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Abstract

Many kinds of algorithms have been developed for solving
the weighted constraint satisfaction problem (WCSP), a com-
binatorial optimization problem that frequently appears in AI.
Unfortunately, its NP-hardness prohibits the existence of an
algorithm for solving it that is universally efficient on clas-
sical computers. Therefore, a peek into quantum computers
may be imperative for solving the WCSP efficiently. In this
paper, we focus on a specific type of quantum computer,
called the quantum annealer, which approximately solves
quadratic unconstrained binary optimization (QUBO) prob-
lems. We propose the first three hybrid quantum-classical al-
gorithms (HQCAs) for the WCSP: one specifically for the
binary Boolean WCSP and the other two for the general
WCSP. We experimentally show that the HQCA based on
simple polynomial reformulation works well on the binary
Boolean WCSP, but the HQCA based on the constraint com-
posite graph works best on the general WCSP.

Introduction
The constraint satisfaction problem (CSP) is a well-known
combinatorial optimization problem that has been used to
model many important tasks in artificial intelligence (AI),
such as map coloring, automated planning, scheduling and
model-based diagnosis (Russell and Norvig 2009). It con-
sists of a finite set of discrete-valued variables and con-
straints. Each constraint is defined over a subset of variables
and consists of a finite number of tuples, each of which for-
bids a specific assignment of values to these variables. A
solution is a complete assignment of values to all variables
from their respective domains that is not forbidden by any
constraint.

Despite the wide adoption of the CSP, it lacks the ability
to model preferences. The weighted CSP (WCSP) (Bistarelli
et al. 1999) was proposed to address this problem. It is a
well-known combinatorial optimization problem that gener-
alizes the CSP so that the constraints are no longer “hard.”
Instead, each tuple in a constraint—i.e., an assignment of
values to all variables in that constraint—is associated with a
non-negative weight (sometimes referred to as “cost”). The
objective is to find a complete assignment of values to all
variables from their respective domains that minimizes the
total weight (Bistarelli et al. 1999).

The WCSP has been used to model useful combinatorial
problems for many real-world applications. For example, in
AI, it has been used to model user preferences (Boutilier et
al. 2004). In bioinformatics, it has been used to locate RNA
motifs (Zytnicki, Gaspin, and Schiex 2008). In statistical
physics, it has been used to model the energy minimization
problem on the Potts model, equivalent to that on its corre-
sponding pairwise Markov random field (Yedidia, Freeman,
and Weiss 2003). In computer vision, it has been used for
image restoration and panoramic image stitching (Boykov,
Veksler, and Zabih 2001; Kolmogorov 2005).

Formally, the WCSP is defined by a triplet 〈X ,D, C〉,
where X = {X1, X2, . . . , XN} is a set of N variables,
D = {D(X1), D(X2), . . . , D(XN )} is a set of N domains
with discrete values, and C = {C1, C2, . . . , CM} is a set
of M weighted constraints. Each variable Xi ∈ X can
be assigned a value in its associated domain D(Xi) ∈ D.
Each constraint Ci ∈ C is defined over a certain subset of
the variables S(Ci) ⊆ X , called the scope of Ci. Ci as-
sociates a non-negative weight with each possible assign-
ment of values to the variables in S(Ci). The objective is
to find a complete assignment of values to all variables in
X from their respective domains that minimizes the sum
of the weights specified by each constraint in C (Bistarelli
et al. 1999). This combinatorial optimization objective
can equivalently be characterized by having to compute
arg mina∈A(X )

∑
Ci∈C ECi(a|S(Ci)), where A(X ) repre-

sents the set of all |D(X1)|×|D(X2)|×. . .×|D(XN )| com-
plete assignments of values to all variables in X . a|S(Ci)
represents the projection of a complete assignment a onto
the subset of variables in S(Ci). ECi is a function that maps
each a|S(Ci) to its associated weight in Ci.

The WCSP is known to be NP-hard. A WCSP instance
is binary iff each constraint in it involves no more than two
variables. A WCSP instance is Boolean iff each variable in it
is Boolean. The binary Boolean WCSP is also NP-hard. Un-
fortunately, the NP-hardness of the (binary Boolean) WCSP
prohibits the existence of an algorithm for solving it that
is universally efficient on classical computers. Therefore, a
peek into quantum computers may be imperative for solving
the WCSP efficiently.

Theoretical studies in physics suggest that quantum com-



puters are inherently more efficient than classical comput-
ers, thanks to the unique features in quantum processes. For
example, the integer factorization problem can be solved ef-
ficiently by Shor’s algorithm (Shor 1994) on quantum com-
puters but is not known to admit an efficient classical al-
gorithm. Among all types of quantum computer hardware,
the quantum annealer is perhaps the most widely used type
nowadays due to the commercial availability of its physical
realization. The quantum annealer solves combinatorial op-
timization problems using a quantum process called quan-
tum annealing. It has been shown that quantum annealing is
more advantageous than some classical algorithms on some
classes of problems (Rieffel and Polak 2014).

In reality, quantum annealing processors have only been
available as the so-called “D-Wave processors” (D-W
2017). They can only take the Ising problem, equivalent to
the quadratic unconstrained binary1 optimization (QUBO)
problem, as input. Therefore, to solve a combinatorial op-
timization problem other than the Ising problem, such as
the WCSP, a reformulation process on classical computers
is required. Such an algorithm is called a hybrid quantum-
classical algorithm (HQCA). Currently, there exist many
HQCAs for constraint optimization problems, such as for the
maximum weighted independent set (MWIS) problem (Choi
2008), the graph partition problem (Hen and Spedalieri
2016), the graph isomorphism problem (Hen and Sarandy
2016) and the set cover problem (Lucas 2014) as well as its
generalization (Cao et al. 2016). However, since the quan-
tum annealer is of very recent vintage, HQCAs for constraint
optimization problems still remain understudied in general.
Therefore, developing HQCAs for the WCSP, a very general
type of constraint optimization problem, not only facilitates
WCSP solving but also introduces HQCAs for other con-
straint optimization problems.

In this paper, we propose the first three HQCAs for
approximately solving the WCSP. One HQCA is specif-
ically for the binary Boolean WCSP based on the poly-
nomial forms of constraints. The other two HQCAs are
for the general WCSP (where there may exist non-binary
constraints or non-Boolean variables), namely, one based
on integer linear programming (ILP) and the other based
on the constraint composite graph (CCG) (Kumar 2008a;
2008b; 2016) with our newly proposed extension to the
non-Boolean WCSP. We experimentally compare these ap-
proaches and show that, while the simple polynomial re-
formulation works well on the binary Boolean WCSP, the
CCG-based HQCA works better on the general WCSP com-
pared to the ILP-based HQCA. These HQCAs are still far
behind solvers on classical computers in terms of both their
runtime and solution quality. Hence, this paper serves as
a feasibility study of HQCAs for the WCSP, and we hope
that they can become more useful as the quantum annealer
evolves and intrigue future studies in this direction.

Quantum Annealing
Quantum annealing is a physical process that can be used to
approximately solve combinatorial optimization problems.

1Here, “binary” means “Boolean” in our terminology.

Naively, it can be understood as a meta-heuristic algorithm
that makes use of various features in quantum processes,
such as superposition, interference and entanglement. The
expected optimality gap of the solution of quantum anneal-
ing for a given problem can be theoretically analyzed, albeit
requiring methods that are too sophisticated and derivation
that is too complicated to be within the scope of this paper.
Simply speaking, the minimum gap between the energies of
the ground state and the first-excited state during quantum
annealing is indicative of the suboptimality of its solution.
In practice, the D-Wave processor approximately solves the
Ising problem, i.e., computes

arg min
x=〈x1,x2,...,xn〉

E(x) =
∑
xi∈x

hixi +
∑

{xi,xj}∈J

Jijxixj , (1)

where hi and Jij are input parameters, x ∈ {−1,+1}n, and
J is a subset of the set of all pairs of variables in x deter-
mined by the D-Wave processor. Variables x are mapped
to qubits in the processor, and parameters hi and Jij are
mapped to interactions of each qubit with the external field
and every other qubit, respectively.

Polynomial-Based HQCA
One common method for reformulating the binary Boolean
WCSP as the Ising problem constructs the polynomial forms
of unary and binary constraints. In this method, we first rep-
resent a Boolean variable Xi in the WCSP with domain
Di = {0, 1} as (x′i+1)/2, where x′i is an Ising variable with
domain {−1,+1}. A unary constraintCi involving only one
variable Xi can then be rewritten in a polynomial form as

ECi ({Xi = (x
′
i + 1)/2}) =

k1 + k0

2
+
k1 − k0

2
x
′
i, (2)

where k0 = ECi({Xi = 0}) and k1 = ECi({Xi = 1}).
Similarly, a binary constraintCij involving two variablesXi
and Xj can be rewritten in a polynomial form as

ECij ({Xi = (x
′
i + 1)/2, Xj = (x

′
j + 1)/2}) =

c−1,−1 + c+1,−1x
′
i + c−1,+1x

′
j + c+1,+1x

′
ix
′
j ,

(3)

where c−1,−1, c+1,−1, c−1,+1 and c+1,+1 are coefficients
that can be determined by simply solving the system of lin-
ear equations

ECij ({Xi = 0, Xj = 0}) = c−1,−1 − c+1,−1 − c−1,+1 + c+1,+1

ECij ({Xi = 0, Xj = 1}) = c−1,−1 − c+1,−1 + c−1,+1 − c+1,+1

ECij ({Xi = 1, Xj = 0}) = c−1,−1 + c+1,−1 − c−1,+1 − c+1,+1

ECij ({Xi = 1, Xj = 1}) = c−1,−1 + c+1,−1 + c−1,+1 + c+1,+1.

(4)

Finding an assignment of values to all x′i’s so as to min-
imize the sum of the polynomial forms of all constraints
is an Ising problem that is equivalent to solving the bi-
nary Boolean WCSP. This reformulation does not increase
the input size, i.e., the number of weights in the WCSP in-
stance equals the number of coefficients in the reformulated
polynomial form. Therefore, we expect that this polynomial-
based HQCA is no less advantageous than the other ones dis-
cussed below. Nevertheless, the polynomial-based HQCA is
only applicable to the binary Boolean WCSP.



ILP-Based HQCA
In this section, we address the drawbacks of the polynomial-
based HQCA by introducing an ILP-based HQCA that is
applicable to general WCSPs with non-binary constraints
and non-Boolean variables. In the first phase, the ILP-based
HQCA encodes the WCSP as an ILP problem. In the second
phase, it exploits special structure in this ILP problem and
casts it as an Ising problem.

The first phase is based on a direct ILP encoding of the
WCSP (Xu, Koenig, and Kumar 2017), borrowed from the
ILP encoding of the map-a-posteriori (MAP) problem in
the probabilistic reasoning community (Koller and Friedman
2009, Section 13.5). For notational convenience, we assume
that, for each variableX ∈ X , there exists a unary constraint
C such that S(C) = {X}. Improving upon the ILP encod-
ing in (Xu, Koenig, and Kumar 2017, Eqs. (2) to (5)), the
ILP encoding of the WCSP is

minimize
qCa :qCa ∈q

∑
C∈C

∑
a∈A(S(C))

w
C
a q

C
a (5)

s.t. q
C
a ∈ {0, 1} ∀qCa ∈ q (6)∑

a∈A(S(C))

q
C
a = 1 ∀C ∈ C (7)

∑
a∈A(S(C)):a|S(C′)=a′

q
C
a = q

C′
a′ (8)

∀C,C′ ∈ C : |S(C′)| = 1 ∧ S(C′) ⊂ S(C), ∀a′ ∈ A(S(C′)),

where q = {qCa | C ∈ C ∧ a ∈ A(S(C))}, and
wCa denotes the weight of assignment a specified by con-
straint C. The cardinality of q is

∑
C∈C

∏
X∈S(C) |D(X)|.

Here: (a) Equation (6) represents the ILP constraints that
enforce the Boolean property for all qCa ’s. It consists of∑
C∈C

∏
X∈S(C) |D(X)| = O

(
|C|D̂Ĉ

)
ILP constraints,

where Ĉ = maxC∈C |S(C)| and D̂ = maxX∈X |D(X)|.
(b) Equation (7) represents the ILP constraints that en-
force a unique assignment of values to variables in each
WCSP constraint. It consists of |C| ILP constraints, each
of which has |A(S(C))| =

∏
X∈S(C) |D(X)| = O

(
D̂Ĉ
)

variables. (c) Equation (8) represents the ILP constraints
which enforce that every two assignments in two WCSP
constraints must be consistent on their shared variables.
It consists of O

(
|C| · Ĉ · D̂

)
ILP constraints. Each of

these ILP constraints hasO
(
D̂Ĉ−1

)
variables. Unlike (Xu,

Koenig, and Kumar 2017), which enforces this ILP con-
straint by considering every pair of WCSP constraints, here,
we only consider each WCSP constraint with all its relevant
unary WCSP constraints. This improvement effectively re-
duces the number of ILP constraints from O

(
|C|2D̂Ĉ

)
to

O
(
|C| · Ĉ · D̂

)
.2

We now adapt the Ising formulation known for a special
class of ILPs (Lucas 2014) to our case as follows. The re-
quired Ising formulation is divided into two parts

min
pCa :pCa ∈p

H = αHα + βHβ , (9)

2We thank an anonymous reviewer for pointing out this im-
provement.

where pCa = 2qCa − 1 ∈ {−1,+1} and p = {pCa | qCa ∈ q}.
Here, Hα represents the ILP constraints, Hβ represents the
ILP optimization objective, and α and β are appropriately
chosen positive numbers.

For each ILP constraint, we add a squared term to Hα to
represent it. The value of Hα is zero if all constraints are
satisfied and positive otherwise:

Hα =
∑
C∈C

 ∑
a∈A(S(C))

q
C
a − 1

2

+
∑

C,C′∈C:|S(C′)|=1∧S(C′)⊂S(C)

a′∈A(S(C′)) ∑
a∈A(S(C)):a|S(C′)=a′

q
C
a − q

C′
a′

2

.

(10)

Here, after expansion of the polynomials, the quadratic
terms (qCa )

2 are reduced to linear terms due to their Boolean
nature, i.e., c(qCa )

2
= cqCa .

To capture the ILP optimization objective, we use
Hβ =

∑
C∈C

∑
a∈A(S(C))

w
C
a q

C
a . (11)

As far as α and β are chosen to satisfy

α

β
>
∑
C∈C

 ∑
a∈A(S(C))

w
C
a

 , (12)

we are guaranteed that the minimum positive value of αHα

is greater than the maximum value of βHβ , and therefore
any assignment leading to a non-zero Hα, i.e., violating at
least one ILP constraint, cannot be optimal.

Combining Equations (9) to (12) and making the substi-
tution of qCa = (pCa + 1)/2, we have an Ising formulation of
the WCSP.

CCG-Based HQCA
In this section, we present a CCG-based HQCA that is also
applicable to general WCSPs with non-binary constraints
and non-Boolean variables. In the first phase, the CCG-
based HQCA encodes the WCSP as a minimum weighted
vertex cover (MWVC) problem. In the second phase, it ex-
ploits special structure in the MWVC problem and casts it
as an Ising problem.

The CCG (Kumar 2008a; 2008b; 2016) is a combinato-
rial structure associated with the Boolean WCSP. It pro-
vides a unifying framework for simultaneously exploiting
the graphical structure of the variable-interactions in the
Boolean WCSP as well as the numerical structure of the
constraints in it. The task of solving the Boolean WCSP
can be reformulated as the MWVC problem on its associ-
ated CCG (Kumar 2008a; 2008b; 2016). CCGs can be con-
structed in polynomial time and are always tripartite (Kumar
2008a; 2008b; 2016). The subclass of the Boolean WCSP
that has instances with bipartite CCGs is tractable since an
MWVC can be found in polynomial time on bipartite graphs
using a staged maxflow algorithm (Kumar 2003). The CCG
also enables the use of kernelization methods for the MWVC
problem, such as the Nemhauser-Trotter reduction (Xu, Ku-
mar, and Koenig 2017), for solving the Boolean WCSP. Em-
pirically too, it is often beneficial to use the CCG in vari-
ous other circumstances involving the Boolean WCSP (Xu,



Kumar, and Koenig 2017; Xu, Koenig, and Kumar 2017;
Fioretto et al. 2018; Yip et al. 2019).

Constructing CCGs for the Non-Boolean WCSP
In the first phase of the algorithm, we are required to con-
struct the CCG for the WCSP. This procedure has been ex-
tensively studied for Boolean WCSPs in (Kumar 2008a).
It is very efficient and is applicable to both binary and
non-binary constraints. However, the CCG construction pro-
cedure has not been extensively studied for WCSPs with
non-Boolean variables, although we acknowledge the non-
Boolean variable encoding from (Kumar 2008b), referred
to here as the high-degree polynomial-based encoding. We
propose three new—and more efficient—non-Boolean vari-
able encodings, i.e., the binary number-based encoding,
the direct symmetric encoding, and the clique-based encod-
ing. We assume that each variable Yi has domain Di =
{0, 1, . . . , di − 1}, where di is the size of its domain.

High-Degree Polynomial-Based Encoding The high-
degree polynomial-based encoding was first proposed
in (Kumar 2008b). It uses a high-degree polynomial to rep-
resent a constraint with non-Boolean variables (as illustrated
in Figure 1). Each non-Boolean variable Yi is represented by
di vertices VYi = {vYi,0, vYi,1, . . . , vYi,di−1}, referred to as
variable vertices, in the CCG gadgets. The number of these
vertices in the computed MWVC indicates the value of Yi.

A linear term w · Yi, where w may be either positive or
negative, can be represented by di − 1 connected compo-
nents, where each connected component consists of 2 con-
nected vertices with non-negative weights of w1 and w2, re-
spectively, such that w1−w2 = w. The vertices with weight
w1 represent Yi. Figure 2a illustrates this.

For a negative non-linear term−w·(Y1·Y2·. . .·Ym), where
w > 0, we construct the CCG gadget as follows. We create
a bipartite graph. The first partition contains exactly all vari-
able vertices and assigns them weight 0. The second parti-
tion contains

∏m
i=1(di − 1) auxiliary vertices with weight

w, with each of these vertices representing an assignment of
values to the variables in the term. Each auxiliary vertex con-
nects to exactly one variable vertex of each variable. It con-
nects to variable vertices that constitute its corresponding as-
signment. For example, for the term−w·(Y1·Y2·Y3), an aux-
iliary vertex connected to vY1,0

, vY2,2
and vY3,1

corresponds
to the assignment {Y1 = 0, Y2 = 2, Y3 = 1}. This CCG
gadget represents the term w · (

∏m
i=1(di − 1) −

∏m
i=1 Yi).

Figure 2b illustrates this. Intuitively, this can be seen as fol-
lows.

∏m
i=1 Yi auxiliary vertices have all of their incident

edges covered and thus are excluded from the MWVC. That
is, the total weight of the vertices selected in the MWVC is
w · (

∏m
i=1(di − 1)−

∏m
i=1 Yi).

For a positive non-linear term w ·(Y1 ·Y2 · . . . ·Ym), where
w > 0, we construct the CCG gadget as follows. We first
create the CCG gadget as if w < 0. Then, to accommodate
the positive coefficient, we split each edge that is adjacent to
any variable vertex of Y1 into two parts by inserting a vertex
of a large weight L. These newly introduced vertices form
a third partition and are meant to represent the negation of
variable Y1. For this reason,L should be chosen to be greater

than the sum of the weights of the vertices that it connects
to, i.e., L > w ·

∏m
i=2(di − 1). This CCG gadget represents

the term w · (
∏m
i=1(di − 1) − (d1 − 1 − Y1)

∏m
i=2 Yi) +

L · (d1 − 1 − Y1), in which the highest-degree term is the
non-linear term of interest and the CCG gadgets for lower-
degree terms are recursively constructed (Kumar 2008b). An
illustration is shown in Figure 2c, which represents w ·(18−
(3− Y1) · Y2 · Y3) + L · (3− Y1).

Binary Number-Based Encoding For each non-Boolean
variable Y with domain size d, the binary number-
based encoding uses dlog2 de Boolean variables XY =
{XY,1, XY,2, . . . , XY,dlog2 de} to represent it. This converts
any constraint involving this variable into a Boolean con-
straint, i.e., a constraint with only Boolean variables. The bi-
nary representation of the value of Y corresponds to the val-
ues of these Boolean variables. For example, if d = 6, then
Y = 3 corresponds to XY,1 = 1, XY,2 = 1, and XY,3 = 0.
However, if log2 d is not an integer, then some assignments
of values to variables in XY are forbidden, since they may
represent values larger than what Y can take. Continuing
the above example, (XY,1 = 1, XY,2 = 1, XY,3 = 1) is
forbidden since Y = 7 is not allowed. To forbid such as-
signments, we impose a high weight corresponding to them
in the Boolean constraint. The binary number-based encod-
ing is similar to the “log encoding” used in converting the
CSP to the SAT problem (Walsh 2000).

Direct Symmetric Encoding For each non-Boolean vari-
able Y with domain size d, the direct symmetric encoding
uses d Boolean variables XY = {XY,0, XY,1, . . . , XY,d−1}
to represent it. XY,i = 1 and ∀j ∈ {0, 1, . . . , d− 1} \ {i} :
XY,j = 0 together indicate Y = i. All other assignments of
values to XY,0, XY,1, . . . , XY,d−1 are forbidden by a con-
straint, referred to as the variable constraint, on these d vari-
ables. Constraints over non-Boolean variables are also con-
verted to constraints over these Boolean variables represent-
ing each non-Boolean variable. This encoding is similar to
the “direct encoding” used in converting the CSP to the SAT
problem (Walsh 2000).

Clique-Based Encoding The clique-based encoding ex-
ploits the unique structure of the MWVC problem. To
the best of our knowledge, this encoding does not have
a counterpart in SAT encodings of the CSP. For each
non-Boolean variable Y with domain size d, the clique-
based encoding uses (d − 1) Boolean variables XY =
{XY,1, XY,2, . . . , XY,d−1} to represent it. Similar to the
binary number-based and direct symmetric encodings, the
clique-based encoding converts any constraint C involv-
ing non-Boolean variables into a Boolean constraint C ′.
Y = 0 corresponds to all these Boolean variables being
equal to 1, and Y = y, where y ∈ {1, 2, . . . , d − 1},
corresponds to XY,y = 0 and all other Boolean variables
being equal to 1. All other possible assignments of values
to XY,1, XY,2 . . . , XY,d−1 are forbidden. We impose zero
weight to such variable-representationally forbidden assign-
ments in C ′, but forbid them with additional edges in the
CCG gadget. In particular, we connect every pair of vertices
representing Boolean variables in XY to form a clique. All
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EC({Yi = yi, Yj = yj}) = c0,0 + c1,0yi + c2,0y
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2
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EC({Yi = 0, Yj = 0}) = 1 EC({Yi = 1, Yj = 0}) = 3 EC({Yi = 2, Yj = 0}) = 7
EC({Yi = 0, Yj = 1}) = 3 EC({Yi = 1, Yj = 1}) = 6 EC({Yi = 2, Yj = 1}) = 1

c0,0 = 1 c1,0 = 1 c2,0 = 1 c0,1 = 2 c1,1 = 6 c2,1 = −5

Figure 1: Shows the polynomial form of the constraint C on the left. The top-right panel shows the polynomial form, where c0,0, c1,0,
c2,0, c0,1, c1,1 and c2,1 are to-be-determined coefficients. The middle-right panel shows the system of linear equations that determines all
coefficients. The bottom-right panel shows the coefficients after solving the system of linear equations.
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(b) −w · (Y1 · Y2 · Y3)
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(c) w · (Y1 · Y2 · Y3)

Figure 2: Illustrates the high-degree polynomial-based encoding. In (b) and (c), the variables Y1, Y2 and Y3 are assumed to have domain sizes
4, 4 and 3, respectively. Circles represent variable vertices. Their weights are 0 in (b) and (c) (not explicitly shown). Empty and filled squares
represent the auxiliary vertices that encode the coefficients and negation of variables, respectively. The triplet of numbers below each empty
square indicates the variable vertices that it connects to.

variable-representationally forbidden assignments of values
to variables in XY then correspond to invalid vertex covers
of the CCG gadget, while all other assignments correspond
to valid vertex covers.

Consider the polynomial form of C ′ as illustrated in Fig-
ure 1. Since all variables in C ′ are Boolean, this polynomial
is only multi-linear, i.e., the highest degree of any variable
in C ′ is 1. Furthermore, the polynomial form of C ′ has only
terms with degrees no greater than |S(C ′)| minus the num-
ber of non-Boolean variables inC. This significantly simpli-
fies the construction of the CCG gadget, since the procedure,
as shown in (Kumar 2008a), to construct the CCG gadget
considers each term of the polynomial one at a time. This
property of the polynomial form of C ′ is further leveraged
in the clique-based encoding as follows. While the construc-
tion procedure in (Kumar 2008a) is straightforward for lin-
ear and negative non-linear terms, for a positive non-linear
term T , we need to introduce a lower-order term T ′ by re-
moving a variable from T . To minimize the size of the result-
ing CCG gadget, we always choose the variable to remove
from a preset order on all variables. We create this preset
order by (a) fixing an order on all variables in the WCSP in-
stance and all Boolean variables representing each of them,
and (b) concatenating these groups of ordered Boolean vari-
ables according to the order of variables in S(C). Compared
to arbitrary choices of the variable to remove, this scheme
usually results in a small number of recursively introduced
lower-order terms.

Comparing Non-Boolean Variable Encodings We con-
sider a constraint consisting of n variables {Y1, Y2, . . . , Yn}

in which in general no two weights are equal and all vari-
ables have domain size d. For the sake of theoretical analy-
sis, we examine the asymptotic size of its CCG gadget, i.e.,
the CCG of a WCSP instance consisting of only this con-
straint, with respect to either large n or large d (with n ≥ 2).
The number of vertices, dominated by the number of aux-
iliary vertices, and the number of edges can be counted as
follows (for generality, we assume that lower-order terms in-
troduced during the construction of the CCG gadget do not
cancel existing lower-order terms).

High-Degree Polynomial-Based Encoding. The high-
degree polynomial has n types of terms, where each type
involves i = 1, 2, . . . , n variables. The type of term that in-
volves i variables has

(
n
i

)
combinations of participating vari-

ables. For i given variables, there are (d− 1)
i terms, where

each term corresponds to Θ
(

(d− 1)
i
)

auxiliary vertices

and Θ
(
i(d− 1)

i
)

edges. Therefore, the numbers of vertices
and edges of the CCG gadget produced by the high-degree
polynomial-based encoding are Θ

(∑n
i=1 (d− 1)

2i(n
i

))
=

Θ
((

(d− 1)
2

+ 1
)n)

and Θ
(∑n

i=1 i(d− 1)
2i(n

i

))
=

Θ

(
n(d− 1)

2
(

(d− 1)
2

+ 1
)n−1

)
, respectively.

Binary Number-Based Encoding. There are dlog2 de
Boolean variables representing each variable and there-
fore ndlog2 de variables in total. By enumerating the pres-
ence and absence of these variables in each term, we have(
ndlog2 de

i

)
terms that involve i variables, where each term



consists of Θ(1) auxiliary vertices and Θ(i) edges. There-
fore, there are Θ

(∑ndlog2 de
i=1

(
ndlog2 de

i

))
= Θ

(
d̄n
)

vertices

and Θ
(∑ndlog2 de

i=1 i
(
ndlog2 de

i

))
= Θ

(
ndlog2 ded̄n

)
edges

in total, where d̄ ≥ d is the smallest integer such that log2 d̄
is an integer.

Direct Symmetric Encoding. This encoding is similar to
the so-called one-hot encoding popularly known in ma-
chine learning. There are d Boolean variables represent-
ing each non-Boolean variable, and each Boolean constraint
consists of exactly one Boolean variable representing each
non-Boolean variable. Therefore, there are dn Boolean con-
straints of arity n. Now we consider the worst case, i.e., all
these Boolean constraints have positive terms in their poly-
nomial forms. For each of these Boolean constraints, we
have O(n) auxiliary vertices and O(n2) edges. Therefore,
we have O(ndn) vertices and O(n2dn) edges. The number
of vertices and edges introduced by the variable constraint
on the Boolean variables representing each non-Boolean
variable can be neglected since they are only polynomial
with respect to d. This is because the variable constraint is an
exact 1-out-of-d function, which can be converted to O(d2)
binary Boolean constraints (Anthony et al. 2016). This leads
to only O(nd2) auxiliary vertices and edges.

Clique-Based Encoding. There are (d − 1) Boolean vari-
ables representing each non-Boolean variable, and there-
fore there are n(d − 1) Boolean variables in total. Now
we consider the worst case, i.e., all terms have positive
coefficients. We follow the recursive algorithm to intro-
duce lower-order terms described in the previous subsec-
tion and, without loss of generality, assume that the non-
Boolean variables are in the order Yn, Yn−1, . . . , Y1. There
areO

(
(j + 1)di−1

)
terms which consist of exactly 1 ≤ j ≤

d − 1 Boolean variables representing Yi and no Boolean
variable representing Yi′ , where i′ > i. Each term cor-
responds to Θ(1) auxiliary vertices and Θ((i − 1)(d −
1) + j) edges. Therefore, the total numbers of vertices
and edges equal O

(∑n
i=1

∑d−1
j=1(j + 1)di−1

)
= O(dn+1)

and O
(∑n

i=1

∑d−1
j=1((i− 1)(d− 1) + j)(j + 1)di−1

)
=

O(ndn+2), respectively. We neglect the edges connecting
Boolean variables representing each non-Boolean variable,
since the number n(d−1)(d−2)/2 of these edges is far less
than ndn+2. Often, in practice, since it is common that some
terms have negative coefficients, the number of vertices and
edges can be much lower.

Table 1 summarizes the number of vertices and edges in
the CCG gadget for each of the four non-Boolean variable
encodings. The clique-based encoding is a preferable op-
tion. It is also preferred over the binary number-based and
direct symmetric encodings because it does not introduce
very large weights for encoding hard constraints and is the
easiest to implement in practice. For these reasons, for the
rest of this paper, we focus on the clique-based encoding for
non-Boolean variables. All these non-Boolean variable en-
codings except for the direct symmetric encoding reduce to
the same encoding for the Boolean WCSP. Despite the num-
bers being exponential in n, they are all polynomial in the

Table 1: Compares the sizes of the CCG gadgets produced by dif-
ferent encodings. We construct the CCG gadgets corresponding to
a constraint with n ≥ 2 variables {Y1, Y2, . . . , Yn} in which in
general no two weights are equal and all variables have domain
size d. The name of each encoding is abbreviated by its first word.

Encoding Vertices† Edges

High Θ
((

(d− 1)2 + 1
)n)

Θ
(
n(d− 1)2

(
(d− 1)2 + 1

)n−1
)

Binary Θ
(
d̄n
)

= O (2ndn) Θ
(
ndlog2 ded̄

n
)

= O (n(log2 d)2ndn)

Direct O(ndn) O(n2dn)

Clique O
(
dn+1

)
O
(
ndn+2

)
† By specializing the analysis to the Boolean WCSP, we note that our number of vertices is

lower than that given in (Xu, Koenig, and Kumar 2017). The reason for this is that (Xu,
Koenig, and Kumar 2017) counts the number of vertices in the CCG term by term in
the constraint’s polynomial form, which results in a loose estimate, which we avoid by
counting the number of vertices constraint by constraint.

actual input size, since the input size of the constraint, i.e.,
the number of entries in its tabular representation is Θ(dn).

An HQCA for the MWVC Problem
An Ising formulation of the MWVC problem on a vertex-
weighted graph G = 〈V,E,w〉, adapted from the MWIS
problem (Choi 2008), is as follows. For each vertex vi, we
associate a variable xi with it. xi = 0 and xi = 1 represent
the presence and absence of vi in the MWVC, respectively.
Then, the QUBO formulation is to minimize

H(x1, x2, . . . , x|V |) = −
∑
vi∈V

wixi +
∑

(vi,vj)∈E

Jijxixj , (13)

where wi is the weight associated with vertex vi, and the
Jij’s satisfy ∀(vi, vj) ∈ E : Jij > min{wi, wj}. The min-
imum H(x1, x2, . . . , x|V |), denoted by H∗, is the negative
total weight of the MWIS on G. That is,

∑
vi
wi+H∗ is the

total weight of the MWVC on G since the vertices excluded
from the MWIS constitute an MWVC.

By making the substitution xi = (x′i + 1)/2 and xj =
(x′j + 1)/2, where x′i, x

′
j ∈ {−1,+1}, we have an Ising

formulation:

H
′
(x
′
1, x
′
2, . . . , x

′
|V |) = −

∑
vi∈V

wi

2
(x
′
i+1)+

∑
(vi,vj)∈E

Jij

4
(x
′
ix
′
j+x

′
i+x

′
j+1).

(14)

Experimental Evaluation
We now experimentally evaluate the runtime and solution
quality of these three HQCAs using a D-Wave 2X proces-
sor. It is based on a physical lattice of qubits (variables in
the Ising problem) and the couplers (coefficients in the Ising
problem) that connect them. These qubits and couplers to-
gether are called the Chimera graph, as illustrated in Fig-
ure 3. In a D-Wave 2X processor (or any other currently
available D-Wave processor), the Chimera graph is sparse.
Therefore, it may not be possible to feed many Ising problem
instances with dense connectivity directly into the D-Wave
2X processor. In this case, the process of embedding is in-
dispensable, which is to find an equivalent Ising problem in-
stance that can be directly fed into the D-Wave 2X processor.
In our experiments, for a proof of concept, we simply used



Figure 3: Shows the Chimera graph in a D-Wave 2X processor. The
Chimera graph consists of a lattice of “imperfect” K4,4 bipartite
graph units. The green dots represent qubits, and edges represent
couplers. The red dots represent missing qubits in the K4,4 units.
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Figure 4: Compares the suboptimalities of the solutions produced
by HQCAs on the two benchmark instance sets. The x-axes show
ranges of suboptimalities of the solutions produced by the CCG-
based and the polynomial-based HQCAs. The y-axes show the
number of benchmark instances in a range of suboptimalities. The
left plot compares the qualities of the solutions produced by the
CCG-based and the polynomial-based HQCAs with optimal solu-
tions on the first benchmark instance set with only Boolean vari-
ables. The polynomial-based HQCA produced optimal solutions
on 39 out of 50 benchmark instances and the suboptimalities on
all other benchmark instances are smaller than 10%. The right
plot compares the suboptimalities of the solutions produced by the
CCG-based HQCA with optimal solutions on the second bench-
mark instance set with non-Boolean variables. While some of the
optimality gaps may look large, they are not particularly uncom-
mon for HQCAs due to the peculiar uncertainty nature of quantum
annealers (e.g., (Bian et al. 2016, Figure 3)).

the D-Wave library (D-W 2017) to find embeddings. This
library always finds an equivalent problem instance (assum-
ing that no bug is triggered).

In our experiments, we selected real-world benchmark
instances from the industrial weighted partial Max-SAT
category of the Eleventh Max-SAT Evaluation3 and re-
formulated them as Boolean WCSP instances. We se-
lected benchmark instances whose number of variables
is less than 30 to accommodate the limited number of
qubits of the D-Wave 2X processor. Only two benchmark
instances (wcsp/spot5/dir/8.wcsp.dir.wcnf and
wcsp/spot5/log/8.wcsp.log.wcnf) satisfy this

3http://www.maxsat.udl.cat/16/benchmarks/index.html

criterion. The polynomial-based HQCA is not applicable to
them. In addition, our experiments showed that the ILP-
based HQCA could not embed any of them within the 5-
minute time limit. The solution costs produced by the CCG-
based HQCA are 96 and 5, respectively, while the optimal
solution costs for both benchmark instances are 2.

Popular real-world benchmark instances, such as those in
the Eleventh Max-SAT evaluation and those used in (Hurley
et al. 2016), are too large to be embedded into the D-Wave
2X processor. For this reason, we also generated two ran-
dom WCSP benchmark instance sets. (HQCAs that work on
the D-Wave 2X processor will also work on larger bench-
mark instances on more advanced quantum annealing pro-
cessors in the future.) In each benchmark instance in the
first benchmark instance set, the number of variables is 50
and all variables are Boolean; for each pair of variables,
we generated a binary constraint between them with prob-
ability p = 0.13. We assigned a random integer weight be-
tween 0 and 100 to each tuple in these constraints. In each
benchmark instance in the second benchmark instance set,
the number of variables is 20 and the domain size of each
variable is randomly set to be 2 or 3. Constraints are gen-
erated in the same way as in the first benchmark instance
set, except p = 0.2. Given the way the benchmark instances
were generated, the average number of constraints that each
variable participates in is about 3. We used the functions
find embedding and unembed answer from the D-
Wave Python library to find embeddings and restore solu-
tions to the original benchmark instances, respectively. For
find embedding, we set the runtime limit to 1000 sec-
onds and turned the fast embedding option on for trad-
ing off fast embedding against embedding quality. For each
benchmark instance, we requested the D-Wave 2X proces-
sor to run 1000 times (while the embedding procedure only
needs to be run once)4. For all benchmark instances, we also
obtained optimal solutions using toulbar2 (Hurley et al.
2016), a state-of-the-art WCSP solver that always produces
optimal solutions. Each benchmark instance was solved by
toulbar2 within 1 second (the minimum runtime that can
be measured by toulbar2). The process of solving Ising
instances was performed on a D-Wave 2X processor while
other processes, including finding embeddings and restoring
solutions by the unembed procedure, were performed on a
GNU/Linux workstation with an Intel Xeon processor E3-
1240 v3 (8MB Cache, 3.4GHz) and 16GB RAM.

Figure 4 compares the qualities of the solutions produced
by the polynomial-based and CCG-based HQCAs with the
optimal solutions on the benchmark instances from both
benchmark instance sets. The ILP-based HQCA could not
embed any benchmark instances into the Chimera graph
within the time limit and is thus not shown. For the first
benchmark instance set, as expected, the polynomial-based
HQCA was the most advantageous. The CCG-based HQCA
successfully embedded 43 out of 50 benchmark instances

4While this may seem unusual for algorithms on classical com-
puters, it is common practice to run the quantum annealing pro-
cedure for thousands of times (as it normally terminates very
quickly).



between 10 and 354 seconds. For the second benchmark in-
stance set, where the polynomial-based HQCA is not appli-
cable, the CCG-based HQCA successfully embedded 38 out
of 50 benchmark instances between 3 and 292 seconds. De-
spite the 1000 runs, the runtime of the D-Wave 2X processor
on each benchmark instance is within 450 milliseconds. The
Ising formulation processes in both HQCAs ran within 60
milliseconds. The majority of the time was consumed by the
functions find embedding and unembed answer. Al-
though these HQCAs cannot compete with toulbar2, in
fact, if find embedding and unembed answer are not
required, the efficiency and effectiveness of HQCAs can be
outstanding for approximately solving the Boolean WCSP.
To verify this, we generated 50 Ising problem instances,
which can be seen as special cases of Boolean WCSP in-
stances, by randomly selecting 50% of the edges of the
Chimera graph as constraints with random integer weights.
We used the D-Wave 2X processor and toulbar2 to solve
them. We also reformulated them as weighted Max-SAT in-
stances and solved them using open-wbo (Martins, Man-
quinho, and Lynce 2014). The experimental results showed
that the quantum annealer produced solutions within 400
milliseconds and the qualities of the solutions were better
than those produced by both toulbar2 and open-wbo
within a 5-minute runtime limit.

Conclusions and Future Work

In this paper, we proposed the first three HQCAs for solv-
ing the WCSP, namely, the polynomial-based, ILP-based
and CCG-based HQCAs. For the CCG-based HQCA, we ac-
knowledged one and proposed three new non-Boolean vari-
able encodings to extend the applicability of the CCG to the
non-Boolean WCSP. We evaluated the HQCAs using exper-
iments on a D-Wave 2X processor, a physical realization of
the quantum annealer. We showed that the polynomial-based
HQCA works well on the binary Boolean WCSP, but the
CCG-based HQCA is not only more widely applicable but
also works better than the ILP-based HQCA on the general
WCSP (where the polynomial-based HQCA is not applica-
ble). While these HQCAs are still far behind solvers, such
as toulbar2, on classical computers with respect to both
runtime and solution quality, we hope that these HQCAs be-
come more useful as the quantum annealer evolves and that
they can serve as a starting point for future developments in
using the quantum annealer for solving the WCSP.

One direction of future work is to improve the CCG-
based HQCA by utilizing kernelization methods, such as the
Nemhauser-Trotter reduction (Nemhauser and Trotter 1975)
and the crown reduction (Chlebı́k and Chlebı́ková 2008), so
as to reduce the size of the CCG in polynomial time. Another
direction is to integrate state-of-the-art WCSP solvers on
classical computers and the quantum annealer. Yet another
direction is to develop efficient CCG representations dedi-
cated to more specialized types of constraint optimization
problems, such as weighted Max-SAT and weighted Max-
Cut problems. Finally, it is also important to understand HQ-
CAs for the WCSP with more theoretical rigor.
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