Multi-Robot Routing with Rewards and Disjoint Time Windows
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Abstract— Multiple robots are often faster and more fault-
tolerant than single robots for applications such as planetry
exploration and search and rescue. We study applications védre
robots move in two-dimensional terrain and have to visit tagets
of given priorities during given time windows that do not
overlap. We analyze the complexity of these coordination ks
and, where possible, use techniques from operations resesrto
develop coordination methods that are efficient and optimie the
team performance. We then develop auction-based coordiniain
methods that build on these results and show experimentally
that they run in seconds and achieve good team performance
for NP-hard coordination tasks.

I. INTRODUCTION
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of targets. Thus, a vertex refers to either the initial laabf

a robot or the location of a target. We abuse notation skghtl
by letting R also represent the set of robots. Each robeR
has given time per unit distanog > 0 and cost per unit
distancec; > 0. Each target € T has given rewardg and
time window|a;, by], specified by the start time and the end
time by with a; < b;. The time windows are pairwise disjoint
(except possibly at endpoints), by which we mean that no
time window intersects the interior of any other time window
The set of edges i€ CV xV. Each edggv,V) € E has
given distanced(v,V') = d(V,v) > 0. The distances satisfy
the triangle inequality. It can occur thd{v,v') = 0 for two

Multiple robots are often faster and more fault-toleranterticesv,v €V with v# V' if, for example, the initial vertex

than single robots for applications such as planetary explof the robot coincides with a target or two targets share thei
ration and search and rescue. We study multi-robot routirigcation.
problems with rewards and disjoint time windows (that do g4ch robotr € R starts at its initial vertex at time zero

not overlap), where robots move in two-dimensional terraig g then moves from vertex to vertex along the edges of
and have to visit targets of given priorities during givenei graph. It takes time;d(v,v') and incurs costd(v,V)
windows. For example, robots might have to visit different,. opot € R to traverse edgév,V) € E. The robot can
locations on the surface of the moon to take pictures Qfit an arbitrary amount of time at each target that it visits
collect rock samples. The priority of a location expresseg;ithout incurring any cost. If any robot visits target T

the amount of scientific interest in that location, while, e time window|a;, by], then the robots receive reward
its time window expresses when it needs to get visitegt ¢ this target once. The objective is to maximize team

depending on the sun's location or the temperature of the tormance measured in surplus, defined as the sum of the
surface. We first establish the NP-hardness of these mul wards received minus the sum of the costs incurred for

robot routing problems. We then discuss special cases Wh‘?FSversing edges. We call this problem the multi-robotirgut

low order polynomial or pseudo-polynomial time method

Problem with rewards and disjoint time windows. We make

from operations research achieve optimal team performancga of the following properties:

namely minimum cost flow algorithms for identical robots
and targets with singleton time windows and dynamic pro- «
gramming for single robots. We then develop auction-based
coordination methods for the general case that use dynamic
programming for single robots as a subroutine and show
experimentally that they run in seconds and achieve good.
team performance.

Il. ASSUMPTIONS ANDNOTATION

The robots move on a connected gr&pk: (V,E). The set
of vertices isv = RUT, whereR denotes the nonempty set of
initial vertices of the robots an@l denotes the nonempty set

This research was partly supported by NSF awards under con-
tracts ROBOTICS-0412912, ROBOTICS-0413196, DMI-011388d DMI-
0457565. The views and conclusions contained in this dootirae those
of the authors and should not be interpreted as represettimgpfficial
policies, either expressed or implied, of the sponsoringnag or the U.S.
government. .

If all valuesv;, ¢, d(v,V), a andb; are rational, then
they can be scaled to integers. We thus assume that they
are integers when developing our dynamic programming
methods.

The standard Floyd-Warshall algorithm computes all-
pairs shortest paths i®(|V|®) time and can be used to
transform the connected gra@hinto a complete one.
We thus assume that graph is complete. Then, no
loss in optimality is entailed in constraining the robot
behavior as follows: If a robot arrives early at a target
t, it waits there until the start tima. Once a robot is at

a target within its time window, it either remains there
forever or departs immediately towards a targethat

it can reach before its end timg and that is never
visited by any other robot.

A strict total order (= permutation) of the vertices
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2y 2 2 Theorem 1:Maximizing surplus for multi-robot routing

time window time window time window ) L. . ) K

[M2M/2+S]  [3MI2:3W/2+S] [(Rk-1W2,(2k-1)M/2+S] problems with rewards and disjoint time windows is NP-
2-1 hard even if there is only a single robot and the vertices are

in the Euclidean plane.

Proof: We reduce the subset sum problem to our multi-
robot routing problem. In an instance of the subset sum

O O . .. .
2k-2 2k problem, we are given a set of positive integébs, ..., by}
reward reward reward reward and an integeB < ¥;bj. The question is whether there exists
e e imemes s’ a subseL C {1,...,k} such thaty;c b = S. Construct the

following instance of our multi-robot routing problem for a
single robot with both time per unit distance and cost per
unit distance equal to one that starts at vertex 0, as shown
Fig. 1. Example for the NP-Hardness Proof in Figure 1. The targets are the vertices.1,2k. Target
2i — 1 has reward & and time window|[(2i — 1)M /2, (2i —
JM/2+ 9 and target Rhas reward Rl and time window
M,iM + S fori=1,... k for some integeM > 5;b;. The
P istance between vertices 22 and 2 is M, the distance
sucr) thatly < a f_or any two targetst an(_jt W'.th between verticesi2-2 and 2—1 is M/2+b;, and the
t<t. S_uch ch0|_ce_: IS p055|b_le b_ecause the_ time Wmdow(%stance between vertices21 and 2isM/2 fori=1,... k.
are pairwise d|§10|nt. Arbitrarily break ties betweethese distances could be Euclidean planar distances if the
singleton time windows (whose start time equals the'nléven vertices were collinear, consistent with Figure 1 (the

end .tlme) bes:au;e the triangle mequallty renders the\'fertical dimension is not drawn to scale). We claim that¢her
relative ordering irrelevant. Extend the strict total arde

. : - exists a subsett such thaty;c bj = Sif and only if there
o ?” vefrtlcesbbyr/ de?andlrtwg ttht for any initial exists a route that yields a surplus of at lekM + S in
Vertex ol a robot and any target. the constructed instance of the multi-robot routing proble
I1l. RELATED WORK “Only if” case: If 3jc bi =S, then the surplus i&M + S if

The multi-robot routing problem with rewards and disjointthe robot visits in numerical order all even vertices and all

time windows is related to a number of combinatorial opti—oOld vertices B-1 withi € L. “If” case: We are given a route

mization problems from the operations research literaiare whose surplus is at leakM + S. SinceM greatly exceeds the

the Prize Collecting Traveling Salesman Problem, a reward sum of the rewards of the odd vertices, the route must visit al
associated with each target. The objective is for a sindletro even :&rtlcsei to reachﬁ surplu?I;M.fThe s(;J(;pIus can be at
(salesperson) to maximize surplus, defined as the sum of {StcM + Iec_ausztl N rev_:_/ﬁr G anf Oh vertex ISC:JI’S
rewards of the targets visited minus the sum of the travél proportional time heajo._. ﬁ sum Odt ese time i;‘y;
costs [2]. Variants include the Multiple Prize-CoIIectingmUSt nok'; EXC(ﬁe(ﬁ gt erwise the ret\)/var at e\ﬁan vertex .
Traveling Salesman Problem for multiple robots and thgfln not (ta)co e?ted(.jHenge,t et:o ot y|S|tsda| even \gtlc
Multiple Prize-Collecting Traveling Salesman Problemhwit p#s a subset g_ 0 getretlches w O.S:T time b_efwss sura to
Time Windows, of which our problem is a special case. In thé e corresponding subsktthus satisfies i, bi = "
Vehicle Routing Problem with Time Windows, the objective |1 is then also NP-hard to maximize surplus for any

is for multiple robots (vehicles) to minimize the sum of thegiven number of robots since the argument from the proof
trayel costs _but itis required that all targets are visitéthww  ~ntinues to apply if one robot is placed at vertex 0 and all
their time windows [9]. _ _ other robots are placed at a new vertex whose distance to
There is much room for progress in solving these prolyertex 0 is large. Furthermore, the argument from the proof
Iems. Mosf[ solution methods from the literature involve gezgontinues to apply for a single robot if we halve the rewards
netic algorithms, tabu search or branch and bound search. §fitne odd vertices and assume that the cost per unit distance
approximation algorithm for the Prize-Collecting Travgji i zero. It is thus also NP-hard to maximize surplus for a

Salesman Problem with Time Windows where all the target§nge robot with time per unit distance one but cost per unit
lie on a line or there exists a bound on the ratio of thgjisiance zero.

size of time windows to the distances is given in [13]. An
approximation algorithm in the general metric case is given V. SPECIAL CASES
in [3]. Little work has been done so far on solving Multiple
Prize-Collecting Traveling Salesman Problems. The NP-hardness of multi-robot routing problems with
rewards and disjoint time windows shows that it is likely
IV. COMPLEXITY impossible to maximize surplus in polynomial time. We
We first prove that maximizing surplus for multi-robottherefore study efficient techniques from operations retea
routing problems with rewards and disjoint time windowsthat maximize surplus for special cases of multi-robotiraut
is NP-hard. problems with rewards and disjoint time windows.

initial robot location target locations

- . 1
may be found such that each robot visits vertices in
increasing order. Choose any permutation of the targe



A. Ildentical Robots + Targets with Singleton Time Windows VI. GENERAL CASE

o ) o Often, one needs to maximize surplus for more general

We show that minimum cost flow algorithms maximizeyersjons of multi-robot routing problems with rewards and
surplus in polynomial time for multi-robot routing problem isigint time windows than the ones studied so far. We use
yvith _rewards and disjoint time \_/vindows _if the _robots arénteger programming for this purpose. This way, we have
identical and the targets have singleton time windows, that 4514 standard available in the experimental section even
is, ¢ = c andv; = v for all robotsr anda, = by for all targets  ,4,,gh the runtimes for integer programs are very large even

t. We convert the given multi-robot routing problem into & re|atively small problems due to the NP-hardness of the
minimum cost network flow problem. The minimum COStprobIem.

network flow problem has one source nodewith supply oy integer program is shown in Figure 3. It is similar
one for each robat, one sink nodej with demandR|, and 5 some integer programs for traveling salesperson prablem
two nodesy; andz for each target. It has an edge of cost 5ng yses the following variablesy is an indicator (0/1)
d(r,t)c from nodex to nodey for each robor and target 4riaple fori < j according to the assumed strict total order
t with d(r.t)v < a, an edge of costl(t,t')c from nodez i, js one if and only if robat moves from vertex directly

to nodeyy for each pair of targets andt’ with t <t"and 4 (argetj. y;, is an indicator (0/1) variable that is one if and
a +d(t,t')v<ay, an edge of cost 1 from nodey; to node only if robotr visits vertexi. Wi is a non-negative variable

z for each target, an edge of cost zero from node 0 h4t denotes how long robotwaits at target. M is a large

nodeq for each robot, and an edge of cost zero from node,mper. Constraints (1) and (2) ensure that every robdsstar
z to nodeq for each target. All edges have capacity one.

X ] > at its initial vertex. Constraint (3) ensures that everyatob
Then, by the integrality property of minimum cost networkSenters a target if and only if it visits the target. Constrain
there is a minimum cost flow where the flow along eachyy ensyres that every robot leaves a vertex only if it visits
edge is zero or one. This flow corresponds to a behavior thgfe vertex. (However, a robot does not necessarily leave a
maximizes surplus for the multi-robot routing problem. Ayeey that it visits since the vertex might be the last verte
unit flow from vertexx- to vertexy; indicates that robot  h4¢ jt visits.) Constraint (5) ensures that every targes ge
moves from its initial vert_ex _dlrectly to targét A unit floyv_ entered at most once by any robot. Constraints (6) and (7)
from vertexz to vertexyy indicates that the robot that visits o\ re that every robot visits a target during its time windo

H !/
targett moves from target directly to target’. if it visits the target. Finally, constraints (8)-(10) rast the
domains of the variables as described above.

B. Single Robots VIl AucTions
Since it is computationally intractable to maximize sugplu

We show that dynamic programming maximizes surpluir multi-robot routing problems with rewards and disjoint
in pseudo-polynomial time for single-robot routing prabke time windows in general, we now develop auction-based
with rewards and disjoint time windows. Our dynamic pro-coordination methods that use the dynamic programming
gram is shown in Figure 2. It uses the following variablesmethods for single robots from Section V-B as a subroutine
S(v,x) is the maximum surplus that can be obtained by roba@nd then show experimentally that they run in seconds
r if it starts at its initial vertex at time O and is at vertexat and still achieve large surpluses. Auctions are decenémali
time x and remains there, including any rewards it obtainethethods that appear to be a promising way of assigning
at or before timex from verticesv with v <t and all travel and re-assigning targets to robots. The robots bid on trget
costs it incurred enroute from its initial vertex to vertexand then visit the targets they win. As the robots discover
v. We define the start time of vertaxto bea = 0. (For more about the environment during execution, they run
completeness, we could defié, —1) = —co for all targets additional auctions to re-optimize the allocation of tasge
t.) Equation (1) states that the maximum surplus is zero #mong themselves. Such auction-based coordination system
the robot remains in its initial vertex. Equation (2) statest promise to be efficient in terms of communication (robots
the maximum surplus of a robot that is at targett timex communicate only essential information and numeric bids)
and then remains there is calculated as the maximum of thed computation (robots compute their bids in parallel).
surplus in case the robot has already been at the targetAatctions have been studied in artificial intelligence stayt
time x— 1 and in case the robot moved to the target at timwith the contract net protocol [15] and subsequently in
X. The latter surplus is calculated by considering all pdssibrobotics in the context of Robosoccer [12], box pushing
verticesv with v < t from which the robot could have moved [5], security [6] and mapping [14]. A good overview on
directly to target under the restriction that it entered targethe current state of the art of auction-based coordination i
t before its end time (to ensure that it receives the rewambbotics is given in [4] and analytical results are given in
of the target) and that it left vertex after its start time [11]. An auction-based coordination method for the Vehicle
(to ensure that it receives the reward of the vertex). TheRRouting Problem with Time Windows is given in [1].
are O(|T|maxcr by) different variablesS(t,x), each one of  Auction-based coordination is typically based on multi-
which can be computed in tim®(|T|maxct bt). Thus, the round auctions where only one target is won by the highest-
runtime isO(|T|?(maxet bt)?). bidding robot during each round, until all targets have been



S(rx) = 0 x>0 (1)
S(t,X) - max(S(t,x— 1)7maXIeV\x<t,x§bt,a\,§x—d(v,t)v, (S(V,X— d(Vat)Vr) + T — d(V,t)Cr)) teT |X > 0 (2)

Fig. 2. Dynamic Program

maximize YictrerYir — Yiev,jeTrer)i<j d(i, ))CrXijr such that

Vr =1 rer (1)
yir =0 ieRreR|i#r (2)
Yir = Y jev|j<iXiir ieT,rer (3
Yir 2 Y jet|i<jXijr ieVireR (4)
YieVreR|i<j Xijr <1 JET (5)
8 <M(1—Yir) + Yjer|j<iWir + X jevket | j<k<i A(J; K)Ve Xijke ieTreR (6)
M(Yir — 1) + 3 jetj<iWir + ¥ jevikeT | j<ksi (1, K)VeXjir < bj leT,reR (7)
wir >0 ieT,reR (8)
Xijr € {0,1} ieV,jeT,reRli<j (9
yir € {0,1} icV.reR (10)

Fig. 3. Integer Program

won by robots [5], [16], [10]. Recently, robotics reseanshe study thePT-All (All Pairs of Targets) rule. Under the this
have also investigated multi-round auctions where a smaillle, each robot bids its increase in individual surplus bn a
number of targets are won during each round [8]. In our cassingle targets as well as pairs of targets for which its iasee

the auctioneer chooses one or more targets during each roundndividual surplus is at least the sum of its increase in
that have not yet been won by any robot. Each robot thandividual surplus of the two vertices individually. Thebat

bids on these targets. Robotbids on target the increase with the highest bid wins the corresponding target or target
in its maximum surplus if it wins the target. In other words,and the process continues until all targets have been won by
let T(r) be the set of targets that robohas won already in robots. Overall, we expect the runtimes of ST-All to be large
previous rounds. Then, robotbids on target its maximum than the ones of ST-LR and ST-SST since the robots need
surplus for the set of targe®®(r) U{t} minus its maximum to bid on all targets instead of only the target selected by
surplus for the set of targefB(r), where its surplus of a the auctioneer. We expect the runtimes of PT-All to be even
given set of targets is defined as the the sum of the rewarldgger since the robots need to bid on pairs of targets in
of the set of targets (which must be a subset of the giveaddition to single targets.

set of targets) visited by the robot during their respective

time windows minus the sum of the costs incurred by the VIII. EXPERIMENTS

rob(_)t for traversing _edges_. The robot with the highest b_id We now evaluate the efficiency and effectiveness of the
(which can be negative) wins the corresponding target. Tieg, .ion_phased coordination methods ST-SST, ST-LR, ST-All

are broken in favor of robots that have won the least numbsthd PT-All, using the following experimental setups. We

of targets, and remaining ties are broken Iexicograpf)icalla|ways use 10 robots with both time per unit distance and
by robot index. Then, the process continues until all targef, ot per unit distance equal to one:

have been won by robots. Each robot then visits a subset of
the targets it has won in a way that maximizes its surplus.

We propose three different ways for the auctioneer to
choose one or more targets during each round that have not
yet been won by any robot:

« Targets In RR50 (Random Rewards with 50 targets)
and RR100 (Random Rewards with 100 targets), 50 and
100 targets, respectively, are used whose integer rewards
are selected uniformly at random from the interval
[1,50. In FR100 (Fixed Rewards with 100 targets), 100

« ST-SST (Single Target with Smallest Start Time) targets are used whose rewards are 25 each. (Note that
The auctioneer chooses one of the targets with the gT.9ST and ST-LR are identical for FR100 since all
smallest start time. targets have the same reward.)

« ST-LR (Single Target with Largest Reward): The | pistances In both CLUSTER and VRANDOM, an area
auctioneer chooses one of the targets with the largest f sjze 100< 100 is used, and the initial locations of the

reward, breaking ties towards targets with the smallest  opots are selected uniformly at random from the entire

start time. _ area. In CLUSTER, the area is split into nine squares,
o ST-All (AI! S_lngle Targets):_The. auctpneer Ch(_)OSES all and the targets are selected uniformly at random from
targets, similar to sequential single-item auctions [7]. the upper left and lower right squares. In VRANDOM,

Under the ST-All (All Single Targets) rule, each robot bids  the targets are selected uniformly at random from the
its increase in individual surplus on all single targets. Alé® entire area. In both CLUSTER and VRANDOM, the



TABLE |

EXPERIMENTAL RESULTS

Experimental Setup Scaled Surplus Runtime
Targets Distances Time Windows ST-SST ST-LR ST-All PT-All P ST-SST | ST-LR | ST-All PT-All IP
RR50 VRANDOM | NEAR 0.954 (6) | 0.930 (1) | 0.932 (2) | 0.894 (0) [ 1.000 [8] 0.88 0.87 19.71 194.12 558.25
FAR 0.936 (5) | 0.915 (2) | 0.937 (2) | 0.864 (0) | 1.000 [9] 1.00 1.02 22.76 224.30 107.89
RANDOM 0.947 (3) | 0.950 (3) | 0.943 (3) | 0.892 (0) | 1.000 [9] 0.91 0.92 20.63 202.73 19.30
DRANDOM | NEAR 0.828 (6) | 0.808 (2) | 0.814 (1) | 0.754 (0) | 1.000 [2] 6.48 6.32 | 282.77 | 1962.02 | 5638.50
FAR 0.642 (1) | 0.664 (1) | 0.681 (7) | 0.635 (0) | 1.000 [0] 6.60 6.34 | 283.56 | 1878.95| 7200.00
RANDOM 0.658 (6) | 0.648 (2) | 0.643 (1) | 0.609 (0) | 1.000 [2] 6.79 6.56 | 295.11 | 1551.15| 6152.50
CLUSTER NEAR 0.901 (2) | 0.896 (2) | 0.920 (4) | 0.917 (3) | 1.000 [8] 0.94 0.94 20.41 197.37 | 1317.80
FAR 0.922 (5) | 0.887 (2) | 0.908 (2) | 0.901 (0) | 1.000 [9] 1.42 1.45 33.07 315.67 309.58
RANDOM 0.770 (6) | 0.757 (1) | 0.764 (2) | 0.726 (0) | 1.000 [9] 6.57 6.28 | 284.11 | 1864.50 | 5811.90
RR100 | VRANDOM | NEAR 0.930 (7) | 0.893 (0) | 0.914 (2) | 0.879 (0) | 1.000 [4] 7.78 7.10 | 322.27 | 1727.18 | 4777.47
FAR 0.989 (7) | 0.957 (1) | 0.956 (0) | 0.934 (1) | 1.000 [8] 7.89 6.68 | 292.99 | 1290.31 | 2239.12
RANDOM 0.912 (5) | 0.895 (1) | 0.906 (3) | 0.876 (0) | 1.000 [8] 6.53 6.81 | 298.36 | 1734.70 | 2217.41
DRANDOM | NEAR 0.923 (6) | 0.897 (2) | 0.885 (0) | 0.878 (1) | 1.000 [7] 6.53 7.74 | 346.27 505.35 | 2238.92
FAR 0.903 (4) | 0.879 (1) | 0.876 (0) | 0.896 (4) | 1.000 [7] 6.78 7.77 | 346.69 | 1378.01 | 2096.82
RANDOM 0.902 (6) | 0.869 (2) | 0.864 (1) | 0.875 (1) | 1.000 [7] 6.72 7.83 | 346.03 | 1299.24 | 1924.15
CLUSTER NEAR 0.885 (1) | 0.866 (2) | 0.885 (2) | 0.888 (4) | 1.000 [7] 8.23 7.54 | 324.30 | 1538.41 | 2756.02
FAR 0.898 (4) | 0.893 (1) | 0.896 (1) | 0.900 (3) | 1.000 [8] 8.61 7.44 | 316.27 | 1023.47 | 1607.43
RANDOM 0.870 (4) | 0.840 (1) | 0.864 (3) | 0.836 (1) | 1.000 [5] 9.47 8.14 | 352.19 | 1224.11 | 3637.62
FR100 | VRANDOM | NEAR 0.904 (6) | 0.904 (6) | 0.879 (1) | 0.879 (2) | 1.000 [4] 6.72 6.72 | 296.17 953.13 | 4981.36
FAR 0.915 (6) | 0.915 (6) | 0.887 (3) | 0.871 (0) | 1.000 [7] 7.44 7.45 | 334.71 | 1604.34 | 3743.90
RANDOM 0.916 (6) | 0.916 (6) | 0.896 (2) | 0.873 (1) | 1.000 [6] 6.93 6.95 | 304.91 | 1140.07 | 3020.03
DRANDOM | NEAR 0.884 (9) | 0.884 (9) | 0.817 (0) | 0.780 (0) | 1.000 [3] 6.61 6.61 | 288.34 | 880.37 | 5734.04
FAR 0.866 (6) | 0.866 (6) | 0.836 (0) | 0.858 (3) | 1.000 [8] 6.93 6.91 | 293.58 | 1011.64 | 1458.66
RANDOM 0.938 (8) | 0.938 (8) | 0.904 (1) | 0.831 (0) | 1.000 [3] 6.84 6.85 | 299.85 | 1080.05 | 6054.70
CLUSTER NEAR 0.837 (2) | 0.837 (2) | 0.817 (0) | 0.870 (7) | 1.000 [4] 7.85 7.84 | 331.64 | 1499.84 | 5246.20
FAR 0.842 (4) | 0.842 (4) | 0.809 (1) | 0.843 (4) | 1.000 [8] 11.51 11.42 | 535.71 587.38 | 2451.39
RANDOM 0.939 (8) | 0.939 (8) | 0.911 (1) | 0.844 (0) | 1.000 [1] 6.71 6.70 | 290.48 934.15 | 6524.81
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Fig. 4. Example Robot Paths

edge if the triangle inequality remains satisfied.

Time Windows: The time windows of the targets are
generated by selecting a permutation of the targets.
In RANDOM, a permutation of the targets is selected
uniformly at random. In NEAR, a permutation of the
targets is selected such that targets that are close in dis-
tance are close to each other in the permutation. (That is,
the next target in the permutation is always the one that
is closest to the ten previous targets in the permutation.)
In FAR, a permutation of the targets is selected such that
targets that are close in distance are far away from each
other in the permutation, that is, their time windows are
far apart. Thus, the correlation between the closeness
of targets in distance and in the permutation is zero,
positive and negative for RANDOM, NEAR and FAR,
respectively. In all cases, the integer length of the time
window of each target is selected uniformly at random
from the interval0,10]. The start time of the first target

in the permutation is zero. The start time of all other
targets is one larger than the end time of the previous
target in the permutation.

The difference in results for RR50 and RR100 helps us
to understand the impact of the ratio of targets to robots.

The difference in results for RR100 and FR100 helps us to
understand the impact of the variability in the rewards. The
difference in results for VRANDOM and DRANDOM helps
us to understand the impact of the terrain model, namely
distances are the straight-line distances between the“smooth” terrain resulting from an embedding into the
vertices. In DRANDOM, we create a complete graplEuclidean plane where the distances between pairs of gertic
with the robots and targets as vertices. We start withre their straight-line distances versus a “non-smoothéte

all edges having distance 50 and then repeatedly selegith randomly chosen distances. Finally, the difference in

results for combinations of CLUSTER and VRANDOM with

uniformly at random and make it the distance of the(RANDOM, NEAR and FAR helps us to understand the



impact of the target proximity in both space and time. IX. CONCLUSIONS

. ) In this paper, we studied multi-robot routing problems
_Figure 4 shows an instance for RR100 targets, CLUSTERith rewards and disjoint time windows. It is important to
distances and FAR time windows. The top figure shows thgste that we assumed that the traversal cost and time of
robot paths that maximize surplus. Six robots visit 33 of thgach edge are proportional to its distance. This assumption

100 targets in this case for a sur.plus of 1460.08. The othgl moetivated by our applications but our results immediatel
robots do not move. The bottom figure shows the robot patgneralize to the case where the traversal cost and time of
that maximize surplus if the robots receive the rewardstfer t g5ch edge are arbitrary for each robot. It is future work to
targets even if they visit them outside of their time windowqry out combinatorial bidding rules since they might result
(that is, if the time windows were ignored or, equivalently;, even larger surpluses.
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