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Abstract— Multiple robots are often faster and more fault-
tolerant than single robots for applications such as planetary
exploration and search and rescue. We study applications where
robots move in two-dimensional terrain and have to visit targets
of given priorities during given time windows that do not
overlap. We analyze the complexity of these coordination tasks
and, where possible, use techniques from operations research to
develop coordination methods that are efficient and optimize the
team performance. We then develop auction-based coordination
methods that build on these results and show experimentally
that they run in seconds and achieve good team performance
for NP-hard coordination tasks.

I. I NTRODUCTION

Multiple robots are often faster and more fault-tolerant
than single robots for applications such as planetary explo-
ration and search and rescue. We study multi-robot routing
problems with rewards and disjoint time windows (that do
not overlap), where robots move in two-dimensional terrain
and have to visit targets of given priorities during given time
windows. For example, robots might have to visit different
locations on the surface of the moon to take pictures or
collect rock samples. The priority of a location expresses
the amount of scientific interest in that location, while
its time window expresses when it needs to get visited
depending on the sun’s location or the temperature of the
surface. We first establish the NP-hardness of these multi-
robot routing problems. We then discuss special cases where
low order polynomial or pseudo-polynomial time methods
from operations research achieve optimal team performance,
namely minimum cost flow algorithms for identical robots
and targets with singleton time windows and dynamic pro-
gramming for single robots. We then develop auction-based
coordination methods for the general case that use dynamic
programming for single robots as a subroutine and show
experimentally that they run in seconds and achieve good
team performance.

II. A SSUMPTIONS ANDNOTATION

The robots move on a connected graphG= (V,E). The set
of vertices isV = R∪T, whereR denotes the nonempty set of
initial vertices of the robots andT denotes the nonempty set
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of targets. Thus, a vertex refers to either the initial location of
a robot or the location of a target. We abuse notation slightly
by lettingR also represent the set of robots. Each robotr ∈R
has given time per unit distancevr > 0 and cost per unit
distancecr > 0. Each targett ∈ T has given rewardπt and
time window[at ,bt ], specified by the start timeat and the end
time bt with at ≤ bt . The time windows are pairwise disjoint
(except possibly at endpoints), by which we mean that no
time window intersects the interior of any other time window.
The set of edges isE ⊆ V ×V. Each edge(v,v′) ∈ E has
given distanced(v,v′) = d(v′,v) ≥ 0. The distances satisfy
the triangle inequality. It can occur thatd(v,v′) = 0 for two
verticesv,v′ ∈V with v 6= v′ if, for example, the initial vertex
of the robot coincides with a target or two targets share their
location.

Each robotr ∈ R starts at its initial vertex at time zero
and then moves from vertex to vertex along the edges of
the graph. It takes timevrd(v,v′) and incurs costcrd(v,v′)
for robot r ∈ R to traverse edge(v,v′) ∈ E. The robot can
wait an arbitrary amount of time at each target that it visits
without incurring any cost. If any robot visits targett ∈ T
in the time window[at ,bt ], then the robots receive reward
πt for this target once. The objective is to maximize team
performance measured in surplus, defined as the sum of the
rewards received minus the sum of the costs incurred for
traversing edges. We call this problem the multi-robot routing
problem with rewards and disjoint time windows. We make
use of the following properties:

• If all valuesvr , cr , d(v,v′), at andbt are rational, then
they can be scaled to integers. We thus assume that they
are integers when developing our dynamic programming
methods.

• The standard Floyd-Warshall algorithm computes all-
pairs shortest paths inO(|V|3) time and can be used to
transform the connected graphG into a complete one.
We thus assume that graphG is complete. Then, no
loss in optimality is entailed in constraining the robot
behavior as follows: If a robot arrives early at a target
t, it waits there until the start timeat . Once a robot is at
a target within its time window, it either remains there
forever or departs immediately towards a targett ′ that
it can reach before its end timebt′ and that is never
visited by any other robot.

• A strict total order (= permutation) of the vertices
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Fig. 1. Example for the NP-Hardness Proof

may be found such that each robot visits vertices in
increasing order. Choose any permutation of the targets
such thatbt ≤ at′ for any two targetst and t ′ with
t < t ′. Such choice is possible because the time windows
are pairwise disjoint. Arbitrarily break ties between
singleton time windows (whose start time equals their
end time) because the triangle inequality renders their
relative ordering irrelevant. Extend the strict total order
to all vertices by demanding thatr < t for any initial
vertex of a robotr and any targett.

III. R ELATED WORK

The multi-robot routing problem with rewards and disjoint
time windows is related to a number of combinatorial opti-
mization problems from the operations research literature: In
the Prize Collecting Traveling Salesman Problem, a reward is
associated with each target. The objective is for a single robot
(salesperson) to maximize surplus, defined as the sum of the
rewards of the targets visited minus the sum of the travel
costs [2]. Variants include the Multiple Prize-Collecting
Traveling Salesman Problem for multiple robots and the
Multiple Prize-Collecting Traveling Salesman Problem with
Time Windows, of which our problem is a special case. In the
Vehicle Routing Problem with Time Windows, the objective
is for multiple robots (vehicles) to minimize the sum of the
travel costs but it is required that all targets are visited within
their time windows [9].

There is much room for progress in solving these prob-
lems. Most solution methods from the literature involve ge-
netic algorithms, tabu search or branch and bound search. An
approximation algorithm for the Prize-Collecting Traveling
Salesman Problem with Time Windows where all the targets
lie on a line or there exists a bound on the ratio of the
size of time windows to the distances is given in [13]. An
approximation algorithm in the general metric case is given
in [3]. Little work has been done so far on solving Multiple
Prize-Collecting Traveling Salesman Problems.

IV. COMPLEXITY

We first prove that maximizing surplus for multi-robot
routing problems with rewards and disjoint time windows
is NP-hard.

Theorem 1:Maximizing surplus for multi-robot routing
problems with rewards and disjoint time windows is NP-
hard even if there is only a single robot and the vertices are
in the Euclidean plane.

Proof: We reduce the subset sum problem to our multi-
robot routing problem. In an instance of the subset sum
problem, we are given a set of positive integers{b1, . . . ,bk}
and an integerS< ∑i bi . The question is whether there exists
a subsetL ⊆ {1, . . . ,k} such that∑i∈L bi = S. Construct the
following instance of our multi-robot routing problem for a
single robot with both time per unit distance and cost per
unit distance equal to one that starts at vertex 0, as shown
in Figure 1. The targets are the vertices 1, . . . ,2k. Target
2i −1 has reward 2bi and time window[(2i −1)M/2,(2i −
1)M/2+ S] and target 2i has reward 2M and time window
[iM , iM +S] for i = 1, . . . ,k for some integerM ≫ ∑i bi . The
distance between vertices 2i − 2 and 2i is M, the distance
between vertices 2i − 2 and 2i − 1 is M/2 + bi , and the
distance between vertices 2i−1 and 2i is M/2 for i = 1, . . . ,k.
These distances could be Euclidean planar distances if the
even vertices were collinear, consistent with Figure 1 (the
vertical dimension is not drawn to scale). We claim that there
exists a subsetL such that∑i∈L bi = S if and only if there
exists a route that yields a surplus of at leastkM + S in
the constructed instance of the multi-robot routing problem.
“Only if” case: If ∑i∈L bi = S, then the surplus iskM+S if
the robot visits in numerical order all even vertices and all
odd vertices 2i−1 with i ∈ L. “If” case: We are given a route
whose surplus is at leastkM+S. SinceM greatly exceeds the
sum of the rewards of the odd vertices, the route must visit all
even vertices to reach a surplus ofkM. The surplus can be at
mostkM+S because the reward 2bi of an odd vertex incurs
a proportional time delaybi. The sum of these time delays
must not exceedS, otherwise the reward at even vertex 2k
can not be collected. Hence, the robot visits all even vertices
plus a subset of odd vertices whose time delays sum toS.
The corresponding subsetL thus satisfies∑i∈L bi = S.

It is then also NP-hard to maximize surplus for any
given number of robots since the argument from the proof
continues to apply if one robot is placed at vertex 0 and all
other robots are placed at a new vertex whose distance to
vertex 0 is large. Furthermore, the argument from the proof
continues to apply for a single robot if we halve the rewards
of the odd vertices and assume that the cost per unit distance
is zero. It is thus also NP-hard to maximize surplus for a
single robot with time per unit distance one but cost per unit
distance zero.

V. SPECIAL CASES

The NP-hardness of multi-robot routing problems with
rewards and disjoint time windows shows that it is likely
impossible to maximize surplus in polynomial time. We
therefore study efficient techniques from operations research
that maximize surplus for special cases of multi-robot routing
problems with rewards and disjoint time windows.



A. Identical Robots + Targets with Singleton Time Windows

We show that minimum cost flow algorithms maximize
surplus in polynomial time for multi-robot routing problems
with rewards and disjoint time windows if the robots are
identical and the targets have singleton time windows, that
is, cr = c andvr = v for all robotsr andat = bt for all targets
t. We convert the given multi-robot routing problem into a
minimum cost network flow problem. The minimum cost
network flow problem has one source nodexr with supply
one for each robotr, one sink nodeq with demand|R|, and
two nodesyt andzt for each targett. It has an edge of cost
d(r,t)c from nodexr to nodeyt for each robotr and target
t with d(r,t)v ≤ at , an edge of costd(t,t ′)c from nodezt

to nodeyt′ for each pair of targetst and t ′ with t < t ′ and
at +d(t,t ′)v≤ at′ , an edge of cost−πt from nodeyt to node
zt for each targett, an edge of cost zero from nodexr to
nodeq for each robotr, and an edge of cost zero from node
zt to nodeq for each targett. All edges have capacity one.
Then, by the integrality property of minimum cost networks,
there is a minimum cost flow where the flow along each
edge is zero or one. This flow corresponds to a behavior that
maximizes surplus for the multi-robot routing problem. A
unit flow from vertexxr to vertexyt indicates that robotr
moves from its initial vertex directly to targett. A unit flow
from vertexzt to vertexyt′ indicates that the robot that visits
targett moves from targett directly to targett ′.

B. Single Robots

We show that dynamic programming maximizes surplus
in pseudo-polynomial time for single-robot routing problems
with rewards and disjoint time windows. Our dynamic pro-
gram is shown in Figure 2. It uses the following variables:
S(v,x) is the maximum surplus that can be obtained by robot
r if it starts at its initial vertex at time 0 and is at vertexv at
time x and remains there, including any rewards it obtained
at or before timex from verticesv with v < t and all travel
costs it incurred enroute from its initial vertex to vertex
v. We define the start time of vertexr to be ar = 0. (For
completeness, we could defineS(t,−1) = −∞ for all targets
t.) Equation (1) states that the maximum surplus is zero if
the robot remains in its initial vertex. Equation (2) statesthat
the maximum surplus of a robot that is at targett at timex
and then remains there is calculated as the maximum of the
surplus in case the robot has already been at the target at
time x−1 and in case the robot moved to the target at time
x. The latter surplus is calculated by considering all possible
verticesv with v< t from which the robot could have moved
directly to targett under the restriction that it entered target
t before its end time (to ensure that it receives the reward
of the target) and that it left vertexv after its start time
(to ensure that it receives the reward of the vertex). There
are O(|T|maxt∈T bt) different variablesS(t,x), each one of
which can be computed in timeO(|T|maxt∈T bt). Thus, the
runtime isO(|T|2(maxt∈T bt)

2).

VI. GENERAL CASE

Often, one needs to maximize surplus for more general
versions of multi-robot routing problems with rewards and
disjoint time windows than the ones studied so far. We use
integer programming for this purpose. This way, we have
a gold standard available in the experimental section even
though the runtimes for integer programs are very large even
for relatively small problems due to the NP-hardness of the
problem.

Our integer program is shown in Figure 3. It is similar
to some integer programs for traveling salesperson problems
and uses the following variables:xi jr is an indicator (0/1)
variable fori < j according to the assumed strict total order
that is one if and only if robotr moves from vertexi directly
to target j. yir is an indicator (0/1) variable that is one if and
only if robot r visits vertexi. wir is a non-negative variable
that denotes how long robotr waits at targeti. M is a large
number. Constraints (1) and (2) ensure that every robot starts
at its initial vertex. Constraint (3) ensures that every robot
enters a target if and only if it visits the target. Constraint
(4) ensures that every robot leaves a vertex only if it visits
the vertex. (However, a robot does not necessarily leave a
vertex that it visits since the vertex might be the last vertex
that it visits.) Constraint (5) ensures that every target gets
entered at most once by any robot. Constraints (6) and (7)
ensure that every robot visits a target during its time window
if it visits the target. Finally, constraints (8)-(10) restrict the
domains of the variables as described above.

VII. A UCTIONS

Since it is computationally intractable to maximize surplus
for multi-robot routing problems with rewards and disjoint
time windows in general, we now develop auction-based
coordination methods that use the dynamic programming
methods for single robots from Section V-B as a subroutine
and then show experimentally that they run in seconds
and still achieve large surpluses. Auctions are decentralized
methods that appear to be a promising way of assigning
and re-assigning targets to robots. The robots bid on targets
and then visit the targets they win. As the robots discover
more about the environment during execution, they run
additional auctions to re-optimize the allocation of targets
among themselves. Such auction-based coordination systems
promise to be efficient in terms of communication (robots
communicate only essential information and numeric bids)
and computation (robots compute their bids in parallel).
Auctions have been studied in artificial intelligence starting
with the contract net protocol [15] and subsequently in
robotics in the context of Robosoccer [12], box pushing
[5], security [6] and mapping [14]. A good overview on
the current state of the art of auction-based coordination in
robotics is given in [4] and analytical results are given in
[11]. An auction-based coordination method for the Vehicle
Routing Problem with Time Windows is given in [1].

Auction-based coordination is typically based on multi-
round auctions where only one target is won by the highest-
bidding robot during each round, until all targets have been



S(r,x) = 0 x≥ 0 (1)
S(t,x) = max(S(t,x−1),maxv∈V |x<t,x≤bt ,av≤x−d(v,t)vr (S(v,x−d(v,t)vr)+ πt −d(v,t)cr)) t ∈ T |x≥ 0 (2)

Fig. 2. Dynamic Program

maximize ∑i∈T,r∈Rπiyir −∑i∈V, j∈T,r∈R| i< j d(i, j)cr xi jr such that
yrr = 1 r ∈ R (1)
yir = 0 i ∈ R, r ∈ R| i 6= r (2)
yir = ∑ j∈V | j<i x jir i ∈ T, r ∈ R (3)
yir ≥ ∑ j∈T | i< j xi jr i ∈V, r ∈ R (4)

∑i∈V,r∈R| i< j xi jr ≤ 1 j ∈ T (5)
ai ≤ M(1−yir )+ ∑ j∈T | j≤i wjr + ∑ j∈V,k∈T | j<k≤i d( j,k)vr x jkr i ∈ T, r ∈ R (6)
M(yir −1)+ ∑ j∈T | j≤i wjr + ∑ j∈V,k∈T | j<k≤i d( j,k)vrx jkr ≤ bi i ∈ T, r ∈ R (7)
wir ≥ 0 i ∈ T, r ∈ R (8)
xi jr ∈ {0,1} i ∈V, j ∈ T, r ∈ R| i < j (9)
yir ∈ {0,1} i ∈V, r ∈ R (10)

Fig. 3. Integer Program

won by robots [5], [16], [10]. Recently, robotics researchers
have also investigated multi-round auctions where a small
number of targets are won during each round [8]. In our case,
the auctioneer chooses one or more targets during each round
that have not yet been won by any robot. Each robot then
bids on these targets. Robotr bids on targett the increase
in its maximum surplus if it wins the target. In other words,
let T(r) be the set of targets that robotr has won already in
previous rounds. Then, robotr bids on targett its maximum
surplus for the set of targetsT(r)∪{t} minus its maximum
surplus for the set of targetsT(r), where its surplus of a
given set of targets is defined as the the sum of the rewards
of the set of targets (which must be a subset of the given
set of targets) visited by the robot during their respective
time windows minus the sum of the costs incurred by the
robot for traversing edges. The robot with the highest bid
(which can be negative) wins the corresponding target. Ties
are broken in favor of robots that have won the least number
of targets, and remaining ties are broken lexicographically
by robot index. Then, the process continues until all targets
have been won by robots. Each robot then visits a subset of
the targets it has won in a way that maximizes its surplus.

We propose three different ways for the auctioneer to
choose one or more targets during each round that have not
yet been won by any robot:

• ST-SST (Single Target with Smallest Start Time):
The auctioneer chooses one of the targets with the
smallest start time.

• ST-LR (Single Target with Largest Reward): The
auctioneer chooses one of the targets with the largest
reward, breaking ties towards targets with the smallest
start time.

• ST-All (All Single Targets): The auctioneer chooses all
targets, similar to sequential single-item auctions [7].

Under the ST-All (All Single Targets) rule, each robot bids
its increase in individual surplus on all single targets. Wealso

study thePT-All (All Pairs of Targets) rule. Under the this
rule, each robot bids its increase in individual surplus on all
single targets as well as pairs of targets for which its increase
in individual surplus is at least the sum of its increase in
individual surplus of the two vertices individually. The robot
with the highest bid wins the corresponding target or targets,
and the process continues until all targets have been won by
robots. Overall, we expect the runtimes of ST-All to be larger
than the ones of ST-LR and ST-SST since the robots need
to bid on all targets instead of only the target selected by
the auctioneer. We expect the runtimes of PT-All to be even
larger since the robots need to bid on pairs of targets in
addition to single targets.

VIII. E XPERIMENTS

We now evaluate the efficiency and effectiveness of the
auction-based coordination methods ST-SST, ST-LR, ST-All
and PT-All, using the following experimental setups. We
always use 10 robots with both time per unit distance and
cost per unit distance equal to one:

• Targets: In RR50 (Random Rewards with 50 targets)
and RR100 (Random Rewards with 100 targets), 50 and
100 targets, respectively, are used whose integer rewards
are selected uniformly at random from the interval
[1,50]. In FR100 (Fixed Rewards with 100 targets), 100
targets are used whose rewards are 25 each. (Note that
ST-SST and ST-LR are identical for FR100 since all
targets have the same reward.)

• Distances: In both CLUSTER and VRANDOM, an area
of size 100×100 is used, and the initial locations of the
robots are selected uniformly at random from the entire
area. In CLUSTER, the area is split into nine squares,
and the targets are selected uniformly at random from
the upper left and lower right squares. In VRANDOM,
the targets are selected uniformly at random from the
entire area. In both CLUSTER and VRANDOM, the



TABLE I

EXPERIMENTAL RESULTS

Experimental Setup Scaled Surplus Runtime
Targets Distances Time Windows ST-SST ST-LR ST-All PT-All IP ST-SST ST-LR ST-All PT-All IP
RR50 VRANDOM NEAR 0.954 (6) 0.930 (1) 0.932 (2) 0.894 (0) 1.000 [8] 0.88 0.87 19.71 194.12 558.25

FAR 0.936 (5) 0.915 (2) 0.937 (2) 0.864 (0) 1.000 [9] 1.00 1.02 22.76 224.30 107.89
RANDOM 0.947 (3) 0.950 (3) 0.943 (3) 0.892 (0) 1.000 [9] 0.91 0.92 20.63 202.73 19.30

DRANDOM NEAR 0.828 (6) 0.808 (2) 0.814 (1) 0.754 (0) 1.000 [2] 6.48 6.32 282.77 1962.02 5638.50
FAR 0.642 (1) 0.664 (1) 0.681 (7) 0.635 (0) 1.000 [0] 6.60 6.34 283.56 1878.95 7200.00
RANDOM 0.658 (6) 0.648 (2) 0.643 (1) 0.609 (0) 1.000 [2] 6.79 6.56 295.11 1551.15 6152.50

CLUSTER NEAR 0.901 (2) 0.896 (2) 0.920 (4) 0.917 (3) 1.000 [8] 0.94 0.94 20.41 197.37 1317.80
FAR 0.922 (5) 0.887 (2) 0.908 (2) 0.901 (0) 1.000 [9] 1.42 1.45 33.07 315.67 309.58
RANDOM 0.770 (6) 0.757 (1) 0.764 (2) 0.726 (0) 1.000 [9] 6.57 6.28 284.11 1864.50 5811.90

RR100 VRANDOM NEAR 0.930 (7) 0.893 (0) 0.914 (2) 0.879 (0) 1.000 [4] 7.78 7.10 322.27 1727.18 4777.47
FAR 0.989 (7) 0.957 (1) 0.956 (0) 0.934 (1) 1.000 [8] 7.89 6.68 292.99 1290.31 2239.12
RANDOM 0.912 (5) 0.895 (1) 0.906 (3) 0.876 (0) 1.000 [8] 6.53 6.81 298.36 1734.70 2217.41

DRANDOM NEAR 0.923 (6) 0.897 (2) 0.885 (0) 0.878 (1) 1.000 [7] 6.53 7.74 346.27 505.35 2238.92
FAR 0.903 (4) 0.879 (1) 0.876 (0) 0.896 (4) 1.000 [7] 6.78 7.77 346.69 1378.01 2096.82
RANDOM 0.902 (6) 0.869 (2) 0.864 (1) 0.875 (1) 1.000 [7] 6.72 7.83 346.03 1299.24 1924.15

CLUSTER NEAR 0.885 (1) 0.866 (2) 0.885 (2) 0.888 (4) 1.000 [7] 8.23 7.54 324.30 1538.41 2756.02
FAR 0.898 (4) 0.893 (1) 0.896 (1) 0.900 (3) 1.000 [8] 8.61 7.44 316.27 1023.47 1607.43
RANDOM 0.870 (4) 0.840 (1) 0.864 (3) 0.836 (1) 1.000 [5] 9.47 8.14 352.19 1224.11 3637.62

FR100 VRANDOM NEAR 0.904 (6) 0.904 (6) 0.879 (1) 0.879 (2) 1.000 [4] 6.72 6.72 296.17 953.13 4981.36
FAR 0.915 (6) 0.915 (6) 0.887 (3) 0.871 (0) 1.000 [7] 7.44 7.45 334.71 1604.34 3743.90
RANDOM 0.916 (6) 0.916 (6) 0.896 (2) 0.873 (1) 1.000 [6] 6.93 6.95 304.91 1140.07 3020.03

DRANDOM NEAR 0.884 (9) 0.884 (9) 0.817 (0) 0.780 (0) 1.000 [3] 6.61 6.61 288.34 880.37 5734.04
FAR 0.866 (6) 0.866 (6) 0.836 (0) 0.858 (3) 1.000 [8] 6.93 6.91 293.58 1011.64 1458.66
RANDOM 0.938 (8) 0.938 (8) 0.904 (1) 0.831 (0) 1.000 [3] 6.84 6.85 299.85 1080.05 6054.70

CLUSTER NEAR 0.837 (2) 0.837 (2) 0.817 (0) 0.870 (7) 1.000 [4] 7.85 7.84 331.64 1499.84 5246.20
FAR 0.842 (4) 0.842 (4) 0.809 (1) 0.843 (4) 1.000 [8] 11.51 11.42 535.71 587.38 2451.39
RANDOM 0.939 (8) 0.939 (8) 0.911 (1) 0.844 (0) 1.000 [1] 6.71 6.70 290.48 934.15 6524.81
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Fig. 4. Example Robot Paths

distances are the straight-line distances between the
vertices. In DRANDOM, we create a complete graph
with the robots and targets as vertices. We start with
all edges having distance 50 and then repeatedly select
both an edge and a distance from the interval[0,100]
uniformly at random and make it the distance of the

edge if the triangle inequality remains satisfied.
• Time Windows: The time windows of the targets are

generated by selecting a permutation of the targets.
In RANDOM, a permutation of the targets is selected
uniformly at random. In NEAR, a permutation of the
targets is selected such that targets that are close in dis-
tance are close to each other in the permutation. (That is,
the next target in the permutation is always the one that
is closest to the ten previous targets in the permutation.)
In FAR, a permutation of the targets is selected such that
targets that are close in distance are far away from each
other in the permutation, that is, their time windows are
far apart. Thus, the correlation between the closeness
of targets in distance and in the permutation is zero,
positive and negative for RANDOM, NEAR and FAR,
respectively. In all cases, the integer length of the time
window of each target is selected uniformly at random
from the interval[0,10]. The start time of the first target
in the permutation is zero. The start time of all other
targets is one larger than the end time of the previous
target in the permutation.

The difference in results for RR50 and RR100 helps us
to understand the impact of the ratio of targets to robots.
The difference in results for RR100 and FR100 helps us to
understand the impact of the variability in the rewards. The
difference in results for VRANDOM and DRANDOM helps
us to understand the impact of the terrain model, namely
a “smooth” terrain resulting from an embedding into the
Euclidean plane where the distances between pairs of vertices
are their straight-line distances versus a “non-smooth” terrain
with randomly chosen distances. Finally, the difference in
results for combinations of CLUSTER and VRANDOM with
RANDOM, NEAR and FAR helps us to understand the



impact of the target proximity in both space and time.

Figure 4 shows an instance for RR100 targets, CLUSTER
distances and FAR time windows. The top figure shows the
robot paths that maximize surplus. Six robots visit 33 of the
100 targets in this case for a surplus of 1460.08. The other
robots do not move. The bottom figure shows the robot paths
that maximize surplus if the robots receive the rewards for the
targets even if they visit them outside of their time windows
(that is, if the time windows were ignored or, equivalently,
infinite). Six robots visit all of the 100 targets in this case,
but only four of the six robots are the same as in the previous
case. However, only 11 targets are visited within their time
windows for a surplus (loss) of -248.21 compared to the
maximum surplus of 1460.08. This example illustrates that
one cannot simply ignore the time windows and hope to
achieve a large surplus anyway.

Table I reports the surpluses and runtimes of the auction-
based coordination methods ST-SST, ST-LR, ST-All and
PT-All as well as the integer program (IP), averaged over
nine random instances for each experimental setup, namely
combination of targets, distances and time windows. We
report all surpluses relative to the surplus of the integer
program, which is scaled to one. We report in parentheses
for an auction-based coordination method for how many
of the nine instances its surplus is larger than the surplus
of the other three auction-based coordination methods. We
report all runtimes in seconds on a 2.4 GHz Xeon processor
PC with 2 GByte of RAM. We solve the integer programs
with CPLEX 8.1 with a 2 hour time limit. In case CPLEX
cannot determine the maximum surplus within the time
limit, we use the upper bound on the maximum surplus
reported by CPLEX after 2 hours of runtime instead of
the maximum surplus and the time limit instead of the
runtime. We report in square brackets for the integer program
for how many of the nine instances it finds the maximum
surplus. These numbers show that it often does not find the
maximum surplus. Thus, we estimate the effectiveness of
the auction-based coordination methods very conservatively
when we compare their surpluses against upper bounds on
the maximum surpluses.

We can say with confidence level 90 percent (using a
paired t-test on nine instances) that the surplus of ST-SST
is at least as high as that of ST-LR in 20 out of the 27
experimental setups, at least as high as that of ST-All in 15
out of the 27 experimental setups, and at least as high as that
of PT-All in 18 out of the 27 experimental setups, which is
surprising since its runtime is small. Although the runtimeof
PT-All is always larger than the one of ST-SST, ST-LR and
ST-All, we can say with confidence level 90 percent that its
surplus is higher than the surplus of ST-SST, ST-LR and ST-
All in only 1, 2 and 3, respectively, out of 27 experimental
setups. The runtime of the integer program is the largest by
far, yet it does not find the maximum surplus (that is, the
optimal solution) within the runtime limit in many cases.

IX. CONCLUSIONS

In this paper, we studied multi-robot routing problems
with rewards and disjoint time windows. It is important to
note that we assumed that the traversal cost and time of
each edge are proportional to its distance. This assumption
is motivated by our applications but our results immediately
generalize to the case where the traversal cost and time of
each edge are arbitrary for each robot. It is future work to
try out combinatorial bidding rules since they might result
in even larger surpluses.
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