
Improved Solvers for Bounded-Suboptimal Multi-Agent Path Finding∗

Liron Cohen Tansel Uras T. K. Satish Kumar Hong Xu Nora Ayanian Sven Koenig
Department of Computer Science
University of Southern California

{lironcoh, turas}@usc.edu tkskwork@gmail.com {hongx, ayanian, skoenig}@usc.edu

Abstract
Multi-Agent Path Finding (MAPF) with the ob-
jective to minimize the sum of the travel times
of the agents along their paths is a hard combi-
natorial problem. Recent work has shown that
bounded-suboptimal MAPF solvers, such as En-
hanced Conflict-Based Search or ECBS(w1) for
short, run often faster than optimal MAPF solvers
at the cost of incurring a suboptimality factor w1,
that is due to using focal search. Other recent work
has used experience graphs to guide the search of
ECBS(w1) and speed it up, at the cost of incur-
ring a separate suboptimality factor w2, that is due
to inflating the heuristic values. Thus, the combi-
nation has suboptimality factor w1w2. In this first
feasibility study, we develop a bounded-suboptimal
MAPF solver, Improved-ECBS or iECBS(w1) for
short, that has suboptimality factor w1 rather than
w1w2 (because it uses experience graphs to guide
its search without inflating the heuristic values) and
can run faster than ECBS(w1). We also develop
two first approaches for automatically generating
experience graphs for a given MAPF instance. Fi-
nally, we observe heavy-tailed behavior in the run-
times of these MAPF solvers and develop a simple
rapid randomized restart strategy that can increase
the success rate of iECBS(w1) within a given run-
time limit.

1 Introduction
Given a directed or undirected graph and a set of agents with
unique start and goal vertices, the Multi-Agent Path Find-
ing (MAPF) problem is to find collision-free paths for all
agents from their respective start vertices to their respective
goal vertices. The agents traverse edges in unit time but can
also wait in vertices. The MAPF problem arises in appli-
cation domains such as automated Kiva-like (now: Amazon

∗Our research was supported by by NASA via Stinger Ghaffar-
ian Technologies as well as NSF under grant numbers 1409987 and
1319966. The views and conclusions contained in this document are
those of the authors and should not be interpreted as representing the
official policies, either expressed or implied, of the sponsoring orga-
nizations, agencies or the U.S. government.

Robotics) warehousing [Wurman et al., 2008] and airport sur-
face operations [Morris et al., 2016]. Minimizing the solu-
tion cost given by the sum of the travel times of the agents
along their paths is NP-hard [Yu and LaValle, 2013]. Opti-
mal MAPF solvers, such as Conflict-Based Search or CBS
for short [Sharon et al., 2015], are thus often slow. Re-
cent work has shown thatw-suboptimal (also called bounded-
suboptimal) MAPF solvers run faster than optimal MAPF
solvers at the cost of incurring a suboptimality factor w ≥ 1.
In other words, they are guaranteed to find solutions whose
solution costs are at most w times the minimum solution
costs. Enhanced Conflict-Based Search or ECBS (w1) for
short [Barer et al., 2014] is a w1-suboptimal variants of CBS
(for parameter w1 ≥ 1). Its suboptimality factor is due
to it using focal search [Pearl and Kim, 1982] with param-
eter w1. Larger values of w1 result in greedier searches.
CBS+HWY(w2) [Cohen et al., 2015] is a w2-suboptimal
variant of CBS (for parameter w2 ≥ 1). Its suboptimality
factor is due to it inflating some of the admissible heuris-
tic values by factor w2, making use of experience graphs
[Phillips et al., 2012] in form of human-generated directed
highways. Larger values of w2 allow the paths of agents to
conform more to the highways. ECBS(w1)+HWY(w2) [Co-
hen et al., 2015] combines both of the above approaches
by using focal searches with highways and has subopti-
mality factor w1w2. In this first feasibility study, we de-
velop a w1-suboptimal variant of ECBS(w1)+HWY(w2),
Improved-ECBS or iECBS(w1) for short, that also uses fo-
cal searches with highways but has suboptimality factor w1

rather than w1w2. Thus, iECBS(w1) has only one param-
eter, which makes parameter-tuning easy. This parameter
is, like the parameter of ECBS(w1), the suboptimality fac-
tor, which makes it easy to compare both MAPF solvers
fairly. Our experimental results show that iECBS(w1) can
run faster than ECBS(w1) despite both MAPF solvers hav-
ing the same suboptimality factor. So far, the highways
used with MAPF solvers have been human-generated. We
also develop two first approaches for automatically generat-
ing experience graphs for a given MAPF instance that can
make ECBS(w1)+HWY(w2) and iECBS(w1) about as fast as
human-generated experience graphs in Kiva-like warehous-
ing domains, thus potentially reducing the dependency on hu-
man expertise for highway generation. Finally, we observe
heavy-tailed behavior in the runtimes of these MAPF solvers

and develop a simple rapid randomized restart strategy that
can increase the success rate of iECBS(w1) within a given
runtime limit.

2 Background
We now define the MAPF problem formally: We are given
a directed or undirected graph G = (V,E) and a set of
K agents 1, . . . ,K. Each agent j has a unique start ver-
tex sj ∈ V and a unique goal vertex gj ∈ V . At each
time step, each agent can either move to a neighboring ver-
tex or wait at its current vertex, both with cost one. A so-
lution of a MAPF instance is a set of feasible paths, one
path {sj0, . . . , sjTj

, sjTj+1, . . .} for each agent j ∈ {1, . . . ,K},
such that no two paths collide. A path for agent j is feasible
if and only if 1) it starts at the start vertex of agent j, that is,
sj0 = sj ; 2) it ends at the goal vertex of agent j and remains
there, that is, there exists a smallest Tj such that sjTj

= gj

and, for each t > Tj , sjt = gj ; and 3) every action is a le-
gal move or wait action, that is, for all t ∈ {0, 1, . . . , Tj −
1} , 〈sjt , sjt+1〉 ∈ E or sjt = sjt+1. A collision between the
paths of agents j and k is either a vertex collision (j, k, s, t),
that is, s = sjt = skt , or an edge collision (j, k, s1, s2, t), that
is, s1 = sjt = skt+1 and s2 = sjt+1 = skt . The travel time
of agent j is the number of time steps Tj until it reaches its
goal vertex. Our objective is to minimize the solution cost,
given as the sum of the travel times of all agents, which is
a common objective in the literature [Yu and LaValle, 2013;
Sharon et al., 2015]. A variety of MAPF solvers have been
developed by different research groups, see [Wagner, 2015]
and [Hoenig et al., 2016] for overviews. In the following, we
describe the ones that are important for this paper.

CBS [Sharon et al., 2015] is an optimal MAPF solver. It
performs high-level and low-level searches. Each high-level
node contains a set of constraints and, for each agent, a fea-
sible path that respects the constraints. The high-level root
node has no constraints. The high-level search of CBS is a
best-first search that uses the costs of the high-level nodes as
their f -values. The cost of a high-level node is the sum of
the travel times along its paths. When CBS expands a high-
level node N , it checks whether the node is a goal node. A
high-level node is a goal node if and only if none of its paths
collide. If N is a goal node, then CBS terminates success-
fully and outputs the paths N as solution. (Thus, the fewer
collisions there are in high-level nodes, the faster CBS termi-
nates.) Otherwise, at least two paths collide. CBS chooses a
collision to resolve and generates two high-level children of
N , called N1 and N2. Both N1 and N2 inherit the constraints
of N . If the chosen collision is a vertex collision (j, k, s, t),
then CBS adds the vertex constraint (j, s, t) to N1 (that pro-
hibits agent j from occupying vertex s at time step t) and the
vertex constraint (k, s, t) to N2. If the chosen collision is an
edge collision (j, k, s1, s2, t), then CBS adds the edge con-
straint (j, s1, s2, t) to N1 (that prohibits agent j from moving
from vertex s1 to vertex s2 between time steps t and t + 1)
and the edge constraint (k, s2, s1, t) to N2. During the gener-
ation of high-level node N , CBS performs a low-level search
for the agent i affected by the added constraint. The low-

level search for agent i is a (best-first) A* search that ignores
all other agents and finds a minimum-cost path from the start
vertex of agent i to its goal vertex that is both feasible and
respects the constraints of N that involve agent i.

ECBS(w1) [Barer et al., 2014] is a w1-suboptimal vari-
ant of CBS whose high-level and low-level searches are focal
searches rather than best-first searches. A focal search, like
A*, uses an OPEN list whose nodes n are sorted in increas-
ing order of their f -values f(n) = g(n) + h(n), where h(n)
are the primary heuristic values. Unlike A*, a focal search
with suboptimality factor w1 also uses a FOCAL list of all
nodes currently in the OPEN list whose f -values are no larger
thanw1 times the currently smallest f -value in the OPEN list.
The nodes in the FOCAL list are sorted in increasing order
of their secondary heuristic values. A* expands a node in
the OPEN list with the smallest f -value, but a focal search
expands instead a node in the FOCAL list with the smallest
secondary heuristic value. Thus, the secondary heuristic val-
ues should favor a node in the FOCAL list that is close to a
goal node to speed up the search and thus exploit the leeway
afforded by w1 that A* does not have available. If the pri-
mary heuristic values are admissible, then a focal search is
w1-suboptimal. The secondary heuristic values can be inad-
missible. The high-level and low-level searches of ECBS(w1)
are focal searches. During the generation of a high-level node
N , ECBS(w1) performs a low-level focal search with OPEN
list OPENi(N) and FOCAL list FOCALi(N) for the agent
i affected by the added constraint. The high-level and low-
level focal searches of ECBS(w1) use measures related to the
number of collisions as secondary heuristic values. Thus, the
high-level nodes of ECBS(w1) with reasonably small values
of w1 > 1 can have fewer collisions than the high-level nodes
of CBS, and ECBS(w1) then runs faster. On the other hand,
the path costs can become large for ECBS(w1) with large val-
ues ofw1 due to the larger leeway afforded byw1. The agents
might then move around in wiggly lines, which increases the
chance of collisions, thus increasing the number of collisions
in the high-level nodes of ECBS(w1) and slowing it down.
Thus, larger values of w1 do not necessarily entail smaller
runtimes of ECBS(w1).

ECBS(w1)+HWY(w2) [Cohen et al., 2015] is a w1w2-
suboptimal variant of ECBS(w1) that inflates some of the
primary admissible heuristic values of the low-level search
by a factor of w2, making use of experience graphs [Phillips
et al., 2012] in form of a human-generated set of directed
edges, called highway. In particular, it inflates the costs of
wait actions and move actions along edges that do not be-
long to the highway by a factor of w2 during the computa-
tion of the low-level heuristic values, resulting in the high-
way heuristic values from [Cohen et al., 2015]. The highway
heuristic values bias the low-level search to find paths that
use the highway edges, which tends to reduce the number of
head-on collisions (where the colliding agents move in op-
posite directions) in dense environments, such as Kiva-like
warehousing domains [Cohen et al., 2015]. Thus, the high-
level nodes of ECBS(w1)+HWY(w2) with w2 > 1 can have
fewer collisions than the high-level nodes of ECBS(w1), and
ECBS(w1)+HWY(w2) then runs faster.

Low-level (for Agent i in High-level node N) High-level
SUB-OPT

Sort n ∈ OPENi(N) Sort n ∈ FOCALi(N) Sort N ∈ OPEN Sort N ∈ FOCAL

ECBS(w1)
1. gi(n) + hi

sp(n)

2. gi(n)

1. hi
c(N)

(n)

2. gi(n) + hi
sp(n)

3. gi(n)
1.

∑
i

min
n∈OPENi

(gi(n) + hi
sp(n))

1. hc(N)

2. g(N)
w1

ECBS(w1)+HWY(w2)
1. gi(n) + hi

hwy(n)

2. gi(n)

1. hi
c(N)

(n)

2. gi(n) + hi
hwy(n)

3. gi(n)

1.
∑
i

min
n∈OPENi

(gi(n) + hi
hwy(n))

1. hc(N)

2. g(N)
w1 · w2

iECBS(w1)
1. gi(n) + hi

sp(n)

2. gi(n)

1. hi
c(N)

(n)

2. gi(n) + hi
hwy(n)

3. gi(n)

1.
∑
i

min
n∈OPENi

(gi(n) + hi
sp(n))

1. hc(N)

2. g(N)
w1

1

Figure 1: Summarizes the differences in the high-level and low-level searches for various MAPF solvers. The main criterion
is labeled 1, the first tie-breaking criterion is labeled 2, and the second tie-breaking criterion is labeled 3. Smaller values are
preferred for all comparisons except for all gi(n) values in the low-level search.

3 iECBS

We now develop a w1-suboptimal MAPF solver, iECBS(w1),
that, like ECBS(w1)+HWY(w2), uses a focal search with
highways but has suboptimality factor w1 rather than w1w2

because it uses the highways to compute the secondary
heuristic values for the low-level search rather than the pri-
mary ones and thus does not inflate the primary ones. The
w1-suboptimality proofs of ECBS(w1) apply to iECBS(w1)
since both MAPF solvers construct their FOCAL lists for the
high-level and low-level searches identically.

The low-level search of ECBS(w1) uses as secondary
heuristic values triples of the number of vertex and edge col-
lisions with the paths of other agents, the f -value (as pri-
mary tie-breaking criterion) and the g-value (as secondary
tie-breaking criterion). The low-level search of iECBS(w1),
on the other hand, uses as secondary heuristic values triples
of the number of vertex and edge collisions with the paths
of other agents, the highway heuristic value (defined below)
and the g-value, which are again compared lexicographically.
Smaller values are preferred for all comparisons except for all
gi(n) values in the low-level search, for which larger values
are preferred.

Figure 1 summarizes the differences between ECBS(w1),
ECBS(w1)+HWY(w2) and iECBS(w1). Here, gi(n) is the g-
value of low-level node n for agent i. hisp(n) is the admissible
h-value of low-level node n for agent i, defined to be the cost
of a minimum-cost path from n to the goal vertex of agent i
that is feasible but ignores all other agents and does not neces-
sarily respect all constraints of the corresponding high-level
node. hisp(n) is the inadmissible highway heuristic value of
low-level node n for agent i, defined to be, after inflating all
costs of non-highway edges by a factor of w2, the cost of a
minimum-cost path from n to the goal vertex of agent i that is
feasible but ignores all other agents and does not necessarily
respect all constraints of the corresponding high-level node.
hic(N)(n) is the inadmissible collision heuristic value of low-
level node n for agent i during the generation of high-level
node N , defined to be the number of vertex and edge colli-
sions on the path from the start vertex of agent i to n with
the paths of the other agents in N . g(N) is the g-value of

1 2 3 4 5 6 7 8 9 10

ECBS(1.5)
Time 287 300 92 300 300 300 71 33 58 54
Cost 9357 n/a 9234 n/a n/a n/a 9267 9349 9179 9676

iECBS(1.5)
Time 28 15 7 7 41 8 77 8 7 17
Cost 9141 9002 8930 8925 9143 8967 9070 9138 8785 9181

1

Figure 2: Compares the runtimes (in seconds) and solution
costs of iECBS(1.5) with a human-generated highway and
ECBS(1.5) in a Kiva-like warehousing domain. Each column
corresponds to a randomly generated MAPF instance. n/a
indicates that the 300-second runtime limit is reached.

A
re
a1

A
re
a2

Figure 3: Shows a Kiva-like warehousing domain and a
human-generated highway in red [Cohen et al., 2015].

high-level node N , defined to be the sum of the travel times
along all paths in N . Finally, hc(N) is the inadmissible col-
lision heuristic value of high-level node N , defined to be the
number of vertex and edge collisions between the paths in N .

3.1 Experimental Results
We now show that iECBS(w1) can run faster than ECBS(w1)
in the Kiva-like warehousing domain with narrow corridors
of width one shown in Figure 3. We compare iECBS(1.5)
with the human-generated highway shown in Figure 3 and
ECBS(1.5). We choose suboptimality factor 1.5 since it is
sufficiently small to result in a large runtime for ECBS(w1).
We use 10 randomly generated MAPF instances with 130
agents each, half of which are assigned a random start vertex
in Area 1 and a random goal vertex in Area 2, and vice-versa
for the other half of the agents. We run all experiments in

this paper on a PC with a 3.2GHz Intel Core i7 CPU and a
300-second runtime limit per MAPF instance, unless stated
otherwise. Figure 2 reports the runtimes (in seconds) and so-
lution costs of both MAPF solvers on each MAPF instance.
The runtime is more important for us than the solution cost
since both MAPF solvers have the same suboptimality fac-
tor. The runtimes of iECBS(1.5) are smaller than the ones of
ECBS(1.5), showing that highways can guide the search of
iECBS(1.5) well.

We do not compare ECBS(w1)+HWY(w2) and
iECBS(w1). If one wants both of them to have subop-
timality factor w, then one needs to choose w1 with w1 ≤ w
for iECBS(w1) as well as w1 and w2 with w1w2 < w for
ECBS(w1)+HWY(w2). As argued earlier, the runtimes are
not necessarily minimized when w1 = w for iECBS(w1)
and w1w2 = w for ECBS(w1)+HWY(w2). Thus, there are
many choices of parameters and it is unclear how to compare
both MAPF solvers fairly. When trying several combinations
of w1 and w2, we notice that they are often too small for
ECBS(w1)+HWY(w2) to run sufficiently fast.

4 Automatically Generating Highways
We now develop two approaches for automatically generat-
ing highways. We develop two approaches rather than one
because none exist so far and we thus pursue different ideas
to increase the chances to find a strong one. The idea be-
hind both approaches is simple: Solving the MAPF problem
optimally is NP-hard but computing the minimum-cost paths
for all agents independently is fast. The information in these
minimum-cost paths can be used heuristically to automati-
cally generate highways.

For a given MAPF instance, first a highway is automat-
ically generated by one of the approaches and then the in-
stance is solved by ECBS(w1)+HWY(w2) or iECBS(w1)
with the generated highway. We compare the automati-
cally generated highways to human-generated highways and
a Criss-Cross (CC) highway as baselines, The movement di-
rection of a CC highway is from west to east in odd-numbered
west-east rows and from south to north in odd-numbered
north-south columns (and the opposite directions in even-
numbered rows and columns). The CC highway is inspired
by MAPF research done in the context of avoiding deadlocks
[Wang and Botea, 2008] and used here since it avoids head-on
collisions.

4.1 Graphical Model-Based Approach
We now use a Graphical Model (GM) to obtain an approach
for automatically generating highways for undirected two-
dimensional four-neighbor grids with missing vertices that
correspond to blocked cells. A GM is a graph whose nodes
represent variables and whose edges represent interactions
between variables, resulting in a factored representation of
such interactions [Koller and Friedman, 2009]. We associate
two variables Xi and Yi with each unblocked cell i. Figure
4(a) illustrates a GM. Solid circles represent theXi variables,
and hollow circles represent the Yi variables.

The Xi variables are observable and correspond to the
following statistics gathered for cell i when computing the

(a)

13

2

4

45◦

315◦

135◦

225◦

(b)

Figure 4: Shows a GM over a 4x4 grid (a) and its mapping
from angles to discrete values (b).

minimum-cost paths for all agents independently and assum-
ing that the agents follow these paths: 1) whether a colli-
sion occurs between any two agents in cell i (to be precise:
whether a vertex collision occurs in the cell or an edge colli-
sion occurs in any adjacent edge), 2) whether the magnitude
of the direction vector DV(i) is greater than 0.5 and 3) the
direction of DV(i) discretized into the four compass direc-
tions. The two-dimensional direction vector DV(i), inspired
by [Jansen and Sturtevant, 2008], is computed by generating
two unit vectors whenever an agent traverses i, namely one in
its entry direction and one in its exit direction. DV(i) is the
average of all such unit vectors.

The Yi variables are hidden and indicate the compass direc-
tion to the neighboring cell, if any, to which a highway edge
leaving i should be generated. If the value of Yi is ’None’
or the indicated neighboring cell is blocked, then no highway
edge is generated. The values of the Yi variables are deter-
mined by solving the maximum-a-posteriori estimation prob-
lem for the GM with the factors shown in Figure 5. For exam-
ple, f(Xi = 111, Yi = None) = 1. The rationale behind the
values of the factors is as follows: 1) Consider an unblocked
cell i. If a collision occurs in i, then there is a preference to
have a highway edge leave i in the discretized direction of
DV(i). A larger discretized magnitude of DV(i) indicates a
stronger preference. These factors f(Xi, Yi) are represented
by the black edges in Figure 4(a). 2) Consider two unblocked
cells i and j that are horizontal [vertical] neighbors. There is
a preference to have highway edges leave them in the same
horizontal [vertical] direction (to construct a longer highway)
or leave them in opposite vertical [horizontal] directions (to
construct two highways in opposite directions next to each
other to allow for two-way traffic). These factors fH(Yi, Yi)
[fV (Yi, Yi)] are represented by the blue edges in Figure 4(a).
We do not completely optimize the values of the factors.
While solving the maximum-a-posteriori estimation problem
is itself NP-hard even for the special case of two-dimensional
grids, there are approaches that work well in practice. For ex-
ample, our problem corresponds to a two-dimensional hidden
Markov model, for which specialized approaches exist. Since
we derive only heuristic values from the highways, we do not
require an exact solution and thus use Gibbs sampling [Koller
and Friedman, 2009] with 5, 000 samples. The GM-based
approach runs in about one second in our experiments and
thus is fast compared to running the MAPF solvers. Our im-
plementation of the GM-based approach uses libDAI [Mooij,
2010].

Xi Yi f(Xi, Yi)
0?? None 6
0?? East 1
0?? North 1
0?? West 1
0?? South 1

101 ; 111 None 3 ; 1
101 ; 111 East 6 ; 24
101 ; 111 North 1 ; 1
101 ; 111 West 1 ; 1
101 ; 111 South 1 ; 1
102 ; 112 None 3 ; 1
102 ; 112 East 1 ; 1
102 ; 112 North 6 ; 24
102 ; 112 West 1 ; 1
102 ; 112 South 1 ; 1
103 ; 113 None 3 ; 1
103 ; 113 East 1 ; 1
103 ; 113 North 1 ; 1
103 ; 113 West 6 ; 24
103 ; 113 South 1 ; 1
104 ; 114 None 3 ; 1
104 ; 114 East 1 ; 1
104 ; 114 North 1 ; 1
104 ; 114 West 1 ; 1
104 ; 114 South 6 ; 24

Yi Yj fH(Yi, Yj) fV (Yi, Yj)
None None 6 6
None East 1 1
None North 1 1
None West 1 1
None South 1 1
East None 2.8 5
East East 5 0.2
East North 1 1
East West 0.2 2.8
East South 1 1

North None 5 2.8
North East 1 1
North North 0.2 5
North West 1 1
North South 2.8 0.2
West None 2.8 5
West East 0.2 2.8
West North 1 1
West West 5 0.2
West South 1 1
South None 5 2.8
South East 1 1
South North 2.8 0.2
South West 1 1
South South 0.2 5

1

Figure 5: Shows the different factors of our GM. The first
digit in the value of Xi indicates whether (‘1’) or not (‘0’)
there is a collision in the cell. The second digit indicates
whether the magnitude of DV(i) is greater than 1/2 (‘1’) or not
(‘0’). The third digit indicates whether the direction of DV(i)
is in the eastern quadrant [315◦, 45◦) (‘1’), northern quad-
rant [45◦, 135◦) (‘2’), western quadrant [135◦, 225◦) (‘3’) or
southern quadrant [225◦, 315◦) (‘4’). ‘?’ represents a wild-
card.

4.2 Heat Map-Based Approach
We now use a Heat Map (HM) to obtain an approach for
automatically generating highways for arbitrary undirected
graphs, inspired by an oracular approach for solving multi-
commodity flow problems [Leighton et al., 1995]. Different
from the GM-based approach, it computes the paths sequen-
tially (by repeatedly picking an agent randomly and comput-
ing its minimum-cost path using the current HM costs of the
edges), and each path is influenced by the previously com-
puted paths because agents are given an incentive for follow-
ing previously computed paths until the capacity constraints
of edges (here: equal to one) are reached. The edges that are
used frequently afterMaxIterations path computations (for
parameter MaxIterations > 1), namely those with small
HM costs, become the highway edges.

Algorithm 1 shows the HM-based approach, which first
converts each undirected edge to two directed edges with HM
costs one and then updates the following values for each di-
rected edge 〈u, v〉 to update its HM cost: 1) n(u, v) (initial-
ized to zero) is the number of times the directed edge is cho-
sen in any minimum-cost path. 2) p(u, v) is the follow pref-
erence of the edge, defined to be αn(u, v)/MaxIterations
(for parameter α ∈ (0, 1)). The follow preferences encour-
age agents to traverse directed edges that appear in previ-
ously computed paths. 3) t(u, v) is the interference cost of
the edge, defined to be βn(v, u)/MaxIterations (for pa-

Algorithm 1: Heat Map-Based Approach.
input : MAPF instance
output: Highway edges

1 Convert each undirected edge (u, v) ∈ E to two directed
edges 〈u, v〉 and 〈v, u〉 with HM costs one.

2 for iteration := 1 to MaxIterations do
3 Pick a random (si, gi) pair.
4 Compute a minimum-cost path P from si to gi in the

directed graph using the current HM costs of the
edges.

5 For each edge 〈u, v〉 on this path P , increase n(u, v)
by 1 and then update the follow preference p(u, v),
the saturation cost s(u, v), and the interference cost
of the opposite edge t(v, u).

6 Return some of the edges with small HM costs as
highway edges.

rameter β > 1). The interference costs discourage agents
from traversing opposite directed edges (that correspond to
the same undirected edge). 4) s(u, v) is the saturation cost of
the edge, defined to be γ(n(u,v)+n(v,u))/(2MaxIterations) (for
parameter γ > 1). 5) c(u, v) is the HM cost of the edge,
defined to be 1 − p(u, v) + t(u, v) + s(u, v). Our imple-
mentation uses parameters α = 0.5, β = 1.2, γ = 1.3 and
MaxIterations = 100, 000. It considers the 1/7th of the
edges with the lowest HM costs after MaxIterations iter-
ations and then returns 1/5th of these edges randomly. We
do not completely optimize the values of these parameters.
The HM-based approach runs in about six seconds in our ex-
periments and thus is fast compared to running the MAPF
solvers.

4.3 Experimental Results
We now show that the GM-based and HM-based approaches
can make ECBS(w1)+HWY(w2) and iECBS(w1)+HWY
about as fast as a human-generated highway in Kiva-like
warehousing domains. We report the median over 10 trials for
the same experimental set-up as before. Figure 6(a) shows the
median runtimes of the ECBS-based MAPF solvers with sub-
optimality factor 3. We choose this suboptimality factor since
it has been used before [Cohen et al., 2015]. The runtime on a
MAPF instance counts as 300 if the 300-second runtime limit
is reached. We do not include the runtime needed to generate
the highways since it is fast compared to running the MAPF
solvers. In Figure 6(a), ECBS(1.5)+HWY(2) runs faster and
has a smaller median absolute deviation than ECBS(3) in
many cases, despite having the same suboptimality factor.
Furthermore, ECBS(1.5)+HWY(2) with automatically gen-
erated highways runs about as fast as with human-generated
highways in many cases. Figure 6(b) shows a similar behav-
ior for the iECBS-based MAPF solvers with suboptimality
factor w1 = 2. We choose this suboptimality factor since it
minimizes the median runtime of ECBS(w1). Yet, iECBS(2)
runs faster than ECBS(2) in many cases despite having the
same suboptimality factor.

Figure 7 repeats the experiment for 150 agents but we now

100 120 140 160 180

Number of Agents

0

100

200

300

T
im

e
[s

ec
]

ECBS(3)
ECBS(1.5)+HUMAN(2)
ECBS(1.5)+GM(2)
ECBS(1.5)+HM(2)
ECBS(1.5)+CC(2)

(a) Median runtimes (in seconds) of ECBS(1.5)+HWY(2) with dif-
ferent highways (HUMAN, GM, HM and CC) and ECBS(3).

100 120 140 160 180

Number of Agents

0

100

200

300

T
im

e
[s

ec
]

ECBS(2)
iECBS(2)+HUMAN(2)
iECBS(2)+GM(2)
iECBS(2)+HM(2)
iECBS(2)+CC(2)

(b) Median runtimes (in seconds) of iECBS(2) with different high-
ways (HUMAN, GM, HM and CC) and ECBS(2).

100 120 140 160 180

Number of Agents

0

2000

4000

6000

8000

10000

12000

14000

C
os

t

ECBS(3)
ECBS(1.5)+HUMAN(2)
ECBS(1.5)+GM(2)
ECBS(1.5)+HM(2)
ECBS(1.5)+CC(2)

(c) Median solution costs of ECBS(1.5)+HWY(2) with different
highways (HUMAN, GM, HM and CC) and ECBS(3).

100 120 140 160 180

Number of Agents

0

2000

4000

6000

8000

10000

12000

14000

C
os

t

ECBS(2)
iECBS(2)+HUMAN(2)
iECBS(2)+GM(2)
iECBS(2)+HM(2)
iECBS(2)+CC(2)

(d) Median solution costs iECBS(2) with different highways (HU-
MAN, GM, HM and CC) and ECBS(2).

100 120 140 160 180

Number of Agents

0

0.2

0.4

0.6

0.8

1

Su
cc

es
s

R
at

e

ECBS(3)
ECBS(1.5)+HUMAN(2)
ECBS(1.5)+GM(2)
ECBS(1.5)+HM(2)
ECBS(1.5)+CC(2)

(e) Success rates of ECBS(1.5)+HWY(2) with different highways
(HUMAN, GM, HM and CC) and ECBS(3).

100 120 140 160 180

Number of Agents

0

0.2

0.4

0.6

0.8

1

Su
cc

es
s

R
at

e

ECBS(2)
iECBS(2)+HUMAN(2)
iECBS(2)+GM(2)
iECBS(2)+HM(2)
iECBS(2)+CC(2)

(f) Success rates of iECBS(2) with different highways (HUMAN,
GM, HM and CC) and ECBS(2).

Figure 6: Shows the median runtimes (in seconds), median solution costs and success rates of various MAPF solvers in a Kiva-
like warehousing domain for various numbers of agents. Each data point is the median or average over 10 trials. A vertical bar
around a data point indicates the median absolute deviation.

report the median over 50 (rather than only 10) trials with dif-
ferent instances than before. We choose 150 agents because
the 300-second runtime limit is reached for many MAPF
instances with 150 and 160 agents and the MAPF solvers
seem to run faster with human-generated highways than au-
tomatically generated ones in some of these cases. Here,
ECBS(1.5)+HWY(2) and iECBS(2) with automatically gen-
erated highways run about as fast as with human-generated
highways but iECBS(2) also runs fast with the CC high-
way while ECBS(1.5)+HWY(2) does not. However, we can
slow down iECBS(2) with the CC highway substantially with
small changes to the map, such as changing the spacing of the
corridors, due to its fixed layout.

5 Rapid Randomized Restarts

We now develop a simple rapid randomized restart strategy
that can increase the success rate of iECBS(w1) within a
given runtime limit. Figures 6 and 7 show large median ab-
solute deviations of the runtime of the MAPF solvers, similar
to problems studied in the context of heavy-tailed phenomena
in combinatorial search [Gomes et al., 2000]. This observa-
tion leads us to develop a rapid randomized restart strategy
for MAPF solvers. The idea is for the MAPF solvers to per-
form multiple short runs rather than one long run. Each run is
performed using a random permutation of the initial order in
which individual paths are planned for the agents. The low-
level searches try to avoid collisions with previously com-

ECBS
(48%)

HUMAN
(60%)

 GM
(80%)

 HM
(86%)

 CC
(28%)

(a) ECBS(1.5)+HWY(2)
with different highways (HU-
MAN, GM, HM and CC) and
ECBS(3)

ECBS
(56%)

HUMAN
(92%)

 GM
(76%)

 HM
(78%)

 CC
(80%)

(b) iECBS(2) with different
highways (HUMAN, GM, HM
and CC) and ECBS(2).

Figure 7: Shows the median runtimes (in seconds) of various
MAPF solvers in a Kiva-like warehousing domain with 150
agents. Each data point is the median over 50 trials. The
vertical bar around a data point indicates the median absolute
deviation. The percentage indicates the success rate over the
50 trials.

Table 1: My caption

“easy” “hard” “all”
100 sec 97.65% 96.87% 97.60%
60 sec 98.57% 98.81% 98.70%

1

Figure 8: Shows how a rapidly randomized restart strategy
improves the success rate of iECBS(2) with GM-based high-
ways for a given 300-second runtime limit. The rows are the
runtime limits. The 100-second row, for example, splits the
300-second runtime limit into 3 runs with a 100-second run-
time limit each. The columns partition all 50 MAPF instances
into 38 “easy’ ones that are solvable without rapid random-
ized restarts and 12 “hard” ones that are not.

puted paths for other agents, which has a significant effect
not only on the paths found in the high-level root node but
also on which collisions need to be resolved as the high-level
search proceeds. Thus, it has a significant effect on the run-
time, which our rapid randomized restart strategy exploits.

5.1 Experimental Results
We now partition the 50 MAPF instances in Figure 7(b) into
38 “easy” MAPF instances that iECBS(2) with GM-based
highways solves within the 300-second runtime limit and 12
“hard” MAPF instances that it does not solve. Figure 8 re-
ports the success rates for both partitions of MAPF instances
and different time limits. We perform 50 trials for each
MAPF instance. If x out of y MAPF instances are solved
within the time limit and the time limit allows for z runs, then
the success rate is calculated as 1−(1−x/y)z . iECBS(2) with
five short runs with a 60-second runtime limit each solves
98.70% of all 50 MAPF instances, while iECBS(2) without
restarts solves only 76% of them in the previous experiment.

6 Limitations
We now show that both of our first approaches for automat-
ically generating highways have limitations. One limitation
of both approaches is their difficulty to generate highways in

s11
g18

s9

g12g20

g19

g17

g15

g21

g9

g4 g8 g7

g12g1

g2

g6

g0

g3

g11

g12

g14

g23g16

g22

g13

s2s7s10

s3

s0

s6 s1

s5

s4

s8

s18

s13

s20s15

s17

s16s23

s22

s14s21

s19

Figure 9: Shows a MAPF instance with zigzag corridors and
a human-generated highway in red, a highway generated by
the GM-based approach in blue and a highway generated by
the HM-based approach in green.

Table 1: My caption

1 2 3 4 5 6 7 8 9 10

ECBS(1.5)
Time 19.37 0.03 60 1.55 60 0.02 0.11 60 0.02 0.47
Cost 904 916 n/a 943 n/a 896 879 n/a 912 959

iECBS(1.5)
Time 0.10 0.01 0.4 0.25 60 0.01 0.04 60 0.01 0.09
Cost 917 918 920 940 n/a 897 938 n/a 915 934

1

Figure 10: Compares the runtimes (in seconds) and solution
costs of iECBS(1.5) with a human-generated highway and
ECBS(1.5) in a domain with zigzag corridors. Each column
corresponds to a randomly generated MAPF instance.

open areas or non-straight highways, such as in the domain in
Figure 9 where two rooms are connected by two zigzag cor-
ridors. We compare iECBS(1.5) with the human-generated
highway shown in Figure 9 and ECBS(1.5). We use 10 ran-
domly generated MAPF instances with 24 agents each, half
of which are assigned a random start vertex in the upper-right
room and a random goal vertex in the lower-left room, and
vice-versa for the other half of the agents. We use a 60-
second runtime limit per MAPF instance. While Figure 10
shows that iECBS(1.5) with the human-generated highway
runs fast, Figure 9 shows that the GM-based and HM-based
approaches generate highways that do not look intuitive. An-
other limitation of the GM-based approach is its difficulty to
handle symmetrical start and goal vertices, such as for the
MAPF instance in Figure 11. The GM-based approach com-
putes the minimum-cost paths for all agents independently.
Since they are mostly symmetrical, the magnitudes of the di-
rection vectors in the upper part of the room are mostly zero
and the GM-based approach generates a highway that does
not look intuitive, as shown in the figure. Slight pertubations
of the start and goal vertices to break the symmetry can help
the GM-based approach.

To address these limitations, we are developing fast
parameter-tuning approaches for the GM-based and HM-
based approaches. We are also developing a GM-based
approach that first computes the minimum-cost paths for

g1
s0

g3
s2

g5
s4

g11
s10
g9
s8

g7
s6

g6
s7

g8
s9

g10
s11

g4
s5

g2
s3

g0
s1

Figure 11: Shows a symmetrical MAPF instance and a high-
way generated by the GM-based approach in blue and a high-
way generated by the HM-approach in green.

all agents independently, then generates highways based on
these paths, then computes new minimum-cost paths for all
agents independently by using highway heuristic values that
bias the search to find paths that use the highway edges, then
generates new highways based on these paths, and so on.
Finally, we are developing a GM-based approach that uses
abstractions of the domains into larger areas (and their con-
nections) and additional layers of hidden variables to reason
more globally.

7 Conclusions
In this paper, we improved bounded-suboptimal MAPF
solvers in three ways: 1) We developed iECBS(w1), a vari-
ant of ECBS(w1)+HWY(w2) that uses highways to guide its
search, has suboptimality factor w1 rather than w1w2 and can
run faster than ECBS(w1). 2) We developed two first ap-
proaches for automatically generating highways for a given
MAPF instance. 3) Finally, we observed heavy-tailed behav-
ior in the runtimes of these MAPF solvers and developed a
simple rapid randomized restart strategy that can increase the
success rate iECBS(w1) within a given runtime limit. In fu-
ture work, we intend to explore portfolio approaches to com-
bine the strengths of our different MAPF solvers. We also in-
tend to develop more sophisticated rapid randomized restart
strategies for different MAPF solvers, for example, by ran-
domizing the high-level and low-level searches, such as the
selection of high-level nodes and the collisions to resolve. We
also intend to use knowledge-based methods to identify good
initial orders in which individual paths should be planned for
the agents in the high-level root node.

References
[Barer et al., 2014] Max Barer, Guni Sharon, Roni Stern,

and Ariel Felner. Suboptimal variants of the conflict-based
search algorithm for the multi-agent pathfinding problem.
In Proceedings of the 7th Annual Symposium on Combina-
torial Search, 2014.

[Cohen et al., 2015] Liron Cohen, Tansel Uras, and Sven
Koenig. Feasibility study: Using highways for bounded-
suboptimal multi-agent path finding. In Proceedings of the
8th Annual Symposium on Combinatorial Search, 2015.

[Gomes et al., 2000] Carla Gomes, Bart Selman, Nuno
Crato, and Henry Kautz. Heavy-tailed phenomena in sat-
isfiability and constraint satisfaction problems. Journal of
Automated Reasoning, 24(1-2):67–100, 2000.

[Hoenig et al., 2016] Wolfgang Hoenig, T. K. Satish Kumar,
Sven Koenig, Liron Cohen, Hang Ma, Hong Xu, Nora
Ayanian, and Sven Koenig. Multi-agent path finding with
kinematic constraints. In Proceedings of the 26th Interna-
tional Conference on Automated Planning and Scheduling,
2016. To appear.

[Jansen and Sturtevant, 2008] Renee Jansen and Nathan
Sturtevant. A new approach to cooperative pathfinding. In
Proceedings of the 7th International Joint Conference on
Autonomous Agents and Multiagent Systems, pages 1401–
1404, 2008.

[Koller and Friedman, 2009] Daphne Koller and Nir Fried-
man. Probabilistic Graphical Models: Principles and
Techniques. MIT Press, 2009.

[Leighton et al., 1995] Tom Leighton, Fillia Makedon, Serge
Plotkin, Clifford Stein, Eva Tardos, and Sypros Tragoudas.
Fast approximation algorithms for multicommodity flow
problems. Journal of Computer and System Sciences,
50(2):228 – 243, 1995.

[Mooij, 2010] Joris Mooij. libDAI: A free and open source
C++ library for discrete approximate inference in graph-
ical models. Journal of Machine Learning Research,
11:2169–2173, 2010.

[Morris et al., 2016] Robert Morris, Corina Pasareanu,
Kasper Luckow, Waqar Malik, Hang Ma, T. K. Satish
Kumar, and Sven Koenig. Planning, scheduling and
monitoring for airport surface operations. In Proceedings
of the Workshop on Planning for Hybrid Systems at the
30th AAAI Conference on Artificial Intelligence, 2016.

[Pearl and Kim, 1982] Judea Pearl and Jin Kim. Studies in
semi-admissible heuristics. IEEE Transactions on Pattern
Analysis and Machine Intelligence, 4:392 –399, 1982.

[Phillips et al., 2012] Michael Phillips, Benjamin Cohen,
Sachin Chitta, and Maxim Likhachev. E-graphs: Boot-
strapping planning with experience graphs. In Proceed-
ings of the 8th Robotics: Science and Systems Conference,
2012.

[Sharon et al., 2015] Guni Sharon, Roni Stern, Ariel Felner,
and Nathan Sturtevant. Conflict-based search for optimal
multi-agent pathfinding. Artificial Intelligence, 219:40–
66, 2015.

[Wagner, 2015] Glenn Wagner. Subdimensional Expansion:
A Framework for Computationally Tractable Multirobot
Path Planning. PhD thesis, Carnegie Mellon University,
2015.

[Wang and Botea, 2008] Ko-Hsin Wang and Adi Botea. Fast
and Memory-Efficient Multi-Agent Pathfinding. In Pro-
ceedings of the 18th International Conference on Auto-
mated Planning and Scheduling, pages 380–387, 2008.

[Wurman et al., 2008] Peter Wurman, Raffaello D’Andrea,
and Mick Mountz. Coordinating hundreds of coopera-
tive, autonomous vehicles in warehouses. AI Magazine,
29(1):9–20, 2008.

[Yu and LaValle, 2013] Jingjin Yu and Steven LaValle.
Structure and intractability of optimal multi-robot path
planning on graphs. In Proceedings of the 27th AAAI Con-
ference on Artificial Intelligence, pages 1443–1449, 2013.

