
PREPRINT - Accepted at the IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), 2023.

Task Assignment, Scheduling, and Motion Planning for Automated
Warehouses for Million Product Workloads

Christopher Leet1, Chanwook Oh1, Michele Lora1,2, Sven Koenig1, Pierluigi Nuzzo1

Abstract— We address the Warehouse Servicing Problem
(WSP) in automated warehouses, which use teams of mobile
robots to move products from shelves to packaging stations.
Given a list of products, the WSP amounts to finding a motion
plan which brings every product on the list from a shelf to a
packaging station within a given time limit. The WSP consists
of four subproblems, namely, deciding where to source and
deposit a product (task formulation), who should transport
each product (task assignment) and when (scheduling) and how
(motion planning). These problems are NP-Hard individually
and made more challenging by their interdependence. The
difficulty of the WSP is compounded by the scale of automated
warehouses, which use teams of hundreds of agents to transport
thousands of products. In this paper, we present Contract-
based Cyclic Motion Planning (CCMP), a novel contract-based
methodology for solving the WSP at scale. CCMP decomposes a
warehouse into a set of traffic system components. By assigning
each component a contract which describes the traffic flows it
can support, CCMP can generate a traffic flow which satisfies
a given WSP instance. CCMP then uses a novel motion planner
to transform this traffic flow into a motion plan for a team of
robots. Evaluation shows that CCMP can solve WSP instances
taken from real industrial scenarios with up to 1 million
products while outperforming other methodologies for solving
the WSP by up to 2.9×.

I. INTRODUCTION

An automated warehouse uses a team of mobile robots to
transfer products from its shelves to its packaging stations.
Over the last decade, automated warehouses have become
widely used in industrial logistics and e-commerce. Today,
companies such as Amazon use teams of hundreds of robots
to transport products across large warehouse complexes [1].
To orchestrate an automated warehouse, a warehouse oper-
ator must solve the Warehouse Servicing Problem (WSP).
In the WSP, we are given a warehouse layout and a list
of products termed a workload and asked to find a plan
for a team of robots which brings every product on the list
to a packaging station within a given timeframe. The WSP
consists of four interdependent subproblems:
1) Task Formulation. What shelf should each product be

sourced from, and what station should it be taken to?
2) Task Assignment. What tasks should a robot perform?
3) Scheduling. When should a robot perform its tasks?

1University of Southern California, Los Angeles, California, USA.
{cjleet|chanwooo|skoenig|nuzzo}@usc.edu

2University of Verona, Verona, Italy – michele.lora@univr.it
This research was supported in part by the National Science Foundation

(NSF) under Awards 1846524 and 2139982, the Office of Naval Research
(ONR) under Award N00014-20-1-2258, the Defense Advanced Research
Projects Agency (DARPA) under Award HR00112010003, the Okawa
Research Grant, and Siemens under the USC Center for Autonomy and
Artificial Intelligence. The project has also received funding from the
European Union’s Horizon 2020 research and innovation program under
the Marie Skłodowska-Curie grant agreement No. 894237.

4) Motion Planning. How should a robot execute its tasks?
The WSP is challenging because of the interdependence

of its subproblems and because of the scale of automated
warehouses. Task formulation, task assignment, and schedul-
ing are discrete space problems, while motion planning is
a continuous space problem. The interdependence of these
subproblems requires techniques from dissimilar domains to
be combined. Task assignment and scheduling are NP-Hard
while motion planning is PSPACE-Hard [2]. Thus, solving
these problems at scale is difficult. Their interdependence
only increases this challenge.

Due to these challenges, existing methodologies that
perform task assignment, scheduling, and motion planning
concurrently can only scale beyond tens of robots and tens of
tasks at the cost of conservative, discrete-space abstractions
of the continuous dynamics [3], [4]. Automated warehouse
operators, however, routinely use teams of hundreds of robots
to service workloads with 100,000s of products [1]. The
question: “Is it possible to solve the WSP at scale?” is thus
both open and highly relevant.

We answer this question in the affirmative by introducing
a new methodology for solving the WSP: Contract-based
Cyclic Motion Planning (CCMP). CCMP uses a traffic
system to structure the high-level movement of traffic in a
warehouse. The structure provided by a traffic system allows
CCMP to construct a motion plan based on a traffic cycle set.
A traffic cycle associates a cycle of roads in a traffic system
with a set of robots. These robots circle the traffic cycle,
picking up products from its source road and depositing them
at its destination road. A cyclic approach is appropriate for
the WSP since it consists of a large number of similar tasks.

CCMP computes a traffic cycle set using Assume-
Guarantee (A/G) contracts [5], [6], [7]. The constraints that
the traffic system framework places on the rate that robots
can enter and leave each junction are compiled into A/G
contracts. The rate that each product must be deposited at the
warehouse’s stations is also compiled into an A/G contract.
A logical solver is used to find a traffic flow that satisfies
these contracts. This traffic flow is then decomposed into a
set of traffic cycles. CCMP then finds a motion plan for each
robot which moves it around its traffic cycle.

Prior work [4] has applied contract-based planning to a
variant of the WSP where a warehouse is modeled as a grid
and robots as idealized agents which move between grid cells
using discrete actions. CCMP extends this methodology to
robots with realistic kinematics with the following novelties:
1) A formal framework for augmenting an automated ware-

house modeled in continuous space with a traffic system.
2) A system of A/G contracts capturing traffic patterns that

this traffic system can support.

PREPRINT - Accepted at the IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), 2023.

3) A motion planner which can convert a traffic cycle set
synthesized using these contracts into a motion plan.

The evaluation shows that CCMP can solve instances of
the WSP taken from real industrial scenarios whose workload
contains 1 million products. CCMP outperforms existing
methodologies by up to 2.9×.

II. RELATED WORK

This paper presents the first methodology that concurrently
performs task formulation, task assignment, scheduling, and
motion planning in automated warehouses. Prior work, how-
ever, has studied sub-cases of this problem.

Motion planning for teams of robots has been extensively
studied. Prior work can be grouped into three classes:
fully centralized planners, such as prioritized planners [8],
decentralized planners, such as collision-avoidance-based
planners [9], and partially decentralized planners, such as
Probabilistic Roadmap Planning [10].

Many variants of the multi-robot task assignment and
scheduling problem have also been studied. We limit our
focus to the single task (ST) robots, single robot (SR)
tasks, time extended allocation (TA) problem since it closely
relates to our work. Approaches to the ST-SR-TA problem
include auction-based methods [11], where tasks are auc-
tioned to robots through a bidding process, optimization-
based methods [12], which formulate the SR-ST-TA problem
as a mixed-integer linear programming problem, and trait-
based methods [3], which encodes task requirements in terms
of traits. Planners which perform motion planning and task
assignment jointly include reactive motion planning [13],
symbolic planning [12] and tree-based planning [3]. None
of these approaches, however, incorporates task formulation
or has been scaled to a million tasks.

Multi-Agent Path Finding (MAPF) is a highly related field.
MAPF planners model a workspace such as a warehouse
as a grid graph and robots as idealized agents which move
between vertices with discrete actions. Extensive work has
been done on MAPF [14]. Simple MAPF variants include
lifelong MAPF [15], where an agent must visit a sequence of
goal vertices. A highly scalable contract-based methodology
for solving the WSP within a path planning framework,
Contract-based Cyclic Path Planning CCPP [4], has been
proposed. Converting a plan for idealized robots into a plan
for realistic robots, however, degrades the quality of the plan
substantially. One highly related MAPF problem, the Multi-
Agent Pickup and Delivery (MAPD) problem has also been
studied [16]. Solved variants include lifelong MAPD [17],
where a task is not revealed until its release time, and
deadline-aware MAPD [18], where each task has a deadline.
None of these planners, however, have been shown to scale
far beyond 100 agents.

III. PROBLEM FORMULATION

Warehouse. A warehouse W := (W,S,B,ρ,λ) is repre-
sented as a 5-tuple containing the following elements:
1) Floorplan W ⊂ R2. The open space in warehouse W .
2) Shelves S := ⟨S1, S2, . . .⟩ ⊂ (R2 −W)|S|. The ith shelf

in warehouse W occupies the space Si. A shelf is an
obstruction, and so, for all Si ∈ S, Si ⊂ R2 − W .

Fig. 1. An example warehouse.

Two shelves may not overlap. The open space that the
products in shelf Si can be accessed from is termed shelf
Si’s shelf access space and denoted ACCESS(Si) ⊂ W .

3) Stations B := ⟨B1, B2, . . .⟩ ⊂ W |B|. The ith station
in warehouse W occupies the space Bi. A station is
navigable, and so, for all Bi ∈ B, Bi ⊂ W . Two stations
may not overlap.

4) Products ρ := ⟨ρ1, ρ2, . . .⟩. A list of the products in
warehouse W .

5) Location Matrix λ. A |ρ| × |S| matrix where λk,l ∈ N0

is the number of units of product ρk in shelf Sl.

Example. Fig. 1 shows a warehouse with 8 shelves S =
⟨S1, . . . S8⟩ and 1 station B = ⟨B1⟩. Shelves are accessed
from the east and the west. The shelf access areas of (a)
shelf S2 and S3 and (b) shelf S6 and S7 overlap.

Robots. Products are moved through an automated ware-
house by a team of mobile robots r := ⟨r1, r2, . . .⟩. A robot
ri is modeled as a rigid disk of radius b which moves in the
plane. The configuration space C of a robot is thus R2 × S,
where S is the set of angles. A configuration of robot ri is
defined as qi := (xi, yi, θi). The position (xi, yi) of a robot
ri uses the center of its disk as a reference point. The motion
of a robot ri is modeled as obeying first-order differential
constraints. A robot ri thus has state zi := (qi, q̇i) where
q̇i is the derivative of the robot’s configuration qi. The state
space of a robot is Z := R2 × S× R3.

A robot ri is actuated with the action vector ui ∈ U ⊂ Rα.
The state transition equation żi = f̃(zi,ui) describes how
applying an action vector ui ∈ U to a robot ri in state
zi changes the state of robot ri. Robots are homogeneous,
that is, all robots have the same action space U and state
transition function f̃ . The dynamics of a robot are position
invariant and load invariant, that is, the state transition
function of a robot ri neither depends on the position of
the robot nor the product it is carrying.

Plan. A length T plan (s, ũ) for a team of robots is a pair
of vectors where si ∈ s is the start state assigned to robot ri
and ũi ∈ ũ such that ũi : [1, T] → U is the action trajectory
assigned to robot ri. The action vector applied to robot ri at
time t ∈ [1, T] is denoted ũi(t). The state trajectory that a
length T plan moves robot ri along is denoted z̃i : [1, T] →
Z . The state and configuration of robot ri at a particular time
t ∈ [1, T] are denoted z̃i(t) and qi(t) := (xi(t), yi(t), θi(t))
respectively. A length T plan is safe if and only if:

(1) a robot never collides with the environment, that is, a
robot’s disk always occupies free space:

∀ t ∈ [0, T], ∀ ri ∈ r,

{(x′, y′) : ||⟨x′ − xi(t), y
′ − yi(t)⟩|| ≤ b} ⊂ W.

PREPRINT - Accepted at the IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), 2023.

Fig. 2. High-level workflow.

(2) robots never collide with each other. Two robots collide
if their centers are distance b or less apart.

∀ t ∈ [0, T], ¬∃ ri, rj ∈ r :

||(xi(t), yi(t))− (xj(t), yj(t))|| ≤ b.

Warehouse Servicing Problem. A workload w :=
⟨w1, . . . , wn⟩ is a vector where wk indicates the units of
product ρk that must be brought to a station. A robot brings
a product ρk to a station by (a) moving to the shelf access
area of a shelf containing product ρk, (b) picking up a unit
of product ρk, (c) moving to a station, and (d) depositing
the product. A robot can only carry one unit of product at
a time. Picking up a product ρk from a shelf Sl decrements
the units λk,l of product ρk available at Sl. A length T plan
services workload w if and only if it is safe and it brings wk

units of each product ρk ∈ ρ to the warehouse’s stations.
Problem 3.1 (Warehouse Servicing Problem): Given a

warehouse W , a workload w, and a time limit T , find a
plan of length T or less with an arbitrary number of robots
which services workload w.

IV. OVERVIEW

We synthesize a motion plan for a given WSP instance
using the workflow shown in Fig. 2. This workflow has three
stages: traffic system design, traffic cycle set synthesis, and
motion plan synthesis.

Traffic System Design. To use CCMP, warehouse operators
must construct traffic systems for their warehouse. A traffic
system consists of junctions, connected by a set of line
segments called roads. The center of a robot must always
be on a road or a junction.

A road behaves similarly to a one-way road in a city.
Robots enter a road at its inlet junction and move with-
out backtracking to its outlet junction. A junction behaves
similarly to an all-way junction in a city. Each junction is
associated with a lock. A robot can only enter a junction
when it holds that junction’s lock. Locks are awarded to the
robot that has been waiting for the longest, breaking ties
arbitrarily. Figure 3 shows a traffic system for the example
warehouse. Junctions are depicted as black dots, and roads
are depicted as black arrows. A road’s arrowhead indicates
the direction that robots must move.

CCMP’s traffic system framework formally states rules
that an operator must obey when designing a traffic system
layout and that a robot must obey when moving through a
traffic system. These rules prevent collisions, ensure that a

Fig. 3. A traffic system for the example warehouse.

robot can access any shelf or station in the warehouse from
any point in the traffic system, and ensure that no robot has
to wait indefinitely to access a junction or road.

Traffic Cycle Set Synthesis. CCMP solves a WSP instance
by constructing a traffic cycle set Σ := {σ1, σ2, . . .} which
satisfies that instance. A traffic cycle:

σi := (ROBOTS(σi), ROADS(σi), SRC(σi), DST(σi), ρ(σi))

associates a set of b robots ROBOTS(σi) with a cycle of b
roads ROADS(σi). One of these roads is designated as traffic
cycle’s source road SRC(σi) and another as its destination
road DST(σi). A traffic cycle’s robots circle its cycle of
roads, picking up units of product ρ(σi) from its source road
and depositing them at its destination road.

A traffic cycle set is associated with a cycle time tc.
Every tc timesteps, each robot advances one road. Thus a
traffic cycle set delivers a unit of product ρ(σi) from its
source road’s shelves to its destination road’s stations once
every tc timesteps. A traffic cycle set’s cycle time must be
long enough for every robot to advance on the road while
possibly picking up or depositing a product. An overly long
cycle time, however, degrades solution quality. The optimal
cycle time length depends on the length of a road and the
kinodynamics of the robots.

A traffic cycle set is computed as follows. First, CCMP
computes a traffic plan. A traffic plan lists the number of
robots carrying each product ρi ∈ ρ that enter and leave
each junction and road each cycle period. A traffic plan is
computed using A/G contracts. The constraints the traffic
system framework sets on the number of robots that can
enter and leave each road and junction each cycle period are
compiled into contracts. The number of units of each product
that must be deposited at the warehouse’s stations each cycle
period to satisfy the WSP is also compiled into a contract. A
traffic plan which satisfies these contracts is computed and
then decomposed into cycles.

Motion Plan Synthesis. A motion plan is synthesized for
each robot using a finite state machine which moves it around
its traffic cycle at the rate of one road per cycle period,
picking up and depositing products where appropriate.

V. TRAFFIC SYSTEM DESIGN

The traffic system framework formally defines a traffic
system, describes constraints that its layout must follow, and
specifies rules that a robot in a traffic system must obey.

Traffic System. A warehouse traffic system (J ,R) is a set
J := {J1, J2, . . .} of points called junctions connected by a
set R of line segments called roads. Each road starts at an
inlet junction and ends at an outlet junction. Junctions are
labeled numerically: J := {J1, J2, . . .}. Roads are labeled

PREPRINT - Accepted at the IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), 2023.

Fig. 4. The envelope of each road and overlap area of each junction in
the example traffic system.

with their inlet junction and outlet junction. The road Rij has
inlet junction Ji and outlet junction Jj . Robots are confined
to the traffic system. At any time t, the center (xi(t), yi(t))
of a robot ri must lie on a junction or road:

∀ ri ∈ r, ∀ t ∈ [0, T], (xi(t), yi(t)) ∈
⋃

Jj∈J

Jj ∪
⋃

Rkl∈R

Rkl.

Layout Constraints. Traffic system layout constraints en-
sure that a robot cannot collide with the environment or a
robot on a different road and can access every shelf and
station. Collisions with the environment are prevented by
constraining the position of a road by its envelope. The
envelope ENVELOPE(Rij) of a road Rij is the set of points
that a robot traversing the road passes through. Since a robot
is a disc of radius b, the envelope of a road Rij contains every
point distance b or less from a point on the road:

ENVELOPE(Rij) :=
⋃

(x,y)∈Rij

{(x′, y′) : ||⟨x′ − x, y′ − y⟩|| ≤ b}.

The envelope of a road must only contain open space:

∀ Rij ∈ R, ENVELOPE(Rij) ⊂ W.

The envelopes of two roads which do not share a junction
may not overlap. Let the overlap area OVERLAP(Ji) of
junction Ji be the set of points contained by two or more
roads with an endpoint at junction Ji. If

⋃
H is the union

of the elements in the set H , we have:

OVERLAP(Ji) :=
⋃

{ENVELOPE(Rjk) ∩ ENVELOPE(Rlm) :

Rji, Rik ∈ RIN(Ji) ∪ ROUT(Ji)}.

Fig. 4 illustrates the envelope of each road and the overlap
area of each junction in the example traffic system when it
is populated by disc-shaped robots with radius b. Envelopes
are depicted in blue and overlap areas in red.

To prevent robots from colliding in a junction overlap area,
each junction is associated with a lock. To enter a junction’s
overlap area, a robot must hold the junction’s lock. Only one
robot may hold a junction’s lock at a time. To avoid robots
waiting to access a junction indefinitely, a junction’s lock
is awarded on a first come first served basis. Collectively,
these constraints ensure that a robot cannot collide with the
environment or a robot on a different road.

A robot can access a station Bj from any point on a
road which intersects the station and is not in a junction
overlap area. There must therefore be an intersection point
outside of a junction overlap area between any station Bj in
a warehouse and some road Ri in a traffic system:

∀ Bj ∈ B,∃ Ri ∈ R, (Bi ∩Rj) ̸⊆
⋃

Jk∈J

OVERLAP(Jk).

Fig. 5. Synthesizing a traffic plan using contracts.

An analogous rule holds true for each shelf access area.
A traffic system must provide a way to reach any road or
junction from any other road or junction. A robot can thus
travel to any shelf or station in the traffic system.

Robot Motion Constraints. The framework’s robot motion
constraints prevent robots on the same road from colliding.
They state that a robot must remain a safe distance, dsep,
behind the robot in front. Let the capacity CAPACITY(Rij)
of road Rij be the maximum number of agents that can
occupy road Rij when: (a) all robots are at least distance
dsep from their neighbors and (b) no robot intersects a
junction overlap area. If the road is in n traffic cycles, at
most 2n robots may occupy the road during each cycle
period. To prevent collisions, a road may not be in more
than ⌊CAPACITY(Rij)/2⌋ traffic cycles. All roads must have
a capacity of at least 2.

VI. TRAFFIC CYCLE SET SYNTHESIS

A traffic cycle set is computed by generating a traffic plan
and then decomposing it into a set of traffic cycles.

Traffic Plan. A traffic plan (nin,nout) specifies the
number of robots which enter and leave each junction and
road carrying each product during each cycle period. Let
nin
ijk and nout

ijk be the number of robots that enter and leave
road Rij carrying product ρk each cycle period, respectively.
Robots which are not carrying a product are modeled as
carrying the null product ρ0. It follows that the number of
robots which enter and leave junction Ji carrying product ρk
each cycle period is:∑

Rji∈RIN(Ji)

nout
jik and

∑
Rij∈ROUT(Ji)

nin
ijk.

Traffic Plan Synthesis. A traffic plan is synthesized using
A/G contracts. A road Rij assumes that the number of robots
entering it each cycle period is constrained. A road Rij

guarantees that the number of robots exiting it each cycle
period is constrained. These constraints are compiled into
an A/G contract C(Rij) termed a road contract (Fig. 5,
yellow). A junction Ji also makes assumptions and provides
guarantees about the number of robots entering and leaving
it each cycle period. These assumptions and guarantees are
compiled into a junction contract C(Ji) (Fig. 5, blue). Each
road and junction contract is composed into a traffic system
contract CTS (Fig. 5, green) which constrains the types of
traffic plan that a traffic system can support, i.e.,

CTS :=
[⊗
Ji∈J

C(Ji)
]
⊗
[⊗
Rij∈R

C(Rij)
]
.

The number of units of each product ρk that the team of
robots must deposit at a station during each cycle period in
order to service a given WSP instance is compiled into a

PREPRINT - Accepted at the IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), 2023.

workload contract Cw (Fig. 5, red). A traffic plan which
satisfies the conjunction of the traffic system contract and
workload contract is synthesized. If no such traffic plan
exists, the given WSP instance cannot be solved by CCMP.

Junction Contract. Let tx(Ji) be the maximum time that it
takes a robot to cross a junction. Recall that tc is the length
of a cycle period. A junction contract assumes that at most
tc/tx(Ji) robots enter a junction Ji each cycle period:∑

Rji∈RIN(Ji)

nout
jik ≤ tc

tx(Ji)
.

A junction contract guarantees that the same number of
robots carrying a product ρk enter and leave a junction Ji
each cycle period:

∀ ρk ∈ ρ,
∑

Rji∈RIN(Ji)

nout
jik =

∑
Rij∈ROUT(Ji)

nin
jik.

Road Contract. Road Rij’s contract assumes that at most
⌊CAPACITY(Rij)/2⌋ robots enter the road each cycle period:∑

ρk∈ρ

nin
ijk ≤

⌊
CAPACITY(Rij)

2

⌋
.

Road Rij’s contract has the following guarantees. Let nc be
the maximum number of cycle periods in time T :

nc :=
T

tc
.

Let sijk be the units of product ρk sourced from road Rij’s
shelves each cycle period. Let road Rij contain Λijk units
of product ρk at time t = 0. No more than Λijk/nc units of
product ρk can be sourced from road Rij each cycle period:

sijk ≤ Λijk

nc
.

A product can only be picked up by an unburdened robot.
The total number of products sourced from road Rij each
cycle period must be less than the number of unburdened
robots entering road Rij each cycle period:∑

ρk∈ρ

sijk ≤ nin
ij0.

No more than nout
ijk units of product ρk can be deposited

at road Rij’s stations each cycle period. If dijk is the units
of product ρk deposited at road Rij each cycle period, then:

dijk ≤ nout
ijk .

A robot cannot appear or disappear. Thus, in a cycle
period, the number of robots leaving road Rij carrying
product ρk is equal to:
1) the number of robots entering Rij carrying product ρk
2) plus the number of robots picking up product ρk in Rij

3) minus the number of robots depositing product ρk in Rij

∀ρk ∈ ρ, nout
ijk = nin

ijk + sijk − dijk.

An analogous equation can be written which relates the
number of unburdened robots entering and leaving road Rij :

nout
ij0 = nin

ij0 −
∑
ρk∈ρ

sijk +
∑
ρk∈ρ

dijk.

Fig. 6. The variables used by the motion planning FSM.

Workload Contract. A workload contract Cw has no
assumptions. It guarantees that the units of product ρk
deposited at a station each cycle period is greater than
wk/nc. Recall that wk is the demand for product ρk and
nc is the number of cycle periods executable in time T :

∀ ρk ∈ ρ,
∑

Rij∈R

dijk ≥ wk

nc
.

Synthesis Implementation. The above contracts are used
to generate a formula in propositional logic augmented with
arithmetic constraints over the non-negative integers, which
is solved using a satisfiability modulo theory (SMT) solver
to produce a traffic plan for a given WSP instance.

Traffic Cycle Set Synthesis. Let a road path p :=
⟨Rij , Rjk, . . .⟩ be a sequence of roads such that the outlet
junction of each road is the inlet junction of its successor.
By construction, a traffic plan (nin,nout) has properties:

Property 6.1: There is a set of road paths Pk for each
product ρk ∈ ρ such that nin

ijk and nout
ijk paths in Pk enter

and leave the road Rij .
Property 6.2: There is a set of road paths P0 such that

nin
ij0 and nout

ij0 paths in P0 enter and leave the road Rij .
These properties imply that there is a bijection B̃ : P0 →⋃
ρk∈ρ Pk for any traffic plan such that if road path p ∈ P0

is mapped to road path p′ ∈
⋃

ρk∈ρ Pk, the first road in path
p is the same as the last road in path p′ and vice versa. Each
cycle in a traffic cycle set Σ is synthesized from a traffic
plan by concatenating each pair of paths p 7→ p′ ∈ B̃:

Σ := {pp′ : p 7→ p′ ∈ B̃}.

VII. MOTION PLAN SYNTHESIS

Motion planning computes an action trajectory for each
robot which causes the robot to circle its traffic cycle at
the rate of one road per cycle period, picking up products
at its source road and depositing them at its destination
road. An action trajectory is computed by using a finite state
machine (FSM) to generate instructions. An instruction is
a function which takes a robot’s state and a small number
of additional parameters and returns a short instruction
action trajectory. A robot executes its instructions’ action
trajectories in sequence. Thus, a robot’s action trajectory is
formed by concatenating its instruction action trajectories.

A. Instructions
An instruction can either be a primitive instruction or

a derived instruction. A primitive instruction has a self-
contained definition. A derived instruction computes a set of
parameters and then passes these parameters to a primitive
instruction. An instruction assumes that a robot rk is initially
stationary, that is, has q̇k = 0, and guarantees that a robot
will be stationary after it is executed. As a result, instructions
can be combined in any order.

PREPRINT - Accepted at the IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), 2023.

Fig. 7. A motion controller implementing the MV instruction.

Primitive Instructions. There are three primitive instruc-
tions. The instruction:
1) WAIT(t) instructs a robot to wait for t seconds.
2) ORIENT(Rij) instructs a robot to rotate on the spot until

it is oriented in the same direction as road Rij .
3) MV(Rij , (x, y)) instructs a robot to move along road Rij

to the point (x, y) without colliding with the robot in
front. It assumes that the point (x, y) is on road Rij and
is closer to road Rij’s outlet junction than the robot.

There are many ways to implement the instruction
MV(Rij , (x, y)). One possible implementation is as follows.
Let the distance from road Rij’s inlet junction Ji to:
1) robot rk be d.
2) robot rk’s goal position (x, y) be dgoal.
3) the position of the robot on road Rij in front of robot rk

be dlead. If no such robot exists, dlead = ∞.
Let dsep be the distance that robot rk should maintain
between itself and the robot in front for safety. Fig. 6
illustrates these variables. The instruction MV(Rij , (x, y))
can be implemented using the motion controller shown in
Fig. 7. The left PID block finds the speed ḋdesired that robot
rk should move along road Rij at to reduce the error signal

min(dgoal, dlead − dsep)− d

to 0 as quickly as possible. If the robot ahead of robot rk
is distance dsep or more beyond the point (x, y), the PID
controller sets d to dgoal, moving robot rk to the point
(x, y). Otherwise, the PID controller sets d to dlead − dsep,
holding robot rk distance dsep behind the robot in front. The
right PID block finds an acceleration d̈, which minimizes the
difference between robot rk’s desired and actual speed.

Derived Instructions. The following instructions are de-
rived from the primitive instructions. The instruction:
1) MVTOSHELF(Rij , ρl) moves a robot on the road Rij to

the nearest point where road Rij intersects the access
area of a shelf containing product ρl.

2) MVTOSTATION(Rij) moves a robot on road Rij to the
nearest point where road Rij intersects a station.

3) WAITFORLOCK(Ji) makes a robot wait until it has ac-
quired the lock Ji. Recall that each junction is associated
with a lock, and that a robot may not enter the junction’s
overlap area until it acquires this lock.

B. Motion Planning FSM

The sequence of instructions that a robot rk executes is
generated by the state machine shown in Fig. 8. Each FSM
state is depicted in yellow. The condition and operations
associated with an FSM transition are depicted in red and
blue, respectively. Default transitions, transitions taken by
a robot when it does not satisfy any other transition’s
condition, have the condition ∗.

Fig. 8. The motion planning FSM.

Fig. 9. The envelope of each road and overlap area of each junction in
the example traffic system.

Let σ := (ROBOTS(σ), ROADS(σ), SRC(σ), DST(σ), ρ(σ))
be the traffic cycle that a robot rk is part of, that is, rk ∈
ROBOTS(σ). Recall that a robot in traffic cycle σ transports
product ρ(σ) from the shelves in the source road SRC(σ)
to the stations in the destination road DST(σ) via the cycle
of roads ROADS(σ). Let Rij be the road that robot rk is
traversing. When robot rk is at road Rij’s inlet junction Ji,
robot rk is in the state ATINLET. If road Rij is:
1) robot rk’s source road, robot rk moves to the nearest

shelf containing the product ρ(σ) and waits for its arm
to pick up a unit of this product (Fig. 8 1⃝).

2) robot rk’s destination road, robot rk moves to the nearest
shelf containing the product ρ(σ) and waits for its arm
to put down a unit of this product (Fig. 8 2⃝).

3) neither, robot rk takes no action (Fig. 8 3⃝).
Robot rk then transitions to the state MVADJTOOUTLET.
We say that robot rk is adjacent to the outlet junction Jj
of road Rij if it is as close to junction Jj as it is possible
to be without entering the junction’s overlap area. A robot
adjacent to the outlet junction of a road is shown in Fig. 9
4⃝. Let ADJTOOUTLET(Rij) be the point on road Rij that a
robot is at when it is adjacent to road Rij’s outlet junction:

ADJTOOUTLET(Rij) := argmin
(x,y)∈(Rij\OVERLAP(Jj))

||(x, y)− Jj ||.

In the state MVADJTOOUTLET, robot rk moves adjacent to
road Rij’s outlet and then transitions to the state ADJTOOUT-
LET (Fig. 8 4⃝).

A robot may only advance one road in its traffic cycle each
cycle period. Let t be the current time and tadv be the time

PREPRINT - Accepted at the IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), 2023.

Fig. 10. (top) The automated warehouse map WAREHOUSE1. (bottom)
The sorting center map SORTINGCENTER.

that robot rk last advanced. If robot rk has advanced after the
start of the current cycle period (at time ⌊t/tc⌋ · tc), robot rk
waits until the next cycle period starts (at time tnextCycle :=
(⌊t/tc⌋ + 1) · tc) (Fig. 8 5⃝). Otherwise, robot rk waits to
acquire the lock to road Rij’s outlet junction Jj . When this
lock has been acquired, robot rk moves to junction Jj , sets
Rij to the next road in its road cycle and orients itself in the
direction of this road. Robot rk then updates the time tadv it
advanced last and returns to the state ATINLET (Fig. 8 6⃝).

Example. Fig. 9 shows a robot executing the FSM on
its destination road. The robot starts off at the road’s inlet
junction. First, the robot moves to the nearest station 1⃝ and
then waits long enough for its arm to deposit the product it
is carrying 2⃝. Next, the robot moves adjacent to the road’s
outlet junction 3⃝ and waits to acquire the junction’s lock
4⃝. When the robot acquires the junction’s lock, it moves to

the junction 5⃝ and orients itself in the direction of the next
road in its traffic cycle 6⃝.

VIII. EVALUATION

Our evaluation compares CCMP’s scalability and solution
quality to the state of the art on real industrial scenarios.

Implementation. CCMP is implemented as an automatic
toolchain. Junction contracts, road contracts, and the work-
load contract are compiled and composed in Python 3.11, and
a traffic plan satisfying these contracts is synthesized using
Gurobi [19]. This traffic plan is converted into a traffic cycle
set and the traffic cycle set into a motion plan using modules
written in Python 3.11.

Scenarios. We evaluate CCMP on two real industrial
scenarios: a Kiva (now Amazon Robotics) automated ware-
house [20] and a package sorting center [21].

Automated Warehouse. Evaluations are conducted on two
warehouse maps [20]: WAREHOUSE1, a map with 280
shelves and 4 stations, and WAREHOUSE2, a map with 240
shelves and 10 stations. The map WAREHOUSE1 is depicted
in Fig. 10 (top).

Sorting Center. Evaluations are also conducted on a sort-
ing center scenario. A sorting center sorts packages by
destination. A sorting center contains chutes and bins of
packages. Each chute leads to a shipping container bound

for a unique destination. A robot sorts a package by ferrying
it from a bin to the chute associated with its destination.
Bins are typically assumed to contain an unlimited number
of packages. The goal is to fill the shipping containers before
they are scheduled to leave the warehouse.

We model this problem as a WSP as follows. Let each bin
be modeled as a station. Let the ith chute be modeled as a
shelf containing unlimited units of product ρi. Let ni be the
number of packages that must be brought to the ith chute.
A WSP instance is generated where the demand for each
product ρi ∈ ρ is ni. Solving this WSP instance produces a
motion plan which brings ni units of product ρi from the ith
chute to the bins of products. Swapping the locations where
robots pick up and drop off products generates the desired
solution. We evaluate CCMP on the map SORTINGCENTER,
depicted in Fig. 10 (bottom). It has 28 chutes and 4 bins.

Robot Model. A robot is modeled as a tricycle robot whose
wheels have a maximum speed of 1 m/s and a maximum
acceleration of 1 m/s2.

Benchmarks. We evaluate CCMP against three benchmark
planners taken from the literature: Contract-based Cyclic
Path Planning (CCPP) [4], a contract-based planner, iter-
ated Explicit Estimation Conflict Based Search (iterated
EECBS) [14], a bounded-suboptimal search based planner
and Rolling Horizon Collision Resolution (RHCR) [15],
another bounded-suboptimal search based planner. Since
neither iterated EECBS nor RHCR can perform task formu-
lation, these planners were asked to find a motion plan where
each robot visits the same sequence of shelves and stations
as it did in CCMP’s plan. CCPP, iterated EECBS and RHCR
model a warehouse’s floorplan as a grid graph and robots as
idealized agents which move between vertices using move in-
structions. The sequences of instructions that these planners
generate are converted into a motion plan using the MV(),
ORIENT() and WAIT() instructions described in Section VII-
A. An attempt to benchmark CCMP against ORCA [9],
a collision-avoidance-based motion planner, failed because
ORCA cannot handle the one-robot-wide corridors found in
the automated warehouse maps.

Experimental Hardware. Each evaluation was performed
on a 2.6 GHz Intel(R) Core i7-10705H CPU with 32 GB of
RAM in a Ubuntu 20.04 VM run on Windows 11.

Experiments. CCMP and the benchmark planner were run
on WSP instances whose workload contained 102, 103, 104,
105 and 106 products on each of the three benchmark maps.
Each planner was asked to find a motion plan which took less
than 3.6× the number of products in the workload minutes,
that is, 3.6 ·

∑
ρk∈ρ wk minutes to execute. Each planner was

given 2 minutes to begin to move the robots. The planner was
then expected to move the robots in real time until execution
finished.

Results. Table I lists the WSP instances that each planner
was and was not able to solve. Table II lists the length
of the motion plan generated by each benchmark planner
on selected WSP instances as a multiple of the length of
CCMP’s motion plan. Iterated EECBS and RHCR, the
bounded-suboptimal search-based planners, could slightly
outperform CCMP because a traffic system did not constrain
their motion plans. The space of solutions to the WSP

PREPRINT - Accepted at the IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), 2023.

TABLE I
THE WSP INSTANCES THAT CCMP AND THE BENCHMARK PLANNERS

WERE AND WERE NOT ABLE TO SOLVE.

Planner Products in Workload
102 103 104 105 106

A
W

1

CCMP ✓ ✓ ✓ ✓ ✓
CCPP ✓ ✓ ✓ ✓ ✓
EECBS ✓ ✗ ✗ ✗ ✗
RHCR ✓ ✗ ✗ ✗ ✗

A
W

2

CCMP ✓ ✓ ✓ ✓ ✓
CCPP ✓ ✓ ✓ ✓ ✓
EECBS ✓ ✗ ✗ ✗ ✗
RHCR ✓ ✗ ✗ ✗ ✗

S
O

R
T

C CCMP ✓ ✓ ✓ ✓ ✓
CCPP ✓ ✓ ✓ ✓ ✓
EECBS ✓ ✓ ✗ ✗ ✗
RHCR ✓ ✓ ✗ ✗ ✗

TABLE II
THE LENGTH OF THE PLAN GENERATED BY EACH OF THE BENCHMARK

PLANNERS AS A MULTIPLE OF THAT OF CCMP.

Scenario Performance
CCPP EECBS RHCR

AW1 (102 products) 2.8× 0.85× 0.87×
AW1 (106 products) 2.5× N/A N/A
AW1 (102 products) 1.7× 0.91× 0.92×
AW2 (106 products) 2.4× N/A N/A
SORTC (102 products) 2.5× 0.95× 0.83×
SORTC (106 products) 2.9× N/A N/A

that these planners have to search grows exponentially
with workload size, however, preventing these solvers from
scaling beyond 102 products on the automated warehouse
maps. CCPP, conversely, scales as well as CCMP because
it also uses contract-based planning. CCPP, however, plans
for idealized agents moving on a grid. Converting CCPP’s
plan for idealized robots into a plan for realistic robots
substantially degrades CCPP’s solution quality. Converting
CCPP’s plan for idealized robots to a plan for realistic
robots produces a relatively low-quality solution. CCPP’s
plan consists of a sequence of discrete movements between
neighboring grid cells. Converting this discrete space
plan to continuous space causes robots to start and stop
unnecessarily. Additionally, since all robots have to finish
movement associated with one time step before movement
associated with the next time step can begin, robots may
have to wait for other robots to finish turning before starting
to move again. These factors lead CCMP to outperform
CCPP by 2.9x.

IX. CONCLUSIONS

We introduced CCMP, a methodology to solve the WSP at
scale. CCMP models the warehouse as a traffic system made
of multiple components, each specified by a contract. It then
exploits an ILP solver to generate traffic flows that satisfy
the contracts and a novel motion planner to convert them
into plans for a team of robots. CCMP was implemented a
Python toolchain which leveraged the Gurobi logical solver.
Evaluated on real industrial scenarios with up to 1 million
products, CCMP outperformed comparable methodologies
by up to 2.9×.

REFERENCES

[1] E. Ackerman, “Amazon Uses 800 Robots to Run This Warehouse,”
https://spectrum.ieee.org/amazon-introduces-two-new-warehouse-
robots, IEEE Spectrum, 2021, accessed: 16-May-2022.

[2] S. M. LaValle, Planning Algorithms. Cambridge U. Press, 2006.
[3] G. Neville, A. Messing, H. C. Ravichandar, S. A. Hutchinson, and

S. Chernova, “An interleaved approach to trait-based task allocation
and scheduling,” in The IEEE/RSJ International Conference on Intel-
ligent Robots and Systems. IEEE Press, 2021, pp. 1507–1514.

[4] C. Leet, C. Oh, M. Lora, S. Koenig, and P. Nuzzo, “Co-Design of
Topology, Scheduling, and Path Planning in Automated Warehouses,”
in 2023 Design, Automation Test in Europe Conference Exhibition
(DATE), 2023, pp. 1–6.

[5] A. Benveniste, B. Caillaud, D. Nickovic, R. Passerone, J.-B. Raclet,
P. Reinkemeier, A. Sangiovanni-Vincentelli, W. Damm, T. A. Hen-
zinger, and K. G. Larsen, “Contracts for system design,” Foundations
and Trends® in Electronic Design Automation, vol. 12, no. 2-3, pp.
124–400, 2018.

[6] P. Nuzzo, A. Sangiovanni-Vincentelli, D. Bresolin, L. Geretti, and
T. Villa, “A platform-based design methodology with contracts and
related tools for the design of cyber-physical systems,” Proc. IEEE,
vol. 103, no. 11, Nov. 2015.

[7] P. Nuzzo, M. Lora, Y. A. Feldman, and A. L. Sangiovanni-
Vincentelli, “CHASE: Contract-based Requirement Engineering for
Cyber-Physical System Design,” The Design, Automation & Test in
Europe Conference & Exhibition, pp. 839–844, 2018.

[8] J. P. van den Berg and M. H. Overmars, “Prioritized Motion Planning
for Multiple Robots,” The International Conference on Intelligence
Robots and Systems, pp. 430–435, 2005.

[9] J. van den Berg, S. Guy, M. Lin, and D. Manocha, “Reciprocal n-Body
Collision Avoidance,” Robotics Research. Springer Tracts in Advanced
Robotics, vol. 70, pp. 3–19, 2011.

[10] L. E. Kavaraki, P. Svestka, J.-C. Latombe, and M. H. Overmars,
“Probabilistic Roadmaps for Path Planning in High-Dimensional Con-
figuration Spaces,” IEEE Trans. on Robotics and Automation, vol. 12,
no. 4, pp. 566–580, 1996.

[11] S. Giordani, M. Lujak, and F. Martinelli, “A Distributed Multi-Agent
Production Planning and Scheduling Framework for Mobile Robots,”
Computers and Industrial Engineering, vol. 64, no. 1, p. 19–30, 2013.

[12] G. A. Korsah, B. Kannan, B. Browning, A. Stentz, and M. B. Dias,
“xBots: an Approach to Generating and Executing Optimal Multi-
robot Plans with Cross-Schedule Dependencies,” The International
Conference on Robotics and Automation, p. 115–122, 2012.

[13] A. Javier, J. A. DeCastro, R. Vasumathi, D. Rus, and H. Kress-Gazit,
“Reactive mission and motion planning with deadlock resolution
avoiding dynamic obstacles,” Auton. Robots, vol. 42, no. 4, p. 801–824,
2018.

[14] J. Li, W. Ruml, and S. Koenig, “EECBS: A bounded-suboptimal
search for multi-agent path finding,” The AAAI Conference on Artificial
Intelligence, vol. 35, pp. 12 353–12 362, 2021.

[15] J. Li, A. Tinka, S. Kiesel, J. W. Durham, S. T. K. Kumar, and
S. Koenig, “Lifelong Multi-Agent Path Finding in Large-Scale Ware-
houses,” in The AAAI Conference on Artificial Intelligence, 2021, pp.
11 272–11 281.

[16] M. Liu, H. Ma, J. Li, and S. Koenig, “Task and Path Planning
for Multi-Agent Pickup and Delivery.” The Joint Conference on Au-
tonomous Agents and Multi-Agent Systems, pp. 11 560–11 565, 2019.

[17] H. Ma, W. Honig, T. K. Satish, N. Ayanian, and S. Koenig, “Lifelong
Path Planning with Kinematic Constraints for Multi-Agent Pickup
and Delivery.” The AAAI Conference on Artificial Intelligence, p.
7651–7658, 2019.

[18] X. Wu, Y. Liu, X. Tang, W. Cau, F. Bai, G. Khonstantine, and
G. Zhao, “Multi-Agent Pickup and Delivery with Task Deadlines.”
The International Symposium on Combinatorial Search, p. 206–208,
2021.

[19] Gurobi Optimization, LLC, “Gurobi Optimizer Reference Manual,”
2023. [Online]. Available: https://www.gurobi.com

[20] P. R. Wurman, R. D’Andrea, and M. Mountz, “Co-ordinating Hun-
dreds of Cooperative, Autonomous Vehicles in Warehouses,” in The
AAAI Conference on Artificial Intelligence, 2007, p. 1752–1760.

[21] Q. Wan, C. Gu, S. Sun, M. Chen, H. Huang, and X. Jia, “Lifelong
Multi-Agent Path Finding in a Dynamic Environment,” in The Interna-
tional Conference on Control, Automation, Robotics and Vision, 2018,
p. 875–882.

