
Real-Time Search in Non-Deterministic Domains∗

Sven Koenig and Reid G. Simmons
Carnegie Mellon University
School of Computer Science
Pittsburgh, PA 15213-3890

skoenig@cs.cmu.edu, reids@cs.cmu.edu

Abstract

Many search domains are non-deterministic. Al-
though real-time search methods have tradition-
ally been studied in deterministic domains, they
are well suited for searching non-deterministic do-
mains since they do not have to plan for every con-
tingency – they can react to the actual outcomes of
actions. In this paper, we introduce the min-max
LRTA* algorithm, a simple extension of Korf’s
Learning Real-Time A* algorithm (LRTA*) to non-
deterministic domains. We describe which non-
deterministic domains min-max LRTA* can solve,
and analyze its performance for these domains. We
also give tight bounds on its worst-case perfor-
mance and show how this performance depends on
properties of both the domains and the heuristic
functions used to encode prior information about
the domains.

1 Introduction
Real-time (heuristic) search methods, a term coined by Korf
[Korf, 1987], interleave search with action execution, limiting
the amount of deliberation performed between action execu-
tions. After an action has been executed, the deliberation-act
cycle is repeated – until a goal state is reached. [Korf, 1993]
demonstrated that real-time search methods are powerful sub-
optimal search methods that can often outperform more tradi-
tional search methods in terms of total running time. For ex-
ample, they are among the few search methods that can find
suboptimal solution paths for the 24-puzzle, a domain with
more than 7 × 1024 states.

Real-time search methods have usually been investigated
in the context of traditional AI search domains: sliding tile
puzzles such as the 8- or 24 puzzle, blocks worlds, grid
worlds, and others. These domains are usually assumed

∗This research was supported in part by NASA under contract
NAGW-1175. The views and conclusions contained in this docu-
ment are those of the authors and should not be interpreted as rep-
resenting the official policies, either expressed or implied, of NASA
or the U.S. government.

to be deterministic: whenever an action is executed in the
same state, the same successor state results. Many domains,
however, are non-deterministic, such as many robotics, con-
trol, or scheduling domains. In this paper, we present a
first step towards extending real-time search methods to non-
deterministic single-agent search domains by viewing real-
time search as a game where the search method selects the
actions and nature, a fictitious opponent, chooses their out-
comes.

We investigate suboptimal search, i.e. how to get the agent
to any goal state. The path traversed by the agent does neither
have to be optimal nor repeatable, which is a sufficient con-
dition for many real-world problems. Real-time search meth-
ods appear to be well suited for suboptimal search in non-
deterministic state spaces. In contrast to traditional (off-line)
search techniques, which must plan for every possible out-
come, real-time search methods only need to choose actions
for those outcomes that actually occur. Thus, real-time search
methods can potentially decrease search time, although pos-
sibly at the expense of action execution time: Since they do
not plan exhaustively for every possible outcome of an action,
one cannot be sure how good it really is to execute the action.
It might well be that the action has an outcome that makes it
hard for the agent to reach a goal state. In this paper we begin
to quantify the tradeoff between search time and action exe-
cution time by analyzing the performance of real-time search
in non-deterministic domains.

Our new technique, which we call min-max LRTA*, is
based on Korf’s Learning Real-Time A* algorithm (LRTA*)
[Korf, 1987; 1988; 1990]. LRTA* is a single-agent real-time
search algorithm that can be used to find suboptimal and op-
timal solution paths in deterministic domains. It performs
only minimal computations between action executions (we
constrain it to a lookahead of one), choosing only which ac-
tion to execute next, and basing this decision only on infor-
mation local to its current state. We extend LRTA* to non-
deterministic domains, describe which non-deterministic do-
mains it can solve, and analyze its performance for these do-
mains. We also give tight bounds on its worst-case perfor-
mance and show how this performance depends on properties
of the domains and the heuristic functions. Our theoretical
analysis, which suggests what constitutes easy and hard real-

time search problems in non-deterministic domains, also ap-
plies to both deterministic domains and multi-agent domains
(such as moving target search).

2 Assumptions and Notation
LRTA*-type real-time search algorithms differ from tradi-
tional search algorithms, such as the A* algorithm, in that
they always maintain a current state. This is a state of the
search space; it can only be changed by executing actions.
The real-time search algorithm can choose the action freely
from the actions that are applicable in its current state. While
chronological backtracking is such a search method, it can
only be used in undirected, deterministic state spaces. In non-
deterministic state spaces, a real-time search algorithm might
not be able to backtrack (i.e. undo action executions).

We view real-time search in non-deterministic domains as
a two-player game. The action that the real-time search algo-
rithm selects determines the possible successor states, from
which some mechanism, which we call nature, has to choose
one. We do not impose any restrictions on how nature makes
its decisions (its strategy) and, furthermore, assume that we
do not know nature’s strategy. Although a second agent might
indeed exist in some real-time search scenarios, our assump-
tion of its existence is simply an analysis tool.

We use the following notation: S denotes the finite set of
states of the state space (of size n := |S|), sstart ∈ S is the
start state, and G (with ∅ 6= G ⊆ S) is the set of goal states.
A(s) is the finite set of actions that can be executed in state
s ∈ S. Executing action a ∈ A(s) causes a (potentially non-
deterministic) state transition into one of the states succ(s, a)
(with ∅ 6= succ(s, a) ⊆ S). Identity actions are actions a ∈
A(s) with s ∈ succ(s, a), i.e. those actions that might not
result in a state change. We call a state space deterministic
iff the cardinality of succ(s, a) is one for all s ∈ S and a ∈
A(s). For deterministic state spaces, we use succ(s, a) not
only to denote the set of successor states, but also the only
element of this set. Note that every deterministic state space
is per definition non-deterministic as well. We call a state
space non-deterministic if we want to stress that we do not
require it to be deterministic.

The distance d(s, s′) ∈ [0,∞] between s ∈ S and s′ ∈
S is measured in action executions and defined to be the
(unique) solution of the following set of equations (for all
s, s′ ∈ S)

d(s, s′) =

{

0 if s = s′

1 + mina∈A(s) maxs′′∈succ(s,a) d(s′′, s′) otherwise

In other words: the search algorithm can reach s′ from s with
at most d(s, s′) action executions (regardless of nature’s strat-
egy) given that the search algorithm knows the state space and
acts optimally. The goal distance gd(s) of s ∈ S is defined to
be gd(s) := mins′∈G d(s, s′). If gd(s) = ∞ then there exists
a strategy for nature that prevents the search algorithm from
reaching any goal state from state s (although nature might
choose not to follow this strategy). Note that gd(s) ≤ n − 1
if gd(s) is finite (otherwise nature could cause the search al-
gorithm to loop indefinitely). We define the diameter (depth)

Initially, V (s) = f(s) for all s ∈ S, where f is a heuristic function
for the goal distance. The search algorithm starts in state sstart.

1. s := the current state.

2. If s ∈ G, then stop successfully.

3. a := argmina∈A(s)V (succ(s, a)).

4. Set V (s) := max(V (s), 1 + V (succ(s, a))).

5. Execute action a. (As a consequence, the new current state
becomes succ(s, a).)

6. Go to 1.

Figure 1: Deterministic domains: LRTA*

of the state space with respect to G as d := maxs∈S gd(s).
For deterministic state spaces, the definitions of d(s, s′) and
gd(s) simplify to the standard definitions of distance and goal
distance, respectively.

3 Deterministic Domains: LRTA*
We describe a simple version of Korf’s LRTA* algorithm
that has lookahead one. It consists of a termination checking
step (line 2), an action selection step (line 3), a value update
step (line 4), and an action execution step (line 5), see Fig-
ure 1.

First, LRTA* checks whether it has reached a goal state
and thus can terminate successfully. If not, it decides on the
action to execute next. It looks only one action execution
ahead, picking the action that leads to the successor state with
the smallest state value V (s), which approximates the goal
distance gd(s) (ties can be broken arbitrarily). Note that the
algorithm is greedy since it always chooses the action that
appears to be best locally. The algorithm then replaces the
value V (s) with the one-step lookahead value max(V (s), 1+
V (succ(s, a))), which is a more accurate estimate. Finally,
LRTA* executes the selected action and iterates.

Korf showed that LRTA* is correct for deterministic,
strongly connected (i.e. d(s, s′) < ∞ for all s, s′ ∈ S)
state spaces. That is, it reaches a goal state eventually and
terminates; the sequence of executed actions is a suboptimal
solution path.

4 Non-Deterministic
Domains: Min-Max LRTA*

The extensions necessary to make LRTA* work in non-
deterministic state spaces are fairly straightforward. Since
we do not know which strategy nature uses, we use a (worst-
case) minimax approach and let the search algorithm act as
if nature tries to maximize the goal distance of the search al-
gorithm while the search algorithm tries to minimize it. If
the search algorithm can reach a goal state and terminate for
such a vicious strategy of nature, it will also reach a goal state
if nature uses a different, and therefore less vicious, strategy.

Initially, V (s) = f(s) for all s ∈ S, where f is a heuristic function
for the goal distance. The search algorithm starts in state sstart.

1. s := the current state.

2. If s ∈ G, then stop successfully.

3. a := argmina∈A(s) maxs′∈succ(s,a) V (s′).

4. Set V (s) := max(V (s), 1 + maxs′∈succ(s,a) V (s′)).

5. Execute action a. (As a consequence, nature selects the new
current state from succ(s, a) according to its strategy.)

6. Go to 1.

Figure 2: Non-deterministic domains: min-max LRTA*

As a consequence, the search algorithm does not depend on
assumptions about the strategy that nature actually uses.

The min-max LRTA* algorithm is shown in Figure 2. It
uses maxs′∈succ(s,a) V (s′) at the places in the action selec-
tion step (line 3) and value update step (line 4) where LRTA*
uses V (succ(s, a)). In deterministic state spaces, min-max
LRTA* reduces to the original LRTA* algorithm.

5 Performance Analysis
In this section, we analyze the performance of min-max
LRTA*, which we measure as the total number of action ex-
ecutions until a goal state is reached. This is justified, be-
cause the time needed to execute an action in the world often
dominates the minimal amount of computation that min-max
LRTA* performs between action executions. Even if this is
not the case, the total number of actions that min-max LRTA*
executes can still be roughly proportional to its total running
time, because it performs only a bounded and in many do-
mains essentially constant amount of computation between
action executions. We define its complexity to be an upper
bound on the number of action executions that holds for all
possible topologies of state spaces of a given size, start and
goal states, tie breaking rules among actions that evaluate to
the same value, and strategies of nature.

There exist state spaces in which every real-time search al-
gorithm has infinite complexity. This is the case if the search
algorithm can get trapped in a part of the state space that
does not contain a goal state. Traditionally, researchers have
therefore restricted their attention to strongly connected state
spaces or, more generally, state spaces with d < ∞. We
use the same assumption for non-deterministic state spaces
and call state spaces with this property safely explorable.
(To be more precise: The goal distances of all states that the
agent can reach from its start state without passing through a
goal state have to be finite.) Moore and Atkeson’s parti-game
algorithm [Moore and Atkeson, 1993], for example, learns
non-deterministic abstractions of spatial state spaces that are
safely explorable.

Intuitively, we expect min-max LRTA* to do well in safely
explorable state spaces when the state spaces are relatively

small or contain many goal states. In the latter case, the we
expect it to perform the better, the more the goal states are
spread out over the state space. In the following, we analyze
this intuition formally.

5.1 Complexity: Upper Bounds
In this section, we provide upper bounds on the complexity
of min-max LRTA*. But first, we introduce some definitions
of properties of the state values V (s) that we need in order to
be able to state our results.

Definition 1 The state values of min-max LRTA* are consis-
tent iff, for all s ∈ G, V (s) = 0, and, for all s ∈ S \ G,
0 ≤ V (s) ≤ 1 + mina∈A(s) maxs′∈succ(s,a) V (s′).

Definition 2 The state values of min-max LRTA* are admis-
sible iff, for all s ∈ S, 0 ≤ V (s) ≤ gd(s).

In deterministic state spaces, these definitions reduce to the
standard definitions as used for traditional heuristic search al-
gorithms, such as the A* algorithm [Pearl, 1985]. In partic-
ular, consistency (or, equivalently, monotonicity) means that
the triangle inequality holds and admissibility means that the
state values of min-max LRTA* never overestimate the goal
distances. Note that zero-initialized values are consistent, and
consistent values are admissible.

We can prove the following theorem. (For all of the fol-
lowing proofs, we provide outlines only.)

Theorem 1 Initial state values that are consistent (or ad-
missible) remain consistent (or admissible) after every ac-
tion execution of min-max LRTA* and are monotonically non-
decreasing.

Proof sketch: The theorem can easily be proven by induc-
tion. (For admissible initial state values in deterministic state
spaces, the theorem follows from [Ishida and Korf, 1991].)

This theorem enables us to simplify the value update step
of min-max LRTA* if its initial state values are consistent.
According to the theorem, the values remain consistent. This
means according to the definition of consistent state values
that V (s) ≤ 1+ mina∈A(s) maxs′∈succ(s,a) V (s′) for s 6∈ G.
It follows that max(V (s), 1 + maxs′∈succ(s,a) V (s′)) = 1 +
maxs′∈succ(s,a) V (s′)
for a := argmina∈A(s) maxs′∈succ(s,a) V (s′) and s 6∈ G,
and the value update step can be simplified to V (s) :=
1 + maxs′∈succ(s,a) V (s′) without changing the values as-
signed to V (s).

How does min-max LRTA* work? Assume consistent state
values and call PG := {s ∈ S : V (s) = 0} ⊇ G the set
of potential goal states. For example, if min-max LRTA* is
zero-initialized, then PG is always the set of states which the
search algorithm has not yet visited at least once. We can
easily prove by induction that (for all s ∈ S)

0 ≤ V (s) ≤ min
s′∈PG

d(s, s′)

The action selection step of min-max LRTA* can be inter-
preted as using V (s) to approximate mins′∈PG d(s, s′). This

means that it tries (sometimes unsuccessfully) to direct the
search algorithm from its current state to the closest potential
goal state with as few action executions as possible. Thus, it
always executes the action that appears to be best according
to its local view of the state space.

How efficient is min-max LRTA*? A time superscript of t
in the following complexity result refers to the values of the
variables immediately before min-max LRTA* executes the
(t + 1)st action, e.g. s(t=)0 = sstart and V (t=)0(s) = f(s).
Also, the theorem refers to identity actions. These are actions
whose execution might not result in a state change. Sid :=
{s ∈ S : ∃a∈A(s)s ∈ succ(s, a)} ⊆ S is the set of states in
which identity actions can be executed.

Theorem 2 For all t = 0, 1, 2, . . . (until termination) and a
min-max LRTA* algorithm with an admissible heuristic func-
tion f it holds that

t ≤
∑

s∈S

[

V
t(s) − V

0(s)
]

− (V t(st) − V
0(s0)) + loop

t (1)

and

loop
t

≤

∑

s∈Sid

[

V
t(s) − V

0(s)
]

, (2)

where loopt := |{t′ ∈ {0, . . . , t − 1} : st′ = st′+1}|
(the number of identity actions executed before t that did not
change the state).

Proof sketch (by induction): For t = 0, the inequalities re-
duce to t ≤ 0 and loopt ≤ 0, which is true. Now assume
that the inequalities hold at time t and consider how the vari-
ables change from time t to t + 1. The only state value that
changes is V (st). It increases according to Theorem 1 by
V t+1(st)−V t(st) ≥ 0, and so does

∑

s∈S

[

V (s) − V 0(s)
]

.
We distinguish two cases:

1. st 6= st+1, i.e. the LHS of Inequality (1), t, in-
creases by one and the LHS of Inequality (2), loop,
does not change. Since V t+1(st) − V t(st) ≥ 1 +
maxs′∈succ(st,at) V t(s′) − V t(st) ≥ 1 + V t(st+1) −
V t(st) = 1 + V t+1(st+1) − V t(st), the RHS of In-
equality (1) increases by at least one. The RHS of In-
equality (2) does not decrease. Thus, the two inequali-
ties continue to hold at time t + 1.

2. st = st+1, i.e. both the LHS of Inequality (1), t,
and the LHS of Inequality (2), loop, increase by one.
Since V t+1(st) = V t+1(st+1) and loop increases by
one, the RHS of Inequality (1) increases by one as
well. Since st ∈ Sid and V t+1(st) − V t(st) =
1 + maxs′∈succ(st,at) V t(s′) − V t(st) ≥ 1 + V t(st) −
V t(st) = 1, the RHS of Inequality (2) increases by at
least one. Thus, the two inequalities continue to hold at
time t + 1.

Theorem 3 A min-max LRTA* algorithm with an admissible
heuristic function reaches a goal state and terminates after at
most 2

∑

s∈S gd(s) action executions (regardless of nature’s

strategy). If the state space has no identity actions, a min-max
LRTA* algorithm reaches a goal state and terminates after at
most

∑

s∈S gd(s) action executions (regardless of nature’s
strategy).

Proof sketch:

t
Th. 2
≤

∑

s∈S

[

V
t(s) − V

0(s)
]

− (V t(st) − V
0(s0)) + loop

t

Th. 2
≤ 2

∑

s∈S

[

V
t(s) − V

0(s)
]

− (V t(st) − V
0(s0))

= 2
∑

s∈S\{s0}

[

V
t(s) − V

0(s)
]

+ 2V
t(s0) − V

0(s0) − V
t(st)

Adm.
≤ 2

∑

s∈S\{s0}

[gd(s)− 0] + 2gd(s0) − 0 − 0

= 2
∑

s∈S

gd(s)

If the state space has no identity actions, then loopt = 0 for
all t and the second part of the theorem follows similarly.

As a consequence, min-max LRTA* is guaranteed to reach
a goal state eventually (i.e. it is correct) if the state space is
safely explorable (d < ∞). In this case, the algorithm reaches
a goal state after at most O(nd) action executions, because
2

∑

s∈S gd(s) ≤ 2nd. O(nd) ≤ O(n2), since d ≤ n − 1 if
d < ∞. Note that the goal distances of all states influence the
complexity of min-max LRTA*, not only the goal distance of
the start state.

5.2 Complexity: Lower Bounds
In this section, we prove, by example, that the upper bounds
from the last section are tight for uninformed (i.e. zero-
initialized) min-max LRTA* algorithms. For each example,
rather than explaining what occurs, we provide pseudo-code
that prints the sequence of states that the algorithm could tra-
verse. (The scope of the for-statements is shown by indenta-
tion.) It is easy to determine from inspection of the code how
many actions the algorithm executes.

All of our example state spaces are deterministic. This
shows that the bounds remain tight for this important sub-
class of non-deterministic state spaces: deterministic state
spaces are not easier to solve with min-max LRTA* than
non-deterministic ones. Since min-max LRTA* reduces to
the original LRTA* algorithm in deterministic domains, the
bounds are tight for the original LRTA* algorithm as well,
see also [Koenig, 1992].

Theorem 3 states that a zero-initialized min-max LRTA*
algorithm reaches a goal state after at most 2

∑

s∈S gd(s) ac-

tion executions. 2
∑

s∈S gd(s) ≤ 2
∑n−1

i=0 i = n2 − n for
safely explorable state spaces. Now consider the state space
in Figure 3 with the identity actions included. The following
program shows one possible sequence that a zero-initialized
min-max LRTA* algorithm can traverse (in this case, ties are
broken by remaining in one’s current state if possible and oth-
erwise always choosing the state with the lowest label):

for i := 1 to n-1

start

goal

1

...2 3 4 n-1 n

Figure 3: A worst-case example (n ≥ 1)

...

start goal

1 3 5 n-3 n-1

...2 4 6 n-2 n

Figure 4: A rectangular grid world

for j := 1 to i
print i

for j := i downto 1
print j

print n

In this case, the min-max LRTA* algorithm must execute
a total of n2 − n actions. Thus, the complexity of n2 − n is
tight.

Theorem 3 also states that a zero-initialized min-max
LRTA* algorithm reaches a goal state after at most
∑

s∈S gd(s) action executions if the state space has no iden-
tity actions.

∑

s∈S gd(s) ≤ 1/2n2 − 1/2n for safely ex-
plorable state spaces. Now consider again the state space
in Figure 3, this time with the identity actions removed. A
zero-initialized min-max LRTA* algorithm can traverse the
following state sequence (which is equal to the above state
sequence, but with repeated occurrences of the same state
deleted):

for i := 1 to n-1
for j := i downto 1
print j

print n

Since the min-max LRTA* algorithm executes 1/2n2 −
1/2n actions in this case, the complexity of 1/2n2 − 1/2n
is tight for state spaces that have no identity actions. Note
that identity actions can always be safely deleted from a state
space, since their removal does not affect whether min-max
LRTA* can solve a given search problem in the worst-case.
Our results show, however, that their removal can at most
halve the complexity of uninformed (i.e. zero-initialized)
min-max LRTA*.

The state space used in the above examples was artificially
constructed. However, the complexity of O(n2) is tight even

1 2 3

4 5 6

7 8

1 2 3

8 4

7 6 5

8-puzzle with American goal state 8-puzzle with European goal state

0

5000

10000

15000

20000

25000

0 5 10 15 20 25 30 35

nu
m

be
r

of
 s

ta
te

s

goal distance

american goal state
european goal state

Figure 5: Goal distances of the 8-puzzle

for more realistic state spaces, such as grid worlds. They
have often been used as testbeds for real-time search methods
[Pemberton and Korf, 1992; Ishida and Korf, 1991]. Con-
sider the grid world shown in Figure 4 and assume n ≥ 2
with n mod 4 = 2. A zero-initialized min-max LRTA* algo-
rithm can traverse the following state sequence:

for i := n-3 downto n/2 step 2
for j := 1 to i step 2
print j

for j := i+1 downto 2 step 2
print j

for i := 1 to n-1 step 2
print i

In this case, the min-max LRTA* algorithm executes
3n2/16 − 3/4 actions before it reaches the goal state. This
also shows that the complexity of O(n2) is tight for undi-
rected state spaces for which the number of actions that can
be executed in any state is bounded from above by a small
constant (here: three).

5.3 Decreasing the Complexity
This section demonstrates how properties of the search do-
mains and the heuristic functions can decrease the complexity
of min-max LRTA*.

Domain Properties
Since the complexity of uninformed min-max LRTA* is tight
at 2

∑

s∈S gd(s), our intuition was correct: the smaller the
state space and/or the average goal distance, the smaller the
complexity. Consider, for instance, the sliding tile puzzles.
These deterministic domains are sometimes considered to be
hard search problems, because they have a low goal density.
The 8-puzzle, for example, has 181440 states (that are reach-
able from the start state), but only one goal state. Our com-
plexity results, however, imply that average goal distance, not
goal density, is among the factors that determine the hardness
of a search problem for (min-max or original) LRTA*. Al-
though increasing the goal density tends to decrease the av-
erage goal distance, there are search problems with low goal
density and low average goal distance. The 8-puzzle is an ex-
ample: Figure 5 shows for every goal distance how many of

the 181440 states have this particular goal distance. It turns
out that the average goal distance of the 8-puzzle with the
American goal state is only 21.5 and the largest goal distance
is 30. Similarly, the average goal distance of the 8-puzzle
with the European goal state (that cannot be reached from the
American goal state) is 22.0 and the largest goal distance is
31. (See [Reinefeld, 1993] for extensive statistics on the 8-
puzzle.) In both cases, the average goal distances are much
smaller than the size of the state space. Thus, sliding-tile puz-
zles are rather well-suited search problems for (min-max or
original) LRTA* – compared to many grid worlds of the same
size, for example. This does not imply, however, that LRTA*
can solve sliding tile puzzles with a huge number of tiles,
since the complexity of LRTA* does not only depend on the
average goal distance, but also on the number of states, which
grows as a factorial in the number of tiles.

Properties of the Heuristic Functions
Prior knowledge in form of more informed, admissible
heuristic functions decreases the complexity of min-max
LRTA*. For example, in the totally informed case one ini-
tializes V 0(s) := f(s) with f(s) = gd(s) for all s ∈ S and
Theorem 2 predicts

t
Th. 2
≤

∑

s∈S

[

V
t(s) − gd(s)

]

− (V t(st) − gd(s0)) + loop
t

Th. 2
≤ 2

∑

s∈S

[

V
t(s) − gd(s)

]

− (V t(st) − gd(s0))

Adm.
≤ 2

∑

s∈S

[gd(s)− gd(s)] − (0 − gd(s0))

≤ gd(s0)

That is, Theorem 2 predicts correctly that the search algo-
rithm needs only at most gd(s) action executions to reach a
goal state from any given s ∈ S and, thus, that it follows a
shortest path to a goal.

It is easy to determine admissible heuristic functions for
non-deterministic state spaces if one can determine them for
deterministic state spaces. One can simply assume that nature
decides in advance which successor state g(s, a) ∈ succ(s, a)
to choose every time the agent executes action a ∈ A(s) in
state s ∈ S – all possible assumptions about which particu-
lar actions nature chooses are fine. If nature really used this
strategy and the agent found out about it, then the state space
would effectively become deterministic for the agent. One
can easily see that any admissible heuristic function for the
goal distances in this deterministic state space is admissible
for the original, non-deterministic search problem as well, re-
gardless of the strategy that nature actually uses. Note, how-
ever, that the informedness of this heuristic function depends
on how close the assumed behavior of nature is to its most
vicious strategy.

6 Example Domains
In this section, we give two examples that demonstrate how
min-max LRTA* can be applied to non-deterministic search

problems. In particular, we discuss search problems with
coarse models (for example, abstract state spaces) and mov-
ing target search.

6.1 Search with Coarse Models
Our complexity results for min-max LRTA* do not depend
on how nature selects successor states. Thus, they apply to
scenarios where the search algorithm is not able to make as-
sumptions about nature’s strategy. Assume, for example, that
one can model a deterministic world only with low granular-
ity. Then, one might not be able to identify one’s current state
uniquely, and actions can appear to have non-deterministic
effects. Assume, for instance, that a search algorithm occu-
pies either state 1 or state 2 in some state space, but cannot
distinguish between these two states. Action a is a determin-
istic action that results in state 3 when it is executed in state 1
and in state 4 when it is executed in state 2. Thus, the execu-
tion of action a can result in either state 3 or 4, but the search
algorithm has no way of predicting which of these states will
result and could attribute this to nature having a strategy that
is unknown to the search algorithm.

An application with these characteristics is the tray-tilting
problem [Christiansen, 1992; Kadie, 1991; Erdman and Ma-
son, 1988]: One puts an object into a tray in a given starting
position and then slides it repeatedly by tilting the tray until
it is in a given goal position. In our version of the tray-tilting
problem, one can observe the position of the object with an
overhead camera before deciding on a tilting action. The cor-
responding state space is non-deterministic, because one can
neither observe the position of the object precisely nor con-
trol the motion of the tray precisely. Min-max LRTA* can
be used to control the tilting actions directly and eventually
orients the object in the desired position if the state space is
safely explorable. (We have performed experiments to verify
that a large number of tray tilting problems are indeed safely
explorable.) Our complexity results provide an upper bound
on the number of tray tilting actions needed.

6.2 Moving Target Search
When deriving the complexity results, we assumed the exis-
tence of a fictitious opponent “nature.” But the results also
apply to scenarios where there is a real opponent. In a way,
applying single-agent real-time search methods to two-player
games closes a loop, since real-time search was originally in-
spired by time-constraints present in antagonistic two-agent
domains such as game playing. Consider, for example, mov-
ing target search – the task for a hunter is to catch an inde-
pendently acting prey. Both agents move on a known directed
graph. The hunter moves first, then they alternate moves to
adjacent vertices. (If the agents can pass their moves, one
can model this by adding identity actions to the graph.) Both
agents can always sense the current vertices of themselves
and the other agent, but the hunter does not know where the
prey will move. The hunter catches the prey if both agents
occupy the same vertex.

In our framework, the agent is the hunter and nature is the
prey. It is straightforward to map the moving target search

hunterprey

1 2 3 4 5 6

the corresponding non-deterministic single-agent state space:

state = (hunter, prey) action of hunter outcomes

(done) = goal — —

(3,1) = start move to 2 (2,6) or (done)

move to 4 (4,2) or (4,6)

(2,6) move to 1 (1,5)

move to 3 (3,5)

(4,2) move to 3 (3,1) or (done)

move to 5 (5,1) or (5,3)

(4,6) move to 3 (3,5)

move to 5 (done)

...

a moving target search problem:

Figure 6: A simple moving target search problem

problem to a non-deterministic single agent search problem
against nature (Figure 6). The hunter can catch the prey for
sure if the derived state space is safely explorable. If the
hunter uses min-max LRTA* with lookahead one, then we
can utilize our complexity result to derive an upper bound
on the number of actions that the hunter executes before it
catches the prey.

[Ishida and Korf, 1991] have also applied real-time search
methods to moving target search, but utilize LRTA* for the
hunter in a different way. Their MTS algorithm learns the
following strategy for the hunter (until it catches the prey):
always move to an adjacent vertex that is on a shortest path
to the current vertex of the prey. They prove that the hunter
eventually catches the prey on a strongly connected graph if it
is faster than the prey. Note the differences between the two
approaches: Obviously, one has to make some assumptions
to ensure that the prey can not force the hunter into a cycle
in which the hunter cannot decrease its distance to the prey.
Ishida and Korf do not restrict the topology of the graph, but
have to assume that the hunter has a speed advantage over the
prey. Consider for example the graph in Figure 6 (note that
one of its edges is directed) and assume that both agents are
equally fast. Korf and Ishida’s algorithm always follows the
prey at the same distance if the algorithm is totally informed
and the prey runs around in an anti-clockwise cycle. Min-
max LRTA*, however, will eventually go left until the prey
takes the one-way street and later go right until the prey is
caught, no matter which strategy the prey uses.

7 Extensions
In this paper, we have measured the complexity of min-max
LRTA* in action executions. Therefore, every action has a
cost of one associated with it. However, our analysis can eas-
ily be generalized to arbitrary strictly positive cost structures,
including ones with non-uniform costs (in a way analogous to
[Koenig and Simmons, 1992] where we assume deterministic

state spaces). Furthermore, various methods have been pro-
posed that improve the performance of LRTA*, see for exam-
ple [Matsubara and Ishida, 1994; Ishida, 1993; Knight, 1993;
Hamidzadeh, 1992; Ishida, 1992; Russell and Wefald, 1991;
Shekhar and Dutta, 1989] – we have applied and analyzed
these methods in the context of min-max LRTA*.

If one could make assumptions about nature’s strategy (for
example, if one knew that nature is a neutral coin flipper) or
the state space were not safely explorable, one would use a
more sophisticated search strategy than a minimax approach.
Consequently, our future publications will report real-time
search results for these cases.

8 Related Work

[Korf, 1988] considered deterministic, strongly connected
domains and showed that LRTA* reaches a goal state eventu-
ally. He also showed that LRTA* eventually finds a shortest
path from the start state to a goal state if it is repeatedly re-
set into the start state when it reaches a goal state. [Ishida,
1993] performed additional systematic experiments to un-
derstand how the performance of LRTA* can be improved
by utilizing initial knowledge in form of heuristic functions.
[Barto et al., 1995] showed how LRTA* can be generalized
to finding paths of minimal average lengths in probabilistic
domains. [Heger, 1994] used an on-line minimax algorithm
based on Q-learning [Watkins, 1989] to learn paths of min-
imal worst-case length. Since his algorithm, Q̂-learning, is
similar to min-max LRTA*, it benefits from our complex-
ity analysis. (For the relationship between Q-learning and
LRTA* see [Koenig and Simmons, 1993].) Neither of the
above researchers have analyzed the complexity of their al-
gorithms, but most of them report empirical results.

[Ishida and Korf, 1991] proposed the moving target search
algorithm MTS, showed how to utilize initial knowledge in
form of heuristic functions for MTS, and analyzed its com-
plexity in deterministic, strongly connected state spaces that
do not contain identity actions. MTS reduces to LRTA* with
lookahead one if the target does not move. [Littman, 1994]
pointed out that in antagonistic two-agent situations such as
moving target search it can be advantageous to use probabilis-
tic strategies over minimax strategies if both agents can move
simultaneously.

9 Conclusion

In this paper, we have relaxed the standard assumption that
search domains are deterministic and studied suboptimal
real-time search methods in non-deterministic domains. We
viewed real-time search as a game where the search algorithm
selects the actions and nature, a fictitious opponent, chooses
their outcomes. In particular, we introduced the min-max
LRTA* algorithm, a simple extension of Korf’s LRTA* al-
gorithm to non-deterministic domains.

We analyzed the worst-case performance of min-max
LRTA* theoretically. In particular, we introduced the no-
tion of a safely explorable state space and showed that the

complexity of uninformed min-max LRTA* in safely ex-
plorable state spaces is proportional to the product of the size
of the state space |S| and the average goal distance over all
states. We proved that the complexity of uninformed min-
max LRTA* can get as large as |S|2 − |S| action executions,
but not larger (1/2|S|2− 1/2|S| action executions if the state
space does not have identity actions that can leave the state
unchanged). We also showed how min-max LRTA* can take
advantage of initial knowledge in form of heuristic functions
for the goal distances.

Our complexity results hold for deterministic domains as
well. In particular, deterministic state spaces are not eas-
ier to solve with min-max LRTA* than non-deterministic
ones. Since min-max LRTA* reduces to LRTA* in determin-
istic domains, the complexity results also apply to the orig-
inal LRTA* algorithm. It follows, for example, that unin-
formed LRTA* can search large state spaces with small aver-
age goal distances (such as sliding tile puzzles) much faster
than equally large state spaces with large average goal dis-
tances.

Acknowledgements
Thanks to Alan Christiansen, Matt Mason, Andrew Moore,
Sebastian Thrun, and especially Lonnie Chrisman and
Matthias Heger for helpful discussions. Thanks also to Toru
Ishida for providing an English translation of one of his pa-
pers that was written in Japanese.

References
[Barto et al., 1995] Andrew G. Barto, Steven J. Bradtke, and

Satinder P. Singh. Learning to act using real-time dy-
namic programming. Artificial Intelligence, pages 81–138,
1 1995.

[Christiansen, 1992] Alan D. Christiansen. Automatic Ac-
quisition of Task Theories for Robotic Manipulation. PhD
thesis, School of Computer Science, Carnegie Mellon Uni-
versity, 1992.

[Erdman and Mason, 1988] M.A. Erdman and M.T. Mason.
An exploration of sensorless manipulation. IEEE Journal
of Robotics and Automation, 4(4):369–379, 8 1988.

[Hamidzadeh, 1992] B. Hamidzadeh. Can real-time search
algorithms meet deadlines? In Proceedings of the AAAI,
pages 486–491, 1992.

[Heger, 1994] Matthias Heger. Consideration of risk in re-
inforcement learning. In Proceedings of the Eleventh In-
ternational Conference on Machine Learning, pages 105–
111, 1994.

[Ishida and Korf, 1991] Toru Ishida and Richard E. Korf.
Moving target search. In Proceedings of the IJCAI, pages
204–210, 1991.

[Ishida, 1992] Toru Ishida. Moving target search with intelli-
gence. In Proceedings of the AAAI, pages 525–532, 1992.

[Ishida, 1993] Toru Ishida. Real-time bidirectional search.
Technical report, NTT Communication Science Labora-
tory, Japan, 1993.

[Kadie, 1991] C.M. Kadie. Continuous conceptual set cov-
ering: Learning robot operators from example. In Pro-
ceedings of the Eighth International Workshop on Machine
Learning, pages 615–619, 1991.

[Knight, 1993] Kevin Knight. Are many reactive agents bet-
ter than a few deliberative ones? In Proceedings of the
IJCAI, pages 432–437, 1993.

[Koenig and Simmons, 1992] Sven Koenig and Reid G.
Simmons. Complexity analysis of real-time reinforcement
learning applied to finding shortest paths in deterministic
domains. Technical Report CMU–CS–93–106, School of
Computer Science, Carnegie Mellon University, 1992.

[Koenig and Simmons, 1993] Sven Koenig and Reid G.
Simmons. Complexity analysis of real-time reinforcement
learning. In Proceedings of the AAAI, pages 99–105, 1993.

[Koenig, 1992] Sven Koenig. The complexity of real-time
search. Technical Report CMU–CS–92–145, School of
Computer Science, Carnegie Mellon University, 1992.

[Korf, 1987] Richard E. Korf. Real-time heuristic search:
First results. In Proceedings of the AAAI, pages 133–138,
1987.

[Korf, 1988] Richard E. Korf. Real-time heuristic search:
New results. In Proceedings of the AAAI, pages 139–144,
1988.

[Korf, 1990] Richard E. Korf. Real-time heuristic search. Ar-
tificial Intelligence, 42(2-3):189–211, 3 1990.

[Korf, 1993] Richard E. Korf. Linear-space best-first search.
Artificial Intelligence, 62(1):41–78, 1 1993.

[Littman, 1994] Michael L. Littman. Markov games as a
framework for multi-agent reinforcement learning. In Pro-
ceedings of the Eleventh International Conference on Ma-
chine Learning, pages 157–163, 1994.

[Matsubara and Ishida, 1994] Shigeo Matsubara and Toru
Ishida. Real-time planning by interleaving real-time
search with subgoaling. In Proceedings of the Interna-
tional Conference on Artificial Intelligence Planning Sys-
tems, pages 122–127, 1994.

[Moore and Atkeson, 1993] Andrew W. Moore and Christo-
pher G. Atkeson. The parti-game algorithm for vari-
able resolution reinforcement learning in multidimen-
sional state-spaces. In Proceedings of the NIPS, 1993.

[Pearl, 1985] Judea Pearl. Heuristics: Intelligent Search
Strategies for Computer Problem Solving. Addison-
Wesley, Menlo Park, California, 1985.

[Pemberton and Korf, 1992]
Joseph C. Pemberton and Richard E. Korf. Incremental
path planning on graphs with cycles. In Proceedings of
the First Annual AI Planning Systems Conference, pages
179–188, 1992.

[Reinefeld, 1993] Alexander Reinefeld. Complete solution
of the eight-puzzle and the benefit of node ordering in
IDA*. In Proceedings of the IJCAI, pages 248–253, 1993.

[Russell and Wefald, 1991] Stuart Russell and Eric Wefald.
Do the Right Thing – Studies in Limited Rationality. The
MIT Press, Cambridge, Massachusetts, 1991.

[Shekhar and Dutta, 1989] S. Shekhar and S. Dutta. Mini-
mizing response times in real-time planning and search.
In Proceedings of the IJCAI, pages 238–242, 1989.

[Watkins, 1989] Christopher J. Watkins. Learning from De-
layed Rewards. PhD thesis, King’s College, Cambridge
University, 1989.

