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Abstract
We formalize Multi-Agent Path Finding with Dead-
lines (MAPF-DL). The objective is to maximize the
number of agents that can reach their given goal
vertices from their given start vertices within the
deadline, without colliding with each other. We
first show that MAPF-DL is NP-hard to solve opti-
mally. We then present two classes of optimal algo-
rithms, one based on a reduction of MAPF-DL to
a flow problem and a subsequent compact integer
linear programming formulation of the resulting
reduced abstracted multi-commodity flow network
and the other one based on novel combinatorial
search algorithms. Our empirical results demon-
strate that these MAPF-DL solvers scale well and
each one dominates the other ones in different sce-
narios.

1 Introduction
In many robotics applications, for example, aircraft-towing
vehicles [Morris et al., 2016], warehouse and office robots
[Wurman et al., 2008; Veloso et al., 2015], game characters
[Ma et al., 2017d], and other multi-robot systems [Ma et al.,
2017a], robots need to finish tasks that have deadlines. For
example, in applications that require long-term autonomy for
a team of robots, it is important to move as many robots as
possible from a dangerous area to reach a shelter area before
a disaster occurs in inclement or adversarial conditions.

One aspect of the problem, namely Multi-Agent Path Find-
ing (MAPF), is to plan collision-free paths for multiple agents
in known environments from their given start vertices to
their given goal vertices [Ma and Koenig, 2017]. The ob-
jective is to minimize the sum of the arrival times of the
agents or the makespan. MAPF is NP-hard to solve op-
timally [Yu and LaValle, 2013b] and even to approximate
within a small constant factor for makespan minimization
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[Ma et al., 2016b]. It can be solved with reductions to
other well-studied combinatorial problems [Surynek, 2015;
Surynek et al., 2016; Yu and LaValle, 2013a; Erdem et
al., 2013] and dedicated optimal [Standley and Korf, 2011;
Goldenberg et al., 2014; Sharon et al., 2013; Wagner and
Choset, 2015; Sharon et al., 2015; Boyarski et al., 2015;
Felner et al., 2018], bounded-suboptimal [Barer et al., 2014;
Cohen et al., 2016], and suboptimal MAPF algorithms [Sil-
ver, 2005; Sturtevant and Buro, 2006; Wang and Botea, 2011;
Luna and Bekris, 2011; de Wilde et al., 2013] as described
in several surveys [Ma et al., 2016a; Felner et al., 2017].
MAPF has recently been generalized in different directions
[Ma and Koenig, 2016; Hönig et al., 2016a; Ma et al., 2016a;
Hönig et al., 2016b; Ma et al., 2017b; 2017c] but none of
them capture an important characteristic of many applica-
tions, namely the ability to meet deadlines. A MAPF variant,
G-TAPF, assigns tasks with deadlines to agents but does not
directly maximize the number of agents that can finish the
tasks by the deadlines [Nguyen et al., 2017].

We thus formalize Multi-Agent Path Finding with Dead-
lines (MAPF-DL). The objective is to maximize the number
of agents that can reach their given goal vertices from their
given start vertices within a given deadline, without collid-
ing with each other. Since none of the existing results di-
rectly transfers to MAPF-DL, we first show that MAPF-DL
is NP-hard to solve optimally. We then present two families
of algorithms to solve MAPF-DL. The first family is based
on a reduction of MAPF-DL to a flow problem and a subse-
quent compact integer linear programming formulation of the
resulting reduced abstracted multi-commodity flow network.
The second family is based on novel combinatorial search al-
gorithms. We introduce three search-based MAPF-DL algo-
rithms and conduct systematic experiments to compare them
on a number of MAPF-DL instances. The results show that
all algorithms scale well to large problem instances but each
one dominates the other ones in different scenarios. We study
their pros and cons and provide a set of guidelines for identi-
fying when each one should be used.

2 Multi-Agent Path Finding with Deadlines
In this section, we define MAPF-DL formally and prove its
computational hardness. We then present an optimal MAPF-
DL algorithm based on integer linear programming (ILP).



Problem Definition
We formalize MAPF-DL as follows: We are given a dead-
line, denoted by a time step Tend, a finite undirected graph
G = (V,E), and M agents a1, a2 . . . aM . Each agent ai
has a start vertex si and a goal vertex gi. In each time step,
each agent either moves to an adjacent vertex or stays at the
same vertex. Each agent can reach its goal vertex in Tend
time steps in the absence of other agents (without loss of
generality). Let li(t) be the vertex occupied by agent ai at
time step t ∈ {0 . . . Tend}. We call an agent ai successful
iff it occupies its goal vertex at the deadline Tend, that is,
li(Tend) = gi. A plan consists of a path li assigned to each
successful agent ai that satisfies the following conditions: (1)
li(0) = si [each successful agent starts at its start vertex]. (2)
(li(t − 1), li(t)) ∈ E or li(t − 1) = li(t) [each successful
agent always either moves to an adjacent vertex or does not
move]. Each unsuccessful agent ai is removed at time step
zero, and the plan thus contains no path assigned to it, that is,
li = ∅.1 We define a collision between two different success-
ful agents ai and aj to be either a vertex collision (ai, aj , v, t)
iff v = li(t) = lj(t) [both successful agents occupy the same
vertex simultaneously] or an edge collision (ai, aj , u, v, t) iff
u = li(t) = lj(t+1) and v = lj(t) = li(t+1) [both success-
ful agents traverse the same edge simultaneously in opposite
directions]. A solution is a plan without collisions.

The objective of MAPF-DL is to maximize the number of
successful agents Msucc = |{ai|li(Tend) = gi}|, that is, the
number of paths in the solution, or, equivalently, minimize
the number of unsuccessful agents Munsucc = M − Msucc.
The cost of a plan is thus the number of unsuccessful agents
Munsucc. It can also be defined as the sum of the costs of
all agents since a Boolean cost can be defined for each agent
where each successful agent incurs cost 0 and each unsuc-
cessful agent incurs cost 1. Obviously, every MAPF-DL in-
stance has a trivial solution where all agents are unsuccessful,
namely with cost Munsucc =M .

Intractability
Theorem 1. It is NP-hard to compute a MAPF-DL solution
with the maximum number of successful agents.

The proof of the theorem reduces the ≤3,=3-SAT prob-
lem [Tovey, 1984], an NP-complete version of the Boolean
satisfiability problem, to MAPF-DL. The reduction is similar
to the one used for proving the NP-hardness of approximat-
ing the optimal makespan for MAPF [Ma et al., 2016b]. It
constructs a MAPF-DL instance with deadline Tend = 3 that
has a zero-cost solution iff the given ≤3,=3-SAT instance is
satisfiable. Also see our preliminary work [Ma et al., 2018].

ILP-Based MAPF-DL Algorithm
Our ILP-based MAPF-DL algorithm first reduces MAPF-DL
to the maximum (integer) multi-commodity flow problem,

1Depending on the application, the unsuccessful agents can be
removed at time step zero, wait at their start vertices, or move out of
the way of the successful agents. We choose the first option in this
paper. If the unsuccessful agents are not removed, they can obstruct
other agents. However, our proof of NP-hardness does not depend
on this assumption, and our MAPF-DL algorithms can be adapted
to other assumptions.

Algorithm 1: High Level of CBS-DL (and MA-DBS)
Input: MAPF-DL instance

1 Root.constraints← ∅
2 Root.plan← path for each agent found by a low-level search
3 Root.cost← 0
4 OPEN ← {Root}
5 while true do
6 N ← argminN′∈OPEN N

′.cost
7 OPEN ← OPEN \ {N}
8 Try to find a collision in N.plan
9 if N.plan has no collision then

10 return N.plan
11 C← first vertex or edge collision (ai, aj , . . . ) in N.plan
12 // begin: below for MA-DBS only
13 if shouldMerge(ai, aj) then
14 a{i,j} ← merge(ai, aj)
15 Update N.constraints (external constraints of a{i,j})
16 Update N.plan by invoking a low-level search (with DBS) for a{i,j}
17 N.cost←Munsucc in N.plan
18 OPEN ← OPEN ∪ {N}
19 continue // go to [Line 5]
20 // end: above for MA-DBS only
21 foreach ai involved in C do
22 N ′ ← new node
23 N ′.plan← N.plan
24 N ′.constraints← N.constraints ∪ {(ai, . . . )}
25 Update N ′.plan by invoking a low-level search (with A* or DBS)

for ai
26 N ′.cost←Munsucc in N ′.plan
27 OPEN ← OPEN ∪ {N ′}

which is similar to the reductions of MAPF and a MAPF
variant, TAPF, to multi-commodity flow problems [Yu and
LaValle, 2013a; Ma and Koenig, 2016]. It then encodes the
latter problem using a compact integer linear programming
(ILP) formulation on a reduced abstracted multi-commodity
flow network. See our preliminary work [Ma et al., 2018] for
more details on this algorithm.

3 Search-Based MAPF-DL Algorithms
In this section, we present a spectrum of optimal combi-
natorial search algorithms for solving MAPF-DL: Conflict-
Based Search with Deadlines (CBS-DL), an adapted version
of Conflict-Based Search (CBS) [Sharon et al., 2015]; Death-
Based Search (DBS), which reasons about sets of success-
ful agents; and Meta-Agent DBS (MA-DBS), which incorpo-
rates the advantages of CBS-DL and DBS.

3.1 CBS-DL
(Standard) CBS is a two-level MAPF algorithm that mini-
mizes the sum of the arrival times of all agents at their goal
vertices. CBS-DL is an adaptation of CBS for MAPF-DL.
Algorithm 1 shows its high-level search. Lines in red are
used in MA-DBS (presented in Section 3.3) only. CBS-DL
uses the same framework as CBS but uses Munsucc as cost.
On the high level, CBS-DL performs a best-first search to re-
solve collisions among the agents and thus builds a constraint
tree (CT). Each CT node contains a set of constraints and a
plan that obeys these constraints. CBS-DL always expands
the CT node with the smallest cost Munsucc of its plan. The
root CT node has no constraints [Line 1]. CBS-DL performs
a low-level search to find a path for each agent (without any



constraints). The plan of the root CT node thus contains paths
for all agents [Line 2], and its cost is zero [Line 3]. When
CBS-DL expands a CT node N , it checks whether the CT
node contains a plan that has no collisions [Line 8]. If this is
the case, N is a goal node and CBS-DL terminates success-
fully [Line 10]. Otherwise, CBS-DL chooses a collision to
resolve [Line 11] and generates two child nodes N1 and N2

that inherit all constraints and the plan from N [Line 21-23].
If the collision to resolve is a vertex collision (ai, aj , v, t),
CBS-DL adds the vertex constraint (ai, v, t) toN1 to prohibit
agent ai from occupying v at time step t and similarly adds
the vertex constraint (aj , v, t) to N2. If the collision to re-
solve is an edge collision (ai, aj , u, v, t), CBS-DL adds the
edge constraint (ai, u, v, t) to N1 to prohibit agent ai from
moving from u to v at time step t and similarly adds the edge
constraint (aj , v, u, t) to N2 [Line 24]. For each child CT
node, say N1, CBS-DL performs a low-level search for agent
ai to compute a new path from its start vertex to its goal vertex
within deadline Tend that obeys the constraints of N1 relevant
to agent ai and replaces the old path of agent ai in N1.plan
with the new path returned by the low-level search (it deletes
the old path if no path is returned) [Line 25]. CBS-DL thus
updates the cost of N1 accordingly and inserts it into OPEN
[Lines 26-27].

On the low level, CBS-DL performs an A* search to find
a path for the agent from its start vertex to its goal vertex by
pruning all nodes with time step> Tend. If it finds a path from
the start vertex to the goal vertex of length exactly Tend time
steps that obeys the constraints imposed by the high level, it
returns the path for the agent and cost 0. Otherwise, it returns
no path and cost 1.

Theoretical Analysis
We now prove that CBS-DL is complete and optimal.
Lemma 1. CBS-DL generates only finitely many CT nodes.
Proof. The constraint added on Line 24 to a child CT node is
different from the constraints of its parent CT node since the
paths of its parent CT node do not obey it. The depth of the
(binary) CT is finite because all paths are not longer than Tend
and only finitely many different vertex and edge constraints
exist.
Lemma 2. Whenever CBS-DL chooses a CT node on Line
6 and the plan of the node has no collisions, then CBS-DL
terminates with a solution with finite cost.
Proof. The cost of the CT node is Munsucc of its plan, which
is bounded by M .
Lemma 3. The plan of a CT node has the largest possible
number of paths (one for each successful agent) that obey its
constraints.
Proof (by induction). The statement holds for the root CT
node because its plan contains one path for each agent (since
each agent can reach its goal vertex in Tend time steps in the
absence of other agents). Assume that the statement holds for
the parent CT node N of any child CT node N ′. When CBS-
DL updates the plan of N ′ on Line 25, it changes the path
for one agent only, say agent ai, by performing a low-level
search with the constraints of N ′ (including the newly added
constraint 〈ai, . . . 〉). Therefore, CBS-DL correctly updates
the path for agent ai, and the statement holds also for N ′ due

to the induction assumption and the fact that N ′.plan inherits
the paths of all agents different from agent ai fromN.plan on
Line 23.
Lemma 4. CBS-DL chooses CT nodes on Line 6 in non-
decreasing order of their costs.
Proof. CBS-DL performs a best-first search and the cost of a
parent CT node N is at most the cost of any of its child CT
nodes N ′ since N ′.plan contains at most as many paths as
N.plan contains because (1) the plan of a CT node contains
the largest possible number of paths (one for each success-
ful agent) that obey its constraints according to Lemma 3,
and thus (2) the set of all plans that obey N ′.constraints is a
subset of the set of all plans that obey N.constraints (since
N.constraints ⊂ N ′.constraints due to Line 24).
Lemma 5. The cost of a CT node is at most the cost of any
solution that obeys its constraints.
Proof. The cost of the CT node is the cost Munsucc of its
plan, which in turn is the minimum among the costs of all
plans that obey its constraints according to Lemma 3, which
in turn is at most the cost of any solution that obeys its con-
straints since every solution that obeys its constraints is also
a plan that obeys its constraints.
Theorem 2. CBS-DL is complete and optimal.
Proof. A solution always exists, for example, where all
agents are unsuccessful. Now assume that the cost of an
optimal solution is x and, for a proof by contradiction, that
CBS-DL does not terminate with a solution of cost x. There-
fore, whenever CBS-DL chooses a CT node with cost x on
Line 6, its plan has collisions (because otherwise CBS-DL
would correctly terminate with a solution of cost x according
to Lemma 2 since it chooses CT nodes on Line 6 in non-
decreasing order of their costs according to Lemma 4). Pick
an arbitrary optimal solution. A CT node whose constraints
the optimal solution obeys has cost ≤ x according to Lemma
5. The root CT node is such a node since the optimal solution
trivially obeys its (empty) constraints. Whenever CBS-DL
chooses such a CT node on Line 6, its plan has collisions (as
shown directly above since its cost is ≤ x). CBS-DL thus
generates the child CT nodes of this parent CT node, the con-
straints of at least one of which the optimal solution obeys and
which CBS-DL thus inserts into OPEN with cost ≤ x. Since
CBS-DL chooses CT nodes on Line 6 in non-decreasing or-
der of their costs according to Lemma 4, it chooses infinitely
many CT nodes on Line 6 with costs ≤ x, which contradicts
Lemma 1.

3.2 Death-Based Search
Death-Based Search (DBS) is also a two-level algorithm.
Conceptually, instead of imposing vertex or edge constraints
on agents, DBS marks individual agents as unsuccessful and
then searches for the minimal set of unsuccessful agents nec-
essary to produce a solution.

We define a group γ of agents to be consistent iff all agents
in it can simultaneously be successful, that is, the sub-MAPF-
DL instance with the agents in γ has a zero-cost solution (an
empty group is consistent). This condition is verified by a
special call to CBS-DL with deadline Tend, which reports that
the condition holds if all agents in γ are successful or reports
that the condition does not hold once CBS-DL expands a CT



Algorithm 2: High Level of DBS
Input: MAPF-DL instance

1 Root.live← {{ai}|i = 1 . . .M}
2 Root.cost← 0
3 OPEN ← {Root}
4 while true do
5 N ← argminN′∈OPEN N

′.cost
6 OPEN ← OPEN \ {N}
7 Check whether all groups in N.live are consistent by calling CBS-DL
8 if all groups in N.live are consistent then
9 if |N.live| = 1 then

10 return the zero-cost solution for the single group γ in N.live
11 else
12 N ′ ← new node
13 γ ← γ1 ∪ γ2 (γ1 and γ2 are the smallest groups in N.live)
14 N ′.live← (N.live \ {γ1, γ2}) ∪ {γ}
15 N ′.cost← N.cost
16 OPEN ← OPEN ∪ {N ′}

17 else
18 γ ← first group in N.live that does not have a zero-cost solution
19 foreach ai ∈ γ do
20 N ′ ← new node
21 N ′.live← (N.live \ {γ}) ∪ {γ \ {ai}}
22 N ′.cost← N.cost + 1
23 OPEN ← OPEN ∪ {N ′}

node with non-zero cost (that is, at least one agent in γ is not
successful).

On the high level, DBS performs a best-first search on the
death tree (DT). Each DT node N contains a set N.live of
disjoint groups of live agents (agents that have not been de-
clared unsuccessful) and a cost N.cost equal to the number
of agents that have been declared unsuccessful. Algorithm 2
shows the high-level search of DBS. The root DT node con-
tains a set of M groups of live agents, each group containing
a single unique agent [Lines 1] and its cost is zero [Line 2].
DBS chooses the DT node N with the smallest cost N.cost
and checks if all groups in its set N.live are consistent [Line
5-7]. If N.live contains a single consistent group γ, the DT
node N is a goal node, and DBS returns the zero-cost solu-
tion for γ [Line 10]. If all (more than one) groups in N.live
are consistent, DBS merges the two smallest groups γ1 and
γ2 in N.live to form a new group γ and adds a child DT node
whose set contains all the groups inN.live but replaces γ1 and
γ2 with γ [Lines 12-16]. Otherwise, there is an inconsistent
group γ in N.live [Line 18]. We know that at least one agent
in γ must be declared unsuccessful, forcing a split. In this
case, DBS adds |γ| child nodes, one for each agent ai ∈ γ, to
DT, where each of these nodes declares its own unique agent
ai ∈ γ unsuccessful, and its cost is thus one larger than that
of its parent [Lines 20-23].

Other Versions of DBS
DBS could have started with a root DT node [Line 1] whose
set contains only a single group of all M agents, which does
not require merging groups of live agents but results in a
larger branching factor for the root DT node. DBS could have
chosen different groups to merge [Line 14], which might re-
sult in an inconsistent group of larger size. Whenever DBS
splits a parent DT node [Lines 20-23], it could have generated
child DT nodes whose sets contain only consistent additional
groups (and thus possibly declare more than one additional

agent unsuccessful for the child DT nodes), which requires a
procedure that can determine all consistent subgroups of the
(inconsistent) group γ of agents efficiently and might result
in a larger branching factor. In this paper, we chose to present
the version that is the easiest to understand and analyze.

Theoretical Analysis
We now prove that DBS is complete and optimal.
Lemma 6. DBS generates only finitely many DT nodes.
Proof. The branching factor of a DT node is bounded by M
due to Line 19. Due to Lines 14 and 21, when we consider
each DT node in a downward traversal of any branch of DT
from the root DT node, its set contains either one less group
(when merging two groups) or one less agent (when declaring
an unsuccessful agent) than that of its parent CT node. Its set
is thus different from the sets of all its ancestor DT nodes.
Therefore, the depth of DT is also finite since there are finitely
many possible sets of disjoints groups of the M agents.
Lemma 7. Whenever DBS chooses a DT node on Line 5
whose set contains one single consistent group of live agents,
then DBS correctly terminates with a solution of finite cost.
Proof. Its cost is the number of agents that have been de-
clared unsuccessful, which is bounded by M .
Lemma 8. DBS chooses DT nodes on Line 5 in non-
decreasing order of their costs.
Proof. DBS performs a best-first search, and the cost of a
parent DT node is at most the cost of any of its child DT
nodes due to Lines 15 and 22.
Theorem 3. DBS is complete and optimal.
Proof. A solution always exists, for example, where all
agents are unsuccessful. Now assume that the cost of an opti-
mal solution is x and, for a proof by contradiction, that DBS
does not terminate with a solution of cost x. Therefore, when-
ever DBS chooses a DT node with cost x on Line 5, its set
does not contain one single consistent group (because other-
wise DBS would correctly terminate with a solution of cost
x according to Lemma 7 since it chooses DT nodes on Line
5 in non-decreasing order of their costs according to Lemma
8). Pick an arbitrary optimal solution with the set γunsucc of
x unsuccessful agents. Trivially, a DT node that has declared
the agents in a subset of γunsucc unsuccessful has cost ≤ x.
The root DT node is such a node since it has not declared
any agents unsuccessful. Whenever DBS chooses such a DT
node on Line 5, its set does not contain one single consistent
group (as shown directly above since its cost is ≤ x). Its set
thus contains (1) more than one consistent group or (2) an
inconsistent group (in which case the DT node has declared
the agents in a strict subset of γunsucc unsuccessful). In case
(1), DBS thus generates the only child DT node of this parent
DT node, which has declared the same agents unsuccessful as
the parent DT node and which DBS thus inserts into OPEN
with cost ≤ x. In case (2), DBS thus generates the child DT
nodes of this parent DT node, at least one of which has still
declared the agents (including one additional agent) in a sub-
set of γunsucc unsuccessful and which DBS thus inserts into
OPEN with cost ≤ x. Since DBS chooses DT nodes on Line
5 in non-decreasing order of their costs according to Lemma
8, it chooses infinitely many DT nodes on Line 5 with costs
≤ x, which contradicts Lemma 6.



3.3 Meta-Agent DBS
CBS may perform poorly when an environment contains
many possible, but colliding, paths for the agents since the
size of CT is exponential in the number of collisions resolved.
On the other hand, DBS may perform poorly for MAPF-DL
if the conflicting agents are not added to the same group early
in the search. We thus combine the power of CBS for weakly
coupled agents and the power of DBS for identifying unsuc-
cessful agents in a tightly coupled subset of agents using the
Meta-Agent CBS [Sharon et al., 2015] framework, which re-
sults in a new optimal MAPF-DL algorithm, called Meta-
Agent DBS (MA-DBS).

MA-DBS is a two-level algorithm: It uses the high-level
search of CBS-DL on the high level and DBS on the low
level. Algorithm 1 shows its high-level search. MA-DBS
is similar to CBS-DL but also keeps track of the number of
times collisions between every pair of (simple) agents that it
has considered thus far during the search in a conflict ma-
trix CM . Before MA-DBS expands a CT node N for the
colliding agents ai and aj , if the number of collisions be-
tween the two agents exceeds a user-defined merge thresh-
old B, MA-DBS merges them into a composite meta agent
a{i,j}. To do so, whenever MA-DBS considers a collision
between (meta) agents ai and aj [Line 11], because two sim-
ple agents ak ∈ ai and ak′ ∈ aj collide, it increases the
value of CM [{k, k′}] by one. Function shouldMerge(ai, aj)
returns true iff

∑
ak∈ai,ak′∈aj

CM [{k, k′}] > B [Line 13].
Since DBS uses a low-level search that finds a plan for a
meta agent without any internal collisions between all (sim-
ple) agents in the meta agent, it only needs to store external
constraints resulting from (external) collisions between any
two (simple) agents in different meta agents. Therefore, if
MA-DBS decides to merge ai and aj into a{i,j}, it updates
the constraints N.constraints of the CT node N accordingly
[Line 15]. It then calls DBS to find new paths (without inter-
nal collisions) for all agents in a{i,j} subject to the constraints
in N.constraints relevant to a{i,j} (by solving a MAPF-DL
instance with agents in a{i,j}) and updates the plan N.plan
and costN.cost of the CT node N according to the new paths
returned by DBS [Lines 16-17]. Then, instead of expanding
N , MA-DBS inserts N back into OPEN [Line 18]. When
MA-DBS generates a new child CT node, it also calls DBS
to find an optimal solution for a meta agent that obeys the
constraints of the child CT node [Line 25].

Theoretical Analysis
Lemmas 1 and 4 hold for MA-DBS without change. Since
the low-level search of MA-DBS, namely DBS, returns the
maximum number of paths for a meta agent that obey the
constraints of a CT node, Lemma 3 also holds for MA-DBS
because (1), when it updates the plan of a CT node on Line 16,
the resulting plan contains the maximum number of paths for
the new meta agent and the original paths of the other agents,
and (2), when it updates the plan of a child CT node on Line
25, the resulting plan contains the maximum number of paths
for the meta agent and inherits paths of other agents from the
plan of the parent CT node, and thus the induction argument
for the proof of Lemma 3 holds. Consequently, Lemma 4 also
holds for MA-DBS.
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agents #instances ILP CBS-DL DBS MA-DBS(0) MA-DBS(10) MA-DBS(100)
10 50 0.86 0.24 0.65 0.25 0.30 0.25
20 50 2.18 1.31 2.80 1.07 0.58 0.91
30 42 3.76 1.57 4.24 3.23 1.76 1.85
40 26 6.74 3.02 7.16 8.54 2.82 2.35
50 14 11.88 9.23 11.76 19.43 4.82 5.46
60 5 29.26 4.82 10.82 27.07 4.77 5.88

Figure 1: Success rates (top left), averaged running times over all in-
stances (top right), and averaged running times over instances solved
by all six algorithms (bottom) for different numbers of agents.

Theorem 4. MA-DBS is complete and optimal.
Proof. MA-DBS only merges two agents into one agent on
Line 14 but never splits any agent. Therefore, MA-DBS
does the merge operation [Lines 14-19] finitely many times
(bounded by M ) for each CT node. The rest of the proof is
the same as the proof of Theorem 2.

4 Experiments
In this section, we describe our experimental results on a
2.50 GHz Intel Core i5-2450M laptop with 6 GB RAM. We
tested six optimal MAPF-DL algorithms: the ILP-based algo-
rithm, CBS-DL, DBS, and MA-DBS with merge thresholds
0, 10, and 100 (labeled as MA-DBS(0), MA-DBS(10), and
MA-DBS(100), respectively). The ILP-based algorithm uses
CPLEX V12.7.1 [IBM, 2011] as the ILP solver. We experi-
mented on instances where the start and goal vertices of each
agent are placed randomly so that the distance between them
is close to the deadline. An instance becomes much easier to
solve if this distance is much smaller than the deadline (since
there is more leeway to plan a path for the agent). Specif-
ically, we use three sets of randomly generated MAPF-DL
instances with different numbers of agents (varied from 10 to
100 in increments of 10) labeled as SMALL, MEDIUM, and
LARGE on 40× 40, 80× 80, and 120× 120 4-neighbor 2-D
grids with deadlines Tend = 50, 100, and 150, respectively.
The cells in each grid are blocked independently at random
with 20% probability each. We generate 50 MAPF-DL in-
stances for each number of agents for each set. The start and
goal vertices of each agent are randomly placed at distance
48, 49, or 50 for SMALL, 98, 99, or 100 for MEDIUM, and
148, 149, or 150 for LARGE. Each algorithm is given a time
limit of 60 seconds to solve each instance. We did not run an
algorithm for some number of agents if it solved none of the
50 instances for a smaller number of agents.
The 40×40 SMALL domain Figure 1 (top left) plots the suc-
cess rates (numbers of instances solved within the time limit
divided by 50) for all algorithms for SMALL. ILP has the
highest success rates, and they start to drop only at 50 agents.
The success rates for the search-based algorithms start to drop
at 30 agents. DBS and MA-DBS(0) have the highest success
rates among all search-based algorithms. Figure 1 (top right)
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agents #instances ILP CBS-DL DBS MA-DBS(0) MA-DBS(10) MA-DBS(100)
10 49 3.80 0.89 2.95 0.69 0.82 0.90
20 48 8.87 1.71 6.97 1.75 1.71 1.75
30 43 17.56 2.65 12.19 3.01 2.86 3.02
40 42 26.92 3.84 17.96 6.04 4.08 4.24
50 37 37.46 5.92 25.57 14.33 6.36 6.12
60 22 48.80 7.26 31.89 21.31 7.29 7.33
70 3 47.76 8.70 35.06 26.37 7.74 7.97

Figure 2: Results for MEDIUM.
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agents #instances ILP CBS-DL DBS MA-DBS(0) MA-DBS(10) MA-DBS(100)
10 50 9.52 1.38 5.31 1.55 1.33 1.36
20 48 25.49 3.04 14.15 2.98 2.91 3.03
30 38 42.43 4.84 24.88 5.67 4.86 4.80
40 15 55.44 7.20 37.23 8.61 6.88 6.67

Figure 3: Results for LARGE.

plots the average running times over all 50 instances. 60 sec-
onds are used for an instance that is not solved. Therefore, the
data points in the chart are lower bounds on the running times
in those cases when not all instances are solved. ILP performs
the best. Finally, the table in Figure 1 reports the average run-
ning times over those “easy” instances that are solved by all
six algorithms (it also reports the numbers of those instances
but does not show the rows where no instance is solved by
all the algorithms). The best entry in each row is shown in
bold. The search-based algorithms use less time to solve these
“easy” instances than ILP. CBS-DL, MA-DBS(10), and MA-
DBS(100) seem to use the least times and outperform ILP
by up to a factor of 6. In some cases, the running times are
smaller for larger numbers of agents because fewer (and “eas-
ier”) instances are solved by all algorithms.
The 80 × 80 MEDIUM domain Figure 2 reports the same
statistics for MEDIUM in the same format as reported for
SMALL. Figure 2 (top left) plots the success rates. ILP has
the highest success rates for small numbers (≤ 50) of agents
but the lowest success rates for large numbers of agents. MA-
DBS(10) seems to perform the best for large numbers of
agents. Figure 2 (top right) plots the average running times
over all 50 instances. ILP has the longest running times. MA-
DBS(10) seems to perform the best in general. Finally, the
table in Figure 2 reports the average running times over in-
stances that are solved by all six algorithms. ILP performs
the worst. CBS-DL seems to have the smallest running times
and outperforms ILP by up to a factor of 7.

The 120 × 120 LARGE domain Figure 3 reports the same
statistics for LARGE in the same format as reported for
SMALL. Figure 3 (top left) plots the success rates. CBS-
DL, MA-DBS(10), and MA-DBS(100) have the best success
rates. ILP has the worst success rates. Figure 3 (top right)
plots the average running times over all 50 instances. MA-
DBS(10) seems to perform the best. ILP performs the worst.
The table in Figure 3 reports the average running times over
instances that are solved by all six algorithms. MA-DBS(10)
and CBS-DL perform the best (very close to each other) and
outperform ILP by up to a factor of 9.
Summary of Experimental Results For the same number
of agents, SMALL has higher agent density, more tightly-
coupled agents, and shorter planning horizons than MEDIUM
and LARGE. ILP outperforms the search-based algorithms
for SMALL because the size of the ILP formulation is small.
When Tend increases, the size of the ILP formulation and the
running time required to solve it increase significantly.

On the other hand, among all search-based algorithms,
there seems to be a spectrum where DBS and CBS-DL sit
at two extremes. DBS has higher success rates than CBS-
DL for SMALL. CBS-DL has significantly higher success
rates than DBS for MEDIUM and LARGE. CBS-DL uses
much less times than DBS for instances that are solved by
all algorithms. MA-DBS seems to balance between CBS-DL
and DBS: (a) MA-DBS(0) is more similar to DBS because it
merges agents into meta agents more frequently, which can
result in a large meta agent containing many agents that need
to be solved by DBS on the low level; and, on the other
hand, (b) MA-DBS(10) and MA-DBS(100) are more simi-
lar to CBS-DL because they merge agents less frequently and
their searches mostly remain in the CBS-DL framework.

5 Conclusions and Future Work
We formalized MAPF-DL, a new variant of MAPF. Theoret-
ically, we proved that MAPF-DL is NP-hard to solve opti-
mally. We presented two families of optimal MAPF-DL al-
gorithms, one based on an ILP formulation and one based
on combinatorial search techniques. Our experimental results
show that each of them performs the best in different scenar-
ios. We suggest the following future directions: (1) develop
and compare new MAPF-DL algorithms, for example, A*-,
ASP-, and SAT-based algorithms; (2) study important gen-
eralizations of MAPF-DL (for example, when agents have
different priorities) more deeply; (3) study the combinatorial
difference between MAPF-DL and MAPF; and (4) explore
different merge criteria for MA-DBS.
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