
Greedy Localization∗

Craig Tovey Sven Koenig
College of Computing

Georgia Institute of Technology
Atlanta, GA 30332-0280, USA

{ctovey, skoenig }@cc.gatech.edu

Abstract

In this paper, we show that finding localization plans with op-
timal worst-case execution time for localization tasks with short-
range sensors in discretized domains is NP-hard, even within a log-
arithmic factor. This strongly suggests that finding and executing
localization plans with optimal or even near-optimal worst-case
execution time cannot be done in polynomial time. Greedy local-
ization methods interleave planning and execution and keep the
amount of planning performed between moves small. We analyze
one such greedy localization method, the Delayed Planning Archi-
tecture, and show that it can find and execute localization plans in
polynomial time and thus substantially reduce the sum of planning
and execution time compared to localization methods that find lo-
calization plans with optimal or near-optimal execution time. We
also characterize how suboptimal the execution time of its local-
ization plans can be. These results provide a first step towards
analyzing other greedy localization methods.

1 Introduction

A mobile robot cannot predict the observation that it will
make after its next moves if it does not know its current posi-
tion. Localization tasks are therefore planning tasks in non-
deterministic domains. In principle, one could solve them
by first determining plans with optimal execution time and
then executing them. However, finding such plans can be
time-consuming. One principle that has often been used in
mobile robotics to reduce the sum of planning and execution
time is to interleave planning and execution, which is often
called sensor-based planning [4]. The sensors on-board a
robot can typically sense the terrain only near its current
position, and the robot thus has to interleave planning and
execution to be able to sense new parts of the terrain. As
the robot moves, it is able to reduce its uncertainty about its
position and thus the number of situations that its plans have
to cover. This makes subsequent planning more efficient.

∗This project is partly supported by an NSF award under contract IIS-
0098807. The views and conclusions contained in this document are those
of the authors and should not be interpreted as representing the official
policies, either expressed or implied, of the sponsoring organizations and
agencies or the U.S. government. The results of this paper overlap with
some of our previous results in [24].

Greedy localization methods interleave planning and ex-
ecution and keep the amount of planning performed between
moves small. They often use agent-centered search to re-
strict planning to the part of the domain around the current
state. Agent-centered search methods decide on the local
search space, search it, and determine which moves to ex-
ecute within it. Then, they execute these moves (or only
the first move) and repeat the overall process from their new
state. Agent-centered search methods have the following
advantages.

• Theoretical foundation: Unlike many existing ad-hoc
planning methods that interleave planning and execu-
tion, many agent-centered search methods have a solid
theoretical foundation, that allows one to characterize
their behavior analytically. For example, they are often
easy to prove correct and their execution time can be
analyzed formally.

• Anytime property: Many agent-centered search
methods allow for fine-grained control over how much
planning to perform between moves by varying the
sizes of their local search spaces. Thus, they can be
used as any-time contract algorithms [18] for determin-
ing which moves to execute next, which allows them
to adjust the amount of planning performed between
moves to the planning and execution speeds of robots.

• Simple integration into robot architectures: Many
agent-centered search methods are simple to imple-
ment and integrate well into complete robot architec-
tures. Agent-centered search methods are robust to-
wards the inevitable inaccuracies and malfunctions of
other architecture components and do not need to have
control of the robot at all times. This is important be-
cause planning methods should only provide advice on
how to act and work robustly even if that advice is ig-
nored from time to time [1].

Agent-centered search methods have been demonstrated
on mobile robots that solve complex real-world tasks, in-
cluding localization and mapping, and perform well in prac-
tice [13]. This paper studies localization tasks with short-

range sensors in discretized domains, whereas the litera-
ture typically studies localization tasks with long-range sen-
sors in nondiscretized domains. In the literature, localiza-
tion sometimes just means to find all positions consistent
with the current sensor reports [2, 3, 7, 8, 10, 11, 22]. In
this paper, however, localization means to determine how to
move the robot until it knows its current position, similar to
[5, 20]. The Delayed Planning Architecture [6] is a greedy
localization method that uses agent-centered search but had
not been analyzed before. We show that it can find and exe-
cute localization plans in polynomial time and substantially
reduces the sum of planning and execution time compared
to localization methods that find localization plans with op-
timal or near-optimal worst-case execution time. Since the
Delayed Planning Architecture moves the robot before it
knows the complete consequences, it incurs some overhead
in execution time but this is outweighed by a reduction
in planning time since plans with optimal or near-optimal
worst-case execution time cannot be found in polynomial
time. We also characterize how suboptimal the execution
time of its localization plans can be. Our results comple-
ment previous results on the complexity of localization that
are typically not about greedy localization methods.

2 Localization Tasks

We study localization tasks where a robot with short-
range sensors operates in a known gridworld (a rectangular
configuration of square cells) but does not know its start cell.
The sensors on-board the robot tell it in every cell which of
the four neighboring cells (north, east, south, west) are un-
traversable. (The border of the gridworld is untraversable
and observed as such.) The robot can then move one cell in
one of the four compass directions unless that cell is outside
of the gridworld or untraversable (in which case the robot
remains in its current cell). We assume that there is no un-
certainty in actuation and sensing and that the robot always
knows its orientation from the on-board compass. These
assumptions are simplifying but sufficiently close to reality
to enable one to use the resulting planning methods on real
robots [16].

The robot is localized if it knows its current cell. A lo-
calization plan specifies which moves to execute based on
all previous moves and observations, until the robot is either
localized or correctly determines that localization is impos-
sible. We measure the execution time of a localization plan
using the total number of moves. The worst-case execution
time of a localization plan then is the total number of moves
for the worst possible start cell. We measure the quality of
a localization plan using its worst-case execution time and
thus differ from those approaches in the literature that use
its competitive ratio instead, that is, the ratio of its execu-
tion time and the smallest execution time that would allow

an omniscient robot to verify its true initial cell [5, 9, 11, 20].

3 Non-Greedy Localization

In this section, we analyze how difficult it is to find lo-
calization plans with optimal or near-optimal worst-case ex-
ecution time. Since the robot does not know its start cell,
localization tasks cannot be formulated as planning tasks in
small deterministic domains whose states are the cells (posi-
tion space). Rather, the robot has to maintain a belief about
its current cell, namely the set of cells that it could possibly
be in. The beliefs of the robot depend on its observations,
which the robot cannot predict with certainty since it is un-
certain about its cell. Localization tasks are therefore plan-
ning tasks in large nondeterministic domains whose states
are the beliefs of the robot (belief space).

Localization tasks are related to finding homing se-
quences or adaptive homing sequences for deterministic fi-
nite state automata whose states are colored, a concept from
theoretical computer science. A homing sequence is a lin-
ear plan (sequence of moves) with the property that the state
colors observed during its execution uniquely determine the
resulting state [14]. An adaptive homing sequence is a con-
ditional plan with the same property [19]. For every reduced
deterministic finite state automaton with s states, there ex-
ists a (possibly suboptimal) homing sequence with O(s2)
moves (and thus polynomial execution time) that can be
found in polynomial planning time but finding a shortest
homing sequence is NP-hard in general [19]. (A reduced
finite state automaton is one where, for every pair of differ-
ent states, there exists some sequence of moves that distin-
guishes them.) Robot localization tasks can be solved with
homing sequences since the position space is deterministic
and thus can be modeled as a deterministic finite state au-
tomaton. However, the following proposition suggests that
the constrained topology of gridworlds could make them
easier to solve.

Proposition 1 For every gridworld with s cells, there exists
a (possibly suboptimal) localization plan with O(s) moves
that can be found in O(s) time.

Proof Sketch: For every gridworld with s cells, one can
first determine the connected components Mi of the given
map of the gridworld in O(s) planning time. Second, one
can acquire a map M ′ of the gridworld component where
the robot is in O(s) moves, by moving the robot in a depth-
first search manner. Third, one can determine in O(s) plan-
ning time which of the Mi are identical to map M ′ using a
depth-first search for every map, starting from the west-most
cell of the north-most traversable cells. If exactly one Mi

matches M ′, the robot has been localized. If more than one

x = 16 elements; y = 15 subsets
e2 ∈ S1, S4, S9, S15

block b3209 of east-west hallway ew2

ns1 ns2 ns3 ns4 ns5 ns6 ns7 ns8 ns9 ns10 ns11 ns12 ns13 ns14 ns15

...

24
0

ce
lls

(s
ho

w
n

sh
or

te
r

th
an

 a
ct

ua
l l

en
gt

h)

binary representation of 3209
1= ; 0=

untraversable cell = or ; traversable cell =

ew2

Figure 1: Block for NP-Hardness Proof

Mi matches M ′ then the robot cannot localize. This algo-
rithm needs O(s) planning time and executes O(s) moves.

This theorem suggests that the constrained topology of
gridworlds indeed makes them easier to solve and thus that
localization plans with optimal worst-case execution time
could possibly be found in polynomial planning time. How-
ever, we prove in the following that finding localization
plans even with near-optimal worst-case execution time re-
mains NP-hard. (Additional results can be found in [24].)

Theorem 1 Finding a localization plan in gridworlds with
s cells whose worst-case execution time is within a factor
O(log(s)) of optimum is NP-hard, even in gridworlds that
are connected.

Proof Sketch: An instance of set cover consists of a base
set S = {e1 . . . ex} and a collection of sets S1, . . . , Sy ⊆ S.
A set cover is a collection of these sets whose union is S,
and the objective is to find a set cover of small cardinal-
ity. Finding a set cover whose cardinality is within a factor
O(log x) of minimum is NP-hard [15]. Let y∗ ≤ x denote
the cardinality of a minimum set cover for the given instance
of the set cover problem. We reduce this problem to find-
ing a localization plan in a gridworld of size m × n with
m = 3x3y + 1 and n = (xy + 2)(x + 1) whose worst-case
execution time is within a factor O(log(mn)) of optimal.
We assume without loss of generality that log y = O(log x).

We now explain how the gridworld is constructed from
the given instance of the set cover problem. The grid-
world contains many copies of rectangular “blocks” of size
(3y) × (xy + 2). Along the south side of each block is a
wall of length 3y and immediately to the north of the wall is
an east-west corridor of length 3y. There are y north-south
corridors ns1 . . . nsy of length xy each, separated by walls,
that branch off of the east-west corridor to the north, start-
ing in the second column of the block. Figure 1 shows an
example. The gridworld contains an array of (x3)× (x+1)

... ...

... ...

... ...

ew0

ew1

ew2

b0 b1

17
 e

as
t-

w
es

t h
al

lw
ay

s
(e

w
0

...
 e

w
16

)

4096 blocks (b0 ... b4095)

...

...

Figure 2: Gridworld for NP-Hardness Proof

blocks. Thus, there are x3 blocks b0 . . . bx3
−1 in the same

row. Their east-west corridors form one long east-west hall-
way. There are x + 1 east-west hallways ew0 . . . ewx of
length 3x3y each. In the extreme west, we add a full length
north-south hallway, which makes the gridworld connected.
Figure 2 shows an example. We make the last i cells of
north-south corridor nsj of each block in east-west hallway
ewi untraversable iff ei ∈ Sj . (Since there is no element e0,
no north-south corridor of any block in east-west hallway
ew0 is shortened.) To be able to distinguish between the
blocks in the same east-west hallway, we put a “signature”
at the east end of each block. For block bk, this signature
encodes k in binary form, which needs at most 3 log x bits.
The signature is in the form of northerly “alcoves,” followed
by a southerly alcove which marks the beginning of the sig-
nature. This completes the description of how the gridworld
is constructed in polynomial planning time.

We now calculate an upper bound zU on the number of
moves of a localization plan with optimal worst-case execu-
tion time. Consider the following localization plan: If only
north is traversable, move north one place (since the robot
was in a southerly alcove). Otherwise, move south until the
robot sees an opening to the west or east (the robot is now in
an east-west hallway), then move east to the end of a signa-
ture or until the robot gets blocked (the robot is now directly
east of a signature). Move west and read the signature. At
this point, the robot knows where it is with the exception
of which east-west hallway it is in. The robot then moves
west and, every time it encounters one of the y∗ north-south
corridors in the current block that corresponds to a smallest
set cover for the given instance of the set cover problem, it
moves to the end of the north-south corridor and back to the
east-west hallway. If the robot is in east-west hallway ewj

with j > 0 then it will visit at least one north-south corri-
dor that is shorter than xy. Its length uniquely identifies the
east-west hallway the robot is in, which localizes the robot.
Otherwise the robot must be in east-west hallway ew0 and

is localized as well. An easy calculation shows that the total
number of moves is bounded by zU ≤ 2y∗xy+6y ≤ 3y∗xy.

It remains to be shown that a solution to the local-
ization problem implies a solution to the set cover prob-
lem. Assume that we have found a localization plan
whose execution time is within a factor O(log(mn)) of
optimal. An upper bound on the number of moves of
this localization plan is O(log(mn))zU = O(log((3x3y +
1)(xy + 2)(x + 1)))3y∗xy = O(log(x5y2))3y∗xy =
O(5 log(x) + 2 log(y))3y∗xy = O(7 log(x))3y∗xy =
O(log(x))3y∗xy ≤ x3y∗xy ≤ 3x3y. Thus, the number
of moves is no larger than the length of an east-west hall-
way. Now assume that the robot starts at the east end of
east-west hallway ew0. Thus, it cannot visit a different east-
west hallway and, as part of the localization, must deter-
mine that no north-south corridor in a block is shorter than
xy. If the robot moves into a north-south corridor less than
xy − x − 1, it cannot detect whether the corridor is shorter
than xy because all north-south corridors are at least xy−x
long. Thus, consider all north-south corridors that the robot
moves into at least xy−x−1. The collection of subsets that
these corridors correspond to must be a set cover, for other-
wise the robot could not distinguish between the east-west
hallways ew0 and ewi for the elements ei not covered by the
collection of subsets. Let y′ denote the cardinality of this set
cover. To determine how close to minimum the set cover is,
we determine a lower bound on the total number of moves
of the robot. A straightforward calculation shows that the
robot makes at least (2y′ − 1)(xy − x − 1) moves. Com-
bined with the O(log(x))3y∗xy upper bound shown earlier,
this implies that y′ = O(log(x))y∗, which implies that the
set cover is within a factor O(log(x)) of minimum.

It had been shown previously that finding localization
plans with optimal worst-case execution time for localiza-
tion tasks with long-range sensors in continuous domains
is NP-hard [5]. Our result not only shows that finding lo-
calization plans with optimal worst-case execution time for
localization tasks with short-range sensors in discretized do-
mains is NP-hard but also that finding localization plans
with near-optimal execution time for such localization tasks
remains NP-hard. This strongly suggests that finding local-
ization plans with optimal or even near-optimal worst-case
execution time cannot be done in polynomial planning time
for such localization tasks, which confirms earlier empirical
results that indicated that performing a complete minimax
(and-or) search in belief space to determine plans with opti-
mal worst-case execution time is often completely infeasible
[17]. On the other hand, the localization method sketched as
part of the proof of Proposition 1 finds and executes local-
ization plans in polynomial time and thus reduces the sum
of planning and execution time substantially compared to lo-
calization methods that find localization plans with optimal
or near-optimal execution time. However, it does not make

good use of prior knowledge or the sensor reports during
execution to reduce the number of moves and thus often re-
sults in large execution times in practice. Furthermore, it is
not simple to integrate into complete robot architectures, for
example, if the obstacle avoidance component can alter the
move recommendations of the localization component. In
the following, we therefore show that a greedy localization
method that performs agent-centered search and thus avoids
these problems also finds and executes localization plans in
polynomial time.

4 Greedy Localization

The Delayed Planning Architecture with the viable plan
heuristic [6] always finds a linear plan (sequence of moves)
that reduces the number of possible robot cells with the
smallest number of moves. The robot executes the plan and
then repeats the process. Thus, it performs agent-centered
search. Nourbakhsh pioneered the Delayed Planning Ar-
chitecture in robot programming classes where Nomad 150
mobile robots had to navigate gridworlds that were built
with three-foot high and forty inch long cardboard walls
[16]. Subsequently, Koenig and Simmons generalized the
Delayed Planning Architecture [12].

The Delayed Planning Architecture achieves the same
behavior as homing sequences and can thus find and exe-
cute localization plans in polynomial time. Theoretical re-
sults about homing sequences suggest how to implement the
Delayed Planning Architecture with dynamic programming
methods to guarantee a polynomial planning time [14]. In
practice, however, its implementations use a simple breadth-
first search in the deterministic part of the belief space
around the current belief state [6]. This also guarantees
a polynomial planning time, as the following proposition
shows.

Proposition 2 For every gridworld with s cells, the De-
layed Planning Architecture finds a localization plan with
O(s2) moves in O(s3) time.

Proof Sketch: For every gridworld with s cells there
are O(s) planning episodes because the start belief con-
tains at most s cells and every planning episode eliminates
at least one possible cell from the belief state. Each plan-
ning episode, in turn, can be completed in O(s2) planning
time by breadth-first search since O(s) belief states can be
reached from the current belief state without eliminating
at least one possible cell and expanding each belief state
takes O(s) planning time since it contains O(s) cells. The
robot then executes O(s) moves since it reduces the number
of possible robot cells with the smallest number of moves.
Thus, the Delayed Planning Architecture needs O(s3) plan-
ning time and executes O(s2) moves.

block b7

ns1 ns2 ns3 ns4 ns5 ns6 ns7 ns8 ns9 ns10

10
 c

el
ls

untraversable cell = or ; traversable cell =

x = 10

winding
corridor

b1

b2

12
 b

lo
ck

s
(b

1
...

 b
12

)

...

b3

X

Figure 3: Gridworld for the Delayed Planning Architecture

Theorem 1 strongly suggests that there are instances of
gridworlds for which no localization method with polyno-
mial planning time, including the Delayed Planning Archi-
tecture, can find localization plans with optimal or near-
optimal worst-case execution time. The following theorem
provides a lower bound on the worst-case execution time of
localization plans found by the Delayed Planning Architec-
ture compared to the optimal worst-case execution time.

Theorem 2 The worst-case execution time of plans gener-
ated by the Delayed Planning Architecture in gridworlds
with s cells can be a factor of Ω(3

√
s) worse than the op-

timal worst-case execution time.

Proof Sketch: We construct a gridworld on which the
Delayed Planning Architecture has the worst-case execution
time ratio claimed in the theorem. The gridworld contains
many copies of rectangular “blocks” of size (2x + 4) ×
(x + 2). Along the south side of each block is a wall of
length 2x + 4 and immediately to the north of the wall is
an east-west corridor of length 2x + 4. There are x north-
south corridors ns1 . . . nsx of length x each, separated by
walls, that branch off of the east-west corridor to the north,
starting in the sixth column of the block. To their imme-
diate left is a winding corridor that goes up x cells, goes
left two cells, and then goes down x − 2 cells. Figure 3
(left) shows an example. The gridworld consists of a col-
umn of x + 2 blocks, from block b1 on top to block bx+2

at the bottom. In the extreme west, we add a full length
north-south hallway, which makes the gridworld connected.
Figure 3 (right) shows an example. We make the last cell of
north-south corridor nsx−i of block bx+2−i untraversable,
for all 0 ≤ i ≤ x − 1. We also make the last i cells of
the winding corridor of block bx+2−i untraversable, for all
0 ≤ i ≤ x + 1. This completes the description of how
the gridworld is constructed. Clearly, the gridworld is con-
nected and has s = (2x + 5)(x + 2)(x + 2) = Θ(x3) cells
(which does not include the untraversable border of the grid-
world).

The robot can find the beginning of some winding corri-
dor from any starting point with at most 3x + 2 moves and
then move at most 2x − 1 into the winding corridor, count-
ing its length, which identifies the block and thus localizes

the robot. Thus, the worst-case number of moves in an opti-
mal plan is at most 5x + 1 = Θ(x). Now we show that the
Delayed Planning Architecture performs many more than
Θ(x) moves if the robot starts at the east end of the east-
west corridor of block b1 (in the figure: marked X). When
the robot is started, it knows where it is with the exception
of which block it is in. The robot makes x − 1 moves into
north-south corridor nsx because this is the fastest way of
reducing the number of possible robot cells. At this point
the robot can eliminate block bx+2. The robot then returns
to the east-west corridor and makes x− 1 moves into north-
south corridor nsx−1, at which point it can eliminate block
bx+1, and so on. Finally, it makes x − 1 moves into the
winding corridor, at which point it can eliminate block b2

and has localized. The robot has made a total number of
moves equal to 2x2 + x − 1 = Θ(x2). It follows that the
worst-case execution time of plans generated by the Delayed
Planning Architecture is Ω(x2/x) = Ω(x) = Ω(3

√
s) worse

than the worst-case execution time of an optimum plan.

5 Future Work

We have assumed in our analysis that there is no actu-
ator or sensor noise. This is a reasonable assumption in
some environments. For example, we mentioned earlier that
the Delayed Planning Architecture has been used on Nomad
150 mobile robots. The success rate of moving was at least
99.57 percent in these environments, and the success rate
of making the correct observations in all four directions si-
multaneously was at least 99.38 percent [16]. These large
success rates enable one to ignore actuator and sensor noise,
especially since the rare failures are usually quickly noticed
when the number of possible cells drops to zero, in which
case the robot simply reinitializes its belief state to all pos-
sible cells and then continues to use the localization method
unchanged. In less constrained environments, however, it
is important to take actuator and sensor noise into account,
resulting in localization methods based on partially observ-
able Markov decision process models (POMDPs). POMDP-
based navigation architectures have been shown to result
in very reliable navigation [21]. A recent overview can
be found in [23]. We are currently working on extending
our analysis to this case, which also requires us to move
from a worst-case analysis to an average-case analysis. If
it turns out that the restricted topology of gridworlds makes
POMDPs easier to solve, then it would be possible to de-
velop better localization methods for POMDP-based navi-
gation architectures.

6 Conclusions

We showed that finding localization plans with opti-
mal worst-case execution time for localization tasks with
short-range sensors in discretized domains is NP-hard, even
within a logarithmic factor. This strongly suggests that find-
ing and executing localization plans with optimal or even
near-optimal worst-case execution time cannot be done in
polynomial time. Greedy localization methods interleave
planning and execution and keep the amount of planning
performed between moves small. They often use agent-
centered search to restrict planning to the part of the do-
main around the current position of the robot and thus have
a solid theoretical foundation, allow for fine-grained con-
trol over how much planning to perform between moves,
and are simple to integrate into robot architectures. The De-
layed Planning Architecture is a greedy localization method
that uses agent-centered search but had not been analyzed
before. We showed that it can find and execute localiza-
tion plans in polynomial time and thus substantially reduces
the sum of planning and execution time compared to local-
ization methods that find localization plans with optimal or
near-optimal execution time. We also characterized how
suboptimal the execution time of its localization plans can
be. These results provide a first step towards analyzing other
greedy localization methods, including greedy localization
methods for POMDP-based navigation architectures.

References

[1] P. Agre and D. Chapman. Pengi: An implementation of a
theory of activity. In Proceedings of the National Conference
on Artificial Intelligence, pages 268–271, 1987.

[2] D. Avis and H. Imai. Locating a robot with angle measure-
ments. Journal of Symbolic Computation, 10:311–326, 1990.

[3] M. Betke and L. Gurvits. Mobile robot localization using
landmarks. IEEE Transactions on Robotics and Automation,
13(2):251–263, 1997.

[4] H. Choset and J. Burdick. Sensor based planning and nons-
mooth analysis. In Proceedings of the International Confer-
ence on Robotics and Automation, pages 3034–3041, 1994.

[5] G. Dudek, K. Romanik, and S. Whitesides. Localizing a
robot with minimum travel. In Proceedings of the 6th An-
nual ACM-SIAM Sympsosium on Discrete Algorithms, pages
437–446, 1995.

[6] M. Genesereth and I. Nourbakhsh. Time-saving tips for prob-
lem solving with incomplete information. In Proceedings
of the National Conference on Artificial Intelligence, pages
724–730, 1993.

[7] L. Guibas, R. Motwani, and P. Raghavan. The robot local-
ization problem in two dimensions. In Proceedings of the
Symposium on Discrete Algorithms, pages 259–268, 1992.

[8] L. Guibas, R. Motwani, and P. Raghavan. The robot localiza-
tion problem. In K. Goldberg, D. Halperin, J.-C. Latombe,
and R. Wilson, editors, Algorithmic Foundations of Robotics,
pages 269–282, 1995.

[9] C. Icking and R. Klein. Competitive strategies for au-
tonomous systems. In H. Bunke, T. Kanade, and H. Nolte-
meier, editors, Modelling and Planning for Sensor-Based In-
telligence Robot Systems, pages 23–40, 1995.

[10] O. Karch and H. Noltemeier. Robot localization – theory and
practice. In Proceedings of the International Conference on
Intelligent Robots and Systems, pages 850–856, 1997.

[11] J. Kleinberg. The localization problem for mobile robots.
In Proceedings of the Annual Symposium on Foundations of
Computer Science, pages 521–533, 1994.

[12] S. Koenig and R.G. Simmons. Solving robot navigation
problems with initial pose uncertainty using real-time heuris-
tic search. In Proceedings of the International Conference
on Artificial Intelligence Planning Systems, pages 145–153,
1998.

[13] S. Koenig, C. Tovey, and W. Halliburton. Greedy mapping
of terrain. In Proceedings of the International Conference on
Robotics and Automation, pages 3594–3599, 2001.

[14] Z. Kohavi. Switching and Finite Automata Theory. McGraw-
Hill, second edition, 1978.

[15] C. Lund and M. Yannakakis. On the hardness of approximat-
ing minimization problems. Journal of the ACM, 41:960–
981, 1994.

[16] I. Nourbakhsh. Robot Information Packet. Distributed at the
AAAI-96 Spring Symposium on Planning with Infomplete
Information for Robot Problems, 1996.

[17] I. Nourbakhsh. Interleaving Planning and Execution for Au-
tonomous Robots. Kluwer Academic Publishers, 1997.

[18] S. Russell and S. Zilberstein. Composing real-time systems.
In Proceedings of the International Joint Conference on Ar-
tificial Intelligence, pages 212–217, 1991.

[19] R. Schapire. The Design and Analysis of Efficient Learning
Algorithms. MIT Press, 1992.

[20] S. Schuierer. Efficient robot self-localization in simple poly-
gons. Proceedings of the International Joint Conference on
Artificial Intelligence, pages 129–146, 1996.

[21] R. Simmons and S. Koenig. Probabilistic robot navigation in
partially observable environments. In Proceedings of the In-
ternational Joint Conference on Artificial Intelligence, pages
1080–1087, 1995.

[22] K. Sugihara. Some location problems for robot navigation
using a single camera. Computer Vision, Graphics, and Im-
age Processing, 42:112–129, 1988.

[23] S. Thrun. Probabilistic algorithms in robotics. Artificial In-
telligence Magazine, 21(4):93–109, 2000.

[24] C. Tovey and S. Koenig. Gridworlds as testbeds for planning
with incomplete information. In Proceedings of the National
Conference on Artificial Intelligence, pages 819–824, 2000.

