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Abstract— We study task-allocation problems where cooper-
ative robots need to perform tasks simultaneously. We develop
a distributed negotiation procedure that allows robots to find
all task exchanges that reduce the team cost of a given task
allocation, without robots having to know how other robots
compute their robot costs. Finally, we demonstrate empirically
that our negotiation procedure can substantially reduce the
team costs of task allocations resulting from existing task-
allocation procedures, including sequential single-item auctions.

I. I NTRODUCTION

Task allocation is one of the most important coordination
problems for robot teams [4]. We study task allocation where
robots collaborate to minimize the team cost rather than their
own robot costs. Most research on task allocation considers
only simple tasks, which can be performed by single robots
[3] [5] [9]. However, one of the main advantages of robot
teams is that they can perform tasks that single robots
cannot. We therefore consider also complex tasks, which
need to be performed by several robots simultaneously [10]
[12]. For instance, several robots need to move heavy rocks
together, and several fire engines need to extinguish large
fires together. Our motivating problem is multi-robot routing,
where the tasks are to visit targets in the plane, as shown in
Figure 1. The terrain, the locations of all robots and the
locations of all targets are known. One needs to determine
which targets each robot should visit and when it should
visit them so that the team cost (such as the amount of
energy or the task-completion time) is as small as possible.
Multi-robot routing is a standard task for robot teams, for
example, as part of de-mining, search-and-rescue and taking
rock probes on the moon. Multi-robot routing with simple
tasks is a standard test domain for robot coordination with
auctions [2] [9]. Multi-robot routing with complex tasks is
more difficult. First, it is difficult to determine which robots
should perform a complex task because each complex task
has to be assigned to more than one robot. Second, it is
difficult to determine when a group of robots should perform
a complex task because this requires the robots to solve
complex scheduling problems.

We use reaction functions to characterize the robot costs
of a given robot for performing a given complex task
at any possible time. Reaction functions have been used
previously to allow a central planner to determine a task

Fig. 1. Multi-Robot Routing Problem

allocation with a small team cost [11]. We, on the other
hand, use reaction functions to allow robots to reduce the
team cost of a given task allocation by exchanging tasks.
Our initial investigation concentrates on disjoint coalitions,
where every robot can perform at most one complex task [6]
[8]. We proceed as follows: We first review the concepts and
properties of reaction functions proposed in the literature. We
then develop a distributed negotiation procedure (withouta
central planner) that allows robots to find all task exchanges
that reduce the team cost of a given task allocation. Our
negotiation procedure has the advantage that each robot
needs to know the reaction functions of the other robots
only for the complex targets assigned to them and that
no robot needs to know how the reaction functions of the
other robots are computed, including how their robot costs
are computed. Finally, we demonstrate empirically that our
negotiation procedure can substantially reduce the team costs
of task allocations resulting from existing task-allocation
procedures, including sequential single-item auctions [9].

II. FORMALIZATION OF MULTI -ROBOT ROUTING

We now formalize multi-robot routing: The finite set of
robots isA. The finite set of targets isX. The number of
robots that need to visit a targetx ∈ X simultaneously is



d(x). A targetx ∈ X is simple if d(x) = 1 and complex
otherwise. We distinguish these two kinds of targets because
a robot can freely determine when to visit simple targets
but needs to agree with other robots when to visit complex
targets. Each robot in the group ofd(x) robots that need
to visit complex targetx at some visit time0 ≤ t < ∞
has acommitment, written asx ← t. An allocation of
robot r consists of a pair(Xr, Cr), where Xr is the set
of simple targets assigned to it andCr is a set that is
either empty or contains the commitment for one complex
target. A robotr is eligible iff Cr is empty. Therobot cost
crobot
r (Xr, Cr) of robot r is the minimal sum of travel and

wait time that it needs to visit all of the targets assigned to
it, where it can freely determine when to visit each simple
target inXr subject to the restriction that it has to visit its
complex target (if any) at the agreed-on visit time recorded
in Cr. (The robot cost is infinity in case the robot cannot
satisfy this restriction.) Our objective is to find a solution
with a small team cost, where asolution requires each
target x ∈ X to be assigned to exactlyd(x) robots, each
complex target to be assigned a visit time, and each robot
to be assigned at most one complex target. In this paper,
we consider two ways of defining the team cost. Theteam
cost is

∑

r∈A crobot
r (Xr, Cr) (roughly proportional to the

energy needed by the robots for waiting and moving) for
the MiniSum team objective and maxr∈A crobot

r (Xr, Cr)
(the task-completion time) for theMiniMax team objective.
We usecteam as a special operator for either the sum or
max operator, depending on the team objective, and write
the team cost ascteam

r∈A crobot
r (Xr, Cr) to make our notation

independent of the team objective.

III. R EACTION FUNCTIONS

To determine the optimal visit time for complex target
x (that minimizes the team cost), each eligible robotr

computes itsreaction function

Fx
r (t) := crobot

r (Xr, {x ← t})

to characterize its robot costs for visiting complex targetx

at any possible visit timet in addition to all simple targets
in Xr at the optimal visit times. The optimal visit time of
complex targetx for a given groupPx of eligible robots with
given assigned simple targets then is

arg min
0≤t<∞

cteam
r∈Px

Fx
r (t).

A. Approximation

The computation and communication of reaction functions
is time-intensive. For example, each robotr has to solve a
difficult scheduling problem for each visit timet of complex
targetx to determine its reaction functionFx

r (t) because it
needs to determine the optimal order in which to visit all
targets assigned to it. The computation and communication
of reaction functions can be made less time-intensive by ap-
proximating them. We discretize them into a constant number

of line segments, where each line segment is either linear
with slope one (modeling that the robot waits at a complex
target for other robots to visit the target simultaneously)or
constant at infinity (modeling that the robot cannot visit the
complex target at the given visit time), as follows:

• Determine a time interval(s, e] during which robotr
can visit complex targetx and divide it evenly intok
time intervals(si, ei] for a given parameterk.

• Determine the minimal robot cost of robotr for visiting
complex targetx in time interval(si, ei] without waiting
as well as all simple targets assigned to it at the optimal
visit times1 for each0 ≤ i < k. Assume that robotr
visits complex targetx at visit time ti ∈ (si, ei] for
a minimal robot cost ofci. Then define the following
function that calculates the robot cost if all targets are
visited in the given order and the robot waitst− ti time
units at the complex target for other robots to visit the
target simultaneously:

Fx
r,i(t) :=

{

∞ if 0 ≤ t < ti
ci + t − ti if ti ≤ t.

• Determine the approximate reaction function as the
minimum of the functionsFx

r,i for all 0 ≤ i < k since
each function expresses the robot cost if robotr visits
its targets in a particular order:

Fx
r (t) := min

0≤i≤k
Fx

r,i(t).

Let T (Px, x) be the set of times that correspond to the
beginnings of all linear segments with slope one of the
approximate reaction functionsFx

r (t) for all robotsr ∈ Px,
wherePx is the group of robots that are assigned complex
targetx. Then, it holds that

min
0≤t<∞

cteam
r∈Px

Fx
r (t) = min

t∈T (Px,x)
cteam
r∈Px

Fx
r (t)

[11], which makes it easy to calculate the optimal visit time
of complex targetx for a given groupPx of eligible robots. In
the following, all reaction functions are approximated unless
mentioned otherwise.

B. Target Allocation with Reaction Functions

The simple targets need to be allocated before the complex
ones because robots can manipulate the order in which
they visit their assigned simple targets to accommodate the
complex ones. We use two ways of assigning the simple
targets to robots.

• Random Allocation: Random allocation assigns each
simple target randomly to some robot.

• SSI Auctions: Sequential single-item auctions [9] as-
sign simple targets to robots in rounds. During each
round, one additional simple target is assigned to some

1This problem is a special case of the NP-hard traveling salesperson
problem with time windows [1] and can be solved approximately with a
version of the Or-opt heuristic [7].



robot so that the team cost after assigning that simple
target increases the least (hill-climbing).

Afterwards, we assign the complex targets to robots in
rounds until all complex targets are assigned to robots.
During each round, one additional complex target is assigned
to some robot. LetXr be the set of simple targets assigned
to robot r. Each eligible robotr then computes its reaction
functionFx

r (t) for each complex targetx and submits

Vx
r (t) :=

{

Fx
r (t) − crobot

r (Xr, ∅) for MiniSum
Fx

r (t) for MiniMax

to a central planner. LetP (n) be the set of all groups ofn
eligible robots andXc the set of unassigned complex targets.
The central planner determines

(Px, x, t) := arg min
Px∈P (d(x)),x∈Xc,0≤t<∞

cteam
r∈Px

Vx
r (t)

and assigns the commitmentx ← t to each robotr ∈ Px,
which terminates the current round [11].

IV. N EGOTIATION WITH REACTION FUNCTIONS

Given a solution of a multi-robot routing problem, we
exchange targets between two robots so that the team cost
of the solution is reduced. We consider two types of target
exchanges.

• Complex target exchanges: A complex target exchange
(r, r′, x, x′) describes that robotr gives its complex
targetx to robotr′ and robotr′ gives its complex target
x′ to robotr. One of the complex targets can be empty
but not both. The number of possible complex target
exchanges is bounded by|A|2 −|A| since each robot is
assigned at most one complex target.

• Simple target exchanges: A simple target exchange
(r, r′,X,X ′) describes that robotr gives its simple
targetsX ⊆ Xr to robotr′ and robotr′ gives its simple
targetsX ′ ⊆ Xr′ to robotr. One of the sets of simple
targets can be empty but not both. The number of simple
target exchanges can be exponential in the number of
simple targets. We therefore impose the restriction that
max(|X|, |X ′|) ≤ K for a given constantK ≥ 0, the
exchange parameter.

The gain gain(S) of a target exchangeS is the decrease
in team cost that results from performing the target exchange.
A target exchange isprofitable iff its gain is positive.

A. Negotiation Procedure

We now develop a distributed negotiation procedure that
allows robots to find all profitable target exchanges. Our
negotiation procedure has the advantage that each robot
needs to know the reaction functions of the other robots only
for the complex targets assigned to them and that no robot
needs to know how the reaction functions of the other robots
are computed, including how their robot costs are computed.
The negotiation procedure consists of three steps.

• Initialization Step : Each robot broadcasts the necessary
information, including its assigned simple targets, its

assigned complex target and its reaction function for
its complex target (if any), its robot cost and its index
number. The purpose of the index numbers is to order
all robots completely.

• Computation Step: In the first substep, each robot
acts as aproposer. It considers each possible target
exchange that it can be involved in and, iff the target
exchange is potentially profitable, proposes it to the
other robot involved in it. In the second substep, each
robot acts as amanager. It calculates the gain for each
target exchange that it receives and stores it iff it is
profitable. After the computation step, each profitable
target exchange has been stored by at least one robot.

• Decision Step: Each robot broadcasts its target ex-
change with the highest gain. The robots then perform
the broadcast target exchange with the highest gain.
Ties are broken in favor of the target exchange that
involves the robot with the smallest index number. After
the decision step, the robots have performed a target
exchange with the overall highest gain.

In the following, letindex(r) be the index number of each
robot r, (Xr, Cr) its current allocation andxr the complex
target assigned to it. The complex target can be empty. Let
Px be the group of robots that are assigned complex targetx.
Finally, let cr be the robot cost of robotr andc := cteam

r̃∈A cr̃

the team cost of the current solution.

B. Complex Target Exchanges

We first consider complex target exchanges and describe
the procedures executed by each robot in the computation
step as proposer and manager.

1. Proposer Procedure

If proposer robotr is assigned no complex target, then it
does nothing. Otherwise, it executes the following procedure
for each robotr′.

Case 1: If robot r′ is assigned a complex targetxr′ that is
not assigned to robotr, then robotr considers the complex
target exchangeS := (r, r′, xr, xr′). Let A′ := A \ (Pxr

∪
Px

r
′
). Let P ′

x
r
′
:= Px

r
′
\ {r′} ∪ {r} be the group of robots

that are assigned complex targetxr′ after the complex target
exchange. Robotr calculates itsnet loss netloss(S, r) of
the complex target exchange as















min
0≤t<∞

∑

r̃∈P ′

x
r
′

F
x

r
′

r̃ (t) −
∑

r̃∈P ′

x
r
′

cr̃ for MiniSum

max(max
r̃∈A′

cr̃, min
0≤t<∞

max
r̃∈P ′

x
r
′

F
x

r
′

r̃ (t)) − c for MiniMax.

Case 2:If robot r′ is assigned no complex target, then robot
r considers the complex target exchangeS := (r, r′, xr, ∅).
Let A′ := A \ (Pxr

∪ {r′}). Robotr calculates itsnet loss
netloss(S, r) of the complex target exchange as

{

crobot
r (Xr, ∅) − cr for MiniSum

max(max
r̃∈A′

cr̃, c
robot
r (Xr, ∅)) − c for MiniMax.



If its net loss of the complex target exchange is negative, then
robot r proposes it to robotr′ by sending it the information
〈S, netloss(S, r)〉.

2. Manager Procedure

If manager robotr′ receives a proposal for a complex
target exchangeS := (r, r′, xr, xr′), then let A′ := A \
(Pxr

∪Px
r
′
) if robot r′ is assigned a complex targetxr′ and

A′ := A \ (Pxr
∪ {r′}) if robot r′ is assigned no complex

target. LetP ′
xr

:= Pxr
\ {r} ∪ {r′} be the group of robots

that are assigned complex targetxr after the complex target
exchange. Robotr′ calculates itsnet lossnetloss(S, r′) of
the complex target exchange as











min
0≤t<∞

∑

r̃∈P ′

xr

Fxr

r̃ (t) −
∑

r̃∈P ′

xr

cr̃ for MiniSum

max(max
r̃∈A′

cr̃, min
0≤t<∞

max
r̃∈P ′

xr

Fxr

r̃ (t)) − c for MiniMax.

It is easy to show that

gain(S) = −cteam(netloss(S, r), netloss(S, r′)).

Proposition 1: Each profitable complex target exchange is
stored by at least one robot.

C. Simple Target Exchanges

We now consider simple target exchanges and describe the
procedures executed by each robot in the computation step
as proposer and manager.

1. Proposer Procedure

Proposer robotr considers the simple target exchange
S := (r, r′,X,X ′) for each robotr′ with r 6= r′, X ⊆ Xr,
X ′ ⊆ Xr′ , X ∩ X ′ = ∅ and0 < max(|X|, |X ′|) ≤ K. Let
X ′

r = Xr \ X ∪ X ′ be the set of simple targets assigned
to robot r after the simple target exchange. Robotr then
executes the following procedure.

Case 1: If robot r is assigned no complex target, then let
A′ := A \ ({r} ∪ Px

r
′
) if robot r′ is assigned a complex

targetxr′ andA′ := A \ ({r, r′}) if robot r′ is assigned no
complex target. Robotr calculates itsnet lossnetloss(S, r)
of the simple target exchange as

{

crobot
r (X ′

r, ∅) − cr for MiniSum
max(max

r̃∈A′

cr̃, c
robot
r (X ′

r, ∅)) − c for MiniMax. (1)

If the net loss of the simple target exchange is negative, then
robot r proposes it to robotr′ by sending it the information
〈S, netloss(S, r)〉.

Case 2: If robot r is assigned a complex targetxr that is
not assigned to robotr′, then robotr recomputes its reaction
function for its complex target as

F ′xr

r (t) := crobot
r (X ′

r, xr ← t). (2)

This recomputation is necessary since the reaction functions
of a robot depend on the simple targets assigned to it and can
thus change after simple target exchanges. DefineF ′xr

r̃ (t) :=
Fxr

r̃ (t) for all robotsr̃ ∈ Pxr
\{r}. Let A′ := A\(Pxr

∪Px
r
′
)

if robot r′ is assigned a complex targetxr′ and A′ := A \
(Pxr

∪{r′}) if robot r′ is assigned no complex target. Robot
r calculates itsnet lossnetloss(S, r) of the simple target
exchange as











min
0≤t<∞

∑

r̃∈Pxr

F ′xr

r̃ (t) −
∑

r̃∈Pxr

cr̃ for MiniSum

max(max
r̃∈A′

cr̃, min
0≤t<∞

max
r̃∈Pxr

F ′xr

r̃ (t)) − c for MiniMax.
(3)

If the net loss of the simple target exchange is negative, then
robot r proposes it to robotr′ by sending it the information
〈S, netloss(S, r)〉.
Case 3: If robot r is assigned the same complex target as
robot r′ but has a smaller index number than robotr′, then
robot r recomputes its reaction function for complex target
xr with Formula (2) and proposes the simple target exchange
to robotr′ by sending it the information〈S,F ′xr

r (t)〉.

2. Manager Procedure

If manager robotr′ receives a proposal for a simple target
exchangeS := (r, r′,X,X ′), then letX ′

r′ = Xr′ \ X ′ ∪ X

be the set of simple targets of robotr′ after the simple target
exchange. Robotr then executes the following procedure.

Case 1: If robot r′ is assigned no complex target, then it
calculates itsnet loss netloss(S, r′) of the simple target
exchange with Formula (1). It easy easy to show that

gain(S) = −cteam(netloss(S, r), netloss(S, r′)).

Case 2: If robot r′ is assigned a complex targetxr′ that is
not assigned to robotr, then robotr′ recomputes its reaction
functionF ′xr

′

r (t) for complex targetxr with Formula (2) and
then itsnet lossnetloss(S, r′) of the simple target exchange
with Formula (3). It is easy to show that

gain(S) = −cteam(netloss(S, r), netloss(S, r′)).

Case 3: If robot r′ is assigned the same complex target
as robotr, then robotr′ recomputes its reaction function
F ′xr

r′ (t) for complex targetxr′ = xr with Formula (2).
DefineF ′xr

r̃ (t) := Fxr

r̃ (t) for all robots r̃ ∈ Pxr
\ {r, r′}.

Let A′ := A \ Pxr
. It is easy to show thatgain(S) equals

the value calculated with Formula (3).

Proposition 2: Each profitable simple target exchange for
exchange parameterK is stored by at least one robot.

V. EXPERIMENTAL RESULTS

We now evaluate the benefits of our negotiation procedure
for multi-robot routing problems on known four-neighbor
planar grids of size51× 51 with square cells that are either



Robots Simple Complex Initial K = 0 K = 1 K = 2
Targets Targets Cost Cost Cost Reduction Cost Cost Reduction Cost Cost Reduction

MiniSum Team Objective - Initial Solutions Generated with Random Allocation
4 8 2 566.1 546.0 3.55% 355.7 37.17% 342.2 39.55%
4 18 2 740.6 721.9 2.52% 469.3 36.63% 439.9 40.60%
4 28 2 901.6 882.7 2.10% 552.2 38.75% 511.2 43.30%
6 7 3 618.9 576.3 6.88% 390.8 36.86% 384.5 37.87%
6 17 3 924.5 888.5 3.89% 520.6 43.69% 485.6 47.47%
6 27 3 1150.2 1116.9 2.90% 618.1 46.26% 570.8 50.37%
8 6 4 634.5 585.9 7.66% 428.0 32.55% 423.6 33.24%
8 16 4 1041.2 988.8 5.03% 560.2 46.20% 527.1 49.38%
8 26 4 1352.7 1305.3 3.50% 663.8 50.93% 607.2 55.11%
10 5 5 624.7 579.6 7.22% 443.7 28.97% 439.8 29.60%
10 15 5 1106.8 1044.4 5.64% 590.8 46.62% 563.5 49.09%
10 25 5 1414.6 1345.6 4.88% 695.6 50.83% 654.6 53.73%

MiniSum Team Objective - Initial Solutions Generated with SSI Auctions
4 8 2 362.4 346.3 4.44% 332.0 8.39% 327.6 9.60%
4 18 2 452.7 437.9 3.27% 418.3 7.60% 412.6 8.86%
4 28 2 519.0 500.3 3.60% 478.2 7.86% N/A N/A
6 7 3 399.7 378.9 5.20% 366.8 8.23% 364.8 8.73%
6 17 3 501.5 470.7 6.14% 445.8 11.11% 440.4 12.18%
6 27 3 571.3 532.5 6.79% 504.7 11.66% 498.5 12.74%
8 6 4 435.5 414.8 4.75% 401.6 7.78% 399.5 8.27%
8 16 4 534.4 502.9 5.89% 484.0 9.43% 478.9 10.39%
8 26 4 602.5 563.8 6.42% 537.5 10.79% 529.9 12.05%
10 5 5 459.6 435.6 5.22% 428.4 6.79% 427.5 6.98%
10 15 5 550.1 514.9 6.40% 497.5 9.56% 493.0 10.38%
10 25 5 627.4 586.5 6.52% 562.8 10.30% 554.4 11.64%

MiniMax Team Objective - Initial Solutions Generated with Random Allocation
4 8 2 199.4 180.1 9.68% 120.3 39.67% 116.0 41.83%
4 18 2 238.6 220.9 7.42% 147.0 38.39% 140.9 40.95%
4 28 2 275.7 259.1 6.02% 174.1 36.85% 159.1 42.29%
6 7 3 203.1 171.8 15.41% 96.1 52.68% 94.8 53.32%
6 17 3 233.8 207.9 11.08% 128.9 44.87% 121.2 48.16%
6 27 3 251.6 226.2 10.10% 151.9 39.63% 142.4 43.40%
8 6 4 170.7 137.8 19.27% 85.9 49.68% 83.9 50.85%
8 16 4 226.5 194.7 14.04% 117.0 48.34% 112.6 50.29%
8 26 4 253.4 221.8 12.47% 139.4 44.99% 128.1 49.45%
10 5 5 152.4 120.6 20.87% 76.5 49.80% 76.6 49.74%
10 15 5 216.1 184.6 14.58% 107.9 50.07% 105.3 51.27%
10 25 5 244.7 210.2 14.10% 132.7 45.77% 126.1 48.47%

MiniMax Team Objective - Initial Solutions Generated with SSI Auctions
4 8 2 128.0 117.5 8.20% 110.6 13.59% 109.2 14.69%
4 18 2 155.9 142.0 8.92% 130.8 16.10% 127.6 18.15%
4 28 2 173.0 158.7 8.27% 146.0 15.61% 143.4 17.11%
6 7 3 107.8 90.7 15.86% 85.4 20.78% 84.8 21.34%
6 17 3 126.4 108.6 14.08% 100.6 20.41% 99.2 21.52%
6 27 3 141.3 120.6 14.65% 111.5 21.09% 110.0 22.15%
8 6 4 100.9 79.2 21.51% 76.3 24.38% 76.2 24.48%
8 16 4 117.7 95.9 18.52% 90.5 23.11% 89.1 24.30%
8 26 4 128.3 104.0 18.94% 96.0 25.18% 94.6 26.27%
10 5 5 93.2 69.0 25.97% 67.0 28.11% 67.0 28.11%
10 15 5 110.5 85.0 23.08% 80.2 27.42% 79.3 28.24%
10 25 5 118.3 92.0 22.23% 84.9 28.23% 84.0 28.99%

TABLE I

EXPERIMENTAL RESULTS (N/A MEANS THAT THE RUNTIME THRESHOLD WAS EXCEEDED)



blocked or unblocked. The grids resemble office environ-
ments with randomly closed doors, as shown in Figure 1.
All complex targets need to be assigned to groups of two
robots. Their number is always half the number of robots,
so that every robot visits exactly one complex target. We
iteratively apply our negotiation procedure until it no longer
reduces the team cost of the current solution. We vary the
number of robots from 4, 6, 8, to 10, the number of (simple
and complex) targets from 10, 20 to 30, and the exchange
parameterK from 0, 1 to 2. For each scenario, we average
over 100 samples with randomly chosen cells for the robots
and targets. Each robot needs to solve a version of the
NP-hard traveling salesperson problem with time windows
to calculate its robot cost. We use a version of the Or-
opt heuristic [7] in our experiments to approximate this
calculation. Table I tabulates the team costs of the initial
solutions (“Initial Cost”) generated as described in Section
“Target Allocation with Reaction Functions” as well as the
team costs (“Cost”) and the cost reductions over the initial
solutions in percent (“Cost Reduction”). The data show that
our negotiation procedure can reduce the team costs of the
initial solutions significantly. For example, it reduces the
team costs of the initial solutions generated with Random
Allocation by as much as 55 percent for the MiniSum team
objective and 53 percent for the MiniMax team objective. It
reduces the team costs of the initial solutions generated with
SSI Auctions by as much as 12 percent for the MiniSum team
objective and 29 percent for the MiniMax team objective.

VI. CONCLUSIONS

We studied task-allocation problems where cooperative
robots need to perform tasks simultaneously. We developed
a distributed negotiation procedure that allows robots to
find all task exchanges that reduce the team cost of a
given task allocation, and demonstrated empirically that our
negotiation procedure can substantially reduce the team costs
of task allocations resulting from existing task-allocation
procedures, including sequential single-item auctions. It is
future work to extend our results from disjoint coalitions,
where every robot can perform at most one complex task, to
overlapping coalitions, where some robots can perform more
than one task.
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