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Abstract— We study how to coordinate a team of mobile
robots to visit a number of given targets in partially
unknown terrain. Robotics researchers have studied single-
item auctions (where robots bid on single targets) to perform
this exploration task but these do not take synergies between
the targets into account. We therefore design combinatorial
auctions (where robots bid on bundles of targets), pro-
pose different combinatorial bidding strategies and compare
their performance with each other, as well as to single-
item auctions and an optimal centralized mechanism. Our
computational results in TeamBots, a multi-robot simulator,
indicate that combinatorial auctions generally lead to signifi-
cantly superior team performance than single-item auctions,
and generate very good results compared to an optimal
centralized mechanism.

I. INTRODUCTION

In this joint work between robotics researchers and
industrial engineers, we study exploration tasks where
a team of mobile robots needs to visit a number of
predetermined targets in a partially unknown terrain. Ex-
amples of situations where such exploration tasks occur in-
clude environmental clean-up missions, space-exploration
missions, and search and rescue missions. An important
characteristic of these exploration tasks is that the assign-
ment of targets to robots can turn out to be suboptimal
as the robots gain more information about the terrain,
for example, when a robot suddenly discovers that it is
separated by a wall from one of the targets assigned to it.
How to assign and re-assign targets to robots is a difficult
problem. Centralized control is inefficient in terms of both
the required amount of computation and communication
since the central controller is the bottleneck of the system.
Decentralized control does not have this disadvantage but
can result in suboptimal team performance. Researchers
in artificial intelligence and robotics have recently investi-
gated market-based approaches, in particular, auctions, as
a means for decentralized control. Auctions are efficient
in terms of both the required amount of computation
and communication since information is compressed into
numeric bids that the robots can compute in parallel and
can result in near-optimal solutions [1]. They can be used
to solve the exploration tasks as follows: Every robot bids

on targets and then has to visit all targets that it wins.
As the robots gain more information about the terrain
during execution, auctions can be held again to change
the assignment of targets to robots. So far, researchers in
robotics have studied single-item auctions in the context
of the exploration tasks, where the targets are auctioned
off one at a time. However, single-item auctions can result
in highly suboptimal team performance if there are strong
synergies between the items for the bidders. Two items are
said to exhibit positive (negative) synergy for a bidder if
their combined value for the bidder is larger (smaller) than
the sum of their individual values. Consider, for example,
the gridworld in Figure 1(a) with two robots (R1 and R2)
and four targets (G1, G2, G3, and G4). There is a strong
positive synergy between targets G3 and G4 for robot
R1 because they are close to each other, and the robot
can therefore reach the second target with a short travel
distance after it has reached the first one. On the other
hand, there is a strong negative synergy between targets
G1 and G3 for robot R1 because they are on opposite sides
of the robot, and the robot can therefore reach the second
target only with a long travel distance after it has reached
the first one. Combinatorial auctions attempt to remedy the
disadvantages of single-item auctions by allowing bidders
to bid on bundles of items. If a bidder wins a bundle,
they win all the items in that bundle and hence are able
to incorporate their synergies into the bids. For example,
if the targets are auctioned off in single-item auctions,
then robots R1 and R2 first move to targets G3 and G4,
respectively, and then to targets G1 and G2, respectively,
for a total travel distance of 33 units. In contrast, if the
targets are auctioned off in a combinatorial auction, then
robot R2 wins bundle {G1, G2}, first moves to target G2
and then to target G1, and robot R1 wins bundle {G3,
G4}, first moves to target G3 and then to target G4, for a
total travel distance of only 17.

In this paper, we design combinatorial auctions for
the exploration tasks, propose different bidding strategies
and compare the resulting team performance with that
of the other bidding strategies as well as that of single-
item auctions and an optimal centralized mechanism. Our
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Fig. 1. Motivating Example for Combinatorial Auctions

computational results in TeamBots [2], a multi-robot sim-
ulator, indicate that combinatorial auctions generally lead
to significantly superior team performance than single-
item auctions and generate very good results compared
to an optimal centralized mechanism. We also provide
insight into the performance of different bidding strategies
for combinatorial auctions with respect to criteria such
as travel distance, travel time, robot utilization and the
amount of communication.

II. RELATED WORK

A wide variety of techniques are being investigated
in artificial intelligence and robotics to coordinate teams
of robots. An overview can be found in [3]. Although
artificial intelligence has studied how to coordinate agents
with market-based mechanisms for quite a while [4],
robotics has only recently started to investigate how to use
them to coordinate teams of robots, and only a limited
amount of research exists on the topic. Auction-based
systems have been applied to tasks like box pushing [5]
and robosoccer [6] but we know of only two applica-
tions to exploration tasks, none of which uses combi-
natorial auctions. Simmons et. al. designed an auction-
based system for multi-robot exploration and mapping
using single-item first price auctions [7]. The terrain is
divided into small cells whose blockage status is unknown
in the beginning, and the auctioneer repeatedly auctions
off selected frontier cells (unblocked cells bordering cells
with unknown blockage status) as targets for the robots.
Zlot et. al. designed a similar but decentralized system
and studied how different target selection techniques [8]
and opportunistic optimization techniques [9] affect the
team performance. We extend this research by demon-
strating that combinatorial auctions result in better team
performance than the single-item auctions used so far. The
research on combinatorial auctions in the auction literature

has concentrated mainly on auction design (for example,
single versus multiple rounds, open versus sealed bids,
and bidding rules) and winner determination (computing
the optimal allocation of the items to the bidders) [10]. An
area that is largely unexplored in the combinatorial auction
literature is bidding strategies. Submitting bids for bundles
poses a challenging problem for bidders since the number
of possible bundles is exponential in the number of items
and submitting a bid for every bundle is prohibitively time-
consuming. Determining on which bundles to bid and how
much to bid remains an open problem. By proposing and
testing bidding strategies for our specific application, we
therefore contribute to the combinatorial auction literature.

III. APPROACH

While the auctioneer of a transportation service procure-
ment auction, for example, can determine the participants
and the format of the auction but neither the objectives
nor the valuations of the auction participants [11], we have
complete control over all of these factors. In the following,
we first discuss our combinatorial auction mechanism for
the exploration tasks and then possible bidding strategies
for the robots.

A. Combinatorial Auction Mechanism

For the exploration tasks, robots are a natural choice
for the bidders, and targets are a natural choice for the
items. The auctioneer is a virtual agent who has sole
responsibility for holding auctions and determining their
winners but has no other knowledge and cannot control
the robots. Initially, no robot owns any targets. Whenever
a robot visits a target or gains more information about
the terrain, it shares this information with the other robots
and the auctioneer starts a new auction that contains all
targets that have not yet been visited. (The auctioneer
could hold auctions less frequently or with fewer targets,
but this would decrease the responsiveness of the robots to
new information about the terrain.) Each robot, including
the current owner of a target, then generates bids in light
of the new information. We use sealed-bid single-round
combinatorial auctions. (Alternatively, we could have used
multi-round combinatorial auctions, that save bidders from
specifying their bids for a large number of bundles in
advance, and can be adapted to dynamic environments
where bidders and items arrive and depart at different
times. However, the auctioneer would then have needed
to determine winners in every round and communicate
some information about the current bids to the bidders,
which would have increased the amount of computation
and communication, respectively.) The auctioneer closes
the single-round auction after a predetermined amount
of time, determines the winning bids, and notifies the
winning robots. The winning bids are those that maximize
the revenue of the auctioneer with the restriction that



each robot wins at most one bundle per auction. This
restriction about one winning bundle per robot is because
there can be negative synergies between items and thus
also between bundles and a robot might not want to
win two bundles with negative synergies. Since it is
NP-complete to determine the winning bids, we use an
approximate winner-determination method that is based
on a primal-dual algorithm by Zurel and Nisan [12]. After
each auction, the winning robots own the corresponding
targets and have the responsibility to visit them, whereas
the robots that owned them previously are relieved from
that responsibility.

B. Bidding Strategies

The possible bidding strategies of the robots depend
on the rewards and costs that they incur. We assume that
the robot that visits a target for the first time receives
a reward that is the same for all targets and sufficiently
large so that all robots bid on all targets. Each robot
has to pay the amount of its bids for the bundles that
it wins and one dollar for each unit of distance that
it travels. Robotics researchers have used the following
simple bidding strategy for single-item auctions:

• Single: Each robot bids its surplus for a target, that
is, the reward that it receives for the target minus
the optimistic travel cost for visiting the target from
its current location (that is, the distance from its
current location to the target under the assumption
that unknown terrain does not contain obstacles).

We use this strategy as a benchmark and generalize it
to bundles of targets, where each robot continues to bid
its surplus for a bundle, that is, the rewards that it receives
for the targets minus the travel cost for visiting all targets
from its current location. We estimate the travel cost with
a nearest neighbor heuristic, that is, the distance from its
current location under the assumption that it repeatedly
moves to the closest unvisited target in the bundle and
the terrain does not contain obstacles. The distances were
calculated with D* Lite [13]. The main question then is
on which bundles the robots bid. Since auctions close
after a predetermined amount of time, the robots need
to compute their bids and communicate this information
to the auctioneer within the time limit, which effectively
limits the number of bids they can submit. We therefore
explore the following bidding strategies:

• Three-Combination: Bid on all bundles with no
more than n targets. This strategy quickly becomes
infeasible for large n since the number of bundles
increases exponentially in n. We therefore used n = 3
in our experiments.

• Smart-Combination: Bid on all bundles that contain
only one or two targets. Additionally, bid on the
6k bundles that have the highest surplus among all
bundles containing 2 < l targets, where k is the total

number of clusters (as explained in the experimental
section). We used l = 3,4,5,6 in our experiments,
that is, the robots bid on 4× 6k budles containing
three, four, five, and six targets, respectively.

• Nearest-Neighbor: Bid on all bundles that correspond
to good sequences of targets, where good sequences
are recursively defined as follows: Each single target
is a good sequence. Appending target t to a good
sequence ending in target s yields another good
sequence if the surplus of the new sequence is greater
than or equal to the surplus of the old sequence and
t is the closest target to s among all targets not in the
old sequence.

• Graph-Cut: Generate a complete undirected graph
whose vertices correspond to the targets. The cost of
an edge between two targets corresponds to the op-
timistic travel cost between them. Generate a bundle
that contains all targets in the graph. If the graph con-
tains more than one target, generate additional bun-
dles by using the maximum cut algorithm to split the
graph into two connected subgraphs and invoke the
algorithm recursively for each of the two subgraphs.
Since computing the maximum cut is NP-complete,
we used the “Computation Optimization Laboratory:
Graph-Partition and Box-Constrained Quadratic Op-
timization” by Benson, Ye and Zhang to compute an
approximation [14].

IV. EXPERIMENTS

We implemented our combinatorial auction mechanism
in Teambots [2], a multi-robot simulator. We tested our
four bidding strategies as well as Single with a team
of three robots that navigated in a virtual building com-
posed of rooms connected by doors that were closed
with probability 0.2. Figure 2(a) shows the layout of
the building, where the gray lines are walls, some of
which contain small black lines that represent the closed
doors. Two of the most important factors that affect the
team performance are the location of the targets and the
prior knowledge of the robots. We therefore conducted
experiments with six different ways of distributing the
targets in the building: The Uniform terrain contained
eight targets that were distributed with uniform prob-
ability in the building, while the Cluster i terrain (for
i = 1 . . .5) contained i clusters of four targets each that
were distributed with uniform probability in the building.
We also ran experiments for two different kinds of prior
knowledge of the robots: In completely known terrain each
robot knew a complete map of the building in advance
(including which doors were closed), while in partially
unknown terrain each robot knew the locations of the
walls, doors and targets to be visited in advance but did
not know which doors were closed. The robot that reached
a door first discovered its state and broadcast it to the



(a) Robot Trajectories using Single (b) Robot Trajectories using Graph-Cut

Fig. 2. Robot Trajectories (Screenshots of TeamBots)

other robots. Figure 2, for example, shows the trajectories
of a team of two robots in a completely known Cluster 2
terrain, depending on whether they used Single or Graph-
Cut as their bidding strategy. (We used three robots in the
experiments but for clarity we show a screenshot with only
two robots.)

Table I reports the results of our experiments. It contains
four numbers for each combination of bidding strategy
and prior knowledge in each of the six kinds of terrain.
All reported numbers are the averages of ten runs with
different locations of the targets or clusters: “Number of
bids” is the total number of bids submitted by all robots
during a run. It measures the amount of communication
and computation for determining the bundles, the bids
for the bundles, and the winners of the auctions. “Travel
cost” is the sum of the travel distances of all robots, while
“travel time” (or makespan) is the total time for solving the
exploration tasks if both communication and computation
are instantaneous. The travel cost and travel time are
two different measures for how efficient the allocation of
targets to robots is (performance measures). The travel
cost roughly determines the amount of energy consumed,
and the travel time measures how fast the exploration tasks
are solved. The table also reports the optimal travel cost
in completely known terrain for comparison purposes. We
are mostly interested in the performance of our bidding
strategies in partially unknown terrain and therefore would
like to compare their travel costs and travel times to the
optimal solution; however, finding the optimal solution
in unknown terrain is often computationally intractable.
Instead, we compute the optimal travel costs in completely
known terrain by modeling the problem as a linear inte-

ger program and solving it with CPLEX, a commercial
software package. (Note that the minimal travel cost in
known terrain is always a lower bound on the minimal
travel cost in unknown terrain.) Finally, “robot utilization”
is the percentage of time during which robots are moving.
For example, if one robot is always moving while the
other two robots are always idle, robot utilization is 33.3.
Similarly, if each robot is moving only one third of the
time, robot utilization is again 33.3.

We make the following observations about the travel
costs of the five bidding strategies:

• When the targets are distributed uniformly, the total
travel costs of all bidding strategies are fairly close
to each other.

• When the targets are clustered, the travel costs
satisfy Graph-Cut ≤ Nearest-Neighbor ≤ Smart-
Combination ≤ Three-Combination ≤ Single, with
four exceptions: In partially unknown terrain, the
travel cost of Nearest-Neighbor is smaller than the
travel cost of Graph-Cut in Cluster 3, the travel cost
of Three-Combination is smaller than the travel cost
of Smart-Combination in Cluster 4, and the travel
cost of Smart-Combination is smaller than the travel
cost of Nearest-Neighbor in Cluster 5. In completely
known terrain, the travel cost of Three-Combination
is smaller than the travel cost of Smart-Combination
in Cluster 3. Some of these exceptions are due to
a single run. Thus, the travel costs of combinatorial
auctions are smaller than the travel costs of the single-
item auction. For example, the travel cost of Graph-
Cut in terrain Cluster 4 is only about one-third of
the travel cost of Single. This is due to the fact that



TABLE I

EXPERIMENTAL DATA

Partially Unknown Terrain Completely Known Terrain

Type Uniform Cluster 1 Cluster 2 Cluster 3 Cluster 4 Cluster 5 Uniform Cluster 1 Cluster 2 Cluster 3 Cluster 4 Cluster 5
Single
number of bids 102.3 28.5 112.8 243.3 412.2 632.1 101.7 29.1 111.0 238.8 392.1 635.1
travel cost 296.9 123.3 206.4 333.0 511.9 434.6 252.4 120.1 197.4 294.9 465.9 426.5
travel time 1554.1 495.0 807.9 1303.6 1979.0 1716.1 1237.8 481.0 771.9 1196.1 1798.1 1690.0
robot utilization 71.0 92.0 93.8 93.6 95.3 93.4 75.8 92.1 93.8 91.8 95.5 92.6
Three-Combination
number of bids 692.4 70.8 709.2 3090.0 9418.5 20488.5 692.4 72.9 709.2 3079.2 9333.6 20506.5
travel cost 298.8 91.4 149.1 160.5 245.1 263.2 230.4 82.1 123.0 142.4 224.6 247.9
travel time 1736.9 533.5 698.1 728.1 1086.4 1151.8 1166.8 478.8 558.4 625.9 1031.4 1055.7
robot utilization 65.5 63.3 80.0 83.1 84.6 85.1 74.4 63.4 81.9 84.9 82.5 87.5
Smart-Combination
number of bids 739.8 66.0 743.1 2392.8 5116.5 8620.2 745.5 68.1 739.2 2366.4 5086.8 8731.5
travel cost 303.8 91.3 121.0 158.7 264.9 246.8 246.8 82.0 97.2 152.9 206.5 241.7
travel time 1758.2 531.1 709.9 794.2 1243.1 1153.1 1265.7 480.3 574.9 733.5 969.5 1105.8
robot utilization 64.5 63.4 63.1 75.1 79.3 79.5 72.8 63.2 62.9 77.6 79.9 81.7
Nearest-Neighbor
number of bids 213.6 60.0 241.4 550.7 1075.4 1690.0 203.6 60.0 239.2 540.5 1005.4 1591.9
travel cost 291.1 50.0 92.5 123.5 228.6 261.2 247.5 45.2 79.8 116.1 178.0 231.8
travel time 1645.2 568.8 716.8 778.6 1378.4 1584.4 1247.8 514.9 569.1 685.0 951.6 1148.9
robot utilization 66.7 32.8 49.8 61.0 61.5 63.1 73.9 32.8 52.4 64.7 72.6 75.8
Graph-Cut
number of bids 192.0 48.0 182.7 408.0 719.4 1095.6 183.9 48.0 182.7 403.2 717.0 1112.1
travel cost 292.0 49.9 84.4 129.7 185.0 210.0 244.4 45.1 73.1 111.1 170.8 184.1
travel time 2137.1 568.0 809.8 1116.4 1200.1 1470.7 1315.2 514.1 655.9 725.4 911.2 1076.2
robot utilization 53.2 32.8 39.3 49.0 58.6 53.2 69.5 32.8 42.6 60.7 71.2 63.9
Optimal
travel cost 208.7 47.6 77.4 115.5 171.4 184.4

the single-item auction tends to send all robots to the
closest cluster, which often moves them away from
the other clusters, as seen in Figure 2(a).

• When the targets are clustered in completely known
terrain, the travel costs of Graph-Cut are approx-
imately equal to the optimal travel costs. This is
important because the computation times of Graph-
Cut are very small, whereas the computation times
needed to determine the optimal travel costs explode.
For example, it took several days to compute the
optimal travel costs in completely known Cluster 4
and Cluster 5 terrain. (The travel costs of Graph-Cut
are often smaller than the optimal travel costs due to
discretization errors: Our software discretizes terrain
into cells and considers a target to be reached once
a robot has entered the cell of the target.)

To summarize, Graph-Cut appears to result in smaller
travel costs than the other bidding strategies. The results
about the travel times are less clear but it appears that
Three-Combination tends to result in small travel times.

We make the following observation about the numbers
of bids of the five bidding strategies:

• When the targets are clustered, the numbers of bids
satisfy Single ≤ Graph-Cut ≤ Nearest-Neighbor
≤ Smart-Combination ≤ Three-Combination, with
two exceptions: The number of bids of Three-
Combination is smaller than the number of bids of
Smart-Combination in both partially unknown and
completely known Cluster 2 terrain.

To summarize, Graph-Cut results in smaller numbers
of bids than the other combinatorial bidding strategies.
This is interesting because, in general, it also results in
smaller travel costs than the other combinatorial bidding
strategies. In general, one would expect larger numbers of
bids to result in smaller travel costs because they allow
bidders more flexibility in expressing synergies. However,
it is undesirable to have a large number of bids since
this increases the communication and computation time.
Consequently, it is important to develop bidding strategies,
such as Graph-Cut, that carefully select which bundles
to bid on and thus achieve small travel costs with small
numbers of bids.

We make the following observation about the robot
utilization of the five bidding strategies:

• When the targets are clustered, the robot utiliza-
tion satisfies Graph-Cut ≤ Nearest-Neighbor ≤
Smart-Combination ≤ Three-Combination ≤ Single
with one exception: The robot utilization of Three-
Combination is smaller than the robot utilization of
Smart-Combination in partially unknown Cluster 1
terrain.

To summarize, Graph-Cut appears to utilize fewer
robots than the other bidding strategies. In general, one
can expect smaller robot utilization to result in smaller
travel costs but larger travel times because smaller robot
utilization allows for less parallelism and, indeed, Graph-
Cut results in smaller travel costs than the other bidding
strategies in general. Similarly, Three-Combination tends



to utilize more robots than the other bidding strategies and
appeared to result in small travel times. If robots are costly
or it is difficult to operate a large number of robots for
other reasons (for example, because one human operator
has to control all robots at the same time), it might be
desirable for the number of active robots to be small.
However, if the travel time is important then it might be
desirable for the number of active robots to be large. In
this case, one can modify the auction mechanism to utilize
more robots. For example, one can impose upper bounds
on bundle sizes to ensure a more balanced allocation
of targets to robots. The maximum bundle size is three
for Three-Combination and six for Smart-Combination,
whereas there is no upper bound on the bundle size of the
other two combinatorial bidding strategies. Therefore, the
winning bids for Nearest-Neighbor and Graph-Cut tend
to have large bundle sizes, resulting in a smaller number
of winners and thus active robots. This partially explains
why Three-Combination and Smart-Combination utilize
more robots than Nearest-Neighbor and Graph-Cut.

V. CONCLUSION

In this paper, we studied how to coordinate a team of
mobile robots to visit a number of given targets in partially
unknown terrain. Our experimental results show a sub-
stantial advantage of combinatorial auctions over single-
item auctions. They also show the large influence of the
combinatorial bidding strategy on the team performance,
where our Graph-Cut strategy clearly outperformed three
other combinatorial strategies with respect to travel cost.
Our future work will concentrate on developing more so-
phisticated bidding strategies, including bidding strategies
that minimize the travel time rather than travel cost, and
porting our code to ATRV Minis.

ACKNOWLEDGMENTS

This research is partly supported by an NSF award
under contract ITR/AP-0113881. The views and conclu-
sions contained in this document are those of the authors
and should not be interpreted as representing the official
policies, either expressed or implied, of the sponsoring or-
ganizations, agencies, companies or the U.S. government.

VI. REFERENCES

[1] A. Stentz and M. Dias, “A free market architecture
for coordinating multiple robots,” Tech. Rep. CMU-
RI-TR-99-42, Robotics Institute, Carnegie Mellon
University, Pittsburgh (Pennsylvania), 1999.

[2] T. Balch and A. Ram, “Integrating robotics research
with JavaBots,” in Proceedings of the AAAI Spring
Symposium, 1998.

[3] P. Stone and M. Veloso, “Multiagent systems: A
survey from a machine learning perspective,” Au-
tonomous Robots, vol. 8, no. 3, pp. 345–383, 2000.

[4] M. Wellman, “The economic approach to artificial
intelligence,” ACM Computing Surveys, vol. 7, no.
3, pp. 360–362, 1995.

[5] B. Gerkey and M. Mataric, “Sold! Auction methods
for multi-robot coordination,” IEEE Transactions on
Robotics and Automation, vol. 18, no. 5, pp. 758–
768, 2002.

[6] R. Nair, T. Ito, M. Tambe, and S. Marsella, “Task
allocation in the rescue simulation domain: A short
note,” in RoboCup-2001: Robot Soccer World Cup
V, A. Birk and S. Coradeschi, Eds., Lecture Notes
in Computer Science. Springer, 2002.

[7] R. Simmons, D. Apfelbaum, W. Burgard, D. Fox,
M. Moors, S. Thrun, and H. Younes, “Coordina-
tion for multi-robot exploration and mapping,” in
Proceedings of the National Conference on Artificial
Intelligence, 2000, pp. 852–858.

[8] R. Zlot, A. Stentz, M. Dias, and S. Thayer, “Multi-
robot exploration controlled by a market economy,”
in Proceedings of the IEEE International Conference
on Robotics and Automation, 2002, pp. 3016–3023.

[9] M. Dias and A. Stentz, “Opportunistic optimization
for market-based multirobot control,” in Proceedings
of the IEEE International Conference on Intelligent
Robots and Systems, 2002, pp. 2714–2720.

[10] S. de Vries and R. Vohra, “Combinatorial auctions:
A survey,” INFORMS Journal of Computing, (forth-
coming).

[11] W. Elmaghraby and P. Keskinocak, “Combinatorial
auctions in procurement,” in to appear in The Prac-
tice of Supply Chain Management, C. Billington,
T. Harrison, H. Lee, and J. Neale, Eds. Kluwer, 2002.

[12] E. Zurel and N. Nisan, “An efficient approximate
allocation algorithm for combinatorial auctions,” in
Proceedings of the ACM Conference on Electronic
Commerce, 2001.

[13] S. Koenig and M. Likhachev, “Improved fast re-
planning for robot navigation in unknown terrain,”
in Proceedings of the International Conference on
Robotics and Automation, 2002, pp. 968–975.

[14] Y. Ye, “Software: COPL DSDP,” in
ftp://dollar.biz.uiowa.edu/pub/yyye/copldsdp.zip.


