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Abstract—Demand-responsive transport (DRT) systems pro-
vide flexible transportservices for passengers who request door-
to-door rides in shared-ride mode without fixed routes and
schedules. DRT systems face interesting coordination challenges.
For example, one has to design cost-sharing mechanisms for
offering fare quotes to potential passengers so that all passengers
are treated fairly. The main issue is how the operating costs of the
DRT system should be shared among the passengers (given that
different passengers cause different amounts of inconvenience
to the other passengers), taking into account that DRT systems
should provide fare quotes instantaneously without knowing
future ride request submissions. We determine properties of cost-
sharing mechanisms that make DRT systems attractive to both
the transport providers and passengers, namely online fairness,
immediate response, individual rationality, budget balance and
ex-post incentive compatibility. We propose a novel cost-sharing
mechanism, called Proportional Online Cost Sharing (POCS),
that provides passengers with upper bounds on their fares
immediately after their ride request submissions despite missing
knowledge of future ride request submissions, allowing them
to accept their fare quotes or drop out. We examine how
POCS satisfies these properties in theory and computational
experiments.

Index Terms—Demand-Responsive Transport Systems, Cost
Sharing, Online-Mechanism Design

I. INTRODUCTION

Demand-responsive transport (DRT) systems provide flex-
ible transport services where individual passengers request
door-to-door rides by specifying their desired start and end
locations. Multiple shuttles (or vans or small busses) service
these ride requests in shared-ride mode without fixed routes
and schedules. DRT services are more flexible and conve-
nient for passengers than buses since they do not operate
on fixed routes and schedules, yet are cheaper than taxis
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due to the higher utilization of transport capacity. In the
United States, DRT services are commonly used to service
the transport needs of disabled and elderly citizens and have
experienced rapid growth [1], [2]. Furthermore, the National
Transit Summaries and Trends report for 2008 states that the
average operating cost per passenger trip is $30.0 for DRT
systems but only $3.3 for buses, the average operating cost
per passenger mile is $3.4 for DRT systems but only $0.8 for
buses, and the revenues from fares cover less than 10% of
the operating costs of DRT systems. Hence, it is important to
identify opportunities for reductions in cost and improvements
in efficiency [1], [3], especially if one wants to expand DRT
services to provide a transport option for urban populations in
general.

Two important research issues in the context of DRT sys-
tems are how to determine the routes and schedules of the
shuttles (including how to assign passengers to shuttles) in
the presence of conflicting objectives, such as maximizing the
number of serviced passengers, minimizing the operating cost
or minimizing the passenger inconvenience, and how much
to charge the passengers. The first (optimization) and second
(cost-sharing) problems are highly interrelated since the routes
and schedules of the shuttles determine the operating cost that
needs to be shared. Conversely, the cost-sharing mechanism
imposes constraints on the routes and schedules that need to
be optimized, for example, because the fares of the passengers
should not exceed their fare quotes. The optimization problem
has received considerable attention in the literature and is
often solved as a pickup and delivery problem [1], [4]–[9].
The cost-sharing problem, on the other hand, has largely been
neglected in the literature, which might be due to shuttles being
highly subsidized and most passengers thus enjoying transport
services at affordable fares, typically determined by flat rates
within service zones that do not cover the operating cost.
Without significant subsidies, the fares would substantially
increase and the passengers would then be more concerned
about how the operating cost is shared among them in a fair
manner. This article presents a cost-sharing mechanism for
transport systems where the fares are not heavily subsidized
by exploring the ideal assumption that they are not subsidized
at all.

How passengers should share the operating cost in an online
setting, where knowledge of future ride request submissions
is missing, is a non-trivial problem for the following reasons:
First, passengers do not submit their ride requests at the same
time but should be given incentives to submit them as early as
possible to allow the DRT systems more time to find routing
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solutions that can offer subsequent passengers lower fares
due to synergies with the early ride requests, which might
allow them to service more passengers. Second, passengers
have different start and end locations and thus cause different
amounts of inconvenience to the other passengers, which
should be reflected in the fares. Finally, passengers should be
quoted fares immediately after their ride request submissions
because, this way, passengers have no uncertainty about they
cost of service while the DRT systems reduce their uncertainty
about passengers dropping out. This requires DRT systems to
make instantaneous and irreversible decisions despite having
no knowledge of future ride request submissions [10].

In this article, we define the online cost-sharing problem for
DRT systems and describe typical cost-sharing mechanisms,
focusing on proportional and incremental cost sharing and
some of their shortcomings in an online setting. We then
determine properties of cost-sharing mechanisms for DRT
systems that we believe are attractive to both the shuttles and
the passengers, namely online fairness, immediate response,
individual rationality, budget balance and ex-post incentive
compatibility. We propose a novel cost-sharing mechanism,
called Proportional Online Cost Sharing (POCS), and show
that it satisfies all five properties, provided that the routes and
schedules of the shuttles satisfy some restrictions, for example,
minimize the operating cost. However, DRT systems need to
determine the routes and schedules of the shuttles after every
ride request submission and minimizing the operating cost
takes time, which would prevent them from operating in real-
time. We therefore also present experimental results to evaluate
DRT systems where the routes and schedules of the shuttles
minimize the operating cost only approximately.

II. ONLINE COST SHARING

In this section, we define the online cost-sharing problem
for demand responsive transport (DRT) systems, provide an
example, discuss existing cost-sharing mechanisms and some
of their shortcomings, and finally derive a list of desirable
properties for online cost-sharing mechanisms for DRT sys-
tems.

A. Problem Definition

DRT systems provide flexible transport services where indi-
vidual passengers request door-to-door rides. Multiple shuttles
service these ride requests without fixed routes and schedules.
Passengers share shuttles. For example, after a passenger has
been picked up and before it is dropped off, other passengers
can be picked up and dropped off, resulting in a longer ride for
the passenger. Passengers need to pay a share of the operating
cost. Passengers submit their ride requests one after the other
by specifying their desired start and end locations. The submit
time of a passenger is the time when it submits its ride
request. In case the passenger decides to delay its ride request
submission, we distinguish its truthful submit time, which is its
earliest possible submit time, from its actual, perhaps delayed,
submit time. We assume, for simplicity, that all passengers
submit their ride requests before the shuttles start to service
the passengers. We also assume, without loss of generality,

that exactly one passenger submits its ride request at each
time k = 1, . . . , t, namely that passenger π(k) submits its
ride request at time k under submit order π, where a submit
order is a function that maps submit times to passengers.

Definition 1. For all times k and all submit orders π with
1 ≤ k, the alpha value απ(k) of passenger π(k) quantifies
the demand of its ride request, that is, how much of the
transport resources it requests. We assume that it is positive
and independent of the submit time of the passenger.

These assumptions are, for example, satisfied for the short-
est point-to-point travel distance from the start location to the
end location of a passenger, which is the quantity that we use
in this article as its alpha value.

Definition 2. For all times t and all submit orders π with 1 ≤
t, the total cost totalcosttπ at time t under submit order π is the
operating cost required to service passengers π(1), . . . , π(t).
We define totalcost0π := 0 and assume that 1) the total cost
is non-decreasing over time, that is, for all times t and t′ and
all submit orders π with t ≤ t′, totalcosttπ ≤ totalcostt

′

π ; and
2) the total cost at time t is independent of the submit order
of passengers π(1), . . . , π(t), that is, for all times t and all
submit orders π and π′ with 1 ≤ t and {π(1), . . . , π(t)} =
{π′(1), . . . , π′(t)}, totalcosttπ = totalcosttπ′ .

These assumptions are, for example, satisfied for the mini-
mal operating cost, which is the quantity that we use in this
article for the total cost. The minimal operating cost includes
the cost for deadhead miles for the shuttles to provide the
transport services. These assumptions can also be satisfied by
other types of costs. For instance, the part of the minimal
operating cost incurred by shuttles when passengers are on
board also satisfies them. The DRT system can accommodate
advanced features, such as operating times and capacities of
the shuttles and time constraints of the passengers, as long
as it can calculate total costs that satisfy the assumptions.
The assumptions are typically not satisfied if passengers can
submit their ride requests after the shuttles have started to
service passengers since the shuttle locations influence the
total cost. We initially assume for simplicity (in the theoretical
part of this article) that the DRT system can easily calculate the
total cost at any given time. This is not always true since the
problem could be NP-hard and thus time-consuming, as is the
case for the minimal operating cost. However, the DRT system
needs to calculate the minimal operating cost after every ride
request submission, which would prevent it from operating in
real-time. We therefore also include an experimental part to
evaluate DRT systems that minimize the operating cost only
approximately.

Definition 3. For all times k and all submit orders π with 1 ≤
k, the marginal cost mcπ(k) of passenger π(k) under submit
order π is the increase in total cost due to its ride request
submission, that is, mcπ(k) := totalcostkπ − totalcostk−1π .

Definition 4. For all times k and t and all submit orders π
with 1 ≤ k ≤ t, the shared cost costtπ(k) of passenger π(k)
at time t under submit order π is its share of the total cost at
time t.
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Fig. 1. DRT Example 1

TABLE I
DRT VALUES

k = 1 k = 2 k = 3 k = 4
π(k) = P1 π(k) = P2 π(k) = P3 π(k) = P4

Alpha Value: απ(k) 2 2 4 2
Total Cost: totalcostkπ 40 120 120 160
Marginal Cost: mcπ(k) 40 80 0 40

The DRT system provides a (myopic) fare quote to a pas-
senger immediately after its ride request submission. The fare
quoted to passenger π(k) immediately after its ride request
submission at time k is costkπ(k). (A fare quote of infinity
means that the passenger cannot be serviced.)

Definition 5. For all times k and all submit orders π with
1 ≤ k, the fare limit wπ(k) of passenger π(k) is the maximum
amount that it is willing to pay for its requested ride.

Passenger π(k) drops out and is not serviced if its fare limit
wπ(k) is lower than its fare quote, that is, wπ(k) < costkπ(k). In
this case, the DRT system simply pretends that the passenger
never submitted its ride request, which explains why we
assume, without loss of generality, that all passengers accept
their fare quotes. When the passenger accepts its fare quote
and is serviced, its fare is costtπ(k) (which is not guaranteed to
equal its fare quote) if the shuttles start to service passengers
after passenger π(t) submitted its ride request.

B. Demand-Responsive Transport Example

We use the DRT example in Figure 1 to illustrate typi-
cal cost-sharing mechanisms. There is one shuttle that can
transport up to four passengers and starts at the star. The
shuttle incurs an operating cost of 10 for each unit of distance
traveled and needs to return to its initial location. There are
four passengers with submit order π(1) = P1, π(2) = P2,
π(3) = P3 and π(4) = P4. For example, Passenger P3

requests a ride from location B to location D, as shown in
Figure 1. All passengers accept all fare quotes. Table I shows
the alpha value of each passenger, the total cost after the ride
request submission of each passenger and the marginal cost
of each passenger. For example, the alpha value of Passenger
P3 is the shortest point-to-point travel distance from its start
location B to its end location D. Thus, απ(3) = 4. The total
cost at time 3, after the ride request submission of Passenger
P3, is 10 times the minimal travel distance of the shuttle
required to service Passengers P1, P2 and P3 and return to
its initial location. Thus, totalcost3π = 120 since the shuttle
has to drive from location A (to pick up Passenger P1) via
location B (to drop off Passenger P1 and pick up Passenger
P3) and location C (to pick up Passenger P2) to location
D (to drop off Passengers P2 and P3) and to return to its

TABLE II
SHARED COSTS UNDER PROPORTIONAL COST SHARING: costt

π(k)

k = 1 k = 2 k = 3 k = 4
π(k) = P1 π(k) = P2 π(k) = P3 π(k) = P4

t = 1 40
t = 2 60 60
t = 3 30 30 60
t = 4 32 32 64 32

initial location A. The marginal cost of Passenger P3 is the
increase in total cost due to its ride request submission. Thus,
mcπ(3) = totalcost3π − totalcost2π = 120− 120 = 0 since the
total cost remains 120.

C. Typical Cost-Sharing Mechanisms

Online cost-sharing mechanisms determine the shared costs
in an online setting, where knowledge of future ride request
submissions is missing. We present typical cost-sharing mech-
anisms and some of their shortcomings in an online setting,
using the DRT example in Section II-B.

1) Proportional Cost Sharing: One commonly used cost-
sharing mechanism is proportional cost sharing [11], [12],
where the total cost is distributed among all passengers pro-
portionally to their alpha values, which reflects that passengers
with higher demands should contribute more toward the total
cost. Consequently, for all times k and t and all submit orders
π with 1 ≤ k ≤ t, the shared cost of passenger π(k) at time
t under submit order π is

costtπ(k) := totalcosttπ
απ(k)∑t
j=1 απ(j)

.

Instead of distributing the total (operating) cost among all
passengers, one could also distribute the operating cost of each
shuttle among all passengers serviced by that shuttle, which
results in identical properties for the DRT example in Section
II-B since there is only one shuttle in the DRT example.

Table II shows the shared costs for the DRT example. For
example, the total cost at time 3 is 120. It is distributed among
all passengers who submitted their ride requests by time 3,
namely Passengers P1, P2 and P3, proportionally to their
alpha values, namely 2, 2 and 4, respectively. Consequently,
the shared cost of Passenger P3 at time 3 and thus the fare
quoted to Passenger P3 after its ride request submission is
cost3π(3) = 60. Similarly, the total cost at time 4 is 160.
It is distributed among all passengers who submitted their
ride requests by time 4, namely Passengers P1, P2, P3 and
P4, proportionally to their alpha values, namely 2, 2, 4 and
2, respectively. Consequently, the shared cost of Passenger
P3 at time 4 and thus its fare is cost4π(3) = 64, implying
that its fare is higher than its fare quote at time 3. This is
undesirable because Passenger P3 might accept the fare quote
but not the higher fare, meaning that it has to drop out shortly
before receiving its ride and then needs to search for a last-
minute alternative to using the DRT system, which might be
pricy and is not guaranteed to exist. Thus, we suggest that a
fare quote should be an upper bound on the fare (immediate-
response property). We also suggest that the upper bound
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should be reasonably low since passengers might otherwise
look for alternatives to using the DRT system, commit to one
and then drop out unnecessarily. Obtaining reasonably low
upper bounds can be difficult since the DRT system has no
knowledge of future ride request submissions.

2) Incremental Cost Sharing: Another commonly used
cost-sharing mechanism is incremental cost sharing [13],
where the shared cost of each passenger is its marginal cost,
which is the increase in total cost due to its ride request
submission. Consequently, for all times k and t and all submit
orders π with 1 ≤ k ≤ t, the shared cost of passenger π(k)
at time t under submit order π is

costtπ(k) := mcπ(k).

Table III (left) shows the shared costs for the DRT example
in Section II-B. For example, the marginal cost of Passenger
P3 is 0. Consequently, the shared cost of Passenger P3 from
its ride request submission at time 3 on is 0, and thus both
its fare quote and fare are 0 as well. In general, incremental
cost sharing satisfies the immediate-response property since
the marginal costs are independent of time. The fares of
Passengers P1, P2 P3 and P4 are 40, 80, 0 and 40, respectively.
Thus, Passenger P3 is a free rider, which is undesirable
especially in the context of the DRT example since Passenger
P3 has the highest demand, which should be reflected in
the fares. Proportional cost sharing does not suffer from this
problem.

Because the demands of different passengers (quantified by
their alpha values) are not necessarily identical, their fares
should be divided by their alpha values to compare them. The
fares per alpha value of Passengers P1 and P3 are 20 and
0, respectively. Thus, the fare per alpha value of Passenger
P1 is larger than that of Passenger P3 even though Passenger
P1 submits its ride request before Passenger P3. An indirect
way of providing incentives for passengers to submit their ride
requests truthfully (that is, as early as possible) is to ensure
that the fares per alpha value of passengers are never higher
than those of passengers who submit their ride requests after
them (online-fairness property). Incremental cost sharing does
not satisfy this property, as shown above.

Table III (right) shows the shared costs for the DRT ex-
ample in Section II-B if Passenger P1 delays its ride request
submission and the passengers submit their ride requests in
order P2, P1, P3 and P4. Now, the shared cost of Passenger
P1 from its ride request submission at time 2 on is 0, and thus
both its fare quote and fare are 0 as well. Thus, Passenger P1

can reduce its fare from 40 to 0 by strategically delaying its
ride request submission. A direct way of providing incentives
for passengers to submit their ride requests truthfully is to
ensure that no passenger can decrease its fare by delaying
its ride request submission (incentive-compatibility property).
Incremental cost sharing does not satisfy this property, as
shown above.

3) Other Cost-Sharing Mechanisms: There has been a
considerable amount of research on designing cost-sharing
mechanisms in the fields of cooperative game theory and
multi-agent systems, mostly focusing on an offline setting,

see [14]–[16] for related work. Two cost-sharing mechanisms
have received a fair amount of attention in the mechanism
design literature in addition to proportional and incremental
cost sharing, namely the value mechanism [17] and the serial
mechanism [18]. However, these mechanisms for the offline
setting encounter similar problems as proportional cost sharing
in the online setting. Online cost-sharing mechanisms have
been studied in [10] but without considering fairness.

Online fair division problems for cake cutting [19] and
resource allocation [20] deal with agents that submit their
requests one after the other, just like the online cost-sharing
problem for DRT systems, but the available amount of cake
and resources of those problems are independent of the re-
quests of the agents, while the total cost of online cost-sharing
problems for DRT systems depends on the ride requests that
have been submitted.

D. Desirable Properties

None of the cost-sharing mechanisms discussed so far are
well-suited for the DRT problem. Based on their shortcomings,
we derive a list of desirable properties for online cost-sharing
mechanisms. Our primary objective is to design an online cost-
sharing mechanism that provides incentives for passengers to
submit their ride requests truthfully while satisfying basic
properties of cost-sharing mechanisms in general, such as
fairness and budget balance.

• Online Fairness: The shared costs per alpha value of
passengers are never higher than those of passengers who
submit their ride requests after them, that is, for all times
k1, k2 and t and all submit orders π with 1 ≤ k1 ≤ k2 ≤
t,

costtπ(k1)

απ(k1)
≤
costtπ(k2)

απ(k2)
.

• Immediate Response: Passengers are provided immedi-
ately after their ride request submissions with (ideally
low) upper bounds on their shared costs at any future
time, that is, for all times k, t1 and t2 and all submit
orders π with 1 ≤ k ≤ t1 ≤ t2,

costt1π(k) ≥ cost
t2
π(k).

• Individual Rationality: The shared costs of passengers
who accepted their fare quotes never exceed their fare
limits at any future time, that is, for all times k and t and
all submit orders π with 1 ≤ k ≤ t,

costtπ(k) ≤ wπ(k).

• Budget Balance: The total cost equals the sum of the
shared costs of all passengers, that is, for all times t and
all submit orders π with 1 ≤ t,

t∑
j=1

costtπ(j) = totalcosttπ.
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TABLE III
SHARED COSTS UNDER INCREMENTAL COST SHARING: costt

π(k)

Truthful Submission Delayed Submission
k = 1 k = 2 k = 3 k = 4 k = 1 k = 2 k = 3 k = 4

π(k) = P1 π(k) = P2 π(k) = P3 π(k) = P4 π(k) = P2 π(k) = P1 π(k) = P3 π(k) = P4

t = 1 40 120
t = 2 40 80 120 0
t = 3 40 80 0 120 0 0
t = 4 40 80 0 40 120 0 0 40

• Ex-Post Incentive Compatibility:1 The best strategy of
every passenger is to submit its ride request truthfully,
provided that all other passengers do not change their
submit times and whether they accept or decline their
fare quotes, because it then cannot decrease its shared
cost by delaying its ride request submission, that is, for
all times k1, k2 and t and all submit orders π and π′ with
1 ≤ k1 < k2 ≤ t and

π′(k) =


π(k + 1) if k1 ≤ k < k2

π(k1) if k = k2

π(k) otherwise,

costtπ(k1) ≤ cost
t
π′(k2)

.

In other words, consider any time t, any submit order π
and any passenger π(k1). Now assume that the passenger
delays its ride request submission and now submits the
k2th instead of the k1th ride request, with everything else
being equal. Then, its shared cost costtπ′(k2) at time t
under the new submit order π′ should not be lower than its
shared cost costtπ(k1) at time t under the previous submit
order π.

The online fairness and ex-post incentive-compatibility
properties are similar but one does not imply the other.
Basically, they provide incentives for passengers to submit
their ride requests truthfully. Thus, the DRT systems have more
time to prepare and might also be able to offer subsequent
passengers lower fares due to synergies with the early ride
requests, which might allow them to service more passengers.
The online-fairness property is also meant to ensure that pas-
sengers consider the fares to be fair. The immediate-response
property enables DRT systems to provide fare quotes, in form

1We would like the ex-post incentive-compatibility property ideally to
state that the best strategy of every passenger is to submit its ride request
truthfully because it cannot decrease its shared cost by delaying its ride request
submission. However, we impose two conditions in this article that we hope to
be able to relax in the future. The first condition is that all other passengers
do not change their submit times, which, for example, rules out collusion
of several passengers. In general, the literature on online-mechanism design
[21] distinguishes two types of incentive compatibility, namely dominant-
strategy incentive compatibility and ex-post incentive compatibility. Dominant-
strategy incentive compatibility does not require the first condition, while ex-
post incentive compatibility does. Dominant-strategy incentive compatibility is
difficult to achieve in an online setting [21], which is why we impose the first
condition in this article. The second condition is that the other passengers do
not change whether they accept their fare quotes or drop out, even though, for
example, the delayed ride request submission of a passenger could cause the
fare quotes of subsequent passengers to increase, which might make them drop
out. The submit orders with and without the delayed ride request submission
are then difficult to relate, which is why we impose the second condition in
this article.

of upper bounds on the fares, to passengers immediately after
their ride request submissions despite missing knowledge of
future ride request submissions. Thus, passengers have no
uncertainty about whether they can be serviced or how high
their fares are at most, while the DRT systems reduce their
uncertainty about passengers dropping out. Yet, they still retain
some flexibility to optimize the routes and schedules of the
shuttles after future ride request submissions. The budget-
balance property guarantees that the sum of the fares of all
passengers always equals the total cost. Thus, no profit is made
and no subsidies are required.

We stated sufficient rather than necessary conditions for
the properties. For example, the immediate-response property
could be weakened to state that passengers are provided imme-
diately after their ride request submissions with (ideally low)
upper bounds on their shared costs after the ride request sub-
mission of the last passenger since this implies that their fare
quotes are upper bounds on their fares. Similarly, the budget-
balance property could be weakened to state that the total cost
equals the sum of the shared costs of all passengers after the
ride request submission of the last passenger. Requiring the
properties to be satisfied at any time rather than only after
the ride request submission of the last passenger simplifies
the development of the online cost-sharing mechanism since
it does not know in advance which ride request submission is
the last one.

III. PROPORTIONAL ONLINE COST SHARING

Several online cost-sharing mechanisms might satisfy the
properties listed in Section II-D. In this section, we describe
a novel online cost-sharing mechanism, called Proportional
Online Cost Sharing (POCS), which satisfies the properties
and is thus a first step toward addressing some of the prob-
lems raised by the missing knowledge of future ride request
submissions. The idea behind POCS is the following: POCS
partitions passengers into coalitions, where coalitions contain
all passengers who submit their ride requests within given time
intervals (rather than, for example, all passengers serviced by
the same shuttle). Initially, each passenger forms its own coali-
tion when it submits its ride request. However, passengers can
choose to form coalitions with passengers who submit their
ride requests directly after them to decrease their shared costs
per alpha value, which implies the online fairness, immediate
response, and ex-post incentive-compatibility properties. For
example, the immediate-response property is satisfied because
passengers add other passengers to their coalitions only when
this decreases their shared costs per alpha value and thus also
their shared costs (since the alpha values are positive). We
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prove in Section IV that POCS indeed satisfies all properties
listed in Section II-D.

A new passenger accepting its fare quote can thus decrease
the fares of earlier passengers, perhaps at the expense of
detours that increase their ride time. However, their ride times
cannot increase by arbitrary amounts, for the following reason:
The operating cost and thus also the total cost typically
increase as the ride times of passengers increase. In turn, the
fare quote of the new passenger increases. If it increases up
to the point where it is larger than the fare limit of the new
passenger, then the new passenger declines its fare quote and
the fares of all earlier passengers thus do not increase at all.
POCS can also accommodate ride time limits of passengers
directly as long as it can calculate the minimal operating costs
(or other total costs that satisfy the assumptions of Definition
2) under these constraints sufficiently fast. However, it is future
work to develop a cost-sharing mechanism that minimizes a
joint objective of cost and time.

A. Calculation of Shared Costs

We first define the coalition cost per alpha value to be able
to describe formally how POCS calculates the shared costs.

Definition 6. For all times k1, k2 and t and all submit orders
π with k1 ≤ k2 ≤ t, the coalition cost per alpha value of
passengers π(k1), . . . , π(k2) at time t under submit order π
is

ccpaπ(k1,k2) :=

∑k2
j=k1

mcπ(j)∑k2
j=k1

απ(j)
.

We now describe how POCS calculates the shared costs.

Definition 7. For all times k and t and all submit orders π
with k ≤ t, the shared cost of passenger π(k) at time t under
submit order π is

costtπ(k) := απ(k) min
k≤j≤t

max
1≤i≤j

ccpaπ(i,j).

B. Relationship to Other Cost-Sharing Mechanisms

We first define coalitions to be able to explain why POCS
is a combination of proportional and incremental cost sharing.

Definition 8. For all times k1, k2 and t and all submit orders
π with k1 ≤ k2 ≤ t, a coalition (k1, k2) at time t is a group
of passengers π(k1), . . . , π(k2) with

costtπ(k)

απ(k)
=
costtπ(k1)

απ(k1)

for all times k with k1 ≤ k ≤ k2 and

costtπ(k)

απ(k)
6=
costtπ(k1)

απ(k1)

for all times k with (k = k1−1 or k = k2+1) and 1 ≤ k ≤ t.

The following lemma, whose proof is provided in Sec-
tion IV, helps to understand the similarities between POCS

and other cost-sharing mechanisms. It states that the shared
costs per alpha value of all passengers in any coalition are
always identical and equal to the coalition cost per alpha value
of the coalition.

Lemma. 2 The shared cost per alpha value of any passenger
in any coalition at any time equals the coalition cost per alpha
value of the coalition, that is, for all times k1, k, k2 and t and
all submit orders π with 1 ≤ k1 ≤ k ≤ k2 ≤ t such that
(k1, k2) is a coalition at time t,

costtπ(k)

απ(k)
= ccpaπ(k1,k2).

Lemma 2 implies that POCS is a combination of propor-
tional and incremental cost sharing, for the following reasons:
• The sum of the marginal costs of all passengers in

any coalition (“the total cost of all passengers in the
coalition”) at time t is distributed among all passengers
in the coalition proportionally to their alpha values since,
for all times k1, k, k2 and t and all submit orders π with
k1 ≤ k ≤ k2 ≤ t such that (k1, k2) is a coalition at time
t,

costtπ(k)
Lem.2
= απ(k)ccpaπ(k1,k2)

Def.6
= απ(k)

∑k2
j=k1

mcπ(j)∑k2
j=k1

απ(j)

=

 k2∑
j=k1

mcπ(j)

 απ(k)∑k2
j=k1

απ(j)
,

which is similar to proportional cost sharing, where the
total cost (of all passengers) is distributed among all
passengers proportionally to their alpha values.

• The sum of the shared costs of all passengers in any
coalition (“the shared cost of the coalition”) at time t
equals the sum of the marginal costs of all passengers
in the coalition (“the marginal cost of the coalition”) at
the same time since, for all times k1, k2 and t and all
submit orders π with k1 ≤ k2 ≤ t such that (k1, k2) is a
coalition at time t,

k2∑
j=k1

costtπ(j)
Lem.2
= ccpaπ(k1,k2)

k2∑
j=k1

απ(j)

Def.6
=

∑k2
j=k1

mcπ(j)∑k2
j=k1

απ(j)

k2∑
j=k1

απ(j)

=

k2∑
j=k1

mcπ(j),

which is similar to incremental cost sharing. where the
shared cost of a passenger is its marginal cost. It also
implies the budget-balance property since summing over
all passengers in all coalitions is identical to summing
over all passengers and the sum of the marginal costs of
all passengers equals the total cost.
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Fig. 2. DRT Example 2

TABLE V
SHARED COSTS UNDER POCS: costt

π(k)

k = 1 k = 2 k = 3 k = 4
π(k) = P1 π(k) = P2 π(k) = P3 π(k) = P4

t = 1 40
t = 2 40 80
t = 3 30 30 60
t = 4 30 30 60 40

C. Illustration

Table IV shows the coalition costs per alpha value for the
DRT example in Section II-B. For example, the coalition cost
per alpha value of Passengers P1, P2 and P3 (at all times)
is ccpaπ(1,3) =

∑3
j=1mcπ(j)∑3
j=1 απ(j)

= 40+80+0
2+2+4 = 15. The coalition

costs per alpha value are used to calculate the shared costs,
shown in Table V. The shared costs, in turn, are used to
calculate the shared costs per alpha value, shown in Table
VI, by dividing the shared costs by the alpha values, shown
in Table I. For example, at time 4, Passengers P1, P2 and
P3 form a coalition (since their shared costs per alpha value
are equal), and Passenger P4 forms a coalition by itself.
The sum of the marginal costs of the three passengers in
the first coalition (“the total cost of all passengers in the
coalition”) is 120 and is distributed among all passengers in the
coalition proportionally to their alpha values, namely 2, 2 and
4, respectively. Consequently, the shared cost of Passenger P3

at time 4 and thus its fare is cost4π(3) = 60. Table VI shows that
the shared costs per alpha value in each row are monotonically
non-decreasing from left to right, corresponding to the online-
fairness property. Table V shows that the shared costs in each
column are monotonically non-increasing from top to bottom
(and consequently Table VI shows that the shared costs per
alpha value have the same property), corresponding to the
immediate-response property. Table V also shows that the
sum of the shared costs in each row equals the total cost at
the corresponding time, corresponding to the budget-balance
property.

D. Ex-Post Incentive Compatibility

We use the DRT example in Figure 2 to illustrate that POCS
does not satisfy the ex-post incentive-compatibility property
if the second condition (namely that the other passengers do
not change whether they accept their fare quotes or drop out)
is removed. There is one shuttle that can transport up to four
passengers and starts at the star. The shuttle incurs an operating
cost of 10 for each unit of distance traveled and needs to return
to its initial location. There are three passengers. Passengers
P1 and P3 accept all fare quotes, while Passenger P2 accepts
all fare quotes up to 60. Assume that the passengers submit

TABLE VI
SHARED COSTS PER ALPHA VALUE UNDER POCS: costt

π(k)
/απ(k)

k = 1 k = 2 k = 3 k = 4
π(k) = P1 π(k) = P2 π(k) = P3 π(k) = P4

t = 1 20
t = 2 20 40
t = 3 15 15 15
t = 4 15 15 15 20

their ride requests in order P1, P2 and P3. First, Passenger P1

submits its ride request, receives a fare quote of 60 and accepts
it. Second, Passenger P2 submits its ride request, receives a
fare quote of 50 and accepts it. Third, Passenger P3 submits
its ride request, receives a fare quote of 50 and accepts it. In
the end, Passengers P1, P2 and P3 are serviced with fares of
25, 25 and 50, respectively. Now assume that Passenger P1

delays its ride request submission, and the passengers submit
their ride requests in order P2, P3 and P1. First, Passenger
P2 submits its ride request, receives a fare quote of 80 and
drops out since the fare quote exceeds its fare limit of 60.
Second, Passenger P3 submits its ride request, receives a fare
quote of 40 and accepts it. Third, Passenger P1 submits its
ride request, receives a fare quote of 20 and accepts it. In the
end, Passengers P1 and P3 are serviced with fares of 20 and
40, respectively. Thus, Passenger P1 managed to decrease both
its fare quote and fare by delaying its ride request submission
since this caused Passenger P2 to drop out.

IV. ANALYSIS OF PROPERTIES

In this section, we prove that POCS satisfies all properties
listed in Section II-D, making use of the following corollary
to Definition 7.

Corollary 1. For all times k and t and all submit orders π
with 1 ≤ k ≤ t,

costtπ(k)

απ(k)
= min
k≤j≤t

costjπ(j)

απ(j)
.

Proof. Consider any times k and t and any submit order π
with 1 ≤ k ≤ t. Then,

costtπ(k)

απ(k)

Def.7
= min

k≤j≤t
max
1≤i≤j

ccpaπ(i,j)

= min
k≤j≤t

min
j≤j′≤j

max
1≤i≤j′

ccpaπ(i,j′)

Def.7
= min

k≤j≤t

costjπ(j)

απ(j)
,

which proves the corollary.

A. Online Fairness

In this section, we prove that POCS satisfies the online-
fairness property, namely that the shared costs per alpha value
of passengers are never higher than those of passengers who
submit their ride requests after them.
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TABLE IV
COALITION COSTS PER ALPHA VALUE UNDER POCS: ccpaπ(k1,k2)

k2 = 1 k2 = 2 k2 = 3 k2 = 4
π(k2) = P1 π(k2) = P2 π(k2) = P3 π(k2) = P4

k1 = 1 π(k1) = P1 20 30 15 16
k1 = 2 π(k1) = P2 40 13 1/3 15
k1 = 3 π(k1) = P3 0 6 2/3
k1 = 4 π(k1) = P4 20

Theorem 1. POCS satisfies the online-fairness property, that
is, for all times k1, k2 and t and all submit orders π with
1 ≤ k1 ≤ k2 ≤ t,

costtπ(k1)

απ(k1)
≤
costtπ(k2)

απ(k2)
.

Proof. Consider any times k1, k2 and t and any submit order
π with 1 ≤ k1 ≤ k2 ≤ t. Then,

costtπ(k1)

απ(k1)

Cor.1
= min

k1≤j≤t

costjπ(j)

απ(j)

k1≤k2
≤ min

k2≤j≤t

costjπ(j)

απ(j)

Cor.1
=

costtπ(k2)

απ(k2)
,

which proves the theorem.

B. Immediate Response

In this section, we prove that POCS satisfies the immediate-
response property, namely that passengers are provided imme-
diately after their ride request submissions with upper bounds
on their shared costs at any future time because they are
provided with their shared costs immediately after their ride
request submissions and their shared costs are monotonically
non-increasing over time.

Theorem 2. POCS satisfies the immediate-response property,
that is, for all times k, t1 and t2 and all submit orders π with
1 ≤ k ≤ t1 ≤ t2,

costt1π(k) ≥ cost
t2
π(k).

Proof. Consider any times k, t1 and t2 and any submit order
π with 1 ≤ k ≤ t1 ≤ t2. Then,

costt1π(k)
Cor.1
= απ(k) min

k≤j≤t1

costjπ(j)

απ(j)

t1≤t2
≥ απ(k) min

k≤j≤t2

costjπ(j)

απ(j)
Cor.1
= costt2π(k),

which proves the theorem.

C. Individual Rationality

In this section, we prove that POCS satisfies the individual-
rationality property, namely that the shared costs of passengers
who accept their fare quotes never exceed their fare limits at
any future time.

Theorem 3. POCS satisfies the individual-rationality prop-
erty, that is, for all times k and t and all submit orders π with
1 ≤ k ≤ t,

costtπ(k) ≤ wπ(k).

Proof. Consider any times k and t and any submit order π
with 1 ≤ k ≤ t. It holds that

costkπ(k) ≤ wπ(k) (1)

since passenger π(k) accepted its fare quote costkπ(k) at time
k, which implies that its fare limit wπ(k) is no lower than its
fare quote. Then,

costtπ(k)
Thm.2
≤ costkπ(k)

Eq.1

≤ wπ(k),

which proves the theorem.

D. Budget Balance

In this section, we prove that POCS satisfies the budget-
balance property, namely that the total cost equals the sum
of the shared costs of all passengers. We first prove some
properties of coalitions and then that the sum of the marginal
costs of all passengers in any coalition (“the total cost of all
passengers in the coalition”) equals the sum of the shared costs
of all passengers in it.

Lemma 1. The shared cost of the last passenger in any
coalition at any time equals its shared cost immediately after
its ride request submission, that is, for all times k1, k2 and
t and all submit orders π with 1 ≤ k1 ≤ k2 ≤ t such that
(k1, k2) is a coalition at time t,

costtπ(k2) = costk2π(k2).

Proof. Consider any times k1, k2 and t and any submit order
π with 1 ≤ k1 ≤ k2 ≤ t such that (k1, k2) is a coalition at
time t. At time t = k2, the lemma trivially holds. At time
t > k2,

costtπ(k2)

απ(k2)

Th.1
<

costtπ(k2+1)

απ(k2+1)
(2)

since passengers π(k2) and π(k2+1) are in different coalitions
at time t and thus do not have the same shared cost per alpha
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value at time t according to Definition 8. Thus,2

min
k2≤j≤t

costjπ(j)

απ(j)

Cor.1
=

costtπ(k2)

απ(k2)

Eq.2
<

costtπ(k2+1)

απ(k2+1)

Cor.1
= min

k2+1≤j≤t

costjπ(j)

απ(j)
(3)

costtπ(k2)
Cor.1
= απ(k2) min

k2≤j≤t

costjπ(j)

απ(j)

Eq.3∗
= απ(k2)

costk2π(k2)

απ(k2)
= costk2π(k2),

which proves the lemma.

Lemma 2. The shared cost per alpha value of any passenger
in any coalition at any time equals the coalition cost per alpha
value of the coalition, that is, for all times k1, k, k2 and t and
all submit orders π with 1 ≤ k1 ≤ k ≤ k2 ≤ t such that
(k1, k2) is a coalition at time t,

costtπ(k)

απ(k)
= ccpaπ(k1,k2).

Proof. Consider any times k1, k, k2 and t and any submit
order π with 1 ≤ k1 ≤ k ≤ k2 ≤ t such that (k1, k2) is a
coalition at time t. We prove the lemma for k = k2. It then
also holds for all k with k1 ≤ k ≤ k2 since all passengers
in the same coalition at time t have the same shared cost per
alpha value at time t according to Definition 8. We prove the
lemma for k = k2 by contradiction by assuming that

costtπ(k2)

απ(k2)
6= ccpaπ(k1,k2). (4)

Then,

ccpaπ(k1,k2)
Eq.4

6=
costtπ(k2)

απ(k2)

Lem.1
=

costk2π(k2)

απ(k2)
Def.7
= max

1≤j≤k2
ccpaπ(j,k2) (5)

ccpaπ(k1,k2)
Eq.5,1≤k1≤k2

< max
1≤j≤k2

ccpaπ(j,k2). (6)

Thus, there exists a time k′ with 1 ≤ k′ < k2 such that

ccpaπ(k1,k2)
Eq.6
< max

1≤j≤k2
ccpaπ(j,k2) = ccpaπ(k′,k2). (7)

Assume without loss of generality that k′ is the earliest such
time. Then, for all times k′′ with 1 ≤ k′′ < k′,

ccpaπ(k′′,k2) < ccpaπ(k′,k2). (8)

We distinguish the following cases to prove that such a k′

does not exist. The cases are exhaustive since 1 ≤ k′ < k2
and 1 ≤ k1 ≤ k2:

2At the position marked with an asterisk, we use that min
k2≤j≤t

xj <

min
k2+1≤j≤t

xj implies min
k2≤j≤t

xj = xk2 .

• Case 1 ≤ k′ < k1:
Let A :=

∑k1−1
j=k′ mcπ(j), B :=

∑k2
j=k1

mcπ(j), C :=∑k1−1
j=k′ απ(j) and D :=

∑k2
j=k1

απ(j). Then,

B
D

Def.6
= ccpaπ(k1,k2)

Eqs.7
< ccpaπ(k′,k2)

Def.6
= A+B

C+D (9)

BC
Eq.9,C>0,D>0

< AD (10)

ccpaπ(k′,k2)
Def.6
= A+B

C+D

Eq.10
< A

C

Def.6
= ccpaπ(k′,k1−1).(11)

Separately,

costtπ(k1−1)

απ(k1−1)

Th.1
<

costtπ(k1)

απ(k1)
(12)

since passengers π(k1 − 1) and π(k1) are in different
coalitions at time t and thus do not have the same shared
cost per alpha value at time t according to Definition 8.
Thus,

min
k1−1≤j≤t

costjπ(j)

απ(j)

Cor.1
=

costtπ(k1−1)

απ(k1−1)

Eq.12
<

costtπ(k1)

απ(k1)

Cor.1
= min

k1≤j≤t

costjπ(j)

απ(j)
(13)

and3

costk1−1π(k1−1)

απ(k1−1)

Eq.13∗
< min

k1≤j≤t

costjπ(j)

απ(j)

k1≤k2
≤ min

k2≤j≤t

costjπ(j)

απ(j)

Cor.1
=

costtπ(k2)

απ(k2)

Lem.1
=

costk2π(k2)

απ(k2)
Def.7
= max

1≤j≤k2
ccpaπ(j,k2)

Eq.7
= ccpaπ(k′,k2)

Eq.11
< ccpaπ(k′,k1−1)

1≤k′≤k1−1
≤ max

1≤j≤k1−1
ccpaπ(j,k1−1)

Def.7
=

costk1−1π(k1−1)

απ(k1−1)
,

which is a contradiction since a value cannot be lower
than itself.

• Case k′ = k1:
It holds that

ccpaπ(k′,k2)
k′=k1= ccpaπ(k1,k2)

Eq.6
< max

1≤j≤k2
ccpaπ(j,k2)

Eq.7
= ccpaπ(k′,k2),

3At the position marked with an asterisk, we use that mink1−1≤j≤t xj <
mink1≤j≤t xj implies xk1−1 < mink1≤j≤t xj .
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which is a contradiction since a value cannot be lower
than itself.

• Case k1 < k′ < k2:
Let A :=

∑k′−1
j=k′′ mcπ(j), B :=

∑k2
j=k′ mcπ(j), C :=∑k′−1

j=k′′ απ(j) and D :=
∑k2
j=k′ απ(j). Then, for all times

k′′ with 1 ≤ k′′ < k′,

A+B
C+D

Def.6
= ccpaπ(k′′,k2)

Eq.8
< ccpaπ(k′,k2)

Def.6
= B

D (14)

AD
Eq.14,C>0,D>0

< BC (15)

ccpaπ(k′′,k′−1)
Def.6
= A

C

Eq.15
< B

D

Def.6
= ccpaπ(k′,k2).(16)

Thus,4

costtπ(k1)

απ(k1)

Cor.1
= min

k1≤j≤t

costjπ(j)

απ(j)

k1≤k′−1<t
≤

costk
′−1
π(k′−1)

απ(k′−1)
Def.7
= max

1≤j≤k′−1
ccpaπ(j,k′−1)

Eq.16∗
< ccpaπ(k′,k2)
Eq.7
= max

1≤j≤k2
ccpaπ(j, k2)

Def.7
=

costk2π(k2)

απ(k2)

Lem.1
=

costtπ(k2)

απ(k2)
,

which is a contradiction since passengers π(k1) and
π(k2) are in the same coalition at time t and thus have
the same shared cost per alpha value at time t according
to Definition 8.

Theorem 4. POCS satisfies the budget-balance property, that
is, for all times t and all submit orders π with 1 ≤ t,

t∑
j=1

costtπ(j) = totalcosttπ.

Proof. Consider any times k1, k2 and t and any submit order
π with 1 ≤ k1 ≤ k2 ≤ t such that (k1, k2) is a coalition at
time t. Then,

k2∑
j=k1

costtπ(j)
Lem.2
= ccpaπ(k1,k2)

k2∑
j=k1

απ(j)

Def.6
=

∑k2
j=k1

mcπ(j)∑k2
j=k1

απ(j)

k2∑
j=k1

απ(j)

=

k2∑
j=k1

mcπ(j). (17)

4At the position marked with an asterisk, we use that, for all k′′ with
1 ≤ k′′ < k′, xk′′ < y implies max1≤k′′<k′ xk′′ < y.

Summing over all passengers in all coalitions is identical to
summing over all passengers. Thus,

t∑
j=1

costtπ(j)
Eq.17
=

t∑
j=1

mcπ(j)

Def.3
=

t∑
j=1

(
totalcosttπ − totalcostt−1π

)
= totalcosttπ,

which proves the theorem.

E. Ex-Post Incentive Compatibility

In this section, we prove that POCS satisfies the ex-post
incentive-compatibility property, namely that the best strategy
for every passenger is to submit its ride request truthfully,
provided that all other passengers do not change their submit
times and whether they accept or decline their fare quotes,
because the passenger then cannot decrease its shared cost by
delaying its ride request submission.

Theorem 5. POCS satisfies the ex-post incentive-compatibility
property, that is, for all times k1, k2 and t and all submit
orders π and π′ with 1 ≤ k1 < k2 ≤ t and

π′(k) =


π(k + 1) if k1 ≤ k < k2

π(k1) if k = k2

π(k) otherwise,
(18)

costtπ(k1) ≤ cost
t
π′(k2)

.

Proof. Consider any times k1, k2 and t and any submit orders
π and π′ with 1 ≤ k1 < k2 ≤ t and π′(k) as given in Equation
18. π is the submit order where passenger π(k1) submits
its ride request truthfully and the passengers submit their
ride requests in order π(1), π(2), . . . , π(k1−1), π(k1), π(k1+
1), . . . , π(k2 − 1), π(k2), π(k2 + 1), . . . , π(t), while π′ is the
submit order where passenger π(k1) delays its ride request
submission and the passengers submit their ride requests
in order π(1), π(2), . . . , π(k1 − 1), π(k1 + 1), . . . , π(k2 −
1), π(k2), π(k1), π(k2 + 1), . . . , π(t). We prove the theorem
by contradiction by assuming that

costtπ′(k2) < costtπ(k1). (19)

Then,

costtπ′(k2)

απ′(k2)

Eq.19
<

costtπ(k1)

απ(k1)
, (20)

since the alpha values are independent of the submit order
according to Definition 1 and thus απ′(k2) = απ(k1). Assume
without loss of generality that t is the earliest such time. Thus,
if k2 < t,

costt−1π′(k2)

απ′(k2)
≥
costt−1π(k1)

απ(k1)
. (21)
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Separately,

t∑
j=1

costtπ′(j)
Th.4
= totalcosttπ′

= totalcosttπ

Th.4
=

t∑
j=1

costtπ(j) (22)

due to the budget-balance property since the total cost at time
t is independent of the submit order according to Defini-
tion 2. Equations 21 and 22 together imply that there exists
a passenger π(m) with 1 ≤ m ≤ t and m 6= k1 such that
the shared cost of passenger π(m) at time t is higher under
submit order π′ than submit order π because the shared cost
of passenger π(k1) at time t is lower under submit order π′

than submit order π (existence property). We distinguish the
following cases to prove that such a passenger does not exist
due to the online-fairness and immediate-response properties.
The cases are exhaustive since 1 ≤ m ≤ t, m 6= k1 and
1 ≤ k1 < k2 ≤ t:
• Case 1 ≤ m < k1:

In this case, π′(m)
Eq.18
= π(m). We distinguish the

following subcases. They are exhaustive since

costtπ(m)

απ(m)

Th.1
≤

costtπ(k1)

απ(k1)
.

– Sub-Case costtπ(m)

απ(m)
<

costtπ(k1)

απ(k1)
:

It holds that

costtπ(m)

απ(m)

Cor.1
= min

m≤j≤t

costjπ(j)

απ(j)

= min

(
min

m≤j≤k1−1

costjπ(j)

απ(j)
, min
k1≤j≤t

costjπ(j)

απ(j)

)
Cor.1
= min

(
costk1−1π(m)

απ(m)
,
costtπ(k1)

απ(k1)

)
. (23)

Thus,5

costk−1π(m)

απ(m)

Eq.23∗,subcase−assumption
=

costtπ(m)

απ(m)
. (24)

Put together,

costtπ′(m)

απ′(m)

Th.2
≤

costk1−1π′(m)

απ′(m)

∀1≤k<k1π(k)=π
′(k)

=
costk1−1π(m)

απ(m)

Eq.24
=

costtπ(m)

απ(m)
,

which contradicts the existence property, namely that
there exists a passenger π(m) = π′(m) with

costtπ′(m)

απ′(m)
>
costtπ(m)

απ(m)
.

5At the position marked with an asterisk, we use that x < z and x =
min(y, z) implies x = y.

– Sub-Case costtπ(m)

απ(m)
=

costtπ(k1)

απ(k1)
:

It holds that

costtπ′(m)

απ′(m)

Th.1
≤

costtπ′(k2)

απ′(k2)

Eq.20
<

costtπ(k1)

απ(k1)

subcase−assumption
=

costtπ(m)

απ(m)
,

which contradicts the existence property, namely that
there exists a passenger π(m) = π′(m) with

costtπ′(m)

απ′(m)
>
costtπ(m)

απ(m)
.

• Case k1 < m ≤ k2:
In this case, π′(m− 1)

Eq.18
= π(m). It holds that

costtπ′(m−1)

απ′(m−1)

Th.1
≤

costtπ′(k2)

απ′(k2)

Eq.20
<

costtπ(k1)

απ(k1)

Th.1
≤

costtπ(m)

απ(m)
,

which contradicts the existence property, namely that
there exists a passenger π(m) = π′(m− 1) with

costtπ′(m−1)

απ′(m−1)
>
costtπ(m)

απ(m)
.

• Case k2 < m ≤ t:
In this case, π′(m)

Eq.18
= π(m). It holds that

min
k2≤j≤t

costjπ′(j)

απ′(j)

Cor.1
=

costtπ′(k2)

απ′(k2)

Eq.20
<

costtπ(k1)

απ(k1)

Th.2
≤

costt−1π(k1)

απ(k1)

Eq.21

≤
costt−1π′(k2)

απ′(k2)

Cor.1
= min

k2≤j≤t−1

costjπ′(j)

απ′(j)
(25)

and thus6

costtπ′(t)

απ′(t)

Eq.25∗
< min

k2≤j≤t−1

costjπ′(j)

απ′(j)
. (26)

6At the position marked with an asterisk, we use that mink2≤j≤t xj <
mink2≤j≤t−1 xj implies xt < mink2≤j≤t−1 xj .
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Therefore,7

costtπ′(m)

απ′(m)

Th.1
≤

costtπ′(t)

απ′(t)

Eq.26∗
= min

(
min

k2≤j≤t−1

costjπ′(j)

απ′(j)
,
costtπ′(t)

απ′(t)

)

= min
k2≤j≤t

costjπ′(j)

απ′(j)

Cor.1
=

costtπ′(k2)

απ′(k2)

Eq.20
<

costtπ(k1)

απ(k1)

Th.1
≤

costtπ(m)

απ(m)
,

which contradicts the existence property, namely that
there exists a passenger π(m) = π′(m) with

costtπ′(m)

απ′(m)
>
costtπ(m)

απ(m)
.

V. EXPERIMENTAL ANALYSIS

We have proved that POCS satisfies five properties that
make DRT systems more attractive to both the transport
providers and the passengers, provided that our assumptions
are satisfied. For example, Definition 2 assumes that the total
cost satisfies two properties that hold for the minimal operating
cost, which is therefore the quantity that we have used so far
for the total cost. Calculating the minimal operating cost is typ-
ically an NP-hard problem and thus time-consuming. However,
DRT systems need to calculate the minimal operating cost
after each ride request submission, which would prevent them
from operating in real-time. We thus present an experimental
study with a transport simulation where the DRT system uses a
heuristic to compute a low operating cost that is not guaranteed
to be minimal [22]. In this case, the assumption in Definition
2 that the total cost is independent of the submit order (which
implies that the decisions of passengers to accept their fare
quotes or drop out and thus also their fare quotes themselves
are independent of the submit order) is not satisfied. This
assumption is used (only) to prove that POCS satisfies the
ex-post incentive-compatibility property, namely in Equation
22 of the proof of Theorem 5. We thus investigate whether
the best strategy of every passenger remains to submit its
ride request truthfully, for example because the likelihood of
transport capacity still being available tends to decrease over
time.

A. Transport Simulator

Our transport simulator first generates a given number of
shuttles and passengers. Each shuttle is characterized by its

7At the position marked with an asterisk, we use that x < y implies
x = min(y, x).

capacity, start location, end location, operating time window
and operating cost for each unit of distance traveled. Each
passenger is characterized by its truthful submit time, start
location, end location, pick-up time window, drop-off time
window and fare limit. The settings of our simulator are
slightly more general than what we have used in the DRT
examples because operating time windows of shuttles and
pick-up and drop-off time windows of passengers are taken
into account. The transport simulator then simulates each
passenger. Once a passenger is assigned to a shuttle, it is
never re-assigned to a different shuttle, which makes it possible
to calculate the marginal cost of a passenger as the lowest
operating cost increase of adding the passenger to any shuttle,
but is also a reason why the total cost (which equals the sum
of the operating costs of all shuttles) is not guaranteed to be
equal to the minimal operating cost or to be independent of the
submit order of the passengers. When a new passenger submits
its ride request, the transport simulator requests from each
shuttle the operating cost increase from adding the passenger
to all passengers previously assigned to it, selects a shuttle
with the lowest operating cost increase and then uses POCS to
calculate a fare quote for the passenger under the assumption
that the passenger is assigned to the selected shuttle. If the
fare limit of the passenger is lower than this fare quote, then
the passenger drops out and the transport simulator does not
service it. Otherwise, the passenger accepts the fare quote,
and the transport simulator adds it to all passengers previously
assigned to the selected shuttle and then updates the shared
costs of all passengers assigned to the shuttles.

Each shuttle has to calculate its route, schedule and operat-
ing cost increase (or, equivalently, operating cost) when adding
a new passenger to all passengers previously assigned to it.
The shuttle maintains an itinerary for all passengers assigned
to it - in the form of a sequence of locations, namely its start
location, its end location and the start and end locations of
all passengers assigned to it. It calculates its travel distance as
the shortest travel distance needed to visit all locations in the
order given in its itinerary, and it calculates its operating cost
as the product of its travel distance and its operating cost for
each unit of distance traveled. Determining an itinerary for the
new passenger and all passengers previously assigned to it that
minimizes its operating cost is time-consuming. The shuttle
therefore uses a non-optimal scheduling method [23], [24],
which is another reason why the total cost is not guaranteed
to equal the minimal operating cost and not guaranteed to be
independent of the submit order. In the construction phase of
the scheduling method, the shuttle uses a cheapest-insertion
method to construct a (feasible) itinerary by inserting the
start and end locations of the new passenger into the cached
itinerary for the passengers previously assigned to it. In the
subsequent improvement phase of the scheduling method, the
shuttle uses tabu search [25]–[28], a form of hill climbing, to
improve the itinerary from the construction phase.

B. Experiment 1

In Experiment 1, we evaluate the probability that passengers
accept their fare quotes and, in case they do, how their fares
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depend on their submit times. We perform 10,000 simulations
with the transport simulator in a grid city of size 11×11 (that
is, with 121 locations) and report average results. There are
25 shuttles that can each transport up to 10 passengers and
operate the same hours from dawn (time 101) to dusk (time
1440). These experimental conditions allow us to focus on the
effect that POCS has on the shared costs of passengers. We
assume that passengers submit their ride requests before dawn
(the departure time of the shuttles) since the total cost is not
independent of the submit order otherwise. We also assume
that shuttles have sufficient time to service all passengers
before dusk. The shuttles start at a depot in the center of the
city. Each shuttle incurs an operating cost of 1 for each unit of
distance traveled and needs to return to its initial location at
dusk. There are 100 passengers who submit their ride requests
truthfully one at a time (that is, their submit times range from
time 1 to time 100). Thus, the passengers submit their ride
requests from time 0 to time 100 and are serviced by the
shuttles from time 101 to time 1440. The start location of 20
percent of the passengers is the depot. The start locations of
the other passengers and the end locations of all passengers are
randomly selected from all locations with uniform probability.
The pick-up and drop-off time windows are identical for each
passenger but might be different from passenger to passenger.
Their lower bounds are dawn, and the differences between
their upper and lower bounds are randomly selected from
being 2.5 to 3.0 times higher than their alpha values (that
is, the shortest point-to-point travel distances from their start
locations to their end locations). Thus, passengers do not have
tight schedules, resulting in low fare quotes. The fare limits of
passengers are randomly selected from being 1.5 to 3.0 times
higher than their alpha values. Thus, passengers have high fare
limits. For both of these reasons, the fare quotes often do not
exceed the fare limits. Many passengers therefore accept their
fare quotes and are serviced.

Figure 3 shows the probability that passengers accept
their fare quotes (“Matched Probabilities of Passengers”) as
a function of their submit times k, that is, the percentage
of simulations with costkπ(k) ≤ wπ(k). The probability that
passengers accept their fare quotes is around 75 percent. It
decreases as their submit times increase (since their fare quotes
tend to increase as their submit times increase) but only very
slowly. Figure 3 also shows the fares per alpha value of
all passengers who accepted their fare quotes (“Normalized
Shared Costs”) as a function of their submit times k, that is,
cost100π(k) averaged over all simulations with costkπ(k) ≤ wπ(k).
The fares per alpha value of passengers increase as their
submit times increase (as suggested by the online fairness
property) but only very slowly. The only exception is the
sharp increase for submit times close to 100 since passengers
who submit their ride requests then can no longer share their
costs with a high number of passengers who submit their
ride requests after them. Thus, Experiment 1 demonstrates
that passengers have an incentive to submit their ride requests
truthfully since their fare quotes and fares tend to increase as
their submit times increase. Thus, it is more likely that they
accept their fare quotes and are serviced for low fares if they
submit their ride requests as early as possible.
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Fig. 3. Results of Experiment 1

C. Experiment 2

The definition of ex-post incentive compatibility states that
the best strategy of every passenger is to submit its ride request
truthfully, provided that all other passengers do not change
their submit times and whether they accept or decline their
fare quotes. However, these two assumptions are not guar-
anteed to be satisfied in practice. We have already shown in
Section III-D that POCS does not satisfy the ex-post incentive-
compatibility property if the second condition is removed.
In Experiment 2, we therefore evaluate how likely it is that
passengers can decrease their fares by delaying their ride
request submissions if the second condition is removed. Exper-
iment 2 is similar to Experiment 1, except that we distinguish
four scenarios with different flexibilities of the shuttles and
the passengers and use experimental parameters that decrease
the scale of the experiment since each simulation is now
more time-consuming. We perform 1,000 simulations with the
transport simulator in a grid city of size 5 × 5 and report
average results. Each simulation consists of at most 45 runs in
addition to a run where Passengers P1 . . . P10 submit their ride
requests truthfully in order P1 . . . P10 (truthful case), namely
runs where all passengers submit their ride requests truthfully
except that Passenger Pi delays its ride request submission
and submits its ride request only immediately after Passenger
Pj (delayed case) for all i and j with 1 ≤ i < j ≤ 10 where
Passenger Pi accepts its fare quote when all passengers submit
their ride requests truthfully. There are either 2 or 10 shuttles
(for two scenarios) that can each transport up to 3 passengers,
operate the same hours from dawn to dusk and start at a depot
in the center of the city. Each shuttle incurs an operating cost
of 1 for each unit of distance traveled and needs to return
to its initial location at dusk. There are 10 passengers who
submit their ride requests one at a time (that is, their submit
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times range from time 1 to time 10) before the shuttles start to
service them. The start and end locations of all passengers are
randomly selected from all locations with uniform probability.
The pick-up and drop-off time windows are identical for each
passenger but might be different from passenger to passenger.
Their lower bounds are dawn, and the differences between
their upper and lower bounds are either 3.0 or 4.0 times (for
two scenarios) higher than their alpha values. The fare limits
of passengers are 3.0 times higher than their alpha values.

Table VII shows, for each scenario, the number of runs, (in
the top row) the probabilities that passengers who delay their
ride request submissions improve their situations (since their
fares decrease), do not change their situations (since their fares
remain unchanged) or worsen their situations (since either their
fare quotes increase sufficiently for them to drop out or - in
case they do not drop out - their fares increase) and (in the
bottom row) the medians of their shared costs per alpha value
(with their standard deviations in parentheses) both for the
truthful cases (left) and delayed cases (right). Experiment 2
demonstrates that passengers have an incentive to submit their
ride requests truthfully since, in all scenarios, the probability
that passengers who delay their ride request submissions
improve their situations is lower than 20 percent while the
probability that they worsen their situations is higher than 50
percent. Also, it turns out that the shared cost per alpha value,
averaged over all passengers, decreases for each scenario.
(The standard deviations, averaged over all passengers, are
similar in Experiments 1 and 2.) Experiment 2 does not
measure one advantage of passengers who delay their ride
request submissions, namely the situations where passengers
originally dropped out since their fare quotes exceeded their
fare limits and by delaying their ride request submissions
decrease their fare quotes so much that they no longer drop
out. Also, Experiment 2 assumes that passengers delay their
ride request submissions randomly (rather than strategically)
due to missing knowledge of future ride request submissions.
The probability that the situations for passengers who delay
their ride request submissions worsen is zero if passengers are
able to delay their ride request submissions strategically since
they can always decide to submit their ride requests truthfully
instead, in which case their situations do not change. We thus
expect the probability that their situations improve to increase.

We now analyze Scenario 2 in Table VII in more depth. We
select 50 simulations randomly where Passenger P1 accepts
its fare quote when all passengers submit their ride requests
truthfully and, for each simulation, consider the 9 runs where
all passengers submit their ride requests truthfully except that
passenger P1 delays its ride request submission and submits
its ride request only immediately after Passenger Pj for all
j with 1 < j ≤ 10. The situation of Passenger P1 improves
in 70 of the resulting 450 runs. The reason for three of these
runs is identical to the one given in Section III-D, namely
that other passengers drop out when Passenger P1 delays its
ride request submission, which reduces its fare. The reason
for the remaining 67 runs is that the operating cost is not
independent of the submit order, both because passengers
are never re-assigned to different shuttles and because the
scheduling method is non-optimal, in particular because its

construction phase does not find feasible itineraries even when
they exist (in which case the improvement phase is ineffective).
We therefore expect that smarter scheduling methods are able
to reduce the number of cases where passengers improve their
situations by delaying their ride request submissions.

VI. CONCLUSIONS

In this article, we determined properties of cost-sharing
mechanisms that we believe make DRT systems attractive to
both the shuttles and the passengers, namely online fairness,
immediate response, individual rationality, budget balance and
ex-post incentive compatibility. We then proposed a novel cost-
sharing mechanism, called Proportional Online Cost Sharing
(POCS), that provides passengers with upper bounds on their
fares immediately after their ride request submissions despite
missing knowledge of future ride request submissions, allow-
ing them to accept their fare quotes or drop out. Thus, passen-
gers have no uncertainty about whether they can be serviced
or how high their fares are at most, while DRT systems reduce
their uncertainty about passengers dropping out. Yet, they still
retain some flexibility to optimize the routes and schedules of
the shuttles after future ride request submissions. The sum
of the fares of all passengers always equals the operating
cost. Thus, no profit is made and no subsidies are required.
POCS provides incentives for passengers to submit their ride
requests truthfully (that is, as early as possible) since the fares
of passengers per mile of requested travel are never higher
than those of passengers who submit their ride requests after
them. Thus, the DRT systems have more time to find routing
solutions that can offer subsequent passengers lower fares
due to synergies with the early ride requests, which might
allow them to service more passengers. Another incentive
for passengers to submit their ride requests truthfully is that
the likelihood of transport capacity being available tends to
decrease over time, which alleviates the issue that some of
the properties of POCS depend on assumptions that are only
approximately satisfied in practice.

Overall, POCS is a first step towards addressing some of the
problems raised by the missing knowledge of future ride re-
quest submissions, which differentiates our research from pre-
vious research [29]–[32]. However, some issues remain to be
addressed by more advanced online cost-sharing mechanisms,
including integrating more complex models of passengers,
shuttles and transport environments. Our current simplifying
assumptions include, for example, that the availability of the
shuttles does not change unexpectedly, that all passengers
submit their ride requests before the shuttles start to service
passengers, that fares depend only on the ride requests and
no other considerations (for example, that DRT systems do
not face competition), that all passengers evaluate their trips
uniformly according to the criteria quantified by the alpha
values (for example, that all passengers consider travel time to
be equally important), that DRT systems provide fare quotes to
passengers without predicting future ride request submissions
(for example, that DRT systems service hard-to-accommodate
passengers even though these passengers increase the shared
costs of subsequent passengers and might make subsequent
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TABLE VII
RESULTS OF EXPERIMENT 2

Scenario Number of Time Number of Situation No Situation Worsens
Shuttles Window Runs Improves Change Not Dropping Out Dropping Out

1 2 3.0 33,116 11% 32% 24% 33%
1.38 (0.24) → 1.20 (0.19) 1.29 (0.25) → 1.29 (0.25) 1.23 (0.22) → 1.50 (0.34) 1.38 (0.30) → -(-)

2 2 4.0 37,047 15% 31% 39% 15%
1.31 (0.23) → 1.16 (0.19) 1.20 (0.24) → 1.20 (0.24) 1.14 (0.21) → 1.43 (0.36) 1.32 (0.29) → -(-)

3 10 3.0 36,975 16% 31% 51% 2%
1.49 (0.24) → 1.33 (0.22) 1.37 (0.30) → 1.37 (0.30) 1.32 (0.27) → 1.71 (0.45) 1.46 (0.28) → -(-)

4 10 4.0 37,911 17% 29% 51% 3%
1.32 (0.22) → 1.17 (0.19) 1.21 (0.25) → 1.21 (0.25) 1.18 (0.21) → 1.56 (0.46) 1.32 (0.28) → -(-)

passengers drop out), that passengers try to decrease their fares
only by delaying their ride request submissions (rather than,
for example, by colluding with other passengers or submitting
fake ride requests under false names) and that passengers
honor their commitments (for example, that passengers do not
change their ride requests, cancel them, show up late or do
not show up at all).

Finally, it is future work to apply POCS to problems similar
to demand-responsive transport, such as taxi sharing [33] and
ridesharing [34]. An application of POCS to taxi sharing is
straightforward since the main difference between taxi sharing
and demand-responsive transport is how the operating cost is
calculated. An application of POCS to ridesharing is more
complicated since it is more likely for transport providers in
the context of ridesharing than demand-responsive transport
(that is, drivers and shuttles, respectively) to start offering their
services at arbitrary points in time during the course of a day.
Also, transport providers are more likely to consider some
trips unacceptable to them in the context of ridesharing than
demand-responsive transport. In general, fairness is a concept
that has remained understudied in the context of all these
applications.
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[10] J. Brenner and G. Schäfer, “Online cooperative cost sharing,” in Algo-
rithms and Complexity, T. Calamoneri and J. Diaz, Eds. Springer, 2010,
vol. 6078, pp. 252–263.

[11] Y. Wang and D. Zhu, “Ordinal proportional cost sharing,” Journal of
Mathematical Economics, vol. 37, no. 3, pp. 215–230, 2002.

[12] Y. Sprumont, “Ordinal cost sharing,” Journal of Economic Theory,
vol. 81, no. 1, pp. 126–162, 1998.

[13] H. Moulin, “Incremental cost sharing: Characterization by coalition
strategy-proofness,” Social Choice and Welfare, vol. 16, no. 2, pp. 279–
320, 1999.

[14] ——, “Axiomatic cost and surplus sharing,” in Handbook of Social
Choice and Welfare, K. Arrow, A. Sen, and K. Suzumura, Eds. Elsevier,
2002, vol. 1, ch. 6, pp. 289–357.

[15] K. Jain and M. Mahdian, “Cost sharing,” in Algorithmic Game Theory,
N. Nisan, T. Roughgarden, E. Tardos, and V. Vazirani, Eds. Cambridge
University Press, 2007, ch. 15, pp. 385–410.

[16] Y. Shoham and K. Leyton-Brown, Multiagent Systems: Algorithmic,
Game-Theoretic, and Logical Foundations. Cambridge University
Press, 2009.

[17] M. Shubik, “Incentives, decentralized control, the assignment of joint
costs and internal pricing,” Management Science, vol. 8, no. 3, pp. 325–
343, 1962.

[18] H. Moulin and S. Shenker, “Serial cost sharing,” Econometrica, vol. 60,
no. 5, pp. 1009–1037, 1992.

[19] T. Walsh, “Online cake cutting,” in Algorithmic Decision Theory,
R. Brafman, F. Roberts, and A. Tsoukiàs, Eds. Springer, 2011, vol.
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