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Abstract— In this paper, we study how multiple robots can
cover known terrain quickly. We extend Multi-Robot Forest
Coverage, a state-of-the-art multi-robot coverage algorithm,
from terrain with uniform traversability to terrain with no n-
uniform traversability, which is nontrivial. We prove that its
cover times are at most about sixteen times larger than minimal
and demonstrate experimentally that they are significantly
smaller than those of an alternative multi-robot coverage
algorithm.

Index Terms— Cell Decomposition, Multi-Robot Coverage,
Robot Teams, Spanning Tree Coverage, Terrain Coverage.

I. I NTRODUCTION

Coverage requires robots to visit each location in known
terrain once to perform some task. Examples include lawn
mowing, cleaning, harvesting, search-and-rescue, intrusion
detection and mine clearing. In this paper, we study cov-
erage with multiple robots since multiple robots can often
cover terrain faster than a single robot. Recently, several
researchers have proposed multi-robot coverage algorithms
for terrain with uniform traversability, where the traversal
time is the same everywhere. Two promising multi-robot
coverage algorithms are Multi-Robot Spanning Tree Cover-
age (MSTC) [4] and Multi-Robot Forest Coverage (MFC)
[5], which both extend the single-robot coverage algorithm
Spanning Tree Coverage (STC) [3]. In this paper, we gen-
eralize these multi-robot coverage algorithms to terrain with
non-uniform traversability (= weighted terrain), as shown
in Figure 1, to extend their applicability to more realistic
situations [1].

We show that STC finds solutions with minimal cover
times in polynomial time for a single robot in weighted
terrain if the robot has to return to its initial location after it
has covered the terrain. Multi-robot coverage with minimal
cover times is known to be NP-hard for two robots and con-
jectured to be NP-hard for an arbitrary number of robots [5].
Thus, one needs to design multi-robot coverage algorithms
that determine solutions with suboptimal (but good) cover
times in polynomial time. To this end, we generalize MSTC
and MFC to weighted terrain. MSTC can be generalized
relatively easily but cannot guarantee to find solutions with
good cover times. MFC is nontrivial to generalize because
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Fig. 1. Example of Weighted Terrain
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Fig. 2. Model of Weighted Terrain

it uses a tree cover algorithm [2] as a subroutine that is
specific to non-weighted terrain. We thus first generalize the
tree cover algorithm and only then MFC. We prove that the
new version of MFC is guaranteed to find solutions with
cover times that are at most about sixteen times larger than
minimal. We then demonstrate experimentally that its cover
times are significantly smaller than both those guaranteed
by the worst-case bound and those of MSTC. We also
demonstrate experimentally that the robots are close to their
initial locations after they have covered the terrain, which
facilitates their retrieval. Therefore, our generalization of
MFC to weighted terrain indeed results in a powerful multi-
robot coverage algorithm.

II. PROBLEM DESCRIPTION

We model weighted terrain as consisting of large square
cells. Each large cell is either entirely blocked or entirely
unblocked. Each unblocked large cell has a positive integer
weight that corresponds to how difficult it is to traverse the
large cell and is evenly divided into four small square cells.
Each small cell has a weight that is equal to one quarter
of the weight of the large cell, as shown in Figure 2. Each
robot has the same size as the small cells. The robots start
in different large cells and can move from any small cell to
any adjacent small cell in the four main compass directions
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Fig. 3. Simple Single-Robot Coverage Problem
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Fig. 4. Suboptimal Cover Time of STC

with a time that is equal to the average of the weight of the
two small cells. Each move is atomic, that is, needs to be
executed in full by a robot. The travel time along a robot
path is the sum of the times of the moves of the robot when
it moves along the path.

We study two different team objectives. For the team
objective “Cover,” the robots need to move so that each small
cell is visited by at least one robot. Their cover time is equal
to the largest travel time along any robot path. For the team
objective “Cover and Return,” the robots need to move so
that each small cell is visited by at least one robot and then
return to their initial small cells. Their cover and return time
is again equal to the largest travel time along any robot path.

Figure 3 shows a complete coverage problem for a single
robot, including the large cells with their weights, the small
cells with their weights, and the robot path with the times of
the moves for the team objective “Cover and Return.” The
cover and return time is equal to the sum of the weights of
all large cells, namely 88. (We actually mean the sum of the
weights of all unblocked large cells since blocked large cells
do not have a weight but sacrifice precision but conciseness.)

III. SPANNING TREE COVERAGE

Spanning Tree Coverage (STC) [3] finds solutions with
minimal cover times (and cover and return times) in poly-
nomial time for single robots in non-weighted terrain. STC
can be generalized easily to weighted terrain, as follows:
First, STC constructs a graph whose vertices correspond to
the unblocked large cells and whose edges connect adjacent
unblocked large cells. Second, STC finds a spanning tree of
this graph. Third, STC lets the robot move along the path that
circumnavigates this spanning tree. For the team objective
“Cover and Return,” the robot completely circumnavigates
the spanning tree until it returns to its initial small cell.For
the team objective “Cover,” the robot stops once all small
cells have been visited, that is, one move earlier. Clearly,
STC runs in polynomial time.

Theorem 1:STC finds solutions with minimal cover and
return times for a single robot in weighted terrain. The
minimal cover and return times are equal to the sums of
the weights of all large cells.

Proof: The robot needs to enter and exit every small cell at
least once for the team objective “Cover and Return.” Assumethat
the robot path is(s1, . . . , sn), where movesi connects the two
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adjacent small cellsci andci+1. (cn+1 = c1 is the initial small cell
of the robot.) Let the weight of small cellci bew(ci) and the time
of movesi be t(si) = (w(ci)+w(ci+1))/2. Then, the travel time
along the robot path is

Pn

i=1
t(si) =

Pn

i=1
(w(ci)+w(ci+1))/2 =

Pn

i=1
w(ci), which is at least the sum of the weights of all small

cells. STC makes the robot enter and exit every small cell exactly
once. Its cover and return times are thus equal to the sums of
the weights of all small cells and thus minimal. The sums of the
weights of all small cells are equal to the sums of the weightsof
all large cells. .

The cover times of STC can be smaller than the sum of the
weights of all large cells by at most the largest weight of any
small cell because the robot stops one move before returning
to its initial cell. STC does not necessarily find solutions with
minimal cover times, as shown in Figure 4 for the single-
robot coverage problem from Figure 3, but it finds solutions
with close-to-minimal cover times. The robot needs to enter
every small cell except for its initial small cell at least once
and needs to exit every small cell except for its final small
cell at least once. STC finds solutions where its final small
cell is next to its initial small cell but the best final small cell
might have a larger weight. Thus, the cover times of STC
can be larger than minimal by at most the largest weight
of any small cell (that is, a quarter of the largest weight of
any large cell). Overall, STC finds solutions with close-to-
minimal cover times and minimal cover and return times in
polynomial time for a single robot in weighted terrain.

Figure 5 shows the spanning tree and robot path for the
terrain from Figure 2 for one robot with the team objective
“Cover.” The cover time is 682 for STC. The robot has to
make one additional move to return to its initial small cell
for the team objective “Cover and Return” (shown with a
dashed line in the figure). The cover and return time is 688
for STC.

IV. M ULTI -ROBOT SPANNING TREE COVERAGE

Coverage with multiple robots can be faster than coverage
with a single robot. (The backtracking version of) Multi-
Robot Spanning Tree Coverage (MSTC) [4] finds solutions
with suboptimal cover times (and cover and return times) in
polynomial time for multiple robots in non-weighted terrain.
MSTC can be generalized relatively easily to weighted
terrain, as follows. We assume for simplicity here that there



are at least three robots and handle fewer than three robots in
the extended version of the paper: First, MSTC constructs a
graph whose vertices correspond to the unblocked large cells
and whose edges connect adjacent unblocked large cells.
Second, MSTC finds a spanning tree of this graph. Third,
MSTC splits the path that circumnavigates this spanning tree
into segments between the initial small cells of the robots.
The number of segments is equal to the number of robots.
The travel time along a segment is the sum of the times
of the moves of a robot when it moves along the segment.
Case 1: If the travel time along each segment is at most
half of the travel time along the path, then MSTC lets each
robot move counterclockwise along the segment adjacent to
it. Otherwise, lett(r, r′) be the travel time along the segment
from the initial small cell of robotr in the counterclockwise
direction to the initial small cell of robotr′. Assume without
loss of generality that robotri (rj and rk, respectively)
is adjacent to robotrh (ri and rj , respectively) in the
counterclockwise direction and thatt(ri, rj) is larger than
half of the travel time along the path. (Robotsrh and rk

are identical if there are only three robots.) Case 2: If
t(rj , rk) ≤ t(rh, ri), then MSTC lets robotrj first move
counterclockwise until it is in an adjacent small cell to
robot rk (= meets robotrk) and then move clockwise,
lets robotrk first move clockwise until it meets robotrj

and then move counterclockwise, and lets all other robots
move counterclockwise. Case 3: Ift(rj , rk) > t(rh, ri),
then MSTC lets robotrh first move counterclockwise until
it meets robotri and then move clockwise, lets robotri

first move clockwise until it meets robotrh and then move
counterclockwise, and lets all other robots move clockwise.
For the team objective “Cover,” the robots move as given
above and stop once all small cells have been visited. For
the team objective “Cover and Return,” the robots move
as given above and, once all small cells have been visited,
return to their initial small cells by moving either backward
along their segments (MSTC) or along paths with minimal
times from their current small cells to their initial small cells
(optimized MSTC). Clearly, MSTC runs in polynomial time.

Theorem 2:The cover times of MSTC for at least three
robots are at least about a factor of2/(1 + φ) smaller than
the cover times of STC, whereφ is the ratio of the largest
weight of any large cell and the sum of the weights of all
large cells.

Proof: Let wmax be the largest weight of any large cell and
wsum be the sum of the weights of all large cells (which equals
the time of the path that circumnavigates the spanning tree). Then
φ = wmax/wsum. Case 1: If the travel time along each segment is
at most half of the travel time along the path that circumnavigates
the spanning tree, then MSTC lets each robot move along the
segment adjacent to it in the counterclockwise direction. The travel
time of each robot and the cover time of MSTC thus is at most
wsum/2 ≤ (1 + φ)wsum/2. Case 2: MSTC lets robotrj first
move counterclockwise until it meets robotrk. The sum of the
times of the paths of robotsrj and rk until they meet is at most
t(rj , rk). Thus, robotsrj and rk meet after a travel time of at
mostt(rj , rk)/2+wmax/4. The termwmax/4 takes into account

that each move is atomic, and the robots might thus not be ableto
split the travel time evenly between them. MSTC lets robotrj then
move clockwise until it meets robotri. The sum of the times of the
paths of robotsrj andri until they meet is at mostt(rj, rk)/2 +

wmax/4 + t(rj , rk)/2 + wmax/4 + t(ri, rj). Thus, robotsrj and
ri meet after a travel time of at most(t(rj , rk)/2 + wmax/4 +

t(rj , rk)/2 + wmax/4 + t(ri, rj))/2 + wmax/4 = (t(rj, rk) +

t(ri, rj))/2 + wmax/2 ≤ wsum/2 + wmax/2 = (1 + φ)wsum/2

and their travel times are thus at most(1+φ)wsum/2. MSTC lets
robotrk first move clockwise until it meets robotrj and then move
counterclockwise. Assume without loss of generality that robot rl

is adjacent to robotrk in the counterclockwise direction. (Robotsrl

andrh are identical if there are only four robots, and robotsrl and
ri are identical if there are only three robots.) A similar argument
as for robotrj then shows that the travel time of robotrk is at
mostt(rj , rk)/2+wmax/4+ t(rj , rk)/2+wmax/4+ t(rk, rl) ≤

wsum/2 + wmax/2 = (1 + φ)wsum/2 sincet(ri, rj) > wsum/2

and thust(rj , rk) + t(rk, rl) < wsum/2. MSTC lets every other
robot move counterclockwise and their travel time thus is atmost
the time of the segment in their counterclockwise directionwhich
is at mostwsum/2 ≤ (1 + φ)wsum/2. The travel time of each
robot and the cover time of MSTC thus is at most(1+φ)wsum/2.
Case 3: Case 3 is just a mirror image of Case 2. - Lettstc be the
cover time of STC andtmstc be the cover time of MSTC. Then, we
have shown thattmstc ≤ (1+φ)wsum/2 in all three cases. Thus, it
holds thattmstc ≤ (1+φ)wsum/2 ≤ (1+φ)(tstc+wmax/4)/2 =

(1 + φ)tstc/2 + (1 + φ)wmax/8 since tstc ≥ wsum − wmax/4.

Figure 6 shows the spanning tree and robot paths for the
terrain from Figure 2 for four robots with the team objective
“Cover.” The cover time is 332 for MSTC. The cover and
return time is 664 for MSTC and only 394 for optimized
MSTC. Unfortunately, this example also demonstrates that
MSTC finds solutions whose cover times (and cover and
return times) do not necessarily improve with an increasing
number of robots since MSTC makes only two robots exit
the bottom-most row of large cells through the narrow
passage. Additional robots in the center of the bottom-most
row do not shorten the times of the paths of these two robots.
The cover times (and cover and return times) of MSTC
become arbitrarily bad compared to the minimal ones if
one expands the terrain above the narrow passage and adds
robots in the center of the bottom-most row since then all
of the robots have to exit the bottom-most row of large cells
to minimize the cover times (and cover and return times).
Thus, MSTC cannot guarantee to find solutions with good
cover times (and cover and return times).

V. M ULTI -ROBOT FORESTCOVERAGE

Multi-Robot Forest Coverage (MFC) [5] finds solutions
with suboptimal cover times (and cover and return times) in
polynomial time for multiple robots in non-weighted terrain.
MSTC determines one tree, splits the path that circumnav-
igates it into one path for each robot and lets each robot
move along its path. MFC, on the other hand, determines one
tree for each robot and lets each robot move along the path
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Fig. 7. Example of MFC

that circumnavigates its tree. MFC is nontrivial to generalize
to weighted terrain. It uses a tree cover algorithm [2] as a
subroutine that is specific to non-weighted terrain becauseit
operates on graphs with weighted edges. We therefore build
on the existing algorithm and design a tree-cover algorithm
TREE COVER that is specific to weighted terrain because
it operates on graphs with weighted vertices. We describe it
and prove its properties in Section VI.

MFC for weighted terrain then uses TREE COVER as
follows: First, MFC constructs a graph whose vertices corre-
spond to the unblocked large cells and whose edges connect
adjacent unblocked large cells. Each vertex has a weight that
is equal to the weight of its large cell. Second, MFC uses
TREE COVER to find a rooted tree cover of this graph,
where the roots are the vertices that correspond to the large
cells that contain the initial small cells of the robots. The
roots thus correspond to the robots. A rooted tree cover of
this graph is a forest of trees with exactly one tree for each
root. Every vertex is in at least one tree. The weight of a
tree is the sum of the weights of its vertices. The weight
of the rooted tree cover is the largest weight of any of its
trees. MFC performs a binary search (described later) that
runs in polynomial time and uses TREE COVER to find a
rooted tree cover with a weight that is at most a factor of
4(1 + φ|K| + ǫ) larger than minimal, whereǫ > 0 is an
arbitrary precision parameter that affects how often TREE
COVER is called,|K| is the number of robots andφ is the
ratio of the largest weight of any large cell and the sum of
the weights of all large cells. Third, MFC lets each robot
move along the path that circumnavigates its tree. For the
team objective “Cover and Return,” each robot completely
circumnavigates its tree until it returns to its initial small cell.
For the team objective “Cover,” the robots stop once all small
cells have been visited. Clearly, MFC runs in polynomial
time.

Remember that the cover times of MSTC for at least three
robots are at least about a factor of2/(1+φ) smaller than the
cover times of STC according to Theorem 2. MFC cannot
make such a strong guarantee with respect to STC:

Theorem 3:The cover times of MFC can be larger than
the cover times of STC by at most the largest weight of
any small cell (that is, a quarter of the largest weight of any
large cell). The cover and return times of MFC cannot be
larger than the cover and return times of STC.

Proof: The cover times of STC can be smaller than the sum of
the weights of all large cells by at most the largest weight ofany
small cell, while the cover times of MFC are at most the weights
of the largest trees and thus at most the sum of the weights of all
large cells. Consequently, the cover times of MFC can be larger
than the cover times of STC by at most the largest weight of any
small cell (that is, a quarter of the largest weight of any large cell).
The cover and return times of STC are equal to the sum of the
weights of all large cells, while the cover and return times of MFC
are equal to the weights of the largest trees and thus at most the
sum of the weights of all large cells. Consequently, the cover and
return times of MFC cannot be larger than the cover and return
times of STC.

However, MFC can make the following much more pow-
erful guarantee with respect to the minimal cover times (and
cover and return times), which MSTC cannot make:

Theorem 4:The cover times (and cover and return times)
of MFC are at most about a factor of16(1 + φ|K| + ǫ)
larger than minimal, whereǫ > 0 is an arbitrary precision
parameter that affects how often TREE COVER is called,
|K| is the number of robots andφ is the ratio of the largest
weight of any large cell and the sum of the weights of all
large cells.

Proof: Let M be the weight of the rooted tree cover found by
TREE COVER,N be the weight of a weight-minimal rooted tree
cover,O be the cover time of MFC,P be the minimal cover time,
and Q be the minimal cover time if the robots need to visit only
the upper left small cells of all large cells. Furthermore, let wmax

be the largest weight of any large cell. First, it holds thatO ≤ M

since the robots visit all small cells and return to their initial small
cells when they circumnavigate their trees. The resulting cover time
thus cannot be larger than the weight of the rooted tree cover.
Second, it holds thatM ≤ 4(1+ φ|K|+ ǫ)N since we use TREE
COVER to find rooted tree covers with a weight that is at most a
factor of4(1 + φ|K|+ ǫ) larger than minimal. Third, it holds that
N/4 ≤ Q + wmax/4. Consider a solution where the robots need
to visit only the upper left small cells of all large cells. Construct
a rooted tree cover where the tree of a robot contains exactlythe
vertices that correspond to the large cells that contain anysmall cell
visited by the robot. The weight of each tree divided by four is at
most the travel time of the robot plus the largest weight of any small
cell (that is, a quarter of the largest weight of any large cell) since
the robot has to enter and exit all small cells it visits except possibly
for its initial small cell which it does not need to enter and its final



small cell which it does not need to exit. Thus, the weight of the
tree cover we constuct divided by four is at most the largest travel
time of any robot plus the largest weight of any small cell, and the
weight of the weight-minimal tree cover divided by four is therefore
at most the largest travel time of the robots plus the largestweight
of any small cell. Fourth,Q ≤ P trivially. Using these results, it
holds thatO ≤ M ≤ 4(1 + φ|K|+ ǫ)N ≤ 16(1 + φ|K|+ ǫ)Q +

4(1+φ|K|+ǫ)wmax ≤ 16(1+φ|K|+ǫ)P +4(1+φ|K|+ǫ)wmax.
The proof continues to hold if each occurrence of cover time is
replaced with cover and return time.

φ ≈ 0 for terrain with many large cells of about the same
weight. For example,φ = 0.0814 for the terrain from Figure
2. Then,16(1+φ|K|+ǫ) ≈ 16 for a small number of robots
|K| and ǫ close to zero. Thus, the cover times (and cover
and return times) of MFC are at most about sixteen times
larger than minimal.

Figure 7 shows the trees and robot paths for the terrain
from Figure 2 for four robots, together with the cover time
and cover and return time for each robot. The cover time is
225 and the cover and return time is 256 for MFC.

VI. W EIGHT-M INIMAL ROOTED TREE COVERS

In Section V, we stated that we modified an existing tree
cover algorithm [2] to work on graphs with weighted vertices
rather than weighted edges. We now state the resulting
algorithm (called TREE COVER), prove its properties and
describe how MFC uses it.

A. The Problem

We solve the following problem: LetG = (V, E) be a
graph with weighted vertices, wherew(v) is the integer
weight of vertexv ∈ V . Let K ⊆ V be a set of distinguished
vertices, called roots. AK-rooted tree cover ofG is a forest
of |K| trees, which can share vertices and edges. The set of
their roots must be equal toK, and every vertex inV has
to be in at least one tree. The weight of a tree is the sum of
the weights of its vertices. The weight of aK-rooted tree
cover is the largest weight of any of its trees. The problem
is to find a weight-minimalK-rooted tree cover of graphG.

B. Definitions

We use the shorthandswsum :=
∑

v∈V w(v), wmax :=
maxv∈V w(v) and φ := wmax/wsum (as used earlier).
Furthermore, we define the weight of a path in the graph
to be the sum of the weights of its vertices, except for its
end vertices. We define the distance between two trees in the
graph to be the minimal weight of any path that connects
some vertex in one of the trees to some vertex in the other
tree.

C. NP-Hardness

We show that finding weight-minimalK-rooted tree cov-
ers is NP-hard, which provides our motivation for designing
approximation algorithms that run in polynomial time.

Theorem 5:Finding a weight-minimalK-rooted tree
cover for graphsG is NP-hard.

Proof: We reduce BINPACKING to our problem. BINPACK-
ING consists of a set of elements with given integer sizes anda
fixed number of bins, each with the same given integer capacity.
The problem is to determine whether each element can be placed in
exactly one of the bins so that the sum of the sizes of the elements
in each bin does not exceed its capacity. Given an instance of
BINPACKING, we transform it in polynomial time to an instance
of the problem of determining whether the weight of a weight-
minimal K-rooted tree cover for graphG is at most a given
constant, as follows: We create a completely connected graph G

with one vertex for each element (whose weight is equal to thesize
of the element) and one vertex for each bin (whose weight is one).
The set of rootsK contains exactly the vertices for the bins. If
the weight of a weight-minimalK-rooted tree cover is at most the
given capacity plus one, then each element can be placed in exactly
one of the bins so that the sum of the sizes of the elements in each
bin does not exceed its capacity, by placing each element in one of
the bins whose vertex is the root of a tree that contains the vertex
of the element. Similarly, if each element can be placed in exactly
one of the bins so that the sum of the sizes of the elements in
each bin does not exceed its capacity, then one can constructa K-
rooted tree cover whose weight is at most the given capacity plus
one, by making the tree rooted in the vertex of a bin contain the
vertices of the elements that the bin contains. Thus, the weight of a
weight-minimalK-rooted tree cover is at most the given capacity
plus one as well.

D. Our Algorithm

We now describe TREE COVER, a tree-cover algorithm
inspired by [2] that takes as input a graphG, a set of roots
K and a boundB ≥ wmax. It either reports SUCCESS and
returns aK-rooted tree cover of graphG with weight at
most4B or reports FAILURE, in which case there does not
exist aK-rooted tree cover of graphG with weight at most
B/(1 + φ|K|). TREE COVER operates as follows:

1) Contract all roots into a single vertex, find any span-
ning tree of the resulting graph, and then uncontract
the single vertex again, splitting the spanning tree into
|K| trees.

2) Decompose each tree recursively into zero or more
non-leftover subtrees and one leftover subtree. We
call the following decomposition procedure once for
each tree from the previous step. The decomposition
procedure removes vertices from the given tree as it
generates the non-leftover subtrees. When it termi-
nates, we declare the leftover subtree to be the root
of the given tree if all vertices have been deleted.
Otherwise, we declare the leftover subtree to be the
remaining tree (formed by the non-deleted vertices).
The decomposition procedure applies to a tree rooted
in r. We distinguish three cases:
Case 1:The weight of the tree rooted inr is less than
B. Then, we simply return.
Case 2: The weight of the tree rooted inr is in
the interval [B, 2B). Then, one non-leftover subtree
consists of the tree rooted inr. We remove the subtree



from the tree rooted inr (leaving the empty tree) and
return.
Case 3:The weight of the tree rooted inr is 2B or
larger. We distinguish three subcases:
Case 3a: The weights of all trees rooted in children
of r are less thanB. Then, we pick a number of
trees rooted in children ofr so that the weight of
the tree consisting ofr and these trees is in the
interval [B, 2B). One non-leftover subtree consists of
r and these trees. We remove the subtree except for
r from the tree rooted inr and recursively apply the
decomposition procedure to the remaining tree rooted
in r in order to find the other non-leftover subtrees. It
is possible to pick a number of trees rooted in children
of r so that the weight of the tree consisting ofr and
these trees is in the interval[B, 2B) since the weight
of r is at mostB (sinceB ≥ wmax) and the weights
of all trees rooted in children ofr are less thanB but
the weight of the tree rooted inr is 2B or larger.
Case 3b: The weight of at least one tree rooted in a
child of r is in the interval[B, 2B). Then, we pick
such a tree. One non-leftover subtree consists of this
tree. We remove the subtree from the tree rooted in
r and recursively apply the decomposition procedure
to the remaining tree rooted inr in order to find the
other non-leftover subtrees.
Case 3c: Otherwise, the weight of at least one tree
rooted in a child ofr is 2B or larger. Then, we
recursively apply the decomposition procedure to that
tree and then to the remaining tree rooted inr in order
to find the non-leftover subtrees.

3) Find a maximum matching of all non-leftover subtrees
to the roots, subject to the constraint that a non-leftover
subtree can only be matched to a root if the non-
leftover subtree and the leftover tree of the root are
at distance of at mostB.

4) If any non-leftover subtree cannot be matched, report
FAILURE. Otherwise, report SUCCESS and, for each
root, return the tree consisting of the leftover subtree
of the root, the single non-leftover subtree (if any)
matched to the root, and a weight-minimal path (if
any) from the non-leftover subtree to the leftover
subtree.

E. Properties

Clearly, TREE COVER runs in polynomial time and either
reports SUCCESS or FAILURE. It is also easy to see that
the weights of all non-leftover subtrees (if any) returned by
the decomposition procedure in Step 2 of TREE COVER
for a given tree are in the interval[B, 2B). The weight of
the leftover subtree is in the interval(0, B). Also, the root
of the tree is in the leftover subtree. We now prove the main
properties of TREE COVER.

Theorem 6:If TREE COVER reports SUCCESS, then it
returns aK-rooted tree cover of graphG with weight at
most4B.

Proof: If TREE COVER reports SUCCESS then it returns, for
each root, the tree consisting of the leftover subtree of theroot of
weight at mostB, the single non-leftover subtree (if any) matched
to the root of weight at most2B, and a weight-minimal path (if
any) of weight at mostB from the non-leftover subtree to the
leftover subtree. The weight of each tree is thus at most4B,
resulting in aK-rooted tree cover of weight at most4B.

Theorem 7:If TREE COVER reports FAILURE, then
there does not exist aK-rooted tree cover of graphG with
weight at mostB/(1 + φ|K|).

Proof: Assume that a weight-minimalK-rooted tree cover of
graphG has weightB′ with B′ ≤ B/(1 + φ|K|). Let L be the
set of non-leftover subtrees created in Step 2 of TREE COVER
and K(l) ⊆ K be the set of roots that can be matched to non-
leftover subtreel ∈ L because the non-leftover subtree and the
leftover subtree of the root are at distance of at mostB. We show
that | ∪l∈L′ K(l)| ≥ |L′| for every set of non-leftover subtrees
L′ ⊆ L. Step 3 of TREE COVER can then match all non-leftover
subtrees according to Hall’s Marriage Theorem. Therefore,TREE
COVER reports SUCCESS and not FAILURE, which proves the
contrapositive of the theorem and thus also the theorem itself.

Consider anyL′ ⊆ L. Let T be the set of trees of a weight-
minimal K-rooted tree cover of graphG and T ′ ⊆ T be the
set of trees which have at least one vertex in common with at
least one of the non-leftover subtrees inL′. Let w(L′) be the
sum of the weights of all non-leftover subtrees inL′ and w(T ′)

be the sum of the weights of all trees inT ′. First, it holds that
B′ ≥ wsum/|K| since the sum of the weights of all vertices can
be split evenly among the trees in the best case. Second, it holds
that w(L′) ≥ B|L′| since the weights of all non-leftover subtrees
in L′ are in the interval[B, 2B) and thusB or larger. Third, it
holds thatw(T ′) ≤ B′|T ′| since the weights of all trees inT ′

are at mostB′ since any weight-minimalK-rooted tree cover of
graphG has weightB′. Fourth, it holds that| ∪l∈L′ K(l)| ≥ |T ′|.
For every tree inT ′, there exists at least one non-leftover subtree
in L′ that has at least one vertex in common with the tree inT ′.
Then, the non-leftover subtree inL′ and the root of the tree inT ′

are at distance of at mostB′ ≤ B/(1 + φ|K|) ≤ B. The non-
leftover subtree inL′ can thus be matched to the root of the tree
in T ′. Overall, the set∪l∈L′K(l) contains the roots of all trees
in T ′. Its cardinality thus is at least the cardinality ofT ′. Fifth,
it holds thatw(L′) ≤ w(T ′) + wmax|L

′| since every vertex in
at least one non-leftover subtree inL′ is also in at least one tree
in T ′. The non-leftover subtrees inL′ can contain at most|L′|

duplicate vertices, each with weight at mostwmax: Every non-
leftover subtree that Step 2 of TREE COVER creates contains at
most one vertex that has not yet been removed from all trees created
in Step 1 and thus could be a duplicate vertex. This statementholds
because the trees created in Step 1 share at most their roots and
Step 2 removes all vertices of a non-leftover subtree from its tree,
except possibly for the root of the non-leftover subtree in Case
3a, when it creates the non-leftover subtree. Using these results, it
holds thatwmax = wsumφ ≤ |K|B′φ. This inequality implies that
B′|T ′| ≥ w(T ′) ≥ w(L′) − wmax|L

′| ≥ B|L′| − |K|B′φ|L′| =

(B − |K|B′φ)|L′| ≥ (B′(1 + φ|K|) − |K|B′φ)|L′| = B′|L′|.
This inequality in turn implies that| ∪l∈L′ K(l)| ≥ |T ′| ≥ |L′|,
which is what we wanted to prove.



F. Application

We perform binary search on the interval[wmax, wsum]
to find a small value ofB for which TREE COVER reports
SUCCESS. We start with the lower boundwmax and the
upper boundwsum. We then repeatedly run TREE COVER
with B set to the average of the lower and upper bound.
If TREE COVER reports FAILURE, then we set the lower
bound toB. Otherwise, we set the upper bound toB. We
stop once the difference of the upper and lower bound is
at most the given value of the arbitrary precision parameter
ǫ > 0. We then return theK-rooted tree cover of graphG
returned by TREE COVER withB set to the upper bound.1

Let b be the weight of a weight-minimalK-rooted tree
cover of graphG. We assume in the following thatb ≥ 1
since this property holds for MFC due to the weight of
each unblocked large cell being a positive integer. LetBl be
the lower bound andBu be the upper bound of the binary
search after termination. First, it holds thatBu − Bl ≤ ǫ
according to the termination criterion. Second, it holds that
b ≥ Bl/(1 + φ|K|) according Theorem 7 since TREE
COVER withB set toBl reports FAILURE. (This statement
also holds forBl = wmax, the initial lower bound, sinceb ≥
wmax.) Third, the weight of theK-rooted tree cover of graph
G returned by the binary search is at most4Bu according to
Theorem 6 since TREE COVER withB set toBu reports
SUCCESS. (This statement also holds forBu = wsum, the
initial upper bound, since TREE COVER then generates at
most one non-leftover subtree for each root, which contains
the root.) Using these results, it holds that the weight of
the K-rooted tree cover of graphG returned by the binary
search is at most4Bu ≤ 4(Bl + ǫ) ≤ 4(1 + φ|K|)b + 4ǫ ≤
4(1+φ|K|+ǫ)b, which is at most a factor of4(1+φ|K|+ǫ)
larger than minimal. The binary search runs in polynomial
time because TREE COVER runs in polynomial time and
is run ⌈log

2
((wsum − wmax)/ǫ)⌉ ≤ log

2
wsum − log

2
ǫ + 1

times, which is polynomial in the size of the input for a
constant value ofǫ.

VII. E XPERIMENTAL RESULTS

We now compare MFC (with a small value for the
precision parameter) and MSTC experimentally. We evaluate
them on both team objectives, namely ”Cover” and ”Cover
and Return”, and in different scenarios, namely differ-
ent kinds of terrain [terrain], different numbers of robots
[robots], and different clustering of the robots [clustering].
The size of the terrain is always49 × 49 large cells. The
weight of each large cell is always chosen uniformly at
random from the weights 8, 16, 24, . . . , 80. Figure 8 shows
the three different kinds of terrain used in the experiments.
The first kind of terrain is empty [empty]. The second kind
is an outdoor-like terrain where walls are randomly removed
from a random depth-first maze until the wall density drops
to 10 percent, resulting in terrain with random obstacles

1Our description generalizes easily since it does not take into account
that the weights of the vertices are integers. A weight-minimal K-rooted
tree cover can be inferred after a binary search forǫ < 1 if the weights of
the vertices are integers.

[outdoor]. The third kind is an indoor-like terrain with walls
and doors [indoor]. The position of the walls and doors are
fixed, but doors are closed with 20 percent probability. We
vary the number of robots from 2, 8, 14 to 20 robots. We
ensure that no two robots are placed in the same large cell
by randomly choosing different large cells for each robot
and placing the robots in their lower left small cells. A
clustering percentage parameterx determines how strongly
the initial large cells of the robots are clustered. The first
robot is placed uniformly at random. Subsequent robots are
then placed within an area centered at the first robot, whose
height and width are (approximately)x% of the height and
width of the terrain. Thus, a small value ofx results in a high
clustering of initial large cells, whilex = 200 is equivalent
to no clustering at all [none]. For each scenario, we report
data that has been averaged over 50 runs with randomly
generated terrain (if applicable) and randomly generated
initial small cells. All cover times and cover and return times
have been rounded to the nearest integer.

Table 9 reports for each scenario a lower bound that
represents an idealized cover time (and cover and return
time) [ideal max]: It simply divides the sum of the weights of
all large cells by the number of robots. The ideal cover time
(and cover and return time) would result if no robot needed
to pass through already visited small cells. The table also
reports the smallest [min] and largest [max] travel time of
any robot for each combination of a multi-robot coverage
algorithm, scenario and team objective. The largest travel
time is equal to the cover time (or cover and return time),
and the difference between the smallest and largest travel
times gives an indication of how balanced the travel times
of the robots are. In addition, the table also reports the ratio
of the actual travel time and the ideal cover time (and cover
and return time) [ratio], giving an upper bound on how far
the actual cover time (or cover and return time) is larger than
minimal. The ratio is indeed only an upper bound, since the
ideal may not be achievable. For instance, several robots
must visit the same small cells in the example from Figure
7.

We make the following observations: The ratio of the
cover time (or cover and return time) and the ideal cover time
(and cover and return time) increases with the number of
robots for both MFC and MSTC since the overhead (defined
as the number of already visited small cells that a robot
passes through) increases with the number of robots. The
ratio increases very slowly with the number of robots for
MFC, but much faster for MSTC, implying that the cover
times (and cover and return times) of MFC remain close
to minimal for large numbers of robots. The ratio changes
insignificantly with the amount of clustering for MFC, but a
lot for MSTC, implying that the cover times (and cover and
return times) of MFC remain small if robots start in nearby
small cells – a common situation since robots are often
deployed or stored together. The ratio changes insignificantly
for MFC if the team objective is changed from “Cover” to
“Cover and Return”, but increases by about a factor of two
for non-optimized MSTC (because the robot with the largest
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Fig. 8. Screenshots of Different Kinds of Terrain

Terrain Robots Clustering Ideal Max MFC MSTC Optimized MSTC
“Cover and Return” “Cover” “Cover and Return” “Cover” “Cover and Return” “Cover”

Max (Min) Ratio Max (Min) Ratio Max (Min) Ratio Max (Min) Ratio Max (Min) Ratio Max (Min) Ratio

Empty 2 30 45094 47369 (43018) 1.07 47353 (10612) 1.07 96669 (83672) 2.19 48340 (46595) 1.10 48865 (42446) 1.11 48334 (41325) 1.10
2 60 45094 47840 (42516) 1.09 47825 (10621) 1.08 100558 (79782) 2.27 50284 (48821) 1.14 50940 (40688) 1.15 50279 (40101) 1.14
2 none 45094 48061 (42334) 1.09 48028 (10613) 1.09 104811 (75532) 2.37 52409 (48862) 1.19 53082 (38625) 1.20 52406 (38078) 1.19
8 30 11273 12698 (9676) 1.15 12645 (9208) 1.14 73870 (411) 6.67 36967 (206) 3.34 37506 (261) 3.38 36938 (207) 3.33
8 60 11273 12765 (10058) 1.16 12749 (9549) 1.15 72479 (1106) 5.54 36240 (559) 2.27 36883 (668) 3.33 36240 (559) 2.27
8 none 11273 13726 (8983) 1.24 13699 (8729) 1.24 54885 (2519) 4.94 27453 (1259) 2.47 28026 (1511) 2.52 27445 (1260) 2.47
14 30 6442 7620 (5396) 1.21 7586 (5359) 1.20 72107 (37) 11.41 36054 (19) 5.71 36639 (37) 5.80 36054 (19) 5.71
14 60 6442 7620 (5208) 1.21 7581 (5166) 1.20 69594 (177) 11.01 34797 (89) 5.51 35441 (149) 5.61 34797 (89) 5.51
14 none 6442 8004 (4768) 1.27 7977 (4719) 1.26 43131 (616) 6.71 21566 (308) 3.35 22099 (438) 3.44 21566 (308) 3.35
20 30 4509 5575 (3487) 1.26 5505 (3466) 1.24 70424 (19) 15.93 35214 (9) 7.97 35810 (19) 8.10 35214 (9) 7.97
20 60 4509 5460 (3666) 1.23 5428 (3628) 1.23 67842 (93) 15.39 33922 (48) 7.69 34553 (93) 7.84 33921 (48) 7.69
20 none 4509 5736 (3093) 1.29 5704 (3054) 1.28 33042 (280) 7.50 16521 (140) 3.75 17028 (254) 3.87 16251 (140) 3.75

Outdoor 2 30 40586 43430 (37877) 1.09 43418 (10612) 1.09 86654 (75655) 2.18 43330 (42868) 1.09 43927 (38497) 1.10 43327 (37933) 1.09
2 60 40586 43677 (37652) 1.10 43664 (10600) 1.10 91671 (70637) 2.29 45841 (42694) 1.15 46410 (36050) 1.16 45836 (35512) 1.15
2 none 40586 43910 (37472) 1.10 43884 (10652) 1.10 94781 (67529) 2.38 47396 (42937) 1.19 48083 (34655) 1.21 47390 (34071) 1.19
8 30 10146 11679 (8657) 1.17 11622 (8484) 1.17 66563 (303) 6.72 33287 (153) 3.36 33847 (209) 3.42 33283 (153) 3.36
8 60 10146 11677 (8526) 1.17 11633 (8436) 1.17 58422 (1131) 5.88 29270 (573) 2.94 29834 (691) 2.99 29223 (570) 2.94
8 none 10146 12124 (8248) 1.22 12078 (8164) 1.21 54687 (1988) 5.47 27355 (1004) 2.74 27999 (1229) 2.80 27347 (1000) 2.74
14 30 5798 6919 (4876) 1.22 6838 (4835) 1.20 63965 (41) 11.29 31983 (21) 5.65 32580 (40) 5.75 31983 (21) 5.65
14 60 5798 6803 (4877) 1.20 6752 (4842) 1.19 56196 (245) 9.92 28098 (123) 4.96 28645 (198) 5.06 28098 (124) 4.96
14 none 5798 7253 (4446) 1.28 7208 (4386) 1.27 43183 (671) 7.53 21592 (335) 3.77 22177 (453) 3.87 21592 (335) 3.77
20 30 4059 5240 (2945) 1.32 5170 (2918) 1.30 63018 (26) 18.95 31509 (13) 7.97 32056 (26) 8.11 31509 (13) 7.97
20 60 4059 5041 (3341) 1.27 4995 (3275) 1.25 56366 (97) 14.22 28183 (48) 7.11 28743 (82) 7.25 28183 (48) 7.11
20 none 4059 5203 (2811) 1.31 5179 (2778) 1.30 34814 (285) 8.68 17407 (142) 4.34 17998 (214) 4.49 17407 (142) 4.34

Indoor 2 30 38212 41237 (35599) 1.10 41225 (10612) 1.10 81616 (71193) 2.18 40815 (39557) 1.09 41609 (36585) 1.11 40808 (35898) 1.09
2 60 38212 41091 (35923) 1.10 41028 (10612) 1.10 85686 (67123) 2.28 42849 (41000) 1.14 43726 (34840) 1.17 42843 (33955) 1.14
2 none 38212 40784 (36339) 1.09 40678 (10625) 1.09 88988 (63823) 2.38 44500 (39984) 1.19 45528 (33535) 1.22 44494 (32470) 1.19
8 30 9553 11703 (8323) 1.25 11556 (8197) 1.23 60767 (195) 6.50 30421 (103) 3.26 31336 (140) 3.35 30390 (101) 3.25
8 60 9553 11522 (8464) 1.23 11440 (8346) 1.22 55229 (815) 5.85 27620 (408) 2.93 28670 (502) 3.04 27616 (408) 2.93
8 none 9533 11602 (8049) 1.24 11516 (7903) 1.23 49818 (1925) 5.31 24909 (962) 2.66 25926 (1114) 2.77 24909 (962) 2.66
14 30 5459 7815 (4044) 1.46 7686 (3988) 1.43 58513 (35) 10.93 29256 (17) 5.46 30242 (33) 5.65 29256 (17) 5.46
14 60 5459 7353 (4024) 1.37 7227 (3983) 1.35 52785 (219) 9.85 26393 (111) 4.93 27358 (156) 5.11 26392 (111) 4.93
14 none 5459 6937 (4128) 1.30 6871 (4047) 1.28 37708 (646) 7.04 18854 (323) 3.52 19782 (410) 3.70 18854 (323) 3.52
20 30 3821 6669 (1175) 1.77 6536 (1146) 1.74 56833 (20) 15.14 28446 (10) 7.57 29434 (19) 7.84 28421 (10) 7.57
20 60 3821 5936 (1824) 1.57 5824 (1791) 1.55 50182 (88) 13.50 25091 (44) 6.75 25985 (74) 6.99 25091 (44) 6.75
20 none 3821 5198 (2288) 1.39 5133 (2238) 1.37 32374 (382) 8.63 16187 (191) 4.32 17040 (264) 4.55 16187 (191) 4.32

Fig. 9. Experimental Results for MFC and MSTC (“Max” = Cover Time or Cover and Return Time)

travel time has to backtrack along most of its trajectory),
implying that all robots are close to their initial small cells
when coverage is complete for MFC, which facilitates their
retrieval. The cover and return times of optimized MSTC
are significantly smaller than the ones of non-optimized
MSTC for each scenario. Overall, MFC results in much
smaller cover times (and cover and return times) than MSTC
for more than two robots and in comparable cover times
(and cover and return times) than optimized MSTC for two
robots. (These results might depend on the initial spanning
trees.)

Theorem 4 guarantees that the cover times (and cover
and return times) of MFC are at most a factor of about
sixteen larger than minimal since the values ofφ are indeed
very small. For example,φ = 8.9× 10−4 for empty terrain,
φ = 9.9×10−4 for outdoor terrain andφ = 10.5×10−4 for
indoor terrain. Empirically, however, the cover times (and
cover and return times) of MFC are at most a factor of
1.77 larger than minimal and thus significantly smaller than
the cover times (and cover and return times) guaranteed by
Theorem 4.

VIII. C ONCLUSION

We extended Multi-Robot Forest Coverage, a state-of-the-
art multi-robot coverage algorithm, from terrain with uni-
form traversability to terrain with non-uniform traversabil-
ity. Currently, Multi-Robot Forest Coverage assumes ideal
robots. It is future work to generalize it to robots with actu-
ator and sensor uncertainty and other typical imperfections.
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