
Improved Heuristics for Multi-Agent Path Finding with Conflict-Based Search

Jiaoyang Li1 , Ariel Felner2 , Eli Boyarski2 , Hang Ma1 and Sven Koenig1

1University of Southern California
2 Ben Gurion University of the Negev

jiaoyanl@usc.edu, felner@bgu.ac.il, boyarske@post.bgu.ac.il, {hangma, skoenig}@usc.edu

Abstract
Conflict-Based Search (CBS) and its enhancements
are among the strongest algorithms for Multi-Agent
Path Finding. Recent work introduced an admissi-
ble heuristic to guide the high-level search of CBS.
In this work, we prove the limitation of this heuris-
tic, as it is based on cardinal conflicts only. We
then introduce two new admissible heuristics by
reasoning about the pairwise dependencies between
agents. Empirically, CBS with either new heuristic
significantly improves the success rate over CBS
with the recent heuristic and reduces the number of
expanded nodes and runtime by up to a factor of 50.

1 Introduction
Multi-Agent Path Finding (MAPF) is the problem of find-
ing a set of collision-free paths for a given set of agents
on a given graph. Although MAPF is NP-hard to solve
optimally [Yu and LaValle, 2013a], many optimal MAPF
algorithms have been developed in recent years, including
reduction-based algorithms [Yu and LaValle, 2013b; Erdem
et al., 2013; Surynek et al., 2016; Bartak et al., 2017], A*-
based algorithms [Standley, 2010; Wagner and Choset, 2011;
Goldenberg et al., 2014] and dedicated search-based algo-
rithms [Sharon et al., 2013; Sharon et al., 2015]. See [Felner
et al., 2017] for a survey.

Conflict-Based Search (CBS) [Sharon et al., 2015] is a
popular two-level search-based MAPF algorithm which re-
solves collisions by adding constraints at a high level and
computing paths consistent with those constraints at a low
level. It is widely used in many real-world applications, such
as warehouse robots [Ma et al., 2017a; Hoenig et al., 2019;
Liu et al., 2019], quadrotor swarms [Hoenig et al., 2018] and
computer game characters [Ma et al., 2017b].

A number of enhancements to CBS have been intro-
duced [Barer et al., 2014; Boyarski et al., 2015; Cohen et al.,
2016; Cohen et al., 2018; Li et al., 2019a; Li et al., 2019b;
Gange et al., 2019]. CBSH [Felner et al., 2018] was the first
work that introduced an admissible heuristic (called here CG)
for the high-level search of CBS by reasoning about a spe-
cial type of collisions in the current solution (i.e., the paths
in the current high-level node). In this paper, we further de-
velop this direction. We first prove that CG can offer only a

limited amount of information. We then introduce two new
admissible heuristics, DG and WDG, by considering poten-
tial collisions in future solutions (i.e., the paths in the descen-
dant high-level nodes) and reasoning about the pairwise de-
pendencies between agents. WDG strictly dominates DG,
which in turn strictly dominates CG. Empirically, the runtime
overhead of calculating the new heuristics is reasonable, and
WDG improves the success rate of CBS significantly com-
pared to CG and reduces the number of expanded nodes and
runtime by up to a factor of 50.

2 Background
2.1 Problem Definition
The Multi-Agent Path Finding (MAPF) problem is specified
by an undirected unweighted graph G = (V,E) and a set
of k agents {a1 . . . ak}, where ai has start vertex si ∈ V
and goal vertex gi ∈ V . Time is discretized into timesteps.
Between successive timesteps, every agent can either move to
an adjacent vertex or wait at its current vertex. Both move and
wait actions have unit cost unless the agent terminally waits at
its goal vertex, which has zero cost. A path of ai is a sequence
of move and wait actions that lead ai from si to gi. A tuple
〈ai, aj , v, t〉 is a vertex conflict iff ai and aj are at the same
vertex v at timestep t, and a tuple 〈ai, aj , u, v, t〉 is an edge
conflict iff ai and aj traverse the same edge (u, v) in opposite
directions between timesteps t and t + 1. The objective that
we focus on in this paper is to find a set of conflict-free paths
which move all agents from their start vertices to their goal
vertices while minimizing the sum of the costs of these paths.

2.2 Conflict-Based Search (CBS)
CBS has two levels. The high level of CBS searches the bi-
nary constraint tree (CT) in a best-first manner according to
the costs of the CT nodes. Each CT node N contains:

(1) a set of constraints N.constraints, where a constraint
is either a vertex constraint 〈ai, v, t〉 that prohibits agent
ai from being at vertex v at timestep t or an edge con-
straint 〈ai, u, v, t〉 that prohibits agent ai from moving
from vertex u to vertex v between timesteps t and t+ 1;

(2) a solution N.solution, that consists of a set of k
cost-minimal paths, one for each agent, that satisfy
N.constraints; and

(3) a cost N.cost, that is equal to the sum of the costs of the
paths in N.solution.

The root CT node contains an empty set of constraints.
When CBS chooses a CT node N for expansion, it checks

for conflicts inN.solution. If there are none, CBS terminates
and returns N.solution. Otherwise, CBS chooses one of the
conflicts (by default, arbitrarily) and resolves it by splitting
N into two child CT nodes. In each child CT node, one agent
from the conflict is prohibited from using the contested vertex
or edge by way of an additional constraint. The path of this
agent then no longer satisfies the constraints of the child CT
node and must be replanned by a low-level search (e.g., a
time-space A* search [Silver, 2005]). All other paths remain
unchanged. If the low-level search cannot find any path that
satisfies the constraints, this child CT node does not have any
solution and therefore is pruned. With two child CT nodes per
conflict, CBS guarantees optimality by exploring both ways
of resolving each conflict.

2.3 Improved CBS (ICBS)
CBS arbitrarily chooses conflicts to split on. However, poor
choices can substantially increase the size of its CT and thus
its runtime. Improved CBS (ICBS) [Boyarski et al., 2015] ad-
dresses this issue by prioritizing conflicts at each CT nodeN .
It classifies conflicts into three types. A conflict is cardinal
iff, when CBS uses it to splitN , the cost of each of the two re-
sulting child CT nodes is larger thanN.cost. (i.e., a conflict is
cardinal iff all shortest paths of the two conflicting agents tra-
verse the conflicting vertex/edge at the conflicting timestep).
It is semi-cardinal iff the cost of one child CT node is larger
than N.cost, but the cost of the other child CT node is equal
toN.cost. Finally, it is non-cardinal iff the cost of each of the
two child nodes is equal to N.cost. ICBS must first choose a
cardinal conflict (if one exists) when splitting N . For exam-
ple, in Figure 1(left), the conflict 〈a1, a2, B2, 1〉 at the root
CT node is non-cardinal as both agents have bypasses that
reach their goal vertices at timestep 4 without being at B2
at timestep 1. However, if cells C1 and A3 are blocked, the
conflict becomes cardinal because, when a1 or a2 is prohib-
ited from being at B2 at timestep 1, it has to wait at its start
vertex for 1 timestep and thus reaches its goal vertex only at
timestep 5.

ICBS uses MDDs to classify conflicts. A Multi-Valued De-
cision Diagram (MDD) [Sharon et al., 2013] for ai at N is a
directed acyclic graph that consists of all cost-minimal paths
of ai from si to gi that satisfyN.constraints. Nodes at depth
t of the MDD for ai correspond to all vertices where ai can be
at timestep t along one of its cost-minimal paths. A conflict
between ai and aj at timestep t is cardinal iff the contested
vertex (or edge) is the only vertex (or edge) at level t of the
MDDs for both agents. Figure 1(middle) shows the MDDs
for a1 and a2 at the root CT node, respectively. Since both
MDDs have 2 nodes at timestep 1, the conflict 〈a1, a2, B2, 1〉
is non-cardinal.

2.4 CBSH
The high level of CBS always chooses to expand the CT node
N with the smallest N.cost. CBSH [Felner et al., 2018]
speeds up the high-level search through the addition of an

Figure 1: A MAPF instance on a 4-neighbor grid with the corre-
sponding MDDs and joint MDD.

admissible heuristic. The idea is simple: If N.solution con-
tains one cardinal conflict, then an h-value of 1 is admissible
forN because the cost of any of its descendant CT nodes with
a conflict-free solution is at least N.cost + 1. If N.solution
contains multiple cardinal conflicts, then CBSH builds a con-
flict graph, whose vertices represent agents and edges repre-
sent cardinal conflicts in N.solution. The cost of the path of
at least one agent from each cardinal conflict has to increase
by at least 1. Thus, the size of a minimum vertex cover (MVC)
of the conflict graph (i.e., a set of vertices such that each edge
is incident on at least one vertex in the set) is an admissible
h-value for N . We refer to this heuristic as the CG heuristic.

3 Limitation of the CG Heuristic
We have just seen that an h-value of 1 for a cardinal conflict
is admissible. However, is it possible to find a larger h-value
for a cardinal conflict? The following theorem answers the
question. The proof of this theorem is given in the appendix.

Theorem 1. Suppose that CBS chooses to resolve a conflict
between ai and aj at timestep t at a CT node N and both
child CT nodes of N , N1 (with an additional constraint im-
posed on ai) and N2 (with an additional constraint imposed
on aj) have solutions. If the conflict occurs after one of the
agents, say ai, reaches its goal vertex (i.e., t ≥ µi, where µi
is the cost of the path of ai in N.solution), then N1.cost =
N.cost + t + 1 − µi and N2.cost ∈ {N.cost,N.cost + 1}.
Otherwise (i.e., it occurs before both agents reach their goal
vertices), N1.cost,N2.cost ∈ {N.cost,N.cost+ 1}.

Therefore, if both child CT nodes of N have solutions
(which is always true in practice), a conflict can be regarded
as an admissible h-value of at most 1. Then the size of the
MVC is the best admissible heuristic for N that can be ob-
tained from the conflict graph. So, if we want to obtain better
heuristics, new directions need to be explored.

4 The DG Heuristic
The CG heuristic considers only cardinal conflicts in
N.solution. To improve on that we also need to consider
conflicts in future solutions, i.e., solutions of N ’s descendant
CT nodes. For example, in Figure 1(left), if CBS resolves the
non-cardinal conflict 〈a1, a2, B2, 1〉 by adding a constraint
for one of the agents, a new conflict will occur no matter what
new cost-minimal path the agent picks. In fact, any two cost-
minimal paths of the two agents conflict in one of the 4 cells
in the middle (B2,B3,C2,C3). Therefore, an h-value of 1 is
admissible here. This is not captured by CG because the con-
flicts are initially non-cardinal. Inspired by this example, we

generalize the conflict graph described above to a pairwise
dependency graph, whose edges reflect that all cost-minimal
paths of the corresponding two agents have conflicts.

4.1 Pairwise Dependency Graph GD

Formally, we define a pairwise dependency graph GD =
(VD, ED) for each CT node N . Each agent ai induces
a vertex vi ∈ VD. An edge (vi, vj) ∈ ED iff ai and
aj are dependent, i.e., all their cost-minimal paths that sat-
isfy N.constraints have conflicts. Similarly to the conflict
graph, for each edge (vi, vj) ∈ ED, the cost of the path of at
least one agent, ai or aj , has to increase by at least 1. Hence,
the size of the MVC of GD is an admissible h-value for N .
We refer to this heuristic as the DG heuristic. DG strictly
dominates CG because the conflict graph is a sub-graph of
GD. We use the same algorithm as in [Felner et al., 2018] to
determine an MVC. Its complexity is O(2q|VD|), where q is
the size of the MVC.

4.2 Constructing GD

To construct GD for N , we need to analyze the dependencies
between every pair of agents. Let µi denote the cost of the
path of ai in N.solution. We first classify all pairs of agents
into three categories based on their conflicts in N.solution:

(1) The two agents do not have any conflicts.

(2) They have at least one cardinal conflict.

(3) They have only semi-cardinal or non-cardinal conflicts.

If ai and aj are in Category (1), they are independent as their
paths in N.solution are conflict-free. Hence, (vi, vj) /∈ ED.
If they are in Category (2), by the definition of cardinal con-
flicts, they are surely dependent. Hence, (vi, vj) ∈ ED. If
they are in Category (3), we do not know whether they are
dependent or independent. To provide an answer, we try to
merge the MDDs for the two agents into a joint MDD us-
ing the method described in [Sharon et al., 2013]. The two
agents are dependent iff their joint MDD is empty. Details of
the merging are given in Section 4.3.

Since each CT node has an additional constraint imposed
on only one agent, we only need to look at the dependen-
cies between this agent and all other agents and can copy the
edges for the other pairs of agents from the GD for the parent
CT node. Of course, at the root CT node, we still need to
look at the dependencies for all pairs of agents. CG already
build MDDs to classify conflicts. So, for DG, we get these
MDDs for free. The only overhead of DG over CG comes
from merging the MDDs.

4.3 Merging the MDDs
The joint MDD of the MDDs for ai and aj at N consists of
all combinations of cost-minimal conflict-free paths of ai and
aj that satisfy N.constraints. Nodes at depth t of the joint
MDD correspond to all joint states where ai and aj can be at
timestep t along such a pair of paths without conflicts. Let µk
(k = i, j) denote the depth of the MDD for ak. If µi 6= µj ,
a path of |µi − µj | dummy goal vertices is added to the sink
node of the shallower MDD (representing the agent sitting at
its goal vertex) so that both MDDs have the same depth. The

Figure 2: A MAPF instance on a 4-neighbor grid with ∆12 = 4.

joint MDD is built level by level. The merging procedure
starts at the joint state (si, sj) at level 0. Suppose that we
already have a joint state (vi, vj) at level t and want to add its
child nodes at level t+1. Each pair in the cross product of the
child nodes of vi at level t in the MDD for ai and the child
nodes of vj at level t in the MDD for aj should be examined.
Only conflict-free pairs are added. ai and aj are dependent
iff the joint MDD is empty, i.e., does not contain state (gi, gj)
at level max{µi, µj}.

Figure 1(right) shows an example of merging the MDDs.
The joint MDD starts at (B1, A2) at level 0. At level 1, we
try all combinations of vertices at level 1 in both MDDs and
add all of them to the joint MDD except for the pair (B2, B2),
which represents a conflict space. We repeat this procedure
at levels 2 and 3 until all branches of the joint MDD reach
conflicting states and cannot be further developed. Therefore,
in this example, the joint MDD is empty, and thus a1 and a2
are dependent.

5 The WDG Heuristic
For a CT node N and two agents ai and aj , we refer to the
difference between the minimum sum of the costs of their
conflict-free paths that satisfy N.constraints and the sum of
the costs of their paths in N.solution as ∆ij (∆ij ≥ 0). ai
and aj are dependent iff ∆ij > 0.

Although GD captures the information whether ∆ij > 0
for any pair of agents, it does not capture the information how
large the value of ∆ij is. When ∆ij > 0, the DG heuristic
only uses 1 (a lower bound on ∆ij) as an admissible h-value.
However, in some cases, ∆ij could be larger than 1. For in-
stance, in Figure 2, ∆12 = 4 because one of the agents must
wait 4 timesteps at its start vertex. Therefore, we introduce
the WDG heuristic, which captures not only the pairwise de-
pendencies between agents but also the extra cost that each
pair of dependent agents will contribute to the total cost.

5.1 Weighted Pairwise Dependency Graph GWD

We generalize the pairwise dependency graph to a weighted
pairwise dependency graph GWD = (VD, ED,WD) for N .
It uses the same vertices and edges as GD. The weight on
each edge (vi, vj) ∈ ED equals ∆ij at N . Here, ∆ij is al-
ways larger than 0 as ai and aj are dependent. We also gen-
eralize the MVC to an edge-weighted minimum vertex cover
(EWMVC), which is an assignment of non-negative integers
x1, . . . , xk, one for each vertex, which minimizes the sum
of the xi subject to the constraints that xi + xj ≥ ∆ij for
all (vi, vj) ∈ ED. xi can be interpreted as the increase in
the cost of the path of ai. The sum of xi of the EWMVC
of GWD is an admissible h-value for N since, for each edge
(vi, vj) ∈ ED, the sum of the costs of the paths of agents
ai and aj has to increase by at least ∆ij . We refer to this

heuristic as the WDG heuristic. It strictly dominates the DG
heuristic. Calculating the EWMVC is NP-hard since calcu-
lating the MVC is NP-hard and a special case of calculating
EWMVC where the weights of all edges are 1. To calculate
the EWMVC, we divide GWD into multiple connected com-
ponents and calcualte the EWMVC on each component with
a branch-and-bound algorithm that branches on the possible
values of each xi in the component and prunes nodes using
the cost of the best result so far. The EWMVC of GWD is
the union of the EWMVCs of all components. Similar depen-
dency graphs and EWMVCs for heuristic search were used in
the context of MAPF for large agents [Li et al., 2019c], slid-
ing tile puzzles [Felner et al., 2004] and cost-optimal plan-
ning [Pommerening et al., 2013].

5.2 Constructing GWD

We first construct the vertices and edges in GWD for N using
the same method as in Section 4. To calculate the weight ∆ij

for each edge (vi, vj) ∈ ED, we run a MAPF algorithm to
find the minimum sum of the costs of the conflict-free paths
of ai and aj that satisfy N.constraints (ignoring the other
agents). Here, the pathfinding problem is a two-agent prob-
lem with the constraints fromN.constraints imposed on the
two agents. Most optimal MAPF algorithms can be adapted
to satisfy these constraints.

Similar to Section 4.2, for each non-root CT node, we need
to find the edges and calculate the weights for only one agent
(the one that has the new constraint) and can copy the rest of
the edges and their weights from the parent CT node.

5.3 The Two-Agent Problem
We tried three search-based MAPF algorithms to solve the
two-agent problem in our experiments: CBSH [Felner et al.,
2018] (i.e., CBS with the CG heuristic), EPEA* [Goldenberg
et al., 2014] and ICTS [Sharon et al., 2013], and CBSH is
significantly faster than the other two.

One enhancement that we use in CBSH for the two-agent
problem is that we set the h-value of the root CT node to
1. One is admissible because ∆ij is at least 1. This can
help CBSH to resolve cardinal rectangle conflicts [Li et al.,
2019b] or other symmetric conflicts efficiently. Figure 1(left)
shows an example of a cardinal rectangle conflict. The cost
of the optimal solution is 9. As CBSH searches in a best-first
manner, it has to expand all CT nodes of cost 8, even if it
has already generated a CT node of cost 9 with an optimal
solution. However, if the h-value of the root CT node is 1,
with a good tie-breaking rule (such as depth-first), CBSH can
quickly generate a CT node of cost 9 with an optimal solution
and return this solution immediately. In our experiments, this
speeds up CBSH for the two-agent problem by up to 3 orders
of magnitude.

6 Runtime Reduction Techniques
DG and WDG usually have larger h-values than CG. How-
ever, computing these heuristics incurs overhead per CT
node. In this section, we introduce a number of simple tech-
niques to reduce the runtime overhead for the calculation of
the heuristics.

Lazy Computation of Heuristics. The high-level search of
CBSH resembles an A* search, so techniques to speed up A*
can also be applied here. Lazy A* [Tolpin et al., 2013] im-
proves A* by evaluating expensive heuristics lazily. Instead
of computing the expensive h-value h2(N) immediately after
generating a new node N , lazy A* first computes a cheaper
but less informed h-value h1(N) (or even uses zero) and in-
serts N into OPEN. Only when N emerges from OPEN, it
computes h2(N) for it and re-inserts it into OPEN.

Here, for simplicity, we view both the conflict graph and
the pairwise dependency graph as an edge-weighted pairwise
dependency graph whose edges all have weight one. Each
of the CG, DG or WDG heuristics is treated as h2, and
we define h1 for a child CT node N ′ of N as max{N.h −
maxj:(i,j)∈ED

∆ij , N.cost + N.h − N ′.cost, 0}, where i is
the index of the agent whose path gets re-planned at N ′. The
first term N.h − maxj:(i,j)∈ED

∆ij is a lower bound on the
sum of xi of the EWMVC of the sub-graph of GWD of N
without edges incident on vertex vi. It is admissible because
the sum of xi of the EWMVC of GWD of N ′ should be no
smaller than the sum of xi of the EWMVC of this sub-graph.
The second term N.cost + N.h − N ′.cost is admissible be-
cause the f -value (i.e.,N.cost+N.h) is non-decreasing. Em-
pirically, the runtime overhead of OPEN operations (e.g., in-
sert or pop a node) is negligible.

Memoization. Memoization is an optimization technique
to speed up algorithms by caching the results of expensive
function calls and returning the cached results when the same
inputs occur again. Here, we use memoization to store the re-
sults of merging the MDDs and solving the two-agent prob-
lems. The inputs are the indices of two agents and the set
of constraints imposed on them. The output is the existence
of the corresponding edge and, if its exists, its edge weight.
Empirically, the memory overhead of caching and the runtime
overhead of storing and retrieving results are both negligible,
and the cached results are used frequently. This is because
CBS often repeatedly resolves the same conflict in different
branches, and many CT nodes thus have the same set of con-
straints imposed on the same agent. Memoization can also be
used to save runtime for building MDDs.

7 Experimental Results
We experiment with CBS, ICBS and CBSH with the CG, DG
and WDG heuristics on 4-neighbor grids. All CBSH solvers
use the two improvements discussed in Section 6, and the
WDG heuristic uses the CBSH algorithm discussed in Sec-
tion 5.3 to solve the two-agent problem. We generate 50 in-
stances with random start and goal vertices for each map and
each number of agents. Our code is written in C++, and our
experiments are conducted on a 2.80 GHz Intel Core i7-7700
laptop with 8 GB RAM.

7.1 Small Maps
First, we test the solvers on 20 × 20 grids. We focus on an
empty map, which is a 20 × 20 grid with no blocked cells,
and a dense map, which is a 20× 20 grid with 30% randomly
blocked cells. We use a time limit of 1 minute for each solver
on each instance.

Empty map Dense map 20 agents
k CG DG WDG k CG DG WDG obs CG DG WDG
30 0.2 1.0 1.2 16 3.9 3.9 11.6 0 0.1 0.5 0.5
40 0.5 1.7 2.0 20 4.8 4.8 15.2 10 1.0 1.3 2.1
50 0.6 2.3 2.8 24 6.9 7.0 22.2 20 3.0 3.1 6.2

Table 1: Average h-values of the root CT node. k represents the
number of agents, and obs represents the percentage of cells that are
randomly blocked on a 20 × 20 grid.

(a) Empty map. (b) Dense map.

Figure 3: Average runtime per expanded CT node over 300 instances
with different numbers of agents.

h-values of the root CT node. Table 1 shows the h-values
of the root CT node. On the empty map, DG is much larger
than CG while WDG is only slightly larger than DG because
agents on the empty map usually have many bypasses, and
thus ∆ij is 0 or 1 in most cases. However, on the dense
map, DG is only slightly larger than CG while WDG is much
larger than both of them because most conflicts are cardinal
and the map contains many narrow corridors, which induce
a large ∆ij . The last four columns show the results for 20
agents on grids with increasing obstacle densities to provide
more details on the transition from empty grids to dense grids.
Runtime overhead of heuristics calculation. Figure 3
shows the runtime breakdown per CT node. The CBS run-
times (yellow) of the three solvers are slightly different be-
cause the different heuristics cause CBS to expand different
sets of CT nodes. The runtimes of constructingGD and GWD

(blue) are small due to the memoization technique, which
saves more than 90% of the edge and weight computation
time. Although we use simple algorithms to solve the NP-
hard problems MVC and EWMVC, their runtimes (red) are
also small due to the small sizes of GD and GWD . The lazy
computation of heuristics also contributes to the reduction in
the runtime overhead as the expensive heuristics are com-
puted for only 65% of the generated CT nodes.
Overall performance. Figure 4 and Table 2 show the suc-
cess rate, the average number of expanded CT nodes and the
average runtime of the solvers. The number of expanded CT
nodes is consistent with the computed h-value of the root CT
node. That is, a larger h-value usually leads to a smaller num-
ber of expanded CT nodes. With respect to success rate and
runtime, both DG and WDG outperform CG. In particular,
DG runs slightly faster than WDG on the empty map as it
has a smaller runtime overhead than WDG, while WDG runs
much faster than DG on the dense map as it leads to a larger
node reduction than DG. The usefulness of CG heavily de-
pends on the particular instance. It has almost the same per-

(a) Empty map. (b) Dense map.

Figure 4: Success rate (i.e., the percentage of solved instances).

Figure 5: Success rate on on the large map.“+R” means that the
solver uses the rectangle reasoning technique.

formance as ICBS (= CBSH with h-values that are always
zero) on the empty map where cardinal conflicts are rare.
However, our new heuristics are efficient on both maps and
up to 9 times faster than CG (e.g., for 40 agents on the empty
map) for the solved instances (which are relatively easy).

7.2 Large Maps
Next, we test the solvers on a large map. We use the bench-
mark game map lak503d from [Sturtevant, 2012], which is a
192× 192 grid with 51% blocked cells (Figure 5(left)).

Plugging in the rectangle reasoning technique. Li et
al. [2019b] analyze the symmetries in grid-based MAPF and
improve CBSH using a rectangle reasoning technique. This
technique is able to find some (but not all) edges in GD, so it
can save some of the effort of merging the MDDs. Therefore,
we add the most advanced rectangle reasoning technique RM
from [Li et al., 2019b] to all CBSH solvers. Figure 5 shows
their success rates within 1 minute. In particular, CG+R is
identical to CBSH-RM from [Li et al., 2019b] and is the
state-of-the-art CBS-based solver in previous research. The
results show that all new solvers beat the previous solvers.
The rectangle reasoning technique slightly speeds up WDG
in most cases. As a result, WDG+R is the strongest solver
among them and therefore is the new state-of-the-art CBS-
based solver.

Results with longer time limits. Figure 6(left) shows the
success rates over 50 random instances of 100 agents on the
large map with different time limits. As the time limit in-
creases, the benefit of using WDG and DG over CG increases
as well. In general, it is worth spending some extra time per
CT node to obtain a better h-value, since a larger h-value usu-

Agents Instances ICBS CG DG WDG
Nodes (×1000)

30 44 3.6 2.6 0.5 0.5
40 39 8.9 7.0 0.2 0.2
50 23 12.4 10.1 2.9 2.9

Runtime (s)
30 44 0.5 0.4 0.1 0.1
40 39 1.0 0.9 0.1 0.1
50 23 1.7 1.5 0.6 0.7

(a) Empty map.

Agents Instances ICBS CG DG WDG
Nodes (×1000)

16 47 20.2 9.6 7.8 6.1
20 29 20.2 13.6 10.7 8.9
24 7 79.6 47.4 33.2 15.2

Runtime (s)
16 47 7.0 2.4 2.4 2.4
20 29 4.0 3.3 2.1 1.9
24 7 17.9 9.6 5.4 3.0

(b) Dense map.

Table 2: Average expanded CT nodes and average runtime over instances solved by all solvers.

Empty map Dense map Large map
Agents CG DG WDG h∗ Agents CG DG WDG h∗ Agents CG DG WDG h∗

30 0.2 1.0 1.2 1.7 16 3.9 3.9 11.5 18.6 60 3.6 4.0 6.7 7.6
40 0.5 1.6 2.0 3.3 20 4.7 4.7 14.0 23.2 80 5.7 6.5 10.9 12.2
50 0.5 2.2 2.6 4.7 24 6.5 6.5 18.9 28.5 100 8.6 9.2 15.6 18.0

Table 3: Average h-values and average h∗-values of the root CT node over instances of which the h∗-value is known, i.e., instances solved
by at least one CBSH solver.

CG DG WDG
All 50 instances

h-value of the root node 9.4 10.1 17.0
Runtime per node (ms) 16.1 21.7 21.9

Success rate 0.32 0.58 0.76
16 instances solved by all CBSH solvers

Nodes (×1000) 19.9 6.9 0.4
Runtime (s) 318.5 140.6 6.1

Figure 6: Results for 100 agents on the large map. The right table
uses a time limit of 30 minutes.

ally leads to an exponential reduction in the number of CT
nodes. Figure 6(right) shows the results with a time limit of
30 minutes. Although DG and WDG have a larger runtime
overhead compared to small maps, WDG significantly out-
performs DG, which - in turn - significantly outperforms CG
in terms of both success rate and runtime. For example, com-
pared with CG, WDG improves the success rate by a factor
of 2 and runs faster by a factor of 50.

7.3 Comparing with the Perfect Heuristic
Table 3 compares the average h-values of the root CT node
by different CBSH solvers with the average h∗-values of the
root CT node (i.e., the optimal solution cost minus the cost of
the root CT node). On the dense map, WDG is significantly
smaller than h∗ because agents are deeply coupled and rea-
soning about the pairwise dependencies between agents is not
enough. However, on the empty map or the large map, WDG
is close to h∗ because agents are less coupled and reasoning
about the pairwise dependencies between agents is enough
in many cases. In other words, h/h∗ is closer to 1 on the
empty map or the large map than on the dense map. This ex-
plains why, compared to CG, WDG has the largest h-value
improvement on the dense map over all three maps (as shown
in Table 1) but the smallest node reduction factor on the dense
map over all three maps (as shown in Table 2 and Figure 6).

8 Conclusions and Future Work
In this paper, we analyzed the limitations of the heuristic
used to provide high-level guidance for CBS, a state-of-the-
art algorithm for multi-agent path finding. We proposed two
new admissible heuristics by reasoning about the pairwise de-
pendencies between agents. They always dominate the old
heuristic and only incur a small runtime overhead per node.
Empirically, they increase the success rates and speeds of
CBS with the old heuristic by up to a factor of 50.

There are several interesting directions for future work. (1)
Study admissible or inadmissible heuristics for sub-optimal
CBS-based algorithms [Barer et al., 2014]. (2) Apply similar
heuristics to other MAPF algorithms, such as ICTS [Sharon
et al., 2013] or MDD-SAT [Surynek et al., 2016]. (3) Gen-
eralize these heuristics to groups larger than pairs of agents,
e.g., to triples and quadruples.

Acknowledgments
The research at the University of Southern California was
supported by the National Science Foundation (NSF) under
grant numbers 1409987, 1724392, 1817189 and 1837779 as
well as a gift from Amazon. The research was also sup-
ported by the United States-Israel Binational Science Foun-
dation (BSF) under grant number 2017692.

A Proof of Theorem 1
In order to help explain the proof, we define another type
of MDDs, called extended MDDs, that ignore constraints,
i.e., they are allowed to include nodes prohibited by con-
straints. Formally, an extended MDD MDDµ

i for ai is a di-
rected acyclic graph that consists of all paths of ai from si to
gi within µ timesteps. In particular, MDDµ

i is empty iff µ is
smaller than the minimum cost of the path of ai. All MDDs
we discuss in this section are extended MDDs. We say that
a node (x, t) ∈ MDDµ

i iff MDDµ
i has vertex x at level t,

i.e., there is a path from si at timestep 0 to x at timestep t

Figure 7: Constructing a path of cost µ + 1. The solid and dashed
diamonds include all nodes inMDDµ

i andMDDµ+1
i , respectively.

and then to gi by timestep µ. Let dist(x, y) denote the dis-
tance between vertices x and y and P (t) denote the vertex
at timestep t on path P . Then, the extended MDDs have the
following two properties:

(1) (x, t) ∈ MDDµ
i iff dist(si, x) ≤ t and dist(x, gi) ≤

µ− t.
(2) For any path P of ai, if (P (t), t) /∈ MDDµ

i , then
(P (t′)), t′) /∈ MDDµ

i for all t′ ≥ t.
Property (1) can be obtained from the definition. Property

(2) holds because, by contradiction, if (P (t′)), t′) ∈ MDDµ
i ,

then there is a sub-path P ′ in MDDµ
i from P (t′) at timestep

t′ to gi at timestep µ. The path that follows a prefix of P
from si at timestep 0 to P (t′) at timestep t′ and then fol-
lows P ′ to gi at timestep µ traverses P (t) at timestep t, i.e.,
(P (t), t) ∈ MDDµ

i . Property (2) tells us that, once a path
leaves an extended MDD, it will never revisit this extended
MDD later.

We say that MDDµ
i includes all nodes prohibited by a set

of constraints C iff MDDµ
i has vertex v at level t for any

vertex constraint 〈ai, v, t〉 ∈ C and edge (u, v) from level t
to level t+ 1 for any edge constraint 〈ai, u, v, t〉 ∈ C.

Lemma 2. Let C be a set of constraints and µ be a large
enough integer such that MDDµ

i is not empty and includes
all nodes prohibited by C. If ai has a path that satisfies C,
then ai has a path of cost no more than µ+ 1 that satisfies C.

Proof. By assumption, ai has a path P that satisfies C. Let T
be the cost of P . If T ≤ µ+ 1, then we are done. Otherwise,
as shown in Figure 7, we will construct a path of cost µ + 1
by letting ai (1) first follow the prefix of P to the border of
MDDµ

i , (2) then cross the border to a node in MDDµ+1
i ,

and (3) last follow a path inMDDµ+1
i to gi at timestep µ+1.

This new path satisfiesC because P satisfiesC and any nodes
or edges outside MDDµ

i also satisfy C. The existence of
such a path is proved as follows.

Node (si, 0) (the first node of P) is in MDDµ
i . Node

(gi, T) (the last node of P) is not in MDDµ
i (because T > µ).

So, there is a timestep t < T such that (P (t), t) ∈ MDDµ
i

and (P (t + 1), t + 1) /∈ MDDµ
i . Let x and y represent P (t)

and P (t+1), respectively (Figure 7(left)). There are now two
cases, and we show how to construct a path of cost µ+ 1 that
satisfies C in each case.
Case 1: (y, t + 1) ∈ MDDµ+1

i (Figure 7(middle)). There
is a sub-path P ′ in MDDµ+1

i from y at timestep t + 1 to

gi at timestep µ + 1. By applying (y, t + 1) /∈ MDDµ
i to

Property (2), P ′ does not traverse any MDD node in MDDµ
i ,

and thus does not violate any constraints. Therefore, a path
that follows a prefix of P from si at timestep 0 to y at timestep
t+ 1 and then follows P ′ to gi at timestep µ+ 1 is a path of
cost µ+ 1 that satisfies C.
Case 2: (y, t+ 1) /∈ MDDµ+1

i (Figure 7(right)). Since node
(y, t + 1) is on P , dist(si, y) ≤ t + 1. Then, from Property
(1), dist(y, gi) > (µ + 1) − (t + 1). Rearranging the terms
yields

µ ≤t+ dist(y, gi)− 1 (1)
≤t+ dist(y, x) + dist(x, gi)− 1 (2)
≤t+ dist(x, gi) (3)
≤µ. (4)

Inequality (2) is based on the the triangle inequality. Inequal-
ity (3) is from dist(y, x) ≤ 1. Inequality (4) is obtained by
applying (x, t) ∈ MDDµ

i to Property (1). By comparing the
first line and the last line of these inequalities, all lines are
actually equal. Specifically, for Inequality (4),

t+ dist(x, gi) = µ. (5)

Since node (x, t) is on P , dist(si, x) ≤ t. From Equation
(5) and Property (1), we know that (x, t + 1) /∈ MDDµ

i and
(x, t + 1) ∈ MDDµ+1

i . Hence, there is a sub-path P ′′ in
MDDµ+1

i from x at timestep t + 1 to gi at timestep µ + 1.
From Property (2), P ′′ does not traverse any MDD node in
MDDµ

i , and thus does not violate any constraints. Therefore,
a path that follows a prefix of P from si at timestep 0 to x at
timestep t, waits for one timestep and then follows P ′′ to gi
at timestep µ+ 1 is a path of cost µ+ 1 that satisfies C.

Finally, we prove Theorem 1 based on Lemma 2.

Proof. Without loss of generality, we only focus on N1. Ev-
ery constraint in N.constraints imposed on ai was gener-
ated due to a conflict that occurred on one of the old paths
of ai, i.e., paths of ai in the solutions of any ancestor CT
nodes of N . The cost of any old path of ai is no larger
than µi. Therefore, MDDµi

i includes all nodes prohibited by
N.constraints.

If the chosen conflict occurs before ai reaches gi (i.e.,
t < µi), then MDDµi

i includes all nodes prohibited by
N1.constraints. From Lemma 2, we know that ai has a path
of cost no more than µi + 1 that satisfies N1.constraints.
So, the cost-minimal path of ai is of cost at most µi + 1, and
N1.cost ∈ {N.cost,N.cost+ 1}.

If the chosen conflict occurs after ai reaches gi (i.e., t ≥
µi), then the chosen conflict is 〈ai, aj , gi, t〉 and the addi-
tional constraint added toN1 is 〈ai, gi, t〉. MDD t

i includes all
nodes prohibited by N1.constraints, and thus, by Lemma
2, ai has a path of cost no more than t + 1 that satisfies
N1.constraints. On the other hand, since ai is prohibited
from being at gi at timestep t, its cost-minimal path is of cost
at least t+1. Therefore, the cost-minimal path of ai is of cost
t+ 1, and N1.cost = N.cost+ t+ 1− µi.

References
[Barer et al., 2014] M. Barer, G. Sharon, R. Stern, and

A. Felner. Suboptimal variants of the conflict-based search
algorithm for the multi-agent pathfinding problem. In
SoCS, pages 19–27, 2014.

[Bartak et al., 2017] R. Bartak, J. Svancara, and M. Vlk.
Scheduling models for multi-agent path finding. In MISTA,
pages 189–200, 2017.

[Boyarski et al., 2015] E. Boyarski, A. Felner, R. Stern,
G. Sharon, D. Tolpin, O. Betzalel, and S. Shimony. ICBS:
Improved conflict-based search algorithm for multi-agent
pathfinding. In IJCAI, pages 740–746, 2015.

[Cohen et al., 2016] L. Cohen, T. Uras, S. Kumar, H. Xu,
N. Ayanian, and S. Koenig. Improved solvers for bounded-
suboptimal multi-agent path finding. In IJCAI, pages
3067–3074, 2016.

[Cohen et al., 2018] L. Cohen, G. Wagner, D. Chan,
H. Choset, N. Sturtevant, S. Koenig, and S. Kumar. Rapid
randomized restarts for multi-agent path finding solvers.
In SoCS, pages 1909–1911, 2018.

[Erdem et al., 2013] E. Erdem, D. G. Kisa, U. Oztok, and
P. Schueller. A general formal framework for pathfinding
problems with multiple agents. In AAAI, pages 290–296,
2013.

[Felner et al., 2004] A. Felner, R. E. Korf, and S. Hanan. Ad-
ditive pattern database heuristics. Journal of Artificial In-
telligence Research, 22:279–318, 2004.

[Felner et al., 2017] A. Felner, R. Stern, S. Shimony, E. Bo-
yarski, M. Goldenberg, G. Sharon, N. Sturtevant, G. Wag-
ner, and P. Surynek. Search-based optimal solvers for
the multi-agent pathfinding problem: Summary and chal-
lenges. In SoCS, pages 20–37, 2017.

[Felner et al., 2018] A. Felner, J. Li, E. Boyarski, H. Ma,
L. Cohen, S. Kumar, and S. Koenig. Adding heuristics
to conflict-based search for multi-agent path finding. In
ICAPS, pages 83–87, 2018.

[Gange et al., 2019] G. Gange, D. Harabor, and P. J. Stuckey.
Lazy CBS: Implict conflict-based search using lazy clause
generation. In ICAPS, 2019.

[Goldenberg et al., 2014] M. Goldenberg, A. Felner,
R. Stern, G. Sharon, N. R. Sturtevant, R. C. Holte, and
J. Schaeffer. Enhanced partial expansion A*. Journal of
Artificial Intelligence Research, 50:141–187, 2014.

[Hoenig et al., 2018] W. Hoenig, J. A. Preiss, T. K. S. Ku-
mar, G. S. Sukhatme, and N. Ayanian. Trajectory planning
for quadrotor swarms. IEEE Transactions on Robotics,
34(4):856–869, 2018.

[Hoenig et al., 2019] W. Hoenig, S. Kiesel, A. Tinka, J. W.
Durham, and N. Ayanian. Persistent and robust execution
of MAPF schedules in warehouses. IEEE Robotics and
Automation Letters, 4(2):1125–1131, 2019.

[Li et al., 2019a] J. Li, D. Harabor, P. Stuckey, A. Felner,
H. Ma, and S. Koenig. Disjoint splitting for multi-agent
path finding with conflict-based search. In ICAPS, 2019.

[Li et al., 2019b] J. Li, D. Harabor, P. Stuckey, H. Ma, and
S. Koenig. Symmetry-breaking constraints for grid-based
multi-agent path finding. In AAAI, 2019.

[Li et al., 2019c] J. Li, P. Surynek, A. Felner, H. Ma, S. Ku-
mar, and S. Koenig. Multi-agent path finding for large
agents. In AAAI, 2019.

[Liu et al., 2019] M. Liu, H. Ma, J. Li, and S. Koenig. Task
and path planning for multi-agent pickup and delivery. In
AAMAS, 2019.

[Ma et al., 2017a] H. Ma, J. Li, S. Kumar, and S. Koenig.
Lifelong multi-agent path finding for online pickup and
delivery tasks. In AAMAS, pages 837–845, 2017.

[Ma et al., 2017b] H. Ma, J. Yang, L. Cohen, T. K. S. Ku-
mar, and S. Koenig. Feasibility study: Moving non-
homogeneous teams in congested video game environ-
ments. In AIIDE, pages 270–272, 2017.

[Pommerening et al., 2013] F. Pommerening, G. Röger, and
M. Helmert. Getting the most out of pattern databases for
classical planning. In IJCAI, pages 2357–2364, 2013.

[Sharon et al., 2013] G. Sharon, R. Stern, M. Goldenberg,
and A. Felner. The increasing cost tree search for optimal
multi-agent pathfinding. Artificial Intelligence, 195:470–
495, 2013.

[Sharon et al., 2015] G. Sharon, R. Stern, A. Felner, and
N. Sturtevant. Conflict-based search for optimal multi-
agent pathfinding. Artificial Intelligence, 219:40–66,
2015.

[Silver, 2005] D. Silver. Cooperative pathfinding. In AIIDE,
pages 117–122, 2005.

[Standley, 2010] T. S. Standley. Finding optimal solutions to
cooperative pathfinding problems. In AAAI, pages 173–
178, 2010.

[Sturtevant, 2012] N. Sturtevant. Benchmarks for grid-based
pathfinding. Transactions on Computational Intelligence
and AI in Games, 4(2):144–148, 2012.

[Surynek et al., 2016] Pavel Surynek, Ariel Felner, Roni
Stern, and Eli Boyarski. Efficient SAT approach to multi-
agent path finding under the sum of costs objective. In
ECAI, pages 810–818, 2016.

[Tolpin et al., 2013] D. Tolpin, T. Beja, S. E. Shimony,
A. Felner, and E. Karpas. Toward rational deployment of
multiple heuristics in A*. In IJCAI, pages 674–680, 2013.

[Wagner and Choset, 2011] G. Wagner and H. Choset. M*:
A complete multirobot path planning algorithm with per-
formance bounds. In IROS, pages 3260–3267, 2011.

[Yu and LaValle, 2013a] J. Yu and S. LaValle. Structure
and intractability of optimal multi-robot path planning on
graphs. In AAAI, pages 1444–1449, 2013.

[Yu and LaValle, 2013b] J. Yu and S. M. LaValle. Planning
optimal paths for multiple robots on graphs. In ICRA,
pages 3612–3617, 2013.

	Introduction
	Background
	Problem Definition
	Conflict-Based Search (CBS)
	Improved CBS (ICBS)
	CBSH

	Limitation of the CG Heuristic
	The DG Heuristic
	Pairwise Dependency Graph GD
	Constructing GD
	Merging the MDDs

	The WDG Heuristic
	Weighted Pairwise Dependency Graph GWD
	Constructing GWD
	The Two-Agent Problem

	Runtime Reduction Techniques
	Experimental Results
	Small Maps
	Large Maps
	Comparing with the Perfect Heuristic

	Conclusions and Future Work
	Proof of Theorem 1

