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Abstract— We consider the problem of allocating a number
of exploration tasks to a team of mobile robots. Each task
consists of a target location that needs to be visited by a robot.
The objective of the allocation is to minimize the total cost,
that is, the sum of the travel costs of all robots for visiting
all targets. We show that finding an optimal allocation is an
NP-hard problem, even in known environments. The main
contribution of this paper is PRIM ALLOCATION, a simple and
fast approximate algorithm for allocating targets to robots
which provably computes allocations whose total cost is at
most twice as large as the optimal total cost. We then cast
PRIM ALLOCATION in terms of a multi-round single-item
auction where robots bid on targets, which allows for a decen-
tralized implementation. To the best of our knowledge,PRIM
ALLOCATION is the first auction-based allocation algorithm
that provides a guarantee on the quality of its allocations. Our
experimental results in a multi-robot simulator demonstrate
that PRIM ALLOCATION is fast and results in close-to-optimal
allocations despite its simplicity and decentralized nature. In
particular, it needs an order of magnitude fewer bids than
a computationally intensive allocation algorithm based on
combinatorial auctions, yet its allocations are at least as good.
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easily be tele-operated due to communication delays, com-
munication disruptions and bandwidth limitations. Thus,
science return can be maximized by endowing them with
autonomy that allows them to coordinate their activities in
order to best utilize their energy and time.

Centralized solutions to multi-robot task allocation prob
lems of this kind create bottlenecks in the system and are
thus prone to fail. Multi-robot task allocation problems ar
therefore frequently solved in a decentralized way with
market mechanisms. In one-to-one exchanges, two robots
swap one target for another one, possibly with some side
payments [5]. In single-item auctions, robots bid on tagget
that are auctioned off individually. The highest-bidding
robot wins the target and then has to visit it [6] [7] [8]. As
the robots gain more information about the environment
during execution, additional auctions can be run to change
the allocation of targets to robots. This approach has akver
advantages that have been demonstrated on real robots [9]
[8]. First, communication and control are fast: the robots
exchange only numeric bids and compute their bids in
parallel. Second, control is robust: the total cost (that is
the sum of the travel costs of all robots) degrades only

In this paper, we develop algorithmic foundations formarginally as they fail or cannot communicate with each

the dynamic assignment and re-assignment of exploratiasther. Third, control is adaptive: robots react immediatel
tasks to robot teams. The amount of interest in multi-robofo new information about the environment or failures
systems is considerable [1] [2] since teams of robots aref other robots. Fourth, control is efficient: targets are
both more fault tolerant (due to redundancy) and fastesillocated and re-allocated to robots quickly to ensure that
(due to parallelism) than single robots. Multi-robot taskthe robots visit them with a small total cost.
allocation problems require a team of robots to perform a However, the existing one-to-one exchanges and single-
number of tasks. Tasks may be given to the robots befoligiem auctions offer no guarantees on the quality of their
execution [3] or may be dynamically generated duringallocations and may result in highly suboptimal allocasion
execution [4]. Our methods can be used in either contexThis is not surprising since we will prove in this paper that
although in this paper we assume that the tasks are givéinding an allocation of targets to robots that minimizes
to the robots before execution. the total cost is an NP-hard problem, even in known
As an example of an exploration task, consider a Marenvironments. Consider, for example, the simple gridworld
exploration scenario where a team of rovers must visiéxample of Figure 1 with two robots (R1 and R2) and four
given target locations to collect rock probes. Since théargets (G1, G2, G3, and G4). Each robot bids on all targets
robots do not have complete prior information about theseparately; the bid is the cost for visiting a target from the
environment, it might be necessary or it can be beneficialurrent robot location. The robot with the smallest bid for
to re-allocate targets to robots as the robots discover moeetarget wins that target. Robot R1 wins G1 and G3 and
about the environment, for example, when a robot discovergsits G3 first and then G1, while robot R2 wins G2 and
that it is separated by a big crater from its target. Th&4 and visits G4 first and then G2, for a total cost of 33
robots cannot be preprogrammed if the environment is natnits. However, this allocation of targets to robots is diea
completely known in advance. Furthermore, they cannatuboptimal, since the total cost is only 17 units if robot R1



are symmetric and uniform over robots (the robots are

Gl R1——> G3 identical) and satisfy the triangle inequality (the robots
operate on the Euclidean plane). The cost between two

< locations is infinite if one location cannot be reached from
G2 R2 ——>(C4 the other. The objective is to find an allocation of targets
to robots and a path for each robot that visits the targets

Fig. 1. Motivating example. allocated to it, so that the total cost (that is, the sum of the

travel costs of all robots) is minimized.
first visits G3 and then G4, while robot R2 first visits G2 This exploration problem can be represented with a
and then G1. weighted, undirected, and complete graghThe vertices
Given the limitations of single-item auctions for multi- of the graphl” = VzUV7r correspond to the locations of the
robot task allocation, several researchers have shiftid th robots {/z) and targets¥(r). The edge costs correspond to
focus to combinatorial auctions [10] [11] [12] [3]. In com- the costs of moving from one location to another one, as
binatorial auctions, bidders bid on combinations (burjdlesgiven by the cost functior. The objective is to partition
of items. Such auctions are useful when there is a strorttye vertices so that there is exactly one robot vertex in each
interaction between items in the sense that the value g@artition, and find paths that connect all vertices in each
winning a bundle of items is different from the sum of partition, starting with the robot vertex, so that the total
the values of the individual items. Our example showedost of all paths is minimum. The exploration problem can
that such interactions exist for exploration problems. Unthus be thought of as a multi-agent version of the Euclidean
fortunately, formulating bids and choosing winners is mucilraveling Salesman Problem (TSP) [13] where the agents
more computationally intensive for combinatorial aucsion are not required to return to their initial locatiohs.
than for single-item auctions. Theorem 1 proves that solving the exploration problem
In this paper, we developf®M ALLOCATION, a simple optimally is an NP-hard problem.
algorithm that, different from combinatorial auctions, is

fast and, different from single-item auctions, yields allo ~ Theorem 1.There is no polynomial-time algo-
cations whose total cost is provably at most twice as large  ithm for solving the exploration problem opti-
as the minimum total cost. M ALLOCATION can be mally, unlessP = N P.

cast in terms of a multi-round single-item auction where ~ Proof A TSP can easily be reduced in polyno-
robots bid on targets. This view allows for a decentralized ~ Mial time to an exploration problem as follows:

implementation, resulting — to the best of our knowledge —  Pick an arbitrary vertex» of the TSP graph.

in the first auction-based allocation algorithm that presid Construct a complete graph with the vertices of
a guarantee on the quality of its allocations. Our inspirati the TSP and two additional vertices, calleénd
comes from the insight that one-to-one exchanges and ¥- v IS @ robot vertex in the new graph. All other
single-item auctions relate to solution methods for triaxgl vertices are target vertices. The edges of the new

salesman problems (TSPs) [13]. One-to-one exchanges are 9raph have the same costs as the corresponding
decentralized mechanisms similar to Lin-Kernighan-type ~ €dges in the TSP graph. The cost of the edge
centralized TSP methods [14], and single-item auctions Petweenz andv is infinite, and the cost of the
are decentralized mechanisms similar to centralized greed ~ €dge between: andy is zero. The costs of the
TSP methods. Certain TSP methods offer guarantees on €dges betweenand the vertices other tharand
their tour lengths and we make use of them to desigmvP y are the same as the costs of the edges between
ALLOCATION. It is interesting to note thatfM ALLOCA- and the corresponding vertices in the TSP graph.
TION is very similar to previous single-item auctions, with The costs of the edges betwegand the vertices
the main difference being that the robots do not bid the cost ~ Other thanz are infinite. An optimal solution of
from their current location to the target in question, as is  the exploration problem is necessarily a path that
common in the literature, but rather bid the smallest cost ~ Starts atv and ends withz followed by y. The
from any target they already own to the target in question.  Part of the path from to 2 is an optimal solution

In the following, we describe ®M ALLOCATION, show to the TSP since: is a replica ofv. Since solving
how it can be used in dynamic environments, and then use  1SPs optimally is an NP-hard problem, solving
TEAMBOTS [15], a popular multi-robot simulator, to ex- the exploration problems optimally must also be
perimentally compare it against other allocation algonish an NP-hard problem. QED

in both static and dynamic environments.

Il. THE EXPLORATION PROBLEM Il PRIM ALLOCATION

The exploration problem in known environments can b% nilrc]:(;ir:g? ﬁ;péo,[st}?: dp;?]b(l)ergm'zlaan"(;\lczgz)irdef?irc?sgeﬂm '
formulated as follows: We are given the locations /6f P P Y-

robots andM targets, as well as a cost functienthat We therefore use ideas from approximate TSP algorithms

specifies the cost of moving from one location to another ithe aigorithms and results of this paper apply also to vehimiting
one for each pair of locations. We assume that the cosgoblems, where the agents are required to return to théimlifocations.



to develop an algorithm, @M ALLOCATION, that returns Theorem 2. PRIM ALLOCATION finds an MSF.

only an approximately optimal allocation but is tractable. Proof. Let G be the graph of the exploration
For any weighted grapliz, a spanning tree of7 is a problem. Construct a new weighted graph,

connected acyclic subgraph (a tree)®@fthat contains all identical toGG, except that all edge costs between

vertices ofG. A minimum spanning tree (MST) af is a vertices inVz are0. An MST T” of graphG’ has

spanning tree whose total edge cost is minimum. An MST  exactly the same total cost as an MSF of gréph
can be easily found for any graph in polynomial time by An MSF of G can be derived fromT” by simply
either Prim’s or Kruskal’s algorithm. Prim’s algorithm [[L6 deleting the edges between the robot vertices.
is a greedy algorithm that grows an MST starting with an Running RRIM ALLOCATION on G is identical to
arbitrary vertex of the graph. At every step it adds one more  running the conventional Prim algorithm d#
edge (and one more vertex) to the tree; the selected edge starting from any vertex iVy. If the spanning
is the cheapest edge between any of the vertices already in forest found by RiM ALLOCATION was not
the tree and any of the vertices not in the tree. an MSF, the implication would be that Prim’s
The MST heuristic [13] finds a good solution to a TSP algorithm does not find an MST. Therefore, the
in polynomial time. It first finds an MST of the TSP graph optimality of PRIM ALLOCATION is guaranteed.
and then converts it into a tour (the MST tour), as follows: QED
an initial cycle is generated by starting at any vertex of the
MST and performing a Comp|ete depth_first search of the The fO"OWing theorem prOVGS that the tOtal cost Of the
tree. This cycle is optimized by taking shortcuts whenevefesulting allocation can be at most twice as large as the
possible by skipping vertices that have already been disitetotal cost of an optimal one.
earlier. The following well-known result shows that the

MST tour is a good approximation of an optimal tour. Theorem 3. PRIM ALLOCATION finds an allo-

cation for the exploration problem whose total

Fact 1. The total cost of the MST tour is at most cost is at most twice the total cost of an optimal

twice the total cost of an optimal TSP tour. allocation.
Proof. By construction, an optimal allocation OA

We can proceed in a similar way for the exploration is also a spanning forest with exactly trees;
problem. Given that the objective of the exploration prob-  each tree in this forest is a trivial single-branch
lem is to allocate one cluster of targets to each robot and tree (the robot path). This spanning forest is not
derive one path for each robot, instead of finding a single  necessarily a minimum one, so
MST, we seek to find a minimum spanning forest (MSF),
namely a minimum-cost collection of trees that spans all ¢(MSF) < ¢(OA) ,
vertices of the graph and each tree contains exactly one where ¢(MSF) and ¢(OA) denote the total cost
robot vertex. This is accomplished by our algorithm, called of an MSF and an OA, respectively. By Fact 1
PRIM ALLOCATION. In the spirit of Prim’s algorithm for and Theorem 2, the solution PA oRRM ALLO-
MSTs, RRIM ALLOCATION grows an MSF, starting with CATION has a maximum total cost @&(MSF),
the robot vertices as the initial trees, by adding a target
vertex at each step to a tree that yields the least increase ¢(PA) < 2¢(MSF) .
in the total cost, until all target vertices are includedhe t
forest. The resulting trees determine the allocation, and
the paths are derived through the MST heuristic (except
that the paths need not be toursRI? ALLOCATION is
summarized below.

This is true because R ALLOCATION finds

an MSF first, and then uses the MST heuristic
in every tree of the MSF for constructing the
robot paths. So, for each robot the total cost of
its path is at most twice the total cost of the corre-

Algorithm : PRIM ALLOCATION(Vp, Vg, ¢) sponding tree, and, additively, the total cost of all
1) For each robot, construct a tre€l; that contains paths is at most twice the total cost of the MSF.
only the corresponding robot vertex fro Therefore, we have(PA) < 2¢(OA) < 2¢(OA).
2) While (Vi # () do Thus, RRIM ALLOCATION finds an allocation for

the exploration problem whose total cost is at
most twice the total cost of an optimal allocation.
QED

a) For alli, ¢; = minyev; minger, {c(v,w)}

b) j = argmin, ¢;

C) vj = argmin,cy, minger, {c(v,w)}

d) Attachwv; to Tj

e) Vr =Vr —{v;} IV. RUN-TIME COMPLEXITY
3) For all i, use the MSF heuristic off; to construct

) PRIM ALLOCATION could be implemented with a single
the path for robot

priority queue, similarly to Prim’s algorithm. However, in

this paper we chose to analyze an implementation with
multiple priority queues taking advantage of the specifics
of the exploration problem. Not only do we show a better

The following theorem proves that steps 1-2 oIl
ALLOCATION indeed find an MSF.



complexity bound with this approach, but we also showChristofides-tour is at most 1.5 times the total cost of an
how this makes a decentralized auction implementatiooptimal TSP tour.
possible. The best way to take advantage of all these heuristics is
A priority queue is maintained for each of thé robots; to combine them. In the last step oRR1 ALLOCATION,
each queue contains the unallocated targets indexed kil heuristics can be run to find paths for all robots and
their least connection cost to the robot’s tree. These qeuthe best path can be selected for each robot. As long as
can be initialized irO(M) time for each robot, oO(NM)  the MST heuristic is included in the set, the worst-case
total time. The main loop in step 2 is executefitimes. At  bound proved above applies, but the quality of allocations
each iteration, one queue is selected (step 2b) in@f¥) is improved in practice.
and its top element is extracted in tind&(log, M) and
is allocated to the corresponding tree. Allocated elements
can be recognized in constant time if an identifier is placed PRIM ALLOCATION can be viewed as a multi-round
on each element during allocation. At the same time, thauction between an auctioneer and all participating robots
allocated element needs to be deleted from all other queubstially, all targets are unallocated and are available fo
in time O(log, M) (assuming that there are appropriatebidding. Each robot estimates the minimum cost to each
pointers to each target in each queue). So, the total tinavailable target starting either from the current robot lo-
for all extractions and deletions @(N M log, M). Also, cation or from one of its already owned targets (since
the winning queue in each iteration has to update all theventually the robot will be there). This cost is the bidding
remaining unallocated targets in the queue with the newalue for each target. Each robot only submits its best
costs. This is done irO(M?1log, M) total time for all (lowest) bid to the auctioneer, since no other bid has any
gueues over allM iterations. So, the total time for finding possibility of success at the current round. The auctioneer
an MSF isO((N + M)M log, M). Given an MSF, finding collects the bids and allocates only one target to the robot
the paths for all robots takes onl9 (/). Therefore, the that submitted the lowest bid over all robots and all targets
time complexity of RIM ALLOCATION is polynomial, The winning robot and the robots that placed their bid on
O((N + M)M log, M) for N robots and}M targets. the allocated target are notified and are asked to resubmit
The low time complexity of RIM ALLOCATION implies  bids given the remaining targets. The bids of all other
that it is a scalable and practical algorithm even for larg&obots remain unchanged. The auction is repeated with the
problems involving many robots and numerous targetsiew bids, and so on, until all targets have been allocated.
This is a very useful feature in the context of dynamic Consider, for example, the simple example in Figure 1.
environments where re-allocation needs are frequent.  In the first round, robot R1 bids 4 (the distance between R1
and G3) for target G3 (the closest target to it), and robot
V. POSSIBLEIMPROVEMENTS R2 bids 5 for target G4. Robot R1 wins target G3 since its
The quality of the allocations produced bR ALLO- bid was the smallest one. In the second round, robot R1

CATION can be further improved by modifying the last step bids 3 (the distance between G3 and G4) for target G4, and
where the paths for the robots are constructed. Finding dabot R2 still bids 5 for target G4. Robot R1 wins target
optimal path for each robot is computationally intensiveG4 since its bid was again the smallest one. In the third
The MST heuristic, used by R ALLOCATION, is just round, robot R1 bids 8 for target G1, and robot R2 bids
one way of finding a good path, but other TSP heuristicg for target G2. Robot R2 wins target G2. Finally, in the
may be used instead. In particular, there is a family of TSfourth round, robot R1 bids 8 for target G1, and robot R2
insertion heuristics (cheapest, nearest, farthest, rapdo bids 3 for G1. Robot R2 wins target G2, at which point
that build TSP tours incrementally by inserting targets int all targets have been allocated. So, robot R1 first visits G3
a partial tour one at a time. The cheapest and the near@¥id then G4, whereas robot R2 first visits G2 and then G1,
insertion heuristics yield tours that are at most twice adhich is an optimal allocation.
costly as an optimal tour; the farthest and the random This view of FRIM ALLOCATION allows for a decen-
insertion heuristics have worse worst-case bounds. tralized implementation. The calculation of the bids can
A more sophisticated heuristic, the Christofides heuristiee performed locally by each robot through some path
[17], first finds an MST, then finds a minimum-cost perfect?lanning algorithm on a stored map. Additionally, each
matc PM among vertices with odd degree, combinegobot can maintain a local priority queue with its own bids
edges of MST and PM to form a multigraph, constructd0 identify the best one easily. Finally, once the allogat®
a Eulerian cycle over the multigraph, and finally forms acompleted at the end of the auction, each robot can locally
tour from the cycle by skipping vertices visited before andcompute its own path using a number of TSP heuristics as
taking shortcuts. The Christofides heuristic yields a vergliscussed in the previous section. Note that at each round

good bound on the total cost of the tour; the cost of th@f the auction each robot needs to submit only a single bid
and there is one round for each target. Therefore,Nor

2We have assumed simple priority queues implemented as bingpg:hea robots and\/ targets, the total number of bids in the entire
better complexity bounds can be derived by using Fibonacapsie auction is at mosiV M

3A minimum-cost perfect match on a set of vertices is a pairing of Th . b . d f th b
vertices so that the sum of the costs of all intra-pair edgasinimum. € auctioneer can be situated on one of the robots or

The minimum-cost perfect match can be found in polynomial time.  on some central workstation. The auctioneer needs to be

VI. DECENTRALIZED IMPLEMENTATION



able to communicate with all robots, but the robots do VIl. OTHER ALLOCATION ALGORITHMS

not need to communicate with each other. Bértargets,

only O(M) numbers (the target identifiers and the numeric This section outlines three other allocation algorithms
bids) need to be communicated over a single link. Théan optimal method, a single-item auction method, and
auctioneer is by design a fairly simple entity. Its job is@ combinatorial auction method) and makes a high-level
to collect the N bids, select the minimum, and notify comparison to RiM ALLOCATION. It also outlines an
the robots to resubmit bids. Therefore, it is conceivablénteresting variant of RiM ALLOCATION.

that the auctioneer function can be implemented in a

decentralized way to avoid having a centralized point thaA, An Optimal Method

may affect the entire system in case of failure. A trivial )

way to achieve such a decentralized system is to have OUr optimal method, referred to asP@MAL, uses an
each robot individually perform the auctioneer function,/ntéger Programming (IP) formulation of the exploration
by identifying the winner at each round and waiting forproblems and the. commercial IP solver _CPLEX to find
the new bids before starting the next round. In this cas@n optimal allocation under the assumption that the en-
it is assumed that all bids can be broadcast to all robot¥/ronment is stati&. Our IP formulation is similar to IP
so the robots need to be able to communicate with eadfrmulations of TSPs. Let/z denote the set of robot
other. Nevertheless, the total amount of communication iéertices andVr the set of target vertices. Let;; be

rather low, at mosO(N M) numbers for all robots. indicator (/1) variables fori € Vp U Vg andj € Vp.
If z;; = 1, then locationj must be visited directly after

. . locationi. The IP model is shown below.
A. Dynamic Environments

While the robots explore an environment, the envi- Minimize
ronment or their information about it can change. For
example, the robots might not have an a-priori map of the Z c(i, j)zi;
environment available or they might have a map available i€VrUVR,jE€VrT

but initially do not know which doors are open. In this case,

the robots initially make default assumptions, for example subject to

the optimistic assumption that every patch of the environ- )

ment is easily traversable unless they know otherwise. The Z zij =1 Vi€ Vr

sensors on-board a robot report obstacles in their vicinity EeVrUVa

during exploration. The robot can then update its map and Z wi; <1 Vie Vr UVg
broadcast this information to the other robots, so that they JEVr

can update their maps as well and then recalculte distances Z zi; < |U|—1 YU C Vp: |U| > 2
between locations. Thus, the distances between locations  ,%=;

effectively change during exploration, which is why we

call these environments dynamic. This change provides The first set of traint that t t locati
an opportunity to improve the current allocation. Thus, € hrst set of constraints ensures that target focations

whenever new map information is sensed and the map?ge vt|sl|tedt. exactly Io rfltce:[ the tsecond sdetf_the}lt r?ﬁ otthgr:jd
thus change, we rerun the decentralized version RifvP arget focations are fett at most once and, inatly, the thir

ALLOCATION to obtain a good allocation for the new mapsset that there are no cycles among the target locations
(which is, of course, subject to further changes) RunninéSUbtour elimination constraints). This IP formulation is
PRIM ALLOCATION frequently is possible because it is oIvedf W'tlh Itlhe ;:_omnjrehrm?:l_lg s?lvefr CPIEEX tto find
fast. However, as long as the robots just visit their alledat an optimal aflocation. 1he third set of constraints grows

targets without any changes to the maps, then there %(ponentially in the number of target vertices, which resul
no need to rerun @M ALLOCATION since it calculates M large runtimes of the IP solver even for problems of

the same MSF and thus also the same allocation. TH@oderate size. Th_e cutting-plane _method can be used to
following pseudocode describes the resultingNaMIC speed up the solution process. This method leaves out the
PRIM ALLOCATION: subtour elimination constraints, solves the IP, adds those

subtour elimination constraints violated by the solution,
Algorithm : DYNAMIC PRIM ALLOCATION (Vr, Vg, ¢) and repeats the process until the solution no longer vi®late
any subtour elimination constraints. This optimal method

1) While there are unvisited targets ; .
) 9 provides a means for evaluatingR® ALLOCATION ex-

a) Obtainc from the map. perimentally, but it becomes very inefficient for larger
b) Run FRiM ALLOCATION(V7, Vg, c), WhereVr  gyploration problems, and thus cannot be used effectively
is the set of yet unvisited target vertices in practice.

c) Move the robots along their paths as long as
there are unvisited targets and the map remains, . . . o .
It is thus not guaranteed to find an optimal allocation in dyraenivi-

unchanged. ronments, which is why we refer to it as f@IMAL” (with apostrophes)
in this case.



@ to split the graph into two parts by removing edges so
. @ @. that the tota_ll cost of the removed edges is maximized.
The targets in each of the two subgraphs form one bundle
each. The robot then invokes the Maximum Cut algorithm
recursively for each of the two subgraphs to generate
_ _ further bundles, until the subgraph contains only one targe
B. A Single-ltem Auction Method GRAPH CUT then bids for each bundle the cost of the robot
A variety of single-item auction methods have beerfor visiting all targets in the bundle, computed with a TSP
proposed for exploration problems in the literature. Onénsertion heuristic.
of them, due to Dias and Stentz [18], works as follows:
Initially, all targets are unallocated. The robots bid oh alp A variant of Prim Allocation
unallocated targets. The bid for each target is the diffegen
between the total cost for visiting the new target and all An interesting variant of RIM ALLOCATION can be
targets already allocated to the robot and the total co§tained by making use of a TSP insertion heuristic instead
for visiting only the targets already allocated to the robotof the MST heuristic. This variant, calledN$ERTION
These total costs are computed using a TSP insertidhLLOCATION, works just like FRIM ALLOCATION, except
heuristic. The robot with the overall lowest bid is alloghte that robots compute their bids as in the single-item auction
the target of that bid and then is no longer allowed to bidmethod presented above. In particular, each robot magtain
The auction continues with the remaining robots and af path, rather than a spanning tree, and initially all robot
unallocated targets. After every robot has won one targeaths are empty. At each round, robots bid on unallocated
all robots are again allowed to bid, and the procedurérgets and the winning robot adds one more target to its
repeats until all targets have been allocated. Finallglsin own path. The bid for a target is the difference between
targets are transferred from one robot to another, startirife costs of the paths of that robot with and without the
with the target transfer that decreases the total cost t@rget in question. The paths and their costs are computed
most, until no target transfer decreases the total cost amging a TSP insertion heuristic. Robots submit only one
longer. bid per round and the robot with the overall lowest bid
Unfortunately, this combination of single-item auctionsis allocated the corresponding target which is added to its
(to compute an initial allocation) and one-to-one exchangePath. In essenseNEERTIONALLOCATION is the same as
(to optimize the initial allocation) does not provide anythe single-item auction method presented above, except tha
guarantee on the quality of its allocations, which can b#inning robots are not removed from the auction, and no
arbitrarily bad. Figure 2 shows an example with two robotéarget transfer takes place at the end of the auction.
(A and B) and three targets (1, 2, and 3). During the INSERTION ALLOCATION might be advantageous in
first round of bidding, first target 1 is allocated to robotcases where the MSF found byrfR1 ALLOCATION con-
B and then target 2 is allocated to robot A. During thesists of trees with numerous branches. In such cases, using
second round of bidding, target 3 is allocated to robot Ahe MST heuristic to turn each tree into a path may not
because its cost increases less than the one of robot B ifiteld very good paths, whereas building the robot paths
wins target 3. Figure 2 shows the resulting allocation. Néncrementally through a TSP insertion heuristic takes the
targets are transferred between robots during the one-tpath cost directly into account. The main difference is
one exchanges, because the total cost cannot be decreakked, during the allocation processRIRI ALLOCATION
with a single target transfer. The total cost of the finalconsiders the tree costs, wheresaS#RTIONALLOCATION
allocation is large because the property that every rob@onsiders the path costs. In that sense, the latter maygield
is allocated one target before another round of bidding ibetter allocation. Although it is not know yet iKEERTION
conducted can result in bad allocations of targets to robo3LLOCATION provides any guarantee on the quality of its
which subsequently cannot be improved by target transfegdlocations, it can be expected to perform well in practice.
that transfer only one target at a timeriIM ALLOCATION,
on the other hand, allocates all targets to robot B and thus VIIl. EXPERIMENTAL RESULTS
finds an optimal allocation.

Fig. 2. Counterexample.

) ] ) Our testbed consists of several exploration problems

C. A Combinatorial Auction Method where three robots navigate in a virtual building that

Combinatorial auction methods bid on bundles of targetsonsists of rooms which are connected through doors.
It is crucial for them to select which bundles of targets toDoors are closed with probability 0.2 but all targets are
bid on since the number of bundles grows exponentially imeachable. In each problem, all robots start at the same
the number of targets, which prevents them from biddindocation and must visit 20 targets, arrangedkirtlusters,
on all bundles. @APH CuT has been shown to outper- where &k = 1,2,...,10. The distribution of clusters in
form several alternative combinatorial auction methods fothe building is uniform, and the distribution of targets
exploration problems [3]. It selects bundles as followswithin each cluster is normal. We distinguish between stati
Each robot considers the complete weighted graph over alhd dynamic environments depending on the a-priori map
targets. It uses an (approximate) Maximum Cut algorithninformation that is available to the robots:
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Fig. 3. MSF (dashed lines) and MST paths (solid lines). Fig. 4. FRIM ALLOCATION in TEAMBOTS (3 robots, 20 targets).

« Static environmentsall robots know a complete and |NSERTIONALLOCATION is even closer to optimal. Note
accurate map of the building, including which doorsthat both RiM ALLOCATION and INSERTION ALLOCA-
are closed. TION use much simpler auction mechanisms and bidding
« Dynamic environmentsall robots know a complete strategies than @PH CuT, yet result in smaller total costs
and accurate map of the building but do not knowwith an order of magnitude fewer bids. Our experimental
which doors are closed. A robot observes the state @esults therefore show that bottR®1 ALLOCATION and
a door when it reaches it, at which point it broadcastss variant, NSERTION ALLOCATION, are fast and result
this information to all other robots. As long as a robotin close-to-optimal allocations, despite their simpiiciind
does not know the state of a door, it optimisticallydecentralized nature.
assumes that it is open.

We compare four algorithms: EXIMAL, GRAPH CuUT,
PRIM ALLOCATION, and INSERTION ALLOCATION. In IX. CONCLUSION
static environments, each algorithm is run only once to find
an allocation. In dynamic environments, each algorithm |n this paper, we have developed algorithmic foundations
is run every time the map changes. We tested the fodor allocating a number of exploration tasks to a team
algorithms in EAMBOTS [15], a realistic multi-robot sim- of mobile robots. We showed that finding an optimal
ulator. Figure 3 shows a screenshot of the MSF found byillocation is an NP-hard problem. Our approximate al-
PRIM ALLOCATION and the corresponding MST paths for gorithm, RriMm ALLOCATION, finds an allocation with a
each robot for a simple exploration problem with 2 robotsotal cost that is at most twice as large as the total cost
and 11 targets in 2 clusters. Similarly, Figure 4 shows thef an optimal allocation. In addition, it can be easily
actual path of each robot in a more complex explorationmplemented as a multi-round single-item auction, where
problem with 3 robots (that start at the same location imobots bid on targets. To the best of our knowledge,
the center of the building) and 20 targets in 4 clustersPrim ALLOCATION is the first auction-based allocation
Table | shows experimental results in static environmentsilgorithm that provides a guarantee on the quality of its
and Table Il shows results in dynamic environments. Thallocations. We also describedi$ERTION ALLOCATION,
tables show the total cost and the total number of bids fain algorithm that performs very well in practice, although
each algorithm and each clustering of targets. Each tablehas no known performance guarantees. We confirmed the
entry is averaged over 10 runs with identical settings, byserformance of our algorithms by comparing them exper-
different distributions of targets. imentally to other methods, including an optimal one and
The total cost of ®APH CuT is fairly close to optimal, a computationally intensive allocation algorithm based on
but its number of bids is significantly larger than thatcombinatorial auctions. We believe that such results oitjoi
of the other auction methods. The total cost akif?  research by roboticists, artificial intelligence researsh
ALLOCATION is also very close to optimal and much betterand operations researchers will stimulate further intdres
than the theoretical factor of two suggests. The total cbst dhis exciting area of robotics.



EXPERIMENTAL RESULTS IN STATIC ENVIRONMENTS

TABLE |

Clusters 1 | 2 3 4 | 5 6 7 8 9 10
Total Cost
OPTIMAL 178.3 | 229.3 | 184.2 | 1905 | 231.2 | 240.6 | 248.8 | 236.6 | 297.4 | 299.5
GRAPH CuUT 220.4 | 255.8 | 206.8 | 240.2 | 260.5 | 286.6 | 281.4 | 319.2 | 3154 | 367.4
PRIM ALLOCATION | 217.8 | 256.8 | 208.7 | 233.0 | 268.0 | 275.2 | 273.1 | 303.6 | 318.4 | 357.6
INSERTIONALLOC. | 207.4 | 2485 | 195.0 | 219.7 | 256.5 | 273.2 | 264.0 | 2925 | 308.5 | 337.8
Number of Bids
GRAPH CUT 1193.4| 1176.9| 1194.3| 1153.2| 1103.1| 1118.1| 1139.7| 1154.1| 1144.2| 1146.3
PRIM ALLOCATION 60 60 60 60 60 60 60 60 60 60
INSERTIONALLOC. 60 60 60 60 60 60 60 60 60 60

TABLE Il
EXPERIMENTAL RESULTS IN DYNAMIC ENVIRONMENTS.

Clusters 1 | 2 3 4 | 5 6 7 8 9 10
Total Cost
“OPTIMAL" 202.6 | 238.5 | 2015 | 2285 | 264.4 | 290.0 | 290.0 | 314.3 | 3424 | 3814
GRAPH CuT 2225 | 265.4 | 2239 | 2559 | 293.8 | 304.8 | 326.9 | 345.3 | 345.0 | 384.7
PRIM ALLOCATION | 221.4 | 257.3 | 2255 | 243.8 | 284.7 | 302.3 | 299.1 | 332.2 | 351.6 | 386.6
INSERTIONALLOC. | 216.4 | 257.6 | 211.6 | 234.4 | 271.6 | 302.7 | 287.1 | 336.1 | 333.6 | 377.6
Number of Bids
GRAPH CUT 1243.5| 1227.0| 1213.5| 1251.0| 1222.5| 1241.7| 1258.5| 1282.8| 1274.1| 1311.9
PRIM ALLOCATION 95.1 111.9 | 99.0 107.1 | 119.1 | 142.8 | 116.4 | 136.8 | 154.8 | 144.9
INSERTIONALLOC. 86.4 103.5 | 83.7 103.5 | 108.0 | 128.1 | 103.2 | 126.6 | 132.3 | 126.0
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