
Incremental Replanning for Mapping

Maxim Likhachev
School of Computer Science
Carnegie Mellon University

Pittsburgh, PA 15213
maxim+@cs.cmu.edu

Sven Koenig
College of Computing

Georgia Institute of Technology
Atlanta, GA 30332-0280
skoenig@cc.gatech.edu

Abstract

Incremental heuristic search methods can often replan
paths much faster than incremental or heuristic search
methods individually, yet are simple to use. So far, they
have only been used in mobile robotics to move a robot
to given goal coordinates in unknown terrain. As far as
we know, incremental heuristic search methods have not
yet been applied to the problem of mapping unknown ter-
rain. In this paper, we therefore describe how to apply
our incremental heuristic search method D* Lite, that
combines ideas from Lifelong Planning A* and Focussed
D*, to mapping unknown terrain, which is rather non-
trivial. We then compare its runtime against that of in-
cremental search and heuristic search alone, demonstrat-
ing the computational benefits of their combination. By
demonstrating the versatility and computational benefits
of incremental heuristic search, we hope that this un-
derexploited technique will be used more often in mobile
robotics.

1 Introduction

Mobile robots often have to replan quickly as their knowl-
edge of the world changes. In this case, an incremen-
tal heuristic search can replan much faster than complete
searches from scratch: an incremental search remem-
bers information from previous searches to speed up the
search, and a heuristic search uses heuristic knowledge
to focus the search and thus speed it up. Researchers
from mobile robotics have, so far, exploited their combi-
nation only for goal-directed navigation in unknown ter-
rain [3, 15, 12, 5, 6], where Anthony Stentz’ Focussed D*
[14] algorithm convincingly demonstrates the advantages
of incremental heuristic search since it solves this search
task with a speedup of one to two orders of magnitude(!)
over repeated A* searches, which is important to avoid
the robots being idle. However, Focussed D* is very com-
plex and thus hard to understand, analyze, and extend.
For example, while Focussed D* has been widely used as
a black-box method, it has not been extended by other re-
searchers. We believe that two achievements are needed
to make incremental heuristic search methods more pop-

ular in mobile robotics. First, one needs to devise sim-
pler incremental heuristic search methods that have well
understood theoretical properties. In previous work, we
have therefore developed D* Lite [9], a combination of
ideas from Lifelong Planning A* [8] and Focussed D*
[14]. D* Lite implements the same navigation strategy
as Focussed D* but is algorithmically different. It is sim-
pler, easier to understand, easier to analyze and easier to
extend than Focussed D*, yet is more efficient. For ex-
ample, D* Lite has fewer lines of code (without any cod-
ing tricks) than Focussed D*, uses only one tie-breaking
criterion when comparing priorities, and does not need
nested if-statements with complex conditions that occupy
up to three lines each. Thus, we use D* Lite in this pa-
per. Second, one needs to demonstrate the advantages of
incremental heuristic search methods, such as D* Lite,
for additional navigation tasks. In this paper, we there-
fore demonstrate how D* Lite can be applied to mapping
tasks. We believe that this is the first demonstration of
how incremental heuristic search methods or, more gen-
erally, heuristic search methods can be used for this task.
We then compare the computational benefits of the incre-
mental heuristic search performed by D* Lite to the ones
of heuristic but nonincremental searches and incremental
but nonheuristic searches. By demonstrating the versa-
tility and computational benefits of incremental heuristic
search for mapping of unknown terrain, we hope that this
underexploited technique will be used more often in mo-
bile robotics.

2 D* Lite Replanning Method

D* Lite [9], shown in Figure 1, is an incremental version
of the heuristic search method A* and combines ideas
from Lifelong Planning A* and Focussed D*. It imple-
ments the same navigation strategy as Focussed D* but is
algorithmically simpler. In particular, it moves the robot
from its current vertex to a given goal vertex on a given
graph as follows: It always moves the robot on a shortest
path from its current vertex to the goal vertex, and replans
the shortest path when the edge costs change. (In the
pseudo code, we have included a comment on line

�
33 �

about how the robot can detect that there is no path but do

The pseudocode uses the following functions to manage the priority queue: U.Top ��� returns a vertex with the
smallest priority of all vertices in priority queue � . U.TopKey ��� returns the smallest priority of all vertices in
priority queue � . (If � is empty, then U.TopKey ��� returns � �����
	 .) U.Insert ���
����� inserts vertex � into
priority queue � with priority � . U.Update ���
����� changes the priority of vertex � in priority queue � to � . (It
does nothing if the current priority of vertex � already equals � .) Finally, U.Remove ����� removes vertex � from
priority queue � .

procedure CalculateKey ������
01 � return � ��� �
���
���������������������! "�#��� �%$'&���$ �%���()�+*������ �����
�������%�+�����������,	 ;

procedure Initialize ����
02 �-�/./0 ;�
03 �1� * .32
��
04 � for all �5476������������-./�
�����-.8� ;�
05 �9�+�:����� �+;�&�< �-.�2 ;�
06 � U.Insert ��� �+;�&�< �+� �#��� �%$'&���$ �%� �+;�&�< ���=2�	 � ;

procedure UpdateVertex �,>(��
07 � if (�
�,>(�@?.��+������>(� AND >"47�A� U.Update ��>9��BA&�<,C�>(<,&�$'D�EFD�G:�,>(��� ;�
08 � else if ���
��>(�@?.3�+�:���,>(� AND >/H4
�I� U.Insert �,>9�%BJ&�<,C�>(<,&
$�D%EFD%G���>(��� ;�
09 � else if ���
��>(�K.3�+�:���,>(� AND >
4
�I� U.Remove ��>(� ;

procedure ComputeShortestPath ����
10 � while � U.TopKey ���9LM CalculateKey ��� �%$'&���$ � OR �+������� �%$�&
��$ �IN3�
��� �%$'&���$ �O��
11 �P>Q. U.Top ��� ;�
12 �R� ;�<,S . U.TopKey ��� ;�
13 �R�+T D�U . CalculateKey ��>(��� ;�
14 � if ��� ;�<,S LM �+T D%U ��
15 � U.Update �,>9�%�
T D%U �=��
16 � else if ���
��>(�AN��+�����,>(����
17 � �
��>(�K.��������,>(� ;�
18 � U.Remove ��>(� ;�
19 � for all �54WVI�+D%S��,>(��
20 � if ���F?./� �+;�&�< ���+�������%�X.Y�5� ������������������C����
��>(�()�
�,>(�O� ;�
21 � UpdateVertex ����� ;�
22 � else�
23 � � ;�<,S ./�
��>(� ;�
24 � �
��>(�K./� ;�
25 � for all �54WVI�+D%S��,>(�!Z � >[��
26 � if ���+�:�������-./C%���+��>(�[)� ;�<,S ��
27 � if ���F?.3� �+;�&�< ���+���������-.3��� � �%\�4!6[>(C�C������ ��C����
��� \ �()�
��� \ ��� ;�
28 � UpdateVertex ����� ;

procedure Main ����
29 �1� <,&���$.3� ��$�&
��$ ��
30 � Initialize ��� ;�
31 � ComputeShortestPath ��� ;�
32 � while ��� �%$�&
��$?./� �+;�&�< ��
33 � /* if �,�+������� �%$�&
��$ �-.3�"� then there is no known path */�
34 �R� ��$�&
��$.3]�^�_K��� � ��\�4[6[>(C�C���� ��$�&
��$ � ��C%��� �%$'&���$ �%� \ �("�
��� \ �O� ;�
35 � Move to � �%$�&
��$;�
36 � Scan graph for changed edge costs;�
37 � if any edge costs changed�
38 � �+*`.3�+*a "�#��� <,&��%$ ��� �%$'&���$ ����
39 � � <,&��%$./� �%$'&���$ ��
40 � for all directed edges �,>9��b�� with changed edge costs�
41 � C ;�<,S .3C%��>9��b�� ;�
42 � Update the edge cost C��,>9��b�� ;�
43 � if (C ;�<,S N3C��,>9��b��)�
44 � if �,>Y?./� �+;�&�< ���+�:���,>(�X.3��� �
���������,>(�=��C%��>9��b��[)�
��b���� ;�
45 � else if ���+�:���,>(�X.�C ;�<,S)�
�,b��O��
46 � if �,>Y?./� �+;�&�< ���+�:���,>(�X.3��� � �%\=4!6[>(C�C%��>(� ��C%�,>9��� \ �()�
��� \ ��� ;�
47 � UpdateVertex �,>(� ;�
48 � ComputeShortestPath ��� ;

Figure 1: D* Lite (optimized version)

not prescribe what it should do in this case.) The pseudo
code uses the following notation.

c
denotes the finite set

of vertices of the graph. d-e+f�g#h�fji c
denotes the current

vertex of the robot, initially the start vertex, and d1k(l�g#mWi c
denotes the goal vertex.

c
npo(oXq d1rts c
denotes the set of

successors of dui c
. Similarly, vxw-y9z q d1r{s c

denotes
the set of predecessors of d|i c

. }�~ oXq dI�:d1�=r���� de-
notes the cost of moving from d to d � i c7n�o(oKq d9r . The
heuristics � q dI�:d � r estimate the distance between vertex
d and d � . D* Lite requires that the heuristics be non-
negative and satisfy � q dI��d � r�� oKq dI�:d � r for all vertices
d�i c ��d � i c7n�o(oKq d9r and � q dX��d � � rt��� q dX��d � r7��� q d � ��d � � r
for all vertices dX��d � �:d � � i c

. The heuristics are guaran-
teed to have these properties if they have been derived by
relaxing the graph, which will almost always be the case.
We can prove a variety of properties about D* Lite, in-
cluding its correctness, efficiency, and similarity to A*.
Its correctness, for example, follows from the following

theorem.

Theorem 1 ComputeShortestPath
q r always terminates

and one can then follow a shortest path from dKe�f�g(h�f
to d[k(l:g�m by always moving from the current vertex d ,
starting at d1e�f�g(h�f , to any successor d � that minimizesoKq dX��d � rW�u� q d � r until d!k(l�g#m is reached (ties can be broken
arbitrarily).

A detailed description of D* Lite is given in [9] and the
proof of Theorem 1 is given in [7].

3 Greedy Mapping with D* Lite

We now show how D* Lite can be used to implement
Greedy Mapping [10], a simple but powerful mapping
strategy that has repeatedly been used on mobile robots
by different research groups [16, 10, 13]. Greedy Map-
ping discretizes terrain into cells and then always moves
the robot from its current cell to a closest cell with un-
known blockage status, until the terrain is mapped. It has
a number of desirable properties such as:

� Small Mapping Time: Greedy Mapping has a solid
theoretical foundation that allows one to character-
ize its behavior analytically. For example, one can
prove that its mapping time is reasonably small even
though the robot moves greedily [10].

� Action Recommendations: Greedy Mapping
makes only action recommendations and can thus
coexist with other components of a robot architec-
ture that also make action recommendations. For ex-
ample, it does not need to have control of the robot
at all times. If a robot has to re-charge its batteries
during mapping, for instance, then it might have to
preempt mapping and move to a known power out-
let. Once restarted, Greedy Mapping is able to re-
sume mapping from the power outlet, instead of hav-
ing to return to the cell where mapping was stopped
(which could be far away) and resume its operation
from there.

� Prior Knowledge: Greedy Mapping takes advan-
tage of prior knowledge about parts of the terrain (if
available) since it uses all of its knowledge about the
terrain when it determines which cell with unknown
blockage status is closest to the robot and how to
get there quickly. It does not matter whether this
knowledge was previously acquired by the robot or
provided to it.

� Distributed Search: Mapping tasks can be solved
with several robots that each run Greedy Mapping
and share their maps, thereby decreasing the map-
ping time. Cooperative mapping is a currently very
active research area [4].

Greedy Mapping frequently needs to determine a short-
est path from the current cell of the robot to a closest cell
with unknown blockage status. In the following, we show
how D* Lite can be used to implement Greedy Mapping
efficiently. This is the first demonstration of how incre-
mental heuristic search methods can be used to imple-
ment Greedy Mapping. The method is rather non-trivial
and is, to the best of our knowledge, the first efficient im-
plementation of Greedy Mapping to date.

3.1 Problem Representation

The mapping problem can be formulated as a graph cov-
erage problem, for example, by imposing a regular eight-
connected grid over the terrain. The vertices of the re-
sulting directed graph correspond to cells and are either
blocked or unblocked. The robot moves along the edges
of the graph but cannot move onto blocked vertices. The
robot knows the graph but initially does not know exactly
which vertices are blocked. It can utilize initial knowl-
edge about the blockage status of vertices in case it is
available. For example, Figure 2 (left) shows a terrain
with some prior knowledge about the blockage status of
cells, and Figure 3 (left) shows the corresponding grid.
Black cells (vertices) are known to be blocked and white
cells are known to be unblocked. Grey cells have an un-
known blockage status that the robot needs to determine.
The robot has an on-board sensor that reports the block-
age status of cells close to it, including the blockage sta-
tus of the cells adjacent to the current cell of the robot.
Greedy Mapping remembers this information and uses it
to always move the robot on a shortest unblocked path to
a closest cell with unknown blockage status. In Figure 2
(left), the cells are labeled with their distance to a closest
cell with unknown blockage status. The robot follows a
shortest unblocked path from its current cell to a closest
cell with unknown blockage status by always moving to
an adjacent cell so that it greedily decreases the distance
of its current cell. The arrow shows such a path. While
following this path, the robot is guaranteed to discover the
blockage status of at least one cell with unknown block-
age status and is thus guaranteed to make progress with
mapping. This is so because it will eventually observe
the blockage status of the cell it navigates to if it does
not gain information about the blockage status of other
cells earlier. Figure 2 (right) shows that a robot with a
sensor range of two cells observes that cell B5 is blocked
after it moves one cell to the east along the planned path.
Whenever the robot gains information about the blockage
status of cells, the shortest unblocked path from its cur-
rent cell to a closest cell with unknown blockage status
can change, either because the closest cell with unknown
blockage status changes or the path to it changes. Simi-
larly, whenever the robot deviates from the planned path,
the shortest unblocked path from its current cell to a clos-
est cell with unknown blockage status changes because
its current cell is no longer on the planned path. In both

3 2 1 0

3

2 2 1 0

1 1 1 0

0 0 0 0

R

= cell known to be blocked
= cell with unknown blockage status
= cell known to be unblocked
= current cell of the robot
= planned path

R

A

B

C

D

E

F

1 2 3 4 5

4 4 5 0

3

2 2 1 0

1 1 1 0

0 0 0 0

R

= cell known to be blocked
= cell with unknown blockage status
= cell known to be unblocked
= current position of the robot
= planned path

R

A

B

C

D

E

F

1 2 3 4 5

Figure 2: Example Mapping Task

R

Terrain Graph

= vertex known to be blocked
= vertex with unknown blockage status
= vertex known to be unblocked
= current vertex of the robot
= planned path

R

new vertex

RR

Extended Graph

= vertex
= current vertex of the robot
= planned path

R

Figure 3: Graphs for the Example Mapping Task

cases, Greedy Mapping needs to recalculate a shortest un-
blocked path to a closest cell with unknown blockage sta-
tus. Figure 2 (right) shows the new path.

Greedy Mapping could be implemented with any shortest
path algorithm. In the following, we explain how we im-
plement it with D* Lite and why this is a good idea. We
introduce a new vertex (that becomes the goal vertex of
D* Lite) and then construct the so-called extended graph
as follows: First, the extended graph contains all edges of
the original terrain graph (grid), except those edges that
go from vertices that are known to be unblocked or poten-
tially unblocked to vertices that are known to be blocked.
This ensures that the planned path is unblocked. (The
extended graph contains edges of the terrain graph that
go from vertices that are known to be blocked to other
vertices. This is important in case the robot has, due to
sensor or position uncertainty, mistakenly classified an
unblocked vertex as blocked and then, due to actuator
uncertainty, deviates from the planned path and reaches
this vertex. The robot believes that it can leave this ver-
tex only if the edges of the extended graph that go from
it to other vertices have not been deleted.) Some of the
edges just described are deleted from the extended graph
(by setting their cost to infinity) when the robot discov-

ers additional blocked cells. Second, the extended graph
contains also edges that go from any vertex with unknown
blockage status that can be reached with one edge traver-
sal from vertices with known blockage status to the new
vertex. This ensures that the planned path reaches a ver-
tex with unknown blockage status and, from there, the
new vertex. Some of the edges just described are added
to or deleted from the extended graph (by setting their
cost to one or infinity, respectively) when the robot dis-
covers the blockage status of additional cells. Figure 3
shows the extended graph (right) that corresponds to the
graph (left) that models the terrain in Figure 2 (left). A
shortest unblocked path on the extended graph from the
current vertex of the robot to the new vertex corresponds
to a shortest unblocked path on the terrain graph from
the current vertex of the robot to a closest vertex with
unknown blockage status, and vice versa. Thus, Greedy
Mapping can determine a shortest unblocked path from
the current vertex of the robot in the terrain graph to a
closest vertex with unknown blockage status by finding a
shortest path in the extended graph from the current ver-
tex of the robot to the new vertex. Thus, D* Lite can be
applied to the extended graph where dKe�f�g#h�f corresponds
to the current vertex of the robot and d1k(l�g�m corresponds
to the new vertex. This way it finds the path in the ex-
tended graph that is shown in Figure 3 (right). This path
corresponds to the path in the terrain graph that is shown
in Figure 3 (left) and the path in the terrain that is shown
in Figure 2 (left).

D* Lite can use heuristic information to speed up its
search, in form of estimates of the distances of vertices
from the current vertex of the robot, which can be ob-
tained easily for Greedy Mapping. D* Lite can also use
information from previous searches to speed up its cur-
rent search. Figure 2 demonstrates how reusing infor-
mation can potentially save search effort in the context
of Greedy Mapping. The left part of the figure shows
the distances of all cells that are known to be unblocked
to a closest cell with unknown blockage status. The
right part of the figure shows the same distances after
the robot moved one cell to the east along the planned
path and gained information about the blockage status of
cell B5. All but three distances (shown in bold) remain
unchanged and therefore do not need to get recomputed
even though the path changes completely. This suggests
that reusing information from previous searches can po-
tentially reduce the search time of heuristic search meth-
ods for Greedy Mapping. For example, when replanning
the shortest path in Figure 3 (right), D* Lite only ex-
pands the three vertices that correspond to cells whose
distances to a closest cell with unknown blockage status
have changed (namely B2, B3, and B4), where we say
that D* Lite expands a vertex when it executes lines

�
16-

28 � and thus calculates the g-value of the vertex, similar
to what A* does when it expands a vertex. On the other
hand, A* expands five vertices even with the best possi-

Figure 4: Greedy Mapping in MissionLab

ble tie-breaking criterion and is thus less efficient than D*
Lite.

3.2 Integration into Robot Architectures

We integrated Greedy Mapping into a multi-task au-
tonomous robot architecture called MissionLab [11],
which is a version of the Autonomous Robot Architec-
ture (AuRA) [2]. AuRA is a hybrid system that consists
of a schema-based reactive system at the low level and a
deliberative system based on finite state automata at the
high level. The reactive component consists of primitive
behaviors called motor schemata [1] that are grouped into
behavioral assemblages. Each behavior of a behavioral
assemblage produces its own recommendation for how
the robot should move, in form of a vector. The robot
then moves in the direction of the weighted average of all
vectors.

We utilize that Greedy Mapping makes only action rec-
ommendations and can thus coexist with other compo-
nents of a robot architecture that also make action rec-
ommendations. This allows us to implement map build-
ing as a behavioral assemblage of three behaviors that
takes as parameters the bounds of the area that the robot
needs to map: GreedyMapping is a behavior that directs
the robot towards a closest cell with unknown block-
age status; AvoidObstacles is a behavior that repels the
robot from obstacles; and Wander is a behavior that in-
jects some noise. The weight of AvoidObstacle and the
distance within which obstacles affect the robot are set
depending on the size of the cells. For grids with small
(high-resolution) cells, the weight can be set to zero since
Greedy Mapping can directly take the obstacles into ac-
count. For grids with large cells, the weight can be set
to a positive value while the distance within which obsta-
cles affect the robot is made small in comparison to the
cell size. This ensures that the robot successfully navi-
gates around small obstacles. The weight of Wander is
configured similarly.

We ran Greedy Mapping both on a Nomad 15 with a Sick

Figure 5: Acquired Map

LMS200 laser scanner and in simulation. Figure 4 shows
a snapshot of a MissionLab simulation after Greedy Map-
ping finished mapping the given office environment. The
terrain was discretized with a granularity of 0.5 meters,
resulting in a maze of size 35 by 27. The robot started
at the cell labeled StartPlace. Its obstacle sensor had a
range of 8 meters and the circles in Figure 4 show the fi-
nal sensor readings. The figure also shows the path that
the robot took. It is rather close to the shortest path nec-
essary for mapping the terrain, which demonstrates that
the mapping time of Greedy Mapping is usually reason-
ably small. Figure 5 shows the acquired map. Black cells
are blocked, white cells are unblocked, and grey cells are
unreachable. Thus, their blockage status cannot be deter-
mined by the robot. The acquired map corresponds well
to the actual floor plan.

3.3 Experiments

In the following, we study to which degree the combina-
tion of incremental and heuristic search that D* Lite im-
plements outperforms incremental or heuristic searches
individually. We thus compare Greedy Mapping with
D* Lite, D* Lite without heuristic search, and D* Lite
without incremental search (that is, A*). We decided
not to include D* Lite without incremental and heuris-
tic search (that is, breadth-first search) because it per-
forms so poorly that graphing its performance becomes
a problem. Since all versions of D* Lite move the robot
in the same way, we only need to compare their to-
tal planning time. Since the actual planning times are
implementation-dependent, we instead use three perfor-
mance measures that all correspond to common opera-
tions performed by D* Lite and thus heavily influence
its planning time: the total number of vertex expansions,
the total number of heap percolates (exchanges of a par-
ent and child in the heap), and the total number of vertex
accesses (for example, to read or change their values).
Figure 6 reports not only the means of the three perfor-
mance measures but also the corresponding 95 percent
confidence intervals to demonstrate that our conclusions
are statistically significant.

We perform experiments in 25 randomly generated ter-
rains of size 64 by 25 that are represented as eight-
connected grids and resemble office environments. Since

0 5 10 15 20 25
80

100

120

140

160

180

sensor range

percent of extra vertex expansions

0 5 10 15 20 25
−40

−20

0

20

40

60

80

sensor range

percent of extra vertex accesses

0 5 10 15 20 25
−40

−20

0

20

40

60

80

sensor range

percent of extra heap percolates

A

B

A

B

B

A

Performance of D* Lite
without Incremental Search (A*)
and D* Lite without Heuristic Search
Relative to D* Lite (in percent)

A − D* Lite without incremental search (A*)
B − D* Lite without heuristic search

Figure 6: Experimental Results (1)

the robot is allowed to move diagonally, we calculate the
heuristic approximations of the distances between two
vertices as the maximum of the absolute differences of
their x and y coordinates. For example, the heuristic of
cell B4 is two in Figure 2 (left) and one in Figure 2 (right).
We use the MissionLab simulation to be able to average
the results over several runs. We varied the sensor range
of the robot to simulate both short-range and long-range
sensors. For example, if the sensor range is four, then the
robot can sense all blocked cells that are up to four cells
in any direction away from the robot as long as they are
not blocked from view by other blocked cells. Figure 6
shows the three performance measures for Greedy Map-
ping with D* Lite without heuristic search and D* Lite
without incremental search (that is, A*) as percent differ-
ence relative to Greedy Mapping with D* Lite. (Thus, D*
Lite always scores zero.) As can be seen, the number of
vertex expansions of D* Lite is always far less than that
of the other two algorithms. This also holds for the num-
ber of heap percolates and vertex accesses, with the ex-
ception of sensor range four for the heap percolates. The
advantage of D* Lite over the other two search methods
seems to increase as the sensor range increases, that is,
the larger the number of cells is whose blockage status
the robot can sense without moving. This implies that
the advantage of D* Lite increases if the robot uses sen-
sors with longer ranges (which is important since laser
scanners tend to be the sensors of choice for mapping) or
discretizes the terrain in a more fine-grained way. Only
for the number of vertex accesses is the difference be-
tween D* Lite and D* Lite without incremental search
statistically not significant although its mean is smaller
for D* Lite than D* Lite without incremental search for
the larger sensor ranges.

0 5 10 15 20 25
0

50

100

150

200

sensor range

percent of extra vertex expansions

0 5 10 15 20 25
60

80

100

120

140

160

180

sensor range

percent of extra vertex accesses

0 5 10 15 20 25
0

50

100

150

200

sensor range

percent of extra heap percolates

Overhead of Focussed D* Relative
to the Final Optimized Version
of D* Lite (in percent)

Figure 7: Experimental Results (2)

We also use the same setup to compare D* Lite and the
original Focussed D*. Figure 7 shows the three perfor-
mance measures for Greedy Mapping with both search
methods and demonstrates that D* Lite performs better
than Focussed D* with respect to all three measures. This
is consistent with the results we reported when compar-
ing D* Lite and Focussed D* for goal-directed navigation
in unknown terrain [9].

4 Conclusions

In this paper, we have explained how incremental heuris-
tic search methods such as our D* Lite apply to map-
ping of unknown terrain, a new application of incremen-
tal heuristic search. Our results show that the combina-
tion of incremental and heuristic search that D* Lite im-
plements speeds up the planning time over incremental or
heuristic searches individually. These results demonstrate
the versatility and computational benefits of incremental
heuristic search, an underexploited technique that should
be used more often in mobile robotics.

Acknowledgments

The Intelligent Decision-Making Group is partly supported by
NSF awards under contracts IIS-9984827, IIS-0098807, and
ITR/AP-0113881 as well as an IBM faculty partnership award.
The views and conclusions contained in this document are those
of the authors and should not be interpreted as representing the
official policies, either expressed or implied, of the sponsoring
organizations and agencies or the U.S. government.

References

[1] R. Arkin. Motor-schema based mobile robot navigation.
International Journal of Robotics Research, 8(4):92–112,
1989.

[2] R. Arkin and T. Balch. AuRA: Principles and practice in
review. Journal of Experimental and Theoretical Artificial
Intelligence, 9(2):175–189, 1997.

[3] M. Barbehenn and S. Hutchinson. Efficient search and
hierarchical motion planning by dynamically maintaining
single-source shortest paths trees. IEEE Transactions on
Robotics and Automation, 11(2):198–214, 1995.

[4] W. Burgard, D. Fox, M. Moors, R. Simmons, and S. Thrun.
Collaborative multi-robot exploration. In Proceedings of
the International Conference on Robotics and Automation,
pages 476–481, 2000.

[5] T. Ersson and X. Hu. Path planning and navigation of mo-
bile robots in unknown environments. In Proceedings of
the International Conference on Intelligent Robots and Sys-
tems, 2001.

[6] Y. Huiming, C. Chia-Jung, S. Tong, and B. Qiang. Hy-
brid evolutionary motion planning using follow boundary
repair for mobile robots. Journal of Systems Architecture,
47(7):635–647, 2001.

[7] S. Koenig and M. Likhachev. Improved fast replanning for
robot navigation in unknown terrain. Technical Report GIT-
COGSCI-2002/3, College of Computing, Georgia Institute
of Technology, Atlanta (Georgia), 2001.

[8] S. Koenig and M. Likhachev. Incremental A*. In Advances
in Neural Information Processing Systems 14, 2001.

[9] S. Koenig and M. Likhachev. Improved fast replanning
for robot navigation in unknown terrain. In Proceedings of
the International Conference on Robotics and Automation,
2002.

[10] S. Koenig, C. Tovey, and W. Halliburton. Greedy mapping
of terrain. In Proceedings of the International Conference
on Robotics and Automation, pages 3594–3599, 2001.

[11] D. Mackenzie, R. Arkin, and J. Cameron. Multiagent
mission specification and execution. Autonomous Robots,
4(1):29–57, 1997.

[12] L. Podsedkowski, J. Nowakowski, M. Idzikowski, and
I. Vizvary. A new solution for path planning in partially
known or unknown environment for nonholonomic mobile
robots. Robotics and Autonomous Systems, 34:145–152,
2001.

[13] L. Romero, E. Morales, and E. Sucar. An exploration and
navigation approach for indoor mobile robots considering
sensor’s perceptual limitations. In Proceedings of the In-
ternational Conference on Robotics and Automation, pages
3092–3097, 2001.

[14] A. Stentz. The focussed D* algorithm for real-time replan-
ning. In Proceedings of the International Joint Conference
on Artificial Intelligence, pages 1652–1659, 1995.

[15] M. Tao, A. Elssamadisy, N. Flann, and B. Abbott. Optimal
route re-planning for mobile robots: A massively parallel
incremental A* algorithm. In International Conference on
Robotics and Automation, pages 2727–2732, 1997.

[16] S. Thrun, A. Bücken, W. Burgard, D. Fox, T. Fröhlinghaus,
D. Hennig, T. Hofmann, M. Krell, and T. Schmidt. Map
learning and high-speed navigation in RHINO. In D. Ko-
rtenkamp, R. Bonasso, and R. Murphy, editors, Artificial
Intelligence Based Mobile Robotics: Case Studies of Suc-
cessful Robot Systems, pages 21–52. MIT Press, 1998.

