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Abstract

We analyze Greedy Mapping, a simple mapping method that
has successfully been used on mobile robots. Greedy Mapping
moves the robot from its current location on a shortest path towards
a closest unvisited, unscanned or informative location, until the
terrain is mapped. Previous work has resulted in upper and lower
bounds on its worst-case travel distance but there was a large gap
between the bounds. In this paper, we reduce the gap substantially
by decreasing the upper bound from O(|V |3/2) to O(|V | ln |V |)

edge traversals, where |V | is the number of vertices of the graph.
This upper bound demonstrates that the travel distance of Greedy
Mapping is guaranteed to be small and thus suggests that Greedy
Mapping is indeed a reasonable mapping method. The guaranteed
good performance of Greedy Mapping is robust in that it holds for
different versions of Greedy Mapping, regardless of sensor type
and sensor range.

1 Introduction

Robotics researchers have developed a large number of
mapping methods [8]. In this paper, we study Greedy Map-
ping, a simple mapping method that assumes that the lo-
cation of the robot is approximately known. Specific ver-
sions of Greedy Mapping may vary, but all employ the same
basic principle: always move the robot from its current lo-
cation on a shortest path towards a closest location that is
of interest – that is, a location that is still unvisited, un-
scanned or informative. Greedy Mapping has several ad-
vantages. For example, the shortest paths can be calculated
efficiently with incremental heuristic search methods, such
as D* [12] or D* Lite [5], because the search is restricted to
the known part of the map and can reuse information from
previous searches [7]. It is therefore not surprising that sev-
eral researchers have successfully used versions of Greedy
Mapping on their robots. For example, Greedy Mapping
has been used on a nomad-class tour-guide robot that of-
fered tours to museum visitors [14]. It has also been used on
Nomad 150 mobile robots [6] and Super Scouts [9]. Since
Greedy Mapping seems to work well in practice, it is im-
portant to analyze its travel distance. In previous work, we

derived upper and lower bounds on its worst-case travel dis-
tance but there was a large gap between the bounds. In this
paper, we reduce the gap substantially by decreasing the up-
per bound from O(|V |3/2) to O(|V | ln |V |) edge traversals,
where |V | is the number of vertices of the graph. Our new
upper bound demonstrates, even more than the weaker pre-
vious one, that the travel distance of Greedy Mapping is
guaranteed to be small and thus suggests that Greedy Map-
ping is indeed a reasonable mapping method. We identify
four specific versions of Greedy Mapping: closest unvisited,
closest unscanned, closest unscanned with replanning, and
closest informative. Our bound applies to all four versions,
regardless of sensor type or sensor range, although not al-
ways via the same mathematical proof. This suggests that
the small travel distance of Greedy Mapping is robust with
respect to implementation specifics.

2 Greedy Mapping

We can formulate the mapping task as a graph-coverage
task similar to the one studied in [3], where vertices corre-
spond to locations and edges correspond to paths between
the locations. We now describe four versions of Greedy
Mapping that operate on initially unknown undirected con-
nected finite graphs G = (V,E). It is possible for Greedy
Mapping to have some initial information about the graph,
for example, that it is a grid (graph). We say that a vertex is
unvisited if Greedy Mapping has not yet been in that vertex.
We say that a vertex is unscanned if Greedy Mapping has
not yet learned all edges incident to it or all vertices that the
edges lead to. When Greedy Mapping has scanned all ver-
tices, it has mapped the graph. We assume that the sensors
of the robot are powerful enough to enable Greedy Mapping
to always scan at least its current vertex. Finally, we say that
a vertex is informative if Greedy Mapping can gain informa-
tion about the graph when being in that vertex, after which
it becomes uninformative. Visited vertices cannot become
unvisited again, scanned vertices cannot become unscanned
again, and uninformative vertices cannot become informa-
tive again.



Closest Unvisited: This version of Greedy Mapping al-
ways moves on a shortest path from its current ver-
tex to a closest unvisited vertex and repeats the process
when it reaches that vertex. It terminates because it
visits a previously unvisited vertex between replanning
episodes and there are only a finite number of them.

Closest Unscanned: This version of Greedy Mapping is
similar to the Closest Unvisited version. If the robot
has powerful sensors, it may be able to scan a vertex
from a distance, without visiting it. Therefore, Greedy
Mapping might not have to visit every vertex, as in the
Closest Unvisited version. The Closest Unscanned ver-
sion repeatedly moves on a shortest path from its cur-
rent vertex to a closest unscanned vertex and repeats
the process it reaches that vertex. It terminates be-
cause it scans a previously unscanned vertex between
replanning episodes, either when it visits the previously
unscanned vertex or before, and there are only a fi-
nite number of them. This version of Greedy Mapping
seems likely to be less efficient than the next one. We
include it primarily to aid the exposition.

Closest Unscanned with Replanning: This version of
Greedy Mapping is the same as the Closest Unscanned
version, except that it immediately repeats the process
instead of continuing on to its target vertex if it is able
to scan the vertex before it reaches it. It terminates for
the same reason as the Closest Unscanned version. The
resulting behavior is equivalent to repeatedly traversing
the first edge of a shortest path from the current vertex
to a closest unscanned vertex. Although this version of
Greedy Mapping has been used on robots [6], no up-
per bound besides the obvious O(|V |2) had previously
been established for it.

Closest Informative: This version of Greedy Mapping re-
peatedly moves on a shortest path from its current ver-
tex to a closest informative vertex and repeats the pro-
cess when it reaches that vertex. It terminates because
it makes a previously informative vertex uninformative
between replanning episodes and there are only a finite
number of them.

We clarify a somewhat subtle issue. A closest unscanned
vertex in the currently known subgraph is also a closest un-
scanned vertex in the graph itself (since the vertices adjacent
to scanned vertices are known) and the path lengths from
the current vertex to the closest unvisited vertex are identi-
cal in both cases. The same is true for closest unvisited and
closest informative vertices since visited and uninformative
vertices are also scanned vertices. Therefore, there is no
harm in defining the versions of Greedy Mapping in terms
of closest vertices in the graph rather than closest vertices in
the currently known subgraph.

3 A Formalization of Greedy Mapping

We now describe a framework that allows us to analyze
three of the four versions of Greedy Mapping at the same
time, namely the Closest Unvisited, Closest Unscanned, and
Closest Informative versions. Initially, all vertices are in-
teresting. We use x0 to denote the start vertex of Greedy
Mapping but make no assumptions about which vertex this
is. When the current vertex of Greedy Mapping is xi−1,
it marks xi−1 and possibly other vertices as uninteresting.
We make no assumptions about which additional vertices it
marks as uninteresting. However, uninteresting vertices re-
main uninteresting. We use Bi to denote the set of all unin-
teresting vertices afterwards. Greedy Mapping then moves
along a shortest path from its current vertex to a closest in-
teresting vertex xi, and terminates once there are no such
paths any longer. We make no assumptions about how it
breaks ties among interesting vertices that are equally close.
Greedy Mapping must terminate since it marks at least one
additional vertex as uninteresting each time it moves from
its current vertex to the closest interesting vertex, and there
are only a finite number of vertices. We define unvisited
vertices, unscanned vertices, and informative vertices as in-
teresting for the Closest Unvisited, Closest Unscanned and
Closest Informative version of Greedy Mapping, respec-
tively.

4 Previous Upper and Lower Bounds

To make the graph-coverage task as hard as possible, we
studied the Closest Unvisited version of Greedy Mapping in
previous work. We analyzed its worst-case travel distance
(measured in the number of edges traversed) as a function of
the number of vertices of the graph because a small worst-
case travel distance provides a good performance guarantee
on all graphs. We showed that a lower bound on its worst-
case travel distance is (xx+3 + 3xx+2 − 8xx+1 + 2x2 −
x + 3)/(x2 − 2x + 1) edge traversals (steps) on graphs
with |V | = (3xx+2 − 5xx+1 − xx + xx−1 + 2x2 − 2x +
2)/(x2 − 2x + 1) vertices for integers x ≥ 3 [4]. Thus, it is
Ω( ln |V |

ln ln |V | |V |) edge traversals. This lower bound applies to
all four versions described here, since the versions behave
identically for robots that can scan only their current vertex,
that is, robots with tactile sensors. An upper bound on the
worst-case travel distance of the Closest Unvisited version
of Greedy Mapping is 2|V |3/2 + 4|V | and thus O(|V |3/2)
edge traversals [6]. This upper bound has been used by robot
practitioners to justify their choice of Greedy Mapping [15].
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Figure 1: Experiment on Random Grids

Figure 2: Example Grids

5 Greedy Mapping in Typical Terrain

The gap between the upper bound and lower bound from
the previous section is rather large. It was unknown whether
the true worst-case travel distance was closer to the upper
bound or lower bound. We now present experimental re-
sults about the average travel distance of the Closest Un-
visited version of Greedy Mapping on four-connected grids
with width 51 and lengths from 21 to 481 (without the bor-
der), where the robot starts in the upper left corner. Figure 1
shows results of experiments on grids that were generated by
starting with all traversable cells and then randomly making
cells untraversable until the robot can reach about 75 per-
cent of cells. Figure 2 (top) shows an example grid. Sim-
ilarly, Figure 3 shows results of experiments in mazes that
were generated by starting with all untraversable cells and
first using depth-first search to generate an acyclic maze and
then making additional cells traversable until the robot can
reach about 65 percent of cells. Figure 2 (bottom) shows
an example grid. Both figures show the travel distance of
the Closest Unvisited version of Greedy Mapping (averaged
over 500 grids of the same size each) as a function of the
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Figure 3: Experiment on Mazes

number of unblocked cells that are reachable from the start
cell, together with the identity function. Since the Closest
Unvisited version needs to visit every cell at least once, its
travel distance cannot be smaller than the number of cells.
Both figures show that the travel distance increases about
linearly with the number of cells and is not much larger
than it. These results and the good performance of Greedy
Mapping in practice suggest that the known upper bound
on the worst-case travel distance of Greedy Mapping can
be reduced. In the following, we indeed decrease the upper
bound substantially, resulting in a new upper bound that is
quite close to the lower bound.

6 An Improved Upper Bound

We now prove that an upper bound on the worst-case
travel distance of all four versions of Greedy Mapping is
O(|V | ln |V |) edge traversals. Note that for each version,
the upper bound applies to all sensor types and sensor ranges
that can scan at least the current vertex. To understand why
the worst-case travel distance of Greedy Mapping is small,
assume that Greedy Mapping moves from its current vertex
xi−1 to a closest interesting vertex xi. Then, every vertex
whose distance from xi−1 is less than the distance of xi

from xi−1 is uninteresting. Thus, intuitively, if the travel
distance of Greedy Mapping from xi−1 to xi is large, then
there are many vertices whose distance from xi−1 is less
than the distance of xi from xi−1 and thus many vertices are
already uninteresting. This implies that the travel distance
of Greedy Mapping cannot be very large since it terminates
once it has marked all vertices as uninteresting. To formalize
this argument, we use d(x, y) to denote the distance (mea-
sured in the number of edges traversed) from vertex x to
vertex y. Instead of directly proving upper bounds on the
travel distance of each version of Greedy Mapping, we first
prove an upper bound on a more abstract process. To this



end, we define marking sequences as follows:

Definition 1 A marking sequence on graph G = (V,E) is
a sequence of triples {vi, ri,M i} for i = 1, 2, . . ., where
vi ∈ V , integer ri ≥ 0, and M i ⊆ V satisfy the following
properties:

Property 1: vi 6∈ M i,

Property 2: M i ⊆ M i+1, and

Property 3: d(vi, v) ≤ ri implies v ∈ M i+1.

The cost of the ith step (that is, triple) of the marking se-
quence is 1+ ri, and the cost of the marking sequence itself
is

∑

i(1 + ri).

We call vertices in M i uninteresting. Since at least vi

is marked as uninteresting in step i (and uninteresting ver-
tices remain uninteresting) but vi+1 must still be interest-
ing, marking sequences on finite graphs are finite. We now
prove an upper bound on the cost of marking sequences
that we can then use to derive an upper bound on the
travel distance of Greedy Mapping since Greedy Mapping
defines an associated marking sequence with vi = xi−1,
ri = d(xi−1, xi) − 1 and M i = Bi−1, where B0 is the
empty set. Note that marking sequences, in general, do not
require that vi be at distance 1 + ri from vi+1. Instead,
marking sequences consist of a sequence of choices of an
interesting vertex vi and a radius ri. All vertices within dis-
tance ri of vi (and possibly some other vertices) are marked
as uninteresting, and the sequence continues.

Theorem 6.1 An upper bound on the maximum cost of any
marking sequence on a given connected graph G = (V,E)
is |V | + 2|V | ln |V | and thus O(|V | ln |V |).

Proof: Let {vi, ri,M i} be a maximum-cost marking se-
quence for the given graph. We will show that we can as-
sume without loss of generality that |M i+1| = 1 + |M i|.

We first show that we can assume that M i+1 = M i ∪
{v ∈ V |d(vi, v) ≤ ri}, that is, the marking sequence marks
only those vertices as uninteresting that are within distance
ri of vi. To prove that this assumption is valid, we show how
to replace a marking sequence that does not fit the assump-
tion by one that does but costs the same. Define {vi, ri, M̂ i}
where M̂1 = M1 and M̂ i+1 = M̂ i ∪ {v ∈ V |d(vi, v) ≤
ri}. It is easy to show that this alternative marking sequence
satisfies Properties (1), (2) and (3) and thus is indeed a valid
marking sequence and has the same cost as the original one.

So far, we have shown that we can assume that M i+1 =
M i ∪ {v ∈ V |d(vi, v) ≤ ri}. We can therefore denote
marking sequences by {vi, ri} rather than {vi, ri,M i}. We
now show that we can make the more stringent assumption
that |M i+1| = 1 + |M i|, that is, ri is always so small that
the marking sequence marks only vi as uninteresting. To

prove that this assumption is valid, we show how to re-
place a marking sequence that does not fit the assumption
by one that does but costs the same. Suppose in step k
there is a vertex v 6∈ Mk with 0 < d(vk, v) ≤ rk, that
is, a vertex different from vk that gets marked as uninter-
esting. Replace step k with two steps: {vk, d(vk, v) − 1}
and {v, rk − d(vk, v)}. The two replacement steps together
have the same cost as the replaced step, rk + 1. Any ver-
tex z marked as uninteresting during the first replacement
step satisfies d(vk, z) ≤ d(vk, v) − 1 ≤ rk and thus z was
marked as uninteresting in the original step. Similarly, any
vertex z marked as uninteresting during the second replace-
ment step satisfies d(v, z) ≤ rk − d(vk, v). By the trian-
gle inequality it holds that d(vk, z) ≤ d(v, z) + d(vk, v) ≤
rk − d(vk, v) + d(vk, v) = rk and thus z was marked as
uninteresting in the original step. The alternative marking
sequence therefore does not mark vertices as uninteresting
that were not marked as uninteresting by the original mark-
ing sequence and therefore satisfies Property (1). The other
properties hold by definition. The alternative marking se-
quence is therefore indeed a valid marking sequence and
has the same cost as the original one. Finally, the replace-
ment steps can be used repeatedly, resulting in a marking
sequence with |M i+1| = 1 + |M i| that has the same cost as
the original one. (The replacement process terminates be-
cause Properties (1) and (3) limit the total number of steps
to |V |.)

So far, we have shown that there is a maximum-cost
marking sequence {vi, ri,M i} with |M i+1| = 1 + |M i|.
Therefore every vertex in V appears (as the first element) in
a triple of the marking sequence. Renumber the vertices in
the order in which they appear. Call this kind of marking
sequence an orderly marking sequence. We then have the
following lemma.

Lemma 6.2 Define St = {vi ∈ V |ri ≥ t} for an orderly
marking sequence {vi, ri,M i} on a given connected graph
G = (V,E). Then, it holds that |St| ≤ 2|V |/t.

Proof: If vj is at distance d(vi, vj) ≤ ri from vi and i 6= j,
then j < i because vj is marked as uninteresting after step
i according to Property (3) but still interesting before step j
according to Property (1). Therefore, vi ∈ St and vj ∈ St

with i 6= j implies d(vi, vj) > t. Now, define the ball
around x ∈ St of radius t/2 as B(x) = {v ∈ V |d(x, v) ≤
t/2}. The balls for x ∈ St are pairwise disjoint, because
a nonempty intersection between B(vi) and B(vj) would
imply d(vi, vj) ≤ t by the triangle inequality. Each ball
must contain at least 1 + bt/2c vertices since G is con-
nected. Therefore there can be at most b|V |/(1 + bt/2c)c
such balls. The claim follows from b|V |/(1 + bt/2c)c ≤
|V |/(1 + bt/2c) ≤ |V |/(t/2) ≤ 2|V |/t.

Applying the lemma, there exists a maximum-cost mark-
ing sequence which has |V | steps and costs



|V |
∑

j=1

(1 + rj) = |V | +

|V |
∑

j=1

rj

= |V | +

|V |
∑

t=0

t(|St| − |St+1|)

= |V | +

|V |
∑

t=1

|St|

≤ |V | +

|V |
∑

t=1

2|V |/t

≈ |V | + 2|V | ln |V |.

Note that this is a natural log. This proves the theorem.

Corollary 6.3 An upper bound on the worst-case travel
distance of the Closest Unvisited, Closest Unscanned, and
Closest Informative versions of Greedy Mapping is |V | +
2|V | ln |V | and thus O(|V | ln |V |) edge traversals.

Proof: All three versions of Greedy Mapping define mark-
ing sequences with vi = xi−1, ri = d(xi−1, xi) − 1 and
M i = Bi−1, where B0 is the empty set, on the subgraph
given by the vertices that can be reached from the start ver-
tex. (The sets Bi of uninteresting vertices were defined
in section 3.) Their travel distances are the same as the
costs of the associated marking sequences since 1 + ri =
d(xi−1, xi). Thus, the corollary follows directly from The-
orem 6.1.

It is tempting to argue that the Closest Unscanned with
Replanning version of Greedy Mapping takes no more edge
traversals than the Closest Unscanned version since both
versions move toward the closest unscanned vertex vi but
the latter version may save some edge traversals by stopping
before it gets to vi. However, this reasoning is fallacious be-
cause the two versions replan at different vertices and thus
cannot be compared directly. The following corollary there-
fore derives an upper bound for the Closest Unscanned with
Replanning version of Greedy Mapping using a slightly dif-
ferent proof idea than the preceding corollary.

Corollary 6.4 An upper bound on the worst-case travel dis-
tance of the Closest Unscanned with Replanning version of
Greedy Mapping is |V |+2|V | ln |V | and thus O(|V | ln |V |)
edge traversals.

Proof: Let

• w0 = v0 be the start vertex of robot,

• v1 be the closest unscanned vertex after the robot has
scanned from v0,

• w1 be the vertex from which v1 is first scanned,

• vi be the closest unscanned vertex after robot has
scanned from wi−1,

• wi be the vertex from which vi is first scanned, and

• Oi be the set of scanned vertices after the robot has
scanned from wi. (Define O−1 = φ.)

Now consider the sequence of triples
{

vi, [d(wi, vi+1) − d(wi, vi) − 1]+, Oi−1
}

(1)

for i = 0, 1, . . ..
We claim that the sequence (1) is a marking sequence.

By definition of the Closest Unscanned with Replanning
version of Greedy Mapping, vi 6∈ Oi−1, giving Property
(1). Also, scanned vertices remain scanned, giving Prop-
erty (2). To verify Property (3), we claim that d(wi, vi+1)−
d(wi, vi)−1 ≥ −1. By the principle of optimality, at the in-
stant the robot is about to arrive at wi, the closest unscanned
vertex is vi. After scanning from wi, the closest unscanned
vertex becomes vi+1. Since vi+1 was unscanned prior to
scanning from wi, it must be the case that d(wi, vi+1) ≥
d(wi, vi) and thus d(wi, vi+1) − d(wi, vi) − 1 ≥ −1.
This inequality implies that there are two cases. Case 1:
d(wi, vi+1) − d(wi, vi) − 1 = −1. Then [d(wi, vi+1) −
d(wi, vi) − 1]+ = 0. The only vertex at distance 0 from
vi is vi itself, which is scanned from wi and thus contained
in Oi. Case 2: d(wi, vi+1) − d(wi, vi) − 1 ≥ 0. Suppose
a vertex q is within that distance to vi, that is, d(q, vi) ≤
d(wi, vi+1) − d(wi, vi) − 1. By the triangle inequality, it
holds that d(q, wi) ≤ d(q, vi)+d(vi, wi) ≤ d(wi, vi+1)−1.
By definition, vi+1 is a closest unscanned vertex after the
robot has scanned from wi. Since q is strictly closer to wi

than vi+1, it must have been scanned already and thus is
contained in Oi, giving Property (3). Thus, the sequence (1)
is indeed a marking sequence.

Finally, by Theorem 6.1, it holds for the travel distance
D that

|V | + 2|V | ln |V | ≥ (
∑

i

1 + [d(wi, vi+1) − d(wi, vi) − 1]+)

≥
∑

i

(d(wi, vi+1) − d(wi, vi))

≥
∑

i

(d(wi, vi+1) − d(wi+1, vi+1)) = D.
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Figure 4: Upper and Lower Bounds

7 Discussion of Results

The previous upper bound on the worst-case travel dis-
tance of Greedy Mapping was 2|V |3/2+4|V | edge traversals
and our new upper bound is |V | + 2|V | ln |V | edge traver-
sals. Figure 4 summarizes these results in graphical form,
together with the (previous and new) lower bound and the
identity function. Note that the figure shows a log-log plot.
Consequently, it illustrates that we were able to reduce the
upper bound substantially, thus reducing the gap between
the upper bound and lower bound substantially. We also
reduced the gap between the upper bound and the identity
function substantially. This is important because depth-first
search (that is, chronological backtracking) can be used to
map unknown terrain with a travel distance that is linear
in the size of the terrain. (In contrast, breadth-first search
does not contend as an efficient mapping algorithm, because
it requires a travel distance that is quadratic in the size of
the terrain if, for example, the robot starts in the middle of
a path.) While the lower bound on the travel distance of
Greedy Mapping is super-linear in the size of the terrain, the
new upper bound is sufficiently close to the identity func-
tion that Greedy Mapping is indeed a reasonable mapping
method, especially since it outperforms depth-first search in
practice, as shown in Figures 1 and 3, and has several ad-
vantageous properties that depth-first search does not have.
In the following, we describe some of these properties:

• Greedy Mapping is reactive to changes in the location
of the robot since it replans at every step, using the cur-
rent location of the robot. It does not predict the cur-
rent location based on its movement recommendations
but rather uses the actual one. This makes the control
loop of the robot simple to implement. It is also not a
problem if the movement recommendations of Greedy
Mapping are altered or ignored from time to time [1].

– One consequence of this property is that Greedy

Mapping does not need to have control of the
robot at all times. For example, if a robot has
to recharge its batteries during mapping, then
it might have to preempt mapping and move to
a known power outlet. Once restarted, Greedy
Mapping does not have to return the robot to
the location where mapping was stopped (which
could be far away) to resume its operation from
there. Rather, it resumes mapping from the power
outlet.

– Another consequence of this property is that
Greedy Mapping can easily coexist with other
modules of a robot architecture that might change
its movement recommendations. For example,
if Greedy Mapping suggests to pass an obsta-
cle very closely, its movement recommendation
might get changed by the obstacle-avoidance
module to pass the obstacle with a larger safely
margin. This is not a problem for Greedy Map-
ping.

• Greedy Mapping is also reactive to changes in the
knowledge of the terrain since it replans at every step,
using all of the information available to it. It always
takes new information into account right away when
it determines which unvisited, unscanned, or informa-
tive location is closest to the robot and how to get
there quickly. It does not matter whether this informa-
tion was learned by the robot or provided to it. Thus,
Greedy Mapping can take advantage of a-priori terrain
information or terrain information obtained on-line by
other robots, if available [10, 2, 11].

8 Conclusions and Future Work

In this paper, we have analyzed Greedy Mapping, a sim-
ple mapping method that has been used successfully on
mobile robots. Previous work resulted in upper and lower
bounds on its worst-case travel distance but there was a large
gap between the bounds. In this paper, we reduced the gap
substantially by decreasing the upper bound from O(|V |3/2)
to O(|V | ln |V |) edge traversals, where |V | is the number
of vertices of the graph. We also showed that the new up-
per bound applies to four different versions of Greedy Map-
ping, regardless of sensor type and sensor range, which sug-
gests that the good performance of Greedy Mapping is ro-
bust with respect to implementation specifics. We believe
that the Closest Informative version of Greedy Mapping is
conceptually attractive, because it searches in the space of
terrain information, rather than the physical terrain itself.
In the future we intend to explore whether this version per-
forms better than other versions of Greedy Mapping. We



also intend to analyze versions of Greedy Mapping that do
not assume that the location of the robot is approximately
known but maintain a probability distribution over its loca-
tion instead [13]. Finally, we intend to provide a theoret-
ical analysis that explains why the average travel distance
of Greedy Mapping was smaller than the travel distance of
depth-first search in the tests reported in Section 5.
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