
Noname manuscript No.
(will be inserted by the editor)

Reusing Cost-Minimal Paths for Goal-Directed
Navigation in Partially Known Terrains

Carlos Hernández · Tansel Uras · Sven
Koenig · Jorge A. Baier · Xiaoxun Sun ·
Pedro Meseguer

Received: date / Accepted: date

Abstract Situated agents frequently need to solve search problems in partially
known terrains in which the costs of the arcs of the search graphs can increase (but
not decrease) when the agents observe new information. An example of such search
problems is goal-directed navigation with the freespace assumption in partially
known terrains, where agents repeatedly follow cost-minimal paths from their cur-
rent locations to given goal locations. Incremental heuristic search is an approach
for solving the resulting sequences of similar search problems potentially faster
than with classical heuristic search, by reusing information from previous searches
to speed up its current search. There are two classes of incremental heuristic search

Carlos Hernández
Departamento de Ingenieŕıa Informática
Universidad Católica de la Ssma. Concepción
Concepción, Chile
E-mail: chernan@ucsc.cl

Tansel Uras
Sven Koenig
Computer Science Department
University of Southern California
Los Angeles, CA 90089-0781, USA
E-mail: {turas,skoenig}@usc.edu

Jorge A. Baier
Departamento de Ciencia de la Computación
Pontificia Universidad Católica de Chile
Santiago, Chile
E-mail: jabaier@ing.puc.cl

Xiaoxun Sun
Google
1600 Amphitheatre Parkway
Mountain View, CA 94043, USA
E-mail: xiaoxunsun@google.com

Pedro Meseguer
IIIA - CSIC
Campus Universitat Autonòma de Barcelona
08193 Bellaterra, Spain
E-mail: pedro@iiia.csic.es

2 Carlos Hernández et al.

algorithms, namely those that make the h-values of the current search more in-
formed (such as Adaptive A*) and those that reuse parts of the A* search trees of
previous searches during the current search (such as D* Lite). In this article, we
introduce Path-Adaptive A* and its generalization Tree-Adaptive A*. Both incre-
mental heuristic search algorithms terminate their searches before they expand the
goal state, namely when they expand a state that is on a provably cost-minimal
path to the goal. Path-Adaptive A* stores a single cost-minimal path to the goal
state (the reusable path), while Tree-Adaptive A* stores a set of cost-minimal
paths to the goal state (the reusable tree), and is thus potentially more efficient
than Path-Adaptive A* since it uses information from all previous searches and
not just the last one. Tree-Adaptive A* is the first incremental heuristic search
algorithm that combines the principles of both classes of incremental heuristic
search algorithms. We demonstrate experimentally that both Path-Adaptive A*
and Tree-Adaptive A* can be faster than Adaptive A* and D* Lite, two state-of-
the-art incremental heuristic search algorithms for goal-directed navigation with
the freespace assumption.

1 Introduction

Situated agents, such as robots and game characters, have to be able to navi-
gate from their current location to a given destination [3]. However, they may
not know a map of the terrain initially, and their sensors may only be able to
observe the immediate neighborhood of their current location. One approach to
navigation, popular robotics [17], uses the freespace assumption: The agents plan
a cost-minimal path from their current location to their destination under the
freespace assumption, which is the assumption that the terrain is traversable ex-
cept for the blocked cells that they have already observed. When they observe
additional blocked cells as they follow the planned path, they add them to their
map. If one or more blocked cells are on their path between their current location
and their destination, they replan a cost-minimal path from their current loca-
tion to their destination and then repeat the process until they either reach their
destination or can no longer find a path to their destination (in which case it is
unreachable).

In this paper we study path planning with the freespace assumption for goal-
directed navigation in unknown, static terrain. More generally, we study the prob-
lem of repeatedly following a cost-minimal path from the current location to a
given destination where the arc costs can increase but not decrease, as in the
case of discovering a new blocked cell in the environment. Path planning with
the freespace assumption interleaves path planning with movements and thus re-
quires repeated searches. These searches need to be fast since agents typically
have to move smoothly and without delay. For example, the computer game com-
pany Bioware imposes a time limit of 1-3ms on each search [2]. However, even
with heuristic search algorithms such as A* [6], search can be time consuming if
the terrain is large or if many agents perform simultaneous searches. Incremental
heuristic search algorithms use information from the current and previous searches
to solve similar future search problems potentially faster than classical heuristic
search algorithms, that solve all search problems from scratch [16]. They have been

Reusing Cost-Minimal Paths for Goal-Directed Navigation 3

used to speed up A* searches in the context of both symbolic planning [12] and
path planning [16].

There are two classes of incremental heuristic search algorithms:

– Class 1: Incremental heuristic search algorithms of Class 1 make the h-values
of the current A* search more informed, which can speed up future A* searches
by making them more focused. Examples include Adaptive A* (AA*) [15], Gen-
eralized Adaptive A* [25] and Multi-Target Adaptive A* [21].

– Class 2: Incremental heuristic search algorithms of Class 2 change the search
tree of the current A* search to the search tree of the next A* search, which
can be faster than constructing it from scratch. Examples include D* [23] and
D* Lite [14]. D* Lite is as fast as D* but much simpler. Both of them are
typically faster for path planning with the freespace assumption than versions
of AA* [15]. Versions of them have been used as part of path planners in a
wide range of fielded robotics systems [18,5,19], including the winning DARPA
Urban Challenge entry Boss and the Mars rovers Opportunity and Spirit.

Our key observation is that the suffix of the current cost-minimal path with-
out arc cost changes remains a cost-minimal path when the agent observes arc
cost increases on the path. Path-Adaptive A* (Path-AA*) [9] reuses the suffix
of the cost-minimal path of the current forward A* search (= reusable path) to
terminate its next forward A* search earlier than a regular forward A* search.
Tree-Adaptive A* (Tree-AA*) [10] generalizes Path-AA* by reusing suffixes of the
cost-minimal paths of the current and all previous forward A* searches (= reusable
tree) to terminate the next forward A* search even earlier. Thus, Tree-AA* com-
bines incremental heuristic search algorithms of Classes 1 and 2 in a novel way
since the reusable tree of Tree-AA* is similar to the search tree of incremental
heuristic search algorithms from Class 2, such as D* Lite. However, Tree-AA*
changes the reusable tree via forward (rather than backward) A* searches, which
is a novel way of maintaining the search tree. We demonstrate experimentally
that both Path-AA* and Tree-AA* can be faster than AA* and D* Lite, the two
state-of-the-art incremental heuristic search algorithms for path planning with the
freespace assumption.

Some of the contributions of this paper have been published in conference
papers, namely [9] and [10]. This article includes new material that has not been
presented before. In particular:

– We present lazy versions of Path-AA* and Tree-AA*.
– We include proofs for termination and optimality of Path-AA* and Tree-AA*

(Theorems 1 and 2).
– We perform a systematic experimental analysis of the performance of the al-

gorithms as a function of the difficulty of the search problems.
– We extend previously published experimental results for unknown terrain by

including new results for a large number of game maps, office maps and maps
with randomly blocked cells.

– We extend previously published experimental results by including a large num-
ber of results for partially known terrain.

– Finally, we perform an experimental evaluation of different priority queue im-
plementations.

The rest of the paper is organized as follows. In Section 2, we present the
notation used in the paper. In Section 3, we explain basic concepts of heuristic

4 Carlos Hernández et al.

search. In Section 4, we present basic concepts of incremental heuristic search. In
Section 5, we describe Path-AA*, including its pseudocode and its properties. In
Section 6, we describe Tree-AA*. In Section 7, we present a detailed experimental
analysis. In Section 8, we present some variants of Path-AA* and Tree-AA*.

2 Background

Our agents move on a directed graph G = (S,A), where S is a finite set of states,
and A ⊆ S×S is a finite set of arcs. There are two distinguished states: scurrent ∈ S
is the current state of the agent, and sgoal ∈ S is the goal state. The set Succ(s) :=
{t ∈ S | (s, t) ∈ A} is the set of successor states of state s. An arc a = (s, t) ∈ A
represents that the agent can move from state s to state t. c(s, t) is the cost of
following the arc from state s to state t, where c(s, t) > 0. A path from state s
to state t is a sequence of arcs (s0, t0), . . . , (sn, tn), such that s0 = s, tn = t, and
ti = si+1 for all 0 ≤ i < n. The cost of a path is the sum of the costs of the
arcs in the path. A cost-minimal path from state s to state t is a path with the
minimum cost among all the paths from state s to state t. d(s, t) is the cost of a
cost-minimal path from s ∈ S to t ∈ S. We call d(s, sgoal) the goal cost of state s.

A* is the basis of all incremental heuristic search algorithms discussed in this
article. A* utilizes a heuristic function to help guide the search. A heuristic function
h : S 7→ R≥0 estimates the goal cost of states (that is, d(s, sgoal)). h is said to be
consistent iff, for any states s ∈ S and t ∈ S, h(s) ≤ d(s, t) + h(t) and h(sgoal) = 0.
h is said to be admissible iff, for any state s ∈ S, 0 ≤ h(s) ≤ d(s, sgoal). A consistent
heuristic function is also admissible [22]. A heuristic function h is said to weakly
dominate another heuristic function h′ iff, for any state s ∈ S, h(s) ≥ h′(s). We
assume that there is a user-provided consistent heuristic function, denoted by H.

Our description of A* follows [26]. For each state s, A* maintains the following
values throughout the search: The parent, denoted by parent(s), keeps track of the
state that comes before state s on the path from state scurrent to state s that has
been found so far. It is initially undefined for all states. The g-value, denoted by
g(s), keeps track of the cost of the path from state scurrent to state s that has been
found so far. It is initially 0 for state scurrent and infinity for all other states. Any
state with a finite g-value is said to be generated. The h-value, denoted by h(s), is
the estimated goal cost of state s. It is initially H(s) for all states s and remains
unchanged throughout the search. The f -value, denoted by f(s), is derived from
the g- and h-values of state s and satisfies the following equality: f(s) = g(s)+h(s).

A* maintains a priority queue, called the OPEN list, where states are ordered
with respect to their f -values, in increasing order. It initially contains only state
scurrent. A* repeatedly removes a state s with the smallest f -value from the OPEN
list and expands it by performing the following procedure for each successor state
t of state s with g(s) + d(s, t) < g(t): g(t) is set to g(s) + d(s, t) and parent(t)
is set to state s. If state t is not in the OPEN list, then it is inserted into the
OPEN list, otherwise, it is reordered in the OPEN list with its updated f -value.
A* terminates when its OPEN list is empty or it is about to expand state sgoal.

The properties of A* are explained in more detail in [22]. We use the following
properties of A* that uses a consistent heuristic function:

Reusing Cost-Minimal Paths for Goal-Directed Navigation 5

– Property 1: Every expanded state s satisfies the following conditions: (a)
g(s) = d(scurrent, s). (b) One can identify a cost-minimal path from state scurrent
to state s in reverse by following the parent-pointers from state s to state scurrent.

– Property 2: The sequence of f -values of the expanded states is monotonically
non-decreasing.

– Property 3: If a heuristic function h weakly dominates another heuristic
function h′, an A* search using h expands no more states than an A* search
using h′ (modulo tie-breaking).

– Property 4: An A* search always terminates, either proving that there is no
path from state scurrent to state sgoal or returning a cost-minimal path from state
scurrent to state sgoal that can be identified in reverse by following the parent
pointers from state sgoal to state scurrent.

– Property 5: Each state is expanded at most once.

3 Incremental Heuristic Search

To find a cost-minimal path from state scurrent to state sgoal in unknown terrain,
an agent could use repeated forward A* searches (from state scurrent to state sgoal)
with the freespace assumption or repeated backward A* searches (from state sgoal to
state scurrent) with the freespace assumption. These repeated A* searches need to be
fast since agents typically have to move smoothly and without delay. Incremental
heuristic search algorithms use information from previous searches to solve similar
future search problems potentially faster than classical heuristic search algorithms,
which solve all search problems from scratch. We provide a brief introduction to
AA* in the following since both Path-AA* and Tree-AA* build on it. All three
incremental heuristic search algorithms apply to path planning with the freespace
assumption and use forward A* searches to find cost-minimal paths from state
scurrent to state sgoal.

AA* [13] performs repeated A* searches and after each search, updates the
h-values of all states s expanded by the search, by assigning h(s) := f(sgoal)−g(s).
This results in a more informed heuristic function, therefore speeding up future
A* searches by making them more focused. For the updated heuristic function
to remain consistent, state sgoal has to remain unchanged, although state scurrent
can change. The h-values remain consistent even if the arc costs increase (but
not decrease), which makes AA* applicable to path planning with the freespace
assumption. AA* is based on the following “update principle” that was first de-
scribed in [11] in the context of hierarchical A* search: If the h-values of all states
s expanded by an A* search that uses a consistent heuristic function are updated
by assigning h(s) := f(sgoal)−g(s), then the resulting h-values are again consistent
and weakly dominate the original h-values. Thus, an A* search with the resulting
h-values finds cost-minimal paths and expands no more states than an identical
A* search with the original h-values (and likely many fewer states).

The properties of AA* are explained in more detail in [15,8]. We use the
following property of AA* in addition to the properties of A* listed earlier:

– Property 6: After each update, the h-value of any state s on the cost-minimal
path from state scurrent to state sgoal is set to its goal cost (since h(s) = f(sgoal)−
g(s) = d(scurrent, sgoal)− d(scurrent, s) = d(s, sgoal)).

6 Carlos Hernández et al.

01 procedure InitializeState(s)
02 if (generated(s) = 0)
03 g(s) :=∞;
04 h(s) := H(s);
05 else if (generated(s) 6= counter)
06 if (g(s) + h(s) < pathcost(generated(s)))
07 h(s) := pathcost(generated(s))− g(s);
08 g(s) :=∞;
09 generated(s) := counter;

10 procedure ComputePath()
11 while (OPEN 6= ∅)
12 delete a state s with the smallest f-value g(s) + h(s) from OPEN;
13 if (s = sgoal)
14 pathcost(counter) := g(s) + h(s);
15 return true; /* path from scurrent to sgoal found */
16 for all t ∈ Succ(s)
17 InitializeState(t);
18 if (g(t) > g(s) + c(s, t))
19 g(t) := g(s) + c(s, t);
20 parent(t) := s;
21 if (t ∈ OPEN)
22 delete t from OPEN;
23 insert t into OPEN with f-value g(t) + h(t);
24 return false; /* no path from scurrent to sgoal found */

25 procedure Main()
26 counter := 1;
27 for all s ∈ S
28 generated(s) := 0;
29 while (scurrent 6= sgoal)
30 InitializeState(scurrent);
31 g(scurrent) := 0;
32 OPEN := ∅;
33 insert scurrent into OPEN with f-value g(scurrent) + h(scurrent);
34 if (ComputePath() = false)
35 return false; /* failure: sgoal is unreachable */
36 path := generate a path from scurrent to sgoal by following the parent-pointers in reverse

from sgoal to scurrent;
37 blocked := false;
38 while (scurrent 6= sgoal and ¬blocked)
39 scurrent := next state on path;
40 update all increased arc costs (if any);
41 for all increased arc costs c(s, t)
42 if (path contains (s, t))
43 blocked :=true;
44 counter := counter + 1;
45 return true; /* success: sgoal has been reached */

Fig. 1 Adaptive A* (AA*).

There are two versions of AA*, which differ in how they update the h-values:
The eager version of AA* updates the h-values of all expanded states right after
a forward A* search ends and before a new forward A* search begins. The lazy
version of AA* [25], on the other hand, updates the h-value of a state only when it
is needed during a future A* search [15]. It does this by remembering the expanded
states and the cost of the cost-minimal path found in each search, and by using
them to update the h-value of a state when it becomes necessary. The lazy version
is faster in general, despite the additional book-keeping, since it does not update
the h-values of states that become irrelevant for future searches.

Figure 1 shows the pseudo code of the lazy version of AA*. It maintains the
following variables for its forward A* searches: counter is the number of the current
forward A* search. pathcost(i) is the cost of the path found during the i-th forward
A* search. generated(s) is the number of the last forward A* search that generated

Reusing Cost-Minimal Paths for Goal-Directed Navigation 7

state s. AA* uses these values to initialize the g-value of state s to infinity and the
h-value of state s to H(s) as needed (to avoid having to initialize them unnecessar-
ily) and to update the h-value of the state as needed (procedure InitializeState).
OPEN is the OPEN list of the current forward A* search. parent(s) is the parent
of state s in the search tree of the last A* search that generated state s. g(s) is
the g-value of state s at the end of the last forward A* search that generated state
s. h(s) is the h-value of state s, which may or may not be up-to-date.

AA* performs a forward A* search from state scurrent to state sgoal (Line 34,
procedure ComputePath) until it is about to expand state sgoal (Line 13). It then
remembers the cost of the path found by the forward A* search to eventually be
able to set the h-value of every expanded state s to the cost of the path found by
the forward A* search (which is the same as the f -value of state sgoal) minus the
g-value of state t (Line 14). It then generates the cost-minimal path from state
scurrent to state sgoal by repeatedly following the parent-pointers in reverse from
state sgoal to state scurrent (Line 36). The agent then repeatedly moves from state
scurrent to the next state along the cost-minimal path, observing its environment
after each movement. If an arc cost increases on the remaining path, the agent
performs another forward A* search and then repeats the process until it either
reaches state sgoal or can no longer find a path from state scurrent to state sgoal.

D* Lite is an incremental heuristic search algorithm that solves the same path-
planning problems with the freespace assumption for goal-directed navigation in
unknown terrain as Path-AA* and Tree-AA*, except that it is able to handle not
only arc-cost increases but also arc-cost decreases. It does so by using a version
of A* that searches from the goal state to the current state of the agent. Instead
of performing such an A* search from scratch every time an arc cost changes, D*
Lite basically repeatedly transforms the search tree of the previous A* search to
the search tree of the current A* search, which is faster than an A* search from
scratch in case the two search trees are similar (but can also be slower in case they
are not).

4 Path-Adaptive A* (Path-AA*)

AA* performs forward A* searches until it is about to expand state sgoal. Path-AA*
uses AA* unchanged, except that its forward A* searches terminate earlier than
the ones of AA*. It extends the path-caching strategy first described in [11] in
the context of hierarchical A* search and is based on the following “termination
principle”: If the h-values of all states on a cost-minimal path from some state to
state sgoal (= reusable path) are the same as their respective goal costs, then each
forward A* search of AA* can terminate when it is about to expand a state on
the reusable path.

Figure 2(a-e) shows a goal-directed navigation problem in unknown terrain to
illustrate the operations of Path-AA*. The terrain is discretized into cells that
are either blocked or unblocked, a common practice in the context of real-time
computer games [1]. The cells of the grid correspond to the states. A cell is black
iff it is blocked and this fact is known to the agent. The agent can move from a
cell to each neighboring unblocked cell in the four main compass directions with
an arc cost of one. The agent thus operates on an undirected four-neighbor grid.
The agent assumes that all cells are unblocked except for the blocked cells that it

8 Carlos Hernández et al.

1 2 3 4

A

B

C

D

E

F

(a) Actual
environment

1 2 3 4

A

B

C

D

E

F

(b) Search 1

1 2 3 4

A

B

C

D

E

F

(c) Blocked cell
observed

1 2 3 4

A

B

C

D

E

F

(d) Reusable
path

1 2 3 4

A

B

C

D

E

F

(e) Search 2

Fig. 2 Operation of Path-AA* on Four-Neighbor Grids

has already observed. It plans a cost-minimal path from its current cell to the goal
cell. It always observes whether the neighboring cells in the four main compass
directions are blocked as it follows the planned path, adds newly observed blocked
cells to its map, and increases the arc costs from cells to newly observed blocked
cells to infinity (making them untraversable).

The agent is initially at cell A1, is trying to reach cell F4, and is unaware that
cell A4 is blocked (a). The first forward A* search of Path-AA* finds a path from
cell A1 to cell F4 (b), and the h-values of the expanded states are updated. The
agent follows the path until it observes a blocked cell on the path (c). Path-AA*
discards the prefix of the path up to and including the newly observed blocked
cell and keeps the rest as the reusable path (d). The next forward A* search of
Path-AA* expands only two cells, A3 and B3, and terminates before expanding
cell B4 since cell B4 lies on the reusable path (e).

Path-AA* needs to support two operations, namely removing a prefix of the
reusable path and adding a prefix to the reusable path.

– Adding a Prefix to the Reusable Path: When a forward A* search of Path-
AA* terminates because it is about to expand a state s on the reusable path,
Path-AA* adds the path from state scurrent to state s to the reusable path as
a prefix, because the (cost-minimal) path from state scurrent to state s and the
(cost-minimal) path from state s to state sgoal from the reusable path form a
cost-minimal path from state scurrent to state sgoal. This is so because AA* finds
cost-minimal paths, and the h-values of all states on the reusable path are the
same as their goal costs since AA* has updated them this way.

– Removing a Prefix of the Reusable Path: There are two cases where Path-
AA* removes a prefix of the reusable path: (1) Whenever the cost of an arc (s, t)
on the path increases (for instance, due to a newly observed blocked cell), Path-
AA* removes the prefix of the reusable path up to and including state s. It
does this because the states contained in the prefix of the path up to state s
because the paths from the states in the prefix to state sgoal might no longer be
cost-minimal. (2) When a forward A* search of Path-AA* terminates because
it is about to expand a state t on the reusable path, Path-AA* removes the
prefix of the path up to, but not including, state t because it maintains only
a single path. Tree-AA* (described later) does not remove the prefix of a path
when a new path is found, but has to use additional methods to ensure that

Reusing Cost-Minimal Paths for Goal-Directed Navigation 9

all maintained paths (which form a tree) contain only states that have known
cost-minimal paths to state sgoal.

4.1 Implementation of the Reusable Path

Path-AA* implements these operations efficiently by maintaining a pointer pathstart,
which points to the state that begins the reusable path, and, for each state s, a
pointer nextstate(s). If state s is in the reusable path and is not equal to state
sgoal, then nextstate(s) points to the state that follows state s on the reusable path.
Otherwise, nextstate(s) is NULL.

4.2 Implementation of the Operations

Removing a prefix from and adding a prefix to the reusable path is implemented
as follows:

– Removing a Prefix of the Reusable Path: Whenever the cost of an arc
(s, t) on the reusable path increases or the forward A* search of Path-AA*
terminates because it is about to expand a state t on the reusable path, Path-
AA* removes the prefix of the reusable path up to, but not including, state
t. It performs this operation by starting at state pathstart and following the
nextstate-pointers until it reaches state t, setting nextstate(s) := NULL for
each visited state s (not including state t) and setting pathstart := t.

– Adding a Prefix to the Reusable Path: Whenever a forward A* search of
Path-AA* terminates because it is about to expand a state t on the reusable
path, then Path-AA* adds the path from state scurrent to state t found by the
forward A* search to the reusable path as a prefix by setting nextstate(s) to
the next state on the cost-minimal path from state scurrent to state t for each
state s on the path from state scurrent to state t (not including state t) and
setting pathstart := scurrent.

4.3 Pseudo Code

Figure 3 shows the pseudo code of the version of Path-AA* that extends the
lazy version of AA*. We use this version of Path-AA* since it ran faster in our
experiments than the version of Path-AA* that extends the eager version of AA*.

Path-AA* performs a forward A* search from state scurrent to state sgoal (Line
49, function ComputePath) until it is about to expand state sgoal or a state s on
the reusable path (Line 25, termination principle). It then remembers the cost
of the path found during the forward A* search (Line 26, update principle) to
eventually be able to set the h-value of every expanded state t to the cost of the
path found during the forward A* search minus the g-value of state t. It then
shortens the reusable path to the cost-minimal path from state s to state sgoal
(Line 27, procedure CleanPath) and adds the cost-minimal path from state scurrent
to state s as a prefix to the reusable path (Line 28, procedure MakePath). The
agent then repeatedly moves from state scurrent to state nextstate(scurrent) along the

10 Carlos Hernández et al.

01 procedure InitializeState(s)
02 if (generated(s) = 0)
03 g(s) :=∞;
04 h(s) := H(s);
05 nextstate(s) := NULL;
06 else if (generated(s) 6= counter)
07 if (g(s) + h(s) < pathcost(generated(s)))
08 h(s) := pathcost(generated(s))− g(s);
09 g(s) :=∞;
10 generated(s) := counter;

11 procedure MakePath(s)
12 while (s 6= scurrent)
13 saux := s;
14 s := parent(s);
15 nextstate(s) := saux;
16 pathstart := scurrent;

17 procedure CleanPath(s)
18 while (pathstart 6= s)
19 saux := nextstate(pathstart);
20 nextstate(pathstart) := NULL;
21 pathstart := saux;

22 procedure ComputePath()
23 while (OPEN 6= ∅)
24 delete a state s with the smallest f-value g(s) + h(s) from OPEN;
25 if (s = sgoal or nextstate(s) 6= NULL)
26 pathcost(counter) := g(s) + h(s);
27 CleanPath(s);
28 MakePath(s);
29 return true; /* path from scurrent to sgoal found */
30 for all t ∈ Succ(s)
31 InitializeState(t);
32 if (g(t) > g(s) + c(s, t))
33 g(t) := g(s) + c(s, t);
34 parent(t) := s;
35 if (t ∈ OPEN)
36 delete t from OPEN;
37 insert t into OPEN with f-value g(t) + h(t);
38 return false; /* no path from scurrent to sgoal found */

39 procedure Main()
40 counter := 1;
41 pathstart := sgoal;
42 for all s ∈ S
43 generated(s) := 0;
44 while (scurrent 6= sgoal)
45 InitializeState(scurrent);
46 g(scurrent) := 0;
47 OPEN := ∅;
48 insert scurrent into OPEN with f-value g(scurrent) + h(scurrent);
49 if (ComputePath() = false)
50 return false; /* failure: sgoal is unreachable */
51 while (nextstate(scurrent) 6= NULL)
52 scurrent := nextstate(scurrent);
53 update all increased arc costs (if any);
54 for all increased arc costs c(s, t)
55 if (nextstate(s) = t)
56 CleanPath(t);
57 counter := counter + 1;
58 return true; /* success: sgoal has been reached */

Fig. 3 Path Adaptive A* (Path-AA*).

cost-minimal path (Line 52). Whenever arc costs increase, it shortens the reusable
path (Line 56, procedure CleanPath). If state scurrent is no longer on the reusable
path, the agent performs another forward A* search and then repeats the process

Reusing Cost-Minimal Paths for Goal-Directed Navigation 11

1 2 3 4 5

A

B

C

1 2 3 4 5

A
2 0 3 0 4 0

1 1 1 0 0

B
1 0 2 0 3 0 4 0

1 1 1 1 0

C
0 0 1 0 2 0 3 0 4 0

1 1 1 1 1

1 2 3 4 5

A
3 2 2 1 3 0 4 0 5 0

2 2 2 2 2

B
2 3 1 2 2 1 3 0 4 0

2 2 2 2 2

C
1 4 0 3 4 1 5 0

2 2 2 2

1 2 3 4 5

A
2 2 1 3 2 2 3 1 4 0

3 3 3 3 3

B
1 3 0 4 4 2 5 1

3 3 3 3

C
2 4 1 5 4 1 5 0

3 3 2 2

(a) Actual environment (b) Search 1 (c) Search 2 (d) Search 3

Fig. 4 Example Trace of Path-AA*

until it either reaches state sgoal or can no longer find a path from state scurrent to
state sgoal.

4.4 Example Trace

Figure 4(a-d) shows a goal-directed navigation problem in unknown terrain, similar
to the one described in Figure 2. The user-provided H-values are all zero. The
generated-value of a cell is shown in its lower left corner. The h- and g-values of
a cell are shown in its upper right and upper left corners, respectively, iff it has
been generated by a forward A* search. A cell is gray iff it was expanded by the
current forward A* search. The parent of a cell is a thick arrow iff it was added
to the reusable path by the current forward A* search and a thin arrow iff it was
added by a previous forward A* search. The solid circle marks the current cell of
the agent, and the hollow circle marks the goal cell. An ’X’ marks the cell on the
reusable path that the current forward A* search was about to expand before it
terminated.

Figure 4(a) shows the actual environment, and Figure 4(b) shows the initial
situation as the agent perceives it. The first forward A* search of Path-AA* from
cell C1 to cell C5 expands cells C1, C2, B1, C3, B2, A1, C4, B3 and A2 in this
order and terminates when it is about to expand goal cell C5. Figure 4(b) shows
the situation after the first forward A* search terminates. It finds the path C1-
C2-C3-C4-C5, makes it the reusable path and remembers the cost of the path by
setting pathcost(1) := 4 to be able to update the h-values of expanded states when
necessary. The agent then follows the reusable path from cell C1 to cell C2, where
it observes that cell C3 is blocked. Path-AA* removes path C1-C2-C3-C4 from the
reusable path, leaving path C4-C5 as the new reusable path.

The second forward A* search of Path-AA* from cell C2 to cell C5 expands cells
C2, B2, B3, B4, A3, A2, B5, A4 in this order, updating the h-values of all generated
states, and terminates when it is about to expand goal cell C5. It expands fewer
cells than a forward A* search with the user-provided zero H-values would (which
additionally expands cells C1, B1, A1 and C4), illustrating the speed-up achieved
with the update principle. Figure 4(c) shows the situation after the second forward
A* search terminates. Path-AA* removes C4-C5 from the reusable path, makes
C2-B2-B3-B4-B5-C5 the new reusable path and sets pathcost(2) := 5. The agent
then moves from cell C2 to cell B2, where it observes that cell B3 is blocked. Path-
AA* removes path C2-B2-B3-B4 from the reusable path, leaving path B4-B5-C5
as the new reusable path.

The third forward A* search of Path-AA* from cell B2 to cell C5 expands
cells B2, B1, A1, A2, A3, A4 and A5 in this order, updating the h-values of all
generated states, and terminates when it is about to expand cell B5, which lies

12 Carlos Hernández et al.

on the reusable path. It terminates earlier than a regular forward A* search with
the same h-values would (which additionally expands cell B5 and terminates only
when it is about to expand goal cell C5), illustrating the speed-up achieved with the
early termination principle. Figure 4(d) shows the situation after the third forward
A* search terminates. Path-AA* removes path B4-B5 from the reusable path and
makes B2-A2-A3-A4-A5-B5-C5 the new reusable path and sets pathcost(3) := 6.

4.5 Theoretical Results

In this section, we show that any search of Path-AA* finds a cost-minimal path
if one exists and returns false otherwise. It should be noted that this does not
guarantee that the agent follows a cost-minimal path from its starting position
to its goal position in the actual environment. It guarantees only that the agent
always follows a cost-minimal path from its current position to its goal position,
with respect to the observed arc costs, under the freespace assumption.

Throughout the proofs, we refer to the ith execution of lines 45-50 as the ith
search. We use the superscript i to denote the value of a variable when the ith
search terminates. We say that a state s is generated during the ith search iff
generatedi(s) = counteri. Some of the following statements also hold for Tree-
AA*, with small modifications. Text inside brackets is used to help translate these
statements to Tree-AA* and should be ignored for Path-AA*.

Definition 1 We recursively define xi(s) as follows:

– x0(s) = H(s);
– xi(s) = xi−1(s) if state s is not generated during the ith search; and
– xi(s) = max(xi−1(s), pathcost(i)− gi(s)) if state s is generated during the ith

search.

Definition 2 For any i ≥ 0, the heuristic statement Hi is defined to hold at
a given point during the execution iff, at that point, xi is a consistent heuristic
function, given the arc costs at that point.

Definition 3 For any i ≥ 0, the path statement Pi is defined to hold at a given
point during the execution iff, at that point,

– the nextstate-pointers form a path starting at pathstart and ending at state
sgoal, called the reusable path; and

– from any state s with nextstate(s) 6= NULL, one can use the nextstate-pointers
to follow a path from state s to state sgoal with cost xi(s).

Lemma 1 For any state s and any i > 0, xi(s) ≥ xi−1(s).

Proof If state s is not generated during the ith search, xi(s) = xi−1(s). Otherwise,
xi(s) = max(xi−1(s), pathcost(i)− gi(s)) ≥ xi−1(s). The inequality holds in both
cases. ut

Lemma 2 For any i > 0, whenever procedure InitializeState is called for any state
s during the ith search, the h-value of state s is xi−1(s) when the call terminates.
When the ith search terminates, hi(s) = xi−1(s) for all states s generated during
the search.

Reusing Cost-Minimal Paths for Goal-Directed Navigation 13

Proof When procedure InitializeState is called for state s during the ith search,
counter = i and generated(s) ∈ {0, . . . , i}. The former property holds because
counter is initially set to 1 (Line 40) [Line 57] and incremented after each search
(Line 57) [Line 74]. The latter property holds because generated(s) is initially
set to 0 (Lines 42-43) [Lines 59-60] and only modified by setting it to counter
(Line 10) [Line 11]. If procedure InitializeState is called for a state s more than
once during the ith search, generated(s) is set to i (Line 10) [Line 11] during
the first call and the subsequent calls have no effect. Therefore, the only calls to
procedure InitializeState during the ith search that might affect h(s) are those
where generated(s) < i. Also note that a state s is generated during the ith search
iff procedure InitializeState is called for state s during the ith search.

We prove the lemma by strong induction on the number of searches. During
the first search, whenever procedure InitializeState is called for a state s for the
first time, generated(s) = 0 and, therefore, h(s) is set to H(s) = x0(s) (Lines 2,4)
[Lines 2,4] and generated(s) is set to 1 (Line 10) [Line 11]. The subsequent calls to
procedure InitializeState for state s do not change h(s) because generated(s) = 1
and counter = 1 (Lines 2,6) [Lines 2,7]. Therefore, the lemma holds for the base
case i = 1.

For the induction step, we show that the lemma holds for the ith search, as-
suming that it holds for searches 1, . . . , i−1. Assume that procedure InitializeState
is called for a state s during the ith search and generated(s) = j < i. This means
that state s has not been generated during searches j + 1, . . . , i− 1, which implies
that xj(s) = · · · = xi−1(s) (Definition 1). It also means that it is the first time
procedure InitializeState is called for state s during the ith search because, oth-
erwise, generated(s) = i (Line 10) [Line 11]. We distinguish two cases: If j = 0,
then h(s) is set to H(s) = xj(s). Otherwise, i > j = generated(s) > 0, meaning
that state s was generated during the jth search and this is the first time that
state s is being generated since then. In this case, when state s is generated, its
h-value is set to max(h(s), pathcost(j) − g(s)) (Lines 6-8) [Lines 7-9]. Since the
g-value of a state cannot be modified during a search without first generating the
state (Lines 31,33) [Lines 48,50] and since state s has not been generated since
the jth search, it must hold that g(s) = gj(s). Also, according to our strong
induction assumption, h(s) = xj−1. Therefore, the h-value of state s is set to
max(xj−1(s), pathcost(j) − gj(s)) = xj(s) = xi−1(s) (Definition 1), proving the
induction statement. ut

Lemma 3 For any i > 0, assume that Hi−1 and Pi−1 hold in the beginning of
the ith search. Then, if a path does not exist between state scurrent and state sgoal,
then the ith search returns false. Otherwise,

– the ith search finds a cost-minimal path between state scurrent and state sgoal;
– the cost of this path is gi(s) +hi(s) and it contains state s, where state s is the

last state considered for expansion on Line 24 [Line 42];
– the cost of this path is stored in pathcost(i); and
– one can follow this path by following the nextstate-pointers from state scurrent to

state sgoal.

Proof The ith search of Path-AA* is basically an A* search that uses xi−1 as its
heuristic function (Lemma 2), with one major difference: the ith search of Path-
AA* terminates already if a state s with nextstate(s) 6= NULL [h(s) ≤ Hmax(id(s))]

14 Carlos Hernández et al.

is about to be expanded (Line 25) [Line 43]. According to the lemma’s assumption,
xi−1 is a consistent heuristic function (the properties of an A* search using a
consistent heuristic function are listed in Section 2 as Properties 1-4).

We first assume that nextstate(s) 6= NULL [h(s) ≤ Hmax(id(s))] is never satis-
fied for any state s considered for expansion on Line 24 [Line 42] during the ith
search. Then, the ith search is simply an A* search that is guaranteed to termi-
nate, either proving that there is no path from state scurrent to state sgoal or finding
a cost-minimal path that can be identified by following the parent-pointers from
state sgoal to state scurrent (Properties 1 and 4). In the former case, we are done. In
the latter case, Line 26 [Line 44] sets pathcost(i) = gi(sgoal) + hi(sgoal) and Line 28
[Line 45] calls procedure MakePath [AddPath], which follows the parent-pointers
from state sgoal to state scurrent to identify a cost-minimal path from state scurrent
to state sgoal in reverse (Property 4) and adds nextstate-pointers so that one can
follow this path from state scurrent to state sgoal.

We now assume that nextstate(s) 6= NULL [h(s) ≤ Hmax(id(s))] for a state s
considered for expansion on Line 24 [Line 42] during the ith search. According
to the assumption of the lemma, one can use the nextstate-pointers to follow a
path from state s to state sgoal with cost xi−1(s) = h(s). Also, one can use the
parent-pointers to follow a path from state scurrent to state s in reverse, with cost
g(s) (Property 1). Combining the two statements, we get a path from state scurrent
through state s to state sgoal, whose cost is g(s) +xi−1(s) = g(s) +h(s). This must
be a cost-minimal path because otherwise there would be a lower-cost path and
the search would have found it earlier because the sequence of f -values of states
expanded by an A* search with a consistent heuristic function is monotonically
non-decreasing (Property 2). Since the search terminates after the path is found,
the g- and h-values of states are not changed. Therefore, the cost of this cost-
minimal path is gi(s) + hi(s) = g(s) + h(s) and is stored as pathcost(i) (Line
26) [Line 44]. Procedure CleanPath [RemovePaths] does not change the nextstate-
pointers of any state t that comes after state s on the reusable path, and procedure
MakePath [AddPath] adds nextstate-pointers from state scurrent to state s so that
one can follow the nextstate-pointers from state scurrent to state sgoal. ut

Lemma 4 For any i > 0, assume that Hi−1 and Pi−1 hold in the beginning of
the ith search. If the ith search finds a path, then the following holds: If a state
s is expanded during the ith search, then xi(s) = pathcost(i) − gi(s). Otherwise,
xi(s) = xi−1(s).

Proof If a state s is generated during the ith search, then xi(s) = max(xi−1(s),
pathcost(i)−gi(s)) (Definition 1). The cost of the path found is equal to pathcost(i) =
gi(t)+hi(t), where state t is the last state considered for expansion on Line 24 [Line
42] (Lemma 3). If state s is expanded during the ith search, that is, if state s is
chosen for expansion earlier than state t, then it must be that gi(s) + hi(s) ≤
gi(t) + hi(t) = pathcost(i) because the sequence of f -values of the expanded
states is monotonically non-decreasing (Property 2) and a state cannot be ex-
panded twice (Property 5). Replacing hi(s) with xi−1(s) (Lemma 2), we get
gi(s) + xi−1(s) ≤ pathcost(i) and thus xi−1(s) ≤ pathcost(i) − gi(s). Therefore,
xi(s) = max(xi−1(s), pathcost(i)− gi(s)) = pathcost(i)− gi(s). On the other hand,
if state s is generated but not expanded during the ith search, then gi(s)+hi(s) ≥
gi(t) + hi(t) = pathcost(i) because otherwise state s would have been chosen for
expansion before state t, which implies xi−1(s) ≥ pathcost(i) − gi(s). Therefore,

Reusing Cost-Minimal Paths for Goal-Directed Navigation 15

xi(s) = max(xi−1(s), pathcost(i)− gi(s)) = xi−1(s). If state s has not been gener-
ated (and therefore not been expanded) during the ith search, then xi(s) = xi−1(s)
(Definition 1). ut

Lemma 5 For any i > 0, assume that Hi−1 and Pi−1 hold in the beginning of
the ith search. If the ith search finds a path, then Hi holds in the beginning of the
(i+ 1)st search.

Proof First, we show that xi(sgoal) = 0. According to the lemma’s assumption
that Hi−1 holds, xi−1(sgoal) = 0. Since considering sgoal for expansion is one of the
termination conditions of the search (Line 25) [Line 43], sgoal is never expanded
during a search. Therefore, xi(sgoal) = xi−1(sgoal) = 0 (Lemma 4).

Second, we show that, if the ith search finds a path, then the triangle inequality
xi(s) ≤ d(s, t) + xi(t) holds for any two states s and t such that (s, t) ∈ A, given
the arc costs at the end of the ith search (which are the same as the arc costs in
the beginning of the ith search). We distinguish three cases:

– State s is not expanded: Since we assume that xi−1 is consistent in the be-
ginning of the ith search, xi−1(s) ≤ d(s, t) + xi−1(t). According to Lemma 1,
xi−1(t) ≤ xi(t) and therefore xi−1(s) ≤ d(s, t) + xi(t). Since state s is not ex-
panded, we can replace xi−1(s) with xi(s) (Lemma 4) to get xi(s) ≤ d(s, t) +
xi(t).

– State s is expanded before state t is expanded, or state s is expanded but
not state t: Expanding state s generates state t if it has not been generated
during the current search (Lines 30-31) [Lines 47-48]. After state s is expanded,
g(t) ≤ g(s) +d(s, t) (Lines 30-33) [Lines 47-50]. During a search, the g-value of
a state can never increase after it is initialized (Lines 32-33) [Lines 49-50] and
therefore gi(t) ≤ g(t) ≤ g(s) + d(s, t). Also, the g-value of an expanded state
remains unchanged until the end of the search (Property 1). Thus, g(s) = gi(s).
Furthermore, since state s is expanded, gi(s) = pathcost(i)−xi(s) (Lemma 4).
Replacing g(s) with pathcost(i)− xi(s) in the above inequality, we get gi(t) ≤
pathcost(i)−xi(s) +d(s, t). We distinguish two cases after state s is expanded:
– If state t is also expanded before the search terminates, then we can re-

place gi(t) with pathcost(i)− xi(t) (Lemma 4) to get pathcost(i)− xi(t) ≤
pathcost(i)− xi(s) + d(s, t) and consequently xi(s) ≤ d(s, t) + xi(t).

– If the search terminates before state t is expanded, then xi(t) = xi−1(t)
(Lemma 4). From Definition 1, by replacing xi−1(t) with xi(t), we get
xi(t) = max(xi(t), pathcost(i) − gi(t)). Thus, pathcost(i) − gi(t) ≤ xi(t)
and, consequently, pathcost(i) − xi(t) ≤ gi(t). Combined with gi(t) ≤
pathcost(i)−xi(s)+d(s, t), we get pathcost(i)−xi(t) ≤ pathcost(i)−xi(s)+
d(s, t) and consequently xi(s) ≤ d(s, t) + xi(t).

– State s is expanded after state t: Since the search uses a consistent heuristic
function, gi(t) + hi(t) ≤ gi(s) + hi(s) (Property 2). Replacing hi(s) and hi(t)
with xi−1(s) and xi−1(t), respectively, (Lemma 2) and rearranging the terms,
we get gi(t)−gi(s) ≤ xi−1(s)−xi−1(t). Since we assume that xi−1 is consistent,
xi−1(s)−xi−1(t) ≤ d(s, t). Combined with the above inequality, we get gi(t)−
gi(s) ≤ d(s, t). Since both state s and state t are expanded, we can replace
gi(s) with pathcost(i) − xi(s) and gi(t) with pathcost(i) − xi(t) (Lemma 4)
and get pathcost(i) − xi(t) − pathcost(i) + xi(s) ≤ d(s, t) and, consequently,
xi(s) ≤ d(s, t) + xi(t).

16 Carlos Hernández et al.

We have shown that the triangle inequality holds at the end of the ith search. Lines
51-57 [Line 68-75] can only increase but never decrease the arc costs. Therefore,
xi remains consistent and Hi holds at the beginning of the (i+ 1)st search. ut

Lemma 6 For any i > 0, assume that Hi−1 and Pi−1 hold in the beginning of
the ith search. If the ith search finds a path, then Pi holds in the beginning of the
(i+ 1)st search.

Proof Let state t be the state that satisfied the termination condition on Line 25,
that is, t = sgoal or nextstate(t) 6= NULL. The call to procedure CleanPath removes
the prefix of the previous path up to t and the call to procedure MakePath adds
nextstate-pointers so that there is a cost-minimal path from state scurrent to state
sgoal with cost pathcost(i) (Lemma 3) and any state s with nextstate(s) 6= NULL is
on this path. Procedure MakePath also sets pathstart to scurrent (Line 16). We now
show that Pi holds at the end of the ith search by showing that, from any state
s with nextstate(s) 6= NULL, one can follow a path from state s to state sgoal with
cost xi(s) by following the nextstate-pointers. We distinguish two cases:

– If state s is expanded during the ith search, then gi(s) is the cost of a cost-
minimal path from state scurrent to state s (Property 1). Since s is on the cost-
minimal path from state scurrent to state sgoal with cost pathcost(i), and since the
cost of the path from state scurrent to state s is gi(s), the cost of the path from
state s to state sgoal is pathcost(i)− gi(s). This is equal to xi(s) (Lemma 4).

– If state s has not been expanded during the ith search, then it cannot be the
parent of any other state in the ith search. Therefore, state s cannot precede
state t on the path after the ith search (since the prefix of the path up to state
t is constructed by following the parent-pointers from state t to state scurrent).
Since we assume that Pi−1 holds in the beginning of the ith search, we can
follow the nextstate-pointers from state s to state sgoal with cost xi−1(s) in the
beginning of the ith search. Since the suffix of the path from state t to state
sgoal and the arc costs remain the same during the ith search, we can follow
the nextstate-pointers from state s to state sgoal with cost xi−1(s) at the end
of the ith search. Since state s has not been expanded during the ith search,
xi−1(s) = xi(s) (Lemma 4).

We have shown that Pi holds at the end of the ith search. During the execution
of Lines 51-57, some arc costs might increase. If the cost of an arc on the path
increases, the prefix of the path up to and including the arc with the increased cost
is discarded, by calling procedure CleanPath. Therefore, Pi holds in the beginning
of the (i+ 1)st search. ut

Lemma 7 For any i > 0, Hi−1 and Pi−1 hold in the beginning of the ith search.

Proof The proof is by induction on the number of searches of Path-AA*. In the
beginning of the first search, H0 holds because x0(s) = H(s) for all states s
(Definition 1) and we assume that H is a consistent heuristic function. P0 also
holds because the reusable path is empty (since nextstate(s) = NULL for all states
s), and pathstart = sgoal. To prove the inductive step, we assume that Hi−1 and
Pi−1 hold in the beginning of the ith search. If no path is found, then Path-AA*
terminates. Otherwise, Hi and Pi hold in the beginning of the (i + 1)st search
(Lemmata 5 and 6). ut

Reusing Cost-Minimal Paths for Goal-Directed Navigation 17

1 2 3 4 5

A
6 5 2

5 5 3

B
5 4 3 1

4 4 4 3

C
4 3 2 1 0

1 1 1 1 0

D
4 3 2

2 2 2

1 2 3 4 5

A
2

3

B
3 1

4 3

C
4 3 2 1 0

1 1 1 1 0

D
4 3 2

2 2 2

1 2 3 4 5

A
5 4 2

6 6 3

B
3 1

4 3

C
4 3 2 1 0

1 1 1 1 0

D
4 3 2

2 2 2

(a)
p Hmax(p) Hmin(p) Paths(p)
1 4 0 {2,4}
2 4 1 ∅
3 2 0 ∅
4 5 2 {5}
5 6 4 ∅

(b)
p Hmax(p) Hmin(p) Paths(p)
1 4 0 {2,4}
2 4 1 ∅
3 2 0 ∅
4 3 2 ∅
5 4 4 ∅

(c)
p Hmax(p) Hmin(p) Paths(p)
1 4 0 {2,4}
2 4 1 ∅
3 2 0 ∅
4 3 2 {6}
5 4 4 ∅
6 5 3 ∅

Fig. 5 Illustration of the Reusable Trees

Theorem 1 Any search of Path-AA* finds a cost-minimal path between state
scurrent and state sgoal if one exists and returns false otherwise.

Proof The proof follows from Lemmata 7 and 3. ut

5 Tree-Adaptive A* (Tree-AA*)

Path-AA* reuses only a suffix of the cost-minimal path of the current forward
A* search (= reusable path) to terminate its next forward A* search before it is
about to expand the goal state. In complex terrain, the next forward A* search
is unlikely to expand a state on that path far away from state sgoal and thus
unlikely to terminate much earlier than a regular forward A* search. Tree-AA*
[10] generalizes Path-AA* by reusing suffixes of the cost-minimal paths of the
current and all previous forward A* searches (= reusable tree) to terminate its
next forward A* search even earlier. The reusable tree of Tree-AA* is similar to the
search tree of D* Lite since D* Lite performs backward A* searches to guarantee
that the root of the search tree does not change. The reusable trees of Tree-AA*
and D* Lite are thus both rooted in state sgoal.

Tree-AA* maintains cost-minimal paths from several states to state sgoal or-
ganized in form of the reusable tree rooted in state sgoal. If the h-values of all
states in the reusable tree are the same as their respective goal costs, then each
forward A* search of AA* can terminate when it is about to expand a state in
the reusable tree, for the same reasons as in the context of Path-AA*. Tree-AA*
needs to support two operations, namely adding a path to the reusable tree and
removing paths from the reusable tree:

– Adding a Path to the Reusable Tree: When a forward A* search of Tree-
AA* terminates because it is about to expand a state s in the reusable tree,
then Tree-AA* adds the path from state scurrent to state s to the reusable tree. It
does this because the (cost-minimal) path from state scurrent to state s and the
(cost-minimal) path from state s to state sgoal along the branch of the reusable
tree form a cost-minimal path from state scurrent to state sgoal (since AA* finds

18 Carlos Hernández et al.

cost-minimal paths) and the h-values of all states on the path are the same as
their goal costs (since AA* has updated them this way).

– Removing Paths from the Reusable Tree: When arc costs in the reusable
tree increase, then Tree-AA* re-uses the largest prefix of the reusable tree that
does not contain increased arc costs. (By prefix of a tree we mean the top part of
the tree that includes its root.) It does this because all branches of the resulting
tree are cost-minimal paths from some state to state sgoal and the h-values of all
states in the resulting tree are still the same as their goal costs. In particular,
when arc cost c(s, t) in the reusable tree increases, then Tree-AA* finds the
largest prefix of the reusable tree by removing the subtree rooted in state s
from the reusable tree.

5.1 Implementation of the Reusable Tree

Tree-AA* implements the above two operations efficiently by maintaining two
variables for every state and three variables for every path p = s0 . . . sn in the
reusable tree, where s0 is the state at the start of the path and sn is the state
at the end of the path that a forward A* search was about to expand when it
terminated. We say that the states s0 . . . sn−1 belong to path p. Every path in the
reusable tree is identified with a unique integer that corresponds to the number
of the forward A* search after which it was added to the reusable tree (starting
with one). Every path in the reusable tree is the prefix of a cost-minimal path
from some state to state sgoal. The h-values of all states on the path are the same
as their goal costs and thus are strictly monotonically decreasing along the path.
The variables are as follows:

– id(s) is the path in the reusable tree which state s belongs to. These values are
initialized to zero, which means that state s is either the same as state sgoal or
not in the reusable tree.

– nextstate(s) is the parent of state s in the reusable tree if state s is a state
different from state sgoal in the reusable tree.

– Hmax(p) is the largest h-value of any state on path p = s0 . . . sn, that is,Hmax(p) =
h(s0). Hmax(0) = −1, as explained below.

– Hmin(p) is the smallest h-value of any state on path p = s0 . . . sn, that is,
Hmin(p) = h(sn).

– Paths(p) is the set of all paths in the reusable tree that connect to one of the
states s0 . . . sn−1 that belong to path p = s0 . . . sn. These paths “feed into” path
p.

In the worst case, Tree-AA* needs to store a tree that contains the cost-minimal
paths from every state in the state space to the goal state. This tree can be
embedded into the data structure for the grid world and requires memory that is
at most linear in the size of the graph.

Figure 5(a) shows a fictitious example of a reusable tree. Values are shown only
for cells that are in the reusable tree. The id-value of a cell is shown in its bottom
right corner. The h-value of a cell is shown in its upper right corner. The parent
of a cell is pointed to by an arrow. All arrows thus form the reusable tree, that
consists of five paths. Path 1 is path C1-C2-C3-C4-C5, path 2 is path D2-D3-D4-
C4, path 3 is path A5-B5-C5, path 4 is path B1-B2-B3-C3, and path 5 is path
A1-A2-B2. The table shows the values of the variables of all paths.

Reusing Cost-Minimal Paths for Goal-Directed Navigation 19

5.2 Implementation of the Operations

State sgoal is always in the reusable tree. Tree-AA* could check whether id(s) > 0
when it needs to check whether a state different from state sgoal is in the reusable
tree. However, this would require id(s) to be set to zero when state s is re-
moved from the reusable tree, which is expensive since Tree-AA* often needs
to remove whole paths from the reusable tree. Thus, Tree-AA* checks whether
h(s) ≤ Hmax(id(s)) when it needs to check whether a state different from state sgoal
is in the reusable tree. (State sgoal fails this test.) Tree-AA* can now remove a path
p from the reusable tree by setting Hmax(p) to Hmin(p) without having to set id(s)
to zero for all states s that belong to path p. Thus, id(s) = 0 is not necessarily
true for states s not in the reusable tree. There are two subtleties here. States s
different from state sgoal that have not yet been part of the reusable tree correctly
fail the test since Hmax(id(s)) = Hmax(0) = −1. States s different from state sgoal
that were part of the reusable tree but have subsequently been removed correctly
fail the test since they have an h-value larger than Hmax(id(s)). Tree-AA* adds a
path to the reusable tree and removes paths from the reusable tree as follows:

– Adding a Path to the Reusable Tree: Tree-AA* adds a path p = s0 . . . sn
to the reusable tree as follows. It equates p with the number of the current
forward A* search (as given by the variable counter) to identify the path with a
unique integer. It inserts p into the set Paths(id(sn)) if state sn is different from
state sgoal since path p feeds into the path that state sn belongs to (Lines 13-14).
(The line numbers refer to the pseudo code of Tree-AA* in Figure 6.) It sets
Hmin(p) to h(sn) (Line 15) and Hmax(p) to pathcost(counter) (Line 16) since the
h-values are strictly monotonically decreasing along the path. It sets Paths(p) to
the empty set (Line 17) since no paths feed into path p yet. It sets id(s) to p and
nextstate(s) to the successor of state s on path p for all states s0 . . . sn−1 (Lines
18-22) since the states s0 . . . sn−1 belong to path p. The runtime of adding a
path to the reusable tree is thus basically proportional to the number of states
on the path. Note that, instead of explicitly setting Hmin(p) to h(s0), it sets
Hmin(p) to pathcost(counter) (Line 16). This is because, due to the lazy updates
of h-values, h(s0) is not immediately updated and, since s0 = scurrent (that is,
g(s0) = 0), its updated value is pathcost(counter).

– Removing Paths from the Reusable Tree: When arc cost c(s, t) increases,
then Tree-AA* removes paths from the reusable tree as follows. If nextstate(s) =
t then the arc might be in the reusable tree (Lines 72-73), namely on path
p := id(s) (Line 24). In this case, Tree-AA* sets Hmax(p) to h(t) (if it was
larger) to shorten path p (Lines 25-27). Note that, with lazy h-value updates,
h(t) might not have been updated yet, therefore its current h-value needs to
be computed (Line 25). Tree-AA* then removes all paths p′ ∈ Paths(p) with
Hmax(p) < Hmin(p

′) from the set Paths(p) and schedules them for removal from
the reusable tree (Lines 28-32). For each path p scheduled for removal with
Hmax(p) > Hmin(p), it sets Hmax(p) to Hmin(p), removes all paths p′ ∈ Paths(p)
from the set Paths(p) and schedules them recursively for removal from the
reusable tree (Lines 33-39). The runtime of removing paths from the reusable
tree when one arc cost increases is thus basically proportional to the number
of paths in the reusable tree, which is bounded by the number of forward A*
searches performed so far.

20 Carlos Hernández et al.

Figure 5(b) continues the fictitious example from Figure 5(a) by showing the
reusable tree after Tree-AA* removed paths from the reusable tree after cell B2
became blocked. Tree-AA* shortened path 4 to path B3-C3 and removed path 5.
Figure 5(c) shows the reusable tree after Tree-AA* added path A2-A3-B3 to the
reusable tree.

5.3 Pseudo Code

Figure 6 shows the pseudo code for the version of Tree-AA* that extends the lazy
version of AA*. Tree-AA* performs a forward A* search from state scurrent to state
sgoal (Line 66, function ComputePath) until it is about to expand state sgoal or a
state s on the reusable tree (Line 43, termination principle). It then remembers
the cost of the path found during the forward A* search to eventually be able to
set the h-value of every expanded state t to the cost of the path found during
the forward A* search minus the g-value of state t (Line 44, update principle),
and adds the cost-minimal path from state scurrent to state s to the reusable tree
(Line 45, procedure AddPath). The agent then repeatedly moves from state scurrent
to state nextstate(scurrent) along the cost-minimal path (Line 69). Whenever arc
costs increase, it removes paths from the reusable tree (Line 73, procedure Re-
movePaths). If state scurrent is no longer in the reusable tree, it performs another
forward A* search and then repeats the process until the agent either reaches state
sgoal or can no longer find a path to state sgoal.

5.4 Example Trace

Figure 7(a-e) shows the goal-directed navigation problem in unknown terrain from
Figure 4. Cell C1 is the start cell, and cell C5 is the goal cell. The user-provided
H-values are all zero. The annotation is similar to Figure 4, with the addition of
the id-values, which are shown in the bottom right corner of a cell iff it has been
generated by a forward A* search.

Figure 7(a) shows the actual environment, and Figure 7(b) shows the initial
situation as the agent perceives it. Figure 7(c) shows the situation after the first
forward A* search of Tree-AA* from cell C1 to cell C5 terminates when it is about
to expand cell C5 and returns path C1-C2-C3-C4-C5. Tree-AA* adds the path to
the reusable tree and remembers the cost of the path by setting pathcost(1) := 4,
to be able to update the h-values of expanded states when necessary. The agent
then follows the branch of the reusable tree from cell C1 to cell C2, where it
observes that cell C3 is blocked. Tree-AA* removes path C1-C2-C3-C4 from the
reusable tree. Figure 7(d) shows the situation after the second forward A* search
of Tree-AA* from cell C2 to cell C5 terminates when it is about to expand cell C5
and returns path C2-B2-B3-B4-B5-C5. It expands fewer cells than a forward A*
search with the user-provided zero H-values would (which additionally expands
cells C1, B1 and A1), illustrating the speed-up achieved with the update principle.
Tree-AA* adds the path to the reusable tree and remembers the cost of the path
by setting pathcost(2) := 5, to be able to update the h-values of expanded states
when necessary. The agent then moves from cell C2 to cell B2, where it observes
that cell B3 is blocked. Tree-AA* removes path C2-B2-B3-B4 from the reusable

Reusing Cost-Minimal Paths for Goal-Directed Navigation 21

tree. Figure 7(e) shows the situation after the third forward A* search of Tree-AA*
from cell B2 to cell C5 terminates when it is about to expand cell B5 and returns
path B2-A2-A3-A4-A5-B5. It terminates earlier than a regular forward A* search
with the same h-values would (which additionally expands cell B5 and terminates
only when it is about to expand goal cell C5), illustrating the speed-up achieved
with the termination principle.

5.5 Comparison of Path-Adaptive A* and Tree-Adaptive A*

Figures 4(a-e) and 7(a-e) showed a goal-directed navigation problem in unknown
terrain where there was little difference between Path-AA* and Tree-AA*. Figures
8 and 9 show a goal-directed navigation problem in unknown terrain that illustrates
their difference. Cell D1 is the start cell and cell A7 is the goal cell. Figures 8(a) and
9(a) show that the first forward A* searches of Path-AA* and Tree-AA* produce
the same result. The agent then moves from start cell D1 to cell D2, where it
observes that cell D3 is blocked. When sensing the blocked cell, Path-AA* removes
path D1-D2-D3-D4 from the reusable path, and Tree-AA* removes the same path
from the reusable tree. Figure 8(b) shows that the second forward A* search of
Path-AA* terminates when it is about to expand cell C7, and Path-AA* removes
path D4-D5-D6-D7-C7 from the reusable path and adds path D2-C2-C3-C4-C5-
C6-C7 to the reusable path. Figure 9(b) shows that the second forward A* search
of Tree-AA* also terminates when it is about to expand cell C7. Tree-AA* adds
path D2-C2-C3-C4-C5-C6-C7 to the reusable tree, but it does not remove path D4-
D5-D6-D7-C7 from the reusable tree. Thus, Tree-AA* removes fewer cells, which
might allow its future forward A* searches to terminate earlier. The agent then
moves from cell D2 to cell C2, where it observes that cell C3 is blocked. Path-AA*
and Tree-AA* perform their third forward A* searches. The agent then moves
from cell C2 to cell B2, where it observes that cell B3 is blocked. Path-AA* and
Tree-AA* perform their fourth forward A* searches. The agent then moves from
cell B2 to cell A2, where it observes that cell A3 is blocked. Figure 8(c) shows that
the fifth forward A* search of Path-AA* terminates when it is about to expand
goal cell A7. Figure 9(c) shows that the fifth forward A* search of Tree-AA*
terminates already when it is about to expand cell D7, illustrating the speed-up
resulting from reusing the paths from the current and all previous forward A*
searches. The agent then moves from cell A2 to cell E4, where it observes that
E5 is blocked. Figure 8(d) shows that the sixth forward A* search of Path-AA*
terminates when it is about to expand cell D7. Figure 9(d) shows that the sixth
forward A* search of Tree-AA* terminates already when it is about to expand
cell D4, again illustrating the speed-up resulting from reusing the paths from the
current and all previous forward A* searches.

5.6 Theoretical Results

The theoretical results for Tree-AA* are similar to the theoretical results for Path-
AA*. Definitions 1-2 and Lemmata 1-5 also apply to Tree-AA*, with the following
modifications:

22 Carlos Hernández et al.

– All line numbers that refer to lines in Figure 3 are replaced with the line
numbers in brackets, which refer to lines in Figure 6.

– All occurrences of Pi are replaced with T i (defined below).
– All occurrences of Path-AA* are replaced with Tree-AA*.
– The ith search refers to the ith execution of lines 62-67 in Figure 6.

Definition 4 TREEi is the set of states s with xi(s) ≤ Hmax(id(s)) at a given
point during execution. All states s ∈ TREEi with id(s) = j form the jth branch
of the tree. The tree statement T i is defined to hold at a given point during
execution iff, at that point,

– for all j such that at least one state s ∈ TREEi satisfies id(s) = j, the nextstate-
pointers of the states in the jth branch of the tree form a path starting from
a state t and ending at a state u, where xi(t) = Hmax(j), x

i(u) = Hmin(j) and,
if u 6= sgoal, j ∈ Paths(id(u)); and

– from any state s ∈ TREEi, one can use the nextstate-pointers to follow a path
from state s to state sgoal with cost xi(s), visiting only states s ∈ TREEi∪{sgoal}.

Lemma 8 For any i > 0, assume that Hi−1 and T i−1 hold in the beginning of
the ith search. If the ith search finds a path, then T i holds in the beginning of the
(i+ 1)st search.

Proof First, we show that T i−1 holds directly before the condition on Line 43 is
satisfied. This is the case because we assume that T i−1 holds in the beginning of
the ith search and the ith search only modifies the g- and h-values of states before
the termination condition on Line 43 is satisfied, which do not affect T i−1. Note
that the changes to nextstate-pointers and id-values on Lines 5 and 6 do not affect
T i−1 because they are executed for states that are being generated for the first
time, meaning they are not in TREEi, and setting id(s) = 0 does not insert state
s to the tree because Hmax(0) = −1 (Line 58).

Second, we show that T i holds directly before the condition on Line 43 is
satisfied, by showing that (1) for any state s ∈ TREEi−1, xi(s) = xi−1(s); and
(2) TREEi = TREEi−1. This is a sufficient argument since T i−1 holds before the
condition on Line 43 is satisfied and the only difference between T i and T i−1 is
that T i uses xi-values and TREEi whereas T i−1 uses xi−1-values and TREEi−1

(Definition 4). To prove that (1) holds, let s be a state with xi−1(s) ≤ Hmax(id(s)).
We show that s can never be expanded during the search and, therefore, xi(s) =
xi−1(s) (Lemma 4). For s to be expanded, it has to be in OPEN (Line 42 or Line
62) and, therefore, has to be generated first (Line 48). When s is generated, its
h-value is set to xi−1(s) (Lemma 2) and, thus, h(s) ≤ Hmax(id(s)). Throughout
the search, before the condition on Line 43 is satisfied, neither h(s), id(s), nor
Hmax(id(s)) are modified. Therefore, even if s is chosen for expansion on Line
42, it cannot be expanded because it would satisfy the termination condition on
Line 43. To prove that (2) holds, we show that TREEi−1 \ TREEi = ∅, and
TREEi \ TREEi−1 = ∅. TREEi−1 \ TREEi = ∅ follows from (1) since it implies
that, if xi−1(s) ≤ Hmax(id(s)) (and thus s ∈ TREEi−1), then xi(s) ≤ Hmax(id(s))
(and thus s ∈ TREEi). TREEi \ TREEi−1 = ∅ follows from xi(s) ≥ xi−1(s),
for any state s (Lemma 1) since it implies that, if xi(s) ≤ Hmax(id(s)) (and thus
s ∈ TREEi), then xi−1(s) ≤ Hmax(id(s)) (and thus s ∈ TREEi−1).

Third, we show that T i holds directly after the ith search, by showing that pro-
cedure AddPath preserves T i. Let state s be the state that satisfies the condition

Reusing Cost-Minimal Paths for Goal-Directed Navigation 23

on Line 43, that is, s = sgoal or hi(s) ≤ Hmax(id(s)). Procedure AddPath follows
the parent-pointers from s to scurrent and sets id(t) = i for all states t visited, not
including s. Let B denote the set of these states. Any state t ∈ B must have been
expanded by the ith search because, otherwise, they cannot be reached by following
the parent-pointers. This means that they cannot be in TREEi before the condi-
tion on Line 43 is satisfied because, otherwise, the ith search would stop before ex-
panding them. Therefore, procedure AddPath preserves T i for any of the existing
states in TREEi. When procedure AddPath sets Hmax(i) = pathcost(i) (Line 16),
all states in B are added to TREEi. This is because, for any state t ∈ B, it holds
that xi(t) = pathcost(i)−gi(t) since they have been expanded during the ith search
(Lemma 4). Consequently, xi(t) = pathcost(i)− gi(t) ≤ pathcost(i) = Hmax(i). We
show that all states t ∈ B satisfy T i to show that T i holds after the ith search.
Procedure AddPath adds nextstate-pointers for every state t ∈ B, forming a path
from state scurrent to state s, so that one can use these nextstate-pointers to follow a
path from any state t ∈ B to state s and, eventually, to state sgoal (since T i holds
for s). Since all the states in B are added to the tree, one visits only states in
TREEi ∪ {sgoal} when using nextstate-pointers to follow a path from any state in
B to state sgoal. For any t ∈ B, gi(t) is the cost of a cost-minimal path from state
scurrent to state t, since t has been expanded during the ith search (Property 1).
Then, the cost of the remaining path from state t to state sgoal is pathcost(i)−gi(s),
which is equal to xi(s), as shown above. Procedure AddPath also does the follow-
ing, to preserve T i. It adds i into Paths(id(s)) if s 6= sgoal (Lines 13-14) and it sets
Hmin(i) = h(s) (Line 15), which is equal to xi−1(s) (Lemma 2), which, in turn, is
equal to xi(s), since the ith search terminates before expanding state s (Lemma 4).

Fourth, we show that T i holds in the beginning of the (i + 1)st search, that
is, Lines 68-74 preserve T i. While the agent is moving, it might observe increased
arc costs (Line 70), which might violate T i because for some states t ∈ TREEi,
one will no longer be able to use the nextstate-pointers to follow a path from state
t to state sgoal with cost xi(s), due to the increased arc cost. We now show that
calling procedure RemovePath removes these states from the tree to preserve T i.

Let (s, t) be the arc with the increased cost and let u ∈ TREEi be a state that
uses this arc when one is using the nextstate-pointers to follow a path from state
u to state sgoal (therefore, u 6= t). Let π = (v0 = s, v1, . . . , vn−1 = s, vn = t) be the
prefix of this path up to state t. Since T i holds before the cost of (s, t) increases,
the following observations hold:

– Observation 1: The id-values along π are contiguous, that is, if id(vj) =
id(vk), then id(vm) = id(vj) for all m = j, . . . , k. This is because all states
sharing the same id-value form a path.

– Observation 2: xi(vj) > xi(vj+1). This is because the arc-costs are always
positive and xi(vj) and xi(vj+1) are cost of the paths from state vj an state
vj+1, respectively, to state sgoal.

Let the ordered sequence I = (id0 = id(u), . . . , idm = id(s)) be the sequence
of id-values of states as they appear on π, not including state t, where contiguous
segments with the same id-value are collapsed into a single id-value. Since T i holds
before the cost of (s, t) increases, the following observations hold:

– Observation 3: idj ∈ Paths(idj+1). If sgoal appears on π, it has to appear
at the end, as state t. Since t is excluded from I, the second statement of T i

applies.

24 Carlos Hernández et al.

– Observation 4: Hmax(idj) > Hmin(idj). For idj to be in I, there must be a
state in π with id-value idj and, therefore, the second statement of T i applies.

We show that after procedure RemovePaths terminates, u 6∈ TREEi and
prove the statement of the lemma. Procedure RemovePaths sets Hmax(id(s)) to
xi(t) (Lines 24-27). This is because Line 25 uses the same formula as Lines 8-9,
which would set hi+1(t) to this value if state t is generated during the (i + 1)st
search. Therefore, Line 25 sets Hmax(id(s)) to hi+1(t) and, consequently, to xi(t),
since hi+1(t) = xi(t) (Lemma 2). We distinguish two cases. If id(u) = id(s)
or id(u) = id(t) (which implies id(u) = id(s), due to Observation 1), then,
xi(u) > Hmax(id(s)) = xi(t) (Observation 2) and, therefore u 6∈ TREEi. For
the second case, where id(u) 6= id(s), we first show that Lines 29-32 add idm−1

to QUEUE. Since idm−1 ∈ Paths(idm) (Observation 3), we only need to show
Hmax(vm) < Hmin(vm−1). As shown above, Hmax(vm) = Hmax(id(s)) = xi(t), which
is strictly smaller than xi(s) (Observation 2). Due to I’s construction, it holds
that, Hmin(vm−1) ≥ xi(s) and, consequently, Hmax(vm) < Hmin(vm−1) (Defini-
tion 4). Therefore, Lines 29-32 add idm−1 to QUEUE. When an idj is added to
QUEUE, it is eventually selected on Line 34, since procedure RemovePaths does
not terminate until QUEUE is empty (Line 33). When idj is selected on Line 34,
idj−1 is added to QUEUE (Observations 3 and 4). Since idm−1 is initially added
to QUEUE, we can recursively apply this argument to conclude that id0 = id(u)
is eventually selected on Line 34. Line 36 sets Hmax(id(u)) to Hmin(id(u)), thereby
removing u from TREEi, since xi(u) > Hmin(id(u)) (Definition 4). ut

Lemma 9 For any i > 0, Hi−1 and T i−1 hold in the beginning of the ith search.

Proof The proof is by induction on the number of searches of Tree-AA*. In the
beginning of the first search, H0 holds because x0(s) = H(s) for all states s
(Definition 1) and we assume that H is a consistent heuristic function. T 0 also
holds because TREE0 = ∅ (since the id-values are uninitialized). To prove the
inductive step, we assume that Hi−1 and T i−1 hold in th beginning of the ith
search. If no path is found, then Tree-AA* terminates. Otherwise, Hi and T i hold
in the beginning of the (i+ 1)st search (Lemmata 5 and 8). ut

Theorem 2 Any search of Tree-AA* finds a cost-minimal path between state
scurrent and state sgoal if one exists and returns false otherwise.

Proof The proof follows from Lemmata 9 and 3. ut

Reusing Cost-Minimal Paths for Goal-Directed Navigation 25

01 procedure InitializeState(s)
02 if (generated(s) = 0)
03 g(s) :=∞;
04 h(s) := H(s);
05 nextstate(s) := NULL;
06 id(s) := 0;
07 else if (generated(s) 6= counter)
08 if (g(s) + h(s) < pathcost(generated(s)))
09 h(s) := pathcost(generated(s))− g(s);
10 g(s) :=∞;
11 generated(s) := counter;

12 procedure AddPath(s)
13 if (s 6= sgoal)
14 insert counter into Paths(id(s));
15 Hmin(counter) := h(s);
16 Hmax(counter) := pathcost(counter);
17 Paths(counter) := ∅;
18 while (s 6= scurrent)
19 saux := s;
20 s := parent(s);
21 id(s) := counter;
22 nextstate(s) := saux;

23 procedure RemovePaths(s)
24 p := id(s);
25 haux := max(h(nextstate(s)), pathcost(generated(nextstate(s)))− g(nextstate(s)));
26 if (Hmax(p) > haux)
27 Hmax(p) := haux;
28 QUEUE := ∅;
29 for all p′ ∈ Paths(p)
30 if (Hmax(p) < Hmin(p′))
31 add p′ to the end of QUEUE;
32 delete p′ from Paths(p);
33 while (QUEUE 6= ∅)
34 delete p from the head of QUEUE;
35 if (Hmax(p) > Hmin(p))
36 Hmax(p) := Hmin(p);
37 for all p′ ∈ Paths(p)
38 add p′ to the end of QUEUE;
39 delete p′ from Paths(p);

40 function ComputePath()
41 while (OPEN 6= ∅)
42 delete state s with the smallest f-value g(s) + h(s) value from OPEN;
43 if (s = sgoal or h(s) ≤ Hmax(id(s))) /* s is in reusable tree */
44 pathcost(counter) := g(s) + h(s);
45 AddPath(s);
46 return true; /* path from scurrent to sgoal found */
47 for all t ∈ Succ(s)
48 InitializeState(t);
49 if (g(t) > g(s) + c(s, t))
50 g(t) := g(s) + c(s, t);
51 parent(t) := s;
52 if (t ∈ OPEN)
53 delete t from OPEN;
54 insert t into OPEN with f-value g(t) + h(t);
55 return false; /* no path from scurrent to sgoal found */

56 function Main()
57 counter := 1;
58 Hmax(0) := −1;
59 for all s ∈ S
60 generated(s) := 0;
61 while (scurrent 6= sgoal)
62 InitializeState(scurrent);
63 g(scurrent) := 0;
64 OPEN := ∅;
65 insert scurrent into OPEN with f-value g(scurrent) + h(scurrent);
66 if (ComputePath() = false)
67 return false; /* failure: sgoal is unreachable */
68 while (pathcost(generated(scurrent))−g(scurrent) ≤ Hmax(id(scurrent))) /* scurrent is different from sgoal and in reusable

tree */
69 scurrent := nextstate(scurrent);
70 update all increased arc costs (if any);
71 for all increased arc costs c(s, t)
72 if (nextstate(s) = t)
73 RemovePaths(s);
74 counter := counter + 1;
75 return true; /* success: sgoal has been reached */

Fig. 6 Tree Adaptive A* (Tree-AA*).

26 Carlos Hernández et al.

1 2 3 4 5

A

B

C

1 2 3 4 5

A
0 0 0 0 0

B
0 0 0 0 0

C
0 0 0 0 0

(a) (b)

1 2 3 4 5

A
2 0 3 0 4 0

1 0 1 0 1 0 0 0

B
1 0 2 0 3 0 4 0

1 0 1 0 1 0 1 0 0

C
0 0 1 0 2 0 3 0 4 0

1 1 1 1 1 1 1 1 1 0

1 2 3 4 5

A
3 2 2 1 3 0 4 0 5 0

2 0 2 0 2 0 2 0 2 0

B
2 3 1 2 2 1 3 0 4 0

2 0 2 2 2 2 2 2 2 2

C
1 4 0 3 4 1 5 0

2 1 2 2 2 1 2 0

1 2 3 4 5

A
2 2 1 3 2 2 3 1 4 0

3 0 3 3 3 3 3 3 3 3

B
1 3 0 4 4 2 5 1

3 0 3 3 3 2 3 2

C
2 4 1 5 4 1 5 0

3 1 3 2 2 1 2 0

p Hmax(p) Hmin(p) Paths(p)
1 4 0 ∅

p Hmax(p) Hmin(p) Paths(p)
1 1 0 ∅
2 5 0 ∅

p Hmax(p) Hmin(p) Paths(p)
1 1 0 ∅
2 2 0 {3}
3 6 1 ∅

(c) (d) (e)

Fig. 7 Example Trace of Tree-AA*

1 2 3 4 5 6 7

A

B

C

D

E

1 2 3 4 5 6 7

A

B

C

D

E

1 2 3 4 5 6 7

A

B

C

D

E

1 2 3 4 5 6 7

A

B

C

D

E

(a) Path-AA* Search 1 (b) Path-AA* Search 2 (c) Path-AA* Search 5 (d) Path-AA* Search 6

Fig. 8 Comparison of Path-AA* and Tree-AA* - Path-AA*

1 2 3 4 5 6 7

A

B

C

D

E

1 2 3 4 5 6 7

A

B

C

D

E

1 2 3 4 5 6 7

A

B

C

D

E

1 2 3 4 5 6 7

A

B

C

D

E

(a) Tree-AA* Search 1 (b) Tree-AA* Search 2 (c) Tree-AA* Search 5 (d) Tree-AA* Search 6

Fig. 9 Comparison of Path-AA* and Tree-AA* - Tree-AA*

Reusing Cost-Minimal Paths for Goal-Directed Navigation 27

6 Experimental Evaluation

We compare Path-AA* and Tree-AA* to A*, AA*, and D* Lite in unknown terrain
and partially known terrain. Our implementation of A* starts a new A* search
only when arc costs on the path from scurrent to sgoal have increased, rather than
whenever arc costs have increased, different from [14], which explains the difference
in experimental results compared to [14]. For fairness, all search algorithms use
binary heaps as priority queues and break ties among states with the same f -values
in favor of states with larger g-values (which is known to be a good tie-breaking
strategy), with the following exceptions: D* Lite breaks ties towards smaller g-
values (because this strategy typically runs faster than a version of D* Lite that
breaks ties in the opposite direction [7]). All experiments were run on a Linux PC
with a Pentium CoreQuad 2.33 GHz CPU and 8 GB RAM.

We use game maps, office maps, and maps with randomly blocked cells for
unknown terrain. Motivated by the benchmarks used in [27], we use populated
game maps and populated office maps for partially known terrain. We evaluate
the algorithms on both 4-neighbor and 8-neighbor versions of these maps, for a
total of ten different settings. For 4-neighbor maps, the agent always observes
the blockage status of its four neighboring cells and can then move to any one
of the unblocked neighboring cells with cost one. The user-given h-values are the
Manhattan distances. For 8-neighbor maps, the agent always observes the blockage
status of its eight neighboring cells and can then move to any one of the unblocked
neighboring cells with cost one for horizontal or vertical movements and cost

√
2

for diagonal movements. The user-given H-values are the Octile distances. Three
sample maps with size 512× 512 are shown in Figure 10. The details of the maps
are as follows:

– Game Maps: We use 342 game maps with sizes varying from 22 × 28 to
1260× 1104.1 For each map, we generate 300 solvable problem instances, for a
total of 102,600 problem instances.

– Office Maps: We use 40 office maps of size 512×512, with varying room sizes
(namely, 10 maps each with rooms of sizes 8 × 8, 16 × 16, 32 × 32, 64 × 64).
In each map 80% of the doors between adjacent rooms are opened. For each
map, we generate 300 solvable problem instances, for a total of 12,000 problem
instances.

– Maps with Randomly Blocked Cells: We use 12,000 maps of size 1024×
1024 with randomly placed blocked cells. We generate 3000 maps each with
10%, 20%, 30%, and 40% blocked cells placed randomly. For each map, we
generate a single solvable problem instance, for a total of 12,000 problem in-
stances.

– Populated Game Maps: We use the 342 game maps with 12% of blocked
cells placed randomly in the unblocked cells of the maps. The agent knows a
priori the blockage status of the cells in the game map except for the randomly
blocked cells. For each map, we generate 300 solvable problem instances, for a
total of 102,600 problem instances.

– Populated Office Maps: We use the 40 office maps with 12% of blocked
cells placed randomly in the unblocked cells of the maps. The agent knows a
priori the blockage status of the cells in the game map except for the randomly

1 All game and office maps can be found in Nathan Sturtevant’s repository [24].

28 Carlos Hernández et al.

(a) Game Map (b) Office Map (c) Map with Randomly
Blocked Cells

Fig. 10 Maps

blocked cells. For each map, we generate 300 solvable problem instances, for a
total of 12,000 problem instances.

6.1 Experimental Evaluation of Heuristic Search Algorithms

Typically, results in the literature are averaged over all problem instances (for
example, [14] [9] [10]). However, the relative performance of different heuristic
search algorithms depends on the problem difficulty [7]. Therefore, for each setting
we divide the problem instances into ten problem bins, which contain problem
instances of different difficulty. We measure the difficulty of a problem instance by
the time it takes for A* to solve it. Each bin contains the same number of problem
instances. The hardest problem instance in bin n is easier than the easiest problem
instance in bin n+ 1.

6.1.1 Results for unknown terrain

Our results are shown in Figures 11-13, where we compare the performance of the
heuristic search algorithms in game maps, office maps and maps with randomly
blocked cells, respectively. Each figure has six subfigures: (a) and (b) show the
average performance of A* over each bin on 4-neighbor and 8-neighbor versions of
the maps, respectively. (c) and (d) show the runtime factor of the algorithms on
4-neighbor and 8-neighbor versions of the maps, respectively, where the runtime
factor is calculated as follows: For each bin, we pick the lowest average runtime
among all heuristic search algorithms and treat it as the baseline runtime of that
bin. Then, the runtime factor of a heuristic search algorithm for that bin is simply
the ratio of its average runtime and the baseline runtime of that bin. There-
fore, smaller runtime factors imply better performance, and a runtime factor of
1 means that the heuristic search algorithm is the best performing one for that
bin. (e) and (f) show, for each bin and each heuristic search algorithm, the per-
centage of instances that were solved faster than A*. We also provide Tables 1-6
in the appendix, to complement the information shown in the figures. They re-
port the average runtime, solution cost, number of expansions and number of heap
percolations for each heuristic search algorithm over each bin in each setting.

Reusing Cost-Minimal Paths for Goal-Directed Navigation 29

Bin 1 2 3 4 5 6 7 8 9 10
A* RunTime 0.01 0.03 0.08 0.29 0.94 2.51 6.02 14.34 42.25 662.20

A* Cost 17.9 49.6 110.9 158.7 240.9 367.1 548.7 846.1 1,414.8 2,882.6
A* Searches 1.5 3.4 8.5 27.7 61.1 113.4 190.8 310.2 528.9 1,124.9

(a) Bin information, 4-neighbor

Bin 1 2 3 4 5 6 7 8 9 10
A* RunTime 0.01 0.03 0.08 0.24 0.78 2.06 4.93 12.04 36.21 724.30

A* Cost 14.4 39.9 94.9 138.5 188.5 285.5 425.5 657.9 1,103.7 2,330.1
A* Searches 1.4 2.7 5.9 20.3 49.8 93.5 159.9 269.0 468.1 1,042.1

(b) Bin information, 8-neighbor

1 %

2 %

3 %

4 %

5 %
6 %

8 %

10 %

 1 2 3 4 5 6 7 8 9 10

R
u
n
ti

m
e
 F

a
ct

o
r

Bin

A*
AA*

D* Lite
Path-AA*
Tree-AA*

(c) Runtime factor, 4-neighbor

1 %

2 %

3 %

4 %

5 %
6 %

8 %

10 %

 1 2 3 4 5 6 7 8 9 10

R
u
n
ti

m
e
 F

a
ct

o
r

Bin

A*
AA*

D* Lite
Path-AA*
Tree-AA*

(d) Runtime factor, 8-neighbor

0 %

10 %

20 %

30 %

40 %

50 %

60 %

70 %

80 %

90 %

100 %

 1 2 3 4 5 6 7 8 9 10

%
 o

f
In

st
a
n
ce

s
Fa

st
e
r

T
h
a
n
 A

*

Bin

AA*
D* Lite

Path-AA*
Tree-AA*

(e) Percentage of instances faster than
A*, 4-neighbor

0 %

10 %

20 %

30 %

40 %

50 %

60 %

70 %

80 %

90 %

100 %

 1 2 3 4 5 6 7 8 9 10

%
 o

f
In

st
a
n
ce

s
Fa

st
e
r

T
h
a
n
 A

*

Bin

AA*
D* Lite

Path-AA*
Tree-AA*

(f) Percentage of instances faster than
A*, 8-neighbor

Fig. 11 Results on Game Maps

In the experimental results, we notice the following relationships:

– Tree-AA* vs. rest: The runtime factors show that Tree-AA* is the fastest
algorithm on average in the three types of maps. Tree-AA* is slower than A*
for a larger number of problem instances only for easy problem instances (bins
1-4) on game maps, otherwise it is faster than A* for more than 90 percent of
problem instances. Tree-AA* can be slower then D* Lite only for very difficult
problem instances (bin 10).

– Path-AA* vs. rest: The runtime factors show that Path-AA* is the second-
fastest algorithm on average in the three types of maps. It is almost as fast
as Tree-AA* on game maps but slower on the other maps. The percentage of

30 Carlos Hernández et al.

Bin 1 2 3 4 5 6 7 8 9 10
A* RunTime 0.60 1.91 3.49 5.60 8.07 10.94 14.67 19.72 28.32 79.02

A* Cost 179.2 335.8 457.7 575.3 684.5 793.8 900.8 1,034.4 1,207.1 1,622.6
A* Searches 56.3 119.8 170.6 216.8 261.6 309.2 357.5 420.6 499.8 706.6

(a) Bin information, 4-neighbor

Bin 1 2 3 4 5 6 7 8 9 10
A* RunTime 0.64 2.00 3.63 5.72 8.09 10.85 14.46 19.23 27.50 110.86

A* Cost 151.8 290.9 395.6 502.1 592.2 681.2 789.2 909.5 1,062.6 1,489.8
A* Searches 52.6 115.9 162.0 210.4 252.8 300.0 352.6 412.7 494.2 717.8

(b) Bin information, 8-neighbor

1 %

2 %

3 %

4 %

5 %
6 %

8 %

10 %

 1 2 3 4 5 6 7 8 9 10

R
u
n
ti

m
e
 F

a
ct

o
r

Bin

A*
AA*

D* Lite*
Path-AA*
Tree-AA*

(c) Runtime factor, 4-neighbor

1 %

2 %

3 %

4 %

5 %

6 %

8 %

10 %

 1 2 3 4 5 6 7 8 9 10

R
u
n
ti

m
e
 F

a
ct

o
r

Bin

A*
AA*

D* Lite*
Path-AA*
Tree-AA*

(d) Runtime factor, 8-neighbor

0 %

10 %

20 %

30 %

40 %

50 %

60 %

70 %

80 %

90 %

100 %

 1 2 3 4 5 6 7 8 9 10

%
 o

f
In

st
a
n
ce

s
Fa

st
e
r

T
h
a
n
 A

*

Bin

AA*
D* Lite

Path-AA*
Tree-AA*

(e) Percentage of instances faster than
A*, 4-neighbor

0 %

10 %

20 %

30 %

40 %

50 %

60 %

70 %

80 %

90 %

100 %

 1 2 3 4 5 6 7 8 9 10

%
 o

f
In

st
a
n
ce

s
Fa

st
e
r

T
h
a
n
 A

*

Bin

AA*
D* Lite

Path-AA*
Tree-AA*

(f) Percentage of instances faster than
A*, 8-neighbor

Fig. 12 Results on Office Maps

problem instances where Path-AA* is slower than A* is similar to the one for
Tree-AA*.

– D* Lite vs. rest: D* Lite performs well only on difficult problem instances:
Its runtime factor decreases and the number of problem instances for which it
is faster than A* increases as the difficulty of the problem instances increases
(in some cases with the exception of very easy problem instances). Previously
published evaluations of incremental heuristic search algorithms often average
over problem instances of different difficulties. Our evaluation shows that D*
Lite is often slower than alternative incremental heuristic search algorithms
despite its small average runtime. For instance, D* Lite has the smallest average

Reusing Cost-Minimal Paths for Goal-Directed Navigation 31

Bin 1 2 3 4 5 6 7 8 9 10
A* RunTime 0.76 2.64 5.16 8.65 13.89 22.03 37.02 76.97 326.63 10,249.31

A* Cost 250.2 491.2 680.4 859.0 1,056.3 1,312.2 1,709.2 2,797.5 9,133.0 25,096.3
A* Searches 37.5 77.5 113.3 152.0 203.7 274.9 391.7 712.1 2,421.7 6,509.4

(a) Bin information, 4-neighbor

Bin 1 2 3 4 5 6 7 8 9 10
A* RunTime 0.41 1.29 2.37 3.70 5.39 7.53 10.52 14.70 21.91 42.81

A* Cost 159.7 305.6 411.2 504.2 594.2 680.2 756.0 840.2 964.1 1,178.2
A* Searches 22.6 44.8 63.1 80.1 100.3 120.9 149.5 185.6 235.6 332.6

(b) Bin information, 8-neighbor

1 %

2 %

3 %

4 %
5 %
6 %

8 %
10 %

30 %

 1 2 3 4 5 6 7 8 9 10

R
u
n
ti

m
e
 F

a
ct

o
r

Bin

A*
AA*

D* Lite*
Path-AA*
Tree-AA*

(c) Runtime factor, 4-neighbor

1 %

2 %

3 %

4 %

5 %
6 %

8 %

10 %

 1 2 3 4 5 6 7 8 9 10

R
u
n
ti

m
e
 F

a
ct

o
r

Bin

A*
AA*

D* Lite*
Path-AA*
Tree-AA*

(d) Runtime factor, 8-neighbor

0 %

10 %

20 %

30 %

40 %

50 %

60 %

70 %

80 %

90 %

100 %

 1 2 3 4 5 6 7 8 9 10

%
 o

f
In

st
a
n
ce

s
Fa

st
e
r

T
h
a
n
 A

*

Bin

AA*
D* Lite

Path-AA*
Tree-AA*

(e) Percentage of instances faster than
A*, 4-neighbor

0 %

10 %

20 %

30 %

40 %

50 %

60 %

70 %

80 %

90 %

100 %

 1 2 3 4 5 6 7 8 9 10

%
 o

f
In

st
a
n
ce

s
Fa

st
e
r

T
h
a
n
 A

*

Bin

AA*
D* Lite

Path-AA*
Tree-AA*

(f) Percentage of instances faster than
A*, 8-neighbor

Fig. 13 Results on Maps with Randomly Blocked Cells

runtime in Tables 1 and 2 in the appendix (see the Total column), yet it is the
fastest algorithm only in bin 10.
To see why this happens we can use the same argument presented in a previous
publication in which Forward A* is compared with D* Lite [7]. That argument
applies here too because Tree-AA* is based on (Forward) A*. D* Lite is based
on Backward A* and has the advantage over Backward A* that it typically
expands fewer cells than Backward A* after the first search since it reuses
information from previous searches. However, D* Lite, like Backward A*, typ-
ically expands more cells during the first search than Forward A* during the
first search. D* Lite also expands cells more slowly than Forward or Backward
A* due to the update of the rhs-values. This means that the first search of D*

32 Carlos Hernández et al.

Lite typically runs more slowly than the first search of Forward A*, an effect
that becomes more pronounced the further apart the start and goal cells are.
If the number of subsequent searches needed for the agent to reach the goal
cell is not large then typically D* Lite runs more slowly than Forward A*.
Since Tree-AA* runs even faster than Forward A* for goal-direct navigation in
partially known terrain, the advantage of Forward A*over Tree-AA* can even
be larger than the advantage of Forward A* over D* Lite reported in [7].

– A* vs. AA*: The runtime factors show that A* and AA* are often equally
fast on average. A* can be slightly faster than AA* on easy problem instances
and is noticeably slower than AA* only on very difficult problem instances.
Even though A* is only slightly faster than AA* on easy problem instances,
it is faster for a larger number of problem instances in this case on game and
office maps.

6.1.2 Results for partially known terrain

Our results are shown in Figures 14–15, where we compare the performance of
the algorithms in populated game maps and populated office maps, respectively.
Each figure has six subfigures. The content of the subfigures was described in the
previous section. We also provide Tables 7–9 in the appendix, complement the
information shown in the figures. They report the average runtime, solution cost,
number of expansions and number of heap percolations for each algorithm over
each bin in each setting.

The experimental results are similar to those for unknown terrain, except that
Path-AA* is now slightly faster on average than Tree-AA* for very easy problem
instances and AA* is now faster than A*.

6.2 Experimental Evaluations of Priority Queue Implementations

Priority queues are commonly implemented with binary heaps or buckets [4]. The
amount of memory needed to store them depends in both cases on the number of
elements in the priority queue. However, in case of buckets, it also depends on the
number of possible priorities. This is because a bucket implementation reserves at
least one pointer for each priority, namely to the bucket containing the elements
with that priority. Thus, it is only reasonable to implement priority queues with
buckets when the number of possible priorities is not large, even though buckets
tend to result in much smaller runtimes than binary heaps [20].

We compare A*, D* Lite and Tree-AA* with priority queues implemented with
either binary heaps or buckets. For the implementation of D* Lite with buckets,
we use a single key, as proposed in [20]. The key, which in the original D* Lite
implementation has two components, can be implemented with integers whose size
are at most about twice the size of f -values in A*. For the implementation of A*
and Tree-AA* with buckets, we use the f -values as the key.

We use 8-neighbor grid maps. The user-given h-values are the Octile distances.
The details of the maps are as follows:

– Maps with Randomly Blocked Cells: We use 600 maps of size 512× 512
with randomly placed blocked cells. We generate 150 maps each with 10%,

Reusing Cost-Minimal Paths for Goal-Directed Navigation 33

Bin 1 2 3 4 5 6 7 8 9 10
A* RunTime 0.01 0.04 0.13 0.39 1.10 2.91 7.66 21.07 68.61 671.09

A* Cost 17.7 47.1 93.0 161.8 252.5 374.5 541.1 797.9 1,257.9 2,601.4
A* Searches 2.5 6.2 11.7 20.0 31.3 46.5 67.5 99.3 156.2 321.0

(a) Bin information, 4-neighbor

Bin 1 2 3 4 5 6 7 8 9 10
A* RunTime 0.01 0.04 0.12 0.34 1.06 3.43 10.47 31.57 105.95 966.96

A* Cost 13.8 36.6 74.3 126.1 182.9 238.8 328.4 476.8 750.3 1,643.8
A* Searches 2.0 4.3 8.1 13.4 19.4 25.8 35.7 52.3 82.5 181.3

(b) Bin information, 8-neighbor

1 %

2 %

3 %

4 %

5 %
6 %

8 %

10 %

15 %

 1 2 3 4 5 6 7 8 9 10

R
u
n
ti

m
e
 F

a
ct

o
r

Bin

A*
AA*

D* Lite
Path-AA*
Tree-AA*

(c) Runtime factor, 4-neighbor

1 %

2 %

3 %

4 %

5 %
6 %

8 %

10 %

15 %

 1 2 3 4 5 6 7 8 9 10

R
u
n
ti

m
e
 F

a
ct

o
r

Bin

A*
AA*

D* Lite
Path-AA*
Tree-AA*

(d) Runtime factor, 8-neighbor

0 %

10 %

20 %

30 %

40 %

50 %

60 %

70 %

80 %

90 %

100 %

 1 2 3 4 5 6 7 8 9 10

%
 o

f
In

st
a
n
ce

s
Fa

st
e
r

T
h
a
n
 A

*

Bin

AA*
D* Lite

Path-AA*
Tree-AA*

(e) Percentage of instances faster than
A*, 4-neighbor

0 %

10 %

20 %

30 %

40 %

50 %

60 %

70 %

80 %

90 %

100 %

 1 2 3 4 5 6 7 8 9 10

%
 o

f
In

st
a
n
ce

s
Fa

st
e
r

T
h
a
n
 A

*

Bin

AA*
D* Lite

Path-AA*
Tree-AA*

(f) Percentage of instances faster than
A*, 8-neighbor

Fig. 14 Results on Populated Game Maps

20%, 30%, and 40% blocked cells placed randomly. For each map, we generate
a single solvable problem instance, for a total of 600 problem instances.

– Original Baldur’s Gate II Maps: We use the AR0202SR, AR0307SR,
AR0400SR and AR0602SR maps with sizes 208 × 244, 267 × 320, 256 × 240
and 299× 308, respectively.2 For each map, we generate 150 solvable problem
instances, for a total of 600 problem instances.

For each setting, we divide the problem instances into six problem bins, which
contain problem instances of different difficulty. We measure the difficulty of a

2 All game maps can be found in Nathan Sturtevant’s repository at
http://www.movingai.com/benchmarks/.

34 Carlos Hernández et al.

Bin 1 2 3 4 5 6 7 8 9 10
A* RunTime 0.91 6.37 18.43 40.71 76.01 132.86 227.00 382.38 666.80 1,841.14

A* Cost 168.5 437.6 713.9 1,000.1 1,296.6 1,626.9 2,096.0 2,584.6 3,428.4 5,248.8
A* Searches 18.9 47.5 76.3 105.2 135.7 170.7 215.8 265.8 347.8 526.9

(a) Bin information, 4-neighbor

Bin 1 2 3 4 5 6 7 8 9 10
A* RunTime 1.13 5.79 14.46 28.57 49.13 78.73 118.91 183.63 295.74 779.28

A* Cost 113.3 221.2 300.3 368.8 434.0 502.8 571.2 653.1 752.4 998.2
A* Searches 11.5 22.1 29.6 36.6 42.9 49.7 56.3 64.7 74.4 98.3

(b) Bin information, 8-neighbor

1

2

3

4
5
6

8
10

20

 1 2 3 4 5 6 7 8 9 10

R
u
n
ti

m
e
 F

a
ct

o
r

Bin

A*
AA*

D* Lite
Path-AA*
Tree-AA*

(c) Runtime factor, 4-neighbor

1

2

3

4
5
6

8
10

20

 1 2 3 4 5 6 7 8 9 10

R
u
n
ti

m
e
 F

a
ct

o
r

Bin

A*
AA*

D* Lite
Path-AA*
Tree-AA*

(d) Runtime factor, 8-neighbor

0 %

10 %

20 %

30 %

40 %

50 %

60 %

70 %

80 %

90 %

100 %

 1 2 3 4 5 6 7 8 9 10

%
 o

f
In

st
a
n
ce

s
Fa

st
e
r

T
h
a
n
 A

*

Bin

AA*
D* Lite

Path-AA*
Tree-AA*

(e) Percentage of instances faster than
A*, 4-neighbor

0 %

10 %

20 %

30 %

40 %

50 %

60 %

70 %

80 %

90 %

100 %

 1 2 3 4 5 6 7 8 9 10

%
 o

f
In

st
a
n
ce

s
Fa

st
e
r

T
h
a
n
 A

*

Bin

AA*
D* Lite

Path-AA*
Tree-AA*

(f) Percentage of instances faster than
A*, 8-neighbor

Fig. 15 Results on Populated Office Maps

problem instance by the time it takes A* with a binary heap to solve it. Each bin
contains 100 problem instances. As before, the hardest problem instance in bin n
is easier than the easiest problem instance in bin n+ 1.

Figures 16 and 17 show the runtime factors and numbers of expansions per
bin for the three algorithms with the two priority queue implementations. In order
to compare the implementations of the priority queue, we report the runtime
factor and the number of cell expansions. One key observation is that the bucket
implementations are faster than the priority queue implementations. Indeed, our
results show that expansions are on average 1.52 times faster with buckets than
binary heaps.

Reusing Cost-Minimal Paths for Goal-Directed Navigation 35

 1

 2

 3

 4

 5

 6

 7

 8

 1 2 3 4 5 6

R
u
n
ti

m
e
 F

a
ct

o
r

Bin

A* with Binary Heap
A* with Buckets

D* Lite with Binary Heap
D* Lite with Buckets

Tree-AA* with Binary Heap
Tree-AA* with Buckets

 100

 1000

 10000

 100000

 1 2 3 4 5 6

C
e
ll

E
x
p
a
n
si

o
n
s

Bin

A* with Binary Heap
A* with Buckets

D* Lite with Binary Heap
D* Lite with Buckets

Tree-AA* with Binary Heap
Tree-AA* with Buckets

(a) Runtime factor (b) Expansions

Fig. 16 Buckets versus Priority Queues in Maps with Randomly Blocked Cells

Figure 16 presents the results obtained in maps with randomly blocked cells.
In this kind of maps, we observe the following relationships:

– Best: The runtime factors show that Tree-AA* is the fastest algorithm on
average in maps with randomly blocked cells.

– Tree-AA*: Tree-AA* with a Binary Heap is about as fast as Tree-AA* with
Buckets on average but performs slightly fewer expansions. The differences in
the numbers of expansions for all algorithms are only due to tie breaking when
they choose a cell with the smallest f -value in the priority queue, which depends
on implementation issues. In particular, A* with Buckets is not guaranteed to
break ties towards larger g-values, which might contribute to it performing
slightly more expansions than A* with a Binary Heap.

– D* Lite: D* Lite with Buckets is faster than D* Lite with a Binary Heap on
average and performs fewer expansions.

– A* with Buckets: A* with Buckets is faster than A* with a Binary Heap on
average but performs about the same number of expansions.

Figure 17 presents the results obtained in the original Baldur’s Gate II maps.
In this kind of maps we can notice the following relationships:

– Best: The runtime factors show that Tree-AA* with a Binary Heap is the
fastest algorithm on average in Baldur’s Gate II maps for easy problem in-
stances (bins 1-3), Tree-AA* with Buckets is the fastest algorithm for medium-
to-difficult problem instances (bins 4-5), and D* Lite with Buckets is the fastest
algorithms for difficult problem instances (bin 6).

– Tree-AA*: Tree-AA* with a Binary Heap is faster than Tree-AA* with Buck-
ets on average and performs fewer expansions for easy problem instances (bins
1-3), while Tree-AA* with Buckets is faster than Tree-AA* with a Binary
Heap but performs about the same number of expansions for difficult problem
instances (bins 4-6).

– D* Lite: D* Lite with Buckets is faster than D* Lite with a Binary Heap on
average but performs about the same number of expansions.

– A*: A* with a Binary Heap is faster than A* with Buckets on average and
performs fewer expansions for easy problem instances (bins 1-3), while A* with
Buckets is faster than A* with a Binary Heap but performs about the same
number of expansions for difficult problem instances (bins 4-6).

36 Carlos Hernández et al.

 1

 2

 3

 4

 5

 6

 1 2 3 4 5 6

R
u
n
ti

m
e
 F

a
ct

o
r

Bin

A* with Binary Heap
A* with Buckets

D* Lite with Binary Heap
D* Lite with Buckets

Tree-AA* with Binary Heap
Tree-AA* with Buckets

 100

 1000

 10000

 100000

 1e+06

 1 2 3 4 5 6

C
e
ll

E
x
p
a
n
si

o
n
s

Bin

A* with Binary Heap
A* with Buckets

D* Lite with Binary Heap
D* Lite with Buckets

Tree-AA* with Binary Heap
Tree-AA* with Buckets

(a) Runtime factor (b) Expansions

Fig. 17 Buckets versus Priority Queues in Baldur’s Gate II Maps

7 Variants of Path-AA* and Tree-AA*

Our previous publications presented and evaluated variants of Path-AA* and Tree-
AA*. In [9] we described a variant of Path-AA* that uses an improved tie-breaking
rule to select a state from the OPEN list to guide the forward A* search towards
a state on the reusable path. In [10], on the other hand, we described Tree-AA*-
Back, a variant of Tree-AA* whose first A* search runs backward to build a large
reusable tree.

Both variants outperform their predecessors in some but not all situations.
For this reason, we describe them briefly in the following but do not provide
experimental results for them.

7.1 Path-AA* with Tie-Breaking Optimization

How the A* searches performed by Path-AA* break ties among states with the
same f -value when deciding which state to expand next determines how many
states they expand and thus how fast they are. The objective of Path-AA* with
tie-breaking optimization is to guide its A* searches so that a state on the reusable
path is expanded as quickly as possible. The first A* search of Path-AA* breaks
ties in favor of larger g-values, which is known to be a good tie-breaking strategy
for A*. The following A* searches break ties in favor of states so that the esti-
mated minimum cost from them to a state on the reusable path, as given by the
user-provided H-values, is small. Path-AA* uses a greedy approximation for this
purpose. It maintains two pointers p and p′ and, before running an A* search,
sets p := r and p′ := nextstate(p), where r is the first state on the reusable path.
During the A* search, whenever it adds a state s to the OPEN list, it computes the
estimated minimum cost min(H(s, p), H(s, p′)) and, as long as H(s, p) > H(s, p′),
repeatedly advances pointers p and p′ by assigning p := p′ and p′ := nextstate(p).
When the reusable path consists of only state sgoal, this behaviour is similar to
breaking ties in favor of larger g-values.

Path-AA* with tie-breaking optimization typically runs faster than Path-AA*
that breaks ties in favor of larger g-values on four-neighbor grids but not necessarily
on other graphs. More details, including experimental results, can be found in [9].

Reusing Cost-Minimal Paths for Goal-Directed Navigation 37

7.2 Tree-AA*-Back

An A* search finds cost-minimal paths from the start state of the search to all
expanded states. Thus, if the first A* search of Tree-AA* is a backward search
and the h-values of the expanded states are suitably updated, then the resulting
search tree restricted to the expanded states is a reusable tree. All subsequent A*
searches of Tree-AA* must be forward searches. We refer to the resulting version of
Tree-AA* as Tree-AA*-Back. The reusable tree after the first (forward) A* search
of (regular) Tree-AA* is degenerate since it contains only the expanded states on
the cost-minimal path from state scurrent to state sgoal, while the reusable tree after
the first A* search of Tree-AA*-Back is likely non-degenerate since it contains all
expanded states, which might allow the future forward A* searches to terminate
earlier.

Tree-AA*-Back typically spends more time searching than Tree-AA* before
the agent starts to move, but its subsequent searches are much faster than those
of Tree-AA*. Thus, Tree-AA*-Back should be used instead of Tree-AA* if the first
search can be run offline. More details can be found in [10].

8 Conclusions

In this article, we introduced two new incremental heuristic search algorithms,
called Path-AA* and Tree-AA*, for path planning with the freespace assumption.
So far, there were two classes of incremental heuristic search algorithms: Incre-
mental search algorithms of the first class (such as AA*) made the h-values of
the current A* search more informed, while incremental search algorithms of the
second class (such as D* Lite) changed the search tree of the current A* search
to the search tree of the next A* search. Path-AA* reuses the suffix of the cost-
minimal path of the current forward A* search (= reusable path) to terminate its
next forward A* search before it is about to expand the goal state. Tree-AA* gen-
eralizes Path-AA* by reusing suffixes of the cost-minimal paths of the current and
all previous forward A* searches (= reusable tree) to terminate the next forward
A* search even earlier. Overall, Tree-AA* is the first incremental heuristic search
algorithm to combine the principles of both classes of incremental heuristic search
algorithms. We demonstrated experimentally that both Path-AA* and Tree-AA*
can be faster than AA* and D* Lite, the state-of-the-art incremental heuristic
search algorithms for path planning with the freespace assumption.

As future work, we consider extending the applicability of Tree-AA*. One
possibility is to integrate Tree-AA* with Generalized Adaptive A* to deal with
decreasing arc costs. This would enable Tree-AA* to work in dynamic terrain, in
which already observed blocked cells may actually disappear. We also consider
applying ideas from Tree-AA* to create incremental versions of sampling based
methods, such as RRT* and LQR-RRT*, that work in partially known terrains.

Acknowledgments

This material is based upon work supported by NSF (while Sven Koenig was
serving at NSF). It is also based upon work supported by Fondecyt-Chile un-

38 Carlos Hernández et al.

der contract/grant number 11080063, NSF under contract/grant number 115-
1319966, ARL/ARO under contract/grant number W911NF-08-1-0468, ONR in
form of a MURI under contract/grant number N00014-09-1-1031, DOT under
contract/grant number DTFH61-11-C-00010 and the Spanish Ministry of Science
and Innovation under grant number TIN2009-13591-C02-02. The views and con-
clusions contained in this document are those of the authors and should not be
interpreted as representing the official policies, either expressed or implied, of the
sponsoring organizations, agencies, companies or the U.S. government. We thank
Nathan Sturtevant for making his maps available at movingai.com.

Appendix

Reusing Cost-Minimal Paths for Goal-Directed Navigation 39

Runtime per Bin
1 2 3 4 5 6 7 8 9 10 Total

A* 0.011 0.029 0.079 0.288 0.944 2.514 6.016 14.342 42.253 662.198 72.867
AA* 0.011 0.033 0.098 0.402 1.186 3.182 6.661 14.514 36.652 229.741 29.248

D* Lite 0.042 0.160 0.737 1.453 2.646 4.987 8.781 16.413 32.854 82.347 15.042
PATH-AA* 0.011 0.030 0.076 0.248 0.633 1.624 3.104 6.648 17.711 155.010 18.509
TREE-AA* 0.011 0.030 0.076 0.246 0.619 1.570 2.952 6.257 16.690 152.388 18.084

Solution Cost per Bin
1 2 3 4 5 6 7 8 9 10 Total

A* 17.9 49.6 110.9 158.7 240.9 367.1 548.7 846.1 1,414.8 2,882.6 663.7
AA* 18.0 49.9 111.8 162.4 247.6 377.2 557.2 855.2 1,432.9 2,878.5 669.1

D* Lite 18.6 53.4 127.7 192.7 291.1 433.1 615.1 918.3 1,439.4 2,660.9 675.0
PATH-AA* 18.0 49.9 111.8 162.4 247.6 377.2 557.3 855.1 1,432.3 2,879.6 669.1
TREE-AA* 18.0 49.9 111.8 162.5 248.0 378.2 559.7 861.0 1,447.4 2,909.0 674.6

Number of Expansions per Bin
1 2 3 4 5 6 7 8 9 10 Total

A* 23 89 338 1,695 5,852 15,829 38,431 92,859 283,670 4,099,019 453,780
AA* 24 116 459 2,418 7,205 19,063 39,495 84,818 215,142 1,323,466 169,221

D* Lite 99 579 3,100 5,632 9,567 17,140 28,404 47,879 80,703 151,010 34,411
PATH-AA* 21 91 316 1,431 3,815 9,775 18,783 40,206 112,394 948,102 113,493
TREE-AA* 21 91 313 1,406 3,702 9,457 17,971 38,124 106,943 929,146 110,717

Number of Percolations per Bin
1 2 3 4 5 6 7 8 9 10 Total

A* 200 933 3,929 20,661 77,739 220,609 543,275 1,311,032 3,777,619 43,667,232 4,962,323
AA* 207 1,282 5,458 30,477 98,146 276,880 598,133 1,333,471 3,410,011 20,594,032 2,634,810

D* Lite 451 3,369 21,846 46,816 89,449 171,191 303,741 551,791 1,010,013 2,193,905 439,257
PATH-AA* 186 1,021 3,738 16,989 47,888 130,484 255,684 559,483 1,533,617 13,461,263 1,601,035
TREE-AA* 186 1,018 3,707 16,673 46,307 125,691 242,659 523,825 1,435,266 13,109,310 1,550,464

Table 1 4-Connected Game Maps

Runtime per Bin
1 2 3 4 5 6 7 8 9 10 Total

A* 0.011 0.031 0.077 0.237 0.775 2.057 4.926 12.042 36.208 724.301 78.066
AA* 0.012 0.031 0.077 0.239 0.776 2.047 4.758 11.665 30.135 256.492 30.623

D* Lite 0.037 0.108 0.419 0.957 1.717 3.554 7.087 14.152 30.456 81.656 14.014
PATH-AA* 0.011 0.029 0.067 0.152 0.413 1.045 2.393 6.177 16.001 178.855 20.514
TREE-AA* 0.012 0.030 0.067 0.152 0.404 1.005 2.263 5.804 14.861 172.278 19.688

Solution Cost per Bin
1 2 3 4 5 6 7 8 9 10 Total

A* 14.4 39.9 94.9 138.5 188.5 285.5 425.5 657.9 1,103.7 2,330.1 527.9
AA* 14.4 39.9 94.9 138.5 188.5 285.5 425.4 659.5 1,106.1 2,340.6 529.3

D* Lite 14.4 40.0 95.5 141.1 195.6 297.8 444.4 684.9 1,125.8 2,267.5 530.7
PATH-AA* 14.4 39.9 94.9 138.5 188.5 285.5 425.5 659.5 1,106.1 2,342.3 529.5
TREE-AA* 14.4 39.9 94.9 138.5 188.8 286.2 427.0 662.5 1,112.8 2,356.6 532.2

Number of Expansions per Bin
1 2 3 4 5 6 7 8 9 10 Total

A* 16 57 187 895 3,376 9,235 22,533 56,650 174,111 3,028,684 329,574
AA* 16 56 184 864 3,205 8,640 20,154 49,455 126,531 1,050,524 125,963

D* Lite 50 265 1,486 3,146 4,671 8,705 15,620 28,053 54,731 121,504 23,823
PATH-AA* 14 44 123 409 1,363 3,686 8,732 23,924 65,734 764,551 86,858
TREE-AA* 14 44 122 400 1,309 3,492 8,174 22,487 61,525 737,390 83,496

Number of Percolations per Bin
1 2 3 4 5 6 7 8 9 10 Total

A* 176 715 2,583 12,078 47,688 136,318 337,866 820,768 2,366,352 30,190,719 3,391,526
AA* 177 714 2,577 12,063 47,537 136,072 330,990 823,379 2,131,698 16,619,241 2,010,445

D* Lite 283 1,590 9,777 26,028 51,889 113,629 232,638 467,230 989,540 2,535,303 442,790
PATH-AA* 163 589 1,853 5,881 20,137 57,527 139,475 372,919 995,163 11,093,042 1,268,675
TREE-AA* 163 587 1,840 5,752 19,252 54,036 128,728 343,810 903,858 10,561,640 1,201,967

Table 2 8-Connected Game Maps

40 Carlos Hernández et al.

Runtime per Bin
1 2 3 4 5 6 7 8 9 10 Total

A* 0.601 1.915 3.493 5.603 8.073 10.935 14.667 19.719 28.317 79.023 17.235
AA* 0.677 1.978 3.695 5.818 8.576 11.535 15.319 20.350 28.900 61.958 15.880

D* Lite 1.322 3.304 4.886 7.304 10.191 12.581 15.942 20.057 26.690 36.642 13.892
PATH-AA* 0.340 0.905 1.733 2.719 3.877 4.857 6.531 8.757 12.344 33.517 7.558
TREE-AA* 0.305 0.757 1.340 2.023 2.885 3.705 4.964 6.676 9.833 30.731 6.322

Solution Cost per Bin
1 2 3 4 5 6 7 8 9 10 Total

A* 179.2 335.8 457.7 575.3 684.5 793.8 900.8 1,034.4 1,207.1 1,622.6 779.1
AA* 184.1 337.2 459.9 575.6 692.7 799.7 904.9 1,034.0 1,209.0 1,594.4 779.1

D* Lite 231.9 416.0 538.6 674.8 806.8 904.5 1,012.7 1,143.5 1,312.7 1,613.8 865.5
PATH-AA* 184.1 337.3 460.0 575.7 692.8 800.0 905.1 1,034.2 1,208.8 1,595.2 779.3
TREE-AA* 184.8 339.5 463.9 581.3 699.3 806.6 913.5 1,043.8 1,217.8 1,601.0 785.1

Number of Expansions per Bin
1 2 3 4 5 6 7 8 9 10 Total

A* 3,855 12,300 22,207 35,005 49,702 66,866 89,150 120,312 172,765 528,678 110,084
AA* 4,232 12,132 22,369 34,465 50,245 66,994 88,336 117,301 165,809 380,796 94,268

D* Lite 3,830 9,738 14,361 21,549 29,773 37,332 47,869 60,559 80,615 104,438 41,006
PATH-AA* 2,072 5,530 10,555 16,203 23,049 29,086 38,878 52,765 75,188 224,741 47,807
TREE-AA* 1,831 4,622 8,244 12,259 17,582 22,765 30,456 41,658 62,137 209,391 41,094

Number of Percolations per Bin
1 2 3 4 5 6 7 8 9 10 Total

A* 45,317 163,532 316,032 528,957 777,464 1,061,984 1,436,051 1,949,635 2,783,090 6,815,935 1,587,800
AA* 51,827 165,880 327,522 534,989 801,860 1,089,854 1,462,386 1,967,873 2,792,935 5,907,432 1,510,256

D* Lite 47,087 123,596 184,984 280,032 394,414 485,909 617,694 783,207 1,049,973 1,469,790 543,669
PATH-AA* 22,201 67,250 140,041 231,225 335,136 423,840 581,014 796,812 1,122,178 3,038,103 675,780
TREE-AA* 19,061 53,906 103,152 164,309 239,717 311,990 427,390 589,999 876,149 2,749,724 553,540

Table 3 4-Connected Office Maps

Runtime per Bin
1 2 3 4 5 6 7 8 9 10 Total

A* 0.635 2.002 3.627 5.716 8.093 10.852 14.456 19.230 27.495 110.858 20.297
AA* 0.635 2.027 3.666 5.786 8.229 10.973 15.072 19.367 28.009 78.251 17.202

D* Lite 1.299 3.029 5.105 7.383 9.975 12.545 16.286 20.244 27.291 43.115 14.627
PATH-AA* 0.352 1.085 1.849 2.833 4.100 5.635 8.052 10.533 17.058 55.353 10.685
TREE-AA* 0.326 0.933 1.540 2.248 3.106 4.264 6.061 7.727 12.573 50.404 8.918

Solution Cost per Bin
1 2 3 4 5 6 7 8 9 10 Total

A* 151.8 290.9 395.6 502.1 592.2 681.2 789.2 909.5 1,062.6 1,489.8 686.5
AA* 151.3 291.3 395.0 501.9 592.1 680.5 790.0 909.7 1,063.9 1,495.3 687.1

D* Lite 167.3 301.5 411.2 516.1 608.2 686.0 795.3 899.5 1,046.8 1,389.2 682.1
PATH-AA* 151.3 291.3 395.1 502.0 592.2 680.6 790.1 909.7 1,064.2 1,495.7 687.2
TREE-AA* 152.3 295.2 400.4 510.0 602.6 692.8 804.0 925.5 1,081.4 1,504.0 696.8

Number of Expansions per Bin
1 2 3 4 5 6 7 8 9 10 Total

A* 2,917 9,478 17,439 27,250 38,071 50,763 67,783 89,838 127,416 530,584 96,154
AA* 2,718 8,974 16,477 25,854 36,469 48,195 66,315 84,399 120,396 354,802 76,460

D* Lite 2,569 5,855 9,461 13,550 17,806 22,562 28,329 34,872 44,099 64,405 24,351
PATH-AA* 1,293 4,262 7,422 11,304 16,332 22,473 32,557 42,208 69,038 253,875 46,076
TREE-AA* 1,152 3,544 6,031 8,799 12,222 16,877 24,678 31,425 52,448 235,739 39,292

Number of Percolations per Bin
1 2 3 4 5 6 7 8 9 10 Total

A* 36,105 129,476 251,611 413,836 605,292 813,679 1,102,416 1,465,886 2,074,241 6,025,821 1,291,836
AA* 36,792 132,957 257,835 422,949 620,546 832,589 1,159,079 1,500,740 2,161,982 5,572,596 1,269,806

D* Lite 41,570 102,909 177,753 257,528 350,383 438,445 569,351 714,171 956,365 1,489,043 509,752
PATH-AA* 16,380 60,167 110,439 178,057 271,672 380,832 554,161 734,595 1,209,150 3,695,285 721,074
TREE-AA* 14,133 47,471 84,218 128,304 186,324 262,367 382,327 493,488 826,599 3,281,577 570,681

Table 4 8-Connected Office Maps

Reusing Cost-Minimal Paths for Goal-Directed Navigation 41

Runtime per Bin
1 2 3 4 5 6 7 8 9 10 Total

A* 0.763 2.643 5.162 8.651 13.889 22.033 37.020 76.973 326.628 10,249.313 1,074.307
AA* 0.790 2.729 5.409 8.903 14.283 22.621 37.428 80.693 274.249 2,035.345 248.245

D* Lite 2.063 6.660 12.503 18.833 26.877 36.085 50.369 71.521 125.714 312.085 66.271
PATH-AA* 0.433 1.436 2.816 4.435 6.932 10.064 15.599 27.210 87.493 664.685 82.110
TREE-AA* 0.324 0.984 1.904 2.845 4.387 5.995 8.994 15.202 54.260 533.014 62.791

Solution Cost per Bin
1 2 3 4 5 6 7 8 9 10 Total

A* 250.2 491.2 680.4 859.0 1,056.3 1,312.2 1,709.2 2,797.5 9,133.0 25,096.3 4,338.5
AA* 250.5 491.3 683.6 859.3 1,057.3 1,323.4 1,717.7 2,879.8 9,551.5 25,010.0 4,382.4

D* Lite 255.6 509.5 705.8 885.4 1,104.2 1,354.2 1,797.9 3,042.8 9,924.1 24,431.7 4,401.1
PATH-AA* 250.5 491.3 683.6 859.4 1,057.3 1,323.4 1,718.6 2,872.8 9,559.3 25,029.2 4,384.5
TREE-AA* 253.9 500.5 698.9 879.9 1,085.8 1,364.4 1,771.2 2,973.4 9,911.6 25,838.8 4,527.8

Number of Expansions per Bin
1 2 3 4 5 6 7 8 9 10 Total

A* 3,935 13,451 25,853 41,992 64,936 98,232 159,731 329,521 1,858,786 52,859,768 5,545,621
AA* 3,940 13,415 26,264 41,656 64,301 97,077 153,326 321,261 1,301,320 9,595,401 1,161,796

D* Lite 9,255 29,867 55,106 81,628 113,957 148,559 198,621 249,332 269,047 541,372 169,674
PATH-AA* 1,997 6,651 13,075 20,068 30,372 43,458 66,460 116,955 469,098 3,641,298 440,943
TREE-AA* 1,459 4,531 8,845 12,955 19,548 26,290 39,248 69,236 310,720 2,957,763 345,059

Number of Percolations per Bin
1 2 3 4 5 6 7 8 9 10 Total

A* 63494 243485 493291 831869 1309026 1997499 3202061 5993388 25235537 252429668 29179932
AA* 63801 244195 500997 832959 1310986 2004093 3184321 6320118 23286942 134450131 17219854

D* Lite 62399 218043 424828 655991 948423 1291682 1826646 2603700 4654730 11325565 2401201
PATH-AA* 31177 118737 245671 397082 614610 883599 1356217 2186347 7214688 54116856 6716498
TREE-AA* 22351 79728 164674 253158 391514 522122 779746 1207103 4021852 41374837 4881709

Table 5 4-Connected Maps with Randomly Blocked Cells

Runtime per Bin
1 2 3 4 5 6 7 8 9 10 Total

A* 0.410 1.291 2.369 3.702 5.387 7.532 10.515 14.700 21.905 42.814 11.063
AA* 0.425 1.344 2.463 3.861 5.604 7.840 10.936 15.254 22.774 44.105 11.460

D* Lite 1.068 3.376 5.896 8.906 12.445 16.170 19.350 23.662 30.309 41.804 16.299
PATH-AA* 0.226 0.631 1.064 1.599 2.276 3.026 4.349 5.750 8.779 15.840 4.354
TREE-AA* 0.196 0.512 0.819 1.200 1.627 2.103 2.856 3.639 5.153 8.254 2.636

Solution Cost per Bin
1 2 3 4 5 6 7 8 9 10 Total

A* 159.7 305.6 411.2 504.2 594.2 680.2 756.0 840.2 964.1 1,178.2 639.4
AA* 159.7 305.6 411.2 504.2 594.2 680.1 756.0 840.2 964.1 1,178.1 639.3

D* Lite 159.9 306.0 411.5 504.8 594.9 680.8 756.8 841.5 965.9 1,180.2 640.2
PATH-AA* 159.7 305.6 411.2 504.2 594.2 680.1 756.0 840.2 964.1 1,178.1 639.3
TREE-AA* 161.4 309.9 418.0 513.5 606.5 695.5 777.5 867.5 1,002.6 1,235.9 658.8

Number of Expansions per Bin
1 2 3 4 5 6 7 8 9 10 Total

A* 1,543 5,141 9,531 14,875 21,510 29,906 40,469 55,864 80,648 135,318 39,480
AA* 1,542 5,139 9,527 14,869 21,502 29,897 40,456 55,845 80,621 135,269 39,467

D* Lite 3,677 11,657 19,892 29,849 40,818 52,204 61,092 72,761 89,824 114,104 49,588
PATH-AA* 587 1,820 3,153 4,796 6,860 9,101 13,102 17,348 26,372 46,452 12,959
TREE-AA* 458 1,337 2,200 3,282 4,462 5,779 7,852 10,005 14,132 22,035 7,154

Number of Percolations per Bin
1 2 3 4 5 6 7 8 9 10 Total

A* 25,956 95,862 188,468 305,219 454,021 646,036 892,232 1,244,779 1,844,273 3,226,926 892,377
AA* 25,954 95,855 188,449 305,193 453,962 645,946 892,139 1,244,676 1,844,042 3,226,541 892,276

D* Lite 28,239 95,190 170,380 262,584 370,778 485,790 586,993 725,316 933,219 1,282,699 494,119
PATH-AA* 10,712 37,414 68,701 108,596 160,198 218,209 321,149 429,553 670,959 1,228,713 325,420
TREE-AA* 8,289 27,339 47,562 74,004 103,575 137,599 190,749 245,410 355,240 574,056 176,382

Table 6 8-Connected Maps with Randomly Blocked Cells

42 Carlos Hernández et al.

Runtime per Bin
1 2 3 4 5 6 7 8 9 10 Total

A* 0.012 0.040 0.126 0.390 1.098 2.914 7.657 21.072 68.613 671.087 77.301
AA* 0.013 0.040 0.125 0.376 1.000 2.496 5.834 14.173 38.865 238.809 30.173

D* Lite 0.037 0.101 0.276 0.761 1.776 3.527 6.283 10.816 20.449 61.191 10.522
PATH-AA* 0.012 0.031 0.078 0.193 0.431 0.921 1.909 4.207 10.581 55.630 7.399
TREE-AA* 0.012 0.031 0.075 0.178 0.396 0.852 1.776 3.934 9.850 51.434 6.854

Solution Cost per Bin
1 2 3 4 5 6 7 8 9 10 Total

A* 17.7 47.1 93.0 161.8 252.5 374.5 541.1 797.9 1,257.9 2,601.4 614.5
AA* 17.7 47.1 93.1 162.0 253.0 376.4 544.8 802.9 1,264.7 2,605.9 616.8

D* Lite 17.7 47.3 94.9 168.3 266.6 397.9 570.4 828.1 1,262.7 2,539.1 619.3
PATH-AA* 17.7 47.1 93.1 162.1 253.2 376.9 545.9 804.6 1,267.9 2,615.2 618.4
TREE-AA* 17.7 47.2 93.6 163.0 254.7 378.6 547.7 807.1 1,269.9 2,620.7 620.0

Number of Expansions per Bin
1 2 3 4 5 6 7 8 9 10 Total

A* 35 182 709 2,425 7,266 20,186 54,287 147,984 452,588 3,601,122 428,678
AA* 35 178 666 2,168 6,034 15,561 37,024 89,531 236,174 1,264,755 165,213

D* Lite 74 373 1,308 3,822 8,742 16,450 27,275 43,370 74,380 174,169 34,996
PATH-AA* 27 113 358 989 2,362 5,376 11,702 26,412 65,571 315,382 42,829
TREE-AA* 27 107 324 877 2,121 4,884 10,716 24,356 60,565 292,232 39,621

Number of Percolations per Bin
1 2 3 4 5 6 7 8 9 10 Total

A* 240 1,623 7,440 27,807 85,724 238,790 643,081 1,778,727 5,580,359 48,052,104 5,641,589
AA* 240 1,617 7,297 26,612 78,384 208,268 508,490 1,270,601 3,502,277 20,554,408 2,615,819

D* Lite 331 1,924 7,578 24,876 63,462 131,778 237,607 407,306 748,726 1,972,875 359,646
PATH-AA* 183 957 3,568 10,822 26,335 59,048 127,878 295,619 767,108 4,174,390 546,591
TREE-AA* 179 900 3,167 9,305 22,946 52,113 114,082 266,454 693,684 3,801,342 496,417

Table 7 4-Connected Populated Game Maps

Runtime per Bin
1 2 3 4 5 6 7 8 9 10 Total

A* 0.013 0.039 0.116 0.343 1.057 3.427 10.470 31.566 105.953 966.963 111.995
AA* 0.013 0.039 0.112 0.312 0.840 2.168 5.367 13.276 36.455 242.394 30.098

D* Lite 0.036 0.089 0.225 0.553 1.247 2.385 4.625 9.272 19.655 68.855 10.694
PATH-AA* 0.012 0.032 0.077 0.188 0.480 1.221 2.916 6.634 16.344 80.995 10.890
TREE-AA* 0.013 0.033 0.077 0.182 0.458 1.169 2.792 6.358 15.732 78.058 10.487

Solution Cost per Bin
1 2 3 4 5 6 7 8 9 10 Total

A* 13.8 36.6 74.3 126.1 182.9 238.8 328.4 476.8 750.3 1,643.8 387.2
AA* 13.8 36.6 74.3 126.2 183.3 239.5 329.5 479.2 752.3 1,646.9 388.1

D* Lite 13.8 36.6 74.4 126.4 183.7 240.3 330.2 481.4 755.6 1,650.5 389.3
PATH-AA* 13.8 36.6 74.4 126.3 183.4 239.8 330.1 480.2 754.2 1,651.5 389.0
TREE-AA* 13.8 36.6 74.5 126.6 183.8 240.2 330.6 481.0 755.7 1,654.0 389.7

Number of Expansions per Bin
1 2 3 4 5 6 7 8 9 10 Total

A* 21 106 422 1,493 5,216 18,111 54,359 150,228 448,846 3,354,444 403,325
AA* 21 102 386 1,243 3,657 10,058 25,098 60,638 157,517 909,790 116,851

D* Lite 44 210 755 2,077 4,632 8,354 15,220 28,430 55,294 160,042 27,506
PATH-AA* 17 64 204 616 1,842 5,174 12,631 28,221 67,309 306,196 42,227
TREE-AA* 17 63 195 576 1,726 4,900 11,968 26,794 64,150 292,713 40,310

Number of Percolations per Bin
1 2 3 4 5 6 7 8 9 10 Total

A* 193 1,094 4,846 17,771 58,732 189,011 564,543 1,610,761 4,952,935 40,216,891 4,761,678
AA* 193 1,083 4,695 16,436 48,571 128,783 326,170 823,617 2,240,914 14,553,767 1,814,423

D* Lite 253 1,308 4,997 14,892 36,152 70,976 138,579 277,128 575,635 1,888,728 300,865
PATH-AA* 153 661 2,306 7,252 20,765 55,150 136,535 317,018 784,670 3,992,633 531,714
TREE-AA* 152 645 2,175 6,609 18,924 51,321 127,536 296,930 738,360 3,777,095 501,975

Table 8 8-Connected Populated Game Maps

Reusing Cost-Minimal Paths for Goal-Directed Navigation 43

Runtime per Bin
1 2 3 4 5 6 7 8 9 10 Total

A* 0.910 6.375 18.430 40.707 76.009 132.862 227.003 382.376 666.798 1,841.137 339.261
AA* 0.669 3.861 10.133 19.864 32.775 52.092 80.555 127.567 196.855 472.805 99.717

D* Lite 0.838 3.119 6.278 9.758 13.866 18.923 24.991 33.059 43.968 71.327 22.613
PATH-AA* 0.344 1.580 3.519 6.179 9.764 14.131 21.080 30.019 45.395 92.104 22.412
TREE-AA* 0.339 1.542 3.416 6.041 9.302 13.374 19.878 27.979 42.215 87.056 21.114

Solution Cost per Bin
1 2 3 4 5 6 7 8 9 10 Total

A* 168.5 437.6 713.9 1,000.1 1,296.6 1,626.9 2,096.0 2,584.6 3,428.4 5,248.8 1,860.1
AA* 169.9 442.3 726.5 1,014.0 1,316.8 1,648.7 2,113.3 2,617.9 3,434.2 5,261.2 1,874.5

D* Lite 174.9 450.2 746.1 1,023.1 1,330.7 1,681.2 2,138.1 2,628.7 3,431.1 5,216.6 1,882.1
PATH-AA* 169.7 442.0 726.5 1,009.3 1,311.1 1,639.1 2,114.2 2,606.6 3,446.3 5,250.2 1,871.5
TREE-AA* 169.7 442.7 727.5 1,013.5 1,314.1 1,642.0 2,120.8 2,607.9 3,442.9 5,250.3 1,873.2

Number of Expansions per Bin
1 2 3 4 5 6 7 8 9 10 Total

A* 6948 50037 139986 294988 525307 872560 1422853 2308672 3886558 10203502 1971141
AA* 4362 26232 67900 130315 212584 329831 499591 773028 1171521 2693512 590888

D* Lite 3947 14232 26999 40500 55567 74267 95403 123134 159170 250181 84340
PATH-AA* 2134 10488 23231 40214 62588 88882 130182 182915 272986 543895 135751
TREE-AA* 2050 10027 22121 38630 58692 83017 121200 169058 251813 506972 126358

Number of Percolations per Bin
1 2 3 4 5 6 7 8 9 10 Total

A* 59252 460168 1353105 2973497 5412802 9352671 15556845 25747174 43805972 113963825 21868531
AA* 44886 298391 828918 1664567 2780466 4464045 6892518 10934273 16798521 40137634 8484422

D* Lite 28546 119280 249755 395538 566742 782676 1043685 1382456 1847771 3009417 942587
PATH-AA* 17372 93085 218880 396975 640087 943774 1418545 2041357 3096637 6390377 1525709
TREE-AA* 16533 87797 205297 376421 588639 863719 1293736 1846028 2795626 5850865 1392466

Table 9 4-Connected Populated Office Maps

Runtime per Bin
1 2 3 4 5 6 7 8 9 10 Total

A* 1.129 5.789 14.462 28.573 49.128 78.728 118.907 183.631 295.741 779.278 155.537
AA* 0.732 3.060 6.812 11.819 19.116 28.949 42.287 60.885 94.630 210.878 47.917

D* Lite 0.650 2.088 3.719 5.720 7.828 10.349 13.310 17.746 23.503 41.322 12.624
PATH-AA* 0.473 1.630 3.068 4.873 7.048 9.630 12.909 17.329 24.135 45.090 12.618
TREE-AA* 0.465 1.598 3.008 4.773 6.891 9.392 12.578 16.897 23.503 43.984 12.309

Solution Cost per Bin
1 2 3 4 5 6 7 8 9 10 Total

A* 113.3 221.2 300.3 368.8 434.0 502.8 571.2 653.1 752.4 998.2 491.5
AA* 113.8 222.0 301.4 371.1 435.3 505.7 573.7 655.3 755.6 1,002.9 493.7

D* Lite 113.9 222.7 302.6 371.5 436.6 506.1 574.9 656.2 757.4 1,002.9 494.5
PATH-AA* 113.6 221.9 301.2 370.9 435.0 505.3 573.2 655.0 755.1 1,003.1 493.4
TREE-AA* 113.7 222.0 301.3 371.0 435.3 505.6 573.5 655.4 755.8 1,004.7 493.8

Number of Expansions per Bin
1 2 3 4 5 6 7 8 9 10 Total

A* 5886 30461 71454 130732 209856 321133 468922 698695 1090918 2807657 583572
AA* 3252 14152 31375 53548 84080 124355 176950 248348 375721 829393 194117

D* Lite 2265 7185 12324 18567 24964 32129 40614 52572 67877 113923 37242
PATH-AA* 1868 6618 12203 18958 26777 35920 47487 62455 85684 161090 45906
TREE-AA* 1843 6538 12050 18673 26375 35243 46580 61285 83895 158069 45055

Number of Percolations per Bin
1 2 3 4 5 6 7 8 9 10 Total

A* 48547 266528 656069 1236903 2043644 3208795 4753293 7223663 11394722 28603024 5943519
AA* 33541 162668 390096 696462 1138495 1741384 2549732 3671635 5710136 13043263 2913741

D* Lite 17539 62182 112969 174287 240845 317575 407272 537404 703976 1184851 375890
PATH-AA* 15709 60295 118361 191524 280816 389720 528173 712176 997210 1882891 517688
TREE-AA* 15435 59379 116490 187948 275510 380701 515690 695773 971104 1837782 505581

Table 10 8-Connected Populated Office Maps

44 Carlos Hernández et al.

References

1. Bjornsson, Y., Enzenberger, M., Holte, R., Schaeffer, J., Yap, P.: Comparison of different
grid abstractions for pathfinding on maps. In: Proceedings of the International Joint
Conference on Artificial Intelligence, pp. 1511–1512 (2003)

2. Bulitko, V., Bjornsson, Y., Lustrek, M., Schaeffer, J., Sigmundarson, S.: Dynamic control
in path-planning with real-time heuristic search. In: Proceedings of the International
Conference on Automated Planning and Scheduling, pp. 49–56 (2007)

3. Choset, H., Thrun, S., Kavraki, L., Burgard, W., Lynch, K.: Principles of Robot Motion:
Theory, Algorithms, and Implementations. MIT Press (2005)

4. Edelkamp, S., Schrödl, S.: Heuristic Search - Theory and Applications. Academic Press
(2012)

5. Ferguson, D., Stentz, A.: Using interpolation to improve path planning: The Field D*
algorithm. Journal of Field Robotics 23(2), 79–101 (2006)

6. Hart, P., Nilsson, N., Raphael, B.: A formal basis for the heuristic determination of mini-
mum cost paths. IEEE Trans. on Systems Sci. and Cybernetics 2, 100–107 (1968)

7. Hernandez, C., Baier, J., Uras, T., Koenig, S.: Position Paper: Incremental Search Algo-
rithms Considered Poorly Understood. In: Proceedings of the Symposium on Combinato-
rial Search, pp. 159–161 (2012)

8. Hernández, C., Baier, J.A.: Avoiding and escaping depressions in real-time heuristic search.
Journal of Artificial Intelligence Research 43, 523–570 (2012)

9. Hernández, C., Meseguer, P., Sun, X., Koenig, S.: Path-Adaptive A* for incremental
heuristic search in unknown terrain [short paper]. In: Proceedings of the International
Conference on Automated Planning and Scheduling, pp. 358–361 (2009)

10. Hernandez, C., Sun, X., Koenig, S., Meseguer, P.: Tree Adaptive A*. In: Proceedings of
the International Joint Conference on Autonomous Agents and Multiagent Systems, pp.
123–130 (2011)

11. Holte, R., M.Perez, Zimmer, R., MacDonald, A.: Hierarchical A*: Searching abstraction
hierarchies efficiently. In: Proc. of AAAI, pp. 530–535 (1996)

12. Koenig, S., Furcy, D., Bauer, C.: Heuristic search-based replanning. In: Proceedings of the
International Conference on Artificial Intelligence Planning Systems, pp. 294–301 (2002)

13. Koenig, S., Likhachev, M.: Adaptive A*. In: Proceedings of the International Joint Con-
ference on Autonomous Agents and Multiagent Systems, pp. 1311–1312 (2005)

14. Koenig, S., Likhachev, M.: Fast replanning for navigation in unknown terrain. Transactions
on Robotics 21, 354–363 (2005)

15. Koenig, S., Likhachev, M.: A new principle for incremental heuristic search: Theoretical
results. In: Proceedings of the International Conference on Autonomous Planning and
Scheduling, pp. 410–413 (2006)

16. Koenig, S., Likhachev, M., Liu, Y., Furcy, D.: Incremental heuristic search in artificial
intelligence. Artificial Intelligence Magazine 25(2), 99–112 (2004)

17. Koenig, S., Tovey, C., Smirnov, Y.: Performance bounds for planning in unknown terrain.
Artificial Intelligence 147(1-2), 253–279 (2003)

18. Likhachev, M., Ferguson, D., Gordon, G., Stentz, A., Thrun, S.: Anytime Dynamic A*:
An anytime, replanning algorithm. In: Proceedings of the International Conference on
Automated Planning and Scheduling, pp. 262–271 (2005)

19. Likhachev, M., Ferguson, D., Gordon, G., Stentz, A., Thrun, S.: Anytime search in dynamic
graphs. Artificial Intelligence 172(14), 1613–1643 (2008)

20. Likhachev, M., Koenig, S.: Incremental heuristic search in games: The quest for speed.
In: Proceedings of the AAAI Conference on Artificial Intelligence and Interactive Digital
Entertainment, pp. 118–120 (2006)

21. Matsuta, K., Kobayashi, H., Shinohara, A.: Multi-target Adaptive A*. In: Proc. of the
Int’l Conference on Autonomous Agents and Multiagent Systems, pp. 1065–1072 (2010)

22. Pearl, J.: Heuristics: Intelligent Search Strategies for Computer Problem Solving. Addison-
Wesley (1984)

23. Stentz, A.: The Focussed D* algorithm for real-time replanning. In: Proc. of Int’l Joint
Conference in Artificial Intelligence, pp. 1652–1659 (1995)

24. Sturtevant, N.: Benchmarks for grid-based pathfinding. Transactions on Computational
Intelligence and AI in Games 4(2), 144–148 (2012)

25. Sun, X., Koenig, S., Yeoh, W.: Generalized Adaptive A*. In: Proc. of the Int’l Joint
Conference on Autonomous Agents and Multiagent Systems, pp. 469–476 (2008)

Reusing Cost-Minimal Paths for Goal-Directed Navigation 45

26. Sun, X., Yeoh, W., Koenig, S.: Efficient incremental search for moving target search. In:
Proc. of the Int’l Joint Conference on Artificial Intelligence, pp. 615–620 (2009)

27. Yap, P.K.Y., Burch, N., Holte, R.C., Schaeffer, J.: Any-Angle Path Planning for Computer
Games. In: Proceedings of the AAAI Conference on Artificial Intelligence and Interactive
Digital Entertainment, pp. 201–207 (2011)

