
Comparing

Real-Time and Incremental Heuristic Search

for Real-Time Situated Agents

Sven Koenig and Xiaoxun Sun

University of Southern California, Los Angeles CA 90089-0781, USA
{skoenig,xiaoxuns}@usc.edu

Abstract. Real-time situated agents, such as characters in real-time
computer games, often do not know the terrain in advance but automat-
ically observe it within a certain range around themselves. They have to
interleave searches with action executions to make the searches tractable
when moving autonomously to user-specified coordinates. The searches
face real-time requirements since it is important that the agents be re-
sponsive to the commands of the users and move smoothly. In this article,
we compare two classes of fast heuristic search methods for these naviga-
tion tasks that speed up A* searches in different ways, namely real-time
heuristic search and incremental heuristic search, to understand their
advantages and disadvantages and make recommendations about when
each one should be used. We first develop a competitive real-time heuris-
tic search method. LSS-LRTA* is a version of Learning Real-Time A*
that uses A* to determine its local search spaces and learns quickly.
We analyze the properties of LSS-LRTA* and then compare it experi-
mentally against the state-of-the-art incremental heuristic search method
D* Lite [21] on our navigation tasks, for which D* Lite was specifically
developed, resulting in the first comparison of real-time and incremen-
tal heuristic search in the literature. We characterize when to choose
each one of the two heuristic search methods, depending on the search
objective and the kind of terrain. Our experimental results show that
LSS-LRTA* can outperform D* Lite under the right conditions, namely
when there is time pressure or the user-supplied h-values are generally
not misleading.

1 Introduction

Consider navigation tasks for characters in real-time computer games (such as
Baldur’s Gate, Total Annihilation, Age of Empires or Dark Reign) as an example
of search tasks that real-time situated agents face. Agents in real-time computer
games often do not know the terrain in advance but automatically observe it
within a certain range around themselves and then remember it for future use.
To make the agents easy to control, one needs to give them the capability to

2

understand and execute high-level user commands. For example, the users can
click on certain coordinates in known or unknown terrain and the agents then
move autonomously to these coordinates.

These navigation tasks are interesting because they are different from traditional
search tasks encountered in fields other than autonomous agents. Traditional
search tasks have state spaces that are completely known in advance (= off-
line search), do not fit into the available computer memory and do not need to
be solved in real time. The predominant research issue is how to search larger
and larger state spaces. Our navigation tasks, on the other hand, have state
spaces that are not completely known in advance (= on-line search), fit into the
available computer memory and need to be solved in real time. Our research
issue is how to search the state spaces faster and faster.

In particular, our agents operate in terrain whose maps fit into computer mem-
ory but they might not know the terrain in advance and the resulting large
number of contingencies makes search difficult. Finding shortest trajectories is
often intractable since it involves finding large conditional plans. However, the
agents need to act in real-time in order to be responsive to the commands of the
users and move smoothly. Thus, they need to use search approach that make
search fast by sacrificing the optimality of the resulting trajectories, in our case
by interleaving searches with movements (= action executions). As the agents
move in the terrain, they observe more of it, which speeds up future searches
since it reduces the number of possible contingencies. The resulting trajectories
are likely not optimal but this is often outweighed by the computational savings
gained.

There are two classes of fast heuristic search methods that are well suited for
agents and fit this framework but have never been compared. Thus, it is unclear
what their advantages and disadvantages are and when each one should be used.
The first class is real-time heuristic search from artificial intelligence, which
makes A* search efficient by limiting the lookahead of the A* search and can thus
satisfy hard real-time requirements. The second class is incremental heuristic
search from robotics, which makes A* search efficient by reusing information
from the previous A* search to speed up the current one. Both classes of heuristic
search methods are extensions of A* and have similar properties, for example,
use heuristic estimates of the goal distances (= h-values) to focus their A* search
and eventually follow a shortest trajectory from the start state to the goal state
if they are teleported back to the start state whenever they reach the goal state.

Incremental heuristic search methods have been developed specifically for our
navigation tasks but we suggest that one can develop real-time heuristic search
methods that outperform them under the right conditions. We test this hypoth-
esis as follows: We first develop a competitive real-time heuristic search method.
Local Search Space LRTA* (= LSS-LRTA*) is a version of Learning Real-Time
A* that uses A* to determine its local search spaces and learns quickly. We
analyze its properties and then compare it experimentally against the state-of-

3

Strong h-Values (Manhattan Distances)

 0 4 3 2

 1
A

B

C

D

1 2 3 4 5 6

5
goal

1 5 4 3 2 6

2 6 5 4 3 7

3 7 6 5 48

Weak h-Values

 0 4 3 2

 1
A

B

C

D

1 2 3 4 5 6

5
goal

1 4 3 2 1 5

2 4 3 2 2 5

3 4 3 3 3 5

Fig. 1. Strong h-Values (left) and Weak h-Values (right) [upper right number in a cell
= h-value]

the-art incremental heuristic search method D* Lite [21] on our navigation tasks,
for which D* Lite was specifically developed, resulting in the first comparison
of real-time and incremental heuristic search in the literature. We characterize
when to choose each one of the two heuristic search methods, depending on the
kind of terrain (which determines how informed the h-values are) and the search
objective, for example, minimizing the sum of the search and action-execution
time or minimizing the trajectory length subject to the hard real-time require-
ment that only a certain amount of time is available for each search, where the
search time either can or cannot be amortized over the action executions. Our
experimental results show that LSS-LRTA* can indeed outperform D* Lite un-
der the right conditions, namely when there is time pressure or the user-supplied
h-values are generally not misleading.

2 Our Navigation Tasks

We need a test domain to compare real-time and incremental heuristic search
methods. For this purpose, we use navigation tasks for which incremental heuris-
tic search methods, such as D* Lite, were specifically developed, namely nav-
igation tasks where a real-time situated agent has to move autonomously to
user-specified coordinates in terrain that it does not know in advance. The ter-
rain is discretized into cells that are either blocked or unblocked, a common
practice in the context of real-time computer games [2]. We assume for simplic-
ity that the agent can move in the four main compass directions with equal cost
and thus operates on undirected four-neighbor grids. The agent does not know
in advance which cells are blocked. It always observes which (unblocked) cell it
is in, observes the blockage status of its neighboring cells, and can then move
to any one of the unblocked neighboring cells. Its task is to move from a given
start cell to a given goal cell. Because the agent does not know in advance which
cells are blocked, it might have to try out many paths that eventually turn out
to be blocked before it finds an unblocked path to the goal cell. Thus, its tra-
jectory length tends to be much longer than if it knew in advance which cells

4

are blocked. As h-value of a cell we use the sum of the absolute difference of its
x and y coordinates to the x and y coordinates of the goal cell (= Manhattan
distance), as shown in Figure 1 (left).

Our navigation tasks are just one possible test domain for real-time and incre-
mental heuristic search methods since both classes of heuristic search methods
also apply to more complex scenarios, such as state spaces with nonuniform ac-
tion costs and more complex topologies than grids as well as agents with larger
sensor ranges.

2.1 General Approach: Freespace Assumption

Finding shortest trajectories involves finding large conditional plans since the
agent does not know in advance which cells are blocked. However, it needs to
act in real-time in order to be responsive to the commands of the users and
move smoothly. Thus, it needs to use a search approach that makes search fast
by sacrificing the optimality of the resulting trajectories. It needs to use the
same search approach whether it uses real-time or incremental heuristic search
methods to make the search methods comparable.

In our case, the agent always uses the following approach: It interleaves searches
with movements (= action executions). As it moves in the terrain, it observes
more of it, which speeds up future searches since it reduces the number of possible
contingencies. The resulting trajectories are likely not optimal but this is often
outweighed by the computational savings gained. This approach allows the agent
to make search tractable by using the freespace assumption: It always finds a
path under the assumption that cells whose blockage status it has not observed
yet are unblocked [28] and thus determines a path that starts at its current
cell and does not pass through cells that it has observed to be blocked (= a
presumed unblocked path). It then moves along that path, which allows it to
observe additional blocked cells. If it observes its current path to be blocked,
then it determines another presumed unblocked path that starts at its current
cell and moves along that path. Thus, the agent interleaves repeated searches
with action executions, and the trajectory of the agent can thus be different from
the paths found by the searches. The agent cannot inadvertently execute actions
that make it impossible for it to reach the goal cell with finite path length from
its current cell since our grids are undirected and the agent is therefore able to
undo the effects of all actions that it executes.

2.2 Finding Complete Paths with Incremental Heuristic Search

An agent that uses incremental heuristic search interleaves searches with
action executions and uses the freespace assumption as follows: It always finds
a complete shortest presumed unblocked path from its current cell to the goal
cell. If such a path does not exist, then there does not exist an unblocked path

5

goal goal goalA

B

C

D

1 2 3 4 5 6

Fig. 2. Following Complete Shortest Presumed Unblocked Paths [solid circle = agent;
arrow = complete shortest presumed unblocked path; black cell = blocked cell that
has been observed; grey cell = blocked cell that has not been observed yet and thus is
assumed to be unblocked; white cell = unblocked cell]

from its current cell (or the start cell) to the goal cell either. Since blocked cells
cannot become unblocked, there cannot exist a path from its current cell (or the
start cell) to the goal cell in the future either. Otherwise, the agent moves along
the complete shortest presumed unblocked path until it reaches the goal cell or
observes the path to be blocked. If the current cell of the agent is different from
the goal cell, then it repeats the process, otherwise it terminates successfully.

Figure 2 shows an example. The solid circle depicts the agent. Black cells depict
blocked cells that the agent has already observed, and grey cells depict blocked
cells that the agent has not yet observed and thus assumes to be unblocked. The
arrows depict the complete shortest presumed unblocked paths.

Some theoretical properties of this navigation approach have been studied in the
literature [28, 31]. It either moves the agent to the goal cell or correctly reports
that this is impossible. The number of action executions of the agent tends not
to be minimal (since it makes the simplifying freespace assumption). However,
it uses all available information about blocked cells, and the number of action
executions of the agent is thus reasonably small. In fact, it either moves the agent
to the goal cell or correctly reports that this is impossible after O(|S| log |S|)
action executions on grids with |S| unblocked cells and thus is a reasonable
navigation approach for our navigation tasks. The agent eventually follows a
shortest trajectory from the start cell to the goal cell if it is teleported back
to the start cell whenever it reaches the goal cell (since it makes the optimistic
freespace assumption).

The repeated searches can be implemented efficiently with incremental heuristic
search methods [25]. Incremental heuristic search methods are extensions of A*
[13, 12] that reuse information from the previous A* search to speed up the
current one. Reusing information from the previous A* search is possible because
the agent typically discovers only a small number of blocked cells between A*
searches, and successive A* searches are thus similar. There are three classes
of incremental heuristic search methods. The first class restarts A* at the point

6

where its search deviates from the second one. Examples of incremental heuristic
search methods from this class are Incremental A* (an unpublished incremental
heuristic search method by Peter Yap) and Fringe Saving A* [38]. The second
class updates the h-values from the previous search during the current search to
make them more informed. An example of incremental heuristic search methods
from this class is Adaptive A* [23], that builds on a principle that was first used
in [15]. The third class updates the g-values from the previous search during
the current search to correct them when necessary, which can be interpreted as
transforming the A* search tree from the previous search into the A* search
tree for the current search. Examples of incremental heuristic search methods
from this class are Differential A* [41], Focused Dynamic A* (D*) [37], Lifelong
Planning A* [24] and its generalization D* Lite [21]. They all find the same paths
but have different search times. The existing comparisons among them suggest
that the third class is most efficient on our navigation tasks. D* and D* Lite are
more sophisticated than Differential A*. D* is widely used in mobile robotics,
including Mars rovers and tactical mobile robot prototypes [14, 40]. We use D*
Lite in our comparison since D* and D* Lite are about equally efficient but D*
Lite is easier to understand. It is beyond this article to describe the details of
D* Lite but they can be found in [22].

2.3 Finding Prefixes of Complete Paths with Real-Time Search

One problem with always finding a complete shortest presumed unblocked path
from the current cell of the agent to the goal cell is that the search time grows
with the size of the terrain. Thus, the search time per search is not constant,
and this navigation approach thus does not satisfy hard real-time requirements
where only a certain amount of time is available for each search, independent of
the size of the terrain.

An agent that uses real-time heuristic search therefore interleaves searches
with action executions and uses the freespace assumption as follows, potentially
at the expense of increasing the number of action executions: It always finds the
beginning (= prefix) of a complete presumed unblocked path from its current
cell to the goal cell. The agent then moves along that path until it reaches the
end of the path or observes the path to be blocked. If the current cell of the
agent is different from the goal cell, then it repeats the process, otherwise it
terminates successfully.

One way of achieving a constant search time per search is to restrict the search
to the part of the terrain around the current cell of the agent (= agent-centered
search) [18]. Agent-centered search determines the local search space and then
finds a presumed unblocked path within it that starts at the current cell of
the agent. Real-time heuristic search is an agent-centered search approach that
stores an h-value in memory for all cells that it encounters during its searches and
uses asynchronous dynamic programming to update the h-values as the search
progresses to make them more informed and, this way, prevent the agent from

7

goal goalA

B

C

D

1 2 3 4 5 6

0 4 3 2 1 5

1 5 4 3 2 6

2 6 5 4 3 7

3 7 6 5 48

0 4 3 2 1 5

1 5 4 3 2 6

2 6 5 4 3 7

3 7 6 5 48

goal
0 4 3 2 1 5

1 5 4 3 2 6

2 6 5 4 3 7

3 7 6 5 48

Fig. 3. Cycling Forever [solid circle = agent; arrow = prefix of the complete shortest
presumed unblocked path; black cell = blocked cell that has been observed; grey cell
= blocked cell that has not been observed yet and thus is assumed to be unblocked;
white cell = unblocked cell; upper right number in a cell = h-value]

executing actions forever. Figure 3 shows how the agent can execute actions
forever if it always moves to the neighboring cell with the smallest h-value and
thus greedily performs steepest descent on the h-value surface. Its first two moves
repeat indefinitely since it gets stuck in a local minimum of the h-value surface.
Updating the h-values avoids this problem. The initial h-values can be zero
(= completely uninformed) but one can supply initial h-values that are more
informed in order to focus the searches toward the goal cell right away.

Real-time heuristic search methods have been studied more extensively in artifi-
cial intelligence than incremental heuristic search methods and been extended in
various directions. Learning Real-Time A* (= LRTA*) [29] is probably the most
popular real-time heuristic search method. It works in deterministic state spaces,
associates h-values with states, selects actions so as to greedily perform steepest
descent on the h-value surface and converges to a shortest trajectory from the
start state to the goal state if it is teleported back to the start state whenever it
reaches the goal state. However, researchers have also studied real-time heuristic
search methods that work in nondeterministic state spaces [19] or in probabilis-
tic state spaces [1, 3], that associate h-values with the actions [26, 27, 43], and
that select actions in more sophisticated ways than greedily performing steepest
descent on the h-value surface to either result in shorter trajectories from the
start state to the goal state [29, 27] (which gives up convergence to a shortest
trajectory from the start state to the goal state if they are teleported back to
the start state whenever they reach the goal state) or speed up convergence [36,
35, 10, 7]. A longer overview is given in [17].

Real-time heuristic search methods have been used in artificial intelligence
to solve large off-line search tasks, including the twenty-four puzzle [30] and
STRIPS-type planning tasks [4]. Simple versions of real-time heuristic search
methods have also been studied in the context of situated agents [17, 11, 1], in-
cluding robots [42, 39, 19] and characters in real-time computer games [6].

8

3 LSS-LRTA*

We use a version of LRTA* in our comparison since LRTA* follows a shortest
trajectory from the start state to the goal state if it is teleported back to the
start state whenever it reaches the goal state (since the h-values are admissible),
which is compatible with the freespace assumption. Here, we are concerned with
two research issues, namely which states should be in the local search spaces and
the h-values of which states in the local search spaces should be updated:

– An important research issue is which states should be in the local search
spaces. LRTA* is most often used with local search spaces that contain only
the current state of the agent but their sizes should really be optimized for
the search objective. Although versions of LRTA* with larger local search
spaces have been suggested [34, 33, 16, 6], they typically do not satisfy hard
real-time requirements since they determine the size of the local search spaces
based on other considerations, such as the size of the depression of the h-
value surface around the current state or the size of the known terrain. The
easiest way of bounding the search time per search is to limit the size of
the local search spaces. It makes sense for the local search spaces to be
continuous parts of the state space around the current state of the agent
since these parts of the state space contain the states that the agent might
soon be in and are thus immediately relevant for the agent in its current
situation. The original version of LRTA* [29] chooses its local search spaces
by performing a breadth-first search with pruning from the current state of
the agent toward the goal state up to a given depth. The states expanded by
the breath-first search then form the local search space. The original version
of LRTA* thus does not choose the local search spaces in a fine-grained way.
Furthermore, the local search spaces are disk-shaped and might thus have a
suboptimal shape.

– Another important research issue is the h-values of which states in the local
search spaces should be updated. The original version of LRTA* updates
only the h-value of the current state of the agent. It therefore does not learn
quickly [34] and thus is not the heuristic search method that we want to
compare against D* Lite.

We therefore introduce Local Search Space LRTA* (= LSS-LRTA*) [20], a ver-
sion of LRTA* that addresses both of the research issues above. It uses A* to
determine its non-disk-shaped local search spaces in a fine-grained way and up-
dates the h-values of all states in the local search spaces to learn quickly. Figure 4
shows the steps of LSS-LRTA*. In Step 1, LSS-LRTA* uses A* to choose its local
search spaces. A* searches from the current state of the agent toward the goal
state until lookahead > 0 states have been expanded or the goal state is about
to be expanded. We refer to the external parameter lookahead as the lookahead
of LSS-LRTA*. The states expanded by A* form the local search space. In Step
2, LSS-LRTA* uses Dijkstra’s algorithm [8] to update the h-values of all states

9

1. Use A* [13, 12] to search from the current state of the agent toward the goal state
until lookahead > 0 states have been expanded or the goal state is about to be
expanded. The states expanded by A* form the local search space.

2. Use Dijkstra’s algorithm [8] to replace the h-values of all states in the local search
space with the sum of the distance from the state to a state s and the h-value of
state s, minimized over all states s ∈ S that border the local search space.

3. Move the agent along the path found by A* until it reaches the end of the path
(and leaves the local search space) or action costs on the path increase.

4. If the current state of the agent is different from the goal state, then go to Step 1,
otherwise terminate successfully.

Fig. 4. Overview of LSS-LRTA*

in the local search space. Dijkstra’s algorithm replaces the h-values of all states
in the local search space with the sum of the distance from the state to a state
s and the h-value of state s, minimized over all states s ∈ S that were generated
but not expanded by A* (= that border the local search space). In Step 3, LSS-
LRTA* moves the agent along the path found by A* until it reaches the end of
the path (and leaves the local search space) or action costs on the path increase.
In Step 4, if the current state of the agent is different from the goal state, then
LSS-LRTA* repeats the process, otherwise it terminates successfully.

All searches of A* and Dijkstra’s algorithm expand all states in the local search
space only once and are thus efficient. The idea behind using A* in Step 1 of LSS-
LRTA* is to try to reject the current path if additional search time is available.
The agent moves in Step 3 from its current state toward the state that A*
would have expanded next if it had been allowed to expand one additional state,
which could have changed the current path. The idea behind using Dijkstra’s
algorithm in Step 2 of LSS-LRTA* is to update the h-values of all states in the
local search space to make them locally consistent [33] and thus propagate as
much information as possible from the states that border the local search space
to the states in the local search space. Thus, LSS-LRTA* learns quickly.

We need to show experimentally that LSS-LRTA* with local search spaces chosen
with A* can indeed outperform LSS-LRTA* with local search spacs chosen with
breath-first search. We also need to show experimentally that LSS-LRTA* can
indeed outperform D* Lite under the right conditions.

3.1 Formalization of LSS-LRTA*

We use the following notation to describe search tasks: S is the finite set of
states. sstart ∈ S is the start state (changed during execution to be the current
state of the agent), and sgoal ∈ S is the goal state. A(s) is the finite set of actions
that can be executed in state s ∈ S. c(s, a) > 0 is the action cost of executing

10

action a ∈ A(s) in state s ∈ S (changed during execution), and succ(s, a) ∈ S is
the resulting successor state.

Besides the description of the search task, one also needs to supply the looka-
head lookahead > 0 of LSS-LRTA* and initial h-values h(s) for all states s ∈ S
(changed during execution). The user-supplied h-values estimate the goal dis-
tances and need to satisfy the triangle inequality (= be consistent) [32], that is,
satisfy h(sgoal) = 0 and h(s) ≤ c(s, a) + h(succ(s, a)) for all states s ∈ S \ {sgoal}
and actions a ∈ A(s). Consistent h-values are guaranteed to not overestimate
the goal distances (= be admissible).

For our navigation tasks, the states correspond to the cells. The start state
corresponds to the start cell, and the goal state corresponds to the goal cell. The
actions in states correspond to the movements from the corresponding cells to
their neighboring blocked or unblocked cells. All action costs are one initially. If
the agent observes a cell to be blocked, then the action costs of all actions that
can be executed in the corresponding state or that result in the corresponding
state are set to infinity. Then, every shortest action sequence (= path) from the
start state to the goal state in the state space corresponds to a complete shortest
presumed unblocked path from the start cell to the goal cell on the grid and vice
versa.

Figure 5 gives the pseudo code of LSS-LRTA*. (The minimum over an empty
set is infinity on Line 8.) The pseudo code uses the standard data structures of
A*, namely an OPEN list (which is a priority queue) and a CLOSED list (which
is a set). It also uses the standard variables, namely g-values g(s), h-values h(s),
f-values g(s) + h(s) and tree pointers tree(s) for all states s ∈ S. State s′

goal
∈ S

on Line 32 is the state that A* would have expanded next if it had been allowed
to expand one additional state. The path found by A* then is a shortest path
from the current state of the agent to state s′

goal
. Following the tree pointers

of A* from state s′
goal

to the current state of the agent identifies such a path
in reverse. The pseudo code of LSS-LRTA* initializes the g-values of A* before
each execution of A* on Lines 2-3 for ease of description even though many of
them might not get used. In reality, LSS-LRTA* initializes a g-value only when
it is used for the first time during an A* search. Similarly, the pseudo code of
LSS-LRTA* assumes that the h-values are initialized before each execution of
LSS-LRTA* even though many of them might not get used. In reality, LSS-
LRTA* initializes an h-value only when it is used for the first time during the
execution of LSS-LRTA*. It caches all h-values updated by Dijkstra’s algorithm
that are different from the user-supplied h-values. If it has cached an h-value
for a state, then it uses the cached h-value, otherwise it uses the user-supplied
h-value instead.

The CLOSED list of A* contains the states expanded by A* and thus the states
in the local search space. The OPEN list of A* contains the states generated but
not expanded by A* and thus the states that border the local search space. If the
OPEN list is empty on Line 30 then there does not exist a path of finite path

11

1 procedure Astar()
2 for each s ∈ S

3 g(s) := ∞;
4 g(sstart) = 0;
5 OPEN := CLOSED := ∅;
6 insert sstart into OPEN;
7 expansions := 0;
8 while g(sgoal) > min

s′∈OPEN(g(s′) + h(s′)) AND expansions < lookahead

9 expansions := expansions + 1;
10 delete a state s with the smallest f-value g(s) + h(s) from OPEN;
11 CLOSED := CLOSED ∪ {s};
12 for each a ∈ A(s)
13 if g(succ(s, a)) > g(s) + c(s, a)
14 g(succ(s, a)) := g(s) + c(s, a);
15 tree(succ(s, a)) := s;
16 if succ(s, a) is not in OPEN then insert it into OPEN;

17 procedure Dijkstra()
18 for each s ∈ CLOSED

19 h(s) := ∞;
20 while CLOSED 6= ∅
21 delete a state s with the smallest h-value h(s) from OPEN;
22 if s is in CLOSED then delete it from CLOSED;
23 for each s′ ∈ S and a ∈ A(s′) with succ(s′, a) = s

24 if s′ ∈ CLOSED AND h(s′) > c(s′, a) + h(s)
25 h(s′) := c(s′, a) + h(s);
26 if s′ is not in OPEN then insert it into OPEN;

27 procedure Main()
28 while sstart 6= sgoal

29 Astar();
30 if OPEN = ∅
31 stop;
32 s′

goal := arg min
s′∈OPEN(g(s′) + h(s′)) (assign sgoal if possible);

33 Dijkstra();
34 move the agent along the path from sstart to s′

goal identified by the tree pointers of A*
until it reaches s′

goal (and leaves the local search space) or action costs on the path increase;

35 set sstart to the current state of the agent (if the current state of the agent has changed);
36 update the action costs (if action costs have increased);

Fig. 5. LSS-LRTA*

length from the current state of the agent to the goal state. Since the action
costs never decrease, there cannot exist a path of finite path length from the
current state of the agent to the goal state in the future, and LSS-LRTA* thus
terminates unsuccessfully on Line 31.

Dijkstra’s algorithm sets the h-values of all states in the local search space to
infinity on Lines 18-19 and then assigns each state in the local search space
a new h-value. Dijkstra’s algorithm needs to initialize its OPEN list with the
states that border the local search space but these are exactly the states in the
OPEN list of A*. Thus, Dijkstra’s algorithm can reuse the OPEN list of A*.
However, it needs to change the priorities of the states in the OPEN list from
their f-values to their h-values. It appears that Dijkstra’s algorithm should be
able to reuse more information from the previous A* search than the OPEN list,
such as the order of state expansions or the tree pointers of A*. However, it is
unclear how to exploit this information. Figure 6, for instance, gives an example
of LSS-LRTA* with lookahead three in known terrain where the order in which
Dijkstra’s algorithm updates the cells is different from both the order and the

12

goal

A

B

C

1 2 3 4 5 6

3 1 2

7 5 5 4 3 3 3 2

1 2 3

6 7 8

Path Found by A* A* Dijkstra’s Algorithm

Fig. 6. Interfacing A* and Dijkstra’s Algorithm (Example 1) [solid circle = agent;
arrow = prefix of the complete shortest presumed unblocked path (left), tree pointer
of A* (center) and tree pointer of Dijkstra’s algorithm (right); black cell = blocked
cell that has been observed; white cell = unblocked cell; upper left number in a cell =
f-value; upper right number in a cell = h-value (in parentheses if it is not cached since
Dijkstra’s algorithm did not change it); circled number = order in which A* (center)
or Dijkstra’s algorithm (right) updates the cells]

goal

A

B

C

1 2 3 4 5 6

 5 4
goal

 5 5

7 57 6 7 4 7 3

9 4 9 3 9 2

9 1

8
goal

 9

78 6 5

(4) (3) (2)

Path Found by A* A* Dijkstra’s Algorithm

Fig. 7. Interfacing A* and Dijkstra’s Algorithm (Example 2) [solid circle = agent;
arrow = prefix of the complete shortest presumed unblocked path (left), tree pointer
of A* (center) and tree pointer of Dijkstra’s algorithm (right); black cell = blocked
cell that has been observed; white cell = unblocked cell; upper left number in a cell =
f-value; upper right number in a cell = h-value (in parentheses if it is not cached since
Dijkstra’s algorithm did not change it)]

reverse of the order in which A* expanded the cells. The circled numbers show
this order. Similarly, Figure 7 gives an example of LSS-LRTA* with lookahead
nine in known terrain where the h-value of cell B2 is used to update the h-value
of cell B1 during the execution of Dijkstra’s algorithm even though these cells
are not connected by tree pointers of A*.

3.2 Illustration of LSS-LRTA*

Figure 8 shows the beginning of an example of how LSS-LRTA* operates. The
lookahead is three. The left column shows how the agent moves, similar to Fig-
ure 2. The center column shows the results of A*. All cells generated by A*
and all cells with cached h-values are labeled with their h-values in the upper
right corner. All cells generated by A* are also labeled with their f-value in the
upper left corner. The arrows depict the tree pointers of A*. Thus, one arrow
leaves each cell generated by A*. This arrow points to the cell expanded by A*

13

goal

goal

goal

3 0 5 4 3 3 3 2

5 3 5 2

3 1 (3) (2)

 (1)

 6 4 4 3 2 2

8 5

8 5

 6 7 8

 9 7 8

5 5

7 6

7 6

7 5

9 7

 7 8

7

(6)

6

goal
 9 7 8

9 7

7 6

7 6

5 5

9 7 7 6

9 7

7 5

 7 8

7 8

7

(6)

A

B

C

D

1 2 3 4 5 6

Path Found by A* A* Dijkstra’s Algorithm

Fig. 8. Example Trace of LSS-LRTA* [solid circle = agent; arrow = prefix of the
complete shortest presumed unblocked path (left), tree pointer of A* (center) and tree
pointer of Dijkstra’s algorithm (right); black cell = blocked cell that has been observed;
grey cell = blocked cell that has not been observed yet and thus is assumed to be
unblocked; white cell = unblocked cell; upper left number in a cell = f-value; upper
right number in a cell = h-value (in parentheses if it is not cached since Dijkstra’s
algorithm did not change it)]

whose g-value was used to calculate the g-value of the cell in question during the
A* search. The cells expanded by A* form the local search space and get their
h-values updated by Dijkstra’s algorithm. The right column shows the results
of Dijkstra’s algorithm. All cells with updated or cached h-values are labeled
with them in the upper right corner. The arrows depict the tree pointers of
Dijkstra’s algorithm. One arrow leaves each cell with an updated h-value. This
arrow points to the cell whose h-value was used to update the h-value of the cell

14

in question during the execution of Dijkstra’s algorithm. Updated h-values in
parentheses are not cached since they are identical to the user-supplied h-values.
Only the beginning of the trajectory of the agent is shown. The trajectory is
longer than the one from Figure 2 since all A* searches now use only small local
search spaces. In contrast, LSS-LRTA* with an infinite lookahead always finds
a complete shortest presumed unblocked path from the current cell of the agent
to the goal cell and thus follows the same trajectory as D* Lite, that is shown
in Figure 2.

3.3 Analysis of LSS-LRTA*

We now prove several properties of LSS-LRTA* that hold for all positive looka-
heads. These proofs generalize previous proofs in [19] substantially, including to
action costs that are not uniformly one and can increase. They are (implicitly)
by induction on the number of searches with A* and Dijkstra’s algorithm.

We use the following known properties of A* with consistent h-values [32]: First,
it expands all states at most once. Second, the g-values of states expanded by A*
are equal to the distance from the start state to these states. Following the tree
pointers of A* from these states to the start state identifies a shortest path from
the start state to them in reverse. The g-value of the goal state after the A* search
is equal to the distance from the start state to the goal state, that is, the goal
distance of the start state. Following the tree pointers of A* from the goal state to
the start state after the A* search identifies a shortest path from the start state
to the goal state in reverse. Third, the f-values of the series of expanded states
over time are monotonically nondecreasing. Thus, f(s) ≤ f(sgoal) = g(sgoal) for
all states s ∈ S expanded by A* (states in the CLOSED list after termination)
and g(sgoal) = f(sgoal) ≤ f(s) for all states s ∈ S generated but not expanded by
A* (states in the OPEN list after termination). Fourth, an A* search expands no
more states than another A* search for the same search task except possibly for
some states s ∈ S with g(sgoal) = f(sgoal) = f(s) if the h-values used by the first
A* search are no smaller than the corresponding h-values used by the second A*
search for all states (= the former h-values dominate the latter h-values).

We also use that the h-values h′(s) after the execution of Dijkstra’s algorithm
satisfy the following system of equations for all states s ∈ S in the local search
space:

h′(s) = min
a∈A(s)

(c(s, a) + h′(succ(s, a))). (1)

Theorem 1. The h-value of the same state is monotonically nondecreasing over

time and thus indeed becomes more informed over time.

Proof by contradiction: The h-values can change only during the ex-
ecution of Dijkstra’s algorithm, and only the h-values in the local search

15

space can change. Let h(s) be the consistent h-values before the ex-
ecution of Dijkstra’s algorithm and h′(s) be the h-values afterwards.
Assume that the h-values of one or more states have decreased. Con-
sider a state s ∈ S with the smallest h-value h′(s) among all states
whose h-values have decreased. Thus, state s is in the local search space.
The goal state is never in the local search space. Thus, state s is not
the goal state. Let a = arg mina′∈A(s)(c(s, a

′) + h′(succ(s, a′)). Then,
h′(s) = mina′∈A(s)(c(s, a

′) + h′(succ(s, a′)) = c(s, a) + h′(succ(s, a)) >
h′(succ(s, a)). Thus, state succ(s, a) is not a state whose h-value has de-
creased, implying that h(succ(s, a)) ≤ h′(succ(s, a)). Furthermore, the
h-values h(s) are consistent, implying that h(s) ≤ c(s, a)+h(succ(s, a)).
Thus, h′(s) = c(s, a) + h′(succ(s, a)) ≥ c(s, a) + h(succ(s, a)) ≥ h(s),
which is a contradiction.

Theorem 2. The h-values remain consistent and thus also admissible.

Proof: The only reason why the h-values might not remain consis-
tent are the changing h-values and action costs. First, the h-values can
change only during the execution of Dijkstra’s algorithm. Let h(s) be
the consistent h-values before the execution of Dijkstra’s algorithm and
h′(s) be the h-values afterwards. Consider any state s ∈ S. We distin-
guish three cases, making use of the consistency of the h-values h(s)
and the fact that they cannot decrease according to Theorem 1. Case
1: State s is in the local search space and thus not a goal state. Then,
h′(s) = mina′∈A(s)(c(s, a

′) + h′(succ(s, a′))) ≤ c(s, a) + h′(succ(s, a)) for
all actions a ∈ A(s). Case 2: State s is not in the local search space
and not the goal state. Then, h′(s) = h(s) ≤ c(s, a) + h(succ(s, a)) ≤
c(s, a) + h′(succ(s, a)) for all actions a ∈ A(s). Case 3: State s is the
goal state. Then, h′(s) = h(s) = 0. Thus, the h-values h′(s) are con-
sistent. Second, let c(s, a) be the action costs before any action cost
increases, and c′(s, a) be the action costs afterwards. We distinguish
two cases, making use of the consistency of the h-values h′(s). Con-
sider any state s ∈ S. Case 1: State s is not the goal state. Then,
h′(s) ≤ c(s, a) + h′(succ(s, a)) ≤ c′(s, a) + h′(succ(s, a)) for all actions
a ∈ A(s). Case 2: State s is the goal state. Then, h′(s) = 0. Thus, the
h-values h′(s) remain consistent.

Lemma 1. It holds that h(s) = c(s, a) + h(succ(s, a)) for the h-values h(s) at

the time when the agent executes action a ∈ A(s) in state s ∈ S.

Proof: Consider the A* search immediately before the agent executes
action a ∈ A(s) in state s ∈ S. State s was expanded by A* since it
is in the local search space. A* eventually terminated. Assume that A*
would have expanded state s′

goal
next if it had been allowed to expand one

16

additional state. Let g(s) be the g-values of A*. Let h(s) be the h-values
of A*, that is, before the subsequent execution of Dijkstra’s algorithm.
Finally, let h′(s) be the h-values afterwards. Consider any path in the
local search space from the current state of the agent via some state s′

to some state s′′ that borders the local search space. Assume that the
formula h′(s) = c(s, a) + h′(succ(s, a)) is satisfied for all states s on the
path (and the actions executed in them), starting at state s′ or earlier.
Let action a′ be the action that is executed in state s′. The f-value of state
s′′ along this path is g(s′) + h′(s′) = g(s′) + c(s′, a′) + h′(succ(s′, a′)) =
g(succ(s′, a′)) + h′(succ(s′, a′)) = . . . = g(s′′) + h′(s′′) = g(s′′) + h(s′′) =
f(s′′) by induction. Now consider the path in the local search space that
the agent follows from its current state to state s′

goal
, that borders the

local search space. We show that the formula is satisfied for all states on
the path. Assume not. Let state s be the last state on the path that does
not satisfy the formula and action a be the action that is executed in
state s. The f-value of state s′

goal
along the path in the local search space

that the agent follows from its current state to state s′
goal

is f(s′
goal

) =
g(succ(s, a))+h′(succ(s, a)) = g(s)+c(s, a)+h′(succ(s, a)). Now consider
the path in the local search space from the current state of the agent via
state s to some state s′ that borders the local search space, where the part
of the path from the current state of the agent to state s is the path that
the agent follows and the part of the path from state s to state s′ satisfies
the formula for all states, which is possible by executing an action in each
state that satisfies Equation 1. The f-value of state s′ along this path is
f(s′) = g(s)+h′(s). State s is in the local search space and it thus holds
that h′(s) = mina′∈A(s)(c(s, a

′)+h′(succ(s, a′)) ≤ c(s, a)+h′(succ(s, a)).
Since h′(s) 6= c(s, a) + h′(succ(s, a)) per assumption, it must be the
case that h′(s) < c(s, a) + h′(succ(s, a)) and thus that g(s) + h′(s) <
g(s)+ c(s, a)+h′(succ(s, a)). Thus, the f-value of state s′ is smaller than
the f-value of state s′

goal
and A* has to expand state s′ before state s′

goal
,

which is a contradiction since state s′ borders the local search space per
assumption and is thus not expanded by A*.

Theorem 3. Let S′ ⊆ S be a superset of the states that the agent is going to

visit if it stops when it reaches the goal state. Let h(s) be the current h-value of

each state s ∈ S′. Let mincost be the smallest current action cost of any action

a ∈ A(s) in any state s ∈ S′. Let gd(s) be an upper bound on all future goal

distances of state s ∈ S′. Then, the agent reaches the goal state with at most

(
∑

s′∈S′(gd(s′) − h(s′)) + h(sstart))/mincost action executions from its current

state sstart.

Theorem 3 states that the agent reaches the goal state with at most
∑

s∈S′ gd(s)
action executions from its current state if the smallest current action cost is one.
This value can be infinity and the agent can execute actions forever. However,
it is finite and the agent is then guaranteed to reach the goal state from its

17

current state if the future goal distances of all states s ∈ S′ remain bounded
from above (by a finite constant). This condition is satisfied for our navigation
tasks if there exists a trajectory from the current cell to the goal cell since our
grids are undirected and all action costs are either one or infinity. If the condition
is satisfied, then the formula predicts that the agent reaches the goal cell with
zero action executions from its current cell if it starts in the goal cell. Otherwise,
the formula predicts that the agent reaches the goal cell with at most

(
∑

s′∈S′

(gd(s′) − h(s′)) + h(sstart))/mincost

=
∑

s′∈S′

(gd(s′) − h(s′)) + h(sstart)

≤
∑

s′∈S′

gd(s′)

≤

|S|−1∑

i=0

i

= |S|2/2 − |S|/2

action executions from its current cell. If the condition is not satisfied, then the
agent can execute actions forever.

Proof: We consider “the sum of the current h-values of all states
in S’ except for the current state of the agent” as potential. This po-
tential changes only when the current h-values or the current state of
the agent change. First, the h-values can change only during the ex-
ecution of Dijkstra’s algorithm. The potential cannot decrease during
the execution of Dijkstra’s algorithm since the h-values cannot decrease
according to Theorem 1. Second, the potential increases by at least
mincost with every action execution, for the following reason: Let x be
the sum of the current h-values h(s′) of all states s′ ∈ S′ except for
the current state s of the agent before the execution of action a ∈ A(s)
and x′ be the sum of the h-values h(s′) of all states s′ ∈ S′ except
for the current state succ(s, a) of the agent afterwards. Let c(s, a) be
the current action cost of action a ∈ A(s) during its execution. Then,
x =

∑
s′∈S′\{s} h(s′) and x′ =

∑
s′∈S′\{succ(s,a)} h(s′), implying that

x′ − x = h(s) − h(succ(s, a)) = c(s, a) ≥ mincost according to Lemma 1
and the fact that action costs never decrease. Now consider how the po-
tential changes over time. It starts at

∑
s′∈S′ h(s′) − h(sstart) for the

current state sstart of the agent and the current h-values h(s). It is
bounded from above by

∑
s′∈S′ gd(s′) since the h-values remain admissi-

ble according to Theorem 2. It cannot decrease and increases by at least
mincost > 0 with each action execution. Thus, the agent reaches the goal

18

state with at most (
∑

s′∈S′ gd(s′) − (
∑

s′∈S′ h(s′) − h(sstart))/mincost =

(
∑

s′∈S′(gd(s′) − h(s′)) + h(sstart))/mincost action executions from its
current state.

Theorem 4. Assume that the agent is teleported back to the start state whenever

it reaches the goal state. Let S′ ⊆ S be a superset of the states that the agent

is going to visit. Then, the number of times that it does not follow a shortest

trajectory from the start state to the goal state is bounded from above if all

action cost increases are bounded from below by a positive constant and the goal

distances of all states s ∈ S′ remain bounded from above.

Theorem 4 holds due to the freespace assumption being optimistic and the h-
values of LSS-LRTA* remaining consistent according to Theorem 2, which is
due to LSS-LRTA* being based on LRTA* rather than real-time heuristic search
methods that do not have this property, such as RTA* [29]. For our navigation
tasks, the action costs can only increase from one to infinity. All action cost
increases are thus indeed bounded from below by a positive constant.

Proof: Assume for now that the agent always reaches the goal state
and the action cost increases leave the goal distances gd(s) of all states
s ∈ S′ unchanged. We distinguish two cases. Case 1: The agent is in
the start state and the h-values of all states that it is going to visit
until it reaches the goal state are already equal to their respective goal
distances. The h-values of the visited states could only increase according
to Theorem 1 which would make them inadmissible, which is impossible
according to Theorem 2. Thus, the h-values of the visited states can no
longer change. The h-value of the current state of the agent is equal to
the goal distance of the start state initially, decreases by the action cost
of the executed action with each action execution according to Lemma
1, and is equal to zero when the agent reaches the goal state. Thus, the
agent follows a trajectory whose length is equal to the goal distance of the
start state, implying that the trajectory is a shortest trajectory from the
start state to the goal state. Case 2: The agent is in the start state and the
h-value at this point in time (= the initial h-value) of at least one state
that the agent is going to visit until it reaches the goal state is not yet
equal to its goal distance. Then, the agent executes at least once an action
a ∈ A(s) in a state s ∈ S′ so that the initial h-value of state s is not equal
to the goal distance of state s but the initial h-value of state succ(s, a) is
equal to the goal distance of state succ(s, a). This property holds because
the agent reaches the goal state per assumption and the initial h-value of
the goal state is zero and thus equal to its goal distance since the h-values
remain consistent according to Theorem 2. We now prove that the h-
value of state s is equal to its goal distance by the time the agent reaches
the goal state. The h-value of state s is admissible according to Theorem
2 and thus a lower bound on its goal distance. The h-value of state s

19

also satisfies h(s) = c(s, a) + h(succ(s, a)) = c(s, a) + gd(succ(s, a)) ≥
mina′∈A(s)(c(s, a

′) + gd(succ(s, a′)) = gd(s) according to Lemma 1 at
the time the agent executes action a in state s and thus is an upper
bound on its goal distance. Thus, the h-value of state s is indeed equal
to and thus must have been set to its goal distance by the time the
agent executes action a in state s. Once the h-value of state s is equal to
its goal distance, it could only increase according to Theorem 1 which
would make it inadmissible, which is impossible according to Theorem
2. Thus, the h-value can no longer change. Since the number of states
is finite, the number of times that the h-value of a state is set to its
goal distance is bounded from above. Thus, the number of times that
the agent does not follow a shortest trajectory from the start state to
the goal state is bounded from above. The theorem then follows since
the number of times that action cost increases do not leave the goal
distances of all states s ∈ S′ unchanged is bounded from above (since
the action cost increases are bounded from below by a positive constant
but the goal distances of all states s ∈ S′ remain bounded from above
per assumption) and the number of times that the agent does not follow
a shortest trajectory from the start state to the goal state in between
these times is also bounded from above (as shown above). If the agent
does not reach the goal state, then this is the last time that it does not
follow a shortest trajectory from the start state to the goal state. Thus,
the number of times that it does not follow a shortest trajectory from
the start state to the goal state is even smaller.

4 Experimental Comparison of LSS-LRTA* and D* Lite

The ideas behind real-time and incremental heuristic search could, in princi-
ple, be combined by restricting the A* search to the part of the state space
around the current state of the agent and reusing information from the previous
A* search to speed up the current one. However, incremental heuristic search
methods based on D* Lite require the start of the search to remain unchanged.
Thus, they search from the goal state toward the current state of the agent,
which does not work in conjunction with real-time heuristic search although it
has been tried once to combine incremental and real-time heuristic search [9].
The research issue then is when to use real-time heuristic search and when to
use incremental heuristic search. Incremental heuristic search has advantages
over real-time heuristic search: Since incremental heuristic search finds complete
paths, it can easily discover that the goal state cannot be reached with finite
path length from the current state of the agent. On the other hand, real-time
heuristic search also has advantages over incremental heuristic search: Since real-
time heuristic search finds only the beginning of complete paths it can satisfy
hard real-time requirements in state spaces of any size by choosing small local

20

Fig. 9. Baldur’s Gate II from BioWare

search spaces (potentially at the expense of increasing the number of action ex-
ecutions) while the search time per search of incremental heuristic search can
increase with the size of the state spaces.

We therefore compare LSS-LRTA*, a representative real-time heuristic search
method, against the optimized final version of D* Lite as published in [21], a
representative incremental heuristic search method. Their runtimes depend not
only on the experimental setup but also on other factors. This point is especially
important since the terrain in real-time computer games typically fits into mem-
ory and the resulting state spaces are thus small but the searches have to be
fast, especially if the number of characters is large. Thus, the scaling behavior
of the heuristic search methods is less important than the hardware and im-
plementation details, including the data structures, tie-breaking strategies, and
coding tricks used. Indeed, we noticed during our experiments that small cod-
ing details can be important. For example, it is beneficial for LSS-LRTA* with
small lookaheads to generate the successors of states during its A* searches in
random order rather than a fixed one. We do not know of any better method for
evaluating heuristic search methods than to implement them as best as possible,
publish their runtimes, and let other researchers validate the experimental re-
sults with their own and thus potentially slightly different implementations. For
example, it is difficult to compare LSS-LRTA* and D* Lite with proxies, such
as the number of state expansions, instead of the search time itself since they
perform different basic operations. For fairness, we use comparable implemen-
tations of LSS-LRTA* and D* Lite. For example, we use standard binary heaps
to implement the OPEN lists of both heuristic search methods.

We use different kinds of grids as test domain. Figure 9 shows a game map
from Baldur’s Gate II from BioWare. Such game maps typically have different
areas of different kinds, including areas with twisted passages and wide open
areas with small obstacles. These kinds of areas have different properties. For
example, h-values can be misleading in areas with twisted passages. On the other
hand, they are generally not misleading in wide open areas with small obstacles.
Agents generally cannot guarantee to follow short trajectories to the goal cells

21

Fig. 10. Maze (left) and Grid with Random Obstacles (right)

in areas with twisted passages both because the shortest paths to the goal cells
are long and because the agents might have to try many paths before they find
unblocked paths to the goal cells. On the other hand, agents are generally able to
follow short trajectories to the goal cells in wide open areas with small obstacles
both because the shortest paths to the goal cells are short and because the agents
are generally able to move in the direction of their goal cells by circumnavigating
obstacles that are in their way. We expect the kind of area to be important for
characterizing when each heuristic search method should be used. We therefore
use two different kinds of grids that are ideal versions of these different kinds of
areas, namely mazes, that are similar to areas with twisted passages, and grids
with random obstacles, that are similar to wide open areas with small obstacles.
In all cases, we average over 1000 (for mazes) and 5000 (for grids with random
obstacles) randomly generated undirected four-neighbor grids of size 301 × 301
with randomly chosen start cells and goal cells with the restriction that there
exists a trajectory from the start cell to the goal cell since agents using LSS-
LRTA* are then guaranteed to reach the goal cell according to Theorem 3. In the
following, we describe our experimental results in detail. We measure all times
in microseconds and all distances in number of action executions.

4.1 Mazes

We first use acyclic mazes as test domain whose corridor structure is generated
with depth-first search. Figure 10 (left) shows an example of smaller size than
used in the experiments. As h-value of a cell we use the sum of the absolute
difference of its x and y coordinates to the x and y coordinates of the goal cell
(= strong h-values), as shown in Figure 1 (left). We also use the maximum of
the absolute difference of its x and y coordinates to the x and y coordinates of
the goal cell (= weak h-values), as shown in Figure 1 (right). The strong and
weak h-values are both consistent. We expect A* with the strong h-values to
have smaller search times than A* with the weak h-values since the strong h-
values dominate the weak h-values and A* with the strong h-values thus expands

22

(a) = cell expansions per search (= lookahead), (b) = average search time with smaller
numbers shown in bold, and (c) = average number of action executions (= trajectory
length) with smaller numbers shown in bold.

strong h-values weak h-values
look- search trajectory search trajectory
ahead time length time length
(a) (b) (c) (b) (c)

D* Lite

- 357417.38 21737.53 373560.62 21140.40

LSS-LRTA*

1 985361.73 1987574.25 628175.97 1259958.00

3 640567.24 931230.38 477551.83 685570.04

5 441522.49 594675.73 366611.13 477525.03

7 395581.98 499083.52 321784.17 382949.65

9 358532.52 422475.56 296545.64 321547.69

11 313997.99 337704.16 277974.35 272841.73

13 302791.98 303562.40 276238.32 252374.66

15 290252.67 268652.32 281280.60 239072.72

17 284827.58 243952.42 277453.57 215615.93

19 276990.44 217852.00 280483.72 199517.41

21 279855.69 205370.41 273280.22 177142.96

23 285321.52 196601.90 283999.33 171600.71

25 274999.82 169685.19 283950.17 155736.31

27 293554.47 176642.26 292767.20 151277.34

29 293262.79 163418.55 296116.07 140895.33

...

Table 1. Different h-Values in Mazes

no more cells than A* with the weak h-values (but likely expands fewer cells).
We also expect LSS-LRTA* or D* Lite with either kind of h-values to find
trajectories of comparable lengths since both kinds of h-values are consistent
and A* with either kind of h-values thus finds shortest paths. D* Lite is an
incremental version of A*. Table 1 shows that D* Lite with the strong h-values
also has smaller search times than D* Lite with the weak h-values and finds
trajectories of comparable lengths. (The table shows smaller search times and
trajectory lengths in bold to make it easier to interpret the data.) The small
difference is due to the randomized tie breaking. However, the table also shows
that this is not the case for LSS-LRTA*. LSS-LRTA* with the strong h-values
tends to have larger search times than LSS-LRTA* with the weak h-values and
find longer trajectories, at least for small lookaheads. This effect is due to the
relative differences in h-values being much more important for focusing the A*
search of LSS-LRTA* than their absolute differences. Because the h-values can
be misleading in mazes, it is better if the differences of the h-values are small
because LSS-LRTA* can then correct the h-values faster. A similar phenomenon

23

(a) = cell expansions per search (= lookahead) (b) = average number of cell expansions,
(c) = average number of searches, (d) = average number of action executions (=
trajectory length), (e) = average number of action executions per search (= trajectory
length per search), (f) = average search time, (g) = average search time per search,
and (h) = average search time per action execution.

look- cell searches trajectory trajectory search search search
ahead expansions length length time time time

per search per search per action
(a) (b) (c) (d) (e) (f) (g) (h)

D* Lite

- 230893.54 6606.37 21737.53 3.29 357417.38 54.10 16.44
LSS-LRTA*

1 1259958.00 1259958.00 1259958.00 1.00 628175.97 0.50 0.50
3 1012633.01 337544.61 685570.04 2.03 477551.83 1.41 0.70
5 765644.80 153129.55 477525.03 3.12 366611.13 2.39 0.77
7 658618.41 94089.35 382949.65 4.07 321784.17 3.42 0.84
9 588810.14 65424.97 321547.69 4.91 296545.64 4.53 0.92
11 531955.23 48361.94 272841.73 5.64 277974.35 5.75 1.02
13 518431.33 39882.58 252374.66 6.33 276238.32 6.93 1.09
15 517913.09 34531.72 239072.72 6.92 281280.60 8.15 1.18
17 495466.48 29150.37 215615.93 7.40 277453.57 9.52 1.29
19 487622.82 25670.60 199517.41 7.77 280483.72 10.93 1.41
21 459565.74 21891.42 177142.96 8.09 273280.22 12.48 1.54
23 470419.04 20461.61 171600.71 8.39 283999.33 13.88 1.66
25 456751.93 18279.86 155736.31 8.52 283950.17 15.53 1.82
27 465707.78 17259.47 151277.34 8.76 292767.20 16.96 1.94
29 460964.20 15907.64 140895.33 8.86 296116.07 18.61 2.10
31 469144.66 15147.32 135554.16 8.95 310131.20 20.47 2.29
33 460947.12 13983.02 125789.79 9.00 304691.69 21.79 2.42
35 474447.93 13571.97 123304.98 9.09 315807.85 23.27 2.56
37 492481.84 13327.82 122274.35 9.17 329287.75 24.71 2.69
39 514415.51 13209.17 122839.82 9.30 344388.42 26.07 2.80
41 512638.46 12523.62 114917.08 9.18 348330.44 27.81 3.03
43 517674.55 12060.69 111242.82 9.22 354049.77 29.36 3.18
45 507532.55 11301.47 100257.67 8.87 354495.33 31.37 3.54
47 532693.30 11358.48 103038.69 9.07 370009.76 32.58 3.59
49 555105.16 11355.05 104059.85 9.16 385354.53 33.94 3.70

Table 2. LSS-LRTA* and D* Lite in Mazes

had previously been described for searching the eight-puzzle with LRTA* [19].
We use LSS-LRTA* and D* Lite with those h-values that work best for them.
Thus, in mazes, we use LSS-LRTA* with the weak h-values and D* Lite with
the strong h-values.

24

200000

300000

400000

500000

600000

700000

800000

900000

1000000

1100000

1200000

1300000

 0 5 10 15 20 25 30 35 40 45 50

cell expansions per search (= lookahead)

average number of cell expansions
average search time

Fig. 11. Search Time and Number of Cell Expansions of LSS-LRTA*

Table 2 shows our experimental results.1 We mentioned that it is difficult to
compare LSS-LRTA* and D* Lite with proxies, such as the number of cell ex-
pansions, instead of the search time itself since they perform different basic
operations, which forces us to compare their search times directly. However,
Figure 11 shows that the search time of LSS-LRTA* with different lookaheads
appears to be roughly proportional to its number of cell expansions, which gives
us hope that different hardware and implementation details change the search
time of LSS-LRTA* by only a constant factor.

Table 2 shows some interesting trends: First, the trajectory length of LSS-LRTA*
decreases as its lookahead increases: more search results in shorter trajectories,
which confirms earlier experimental results in different domains [29] although
exceptions to this property have also been reported [5]. Second, the search time
of LSS-LRTA* first decreases and then increases as its lookahead increases. This
is the result of two different effects, namely an increasing search time per search
due to the larger lookahead and a decreasing number of searches due to the
larger local search spaces, which result in both a larger number of action execu-
tions per search and shorter trajectories. Figure 12 and 13 visualize this trade-off
between the search time and the resulting trajectory length. The search time of
LSS-LRTA* is larger than the one of D* Lite for lookaheads larger than 45, and
its trajectories are longer than the ones of D* Lite for all tabulated lookaheads.
Searching all the way to the goal cell is important for finding short trajecto-
ries because the h-values can be misleading in mazes, Thus, the trajectories of
D* Lite are short while the trajectories of LSS-LRTA* are short only for large
lookaheads. LSS-LRTA* with small lookaheads moves the agent back and forth
in local minima of the h-value surface until it has increased the h-values of the

1 The number of cell expansions can be smaller than the product of the lookahead and
the number of searches because, around the goal cell, the number of cell expansions
per search is smaller than the lookahead since A* terminates once it is about to
expand the goal cell.

25

250000

300000

350000

400000

450000

500000

550000

600000

650000

 0 5 10 15 20 25 30 35 40 45 50

cell expansions per search (= lookahead)

average search time of LSS-LRTA*
average search time of D* Lite

Fig. 12. Search Times of LSS-LRTA* and D* Lite

0

200000

400000

600000

800000

1000000

1200000

1400000

 0 5 10 15 20 25 30 35 40 45 50

cell expansions per search (= lookahead)

average number of action executions (= trajectory length) of LSS-LRTA*
average number of action executions (= trajectory length) of D* Lite

Fig. 13. Trajectory Lengths of LSS-LRTA* and D* Lite

range of x optimal lookahead of LSS-LRTA*

0 - 10−0.31 21
10−0.30 - 10−0.16 25
10−0.15 - 10+0.29 33

... ...

Table 3. Optimal Lookaheads for LSS-LRTA* in Mazes [x = ratio of search and
action-execution speed]

cells sufficiently to be able to escape them, which results in long and also less
believable trajectories.

In the following, we describe three search objectives and analyze which heuristic
search method one should choose for each one. We assume that one cannot
overlap searches and action executions and thus has to interleave them.

26

– We first study what to do if one wants to minimize the sum of the search and
action-execution time. If search is fast relative to action execution (a realis-
tic assumption for many applications, including real-time computer games),
then the sum of the search and action-execution time is determined by the
action-execution time, that is, trajectory length (x is large, see below). In
this case, a large lookahead is optimal for LSS-LRTA* but then LSS-LRTA*
is slower than D* Lite since it does not use information from the previous
A* search to speed up the current one. Thus, D* Lite should be used instead
of LSS-LRTA*. On the other hand, if action execution is fast relative to
search, then the sum of the search and action-execution time is determined
by the search time (x is small). In this case, a lookahead of 21 is optimal
for LSS-LRTA*, as shown in Figure 12. To understand the cases between
these extremes better, let x > 0 be the ratio of the search speed and action-
execution speed. The sum of the search and action-execution time is then
proportional to: search time + x × trajectory length. Table 3 is derived
from Table 2 and shows the optimal lookahead of LSS-LRTA* as a function
of x, with intuitive results that follow from Figures 12 and 13: Lookaheads
that are smaller than the lookahead that minimizes the search time can-
not be optimal for LSS-LRTA* since both its search time and its trajectory
length decrease as its lookahead increases. The lookahead that minimizes
its search time (namely, a lookahead of 21) is optimal for x = 0. Its search
time increases and its trajectory length decreases as the lookahead increases,
starting with the lookahead that minimizes its search time. Thus, its optimal
lookahead increases as x increases. If x is larger than 10−0.27, then D* Lite
should be used instead of LSS-LRTA* with the optimal lookahead since LSS-
LRTA* finds trajectories of comparable lengths with a much larger search
time than D* Lite.

– We now study what to do if one wants to minimize the trajectory length
subject to the hard real-time requirement that only a certain amount of time
is available for each search. Thus, there is a time limit on the search time
per search. We argue (slightly incorrectly) with averages in the following to
make our argument simple. D* Lite has a search time per search of 54.10 and
thus cannot be used if the time limit is smaller than this. Thus, LSS-LRTA*
with the largest lookahead that fits the time limit should be used instead of
D* Lite if the time limit is smaller than 54.10. LSS-LRTA* with a lookahead
of up to 75 (not shown in Table 2) has a search time per search that is
smaller than 54.10. On the other hand since LSS-LRTA* with a lookahead
of even 241 (not shown in Table 2) finds only trajectories of length 44721.30
(compared to 21737.53 for D* Lite) but has a search time per search of
168.19, D* Lite should be used if the time limit is larger than 54.10.

– Finally, we study what to do if one wants to minimize the trajectory length
subject to the hard real-time requirement that only a certain amount of time
is available for each search but the search time can be amortized over the
action executions. Thus, there is a time limit on the search time per action
execution. D* Lite has a search time per action execution of 16.44 and thus
cannot be used if the time limit is smaller than this. Thus, LSS-LRTA* with

27

(a) = cell expansions per search (= lookahead), (b) = average number of cell expansions
(as an imperfect indicator for the average search time since breadth-first search can
expand cells faster than A*) with smaller numbers shown in bold, and (c) = average
number of action executions (= trajectory length) with smaller numbers shown in bold.

LSS-LRTA* (with A*) LSS-LRTA* with BFS
look- cell trajectory cell trajectory
ahead expansions length expansions length
(a) (b) (c) (b) (c)

1 1259958.00 1259958.00 1244573.34 1244573.34

3 1012633.01 685570.04 2151181.27 1427453.49
5 765644.80 477525.03 608563.97 339733.20

7 658618.41 382949.65 470885.88 239418.18

9 588810.14 321547.69 439573.64 204921.68

11 531955.23 272841.73 437526.96 189936.61

13 518431.33 252374.66 410861.79 165348.26

15 517913.09 239072.72 460207.28 177181.12

17 495466.48 215615.93 430183.56 154345.68

19 487622.82 199517.41 453565.17 154292.26

21 459565.74 177142.96 448383.49 144253.88

23 470419.04 171600.71 470230.40 144736.66

25 456751.93 155736.31 473433.00 138034.91

27 465707.78 151277.34 483322.87 135636.58

29 460964.20 140895.33 499253.40 133028.67

...

Table 4. Different Search Spaces in Mazes

the largest lookahead that fits the time limit should be used instead of D*
Lite if the time limit is smaller than 16.44. LSS-LRTA* with a lookahead of
up to 165 (not shown in Table 2) has a search time per action execution that
is smaller than the one of D* Lite. On the other hand since LSS-LRTA* with
a lookahead of even 241 finds only trajectories of length 44721.30 (compared
to 21737.53 for D* Lite) but has a search time per action execution of 28.61,
D* Lite should be used if the time limit is larger than 16.44.

So far, our experimental results are not surprising. LSS-LRTA* with small looka-
heads should be used instead of D* Lite if there is not enough time to find com-
plete paths. Otherwise, D* Lite should be used instead of LSS-LRTA* since it
uses information from the previous search to speed up the current one. However,
there are additional benefits to LSS-LRTA* if the h-values are generally not
misleading, as is the case in grids with random obstacles, discussed in the next
section.

Table 4 shows experimental results for a version of LSS-LRTA* that generates
its local search spaces with breadth-first search (= BFS) rather than A*, which
has a smaller search time per search because one can implement a breadth-

28

(a) = cell expansions per search (= lookahead), (b) = average search time with smaller
numbers shown in bold, and (c) = average number of action executions (= trajectory
length) with smaller numbers shown in bold.

strong h-values weak h-values
look- search trajectory search trajectory
ahead time length time length
(a) (b) (c) (b) (c)

D* Lite

- 36825.63 308.98 40737.34 313.78
LSS-LRTA*

1 28279.51 498.55 28292.81 363.16

3 28380.11 377.15 28446.67 363.30

5 28435.03 337.67 28568.88 339.47
7 28536.61 329.00 28658.00 327.50

9 28617.42 322.19 28769.02 318.39

11 28698.35 315.32 28877.77 315.32

13 28785.79 310.35 29008.12 315.57
15 28873.00 307.15 29118.05 314.14
17 28966.89 305.47 29226.43 311.46
19 29056.67 303.58 29341.93 311.65
21 29152.59 302.27 29476.83 311.11
23 29241.04 301.54 29585.83 310.20
25 29332.52 300.77 29701.80 309.44
27 29428.39 300.24 29822.47 309.43
29 29524.39 299.44 29949.31 309.84
...

Table 5. Different h-Values in Grids with Random Obstacles

first search with a first-in first-out queue rather than a priority queue. The table
shows that LSS-LRTA* with breadth-first search tends to expand fewer cells than
LSS-LRTA* with A* and find shorter trajectories, at least for small lookaheads
(different from three). (The table shows smaller numbers of cell expansions and
trajectory lengths in bold to make it easier to interpret the data.) This result
is due to the fact that the h-values can be misleading in mazes and then result
local search spaces of suboptimal shapes.

4.2 Grids with Random Obstacles

We now use grids with randomly placed blocked cells as test domain. Their
obstacle density is 25 percent. Figure 10 (right) shows an example of smaller
size than used in the experiments. Testing LSS-LRTA* and D* Lite on these
different kinds of grids is interesting because they have different properties from
mazes. They are more difficult than mazes since their branching factor is larger.
They are easier than mazes since the shortest paths to the goal cells tend to be

29

(a) = cell expansions per search (= lookahead) (b) = average number of cell expansions,
(c) = average number of searches, (d) = average number of action executions (=
trajectory length), (e) = average number of action executions per search (= trajectory
length per search), (f) = average search time, (g) = average search time per search,
and (h) = average search time per action execution.

look- cell searches trajectory trajectory search search search
ahead expansions length length time time time

per search per search per action
(a) (b) (c) (d) (e) (f) (g) (h)

D* Lite

- 11424.90 72.54 308.98 4.26 36825.63 507.65 119.18
LSS-LRTA*

1 498.55 498.55 498.55 1.00 28279.51 56.72 56.72
3 622.46 207.83 377.15 1.81 28380.11 136.56 75.25
5 686.46 137.77 337.67 2.45 28435.03 206.39 84.21
7 796.09 114.30 329.00 2.88 28536.61 249.66 86.74
9 902.13 100.92 322.19 3.19 28617.42 283.58 88.82
11 1013.99 92.98 315.32 3.39 28698.35 308.65 91.01
13 1128.42 87.72 310.35 3.54 28785.79 328.14 92.75
15 1238.49 83.63 307.15 3.67 28873.00 345.25 94.00
17 1353.46 80.83 305.47 3.78 28966.89 358.36 94.83
19 1464.02 78.40 303.58 3.87 29056.67 370.61 95.71
21 1578.59 76.68 302.27 3.94 29152.59 380.16 96.45
23 1701.07 75.63 301.54 3.99 29241.04 386.62 96.97
25 1822.36 74.75 300.77 4.02 29332.52 392.40 97.53
27 1953.37 74.38 300.24 4.04 29428.39 395.67 98.02
29 2077.55 73.85 299.44 4.05 29524.39 399.76 98.60
31 2202.06 73.40 299.20 4.08 29615.10 403.48 98.98
33 2323.90 72.99 298.70 4.09 29715.34 407.11 99.48
35 2438.37 72.38 297.90 4.12 29799.11 411.73 100.03
37 2569.27 72.30 298.38 4.13 29904.07 413.58 100.22
39 2683.20 71.80 297.61 4.14 29994.63 417.73 100.78
41 2803.77 71.60 297.65 4.16 30094.02 420.30 101.10
43 2925.34 71.35 297.39 4.17 30193.43 423.15 101.53
45 3053.07 71.36 297.81 4.17 30303.25 424.66 101.75
47 3170.40 71.14 297.48 4.18 30391.28 427.23 102.16
49 3285.16 70.87 297.27 4.19 30484.89 430.14 102.55

Table 6. LSS-LRTA* and D* Lite in Grids with Random Obstacles

shorter, agents are generally able to find such paths by moving in the direction
of their goal cells by circumnavigating blocked cells that are in their way, and
the h-values are generally not misleading. Table 5 shows that LSS-LRTA* with
the weak h-values now tends to have larger search times than LSS-LRTA* with
the strong h-values and find longer trajectories, at least for large lookaheads.
(The table shows smaller search times and trajectory lengths in bold to make

30

28000

29000

30000

31000

32000

33000

34000

35000

36000

37000

 0 5 10 15 20 25 30 35 40 45 50

cell expansions per search (= lookahead)

average search time of LSS-LRTA*
average search time of D* Lite

Fig. 14. Search Times of LSS-LRTA* and D* Lite

250

300

350

400

450

500

 0 5 10 15 20 25 30 35 40 45 50

cell expansions per search (= lookahead)

average number of action executions (= trajectory length) of LSS-LRTA*
average number of action executions (= trajectory length) of D* Lite

Fig. 15. Trajectory Lengths of LSS-LRTA* and D* Lite

it easier to interpret the data.) This effect is due to the h-values generally not
being misleading. Thus, in grids with random obstacles, we use both LSS-LRTA*
and D* Lite with the strong h-values. Table 6 shows our experimental results,
which are similar to the ones in mazes. The trajectory length of LSS-LRTA*
again decreases as its lookahead increases but its search time now increases right
away. Figure 14 and 15 visualize these properties of the search time and the
trajectory length. The search times per search of both LSS-LRTA* and D* Lite
are larger than in mazes due to the larger branching factor. The search time of
LSS-LRTA* is now smaller than the one of D* Lite for all tabulated lookaheads
although eventually its search time is larger than the one of D* Lite as the
lookahead increases since it does not use information from the previous search
to speed up the current one, and its trajectories are shorter than the ones of
D* Lite for all tabulated lookaheads larger than 13. These good experimental
results for LSS-LRTA* are due to the fact that the h-values are generally not
misleading. One can therefore reduce the search time by greedily performing

31

range of x optimal lookahead of LSS-LRTA*

0 - 10−0.09 1
10−0.08 - 10+0.14 3
10+0.15 - 10+1.06 5
10+1.07 - 10+1.07 7
10+1.08 - 10+1.24 11
10+1.25 - 10+1.43 13
10+1.44 - 10+1.71 15
10+1.72 - 10+1.86 19
10+1.87 - 10+2.07 21
10+2.08 - 10+2.15 25
10+2.16 - 10+2.25 29
10+2.26 - 10+2.82 35
10+2.83 - 10+2.95 39
10+2.96 - 10+3.38 43

... ...

Table 7. Optimal Lookaheads for LSS-LRTA* in Grids with Random Obstacles [x =
ratio of search and action-execution speed]

steepest descent on the h-value surface, with some lookahead to avoid being
misled by inaccuracies of the h-values caused by obstacles. This means that it
is unnecessary to search all the way to the goal cell. Larger lookaheads then
decrease the trajectory length only marginally.

We now study again what to do if one wants to minimize the sum of the search
and action-execution time. Table 7 is derived from Table 6 and shows the optimal
lookahead of LSS-LRTA* as a function of x, the ratio of the search speed and
action-execution speed. A lookahead of one now minimizes the search time of
LSS-LRTA*, which is smaller than the lookahead of 21 that minimized the search
time of LSS-LRTA* in mazes. For all values of x, LSS-LRTA* with the optimal
lookahead has a smaller sum of search and action-execution time than D* Lite,
and thus LSS-LRTA* with the optimal lookahead should always be used instead
of D* Lite since D* Lite finds longer trajectories with a larger search time than
LSS-LRTA*. This is not surprising since both the search time and the resulting
trajectories of LSS-LRTA* with lookaheads larger than 13 are shorter than the
ones of D* Lite, as shown in Figures 14 and 15. Thus, even if search is fast relative
to action executions (a realistic assumption for many applications, including real-
time computer games), LSS-LRTA* should always be used instead of D* Lite.
For the same reason, LSS-LRTA* should always be used instead of D* Lite if
there is a time limit on the search time per search or action execution.

Our experimental results are surprising. Clearly, LSS-LRTA* with small looka-
heads should be used instead of D* Lite if there is not enough time to find
complete paths. However, it is surprising that LSS-LRTA* should be used in-
stead of D* Lite in grids with random obstacles regardless of the time limit. We

32

(a) = cell expansions per search (= lookahead), (b) = average number of cell expansions
(as an imperfect indicator for the average search time since breadth-first search can
expand cells faster than A*) with smaller numbers shown in bold, and (c) = average
number of action executions (= trajectory length) with smaller numbers shown in bold.

LSS-LRTA* (with A*) LSS-LRTA* with BFS
look- cell trajectory cell trajectory
ahead expansions length expansions length
(a) (b) (c) (b) (c)

1 498.55 498.55 496.82 496.82

3 622.46 377.15 751.35 382.46
5 686.46 337.67 883.16 340.95
7 796.09 329.00 1081.67 331.05
9 902.13 322.19 1224.09 322.09

11 1013.99 315.32 1377.21 317.84
13 1128.42 310.35 1554.31 316.33
15 1238.49 307.15 1716.99 313.97
17 1353.46 305.47 1871.26 312.06
19 1464.02 303.58 2020.39 310.60
21 1578.59 302.27 2169.39 309.72
23 1701.07 301.54 2315.88 308.09
25 1822.36 300.77 2465.16 307.65
27 1953.37 300.24 2605.35 306.62
29 2077.55 299.44 2763.52 306.93
...

Table 8. Different Search Spaces in Grids with Random Obstacles

thus achieved the objective behind our design of LSS-LRTA* and demonstrated
that real-time heuristic search can outperform incremental heuristic search if the
h-values are generally not misleading.

It currently remains unclear why the trajectories of LSS-LRTA* with lookaheads
larger than 13 are shorter than the ones of D* Lite. We would have expected
them to be short but slightly longer than the ones of D* Lite, in which case
there could have been a trade-off between LSS-LRTA* and D* Lite. However,
switching from D* Lite to LSS-LRTA* would still have reduced the search time
by 20 percent or more while increasing the trajectory length only slightly.

Table 8 shows experimental results for a version of LSS-LRTA* that generates
its local search spaces with breadth-first search rather than A*. The table shows
that LSS-LRTA* with A* now tends to expand fewer cells than LSS-LRTA* with
breadth-first search and find shorter trajectories since the h-values are generally
not misleading. (The table shows smaller numbers of cell expansions and tra-
jectory lengths in bold to make it easier to interpret the data.) Again, we thus
achieved the objective behind our design of LSS-LRTA* and demonstrated that
real-time heuristic search with local search spaces determined by A* can expand

33

Mazes Grids with Random Obstacles

The h-values can be misleading, re-
sulting in deep local minima.

The h-values are generally not mis-
leading, resulting in shallow local
minima.

LSS-LRTA* with weak h-values
results in smaller search times
and trajectory lengths than LSS-
LRTA* with strong h-values.

LSS-LRTA* with strong h-values
results in smaller search times
and trajectory lengths than LSS-
LRTA* with weak h-values.

LSS-LRTA* with small lookaheads
results in relatively long trajecto-
ries.

LSS-LRTA* with small lookaheads
results already in relatively short
trajectories.

LSS-LRTA* that determines the
local search spaces with breadth-
first search results in fewer cell ex-
pansions and shorter trajectories
(for small lookaheads) than LSS-
LRTA* that determines the local
search spaces with A*.

LSS-LRTA* that determines the
local search spaces with A* re-
sults in ‘¡fewer cell expansions
and shorter trajectories than LSS-
LRTA* that determines the lo-
cal search spaces with breadth-first
search.

Table 9. Properties of LSS-LRTA* in Mazes and Grids with Random Obstacles

fewer cells than real-time heuristic search with local search spaces determined
by breadth-first search if the h-values are generally not misleading.

5 Conclusions

In this article, we compared two classes of fast heuristic search methods for
real-time situated agents that speed up A* searches in different ways, namely
real-time heuristic search and incremental heuristic search, to understand their
advantages and disadvantages and make recommendations about when each one
should be used. We used navigation tasks as test domain where a real-time sit-
uated agent, such as a character in a real-time computer game, has to move
autonomously from its current cell to a goal cell without knowing in advance
which cells are blocked. We developed a novel version of Learning Real-Time A*.
LSS-LRTA* is a real-time heuristic search method that uses A* to determine
its local search spaces and learns quickly. We analyzed its properties and then
compared it experimentally against the incremental heuristic search method D*
Lite [21] on our navigation tasks, for which D* Lite was specifically developed,
resulting in the first comparison of real-time and incremental heuristic search in
the literature. Table 9 summarizes our conclusions with respect to LSS-LRTA*.
We characterized when to choose which one of the two heuristic search methods,
depending on the kind of terrain (which determines how informed the h-values
are) and the search objective. Our experimental results are surprising since LSS-
LRTA* can outperform D* Lite under the right conditions, namely when there
is time pressure or the user-supplied h-values are generally not misleading. It

34

is future work to extend our experiments to real-time heuristic search meth-
ods that are even less computationally intensive than LSS-LRTA*, especially
since our experimental results show that less computationally intensive heuristic
search methods can outperform more computationally intensive heuristic search
methods if the h-values are generally not misleading.

Acknowledgments

We thank Xiaoming Zheng for his suggestions regarding one of the proofs. We
thank Vadim Bulitko for making a map from the real-time game Baldur’s Gate
II available to us. This research has been partly supported by an NSF award to
Sven Koenig under contract IIS-0350584. The views and conclusions contained
in this document are those of the author(s) and should not be interpreted as
representing the official policies, either expressed or implied, of the sponsoring
organizations, agencies, companies or the U.S. government.

References

1. A. Barto, S. Bradtke, and S. Singh. Learning to act using real-time dynamic
programming. Artificial Intelligence, 73(1):81–138, 1995.

2. M. Bjornsson, M. Enzenberger, R. Holte, J. Schaeffer, and P. Yap. Comparison of
different abstractions for pathfinding on maps. In Proceedings of the International

Joint Conference on Artificial Intelligence, pages 1511–1512, 2003.
3. B. Bonet and H. Geffner. Planning with incomplete information as heuristic search

in belief space. In Proceedings of the International Conference on Artificial Intel-

ligence Planning and Scheduling, pages 52–61, 2000.
4. B. Bonet, G. Loerincs, and H. Geffner. A robust and fast action selection mech-

anism. In Proceedings of the National Conference on Artificial Intelligence, pages
714–719, 1997.

5. V. Bulitko. Lookahead pathologies and meta-level control in real-time heuristic
search. In Proceedings of the Euromicro Conference on Real-Time Systems, pages
13–16, 2003.

6. V. Bulitko, Y. Bjornsson, M. Luvstrek, J. Schaeffer, and S. Sigmundarson. Dynamic
control in path-planning with real-time heuristic search. In Proceedings of the

International Conference on Automated Planning and Scheduling, pages 49–56,
2007.

7. V. Bulitko and G. Lee. Learning in real-time search: A unifying framework. Journal

of Artificial Intelligence Research, 25:119–157, 2006.
8. E. Dijkstra. A note on two problems in connexion with graphs. Numerische

Mathematik, 1:269–271, 1959.
9. S. Edelkamp. Updating shortest paths. In Proceedings of the European Conference

on Artificial Intelligence, pages 655–659, 1998.
10. D. Furcy and S. Koenig. Speeding up the convergence of real-time search. In

Proceedings of the National Conference on Artificial Intelligence, pages 891–897,
2000.

35

11. M. Goldenberg, A. Kovarksy, X. Wu, and J. Schaeffer. Multiple agents moving
target search. In Proceedings of the International Joint Conference on Artificial

Intelligence, pages 1538–1538, 2003.
12. P. Hart, N. Nilsson, and B. Raphael. Correction to ’a formal basis for the heuristic

determination of minimum cost paths’. SIGART Newsletter, 37:28–29, 1972.
13. P. Hart, N. Nilsson, and N. Raphael. A formal basis for the heuristic determination

of minimum cost paths. IEEE Transactions on Systems Science and Cybernetics,
SSC4(2):100–107, 1968.

14. M. Hebert, R. McLachlan, and P. Chang. Experiments with driving modes for
urban robots. In Proceedings of the SPIE Mobile Robots, 1999.

15. R. Holte, T. Mkadmi, R. Zimmer, and A. MacDonald. Speeding up problem solving
by abstraction: A graph oriented approach. Artificial Intelligence, 85(1–2):321–361,
1996.

16. T. Ishida. Moving target search with intelligence. In Proceedings of the National

Conference on Artificial Intelligence, pages 525–532, 1992.
17. T. Ishida. Real-Time Search for Learning Autonomous Agents. Kluwer Academic

Publishers, 1997.
18. S. Koenig. Agent-centered search. Artificial Intelligence Magazine, 22(4):109–131,

2001.
19. S. Koenig. Minimax real-time heuristic search. Artificial Intelligence, 129:165–197,

2001.
20. S. Koenig. A comparison of fast search methods for real-time situated agents.

In Proceedings of the International Conference on Autonomous Agents and Multi-

Agent Systems, pages 864–871, 2004.
21. S. Koenig and M. Likhachev. D* Lite. In Proceedings of the National Conference

on Artificial Intelligence, pages 476–483, 2002.
22. S. Koenig and M. Likhachev. Fast replanning for navigation in unknown terrain.

Transactions on Robotics, 21(3):354–363, 2005.
23. S. Koenig and M. Likhachev. A new principle for incremental heuristic search:

Theoretical results. In Proceedings of the International Conference on Autonomous

Planning and Scheduling, pages 402–405, 2006.
24. S. Koenig, M. Likhachev, and D. Furcy. Lifelong Planning A*. Artificial Intelli-

gence Journal, 155(1–2):93–146, 2004.
25. S. Koenig, M. Likhachev, Y. Liu, and D. Furcy. Incremental heuristic search in

Artificial Intelligence. Artificial Intelligence Magazine, 25(2):99–112, 2004.
26. S. Koenig and R.G. Simmons. Easy and hard testbeds for real-time search algo-

rithms. In Proceedings of the National Conference on Artificial Intelligence, pages
279–285, 1996.

27. S. Koenig and B. Szymanski. Value-update rules for real-time search. In Proceed-

ings of the National Conference on Artificial Intelligence, pages 718–724, 1999.
28. S. Koenig, C. Tovey, and Y. Smirnov. Performance bounds for planning in unknown

terrain. Artificial Intelligence, 147:253–279, 2003.
29. R. Korf. Real-time heuristic search. Artificial Intelligence, 42(2-3):189–211, 1990.
30. R. Korf. Linear-space best-first search. Artificial Intelligence, 62(1):41–78, 1993.
31. A. Mudgal, C. Tovey, and S. Koenig. Analysis of greedy robot-navigation methods.

In Proceedings of the Conference on Artificial Intelligence and Mathematics, 2004.
32. J. Pearl. Heuristics: Intelligent Search Strategies for Computer Problem Solving.

Addison-Wesley, 1985.
33. J. Pemberton and R. Korf. Making locally optimal decisions on graphs with cycles.

Technical Report 920004, Computer Science Department, University of California
at Los Angeles, Los Angeles (California), 1992.

36

34. S. Russell and E. Wefald. Do the Right Thing – Studies in Limited Rationality.
MIT Press, 1991.

35. L. Shue, S. Li, and R. Zamani. An intelligent heuristic algorithm for project
scheduling problems. In Proceedings of the Annual Meeting of the Decision Sciences

Institute, 2001.
36. L. Shue and R. Zamani. An admissible heuristic search algorithm. In Proceedings

of the International Symposium on Methodologies for Intelligent Systems, pages
69–75, 1993.

37. A. Stentz. The focussed D* algorithm for real-time replanning. In Proceedings

of the International Joint Conference on Artificial Intelligence, pages 1652–1659,
1995.

38. X. Sun and S. Koenig. The Fringe-Saving A* search algorithm - a feasibility
study. In Proceedings of the International Joint Conference on Artificial Intelli-

gence, pages 2391–2397, 2007.
39. J. Svennebring and S. Koenig. Building terrain-covering ant robots. Autonomous

Robots, 16(3):313–332, 2004.
40. S. Thayer, B. Digney, M. Diaz, A. Stentz, B. Nabbe, and M. Hebert. Distributed

robotic mapping of extreme environments. In Proceedings of the SPIE: Mobile

Robots XV and Telemanipulator and Telepresence Technologies VII, volume 4195,
pages 84–95, 2000.

41. K. Trovato. Differential A*: An adaptive search method illustrated with robot path
planning for moving obstacles and goals, and an uncertain environment. Journal

of Pattern Recognition and Artificial Intelligence, 4(2):245–268, 1990.
42. I. Wagner, M. Lindenbaum, and A. Bruckstein. Distributed covering by ant-

robots using evaporating traces. IEEE Transactions on Robotics and Automation,
15(5):918–933, 1999.

43. V. Yanovski, I. Wagner, and A. Bruckstein. A distributed ant algorithm for effi-
ciently patrolling a network. Algorithmica, 37:165–186, 2003.

