
A Lattice-Based Approach to Multi-Robot Motion Planning for
Non-Holonomic Vehicles

Marcello Cirillo1, Tansel Uras2 and Sven Koenig2

Abstract— Coordinating fleets of autonomous, non-holonomic
vehicles is paramount to many industrial applications. While
there exists solutions to efficiently calculate trajectories for
individual vehicles, an effective methodology to coordinate their
motions and to avoid deadlocks is still missing. Decoupled
approaches, where motions are calculated independently for
each vehicle and then centrally coordinated for execution,
have the means to identify deadlocks, but not to solve all
of them. We present a novel approach that overcomes this
limitation and that can be used to complement the deficiencies
of decoupled solutions with centralized coordination. Here, we
formally define an extension of the framework of lattice-based
motion planning to multi-robot systems and we validate it
experimentally. Our approach can jointly plan for multiple
vehicles and it generates kinematically feasible and deadlock-
free motions.

I. INTRODUCTION

Automatically Guided Vehicles (AGVs) have been de-
ployed in large numbers for industrial intra-logistics tasks.
The industry standard approach to the management of fleets
of AGVs still relies on fixed paths [1] and manually specified
traffic rules. This approach presents two drawbacks: First,
traffic rules cannot guarantee deadlock-free coordination,
and, second, even small modifications to the environment
require defining new paths and manually updating the traffic
rules, both of which are costly and inflexible procedures.

Several approaches have been proposed to quickly cal-
culate drivable trajectories for non-holonomic vehicles de-
ployed in the real world [2], [3]. These methods can be
used also in industrial environments, but they are applicable
only to individual vehicles. Multi-robot motion planning is to
date an open research problem. Even under very simplified
assumptions, such as considering robots which move on a
grid in discrete time steps, state-of-the-art optimal algorithms
can handle only a limited number of robots on a relatively
small map. On the other hand, there exists efficient non-
optimal algorithms which can coordinate a large number of
robots [4], but they do not offer guarantees on the quality of
the resulting paths nor on termination time.

Recently, a new solution has been proposed for multi-
robot coordination in industrial environments [5], where
kinematically feasible motions are calculated for each vehicle
independently. These motions are subsequently passed to a
coordinator which assigns time profiles to the paths, resulting
in coordinated trajectories. The approach does not guarantee

1Marcello Cirillo is with the Center for Applied Autonomous Sensor
Systems, Örebro University, Sweden marcello.cirillo@oru.se

2Tansel Uras and Sven Koenig are with the Department of Computer
Science, University of Southern California, USA {turas,skoenig}
@usc.edu

global optimality, but it allows for motions to be calculated
and scheduled online, rather than being manually defined.
More importantly, as the coordinator’s algorithm is complete,
deadlocks can be immediately identified by coordination
failures. The main drawback of the approach is that it does
not allow for spatial backtracking: If coordination fails, it
is not possible to generate new motions which would break
the deadlock, as they can only be calculated independently.
An example of a problem which cannot be temporally
coordinated can be seen in Fig. 4(a): Two vehicles at a
crossing need to swap places. Their individual motions will
completely overlap, thus preventing the coordinator from
finding collision-free trajectories to dispatch them to their
respective destinations. Here, motion planning must consider
the two vehicles jointly to obtain a schedulable solution.

In this paper, we present a new lattice-based multi-robot
motion planner for non-holonomic vehicles which calculates
kinematically feasible motions that are guaranteed to be
schedulable. The planner supports different search algorithms
to explore the state space, namely A∗ and ARA∗, thus
offering guarantees on the quality of the solutions. It can
complement the approach described above: It can be invoked
whenever the central coordinator fails to find valid trajecto-
ries, focusing on those vehicles which caused an unsolvable
deadlock because of spatial overlaps.

Our main contribution is the formal definition of this novel
framework for lattice-based multi-robot motion planning
and the analysis of its formal properties. We also present
techniques to speed up the computation of the plan, and we
validate our approach both in simulation and with real robots.

II. RELATED WORK

Motion planning under differential constraints has been
extensively studied in the past decades [6]. Different families
of sampling-based methods are currently widely used: Prob-
abilistic Roadmaps (PRMs) [7], Rapidly-exploring Random
Trees (RRTs) [8] and lattice-based motion planners [9], all of
which are effective in high-dimensional configuration spaces.
PRMs have two major drawbacks: First, before running
the algorithm, several parameters must be selected (e.g.,
the duration of the learning phase); and, second, a new
roadmap has to be built every time the environment is subject
to substantial changes. After their initial introduction [10],
RRTs have been extensively studied, and many extensions to
the original algorithm have been proposed [11], [12]. RRTs
do not guarantee convergence (termination is usually imple-
mented with a timeout) and, unless the space is analyzed
beforehand, they cannot verify whether a problem offers

no solution. Lattice-based motion planners combine the
strengths of the previous approaches with classical AI graph-
search algorithms, such as A∗, ARA∗ [13] and D∗Lite [14].
Differential constraints are incorporated into the state space
by means of pre-computed motion primitives which trap
the motions onto a regular lattice. The state space is then
explored using efficient graph-search algorithms. The planner
presented here belongs to the lattice-based family, here
extended to solve multi-robot motion planning problems.

Multi-agent path planning is a very active research area. A
considerable part of the work within it focuses on the coordi-
nation of large teams of robots which are not subject to dif-
ferential constraints. Centralized algorithms such as M∗ [15],
an extension of A∗ to multi-robot systems, and “Push and
Swap” [4], a computationally efficient and complete method
for multi-robot path planning, are examples of promising
results in this direction. A partially decentralized approach
has been presented in [16], where agents still move on a
grid, and an overall optimal road map is coupled with local
motions calculated for each robot independently. By contrast,
our algorithm can intrinsically take into account differential
constraints thanks to its lattice-based nature. Approaches
which can consider non-holonomic constraints typically rely
on de-centralized solutions. For instance, the assignment of
priority levels to robots can guarantee fast results. This can
be seen as an improved version of hand-coded traffic rules,
but cannot ensure deadlock-free situations [17]. Desaraju and
How [18] further extend the idea of prioritized path planning,
by substituting priority levels with a merit based token passed
among agents. Our algorithm is centralized and complete, but
could potentially present scalability issues. However, we can
use an external coordinator to identify the smallest groups
of robots whose individual motions are not schedulable [19],
and consider only those for multi-robot motion planning.
Closely related to the problem addressed in this paper are
the control of formations of non-holonomic robots [20] and
motion planning in the presence of dynamic obstacles [21].
Here, instead, we focus on problems where all robots are
controllable and have different goals.

III. OUR APPROACH: THE SINGLE-ROBOT CASE

Given a model of vehicle maneuverability, the intuition
behind lattice-based motion planning is to sample the state
space in a regular fashion and to constrain the motions of
the vehicle to a lattice graph G = 〈V, E〉, that is, a graph
embedded in a Euclidean space Rn which forms a regular
tiling [22]. Each vertex v ∈ V represents a valid pose, or
configuration, of the vehicle, while each edge e ∈ E encodes
a motion which respects the non-holonomic constraints of the
vehicle. Here, since we aim at generating motions to which
a temporal profile will be attached by a central coordinator,
we focus only on the kinematic constraints.
Definition 1. A model m of a vehicle is fully specified by
the tuple 〈d,Θ,Φ, r, P, g〉, where d encodes the geometric
dimensions of the vehicle, Θ a finite set of orientations, Φ a
finite set of steering angles, r the resolution of an R2 regular

grid, P a finite set of allowed motions which respect the
kinematic constraints of the vehicle and g a cost function.

Definition 2. A valid configuration for a vehicle model m =
〈dm,Θm,Φm, rm, Pm, gm〉 is a four-dimensional vector c =
〈x, y, θ, φ〉, where (x, y) lies on a grid of resolution rm,
θ ∈ Θm and φ ∈ Φm.

Pm is the set of motion primitives of vehicle model m,
which captures the mobility of the vehicle while intrinsically
taking into account its kinematic constraints. Under the
assumption of even terrain, we can design Pm to be position-
invariant.1 Pm can be partitioned into subsets Pm,θ,φ, such
that Pm =

⋃
θ∈Θm,φ∈Φm

Pm,θ,φ. In free space, all primitives
of each Pm,θ,φ can be applied to any valid c = 〈x, y, θ, φ〉.
Pm is calculated by using a boundary value problem (BVP)
solver to connect a set of initial configurations c = 〈0, 0, θ, φ〉
to all neighboring states in a discrete, bounded neighborhood
ρ in free space. The BVP solver guarantees that the motions
respect the kinematic constraints of the vehicle, while the
position-invariant property ensures that the primitives are
translatable to other configurations. Pm can then be reduced
for efficiency using the techniques described in [23], by
removing those primitives that can be decomposed into
other primitives in Pm, without affecting the reachability
of the configuration space of the robot in free space. The
full algorithm is described in Procedure PrimGen. The
procedure can be simplified by imposing an 8-axis symmetry
on the primitives, so as to calculate Pm only for subsets of
Θm and Φm, and reconstruct the remaining primitives by
applying simple symmetries. The generation and reduction
processes can be performed offline. Finally, a cost gm(p) is
associated with each p ∈ Pm. In our implementation, gm(p)
is calculated by multiplying the distance covered by p by a
cost factor which penalizes backwards and turning motions.

A planning problem for a single vehicle is fully specified
by the tuple 〈m, cs, cg,map〉, where cs is the start configu-
ration of the vehicle, cg its goal configuration, and map an
occupancy map of the environment with resolution rm in
which all known obstacles are represented. A valid solution
to the problem is a sequence of collision-free primitives
π = (p0, . . . , pn) connecting cs to cg . Given the set Π of
all valid solutions to a problem, an optimal solution πopt is
the one with minimum cost:

πopt = argmin
πi∈Π

∑
pj∈πi

gm(pj)

Starting from cs, the state space can be explored using
efficient graph-search algorithms. In our case, we rely on
A∗ or one of its most efficient anytime versions, ARA∗ [13],
which can provide provable bounds on sub-optimality.

A. Collision Detection

We can perform offline the brunt of the calculations
necessary for collision detection. We define sm : Pm 7→
2Z

2

such that sm(p) denotes the set of cells on a grid of
resolution rm traversed by the footprint of the vehicle when

1This assumption can be relaxed if the low-level controller of the vehicle
can absorb minor perturbations or by means of a post-processing step.

Procedure PrimGen(Θm, Φm, rm, ρ, BVPSolver)
Pm = ∅;1
foreach θ ∈ Θm do2

foreach φ ∈ Φm do3
Pm,θ,φ = ∅;4
c0 = 〈0, 0, θ, φ〉;5
foreach ci = 〈xi, yi, θi, φi〉 ∈ ρ,6

(xi, yi) on grid with res. rm, ci 6= c0 do7
p = BV Pconnect(c0, ci);8
if success then9

Pm,θ,φ = Pm,θ,φ ∪ {p};10

Pm = Pm ∪ Pm,θ,φ;11

reduce(Pm);12
return Pm;13

it executes primitive p in free space starting in position (0, 0).
We can pre-calculate and store the resulting sets for all
p ∈ Pm: Detecting a collision whenever the vehicle is in
a configuration c = 〈0, 0, θ, φ〉 and primitive p is applied
is simply a matter of checking whether all cells in the
set are free in the occupancy map. As the primitives are
position invariant, it is straightforward to calculate online
sm,x,y : Pm 7→ 2Z

2

, such that sm,x,y(p) denotes the set
of cells swept by p when the vehicle starts its motion at
(x, y), and check whether all cells in sm,x,y(p) are free in
the occupancy map.

B. Heuristic Functions

We rely on a combination of different heuristic functions
to guide the search on the lattice. In free space, we employ
two admissible heuristic functions: Euclidean distance and
optimum distance hash table [24]. The hash table is pre-
computed offline: We run a Dijkstra algorithm from selected
starting configurations with a cutoff cost and we store the
optimum configuration-to-configuration costs. The hash table
size is kept small by leveraging the position invariance of
our primitives and the fact that we build them with an 8-axis
symmetry. We also employ a third heuristic function, to be
used in cluttered environments to avoid useless exploration
of the lattice in blocked areas (as in the bug-trap problem).
In these cases, we run a wavefront algorithm from the cell in
the occupancy map which contains cg using 8-neighbor grid
connectivity. We save the distance from the goal in each
cell and we use it to guide the search: The value of this
heuristic function for a configuration is equal to the distance
saved in the cell which contains the configuration. As this
last heuristic function is not necessarily admissible for non-
holonomic vehicles, we use it only in cluttered environments.
The final heuristic value we use in each state is the maximum
of the single heuristic functions described above.

IV. EXTENSION TO MULTI-ROBOT CASE

Single-robot motion planning is not sufficient to solve
problems like the one of Fig. 4(a). To find motions that can be
temporally coordinated, we need to consider the movements
of the two vehicles jointly. We now define a new extension
of the framework of lattice-based motion planning to multi-
robot systems.

Definition 3. A vehicle vi is fully specified by the pair
〈i,mi〉, where i is a unique identifier and mi is the model
of the vehicle.

Note that the above definition entails that we can consider
vehicles with different models and also multiple vehicles
with the same model. In the implementation presented in
this paper, we impose the constraint that all vehicles’ models
have the same resolution r.

Definition 2 still holds in the multi-robot case for each
individual vehicle, but here the state space is not any longer
a lattice graph. Now, each state in the state space represents
a joint configuration of all vehicles:

Definition 4. Given a set of N vehicles, a state is an ordered
set C = {c1, · · · , cN}, where each ci ∈ C is a valid
configuration of vehicle vi and there is no spatial overlap
between any two configurations.

Spatial overlap between configurations can be detected us-
ing the geometric information d (e.g., the vehicle’s footprint),
as defined for each model.

Definition 5. A multi-robot motion planning problem is fully
specified by the tuple 〈V,Cs, Cg,map〉, where:
• V = {v1, · · · vN} is an ordered set of vehicles;
• Cs = {c1s, · · · , cNs } is an ordered set of start configu-

rations, such that cjs is the start configuration of vj;
• Cg = {c1g, · · · , cNg } is an ordered set of goal configu-

rations, such that cjg is the goal configuration of vj;
• map is a grid map of the environment with resolution r

in which all known obstacles are represented.

A valid global solution to a multi-robot motion planning
problem is an ordered set πglob = (π1, · · · , πN) such that,
πi is a valid solution for vehicle vi for every 1 ≤ i ≤ N ,
and there exists at least one valid schedule that avoids
collisions among vehicles. An optimal solution to the multi-
robot motion planning problem is a valid global solution
which minimizes the sum of the costs for all vehicles. In
the following, we explain how we build the state space and
search it to find a valid global solution.

A. Successor Generation

We build the state space of a multi-robot motion
planning problem by moving one vehicle at a time,
while considering the others as obstacles (see Procedure
SuccessorGeneration). Given a multi-robot motion
planning problem with N arbitrarily ordered vehicles, a
state corresponds to a point C = {c1, · · · , cN} in the joint
configuration space, where ci = 〈xi, yi, θi, φi〉 is a valid
configuration for the i-th vehicle. Individually, each vehicle
vi has a set Pmi,θi,φi of applicable primitives. We generate
the successors of a state C̄ = {c̄1, · · · , c̄N} by selecting each
vehicle vi in turn and by applying all primitives in Pmi,θ̄i,φ̄i
to its configuration c̄i, while considering the other vehicles as
obstacles. This entails that, in each successor, all individual
configurations remain unchanged but one and the number of

successors of C̄ is at most
N∑
i=1

|Pmi,θ̄i,φ̄i |.

Procedure SuccessorGeneration(C)
successors = ∅;1
foreach ci ∈ C do2

foreach cj ∈ C, cj 6= ci do3
addObstacle(cj , map);4

foreach p ∈ Pmi,θi,φi do5
c′i = succ(ci, p);6
if p, c′i are collision free then7

C′ = c′i ∪ (
⋃
cj∈C\ci);8

successors = successors ∪ C′;9

foreach cj ∈ C, cj 6= ci do10
removeObstacle(cj , map);11

return successors;12

B. Exploring the State Space

The state space can be explored with any graph-search al-
gorithm. Each vertex v̂ corresponds to a unique state Ĉ in the
joint configuration space. The cost associated with v̂ is equal
to the cost of the shortest known path from Cs to Ĉ, and an
optimal solution is a minimum-cost path from Cs to Cg . In
our implementation, we search the state space using A∗ and
ARA∗ [13]. Note that the single-robot case is a special case
of the multi-robot motion planning problem. Here, we use
the same heuristic functions described in Section III-B, and
the heuristic value of a state is calculated as the sum of the
heuristic values of the individual configurations (the sum of
the individual admissible heuristic functions is admissible).

C. Formal Properties

In the following, we provide proofs of completeness
and correctness for our algorithm under three assumptions.
This means that, under the assumptions below, if a multi-
robot motion planning problem admits a solution, then the
planner will find it, and any valid solution returned will be
schedulable. These assumptions account for the continuous
nature of space and the fact that the algorithm does not
allow for concurrent movements during search: (1) The map
used by the motion planner is appropriately discretized given
the operational conditions of the vehicles; (2) the set of
primitives for each vehicle model is chosen appropriately;
and (3) parallel motions are never required to solve a multi-
robot motion planning problem.2 Under these assumptions:

Lemma 1. (Completeness) Given a multi-robot motion plan-
ning problem the motion planner is complete.

Proof. Completeness follows from the fact that the algorithm
performs a systematic search.

Lemma 2. (Correctness) If the algorithm finds a joint plan
from Cs to Cg , the plan is guaranteed to be schedulable.

Proof. A joint plan extracted from the path in the state space
connecting Cs to Cg corresponds already to a valid schedule.
In the path connecting the two states, each edge represents
the application of a single primitive of an individual vehicle.
Allowing the vehicles to move one at a time and simply

2Such instances correspond to situations in which no vehicle can move
without another vehicle moving concurrently and are exceptional — e.g.,
bumper-to-bumper traffic in a one-lane roundabout.

following the movement order found in the path therefore
constitutes a valid schedule.

Note that the schedule found by the planner is not paral-
lelized, as the calculation of an efficient schedule is delegated
to a subsequent step [19]. To gain an intuition of how the
number of robots affects the run time of the algorithm, we
can reason about how the state space is built and explored.
The branching factor grows linearly with the number of
robots, as, during each expansion, the planner generates a
number of new states equal to the number of robots multi-
plied by the number of applicable primitives for each robot
(Section IV-A). Allowing for concurrent actions could entail
that the branching factor could grow exponentially with the
number of robots. We leave a detailed complexity analysis of
our planner and the exploration of more sophisticated state
expansion strategies for future work.

V. SPEEDING UP THE SEARCH

We designed two methodologies for speeding up the
search, Fast Successor Generation (FSG) and Expansion
Pruning (EP). FSG has been designed to decrease the
computational costs for collision detection while calculating
the set of applicable collision-free primitives, and it can
be beneficial regardless of the number of vehicles in the
planning problem. EP, on the other hand, is applicable only
when the state space encompasses more than one vehicle, and
it is used to identify situations in which we can safely avoid
expansions. Both strategies do not prune valid solutions.

A. Fast Successor Generation

Given a vehicle of model m, when generating successors
for its configuration c = 〈x, y, θ, φ〉, we need to check
for collisions all cells swept by every p ∈ Pm,θ,φ, that
is, the set sm,x,y(p) of cells traversed by the footprint of
the vehicle when it executes primitive p.3 However, this
procedure might result in cells being checked multiple times
in a single expansion. Consider the simplified example in
Fig. 1(a), where Pm,θ,φ = {a, b, c}, and the vehicle’s foot-
print only sweeps the cells that are swept by each primitive,
as shown in the figure. In this case, cell A1 will be checked
three times, once for every primitive that sweeps it. Let
Am,θ,φ =

⋃
p∈Pm,θ,φ sm(p) be the set of cells swept by

at least one primitive p ∈ Pm,θ,φ. FSG guarantees that
each cell is checked at most once, reducing the maximum
number of checks from

∑
p∈Pm,θ,φ |sm(p)| to |Am,θ,φ| at

each expansion. This is because, instead of verifying that
each cell in sm(p) is unblocked for every p, FSG checks
every cell in Am,θ,φ just once and, if obstructed, marks the
primitives that sweep that cell. All primitives left unmarked
are collision free.

To do this efficiently, FSG builds offline a directed acyclic
graph Gm,θ,φ = 〈Vm,θ,φ, Em,θ,φ〉 for each Pm,θ,φ, such that
each vertex v ∈ Vm,θ,φ contains a set of cells Av ⊆ Am,θ,φ
and is uniquely labeled by a set of primitives Pv ⊆ Pm,θ,φ.

3sm,x,y(p) is calculated by retrieving the set sm(p), computed offline,
and offsetting every cell in it by (x, y) – see Section III-A.

Fig. 1. Generation of graph Gm,θ,φ. Here we assume that the footprint of
the vehicle only sweeps the cells that are swept by each primitive. A larger
footprint would result in larger sets of swept cells for each primitive.

We construct Gm,θ,φ as follows (Fig. 1): (1) For each cell
in Am,θ,φ, we calculate the set of primitives that sweep it.
(2) We group together the cells that have the same set of
sweeping primitives. (3) For each group of cells, we create
a vertex v in Gm,θ,φ, such that Av contains exactly the cells
in the group and Pv the primitives sweeping the cells in
Av . (4) For any primitive p ∈ Pm,θ,φ, a vertex v is created
with Pv = {p} and Av = ∅, unless there already exists a
vertex u with Pu = {p}. (5) We add a directed edge (v, u)
to Em,θ,φ from vertex v to vertex u iff Pv ⊂ Pu and there
does not exist a vertex w such that Pv ⊂ Pw ⊂ Pu. By
construction, each cell in Am,θ,φ appears only in one vertex
of Gm,θ,φ, whose maximum depth and maximum number
of vertices are, respectively, |Pm,θ,φ| and |Am,θ,φ|. Given
a vertex v ∈ Vm,θ,φ, if a cell in Av is blocked, none of
the primitives in Pv is applicable. Gm,θ,φ has the following
properties:
• For any v, u ∈ Vm,θ,φ, v 6= u⇒ Av ∩Au = ∅.
• For any edge (v, u) ∈ Em,θ,φ, Pv ⊂ Pu.
• For any v, u ∈ Vm,θ,φ, if u is reachable from v, then
Pv ⊂ Pu.

• For any p ∈ Pm,θ,φ, there exists a v ∈ Vm,θ,φ, such
that Pv = {p} and the union of Au for all vertices u
reachable from v (including v itself) is equal to sm(p).

Given a model m and a configuration c = 〈x, y, θ, φ〉,
FSG uses Gm,θ,φ to compute the set of applicable collision-
free primitives as follows: (1) All the vertices v ∈ Vm,θ,φ
are marked as unblocked. (2) Each vertex v ∈ Vm,θ,φ is
processed in decreasing order of |Pv|; v is marked as blocked
iff ∃(v, u) ∈ Em,θ,φ, where u is marked as blocked, or
∃(x′, y′) ∈ Av , where (x + x′, y + y′) corresponds to an
obstacle on the map (offset by (x, y) as the vehicle starts its
motion in c = 〈x, y, θ, φ〉). (3) For each unblocked vertex v
with |Pv| = 1 the corresponding primitive is collision free.

Intuitively speaking, marking a vertex v as blocked means
that none of the primitives p ∈ Pv is collision-free. This is
ascertained by first checking if there exists any other vertex u
such that (v, u) ∈ Em,θ,φ and u has been marked as blocked,
in which case v should also be marked as blocked, as Pv ⊂
Pu. Next, if v has not been marked as blocked, the algorithm
checks the cells in Av . If any of them contains an obstacle,

Fig. 2. Example of a multi-robot motion planning problem, where Cs =
{A0, B0} and Cg = {A2, B3}. The solution is πglob = (πA, πB), where
πA = (pA0 , p

A
1) and πB = (pB0 , p

B
1 , p

B
2).

v is marked as blocked because all of the primitives p ∈ Pv
sweep that cell. The order in which the vertices are processed
guarantees that, when v is processed, any vertex u with Pv ⊂
Pu has already been processed. When a vertex v is marked
as blocked, this is propagated down to any vertex u with
Pu ⊂ Pv . Hence, if a vertex v with Pv = {p} is marked as
unblocked when the procedure terminates, p is collision-free.

B. Expansion Pruning

EP is a technique to reduce the number of successors
generated during each expansion while exploring the state
space in a multi-robot motion planning problem. We have
defined the solution to such a problem as a set of sequences
of primitives πglob = (π1, . . . , πN), where each πi repre-
sents the individual plan of vehicle i and is of the form
(pi0, . . . , p

i
n), where pij is the j-th primitive for vehicle i.

As a successor of a state in our state space is the result of
the application of a single primitive of one vehicle, starting
from Cs there are different but equivalent ways to reach Cg ,
according to the order in which the vehicles move.

Let us consider the example in Fig. 2. Here, the start state
is Cs = {A0, B0}, the goal state Cg = {A2, B3} and the
two individual plans πA = (pA0 , p

A
1) and πB = (pB0 , p

B
1 , p

B
2)

constitute a valid solution. However, in the state space, there
are different yet equivalent paths which lead from Cs to Cg
and the extracted πA and πB are equivalent. As a path in
the state space is a sequence of single-vehicle moves, two
valid paths to reach the solution are (pA0 , p

A
1 , p

B
0 , p

B
1 , p

B
2) or

(pA0 , p
B
0 , p

A
1 , p

B
1 , p

B
2). Note that (pB0 , p

A
0 , p

B
1 , p

A
1 , p

B
2) is not

a valid path in the state space, as after motion pB1 , vehicle B
is in configuration B2, and hence an obstacle for motion pA1 .
In all these paths in the state space, the resulting individual
plans πA and πB are identical, as is the cost of the global
solution. Our joint state space presents a large number of
symmetries which slow down the search process, as our
algorithm might try to generate a state multiple times. EP
breaks some of these symmetries and reduces the number of
successor states generated at each expansion.
Definition 6. A path in the state space is a sequence of
primitives γ = (p0, . . . , pK) where each pi is executed by a
single vehicle v(pi). A path γ is valid iff there exists in the
state space a sequence of states (C0, . . . , CK+1) such that
each primitive pi is applicable in state Ci and connects Ci
with state Ci+1. Two paths in the state space are equivalent

iff, for each vehicle, the sub-sequences of the primitives of
this vehicle are identical for both paths.

Definition 7. Given a bijective function pri : v → N
which assigns a unique priority value to each vehicle v,
two consecutive primitives pi and pi+1 in a valid path γ =
(p0, . . . , pK) are swappable iff pri(v(pi+1)) > pri(v(pi))
and γ′ = (p0, . . . , pi−1, pi+1, pi, pi+2, . . . , pK) is valid.

Definition 8. A valid path γ = (p0, . . . , pK) in the state
space is sorted, iff for all i with 1 ≤ i ≤ K−1, pi and pi+1

are not swappable, unsorted otherwise.

Theorem 1. For any valid unsorted path in the state space,
there is an equivalent valid sorted path in the state space.

Proof. We prove this theorem by construction. Given a
valid unsorted path in the state space γ, we can swap
any swappable pair of primitives, until no more swaps are
possible. Due to the priority requirements for a swap, there
cannot be any cycles in the swapping process. Therefore,
it is guaranteed to terminate. A swap can never change the
relative order of moves performed by a single vehicle, as it
requires pri(v(pi+1)) > pri(v(pi)) nor add or remove prim-
itive instances from γ. Therefore, a swap always generates
an equivalent valid path in the state space.

Theorem 1 guarantees that we can prune any valid path in
the state space that contains a swappable pair of primitives,
as the equivalent valid sorted path will not be pruned.

EP works as follows. For each state C in the state space,
with the exception of Cs, we record the primitive p that
was applied to generate it. When expanding C, we avoid
to generate successors by applying any p′ which could
create a swappable pair with p. Checking whether p and p′

are swappable can be costly, as it requires two potentially
costly checks: Whether the configuration of v(p) before
executing p blocks v(p′) from executing p′, and whether
the configuration of v(p′) after executing p′ blocks v(p)
from executing p. Because of the computational overhead
that accurate checks would require, EP quickly identifies
situations where we can safely avoid generating successors
for a vehicle altogether. More specifically, suppose state C
is being expanded, which resulted from the application of
primitive p executed by vehicle v(p). We check for each
vehicle vi if pri(vi) ≤ pri(v(p)). If this is the case, any
application of a primitive p′ where v(p′) = vi moves is, by
definition, not swappable with p. Otherwise, we check the
distances between vi and the location of v(p) both before
and after the execution of p. If both distances are above
the mutual interference range of the vehicles, that is, if they
are larger than the sum of the maximum distances that each
vehicle could traverse by applying one primitive, p could be
swapped with any p′ such that v(p′) = vi and we can avoid
considering vehicle vi in the expansion of state C.

VI. EXPERIMENTAL EVALUATION

We evaluated our planner in four experimental setups. The
first three, Free Space, Crossing and Independent Rooms,
were run in simulation and were designed to test the plan-
ner’s capabilities in specific settings. The fourth scenario was

Fig. 3. Free Space scenario: Computation times to find optimal solutions
when one or two vehicles are deployed. Each bar aggregates the results of
50 test runs. Note that the y axis is in logarithmic scale.

part of a broader evaluation of a complete AGV manage-
ment system with real robots. In all experiments, we used
three models, which represent two different car-like vehicles:
SnowWhite (Fig. 6(a)), a lab version of an industrial AGV,
and a Linde CiTi Truck (Fig. 6(b)), a retro-fitted industrial
forklift. The set of primitives for each model was calculated
and automatically reduced in size as described in Section III.
• SW1: model based on SnowWhite. |ΘSW1| = 8,
|ΦSW1| = 1, |PSW1| = 224, grid rSW1: 0.2 meters.

• SW3: model based on SnowWhite. |ΘSW3| = 8,
|ΦSW3| = 3, |PSW3| = 736, grid rSW3: 0.2 meters.

• CT1: model based on Linde CiTi Truck. |ΘCT1| = 16,
|ΦCT1| = 1, |PCT1| = 2136, grid rCT1: 0.2 meters.

A. Free Space

We tested our planner in a simulated 20 by 20 meters
obstacle-free space, using SW1. We performed two sets of 50
test runs each. In each set we deployed, respectively, one and
two vehicles in the environment, with randomly chosen start
and goal configurations. We repeated each run four times:
In the first run, we did not use any method to speed up the
search, in the second and third run, we used EP and FSG,
respectively, and in the fourth run, we used EP and FSG. The
search algorithm employed was A∗, to find optimal solutions.
The aggregated execution times are plotted in Fig. 3, where
the central mark of each bar is the median, the edges are
the 25th and 75th percentiles, the whiskers extend to the
most extreme data points not considered outliers and outliers
are plotted individually. Most of the single-vehicle instances
were solved in less than 10 ms, while when two vehicles
were present at the same time, the median time rose to
between 100 and 1000 ms. Here, while FSG speeds up
the computation, EP does not contribute to lowering the
execution times. This is so because the two vehicles often
move close to each other and the simple checks performed
by EP are not sufficient to prune the number of expansions,
while requiring extra time to be calculated.

B. Crossing

In this scenario two vehicles maneuver to pass a crossing.
The simulated environment has a size of 10 by 10 meters

(b)

(c)

(a)

Fig. 4. Crossing scenario. 4(a): Starting configurations in one of the test
runs. 4(b): Schedulable joint plan for the two vehicles. 4(c): Aggregate
results for the computation times.

and the vehicles’ start and goal configurations are placed
at one of the ends of the corridors. We performed 11 test
runs, without repeating symmetric start/goal combinations.
Fig. 4(a) shows the start configurations of one of the runs,
where the vehicles are required to swap places: The solution
found by the planner ensures that one of the vehicles moves
aside to let the second one pass (Fig. 4(b)). We repeated the
same test runs with two different models, SW1 and SW3, and
we explored the state space using A∗. The resulting execution
times are presented in Fig. 4(c). They are consistent with the
previous scenario: FSG speeds up the computation (the y axis
in Fig. 4(c) is in logarithmic scale), while EP is ineffective
when the vehicles move in close quarters. The calculation of
the joint plans required less than a second, even when we
used model SW3 with a |PSW3| = 736.

C. Independent Rooms

This scenario is intended to test the performance of the
planner when the motions of individual vehicles which are
far apart are calculated jointly. The test scenario is a 40 by
40 meter area divided into four separated rooms. We tested
the planner with an increasing number of vehicles, from 1
to 4, using both SW1 and SW3. For each combination of
vehicle model and number of vehicles, we performed 50 test
runs, where the start and goal configurations of each vehicle
were randomly chosen in separate rooms and, therefore,
their motions would most likely not overlap. We used A∗

as search algorithm, setting a timeout of 180 seconds per
run because the size of the state space could lead to lengthy
computations. We then measured the percentage of instances

Fig. 5. Independent Rooms: Aggregated results for the computation times.

Vehicles Baseline EP FSG EP+FSG
1 100% 100% 100% 100%
2 92% 96% 92% 96%
3 32% 40% 32% 40%
4 4% 2% 6% 2%

TABLE I
INDEPENDENT ROOMS: INSTANCES SOLVED FOR MODEL SW1.

Vehicles Baseline EP FSG EP+FSG
1 100% 100% 100% 100%
2 74% 80% 74% 80%
3 20% 30% 20% 30%
4 0% 0% 0% 0%

TABLE II
INDEPENDENT ROOMS: INSTANCES SOLVED FOR MODEL SW3.

in which the algorithm provided a solution. As can be seen
from the results in Tables I and II (for models SW1 and SW3,
respectively), EP produced the best results in terms of solved
instances, as its simple expansion pruning technique could be
effectively applied. The results also reflect the fact that the
state space increases with the size of |Pm|. Fig. 5 presents
the aggregated computation times over solved instances when
the planner is used with FSG and EP.

D. Multi-Robot Motion Planning on a Deployed System

Our final scenario is part of an extensive evaluation of
a complete AGV management system, where the planner
was used in conjunction with a coordinator [19], [25]. The
evaluation was performed in an area comprising several
rooms and corridors (Fig. 6(b)). The first part of the eval-
uation consisted of the continuous coordination of the two
vehicles to reach arbitrarily chosen goal configurations. The
individual motions were calculated in less than 200 ms by
the planner using model CT1, then scheduled and executed.
The overall system proved to be robust to delays, as the
scheduler could dynamically adjust the temporal profiles of
the trajectories. A more challenging part of the evaluation
consisted of two vehicles switching places. Here, the planner
was invoked to calculate the necessary joint maneuvers, and
it took less than one second to generate the two motions
shown in continuous red lines in Fig. 6(c). The coordinator
then calculated a valid temporal profile for them, in which the
two vehicles move in parallel to reach their final destinations.
This can be seen in the attached video and in Fig. 6(d),

(a) (b)

(c) (d)
Fig. 6. Deployed system. 6(a),(b): SnowWhite, a scaled lab version of an
industrial AGV, and a Linde CiTi Truck, a retro-fitted autonomous industrial
forklift. 6(c),(d): the planner calculated a joint plan for two vehicles, so as
to allow them to switch places.

where the z axis encodes the time at which each vehicle is
scheduled to be at specific points.

VII. CONCLUSIONS AND FUTURE WORK

We presented a new framework which extends lattice-
based motion planning for non-holonomic vehicles to multi-
robot systems. Our framework generates kinematically fea-
sible joint motions for multiple vehicles. The motions are
guaranteed to be schedulable to become collision-free trajec-
tories. We presented two novel techniques which speed up
the calculation by decreasing the computational cost of col-
lision checking and by reducing the number of unnecessary
state expansions. We have tested our approach in simulation
and described a test case with real robots, where our planner
is integrated into a full AGV management system. Our work
opens up many avenues for future research. First, we intend
to provide a full complexity analysis of our approach and
to compare it with other approaches. We will investigate
different techniques for exploring the state space, inspired
by existing algorithms for multi-agent path planning, e.g.,
M∗ [15]. We also intend to further refine our Expansion
Pruning technique, so as to increase its effectiveness. Finally,
we intend to generalize our approach to more sophisticated
representations of the environment.

ACKNOWLEDGMENTS
The research at Örebro University was supported by project “Safe

Autonomous Navigation” (SAUNA), funded by the Swedish Knowledge
Foundation (KKS). Research at USC was supported by NSF under grant
IIS-1319966 and ONR under grant N00014-09-1-1031. The views and
conclusions contained in this document are those of the authors and should
not be interpreted as representing the official policies, either expressed or
implied, of the sponsoring organizations, agencies or the U.S. government.

REFERENCES

[1] J. Marshall, T. Barfoot, and J. Larsson, “Autonomous underground
tramming for center-articulated vehicles,” Journal of Field Robotics,
vol. 25, no. 6-7, pp. 400–421, 2008.

[2] C. Urmson, J. Anhalt, D. Bagnell, C. Baker, R. Bittner, M. Clark,
J. Dolan, D. Duggins, T. Galatali, C. Geyer, et al., “Autonomous
driving in urban environments: Boss and the urban challenge,” Journal
of Field Robotics, vol. 25, no. 8, pp. 425–466, 2008.

[3] S. Thrun, M. Montemerlo, H. Dahlkamp, D. Stavens, A. Aron,
J. Diebel, P. Fong, J. Gale, M. Halpenny, G. Hoffmann, et al., “Stanley:
The robot that won the DARPA grand challenge,” Journal of Field
Robotics, vol. 23, no. 9, pp. 661–692, 2006.

[4] R. Luna and K. E. Bekris, “Push and swap: Fast cooperative path-
finding with completeness guarantees,” in Proc. of the 22nd Int. Joint
Conf. on AI (IJCAI), 2011.

[5] F. Pecora, M. Cirillo, and D. Dimitrov, “On mission-dependent coor-
dination of multiple vehicles under spatial and temporal constraints,”
in Proc. of the IEEE/RSJ Int. Conf. on Intelligent Robots and Systems
(IROS), 2012.

[6] S. M. LaValle, Planning Algorithms. Cambridge, U.K.: Cambridge
University Press, 2006.

[7] L. Kavraki, P. Svestka, J. Latombe, and M. Overmars, “Probabilistic
roadmaps for path planning in high-dimensional configuration spaces,”
IEEE Trans. on Robotics and Autom., vol. 12, no. 4, pp. 566–580,
1996.

[8] S. M. LaValle, “Rapidly-exploring random trees: A new tool for path
planning,” Oct. 1998, TR 98-11, Computer Science Dept., Iowa State
University.

[9] M. Pivtoraiko and A. Kelly, “Fast and feasible deliberative motion
planner for dynamic environments,” in Proc. of the ICRA Workshop
on Safe Navigation in Open and Dynamic Environments: Application
to Autonomous Vehicles, 2009.

[10] S. M. LaValle and J. J. Kuffner, “Rapidly-exploring random trees:
Progress and prospects,” in Algorithmic and Computational Robotics:
New Directions, B. R. Donald, K. M. Lynch, and D. Rus, Eds.
Wellesley, MA: A K Peters, 2001, pp. 293–308.

[11] S. Karaman and E. Frazzoli, “Sampling-based algorithms for optimal
motion planning,” The Int. Journal of Robotics Research, vol. 30, no. 7,
pp. 846–894, 2011.

[12] E. Szadeczky-Kardoss and B. Kiss, “Extension of the rapidly exploring
random tree algorithm with key configurations for nonholonomic
motion planning,” in Proc. of the IEEE Int. Conf. on Mechatronics
(ICM), 2006.

[13] M. Likhachev, G. Gordon, and S. Thrun, “ARA*: Anytime A* with
provable bounds on sub-optimality,” Advances in Neural Information
Processing Systems, vol. 16, 2003.

[14] S. Koenig and M. Likhachev, “D* lite,” in Proc. of the National Conf.
on Artificial Antelligence (AAAI), 2002.

[15] G. Wagner and H. Choset, “M*: A complete multirobot path planning
algorithm with performance bounds,” in Proc. of the IEEE/RSJ Int.
Conf. on Intelligent Robots and Systems (IROS), 2011.

[16] A. Kleiner, D. Sun, and D. Meyer-Delius, “ARMO: Adaptive road
map optimization for large robot teams,” in Proc. of the IEEE/RSJ
Int. Conf. on Intelligent Robots and Systems (IROS), 2011.

[17] A. ter Mors, “Conflict-free route planning in dynamic environments,”
in Proc. of the IEEE/RSJ Int. Conf. on Intelligent Robots and Systems
(IROS), 2011.

[18] V. Desaraju and J. How, “Decentralized path planning for multi-agent
teams in complex environments using rapidly-exploring random trees,”
in Proc. of the IEEE Int. Conf. on Robotics and Autom. (ICRA), 2011.

[19] M. Cirillo, T. Uras, S. Koenig, H. Andreasson, and F. Pecora, “Inte-
grated motion planning and coordination for industrial vehicles,” in
Proc. of the 24th Int. Conf. on Automated Planning and Scheduling
(ICAPS), 2014.

[20] J. P. Desai, J. P. Ostrowski, and V. Kumar, “Modeling and control
of formations of nonholonomic mobile robots,” IEEE Transactions on
Robotics and Autom., vol. 17, no. 6, pp. 905–908, 2001.

[21] A. Kushleyev and M. Likhachev, “Time-bounded lattice for efficient
planning in dynamic environments,” in Proc. of the IEEE Int. Conf.
on Robotics and Autom. (ICRA), 2009.

[22] M. Pivtoraiko, R. A. Knepper, and A. Kelly, “Differentially constrained
mobile robot motion planning in state lattices,” Journal of Field
Robotics, vol. 26, no. 3, pp. 308–333, 2009.

[23] M. Pivtoraiko and A. Kelly, “Kinodynamic motion planning with state
lattice motion primitives,” in Proc. of the IEEE/RSJ Int. Conf. on
Intelligent Robots and Systems (IROS), 2011.

[24] R. A. Knepper and A. Kelly, “High performance state lattice planning
using heuristic look-up tables,” in Proc. of the IEEE/RSJ Int. Conf. on
Intelligent Robots and Systems (IROS), 2006.

[25] F. Pecora and M. Cirillo, “A constraint-based approach for multiple
non-holonomic vehicle coordination in industrial scenarios,” in Proc.
of the ICAPS 2012 Workshop on Combining Task and Motion Planning
for Real-World Applications (TAMPRA), 2012.

