location, and the number of halted pursuers.
Assign to each edge (y′, z′) in G′ a weight W (y′, z′) equal
to the shortest time needed in G to transition from state y′ to
state z′. The minimum time solution for the pursuit-evasion
problem in G has the minimum total weight along any source-
to-sink path in G′. The running time is O(nrrr+1). 2

Theorem 13 The minimum pursuer problem can be solved in
pseudo-polynomial-time for stars.

Proof: Let x denote the central vertex of the star. Then any
procedure for clearing the star must work in three phases as
follows:
• Phase 1: Clear some edges before arriving at x. These edges

must all be cleared concurrently.

• Phase 2: Clear some edges while guarding x. These edges can
be cleared sequentially. If edge e is cleared in phase 2, and
w(e) ≥ w(e′), then we should also clear edge e′ during phase
2.

• Phase 3: Clear some edges after departing from x. These edges
must all be cleared concurrently.

All the edges of a star meet at the central vertex, so this three-
phase approach is the only way to clear a star without recon-
tamination. Phases 1 and/or 3 might be empty.

Here then is the pseudo-polynomial-time algorithm:
• Sort edges e1, . . . , em by descending w(e) values.

• For k = 1 to m do

– Suppose k edges e1, . . . , ek will be cleared during phases
1 and 3.

– Then the number of pursuers used during phase 2 is
w(x) + w(ek+1).

– Let S =
∑k

i=1
w(ei).

– We want to balance e1, . . . , ek between phases 1 and 3.
– Run a pseudo-polynomial-time subset sum algorithm on

w(e1), . . . , w(ek) to determine the largest possible sum
j ≤ S/2. [Garey and Johnson, 1979]

– Split e1, . . . , ek into two subsets that use j and S − j
pursuers respectively during phases 1 and 3.

– Let rk = max{w(x) + w(ek+1), S − j}.
• Choose a value k such that rk is minimized. 2

Theorem 14 The minimum pursuer problem can be solved in
pseudo-polynomial-time for 2-vertex graphs.

Proof: Let y, z denote the two vertices, such that w(y) ≤
w(z). Vertex y will remain guarded during the entire proce-
dure. Then any procedure for clearing the graph must work
in three phases similar to the algorithm for stars described
above, with central vertex x replaced by vertex z.

The pseudo-polynomial-time algorithm for 2-vertex graphs
is essentially the same as the algorithm given above for stars,
with just two minor changes: Replace w(x) in the star algo-
rithm by w(z), and add w(y) extra pursuers to the minimum
value that is computed. 2

3 Unit-Width Arbitrary-Length Graphs
This section considers only graphs for which all w(v) = 1
and all w(e) = 1. Also L(e) > 0 is arbitrary, but this is only
relevant when minimizing distance or time.

3.1 Complexity Results
Theorem 15 The minimum time problem is NP-hard for
stars, even for fixed r = 3 pursuers.

Proof: Let (x1, . . . , xn) be an instance of partition, and let
k =

∑n
i=1 xi/2. Construct a star G with edges e1, . . . , en+6.

The first n edges have L(ei) = xi, and the other six edges
have L(ei) = k.

We claim that the given partition instance has a solution iff
G can be cleared with three pursuers in time 4k, as follows:
First traverse three of the six length-k edges heading toward
the center vertex in time k. While one pursuer guards the cen-
ter vertex, the other two pursuers traverse each of the first n
edges twice (once in each direction) in time 2k, which is only
possible if the partition instance has a solution. Finally tra-
verse the remaining three length-k edges heading away from
the center vertex in time k. 2

Theorem 16 The minimum time problem is NP-hard for 2-
vertex graphs, even for fixed r = 4 pursuers.

Proof: Let (x1, . . . , xn) be an instance of partition, and let
k =

∑n
i=1 xi/2. Construct a graph G with vertices a, b and

edges e1, . . . , en+7. The first n edges have L(ei) = 2xi, the
next six edges have L(ei) = 2k, and the remaining edge has
L(en+7) = 1.

We claim that the given partition instance has a solution
iff G can be cleared with four pursuers in time 6k + 1, as
follows: First, while one pursuer guards vertex a, the other
pursuers traverse three of the six length-2k edges from a to b
in time 2k. Next, while two pursuers guard a and b, the other
two traverse each of the first n edges in time 2k, which is only
possible if the partition instance has a solution. Then, either
one or both of those two pursuers traverse edge en+7 in unit
time so that afterward there are three pursuers at one vertex
(say x) and one pursuer at the other vertex (say y). Finally,
while one pursuer guards vertex y, the other pursuers traverse
the remaining three length-2k edges from x to y in time 2k.
2

Theorem 17 The minimum time problem is strongly NP-hard
for stars.

Proof: Let (x1, . . . , x3n) be an instance of 3-partition,
and let k =

∑3n
i=1 xi/n. Construct a star G with edges

e1, . . . , e5n+2. The first 3n edges have L(ei) = xi, and the
other 2n + 2 edges have L(ei) = k.

We claim that the given 3-partition instance has a solution
iff G can be cleared with n+1 pursuers in time 4k, as follows:
First traverse n + 1 of the 2n + 2 length-k edges heading
toward the center vertex in time k. While one pursuer guards
the center vertex, the other n pursuers traverse each of the first
3n edges twice (once in each direction) in time 2k, which is
only possible if the 3-partition instance has a solution. Finally
traverse the remaining n + 1 length-k edges heading away
from the center vertex in time k. 2



Theorem 18 The minimum time problem is strongly NP-hard
for 2-vertex graphs.

Proof: Let (x1, . . . , x3n) be an instance of 3-partition, and
let k =

∑3n
i=1 xi/n. Construct a graph G with vertices a, b

and edges e1, . . . , e5n+2. The first 3n edges have L(ei) = xi,
and the other 2n + 2 edges have L(ei) = k. 2

We claim that the given 3-partition instance has a solution
iff G can be cleared with n + 2 pursuers in time 3k, as fol-
lows: First, while one pursuer guards vertex a, the other pur-
suers traverse n + 1 of the 2n + 2 length-k edges from a
to b in time k. Next, while two pursuers guard a and b, the
other n pursuers traverse each of the first 3n edges in time
k, which is only possible if the 3-partition instance has a so-
lution. Observe that each of these n pursuers must traverse
exactly three such edges, from b to a to b to a. Finally, while
one pursuer guards vertex b, the other pursuers traverse the
remaining n + 1 length-k edges from a to b in time k. 2

Theorem 19 The minimum time problem is strongly NP-hard
for cliques.

Proof: Let (x1, . . . , x3n) be an instance of 3-partition, and
let k =

∑3n
i=1 xi/n. Note that if n is even, we can reduce it

to the case when n is odd by defining x3n+1 = 1, x3n+2 = 1,
x3n+3 = k − 2, and n′ = n + 1. [For our reduction, it
won’t matter if these values are not between k/4 and k/2.]
So without loss of generality, we can assume that n is odd.

Construct a clique G with 6n + 2 vertices {a} ∪
{b1, . . . , b3n} ∪ {c0, . . . , c3n}. Let each L(a, bi) = xi, each
L(bi, bj) = 2k + 1, and each L(ci, cj) = 6k. Also let
L(a, ci) = k − 1 when i ≤ n, L(a, ci) = 3k + 1 when
n < i ≤ 2n, and L(a, ci) = 3k when i > 2n. Finally let
each L(ci, bj) = k − 1 when i < 3n/2, and L(ci, bj) = 3k
when i > 3n/2.

We claim that the given 3-partition instance has a solution
iff G can be cleared with (3n + 1)(6n + 1) pursuers in time
3k, as follows:

(⇒) Begin with 6n + 1 pursuers at each ci vertex, and let
these 6n+1 pursuers traverse the 6n+1 edges outward from
ci. Note that each edge (ci, cj) with length 6k will be cleared
in exactly 3k time, so we can now consider only the remain-
ing edges. Of the (3n + 1)/2 pursuers that arrive at each bj

at time k − 1, one remains at bj and the others head toward
bj+1, . . . , bj+(3n−1)/2. [Arithmetic in preceding subscripts
is modulo 3n.] Hence all the (bi, bj) edges and remaining
(ci, bj) edges will be cleared at time 3k.

The only edges yet to be considered are the edges incident
to vertex a. Note that n+1 pursuers will arrive at a at time k−
1. One pursuer remains at a, and the other n pursuers traverse
each of the (a, bi) edges twice (once in each direction) in time
2k, which is only possible if the 3-partition instance has a
solution. At time 3k − 1 there will again be n + 1 pursuers
at a. One remains at a, and the other n pursuers head toward
cn+1, . . . , c2n. Hence all the remaining (a, ci) edges will be
cleared at time 3k.

(⇐) The opposite direction of this proof is a simple but
huge case analysis (omitted due to space limitations). 2

3.2 Algorithmic Results
Proposition 20 We begin with some simple cases: (i) The
minimum number of pursuers needed to clear a path is 1.
(ii) The minimum number of pursuers needed to clear a cycle
is 2. (iii) The minimum number of pursuers needed to clear
a star with 3 or more edges is 2. (iv) The minimum number
of pursuers needed to clear a 2-vertex graph with 3 or more
edges is 3. (v) The minimum number of pursuers needed to
clear a clique with n ≥ 4 vertices is n.
Theorem 21 The minimum time and distance problems can
be solved in polynomial time for paths.

Proof: Let L denote the length of the path, and let r de-
note the number of pursuers. Divide the path into r segments
s1, . . . , sr of length L/r each. Note: each endpoint between
two consecutive segments does not necessarily coincide with
a vertex. For 1 ≤ i ≤ r, place pursuer i at the left end-
point of its segment if i is odd, and otherwise place pursuer
i at the right endpoint of its segment. Now all pursuers si-
multaneously move exactly distance L/r each to clear their
respective segments. So the minimum possible time is L/r,
and the minimum possible total distance is L. 2

Theorem 22 The minimum time and distance problems can
be solved in polynomial time for cycles.

Proof: Let L denote the total length of the cycle, and let
r ≥ 2 denote the number of pursuers. Define r′ = r if r
is even, and r′ = r − 1 if r is odd, so r′ is even in either
case. Beginning at any point, divide the cycle into r′ seg-
ments s1, . . . , sr′ of length L/r′ each. Arbitrarily use “left”
for clockwise, and “right” for counterclockwise around the
cycle. For 1 ≤ i ≤ r′, place pursuer i at the left endpoint of
its segment if i is odd, and otherwise place pursuer i at the
right endpoint of its segment. Now all pursuers simultane-
ously move exactly distance L/r′ each to clear their respec-
tive segments. So the minimum possible time is L/r′, and the
minimum possible total distance is L. 2

Theorem 23 The minimum distance problem can be solved
in polynomial time for stars.

Proof: If |E| ≤ 2 then solve using the path algorithm.
Now suppose |E| ≥ 3, and hence r ≥ 2. First consider when
the number of edges |E| ≥ 2r. Find A ⊆ E which consists
of the longest 2r edges. The shortest distance is obtained by
first traversing r of the edges in A heading toward the center
vertex, then traversing each edge in E − A twice (once in
each direction) while the center vertex remains guarded, and
finally traversing the remaining r edges of A heading away
from the center. Alternatively, if |E| < 2r, then the minimum
distance is trivially Σe∈E L(e). 2

Theorem 24 The minimum distance problem can be solved
in polynomial time for 2-vertex graphs.

Proof: If |E| = 1 then r ≥ 1, and solve using the path
algorithm. If |E| = 2 then r ≥ 2, and solve using the cycle
algorithm. Now suppose |E| ≥ 3, and hence r ≥ 3. One
pursuer resides at each of the two vertices, and a third pursuer
traverses each edge. The minimum distance is Σe∈E L(e). 2

Theorem 25 The minimum distance problem can be solved
in polynomial time for cliques.



Label the vertices and edges of T as follows while doing a postorder traversal.

• If v is a leaf then S(v) = {1}. Also L(v, parent(v)) = 1 if v 6= root(T ).

• If v is not a leaf then v has children c1, . . . , ck , where k ≥ 1. Let x be the
largest value that appears in at least two of the S(ci), or 0 if no such value exists.
Let y = maxi min(S(ci)), that is, the largest value that is the minimum of
any S(ci).

– If x < y then S(v) =
⋃

i
S(ci) − {1, 2, . . . , y − 1}. Also if

v 6= root(T ) then L(v, parent(v)) = y.
– If x = y and this value appears in exactly two of the S(ci) and is the

minimum in both sets, then let S′ =
⋃

i
S(ci)− {1, 2, . . . , y− 1}.

∗ If v = root(T ) then S(v) = S′.
∗ If v 6= root(T ) then let z be the smallest positive integer that is

not in S′. S(v) = S′ − {1, 2, . . . , z − 1} ∪ {z}. Also
L(v, parent(v)) = z.

– Otherwise, either x > y or (x = y and the conditions in the previous
case do not hold). Let z be the smallest integer exceeding x and that is
not in

⋃
i
S(ci). S(v) =

⋃
i
S(ci) − {1, 2, . . . , z − 1} ∪ {z}.

Also if v 6= root(T ) then L(v, parent(v)) = z.

Figure 4: Algorithm CLEARTHETREE

Proof: If |V | ≤ 3, then solve using the path or cycle algo-
rithm. Now suppose |V | ≥ 4, and hence r ≥ |V |, so without
loss of generality assume r = |V |. First let r − 1 pursuers
start at some vertex z and traverse the edges to the other r−1
vertices. If r is even, the rth pursuer now traverses an Eule-
rian circuit of G− z. Alternatively, if r is odd, let M be any
perfect matching in G− z. The rth pursuer now traverses an
Eulerian circuit of G− z −M , and then it is easy for the re-
maining r − 1 pursuers to clear the edges of M . In any case,
the minimum distance is Σe∈E L(e). 2

Minimum Pursuers on Trees
Recall that the minimum pursuer problem can be solved in
linear-time on trees [Megiddo et al., 1988]. Let Tr denote the
smallest tree that requires r pursuers to clear. So T1 has only
one edge, and T2 is a star with three edges. The following
results were obtained in [Megiddo et al., 1988]:

• For r ≥ 2, the smallest tree Tr that requires r pursuers can
be obtained by taking 3 copies of Tr−1 and fusing one leaf
from each copy. So Tr has n = 3r−1 + 1 vertices, and r =
1 + log3(n− 1) = O(lg n).

• If a given tree T can be cleared by r pursuers, then T can be
cleared by r pursuers in such a way that, at any instant, all
pursuers lie along a common path.

• A tree T can be cleared by r pursuers iff it contains a path P
such that splitting each degree-d vertex of P into d vertices of
degree 1 produces a forest of trees that can each be cleared by
r − 1 pursuers.

We now present a new linear-time algorithm for the mini-
mum pursuer problem on trees T , called CLEARTHETREE,
that is much shorter and algorithmically simpler than the ex-
isting algorithm because it uses a postorder traversal, see
Figure 4. We label each vertex v with a subset S(v) ⊆
{1, 2, . . . , r} where r is the minimum number of pursuers.
The intuition behind CLEARTHETREE is as follows: First,
when pursuer number min(S(v)) is at vertex v, the pursuers
numbered in the range {min(S(v)), . . . , max(S(v))} will be
located within the subtree rooted at v. Also, any pursuers
numbered above max(S(v)) will be located at ancestors of
v. Second, a pursuer that clears exactly one child of v should

continue up the path to also clear v. Third, a pursuer that
clears three or more children of v must not also clear v, be-
cause this would contradict the path conditions stated earlier.
Instead, v must be cleared by some higher-numbered pursuer,
and among such pursuers that are available, we choose a pur-
suer with the lowest number. Finally, a pursuer that clears
exactly two children of v might also be able to clear v, thus
forming a single path that changes direction at v. If so, then
we must also select another pursuer to clear the edge leading
upward from v, unless v is the root of the tree. However, in
certain circumstances given in Figure 4, merging two paths at
v would cause a violation of the stated path conditions, and,
if so, then this case is handled identically to the previous case
(when a pursuer clears three or more children of v).

CLEARTHETREE first locates the path P along which
pursuer number r moves. As pursuer r visits each vertex v
along P , pursuers {1, 2, . . . , r − 1} recursively clear each
subtree of v. Also, when pursuer r visits the vertex v of P
nearest to root(T ), pursuers {1, 2, . . . , r−1} recursively clear
the portion of T that lies above v, unless v = root(T ).

After CLEARTHETREE runs, T can be cleared using
r = max(S(root(T ))) pursuers. The edge labels L denote
which pursuer should clear each edge. (Note that sometimes
a pursuer is listed in a vertex label S but not in any incident
edge labels.)

Theorem 26 CLEARTHETREE is optimal.

Proof sketch: Most of the proof ideas have been discussed
above. CLEARTHETREE maintains the following invariant:
Consider any feasible set of pursuers that satisfies the same
conditions required of S(v). Among all possible such sets,
when sorted into descending order, S(v) is lexicographically
minimum. 2

See Figure 2 for an example of CLEARTHETREE on
tree T4. Sets S(v) are shown at the vertices, and labels
L(v, parent(v)) are shown along the edges. The number of
pursuers needed is 4, as computed at the root. During the
solution, pursuer 4 remains stationed at the root. Pursuer 3
clears edges (a,b), (a,c), and (a,d). While pursuer 3 guards
vertex b, pursuer 2 clears path k→e→l. When pursuer 2
guards vertex k, pursuer 1 clears path q→k→r; when pur-
suer 2 guards vertex e, pursuer 1 clears edge (e,b); and when
pursuer 2 guards vertex l, pursuer 1 clears path s→l→t. The
other two subtrees are cleared analogously while pursuer 3
guards vertices c and d.

Also see Figure 3 for another example of CLEAR-
THETREE. This is the same tree T4 except that one leaf (bb)
is now missing, and so only 3 pursuers are needed. During
this solution, pursuer 3 clears path b→a→c. The first two
subtrees are cleared the same as for Figure 2. While pursuer 3
guards vertex a, pursuer 2 clears path o→i→d→a. When pur-
suer 2 guards vertex o, pursuer 1 clears path y→o→z; when
pursuer 2 guards vertex i, pursuer 1 clears path aa→p→i; and
when pursuer 2 guards vertex d, pursuer 1 clears edge (j,d).

CLEARTHETREE runs in O(n·r) time, where the number
of pursuers needed is r = O(lg n). This is because the time
used to determine S(v) at each node v is proportional to the
product of r and the number of v’s children. This assumes
each set S(v) is maintained as a sorted doubly-linked list,
so that each union can be performed in O(r) time. A more
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Figure 6: Second Example for CLEARTHETREE

careful analysis of CLEARTHETREE shows that it actually
runs in O(n) time. The union operation can be implemented
to require at most j comparison steps, where j is the lesser of
the maxima of the two sets whose union is being performed.
(Such a union is destructive, that is, it might destroy the two
sets whose union is being taken.) An induction shows that for
1 ≤ j ≤ r, the number of unions that involve two sets that
each contain a value j or greater is at most 2n/2j . Therefore
the total time for all the unions is at most proportional to

Σ1≤j≤r[j ∗ 2n/2j ] = Σ1≤j≤rΣ1≤i≤j [2n/2j ]

= Σ1≤i≤rΣi≤j≤r[2n/2j ] ≤ Σ1≤i≤r[4n/2i] ≤ 4n = O(n).

4 Conclusions
We studied pursuit-evasion problems where a number of
pursuers have to clear a given graph. Overall, it appears
that pursuit-evasion problems on unit-width arbitrary-length
graphs tend to be easier than pursuit-evasion problems on
unit-length arbitrary-width graphs, where the minimum pur-
suer, distance and time problems are already NP-complete
for stars, trees, two-vertex graphs, series-parallel graphs and
cliques. Future work includes generalizing our results to
treewidth-k graphs for arbitrary k, extending our results to
different formulations of pursuit-evasion problems [Kirousis
and Papadimitriou, 1986; Bienstock and Seymour, 1991], and
resolving the three open slots in Figure 1. To show that any
of these three open problems are in P, we would need an al-

gorithm more general than CLEARTHETREE which solves
the minimum pursuer problem on trees.
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