Reusing Cost-Minimal Paths for Goal-Directed Navigation in Partially Known Terrains

Carlos Hernández · Tansel Uras · Sven Koenig · Jorge A. Baier · Xiaoxun Sun · Pedro Meseguer

Received: date / Accepted: date

Abstract Situated agents frequently need to solve search problems in partially known terrains in which the costs of the arcs of the search graphs can increase (but not decrease) when the agents observe new information. An example of such search problems is goal-directed navigation with the freespace assumption in partially known terrains, where agents repeatedly follow cost-minimal paths from their current locations to given goal locations. Incremental heuristic search is an approach for solving the resulting sequences of similar search problems potentially faster than with classical heuristic search, by reusing information from previous searches to speed up its current search. There are two classes of incremental heuristic search

Carlos Hernández Departamento de Ingeniería Informática Universidad Católica de la Ssma. Concepción Concepción, Chile E-mail: chernan@ucsc.cl

Tansel Uras Sven Koenig Computer Science Department University of Southern California Los Angeles, CA 90089-0781, USA E-mail: {turas,skoenig}@usc.edu

Jorge A. Baier Departamento de Ciencia de la Computación Pontificia Universidad Católica de Chile Santiago, Chile E-mail: jabaier@ing.puc.cl

Xiaoxun Sun Google 1600 Amphitheatre Parkway Mountain View, CA 94043, USA E-mail: xiaoxunsun@google.com

Pedro Meseguer IIIA - CSIC Campus Universitat Autonòma de Barcelona 08193 Bellaterra, Spain E-mail: pedro@iiia.csic.es algorithms, namely those that make the h-values of the current search more informed (such as Adaptive A*) and those that reuse parts of the A* search trees of previous searches during the current search (such as D* Lite). In this article, we introduce Path-Adaptive A* and its generalization Tree-Adaptive A*. Both incremental heuristic search algorithms terminate their searches before they expand the goal state, namely when they expand a state that is on a provably cost-minimal path to the goal. Path-Adaptive A* stores a single cost-minimal path to the goal state (the reusable path), while Tree-Adaptive A* stores a set of cost-minimal paths to the goal state (the reusable tree), and is thus potentially more efficient than Path-Adaptive A^{*} since it uses information from all previous searches and not just the last one. Tree-Adaptive A^* is the first incremental heuristic search algorithm that combines the principles of both classes of incremental heuristic search algorithms. We demonstrate experimentally that both Path-Adaptive A* and Tree-Adaptive A* can be faster than Adaptive A* and D* Lite, two state-ofthe-art incremental heuristic search algorithms for goal-directed navigation with the freespace assumption.

1 Introduction

Situated agents, such as robots and game characters, have to be able to navigate from their current location to a given destination [3]. However, they may not know a map of the terrain initially, and their sensors may only be able to observe the immediate neighborhood of their current location. One approach to navigation, popular robotics [17], uses the freespace assumption: The agents plan a cost-minimal path from their current location to their destination under the freespace assumption, which is the assumption that the terrain is traversable except for the blocked cells that they have already observed. When they observe additional blocked cells as they follow the planned path, they add them to their map. If one or more blocked cells are on their path between their current location and their destination, they replan a cost-minimal path from their current location to their destination and then repeat the process until they either reach their destination or can no longer find a path to their destination (in which case it is unreachable).

In this paper we study path planning with the freespace assumption for goaldirected navigation in unknown, static terrain. More generally, we study the problem of repeatedly following a cost-minimal path from the current location to a given destination where the arc costs can increase but not decrease, as in the case of discovering a new blocked cell in the environment. Path planning with the freespace assumption interleaves path planning with movements and thus requires repeated searches. These searches need to be fast since agents typically have to move smoothly and without delay. For example, the computer game company Bioware imposes a time limit of 1-3ms on each search [2]. However, even with heuristic search algorithms such as A^* [6], search can be time consuming if the terrain is large or if many agents perform simultaneous searches. Incremental heuristic search algorithms use information from the current and previous searches to solve similar future search problems potentially faster than classical heuristic search algorithms, that solve all search problems from scratch [16]. They have been used to speed up A^* searches in the context of both symbolic planning [12] and path planning [16].

There are two classes of incremental heuristic search algorithms:

- Class 1: Incremental heuristic search algorithms of Class 1 make the *h*-values of the current A* search more informed, which can speed up future A* searches by making them more focused. Examples include Adaptive A* (AA*) [15], Generalized Adaptive A* [25] and Multi-Target Adaptive A* [21].
- Class 2: Incremental heuristic search algorithms of Class 2 change the search tree of the current A* search to the search tree of the next A* search, which can be faster than constructing it from scratch. Examples include D* [23] and D* Lite [14]. D* Lite is as fast as D* but much simpler. Both of them are typically faster for path planning with the freespace assumption than versions of AA* [15]. Versions of them have been used as part of path planners in a wide range of fielded robotics systems [18,5,19], including the winning DARPA Urban Challenge entry Boss and the Mars rovers Opportunity and Spirit.

Our key observation is that the suffix of the current cost-minimal path without arc cost changes remains a cost-minimal path when the agent observes arc cost increases on the path. Path-Adaptive A* (Path-AA*) [9] reuses the suffix of the cost-minimal path of the current forward A^* search (= reusable path) to terminate its next forward A* search earlier than a regular forward A* search. Tree-Adaptive A* (Tree-AA*) [10] generalizes Path-AA* by reusing suffixes of the cost-minimal paths of the current and all previous forward A* searches (= reusable tree) to terminate the next forward A* search even earlier. Thus, Tree-AA* combines incremental heuristic search algorithms of Classes 1 and 2 in a novel way since the reusable tree of Tree-AA^{*} is similar to the search tree of incremental heuristic search algorithms from Class 2. such as D* Lite. However, Tree-AA* changes the reusable tree via forward (rather than backward) A* searches, which is a novel way of maintaining the search tree. We demonstrate experimentally that both Path-AA* and Tree-AA* can be faster than AA* and D* Lite, the two state-of-the-art incremental heuristic search algorithms for path planning with the freespace assumption.

Some of the contributions of this paper have been published in conference papers, namely [9] and [10]. This article includes new material that has not been presented before. In particular:

- We present lazy versions of Path-AA* and Tree-AA*.
- We include proofs for termination and optimality of Path-AA* and Tree-AA* (Theorems 1 and 2).
- We perform a systematic experimental analysis of the performance of the algorithms as a function of the difficulty of the search problems.
- We extend previously published experimental results for unknown terrain by including new results for a large number of game maps, office maps and maps with randomly blocked cells.
- We extend previously published experimental results by including a large number of results for partially known terrain.
- Finally, we perform an experimental evaluation of different priority queue implementations.

The rest of the paper is organized as follows. In Section 2, we present the notation used in the paper. In Section 3, we explain basic concepts of heuristic

search. In Section 4, we present basic concepts of incremental heuristic search. In Section 5, we describe Path-AA*, including its pseudocode and its properties. In Section 6, we describe Tree-AA*. In Section 7, we present a detailed experimental analysis. In Section 8, we present some variants of Path-AA* and Tree-AA*.

2 Background

Our agents move on a directed graph G = (S, A), where S is a finite set of states, and $A \subseteq S \times S$ is a finite set of arcs. There are two distinguished states: $s_{current} \in S$ is the current state of the agent, and $s_{goal} \in S$ is the goal state. The set Succ(s) := $\{t \in S \mid (s,t) \in A\}$ is the set of successor states of state s. An arc $a = (s,t) \in A$ represents that the agent can move from state s to state t. c(s,t) is the cost of following the arc from state s to state t, where c(s,t) > 0. A path from state s to state t is a sequence of arcs $(s_0, t_0), \ldots, (s_n, t_n)$, such that $s_0 = s$, $t_n = t$, and $t_i = s_{i+1}$ for all $0 \le i < n$. The cost of a path is the sum of the costs of the arcs in the path. A cost-minimal path from state s to state t. d(s,t) is the cost of a cost-minimal path from $s \in S$ to $t \in S$. We call $d(s, s_{goal})$ the goal cost of state s.

A* is the basis of all incremental heuristic search algorithms discussed in this article. A* utilizes a heuristic function to help guide the search. A heuristic function $h: S \mapsto \mathbb{R}_{\geq 0}$ estimates the goal cost of states (that is, $d(s, s_{goal})$). h is said to be consistent iff, for any states $s \in S$ and $t \in S$, $h(s) \leq d(s, t) + h(t)$ and $h(s_{goal}) = 0$. h is said to be admissible iff, for any state $s \in S$, $0 \leq h(s) \leq d(s, s_{goal})$. A consistent heuristic function is also admissible [22]. A heuristic function h is said to weakly dominate another heuristic function h' iff, for any state $s \in S$, $h(s) \geq h'(s)$. We assume that there is a user-provided consistent heuristic function, denoted by H.

Our description of A* follows [26]. For each state s, A* maintains the following values throughout the search: The parent, denoted by parent(s), keeps track of the state that comes before state s on the path from state $s_{current}$ to state s that has been found so far. It is initially undefined for all states. The g-value, denoted by g(s), keeps track of the cost of the path from state $s_{current}$ to state s that has been found so far. It is initially 0 for state $s_{current}$ and infinity for all other states. Any state with a finite g-value is said to be generated. The h-value, denoted by h(s), is the estimated goal cost of state s. It is initially H(s) for all states s and remains unchanged throughout the search. The f-value, denoted by f(s), is derived from the g- and h-values of state s and satisfies the following equality: f(s) = g(s) + h(s).

A* maintains a priority queue, called the OPEN list, where states are ordered with respect to their *f*-values, in increasing order. It initially contains only state $s_{current}$. A* repeatedly removes a state *s* with the smallest *f*-value from the OPEN list and expands it by performing the following procedure for each successor state *t* of state *s* with g(s) + d(s,t) < g(t): g(t) is set to g(s) + d(s,t) and parent(t)is set to state *s*. If state *t* is not in the OPEN list, then it is inserted into the OPEN list, otherwise, it is reordered in the OPEN list with its updated *f*-value. A* terminates when its OPEN list is empty or it is about to expand state s_{goal} .

The properties of A^* are explained in more detail in [22]. We use the following properties of A^* that uses a consistent heuristic function:

- **Property 1:** Every expanded state *s* satisfies the following conditions: (a) $g(s) = d(s_{current}, s)$. (b) One can identify a cost-minimal path from state $s_{current}$ to state *s* in reverse by following the *parent*-pointers from state *s* to state $s_{current}$.
- Property 2: The sequence of *f*-values of the expanded states is monotonically non-decreasing.
- **Property 3:** If a heuristic function h weakly dominates another heuristic function h', an A^{*} search using h expands no more states than an A^{*} search using h' (modulo tie-breaking).
- **Property 4:** An A* search always terminates, either proving that there is no path from state $s_{current}$ to state s_{goal} or returning a cost-minimal path from state $s_{current}$ to state s_{goal} that can be identified in reverse by following the parent pointers from state s_{goal} to state $s_{current}$.
- Property 5: Each state is expanded at most once.

3 Incremental Heuristic Search

To find a cost-minimal path from state $s_{current}$ to state s_{goal} in unknown terrain, an agent could use repeated forward A* searches (from state $s_{current}$ to state s_{goal}) with the freespace assumption or repeated backward A* searches (from state s_{goal} to state $s_{current}$) with the freespace assumption. These repeated A* searches need to be fast since agents typically have to move smoothly and without delay. Incremental heuristic search algorithms use information from previous searches to solve similar future search problems potentially faster than classical heuristic search algorithms, which solve all search problems from scratch. We provide a brief introduction to AA* in the following since both Path-AA* and Tree-AA* build on it. All three incremental heuristic search algorithms apply to path planning with the free space assumption and use forward A* searches to find cost-minimal paths from state $s_{current}$ to state s_{goal} .

AA* [13] performs repeated A* searches and after each search, updates the h-values of all states s expanded by the search, by assigning $h(s) := f(s_{goal}) - g(s)$. This results in a more informed heuristic function, therefore speeding up future A* searches by making them more focused. For the updated heuristic function to remain consistent, state s_{goal} has to remain unchanged, although state $s_{current}$ can change. The h-values remain consistent even if the arc costs increase (but not decrease), which makes AA* applicable to path planning with the freespace assumption. AA* is based on the following "update principle" that was first described in [11] in the context of hierarchical A* search: If the h-values of all states s expanded by an A* search that uses a consistent heuristic function are updated by assigning $h(s) := f(s_{goal}) - g(s)$, then the resulting h-values are again consistent and weakly dominate the original h-values. Thus, an A* search with the resulting h-values finds cost-minimal paths and expands no more states than an identical A* search with the original h-values (and likely many fewer states).

The properties of AA^* are explained in more detail in [15,8]. We use the following property of AA^* in addition to the properties of A^* listed earlier:

- **Property 6:** After each update, the *h*-value of any state *s* on the cost-minimal path from state $s_{current}$ to state s_{goal} is set to its goal cost (since $h(s) = f(s_{goal}) - g(s) = d(s_{current}, s_{goal}) - d(s_{current}, s) = d(s, s_{goal})$).

01 procedure InitializeState(s)02 if (generated(s) = 0) $g(s) := \infty;$ h(s) := H(s);03 0405 else if $(generated(s) \neq counter)$ if (g(s) + h(s) < pathcost(generated(s)))06 07 h(s) := pathcost(generated(s)) - g(s);08 $g(s) := \infty;$ 09 generated(s) := counter;10 procedure ComputePath()while $(OPEN \neq \emptyset)$ 11delete a state s with the smallest f-value g(s) + h(s) from OPEN; 12 13if $(s = s_{goal})$ pathcost(counter) := g(s) + h(s);14return true; /* path from $s_{current}$ to s_{goal} found */ for all $t \in Succ(s)$ 1516 17InitializeState(t); 18 $\quad \text{if } (g(t) > g(s) + c(s,t)) \\$ g(t) := g(s) + c(s, t); parent(t) := s;if $(t \in OPEN)$ 19202122delete t from OPEN; 23insert t into OPEN with f-value g(t) + h(t); 24 return false; /* no path from $s_{current}$ to s_{goal} found */ 25 procedure Main() 26 counter := 1; $\frac{27}{28}$ for all $s \in S$ generated(s) := 0;while $(s_{current} \neq s_{goal})$ InitializeState $(s_{current})$; 2930 31 $g(s_{current}) := 0;$ $OPEN := \emptyset;$ 32 33 insert $s_{current}$ into *OPEN* with *f*-value $g(s_{current}) + h(s_{current})$; $\begin{array}{l} \text{Inserve current lines of current lines of the set of the$ 3435 36 from s_{goal} to $s_{current}$; blocked := false; 37 38 while $(s_{current} \neq s_{goal} \text{ and } \neg blocked)$ 39 $s_{current} :=$ next state on *path*; update all increased arc costs (if any); 4041 for all increased arc costs c(s, t)42if (path contains (s, t))43blocked :=true; $\begin{array}{ll} 44 & counter:=counter+1;\\ 45 & {\rm return\ true;\ /*\ success:\ }s_{goal}\ has\ been\ reached\ */ \end{array}$

Fig. 1 Adaptive A^* (AA*).

There are two versions of AA^{*}, which differ in how they update the *h*-values: The *eager* version of AA^{*} updates the *h*-values of all expanded states right after a forward A^{*} search ends and before a new forward A^{*} search begins. The *lazy* version of AA^{*} [25], on the other hand, updates the *h*-value of a state only when it is needed during a future A^{*} search [15]. It does this by remembering the expanded states and the cost of the cost-minimal path found in each search, and by using them to update the *h*-value of a state when it becomes necessary. The lazy version is faster in general, despite the additional book-keeping, since it does not update the *h*-values of states that become irrelevant for future searches.

Figure 1 shows the pseudo code of the lazy version of AA*. It maintains the following variables for its forward A* searches: *counter* is the number of the current forward A* search. pathcost(i) is the cost of the path found during the *i*-th forward A* search. generated(s) is the number of the last forward A* search that generated

6

state s. AA* uses these values to initialize the g-value of state s to infinity and the h-value of state s to H(s) as needed (to avoid having to initialize them unnecessarily) and to update the h-value of the state as needed (procedure InitializeState). *OPEN* is the OPEN list of the current forward A* search. parent(s) is the parent of state s in the search tree of the last A* search that generated state s. g(s) is the g-value of state s at the end of the last forward A* search that generated state s. h(s) is the h-value of state s, which may or may not be up-to-date.

AA* performs a forward A* search from state $s_{current}$ to state s_{goal} (Line 34, procedure ComputePath) until it is about to expand state s_{goal} (Line 13). It then remembers the cost of the path found by the forward A* search to eventually be able to set the *h*-value of every expanded state *s* to the cost of the path found by the forward A* search (which is the same as the *f*-value of state s_{goal}) minus the *g*-value of state *t* (Line 14). It then generates the cost-minimal path from state s_{goal} to state s_{goal} by repeatedly following the *parent*-pointers in reverse from state s_{goal} to state $s_{current}$ (Line 36). The agent then repeatedly moves from state $s_{current}$ to the next state along the cost-minimal path, observing its environment after each movement. If an arc cost increases on the remaining path, the agent performs another forward A* search and then repeats the process until it either reaches state s_{goal} or can no longer find a path from state $s_{current}$ to state s_{goal} .

D* Lite is an incremental heuristic search algorithm that solves the same pathplanning problems with the freespace assumption for goal-directed navigation in unknown terrain as Path-AA* and Tree-AA*, except that it is able to handle not only arc-cost increases but also arc-cost decreases. It does so by using a version of A* that searches from the goal state to the current state of the agent. Instead of performing such an A* search from scratch every time an arc cost changes, D* Lite basically repeatedly transforms the search tree of the previous A* search to the search tree of the current A* search, which is faster than an A* search from scratch in case the two search trees are similar (but can also be slower in case they are not).

4 Path-Adaptive A* (Path-AA*)

AA* performs forward A* searches until it is about to expand state s_{goal} . Path-AA* uses AA* unchanged, except that its forward A* searches terminate earlier than the ones of AA*. It extends the path-caching strategy first described in [11] in the context of hierarchical A* search and is based on the following "termination principle": If the *h*-values of all states on a cost-minimal path from some state to state s_{goal} (= reusable path) are the same as their respective goal costs, then each forward A* search of AA* can terminate when it is about to expand a state on the reusable path.

Figure 2(a-e) shows a goal-directed navigation problem in unknown terrain to illustrate the operations of Path-AA*. The terrain is discretized into cells that are either blocked or unblocked, a common practice in the context of real-time computer games [1]. The cells of the grid correspond to the states. A cell is black iff it is blocked and this fact is known to the agent. The agent can move from a cell to each neighboring unblocked cell in the four main compass directions with an arc cost of one. The agent thus operates on an undirected four-neighbor grid. The agent assumes that all cells are unblocked except for the blocked cells that it

Fig. 2 Operation of Path-AA* on Four-Neighbor Grids

has already observed. It plans a cost-minimal path from its current cell to the goal cell. It always observes whether the neighboring cells in the four main compass directions are blocked as it follows the planned path, adds newly observed blocked cells to its map, and increases the arc costs from cells to newly observed blocked cells to infinity (making them untraversable).

The agent is initially at cell A1, is trying to reach cell F4, and is unaware that cell A4 is blocked (a). The first forward A* search of Path-AA* finds a path from cell A1 to cell F4 (b), and the *h*-values of the expanded states are updated. The agent follows the path until it observes a blocked cell on the path (c). Path-AA* discards the prefix of the path up to and including the newly observed blocked cell and keeps the rest as the reusable path (d). The next forward A* search of Path-AA* expands only two cells, A3 and B3, and terminates before expanding cell B4 since cell B4 lies on the reusable path (e).

Path-AA* needs to support two operations, namely removing a prefix of the reusable path and adding a prefix to the reusable path.

- Adding a Prefix to the Reusable Path: When a forward A^* search of Path-AA^{*} terminates because it is about to expand a state *s* on the reusable path, Path-AA^{*} adds the path from state $s_{current}$ to state *s* to the reusable path as a prefix, because the (cost-minimal) path from state $s_{current}$ to state *s* and the (cost-minimal) path from state *s* to state s_{goal} from the reusable path form a cost-minimal path from state $s_{current}$ to state s_{goal} . This is so because AA^{*} finds cost-minimal paths, and the *h*-values of all states on the reusable path are the same as their goal costs since AA^{*} has updated them this way.
- Removing a Prefix of the Reusable Path: There are two cases where Path-AA* removes a prefix of the reusable path: (1) Whenever the cost of an arc (s, t)on the path increases (for instance, due to a newly observed blocked cell), Path-AA* removes the prefix of the reusable path up to and including state s. It does this because the states contained in the prefix of the path up to state s because the paths from the states in the prefix to state s_{goal} might no longer be cost-minimal. (2) When a forward A* search of Path-AA* terminates because it is about to expand a state t on the reusable path, Path-AA* removes the prefix of the path up to, but not including, state t because it maintains only a single path. Tree-AA* (described later) does not remove the prefix of a path when a new path is found, but has to use additional methods to ensure that

all maintained paths (which form a tree) contain only states that have known cost-minimal paths to state s_{goal} .

4.1 Implementation of the Reusable Path

Path-AA* implements these operations efficiently by maintaining a pointer *pathstart*, which points to the state that begins the reusable path, and, for each state s, a pointer *nextstate*(s). If state s is in the reusable path and is not equal to state s_{goal} , then *nextstate*(s) points to the state that follows state s on the reusable path. Otherwise, *nextstate*(s) is NULL.

4.2 Implementation of the Operations

Removing a prefix from and adding a prefix to the reusable path is implemented as follows:

- Removing a Prefix of the Reusable Path: Whenever the cost of an arc (s,t) on the reusable path increases or the forward A* search of Path-AA* terminates because it is about to expand a state t on the reusable path, Path-AA* removes the prefix of the reusable path up to, but not including, state t. It performs this operation by starting at state *pathstart* and following the *nextstate*-pointers until it reaches state t, setting *nextstate(s) := NULL* for each visited state s (not including state t) and setting *pathstart := t*.
- Adding a Prefix to the Reusable Path: Whenever a forward A* search of Path-AA* terminates because it is about to expand a state t on the reusable path, then Path-AA* adds the path from state $s_{current}$ to state t found by the forward A* search to the reusable path as a prefix by setting next state(s) to the next state on the cost-minimal path from state $s_{current}$ to state t for each state s on the path from state $s_{current}$ to state t (not including state t) and setting $path start := s_{current}$.

4.3 Pseudo Code

Figure 3 shows the pseudo code of the version of Path-AA* that extends the lazy version of AA*. We use this version of Path-AA* since it ran faster in our experiments than the version of Path-AA* that extends the eager version of AA*.

Path-AA* performs a forward A* search from state $s_{current}$ to state s_{goal} (Line 49, function ComputePath) until it is about to expand state s_{goal} or a state s on the reusable path (Line 25, termination principle). It then remembers the cost of the path found during the forward A* search (Line 26, update principle) to eventually be able to set the h-value of every expanded state t to the cost of the path found during the forward A* search minus the g-value of state t. It then shortens the reusable path to the cost-minimal path from state s to state s_{goal} (Line 27, procedure CleanPath) and adds the cost-minimal path from state $s_{current}$ to state s as a prefix to the reusable path (Line 28, procedure MakePath). The agent then repeatedly moves from state $s_{current}$ to state $nextstate(s_{current})$ along the

01 procedure InitializeState(s)02 if (generated(s) = 0) $g(s) := \infty;$ h(s) := H(s);03 04
$$\begin{split} nextstate(s) &:= NULL; \\ \text{else if } (generated(s) \neq counter) \\ \text{ if } (g(s) + h(s) < pathcost(generated(s))) \end{split}$$
050607 08 $\tilde{h}(s) := pathcost(generated(s)) - \tilde{g}(s);$ 09 $g(s) := \infty;$ 10 generated(s) := counter; 11 procedure MakePath(s)12 while $(s \neq s_{current})$ $s_{aux} := s;$ s := parent(s);13 1415 $nextstate(s) := s_{aux};$ 16 $pathstart := s_{current};$ 17 procedure CleanPath(s)18 while $(pathstart \neq s)$ $s_{aux} := nextstate(pathstart);$ 1920next state(path start) := NULL; $pathstart := s_{aux};$ 2122 procedure ComputePath() 23while $(OPEN \neq \emptyset)$ 24 delete a state s with the smallest f-value g(s) + h(s) from OPEN; if $(s = s_{goal} \text{ or } nextstate(s) \neq NULL)$ $\frac{25}{26}$ pathcost(counter) := g(s) + h(s);CleanPath(s); 27 MakePath(s);28return true; /* path from $s_{current}$ to s_{qoal} found */ 2930 for all $t \in Succ(s)$ 31 InitializeState(t); 32 33 34 $\begin{array}{l} \text{if } (g(t) > g(s) + c(s,t)) \\ g(t) := g(s) + c(s,t); \\ parent(t) := s; \end{array}$ 35 if $(t \in OPEN)$ 36delete t from OPEN; 37 insert t into OPEN with f-value g(t) + h(t); 38 return false; /* no path from $s_{current}$ to s_{goal} found */ 39 procedure Main() 40counter := 1;41 $pathstart := s_{goal};$ 42 for all $s \in S$ 42 Ion an $s \in S$ 43 generated(s) := 0; 44 while ($s_{current} \neq s_{goal}$) 45 InitializeState($s_{current}$); $g(s_{current}) := 0;$ $OPEN := \emptyset;$ 4647insert $s_{current}$ into OPEN with f-value $g(s_{current}) + h(s_{current})$; $\begin{array}{c} 48 \\ 49 \end{array}$ if (ComputePath() = false) return false; /* failure: s_{goal} is unreachable */ while (nextstate($s_{current}$) \neq NULL) 50 5152 $s_{current} := nextstate(s_{current});$ $53 \\ 54$ update all increased arc costs (if any); for all increased arc costs c(s, t)if (nextstate(s) = t)CleanPath(t); 555657 counter := counter + 1; 58 return true; /* success: s_{goal} has been reached */

cost-minimal path (Line 52). Whenever arc costs increase, it shortens the reusable path (Line 56, procedure CleanPath). If state $s_{current}$ is no longer on the reusable path, the agent performs another forward A* search and then repeats the process

Fig. 3 Path Adaptive A^{*} (Path-AA^{*}).

Fig. 4 Example Trace of Path-AA*

until it either reaches state s_{goal} or can no longer find a path from state $s_{current}$ to state s_{goal} .

4.4 Example Trace

Figure 4(a-d) shows a goal-directed navigation problem in unknown terrain, similar to the one described in Figure 2. The user-provided H-values are all zero. The generated-value of a cell is shown in its lower left corner. The h- and g-values of a cell are shown in its upper right and upper left corners, respectively, iff it has been generated by a forward A* search. A cell is gray iff it was expanded by the current forward A* search. The parent of a cell is a thick arrow iff it was added to the reusable path by the current forward A* search. The solid circle marks the current cell of the agent, and the hollow circle marks the goal cell. An 'X' marks the cell on the reusable path that the current forward A* search was about to expand before it terminated.

Figure 4(a) shows the actual environment, and Figure 4(b) shows the initial situation as the agent perceives it. The first forward A* search of Path-AA* from cell C1 to cell C5 expands cells C1, C2, B1, C3, B2, A1, C4, B3 and A2 in this order and terminates when it is about to expand goal cell C5. Figure 4(b) shows the situation after the first forward A* search terminates. It finds the path C1-C2-C3-C4-C5, makes it the reusable path and remembers the cost of the path by setting pathcost(1) := 4 to be able to update the *h*-values of expanded states when necessary. The agent then follows the reusable path from cell C1 to cell C2, where it observes that cell C3 is blocked. Path-AA* removes path C1-C2-C3-C4 from the reusable path, leaving path C4-C5 as the new reusable path.

The second forward A* search of Path-AA* from cell C2 to cell C5 expands cells C2, B2, B3, B4, A3, A2, B5, A4 in this order, updating the *h*-values of all generated states, and terminates when it is about to expand goal cell C5. It expands fewer cells than a forward A* search with the user-provided zero *H*-values would (which additionally expands cells C1, B1, A1 and C4), illustrating the speed-up achieved with the update principle. Figure 4(c) shows the situation after the second forward A* search terminates. Path-AA* removes C4-C5 from the reusable path, makes C2-B2-B3-B4-B5-C5 the new reusable path and sets pathcost(2) := 5. The agent then moves from cell C2 to cell B2, where it observes that cell B3 is blocked. Path-AA* removes path C2-B2-B3-B4 from the reusable path, leaving path B4-B5-C5 as the new reusable path.

The third forward A^* search of Path-AA^{*} from cell B2 to cell C5 expands cells B2, B1, A1, A2, A3, A4 and A5 in this order, updating the *h*-values of all generated states, and terminates when it is about to expand cell B5, which lies

on the reusable path. It terminates earlier than a regular forward A* search with the same *h*-values would (which additionally expands cell B5 and terminates only when it is about to expand goal cell C5), illustrating the speed-up achieved with the early termination principle. Figure 4(d) shows the situation after the third forward A* search terminates. Path-AA* removes path B4-B5 from the reusable path and makes B2-A2-A3-A4-A5-B5-C5 the new reusable path and sets pathcost(3) := 6.

4.5 Theoretical Results

In this section, we show that any search of Path-AA^{*} finds a cost-minimal path if one exists and returns false otherwise. It should be noted that this does not guarantee that the agent follows a cost-minimal path from its starting position to its goal position in the actual environment. It guarantees only that the agent always follows a cost-minimal path from its current position to its goal position, with respect to the observed arc costs, under the freespace assumption.

Throughout the proofs, we refer to the *i*th execution of lines 45-50 as the *i*th search. We use the superscript *i* to denote the value of a variable when the *i*th search terminates. We say that a state *s* is generated during the *i*th search iff generated^{*i*}(*s*) = counter^{*i*}. Some of the following statements also hold for Tree-AA*, with small modifications. Text inside brackets is used to help translate these statements to Tree-AA* and should be ignored for Path-AA*.

Definition 1 We recursively define $x^i(s)$ as follows:

- $-x^0(s) = H(s);$
- $-x^{i}(s) = x^{i-1}(s)$ if state s is not generated during the *i*th search; and
- $-x^{i}(s) = max(x^{i-1}(s), pathcost(i) g^{i}(s))$ if state s is generated during the *i*th search.

Definition 2 For any $i \ge 0$, the *heuristic statement* \mathcal{H}^i is defined to hold at a given point during the execution iff, at that point, x^i is a consistent heuristic function, given the arc costs at that point.

Definition 3 For any $i \ge 0$, the *path statement* \mathcal{P}^i is defined to hold at a given point during the execution iff, at that point,

- the *nextstate*-pointers form a path starting at *pathstart* and ending at state s_{qoal} , called the reusable path; and
- from any state s with $nextstate(s) \neq NULL$, one can use the *nextstate*-pointers to follow a path from state s to state s_{goal} with cost $x^i(s)$.

Lemma 1 For any state s and any i > 0, $x^i(s) \ge x^{i-1}(s)$.

Proof If state s is not generated during the *i*th search, $x^i(s) = x^{i-1}(s)$. Otherwise, $x^i(s) = max(x^{i-1}(s), pathcost(i) - g^i(s)) \ge x^{i-1}(s)$. The inequality holds in both cases.

Lemma 2 For any i > 0, whenever procedure InitializeState is called for any state s during the *i*th search, the h-value of state s is $x^{i-1}(s)$ when the call terminates. When the *i*th search terminates, $h^i(s) = x^{i-1}(s)$ for all states s generated during the search.

Proof When procedure InitializeState is called for state s during the *i*th search, counter = i and $generated(s) \in \{0, \ldots, i\}$. The former property holds because counter is initially set to 1 (Line 40) [Line 57] and incremented after each search (Line 57) [Line 74]. The latter property holds because generated(s) is initially set to 0 (Lines 42-43) [Lines 59-60] and only modified by setting it to counter(Line 10) [Line 11]. If procedure InitializeState is called for a state s more than once during the *i*th search, generated(s) is set to *i* (Line 10) [Line 11] during the first call and the subsequent calls have no effect. Therefore, the only calls to procedure InitializeState during the *i*th search that might affect h(s) are those where generated(s) < i. Also note that a state s is generated during the *i*th search.

We prove the lemma by strong induction on the number of searches. During the first search, whenever procedure InitializeState is called for a state s for the first time, generated(s) = 0 and, therefore, h(s) is set to $H(s) = x^0(s)$ (Lines 2,4) [Lines 2,4] and generated(s) is set to 1 (Line 10) [Line 11]. The subsequent calls to procedure InitializeState for state s do not change h(s) because generated(s) = 1and counter = 1 (Lines 2,6) [Lines 2,7]. Therefore, the lemma holds for the base case i = 1.

For the induction step, we show that the lemma holds for the *i*th search, assuming that it holds for searches $1, \ldots, i-1$. Assume that procedure InitializeState is called for a state s during the *i*th search and generated(s) = j < i. This means that state s has not been generated during searches $j + 1, \ldots, i - 1$, which implies that $x^{j}(s) = \cdots = x^{i-1}(s)$ (Definition 1). It also means that it is the first time procedure InitializeState is called for state s during the ith search because, otherwise, generated(s) = i (Line 10) [Line 11]. We distinguish two cases: If j = 0, then h(s) is set to $H(s) = x^{j}(s)$. Otherwise, i > j = generated(s) > 0, meaning that state s was generated during the *j*th search and this is the first time that state s is being generated since then. In this case, when state s is generated, its h-value is set to $\max(h(s), pathcost(j) - g(s))$ (Lines 6-8) [Lines 7-9]. Since the g-value of a state cannot be modified during a search without first generating the state (Lines 31,33) [Lines 48,50] and since state s has not been generated since the *j*th search, it must hold that $g(s) = g^{j}(s)$. Also, according to our strong induction assumption, $h(s) = x^{j-1}$. Therefore, the *h*-value of state s is set to $\max(x^{j-1}(s), pathcost(j) - g^{j}(s)) = x^{j}(s) = x^{i-1}(s)$ (Definition 1), proving the induction statement.

Lemma 3 For any i > 0, assume that \mathcal{H}^{i-1} and \mathcal{P}^{i-1} hold in the beginning of the *i*th search. Then, if a path does not exist between state $s_{current}$ and state s_{goal} , then the *i*th search returns false. Otherwise,

- the *i*th search finds a cost-minimal path between state $s_{current}$ and state s_{goal} ;
- the cost of this path is $g^i(s) + h^i(s)$ and it contains state s, where state s is the last state considered for expansion on Line 24 [Line 42];
- the cost of this path is stored in pathcost(i); and
- one can follow this path by following the next state-pointers from state $s_{current}$ to state s_{goal} .

Proof The *i*th search of Path-AA^{*} is basically an A^{*} search that uses x^{i-1} as its heuristic function (Lemma 2), with one major difference: the *i*th search of Path-AA^{*} terminates already if a state *s* with $nextstate(s) \neq NULL [h(s) \leq H_{max}(id(s))]$

is about to be expanded (Line 25) [Line 43]. According to the lemma's assumption, x^{i-1} is a consistent heuristic function (the properties of an A^{*} search using a consistent heuristic function are listed in Section 2 as Properties 1-4).

We first assume that $nextstate(s) \neq NULL [h(s) \leq H_{max}(id(s))]$ is never satisfied for any state s considered for expansion on Line 24 [Line 42] during the *i*th search. Then, the *i*th search is simply an A* search that is guaranteed to terminate, either proving that there is no path from state $s_{current}$ to state s_{goal} or finding a cost-minimal path that can be identified by following the *parent*-pointers from state s_{goal} to state $s_{current}$ (Properties 1 and 4). In the former case, we are done. In the latter case, Line 26 [Line 44] sets $pathcost(i) = g^i(s_{goal}) + h^i(s_{goal})$ and Line 28 [Line 45] calls procedure MakePath [AddPath], which follows the *parent*-pointers from state s_{goal} to state $s_{current}$ to identify a cost-minimal path from state $s_{current}$ to state s_{goal} in reverse (Property 4) and adds *nextstate*-pointers so that one can follow this path from state $s_{current}$ to state s_{goal} .

We now assume that $next state(s) \neq NULL [h(s) \leq H_{max}(id(s))]$ for a state s considered for expansion on Line 24 [Line 42] during the *i*th search. According to the assumption of the lemma, one can use the nextstate-pointers to follow a path from state s to state s_{goal} with cost $x^{i-1}(s) = h(s)$. Also, one can use the *parent*-pointers to follow a path from state $s_{current}$ to state s in reverse, with cost g(s) (Property 1). Combining the two statements, we get a path from state $s_{current}$ through state s to state s_{goal} , whose cost is $g(s) + x^{i-1}(s) = g(s) + h(s)$. This must be a cost-minimal path because otherwise there would be a lower-cost path and the search would have found it earlier because the sequence of f-values of states expanded by an A^{*} search with a consistent heuristic function is monotonically non-decreasing (Property 2). Since the search terminates after the path is found, the g- and h-values of states are not changed. Therefore, the cost of this costminimal path is $g^{i}(s) + h^{i}(s) = g(s) + h(s)$ and is stored as pathcost(i) (Line 26) [Line 44]. Procedure CleanPath [RemovePaths] does not change the nextstatepointers of any state t that comes after state s on the reusable path, and procedure MakePath [AddPath] adds *nextstate*-pointers from state $s_{current}$ to state s so that one can follow the *nextstate*-pointers from state $s_{current}$ to state s_{goal} .

Lemma 4 For any i > 0, assume that \mathcal{H}^{i-1} and \mathcal{P}^{i-1} hold in the beginning of the *i*th search. If the *i*th search finds a path, then the following holds: If a state s is expanded during the *i*th search, then $x^i(s) = pathcost(i) - g^i(s)$. Otherwise, $x^i(s) = x^{i-1}(s)$.

Proof If a state s is generated during the *i*th search, then $x^i(s) = max(x^{i-1}(s), pathcost(i)-g^i(s))$ (Definition 1). The cost of the path found is equal to $pathcost(i) = g^i(t)+h^i(t)$, where state t is the last state considered for expansion on Line 24 [Line 42] (Lemma 3). If state s is expanded during the *i*th search, that is, if state s is chosen for expansion earlier than state t, then it must be that $g^i(s) + h^i(s) \leq g^i(t) + h^i(t) = pathcost(i)$ because the sequence of f-values of the expanded states is monotonically non-decreasing (Property 2) and a state cannot be expanded twice (Property 5). Replacing $h^i(s)$ with $x^{i-1}(s)$ (Lemma 2), we get $g^i(s) + x^{i-1}(s) \leq pathcost(i) - g^i(s)$) = $pathcost(i) - g^i(s)$. On the other hand, if state s is generated but not expanded during the *i*th search, then $g^i(s) + h^i(s) \geq g^i(t) + h^i(t) = pathcost(i)$ because otherwise state s would have been chosen for expansion before state t, which implies $x^{i-1}(s) \geq pathcost(i) - g^i(s)$. Therefore,

 $x^{i}(s) = max(x^{i-1}(s), pathcost(i) - g^{i}(s)) = x^{i-1}(s)$. If state s has not been generated (and therefore not been expanded) during the *i*th search, then $x^{i}(s) = x^{i-1}(s)$ (Definition 1).

Lemma 5 For any i > 0, assume that \mathcal{H}^{i-1} and \mathcal{P}^{i-1} hold in the beginning of the *i*th search. If the *i*th search finds a path, then \mathcal{H}^i holds in the beginning of the (i+1)st search.

Proof First, we show that $x^i(s_{goal}) = 0$. According to the lemma's assumption that \mathcal{H}^{i-1} holds, $x^{i-1}(s_{goal}) = 0$. Since considering s_{goal} for expansion is one of the termination conditions of the search (Line 25) [Line 43], s_{goal} is never expanded during a search. Therefore, $x^i(s_{goal}) = x^{i-1}(s_{goal}) = 0$ (Lemma 4).

Second, we show that, if the *i*th search finds a path, then the triangle inequality $x^{i}(s) \leq d(s,t) + x^{i}(t)$ holds for any two states *s* and *t* such that $(s,t) \in A$, given the arc costs at the end of the *i*th search (which are the same as the arc costs in the beginning of the *i*th search). We distinguish three cases:

- State s is not expanded: Since we assume that x^{i-1} is consistent in the beginning of the *i*th search, $x^{i-1}(s) \leq d(s,t) + x^{i-1}(t)$. According to Lemma 1, $x^{i-1}(t) \leq x^i(t)$ and therefore $x^{i-1}(s) \leq d(s,t) + x^i(t)$. Since state s is not expanded, we can replace $x^{i-1}(s)$ with $x^i(s)$ (Lemma 4) to get $x^i(s) \leq d(s,t) + x^i(t)$.
- State s is expanded before state t is expanded, or state s is expanded but not state t: Expanding state s generates state t if it has not been generated during the current search (Lines 30-31) [Lines 47-48]. After state s is expanded, $g(t) \leq g(s) + d(s,t)$ (Lines 30-33) [Lines 47-50]. During a search, the g-value of a state can never increase after it is initialized (Lines 32-33) [Lines 49-50] and therefore $g^i(t) \leq g(t) \leq g(s) + d(s,t)$. Also, the g-value of an expanded state remains unchanged until the end of the search (Property 1). Thus, $g(s) = g^i(s)$. Furthermore, since state s is expanded, $g^i(s) = pathcost(i) - x^i(s)$ (Lemma 4). Replacing g(s) with $pathcost(i) - x^i(s)$ in the above inequality, we get $g^i(t) \leq$ $pathcost(i) - x^i(s) + d(s,t)$. We distinguish two cases after state s is expanded:
 - If state t is also expanded before the search terminates, then we can replace $g^i(t)$ with $pathcost(i) x^i(t)$ (Lemma 4) to get $pathcost(i) x^i(t) \le pathcost(i) x^i(s) + d(s, t)$ and consequently $x^i(s) \le d(s, t) + x^i(t)$.
 - If the search terminates before state t is expanded, then $x^{i}(t) = x^{i-1}(t)$ (Lemma 4). From Definition 1, by replacing $x^{i-1}(t)$ with $x^{i}(t)$, we get $x^{i}(t) = max(x^{i}(t), pathcost(i) - g^{i}(t))$. Thus, $pathcost(i) - g^{i}(t) \leq x^{i}(t)$ and, consequently, $pathcost(i) - x^{i}(t) \leq g^{i}(t)$. Combined with $g^{i}(t) \leq pathcost(i) - x^{i}(s) + d(s, t)$, we get $pathcost(i) - x^{i}(t) \leq pathcost(i) - x^{i}(s) + d(s, t)$ and consequently $x^{i}(s) \leq d(s, t) + x^{i}(t)$.
- State s is expanded after state t: Since the search uses a consistent heuristic function, $g^i(t) + h^i(t) \leq g^i(s) + h^i(s)$ (Property 2). Replacing $h^i(s)$ and $h^i(t)$ with $x^{i-1}(s)$ and $x^{i-1}(t)$, respectively, (Lemma 2) and rearranging the terms, we get $g^i(t)-g^i(s) \leq x^{i-1}(s)-x^{i-1}(t)$. Since we assume that x^{i-1} is consistent, $x^{i-1}(s)-x^{i-1}(t) \leq d(s,t)$. Combined with the above inequality, we get $g^i(t)-g^i(s) \leq d(s,t)$. Since both state s and state t are expanded, we can replace $g^i(s)$ with $pathcost(i) x^i(s)$ and $g^i(t)$ with $pathcost(i) x^i(t)$ (Lemma 4) and get $pathcost(i) x^i(t) pathcost(i) + x^i(s) \leq d(s,t)$ and, consequently, $x^i(s) \leq d(s,t) + x^i(t)$.

We have shown that the triangle inequality holds at the end of the *i*th search. Lines 51-57 [Line 68-75] can only increase but never decrease the arc costs. Therefore, x^i remains consistent and \mathcal{H}^i holds at the beginning of the (i + 1)st search. \Box

Lemma 6 For any i > 0, assume that \mathcal{H}^{i-1} and \mathcal{P}^{i-1} hold in the beginning of the *i*th search. If the *i*th search finds a path, then \mathcal{P}^i holds in the beginning of the (i+1)st search.

Proof Let state t be the state that satisfied the termination condition on Line 25, that is, $t = s_{goal}$ or $nextstate(t) \neq NULL$. The call to procedure CleanPath removes the prefix of the previous path up to t and the call to procedure MakePath adds nextstate-pointers so that there is a cost-minimal path from state $s_{current}$ to state s_{goal} with cost pathcost(i) (Lemma 3) and any state s with $nextstate(s) \neq NULL$ is on this path. Procedure MakePath also sets pathstart to $s_{current}$ (Line 16). We now show that \mathcal{P}^i holds at the end of the *i*th search by showing that, from any state s with $nextstate(s) \neq NULL$, one can follow a path from state s to state s_{goal} with cost $x^i(s)$ by following the *nextstate*-pointers. We distinguish two cases:

- If state s is expanded during the *i*th search, then $g^i(s)$ is the cost of a costminimal path from state $s_{current}$ to state s (Property 1). Since s is on the costminimal path from state $s_{current}$ to state s_{goal} with cost pathcost(i), and since the cost of the path from state $s_{current}$ to state s is $g^i(s)$, the cost of the path from state s to state s_{goal} is $pathcost(i) - g^i(s)$. This is equal to $x^i(s)$ (Lemma 4).
- If state s has not been expanded during the *i*th search, then it cannot be the *parent* of any other state in the *i*th search. Therefore, state s cannot precede state t on the path after the *i*th search (since the prefix of the path up to state t is constructed by following the *parent*-pointers from state t to state $s_{current}$). Since we assume that \mathcal{P}^{i-1} holds in the beginning of the *i*th search, we can follow the *nextstate*-pointers from state s to state s_{goal} with cost $x^{i-1}(s)$ in the beginning of the *i*th search. Since the suffix of the path from state t to state s_{goal} and the arc costs remain the same during the *i*th search, we can follow the *nextstate*-pointers from state s to state s_{goal} with cost $x^{i-1}(s)$ at the end of the *i*th search. Since state s has not been expanded during the *i*th search, $x^{i-1}(s) = x^i(s)$ (Lemma 4).

We have shown that \mathcal{P}^i holds at the end of the *i*th search. During the execution of Lines 51-57, some arc costs might increase. If the cost of an arc on the path increases, the prefix of the path up to and including the arc with the increased cost is discarded, by calling procedure CleanPath. Therefore, \mathcal{P}^i holds in the beginning of the (i+1)st search.

Lemma 7 For any i > 0, \mathcal{H}^{i-1} and \mathcal{P}^{i-1} hold in the beginning of the *i*th search.

Proof The proof is by induction on the number of searches of Path-AA*. In the beginning of the first search, \mathcal{H}^0 holds because $x^0(s) = H(s)$ for all states s (Definition 1) and we assume that H is a consistent heuristic function. \mathcal{P}^0 also holds because the reusable path is empty (since nextstate(s) = NULL for all states s), and $pathstart = s_{goal}$. To prove the inductive step, we assume that \mathcal{H}^{i-1} and \mathcal{P}^{i-1} hold in the beginning of the *i*th search. If no path is found, then Path-AA* terminates. Otherwise, \mathcal{H}^i and \mathcal{P}^i hold in the beginning of the (i + 1)st search (Lemmata 5 and 6).

Fig. 5 Illustration of the Reusable Trees

Theorem 1 Any search of Path-AA* finds a cost-minimal path between state $s_{current}$ and state s_{goal} if one exists and returns false otherwise.

Proof The proof follows from Lemmata 7 and 3.

5 Tree-Adaptive A* (Tree-AA*)

Path-AA* reuses only a suffix of the cost-minimal path of the current forward A* search (= reusable path) to terminate its next forward A* search before it is about to expand the goal state. In complex terrain, the next forward A* search is unlikely to expand a state on that path far away from state s_{goal} and thus unlikely to terminate much earlier than a regular forward A* search. Tree-AA* [10] generalizes Path-AA* by reusing suffixes of the cost-minimal paths of the current and all previous forward A* searches (= reusable tree) to terminate its next forward A* search even earlier. The reusable tree of Tree-AA* is similar to the search tree of D* Lite since D* Lite performs backward A* searches to guarantee that the root of the search tree does not change. The reusable trees of Tree-AA* and D* Lite are thus both rooted in state s_{goal} .

Tree-AA* maintains cost-minimal paths from several states to state s_{goal} organized in form of the reusable tree rooted in state s_{goal} . If the *h*-values of all states in the reusable tree are the same as their respective goal costs, then each forward A* search of AA* can terminate when it is about to expand a state in the reusable tree, for the same reasons as in the context of Path-AA*. Tree-AA* needs to support two operations, namely adding a path to the reusable tree and removing paths from the reusable tree:

- Adding a Path to the Reusable Tree: When a forward A^* search of Tree-AA^{*} terminates because it is about to expand a state s in the reusable tree, then Tree-AA^{*} adds the path from state $s_{current}$ to state s to the reusable tree. It does this because the (cost-minimal) path from state $s_{current}$ to state s and the (cost-minimal) path from state s to state s_{goal} along the branch of the reusable tree form a cost-minimal path from state $s_{current}$ to state s_{goal} (since AA^{*} finds

cost-minimal paths) and the h-values of all states on the path are the same as their goal costs (since AA* has updated them this way).

- Removing Paths from the Reusable Tree: When arc costs in the reusable tree increase, then Tree-AA^{*} re-uses the largest prefix of the reusable tree that does not contain increased arc costs. (By prefix of a tree we mean the top part of the tree that includes its root.) It does this because all branches of the resulting tree are cost-minimal paths from some state to state s_{goal} and the *h*-values of all states in the resulting tree are still the same as their goal costs. In particular, when arc cost c(s,t) in the reusable tree increases, then Tree-AA^{*} finds the largest prefix of the reusable tree by removing the subtree rooted in state *s* from the reusable tree.

5.1 Implementation of the Reusable Tree

Tree-AA^{*} implements the above two operations efficiently by maintaining two variables for every state and three variables for every path $p = s_0 \dots s_n$ in the reusable tree, where s_0 is the state at the start of the path and s_n is the state at the end of the path that a forward A^{*} search was about to expand when it terminated. We say that the states $s_0 \dots s_{n-1}$ belong to path p. Every path in the reusable tree is identified with a unique integer that corresponds to the number of the forward A^{*} search after which it was added to the reusable tree (starting with one). Every path in the reusable tree is the prefix of a cost-minimal path from some state to state s_{goal} . The *h*-values of all states on the path are the same as their goal costs and thus are strictly monotonically decreasing along the path. The variables are as follows:

- -id(s) is the path in the reusable tree which state s belongs to. These values are initialized to zero, which means that state s is either the same as state s_{goal} or not in the reusable tree.
- nextstate(s) is the parent of state s in the reusable tree if state s is a state different from state s_{goal} in the reusable tree.
- $H_{max}(p)$ is the largest *h*-value of any state on path $p = s_0 \dots s_n$, that is, $H_{max}(p) = h(s_0)$. $H_{max}(0) = -1$, as explained below.
- $-H_{min}(p)$ is the smallest *h*-value of any state on path $p = s_0 \dots s_n$, that is, $H_{min}(p) = h(s_n)$.
- Paths(p) is the set of all paths in the reusable tree that connect to one of the states $s_0 \ldots s_{n-1}$ that belong to path $p = s_0 \ldots s_n$. These paths "feed into" path p.

In the worst case, Tree-AA^{*} needs to store a tree that contains the cost-minimal paths from every state in the state space to the goal state. This tree can be embedded into the data structure for the grid world and requires memory that is at most linear in the size of the graph.

Figure 5(a) shows a fictitious example of a reusable tree. Values are shown only for cells that are in the reusable tree. The *id*-value of a cell is shown in its bottom right corner. The *h*-value of a cell is shown in its upper right corner. The parent of a cell is pointed to by an arrow. All arrows thus form the reusable tree, that consists of five paths. Path 1 is path C1-C2-C3-C4-C5, path 2 is path D2-D3-D4-C4, path 3 is path A5-B5-C5, path 4 is path B1-B2-B3-C3, and path 5 is path A1-A2-B2. The table shows the values of the variables of all paths.

5.2 Implementation of the Operations

State s_{goal} is always in the reusable tree. Tree-AA* could check whether id(s) > 0when it needs to check whether a state different from state s_{goal} is in the reusable tree. However, this would require id(s) to be set to zero when state s is removed from the reusable tree, which is expensive since Tree-AA* often needs to remove whole paths from the reusable tree. Thus, Tree-AA* checks whether $h(s) \leq H_{max}(id(s))$ when it needs to check whether a state different from state s_{goal} is in the reusable tree. (State s_{goal} fails this test.) Tree-AA* can now remove a path p from the reusable tree by setting $H_{max}(p)$ to $H_{min}(p)$ without having to set id(s)to zero for all states s that belong to path p. Thus, id(s) = 0 is not necessarily true for states s not in the reusable tree. There are two subtleties here. States sdifferent from state s_{goal} that have not yet been part of the reusable tree correctly fail the test since $H_{max}(id(s)) = H_{max}(0) = -1$. States s different from state s_{goal} that were part of the reusable tree but have subsequently been removed correctly fail the test since they have an h-value larger than $H_{max}(id(s))$. Tree-AA* adds a path to the reusable tree and removes paths from the reusable tree as follows:

- Adding a Path to the Reusable Tree: Tree-AA* adds a path $p = s_0 \dots s_n$ to the reusable tree as follows. It equates p with the number of the current forward A^* search (as given by the variable *counter*) to identify the path with a unique integer. It inserts p into the set $Paths(id(s_n))$ if state s_n is different from state s_{goal} since path p feeds into the path that state s_n belongs to (Lines 13-14). (The line numbers refer to the pseudo code of Tree-AA^{*} in Figure 6.) It sets $H_{min}(p)$ to $h(s_n)$ (Line 15) and $H_{max}(p)$ to pathcost(counter) (Line 16) since the h-values are strictly monotonically decreasing along the path. It sets Paths(p) to the empty set (Line 17) since no paths feed into path p yet. It sets id(s) to p and next state(s) to the successor of state s on path p for all states $s_0 \dots s_{n-1}$ (Lines 18-22) since the states $s_0 \ldots s_{n-1}$ belong to path p. The runtime of adding a path to the reusable tree is thus basically proportional to the number of states on the path. Note that, instead of explicitly setting $H_{min}(p)$ to $h(s_0)$, it sets $H_{min}(p)$ to pathcost(counter) (Line 16). This is because, due to the lazy updates of h-values, $h(s_0)$ is not immediately updated and, since $s_0 = s_{current}$ (that is, $g(s_0) = 0$, its updated value is *pathcost(counter)*.
- Removing Paths from the Reusable Tree: When arc cost c(s, t) increases, then Tree-AA* removes paths from the reusable tree as follows. If nextstate(s) = t then the arc might be in the reusable tree (Lines 72-73), namely on path p := id(s) (Line 24). In this case, Tree-AA* sets $H_{max}(p)$ to h(t) (if it was larger) to shorten path p (Lines 25-27). Note that, with lazy h-value updates, h(t) might not have been updated yet, therefore its current h-value needs to be computed (Line 25). Tree-AA* then removes all paths $p' \in Paths(p)$ with $H_{max}(p) < H_{min}(p')$ from the set Paths(p) and schedules them for removal from the reusable tree (Lines 28-32). For each path p scheduled for removal with $H_{max}(p) > H_{min}(p)$, it sets $H_{max}(p)$ to $H_{min}(p)$, removes all paths $p' \in Paths(p)$ from the set Paths(p) and schedules them recursively for removal from the reusable tree (Lines 33-39). The runtime of removing paths from the reusable tree when one arc cost increases is thus basically proportional to the number of paths in the reusable tree, which is bounded by the number of forward A* searches performed so far.

Figure 5(b) continues the fictitious example from Figure 5(a) by showing the reusable tree after Tree-AA* removed paths from the reusable tree after cell B2 became blocked. Tree-AA* shortened path 4 to path B3-C3 and removed path 5. Figure 5(c) shows the reusable tree after Tree-AA* added path A2-A3-B3 to the reusable tree.

5.3 Pseudo Code

Figure 6 shows the pseudo code for the version of Tree-AA* that extends the lazy version of AA*. Tree-AA* performs a forward A* search from state $s_{current}$ to state s_{goal} (Line 66, function ComputePath) until it is about to expand state s_{goal} or a state s on the reusable tree (Line 43, termination principle). It then remembers the cost of the path found during the forward A* search to eventually be able to set the h-value of every expanded state t to the cost of the path found during the forward A* search to eventually be able to set the h-value of every expanded state t to the cost of the path found during the forward A* search minus the g-value of state t (Line 44, update principle), and adds the cost-minimal path from state $s_{current}$ to state s to the reusable tree (Line 45, procedure AddPath). The agent then repeatedly moves from state $s_{current}$ to state nextstate($s_{current}$) along the cost-minimal path (Line 69). Whenever arc costs increase, it removes paths from the reusable tree (Line 73, procedure RemovePaths). If state $s_{current}$ is no longer in the reusable tree, it performs another forward A* search and then repeats the process until the agent either reaches state s_{goal} or can no longer find a path to state s_{goal} .

5.4 Example Trace

Figure 7(a-e) shows the goal-directed navigation problem in unknown terrain from Figure 4. Cell C1 is the start cell, and cell C5 is the goal cell. The user-provided H-values are all zero. The annotation is similar to Figure 4, with the addition of the *id*-values, which are shown in the bottom right corner of a cell iff it has been generated by a forward A* search.

Figure 7(a) shows the actual environment, and Figure 7(b) shows the initial situation as the agent perceives it. Figure 7(c) shows the situation after the first forward A* search of Tree-AA* from cell C1 to cell C5 terminates when it is about to expand cell C5 and returns path C1-C2-C3-C4-C5. Tree-AA* adds the path to the reusable tree and remembers the cost of the path by setting pathcost(1) := 4, to be able to update the *h*-values of expanded states when necessary. The agent then follows the branch of the reusable tree from cell C1 to cell C2, where it observes that cell C3 is blocked. Tree-AA* removes path C1-C2-C3-C4 from the reusable tree. Figure 7(d) shows the situation after the second forward A* search of Tree-AA* from cell C2 to cell C5 terminates when it is about to expand cell C5 and returns path C2-B2-B3-B4-B5-C5. It expands fewer cells than a forward A* search with the user-provided zero H-values would (which additionally expands cells C1, B1 and A1), illustrating the speed-up achieved with the update principle. Tree-AA* adds the path to the reusable tree and remembers the cost of the path by setting pathcost(2) := 5, to be able to update the h-values of expanded states when necessary. The agent then moves from cell C2 to cell B2, where it observes that cell B3 is blocked. Tree-AA* removes path C2-B2-B3-B4 from the reusable

tree. Figure 7(e) shows the situation after the third forward A* search of Tree-AA* from cell B2 to cell C5 terminates when it is about to expand cell B5 and returns path B2-A2-A3-A4-A5-B5. It terminates earlier than a regular forward A* search with the same h-values would (which additionally expands cell B5 and terminates only when it is about to expand goal cell C5), illustrating the speed-up achieved with the termination principle.

5.5 Comparison of Path-Adaptive A* and Tree-Adaptive A*

Figures 4(a-e) and 7(a-e) showed a goal-directed navigation problem in unknown terrain where there was little difference between Path-AA* and Tree-AA*. Figures 8 and 9 show a goal-directed navigation problem in unknown terrain that illustrates their difference. Cell D1 is the start cell and cell A7 is the goal cell. Figures 8(a) and 9(a) show that the first forward A^{*} searches of Path-AA^{*} and Tree-AA^{*} produce the same result. The agent then moves from start cell D1 to cell D2, where it observes that cell D3 is blocked. When sensing the blocked cell, Path-AA* removes path D1-D2-D3-D4 from the reusable path, and Tree-AA* removes the same path from the reusable tree. Figure 8(b) shows that the second forward A^{*} search of Path-AA* terminates when it is about to expand cell C7, and Path-AA* removes path D4-D5-D6-D7-C7 from the reusable path and adds path D2-C2-C3-C4-C5-C6-C7 to the reusable path. Figure 9(b) shows that the second forward A* search of Tree-AA* also terminates when it is about to expand cell C7. Tree-AA* adds path D2-C2-C3-C4-C5-C6-C7 to the reusable tree, but it does not remove path D4-D5-D6-D7-C7 from the reusable tree. Thus, Tree-AA* removes fewer cells, which might allow its future forward A^* searches to terminate earlier. The agent then moves from cell D2 to cell C2, where it observes that cell C3 is blocked. Path-AA* and Tree-AA^{*} perform their third forward A^{*} searches. The agent then moves from cell C2 to cell B2, where it observes that cell B3 is blocked. Path-AA* and Tree-AA* perform their fourth forward A* searches. The agent then moves from cell B2 to cell A2, where it observes that cell A3 is blocked. Figure 8(c) shows that the fifth forward A* search of Path-AA* terminates when it is about to expand goal cell A7. Figure 9(c) shows that the fifth forward A* search of Tree-AA* terminates already when it is about to expand cell D7, illustrating the speed-up resulting from reusing the paths from the current and all previous forward A^* searches. The agent then moves from cell A2 to cell E4, where it observes that E5 is blocked. Figure 8(d) shows that the sixth forward A^* search of Path-AA* terminates when it is about to expand cell D7. Figure 9(d) shows that the sixth forward A^{*} search of Tree-AA^{*} terminates already when it is about to expand cell D4, again illustrating the speed-up resulting from reusing the paths from the current and all previous forward A* searches.

5.6 Theoretical Results

The theoretical results for Tree-AA^{*} are similar to the theoretical results for Path-AA^{*}. Definitions 1-2 and Lemmata 1-5 also apply to Tree-AA^{*}, with the following modifications:

- All line numbers that refer to lines in Figure 3 are replaced with the line numbers in brackets, which refer to lines in Figure 6.
- All occurrences of \mathcal{P}^i are replaced with \mathcal{T}^i (defined below).
- All occurrences of Path-AA* are replaced with Tree-AA*.
- The *i*th search refers to the *i*th execution of lines 62-67 in Figure 6.

Definition 4 *TREEⁱ* is the set of states *s* with $x^i(s) \leq H_{max}(id(s))$ at a given point during execution. All states $s \in TREE^i$ with id(s) = j form the *j*th branch of the tree. The tree statement \mathcal{T}^i is defined to hold at a given point during execution iff, at that point,

- for all j such that at least one state $s \in TREE^i$ satisfies id(s) = j, the nextstatepointers of the states in the jth branch of the tree form a path starting from a state t and ending at a state u, where $x^i(t) = H_{max}(j)$, $x^i(u) = H_{min}(j)$ and, if $u \neq s_{goal}$, $j \in Paths(id(u))$; and
- from any state $s \in TREE^i$, one can use the *nextstate*-pointers to follow a path from state s to state s_{goal} with cost $x^i(s)$, visiting only states $s \in TREE^i \cup \{s_{goal}\}$.

Lemma 8 For any i > 0, assume that \mathcal{H}^{i-1} and \mathcal{T}^{i-1} hold in the beginning of the *i*th search. If the *i*th search finds a path, then \mathcal{T}^i holds in the beginning of the (i+1)st search.

Proof First, we show that \mathcal{T}^{i-1} holds directly before the condition on Line 43 is satisfied. This is the case because we assume that \mathcal{T}^{i-1} holds in the beginning of the *i*th search and the *i*th search only modifies the g- and h-values of states before the termination condition on Line 43 is satisfied, which do not affect \mathcal{T}^{i-1} . Note that the changes to *nextstate*-pointers and *id*-values on Lines 5 and 6 do not affect \mathcal{T}^{i-1} because they are executed for states that are being generated for the first time, meaning they are not in $TREE^i$, and setting id(s) = 0 does not insert state s to the tree because $H_{max}(0) = -1$ (Line 58).

Second, we show that \mathcal{T}^i holds directly before the condition on Line 43 is satisfied, by showing that (1) for any state $s \in TREE^{i-1}$, $x^i(s) = x^{i-1}(s)$; and (2) $TREE^{i} = TREE^{i-1}$. This is a sufficient argument since \mathcal{T}^{i-1} holds before the condition on Line 43 is satisfied and the only difference between \mathcal{T}^i and \mathcal{T}^{i-1} is that \mathcal{T}^i uses x^i -values and $TREE^i$ whereas \mathcal{T}^{i-1} uses x^{i-1} -values and $TREE^{i-1}$ (Definition 4). To prove that (1) holds, let s be a state with $x^{i-1}(s) \leq H_{max}(id(s))$. We show that s can never be expanded during the search and, therefore, $x^{i}(s) =$ $x^{i-1}(s)$ (Lemma 4). For s to be expanded, it has to be in *OPEN* (Line 42 or Line 62) and, therefore, has to be generated first (Line 48). When s is generated, its h-value is set to $x^{i-1}(s)$ (Lemma 2) and, thus, $h(s) \leq H_{max}(id(s))$. Throughout the search, before the condition on Line 43 is satisfied, neither h(s), id(s), nor $H_{max}(id(s))$ are modified. Therefore, even if s is chosen for expansion on Line 42, it cannot be expanded because it would satisfy the termination condition on Line 43. To prove that (2) holds, we show that $TREE^{i-1} \setminus TREE^{i} = \emptyset$, and $TREE^{i} \setminus TREE^{i-1} = \emptyset$. $TREE^{i-1} \setminus TREE^{i} = \emptyset$ follows from (1) since it implies that, if $x^{i-1}(s) \leq H_{max}(id(s))$ (and thus $s \in TREE^{i-1}$), then $x^{i}(s) \leq H_{max}(id(s))$ (and thus $s \in TREE^{i-1}$) follows from $x^{i}(s) \geq x^{i-1}(s)$. for any state s (Lemma 1) since it implies that, if $x^i(s) \leq H_{max}(id(s))$ (and thus $s \in TREE^i$), then $x^{i-1}(s) \leq H_{max}(id(s))$ (and thus $s \in TREE^{i-1}$).

Third, we show that \mathcal{T}^i holds directly after the *i*th search, by showing that procedure AddPath preserves \mathcal{T}^i . Let state *s* be the state that satisfies the condition

on Line 43, that is, $s = s_{goal}$ or $h^i(s) \leq H_{max}(id(s))$. Procedure AddPath follows the *parent*-pointers from s to $s_{current}$ and sets id(t) = i for all states t visited, not including s. Let B denote the set of these states. Any state $t \in B$ must have been expanded by the *i*th search because, otherwise, they cannot be reached by following the *parent*-pointers. This means that they cannot be in $TREE^{i}$ before the condition on Line 43 is satisfied because, otherwise, the *i*th search would stop before expanding them. Therefore, procedure AddPath preserves \mathcal{T}^i for any of the existing states in *TREE*^{*i*}. When procedure AddPath sets $H_{max}(i) = pathcost(i)$ (Line 16), all states in B are added to $TREE^{i}$. This is because, for any state $t \in B$, it holds that $x^{i}(t) = pathcost(i) - q^{i}(t)$ since they have been expanded during the *i*th search (Lemma 4). Consequently, $x^{i}(t) = pathcost(i) - g^{i}(t) \leq pathcost(i) = H_{max}(i)$. We show that all states $t \in B$ satisfy \mathcal{T}^i to show that \mathcal{T}^i holds after the *i*th search. Procedure AddPath adds *nextstate*-pointers for every state $t \in B$, forming a path from state $s_{current}$ to state s, so that one can use these *nextstate*-pointers to follow a path from any state $t \in B$ to state s and, eventually, to state s_{goal} (since \mathcal{T}^i holds for s). Since all the states in B are added to the tree, one visits only states in $TREE^{i} \cup \{s_{goal}\}$ when using *nextstate*-pointers to follow a path from any state in B to state s_{aoal} . For any $t \in B$, $q^{i}(t)$ is the cost of a cost-minimal path from state $s_{current}$ to state t, since t has been expanded during the *i*th search (Property 1). Then, the cost of the remaining path from state t to state s_{qoal} is $pathcost(i) - g^i(s)$, which is equal to $x^{i}(s)$, as shown above. Procedure AddPath also does the following, to preserve \mathcal{T}^i . It adds *i* into Paths(id(s)) if $s \neq s_{goal}$ (Lines 13-14) and it sets $H_{min}(i) = h(s)$ (Line 15), which is equal to $x^{i-1}(s)$ (Lemma 2), which, in turn, is equal to $x^{i}(s)$, since the *i*th search terminates before expanding state s (Lemma 4).

Fourth, we show that \mathcal{T}^i holds in the beginning of the (i + 1)st search, that is, Lines 68-74 preserve \mathcal{T}^i . While the agent is moving, it might observe increased arc costs (Line 70), which might violate \mathcal{T}^i because for some states $t \in TREE^i$, one will no longer be able to use the *nextstate*-pointers to follow a path from state t to state s_{goal} with cost $x^i(s)$, due to the increased arc cost. We now show that calling procedure RemovePath removes these states from the tree to preserve \mathcal{T}^i .

Let (s,t) be the arc with the increased cost and let $u \in TREE^i$ be a state that uses this arc when one is using the *nextstate*-pointers to follow a path from state u to state s_{goal} (therefore, $u \neq t$). Let $\pi = (v_0 = s, v_1, \ldots, v_{n-1} = s, v_n = t)$ be the prefix of this path up to state t. Since \mathcal{T}^i holds before the cost of (s,t) increases, the following observations hold:

- **Observation 1:** The *id*-values along π are contiguous, that is, if $id(v_j) = id(v_k)$, then $id(v_m) = id(v_j)$ for all $m = j, \ldots, k$. This is because all states sharing the same *id*-value form a path.
- **Observation 2:** $x^{i}(v_{j}) > x^{i}(v_{j+1})$. This is because the arc-costs are always positive and $x^{i}(v_{j})$ and $x^{i}(v_{j+1})$ are cost of the paths from state v_{j} an state v_{j+1} , respectively, to state s_{goal} .

Let the ordered sequence $I = (id_0 = id(u), \ldots, id_m = id(s))$ be the sequence of *id*-values of states as they appear on π , not including state *t*, where contiguous segments with the same *id*-value are collapsed into a single *id*-value. Since \mathcal{T}^i holds before the cost of (s, t) increases, the following observations hold:

- **Observation 3:** $id_j \in Paths(id_{j+1})$. If s_{goal} appears on π , it has to appear at the end, as state t. Since t is excluded from I, the second statement of \mathcal{T}^i applies.

- **Observation 4:** $H_{max}(id_j) > H_{min}(id_j)$. For id_j to be in *I*, there must be a state in π with *id*-value id_j and, therefore, the second statement of \mathcal{T}^i applies.

We show that after procedure RemovePaths terminates, $u \notin TREE^i$ and prove the statement of the lemma. Procedure RemovePaths sets $H_{max}(id(s))$ to $x^{i}(t)$ (Lines 24-27). This is because Line 25 uses the same formula as Lines 8-9, which would set $h^{i+1}(t)$ to this value if state t is generated during the (i+1)st search. Therefore, Line 25 sets $H_{max}(id(s))$ to $h^{i+1}(t)$ and, consequently, to $x^{i}(t)$. since $h^{i+1}(t) = x^i(t)$ (Lemma 2). We distinguish two cases. If id(u) = id(s)or id(u) = id(t) (which implies id(u) = id(s), due to Observation 1), then, $x^{i}(u) > H_{max}(id(s)) = x^{i}(t)$ (Observation 2) and, therefore $u \notin TREE^{i}$. For the second case, where $id(u) \neq id(s)$, we first show that Lines 29-32 add id_{m-1} to QUEUE. Since $id_{m-1} \in Paths(id_m)$ (Observation 3), we only need to show $H_{max}(v_m) < H_{min}(v_{m-1})$. As shown above, $H_{max}(v_m) = H_{max}(id(s)) = x^i(t)$, which is strictly smaller than $x^{i}(s)$ (Observation 2). Due to I's construction, it holds that, $H_{\min}(v_{m-1}) \geq x^{i}(s)$ and, consequently, $H_{\max}(v_{m}) < H_{\min}(v_{m-1})$ (Definition 4). Therefore, Lines 29-32 add id_{m-1} to QUEUE. When an id_i is added to QUEUE, it is eventually selected on Line 34, since procedure RemovePaths does not terminate until QUEUE is empty (Line 33). When id_i is selected on Line 34, id_{i-1} is added to QUEUE (Observations 3 and 4). Since id_{m-1} is initially added to QUEUE, we can recursively apply this argument to conclude that $id_0 = id(u)$ is eventually selected on Line 34. Line 36 sets $H_{max}(id(u))$ to $H_{min}(id(u))$, thereby removing u from $TREE^i$, since $x^i(u) > H_{min}(id(u))$ (Definition 4).

Lemma 9 For any i > 0, \mathcal{H}^{i-1} and \mathcal{T}^{i-1} hold in the beginning of the *i*th search.

Proof The proof is by induction on the number of searches of Tree-AA*. In the beginning of the first search, \mathcal{H}^0 holds because $x^0(s) = H(s)$ for all states s (Definition 1) and we assume that H is a consistent heuristic function. \mathcal{T}^0 also holds because $TREE^0 = \emptyset$ (since the *id*-values are uninitialized). To prove the inductive step, we assume that \mathcal{H}^{i-1} and \mathcal{T}^{i-1} hold in th beginning of the *i*th search. If no path is found, then Tree-AA* terminates. Otherwise, \mathcal{H}^i and \mathcal{T}^i hold in the beginning of the (i+1)st search (Lemmata 5 and 8).

Theorem 2 Any search of Tree-AA* finds a cost-minimal path between state $s_{current}$ and state s_{goal} if one exists and returns false otherwise.

Proof The proof follows from Lemmata 9 and 3.

01 procedure InitializeState(s)02 if (generated(s) = 0) $g(s) := \infty;$ h(s) := H(s);03 04nextstate(s) := NULL;0506id(s) := 0;07else if $(generated(s) \neq counter)$ 08if (g(s) + h(s) < pathcost(generated(s)))09 h(s) := pathcost(generated(s)) - g(s); $g(s) := \infty;$ 10 11 generated(s) := counter;12 procedure AddPath(s)13 if $(s \neq s_{goal})$ insert counter into Paths(id(s));1415 $H_{min}(counter) := h(s);$ 16 $H_{max}(counter) := pathcost(counter);$ 17 $Paths(counter) := \emptyset;$ 18 while $(s \neq s_{current})$ 19 $s_{aux} := s;$ s := parent(s);id(s) := counter;202122 $nextstate(s) := s_{aux};$ 23 procedure RemovePaths(s)24p := id(s);25 $h_{aux} := \max(h(nextstate(s)), pathcost(generated(nextstate(s))) - g(nextstate(s)));$ 26 if $(H_{max}(p) > h_{aux})$ If $(H_{max}(p) > h_{aux})$ $H_{max}(p) := h_{aux};$ $QUEUE := \emptyset;$ for all $p' \in Paths(p)$ if $(H_{max}(p) < H_{min}(p'))$ add p' to the end of QUEUE;delete p' from Paths(p);while $(QUEUE \neq \emptyset)$ delete p form the based of QUEUE $\frac{27}{28}$ 29 30 3132 33 $\frac{34}{35}$ delete p from the head of QUEUE; the detect p in the head of QUBUE, if $(H_{max}(p) > H_{min}(p))$ $H_{max}(p) := H_{min}(p);$ for all $p' \in Paths(p)$ add p' to the end of QUEUE; 36 37 38 39 delete p' from Paths(p); 40 function ComputePath() while $(OPEN \neq \emptyset)$ 41 42delete state s with the smallest f-value g(s) + h(s) value from OPEN; 43if $(s = s_{goal} \text{ or } h(s) \leq H_{max}(id(s))) /* s$ is in reusable tree */ 44 pathcost(counter) := g(s) + h(s); $\mathrm{AddPath}(s);$ 45return true; /* path from $s_{current}$ to s_{goal} found */ 46 47for all $t \in Succ(s)$ 48 InitializeState(t); if (g(t) > g(s) + c(s, t))g(t) := g(s) + c(s, t);495051parent(t) := s;if $(t \in OPEN)$ 52delete t from OPEN; 5354 insert t into OPEN with f-value g(t) + h(t); 55 return false; /* no path from $s_{current}$ to s_{goal} found */ 56 function Main() 57counter := 1;58 $H_{max}(0) := -1;$ 59 for all $s \in S$ $\begin{array}{ll} & 55 \text{ for all } s \in \mathcal{L} \\ & 60 \quad generated(s) := 0; \\ & 61 \text{ while } (s_{current} \neq s_{goal}) \\ & 62 \quad \text{InitializeState}(s_{current}); \end{array}$ $g(s_{current}) := 0;$ $OPEN := \emptyset;$ 63 64 65insert $s_{current}$ into OPEN with f-value $g(s_{current}) + h(s_{current});$ if (Compute Path() = false) return false; /* failure: s_{goal} is unreachable */ 66 67 while $(pathcost(generated(s_{current})) - g(s_{current}) \leq H_{max}(id(s_{current}))) /* s_{current}$ is different from s_{goal} and in reusable 68 tree */69 $s_{current} := nextstate(s_{current});$ 70update all increased arc costs (if any); 71for all increased arc costs c(s, t)72if (nextstate(s) = t)RemovePaths(s); 7374counter := counter + 1;75 return true; /* success: s_{goal} has been reached */

Fig. 6 Tree Adaptive A^{*} (Tree-AA^{*}).

Fig. 8 Comparison of Path-AA* and Tree-AA* - Path-AA*

Fig. 9 Comparison of Path-AA* and Tree-AA* - Tree-AA*

6 Experimental Evaluation

We compare Path-AA^{*} and Tree-AA^{*} to A^{*}, AA^{*}, and D^{*} Lite in unknown terrain and partially known terrain. Our implementation of A^{*} starts a new A^{*} search only when arc costs on the path from $s_{current}$ to s_{goal} have increased, rather than whenever arc costs have increased, different from [14], which explains the difference in experimental results compared to [14]. For fairness, all search algorithms use binary heaps as priority queues and break ties among states with the same f-values in favor of states with larger g-values (which is known to be a good tie-breaking strategy), with the following exceptions: D^{*} Lite breaks ties towards smaller gvalues (because this strategy typically runs faster than a version of D^{*} Lite that breaks ties in the opposite direction [7]). All experiments were run on a Linux PC with a Pentium CoreQuad 2.33 GHz CPU and 8 GB RAM.

We use game maps, office maps, and maps with randomly blocked cells for unknown terrain. Motivated by the benchmarks used in [27], we use populated game maps and populated office maps for partially known terrain. We evaluate the algorithms on both 4-neighbor and 8-neighbor versions of these maps, for a total of ten different settings. For 4-neighbor maps, the agent always observes the blockage status of its four neighboring cells and can then move to any one of the unblocked neighboring cells with cost one. The user-given *h*-values are the Manhattan distances. For 8-neighbor maps, the agent always observes the blockage status of its eight neighboring cells and can then move to any one of the unblocked neighboring cells and can then move to any one of the unblocked neighboring cells and can then move to any one of the unblocked neighboring cells and can then move to any one of the unblocked neighboring cells and can then move to any one of the unblocked neighboring cells and can then move to any one of the unblocked neighboring cells and can then move to any one of the unblocked neighboring cells and can then move to any one of the unblocked neighboring cells with cost one for horizontal or vertical movements and cost $\sqrt{2}$ for diagonal movements. The user-given *H*-values are the Octile distances. Three sample maps with size 512×512 are shown in Figure 10. The details of the maps are as follows:

- Game Maps: We use 342 game maps with sizes varying from 22×28 to 1260×1104 .¹ For each map, we generate 300 solvable problem instances, for a total of 102,600 problem instances.
- Office Maps: We use 40 office maps of size 512×512 , with varying room sizes (namely, 10 maps each with rooms of sizes 8×8 , 16×16 , 32×32 , 64×64). In each map 80% of the doors between adjacent rooms are opened. For each map, we generate 300 solvable problem instances, for a total of 12,000 problem instances.
- Maps with Randomly Blocked Cells: We use 12,000 maps of size 1024×1024 with randomly placed blocked cells. We generate 3000 maps each with 10%, 20%, 30%, and 40% blocked cells placed randomly. For each map, we generate a single solvable problem instance, for a total of 12,000 problem instances.
- Populated Game Maps: We use the 342 game maps with 12% of blocked cells placed randomly in the unblocked cells of the maps. The agent knows a priori the blockage status of the cells in the game map except for the randomly blocked cells. For each map, we generate 300 solvable problem instances, for a total of 102,600 problem instances.
- Populated Office Maps: We use the 40 office maps with 12% of blocked cells placed randomly in the unblocked cells of the maps. The agent knows a priori the blockage status of the cells in the game map except for the randomly

¹ All game and office maps can be found in Nathan Sturtevant's repository [24].

Fig. 10 Maps

blocked cells. For each map, we generate 300 solvable problem instances, for a total of 12,000 problem instances.

6.1 Experimental Evaluation of Heuristic Search Algorithms

Typically, results in the literature are averaged over all problem instances (for example, [14] [9] [10]). However, the relative performance of different heuristic search algorithms depends on the problem difficulty [7]. Therefore, for each setting we divide the problem instances into ten problem bins, which contain problem instances of different difficulty. We measure the difficulty of a problem instance by the time it takes for A* to solve it. Each bin contains the same number of problem instances. The hardest problem instance in bin n is easier than the easiest problem instance in bin n + 1.

6.1.1 Results for unknown terrain

Our results are shown in Figures 11-13, where we compare the performance of the heuristic search algorithms in game maps, office maps and maps with randomly blocked cells, respectively. Each figure has six subfigures: (a) and (b) show the average performance of A^{*} over each bin on 4-neighbor and 8-neighbor versions of the maps, respectively. (c) and (d) show the *runtime factor* of the algorithms on 4-neighbor and 8-neighbor versions of the maps, respectively, where the runtime factor is calculated as follows: For each bin, we pick the lowest average runtime among all heuristic search algorithms and treat it as the baseline runtime of that bin. Then, the runtime factor of a heuristic search algorithm for that bin is simply the ratio of its average runtime and the baseline runtime of that bin. Therefore, smaller runtime factors imply better performance, and a runtime factor of 1 means that the heuristic search algorithm is the best performing one for that bin. (e) and (f) show, for each bin and each heuristic search algorithm, the percentage of instances that were solved faster than A^{*}. We also provide Tables 1-6 in the appendix, to complement the information shown in the figures. They report the average runtime, solution cost, number of expansions and number of heap percolations for each heuristic search algorithm over each bin in each setting.

Bin	1	2	3	4	5	6	7	8	9	10
A* RunTime	0.01	0.03	0.08	0.29	0.94	2.51	6.02	14.34	42.25	662.20
A* Cost	17.9	49.6	110.9	158.7	240.9	367.1	548.7	846.1	1,414.8	2,882.6
A [*] Searches	1.5	3.4	8.5	27.7	61.1	113.4	190.8	310.2	528.9	1,124.9
(a) Bin information, 4-neighbor										

Bin	1	2	3	4	5	6	7	8	9	10
A* RunTime	0.01	0.03	0.08	0.24	0.78	2.06	4.93	12.04	36.21	724.30
A [*] Cost	14.4	39.9	94.9	138.5	188.5	285.5	425.5	657.9	1,103.7	2,330.1
A [*] Searches	1.4	2.7	5.9	20.3	49.8	93.5	159.9	269.0	468.1	1,042.1

Fig. 11 Results on Game Maps

In the experimental results, we notice the following relationships:

- Tree-AA* vs. rest: The runtime factors show that Tree-AA* is the fastest algorithm on average in the three types of maps. Tree-AA* is slower than A* for a larger number of problem instances only for easy problem instances (bins 1-4) on game maps, otherwise it is faster than A* for more than 90 percent of problem instances. Tree-AA* can be slower then D* Lite only for very difficult problem instances (bin 10).
- Path-AA* vs. rest: The runtime factors show that Path-AA* is the second-fastest algorithm on average in the three types of maps. It is almost as fast as Tree-AA* on game maps but slower on the other maps. The percentage of

Bin	1	2	3	4	5	6	7	8	9	10
A* RunTime	0.60	1.91	3.49	5.60	8.07	10.94	14.67	19.72	28.32	79.02
A* Cost	179.2	335.8	457.7	575.3	684.5	793.8	900.8	1,034.4	1,207.1	1,622.6
A [*] Searches	56.3	119.8	170.6	216.8	261.6	309.2	357.5	420.6	499.8	706.6
(a) Bin information, 4-neighbor										

Bin	1	2	3	4	5	6	7	8	9	10
A* RunTime	0.64	2.00	3.63	5.72	8.09	10.85	14.46	19.23	27.50	110.86
A* Cost	151.8	290.9	395.6	502.1	592.2	681.2	789.2	909.5	1,062.6	1,489.8
A [*] Searches	52.6	115.9	162.0	210.4	252.8	300.0	352.6	412.7	494.2	717.8
		(L) D:	<u>C</u>	1: 0					

Fig. 12 Results on Office Maps

problem instances where Path-AA* is slower than A* is similar to the one for Tree-AA*.

- D* Lite vs. rest: D* Lite performs well only on difficult problem instances: Its runtime factor decreases and the number of problem instances for which it is faster than A* increases as the difficulty of the problem instances increases (in some cases with the exception of very easy problem instances). Previously published evaluations of incremental heuristic search algorithms often average over problem instances of different difficulties. Our evaluation shows that D* Lite is often slower than alternative incremental heuristic search algorithms despite its small average runtime. For instance, D* Lite has the smallest average

Bin	1	2	3	4	5	6	7	8	9	10
A* RunTime	0.76	2.64	5.16	8.65	13.89	22.03	37.02	76.97	326.63	10,249.31
A* Cost	250.2	491.2	680.4	859.0	1,056.3	1,312.2	1,709.2	2,797.5	9,133.0	25,096.3
A [*] Searches	37.5	77.5	113.3	152.0	203.7	274.9	391.7	712.1	2,421.7	6,509.4
			(a) F	Bin info	rmation	. 4-neigh	ibor			

Bin	1	2	3	4	5	6	7	8	9	10
A* RunTime	0.41	1.29	2.37	3.70	5.39	7.53	10.52	14.70	21.91	42.81
A* Cost	159.7	305.6	411.2	504.2	594.2	680.2	756.0	840.2	964.1	1,178.2
A [*] Searches	22.6	44.8	63.1	80.1	100.3	120.9	149.5	185.6	235.6	332.6
(b) Bin information, 8-neighbor										

Fig. 13 Results on Maps with Randomly Blocked Cells

runtime in Tables 1 and 2 in the appendix (see the Total column), yet it is the fastest algorithm only in bin 10.

To see why this happens we can use the same argument presented in a previous publication in which Forward A^{*} is compared with D^{*} Lite [7]. That argument applies here too because Tree-AA^{*} is based on (Forward) A^{*}. D^{*} Lite is based on Backward A^{*} and has the advantage over Backward A^{*} that it typically expands fewer cells than Backward A^{*} after the first search since it reuses information from previous searches. However, D^{*} Lite, like Backward A^{*}, typically expands more cells during the first search than Forward A^{*} during the first search. D^{*} Lite also expands cells more slowly than Forward or Backward A^{*} due to the update of the rhs-values. This means that the first search of D^{*}

Lite typically runs more slowly than the first search of Forward A^{*}, an effect that becomes more pronounced the further apart the start and goal cells are. If the number of subsequent searches needed for the agent to reach the goal cell is not large then typically D^{*} Lite runs more slowly than Forward A^{*}. Since Tree-AA^{*} runs even faster than Forward A^{*} for goal-direct navigation in partially known terrain, the advantage of Forward A^{*} over Tree-AA^{*} can even be larger than the advantage of Forward A^{*} over D^{*} Lite reported in [7].

A* vs. AA*: The runtime factors show that A* and AA* are often equally fast on average. A* can be slightly faster than AA* on easy problem instances and is noticeably slower than AA* only on very difficult problem instances. Even though A* is only slightly faster than AA* on easy problem instances, it is faster for a larger number of problem instances in this case on game and office maps.

6.1.2 Results for partially known terrain

Our results are shown in Figures 14–15, where we compare the performance of the algorithms in populated game maps and populated office maps, respectively. Each figure has six subfigures. The content of the subfigures was described in the previous section. We also provide Tables 7–9 in the appendix, complement the information shown in the figures. They report the average runtime, solution cost, number of expansions and number of heap percolations for each algorithm over each bin in each setting.

The experimental results are similar to those for unknown terrain, except that Path-AA* is now slightly faster on average than Tree-AA* for very easy problem instances and AA* is now faster than A*.

6.2 Experimental Evaluations of Priority Queue Implementations

Priority queues are commonly implemented with binary heaps or buckets [4]. The amount of memory needed to store them depends in both cases on the number of elements in the priority queue. However, in case of buckets, it also depends on the number of possible priorities. This is because a bucket implementation reserves at least one pointer for each priority, namely to the bucket containing the elements with that priority. Thus, it is only reasonable to implement priority queues with buckets when the number of possible priorities is not large, even though buckets tend to result in much smaller runtimes than binary heaps [20].

We compare A^* , D^* Lite and Tree-AA^{*} with priority queues implemented with either binary heaps or buckets. For the implementation of D^* Lite with buckets, we use a single key, as proposed in [20]. The key, which in the original D^* Lite implementation has two components, can be implemented with integers whose size are at most about twice the size of *f*-values in A^* . For the implementation of A^* and Tree-AA^{*} with buckets, we use the *f*-values as the key.

We use 8-neighbor grid maps. The user-given h-values are the Octile distances. The details of the maps are as follows:

 Maps with Randomly Blocked Cells: We use 600 maps of size 512 × 512 with randomly placed blocked cells. We generate 150 maps each with 10%,

Bin	1	2	3	4	5	6	7	8	9	10
A* RunTime	0.01	0.04	0.13	0.39	1.10	2.91	7.66	21.07	68.61	671.09
A* Cost	17.7	47.1	93.0	161.8	252.5	374.5	541.1	797.9	1,257.9	2,601.4
A* Searches	2.5	6.2	11.7	20.0	31.3	46.5	67.5	99.3	156.2	321.0
(a) Bin information 4-neighbor										

Bin	1	2	3	4	5	6	7	8	9	10
A* RunTime	0.01	0.04	0.12	0.34	1.06	3.43	10.47	31.57	105.95	966.96
A* Cost	13.8	36.6	74.3	126.1	182.9	238.8	328.4	476.8	750.3	1,643.8
A [*] Searches	2.0	4.3	8.1	13.4	19.4	25.8	35.7	52.3	82.5	181.3

Fig. 14 Results on Populated Game Maps

 $20\%,\,30\%,$ and 40% blocked cells placed randomly. For each map, we generate a single solvable problem instance, for a total of 600 problem instances.

- Original Baldur's Gate II Maps: We use the AR0202SR, AR0307SR, AR0400SR and AR0602SR maps with sizes 208×244 , 267×320 , 256×240 and 299×308 , respectively.² For each map, we generate 150 solvable problem instances, for a total of 600 problem instances.

For each setting, we divide the problem instances into six problem bins, which contain problem instances of different difficulty. We measure the difficulty of a

 $^{^2}$ All game maps can be found in Nathan Sturtevant's repository at http://www.movingai.com/benchmarks/.

Bin	1	2	3	4	5	6	7	8	9	10
A* RunTime	0.91	6.37	18.43	40.71	76.01	132.86	227.00	382.38	666.80	1,841.14
A* Cost	168.5	437.6	713.9	1,000.1	1,296.6	1,626.9	2,096.0	2,584.6	3,428.4	5,248.8
A* Searches	18.9	47.5	76.3	105.2	135.7	170.7	215.8	265.8	347.8	526.9
			(a) I	Bin infor	mation,	4-neight	oor			

Bin	1	2	3	4	5	6	7	8	9	10
A* RunTime	1.13	5.79	14.46	28.57	49.13	78.73	118.91	183.63	295.74	779.28
A* Cost	113.3	221.2	300.3	368.8	434.0	502.8	571.2	653.1	752.4	998.2
A [*] Searches	11.5	22.1	29.6	36.6	42.9	49.7	56.3	64.7	74.4	98.3
			1) D'	• •	1. 0	· 11				

Fig. 15 Results on Populated Office Maps

problem instance by the time it takes A^* with a binary heap to solve it. Each bin contains 100 problem instances. As before, the hardest problem instance in bin n is easier than the easiest problem instance in bin n + 1.

Figures 16 and 17 show the runtime factors and numbers of expansions per bin for the three algorithms with the two priority queue implementations. In order to compare the implementations of the priority queue, we report the runtime factor and the number of cell expansions. One key observation is that the bucket implementations are faster than the priority queue implementations. Indeed, our results show that expansions are on average 1.52 times faster with buckets than binary heaps.

Fig. 16 Buckets versus Priority Queues in Maps with Randomly Blocked Cells

Figure 16 presents the results obtained in maps with randomly blocked cells. In this kind of maps, we observe the following relationships:

- **Best:** The runtime factors show that Tree-AA* is the fastest algorithm on average in maps with randomly blocked cells.
- Tree-AA*: Tree-AA* with a Binary Heap is about as fast as Tree-AA* with Buckets on average but performs slightly fewer expansions. The differences in the numbers of expansions for all algorithms are only due to tie breaking when they choose a cell with the smallest *f*-value in the priority queue, which depends on implementation issues. In particular, A* with Buckets is not guaranteed to break ties towards larger *g*-values, which might contribute to it performing slightly more expansions than A* with a Binary Heap.
- D* Lite: D* Lite with Buckets is faster than D* Lite with a Binary Heap on average and performs fewer expansions.
- A* with Buckets: A* with Buckets is faster than A* with a Binary Heap on average but performs about the same number of expansions.

Figure 17 presents the results obtained in the original Baldur's Gate II maps. In this kind of maps we can notice the following relationships:

- **Best:** The runtime factors show that Tree-AA* with a Binary Heap is the fastest algorithm on average in Baldur's Gate II maps for easy problem instances (bins 1-3), Tree-AA* with Buckets is the fastest algorithm for medium-to-difficult problem instances (bins 4-5), and D* Lite with Buckets is the fastest algorithms for difficult problem instances (bin 6).
- Tree-AA*: Tree-AA* with a Binary Heap is faster than Tree-AA* with Buckets on average and performs fewer expansions for easy problem instances (bins 1-3), while Tree-AA* with Buckets is faster than Tree-AA* with a Binary Heap but performs about the same number of expansions for difficult problem instances (bins 4-6).
- **D* Lite:** D* Lite with Buckets is faster than D* Lite with a Binary Heap on average but performs about the same number of expansions.
- A*: A* with a Binary Heap is faster than A* with Buckets on average and performs fewer expansions for easy problem instances (bins 1-3), while A* with Buckets is faster than A* with a Binary Heap but performs about the same number of expansions for difficult problem instances (bins 4-6).

Fig. 17 Buckets versus Priority Queues in Baldur's Gate II Maps

7 Variants of Path-AA* and Tree-AA*

Our previous publications presented and evaluated variants of Path-AA* and Tree-AA*. In [9] we described a variant of Path-AA* that uses an improved tie-breaking rule to select a state from the OPEN list to guide the forward A* search towards a state on the reusable path. In [10], on the other hand, we described Tree-AA*-Back, a variant of Tree-AA* whose first A* search runs backward to build a large reusable tree.

Both variants outperform their predecessors in some but not all situations. For this reason, we describe them briefly in the following but do not provide experimental results for them.

7.1 Path-AA* with Tie-Breaking Optimization

How the A^{*} searches performed by Path-AA^{*} break ties among states with the same *f*-value when deciding which state to expand next determines how many states they expand and thus how fast they are. The objective of Path-AA* with tie-breaking optimization is to guide its A^* searches so that a state on the reusable path is expanded as quickly as possible. The first A* search of Path-AA* breaks ties in favor of larger *q*-values, which is known to be a good tie-breaking strategy for A^* . The following A^* searches break ties in favor of states so that the estimated minimum cost from them to a state on the reusable path, as given by the user-provided *H*-values, is small. Path-AA* uses a greedy approximation for this purpose. It maintains two pointers p and p' and, before running an A^{*} search, sets p := r and p' := next state(p), where r is the first state on the reusable path. During the A^* search, whenever it adds a state s to the OPEN list, it computes the estimated minimum cost $\min(H(s, p), H(s, p'))$ and, as long as H(s, p) > H(s, p'), repeatedly advances pointers p and p' by assigning p := p' and p' := nextstate(p). When the reusable path consists of only state s_{goal} , this behaviour is similar to breaking ties in favor of larger g-values.

Path-AA* with tie-breaking optimization typically runs faster than Path-AA* that breaks ties in favor of larger g-values on four-neighbor grids but not necessarily on other graphs. More details, including experimental results, can be found in [9].

7.2 Tree-AA*-Back

An A^{*} search finds cost-minimal paths from the start state of the search to all expanded states. Thus, if the first A^{*} search of Tree-AA^{*} is a backward search and the *h*-values of the expanded states are suitably updated, then the resulting search tree restricted to the expanded states is a reusable tree. All subsequent A^{*} searches of Tree-AA^{*} must be forward searches. We refer to the resulting version of Tree-AA^{*} as Tree-AA^{*}-Back. The reusable tree after the first (forward) A^{*} search of (regular) Tree-AA^{*} is degenerate since it contains only the expanded states on the cost-minimal path from state $s_{current}$ to state s_{goal} , while the reusable tree after the first A^{*} search of Tree-AA^{*}-Back is likely non-degenerate since it contains all expanded states, which might allow the future forward A^{*} searches to terminate earlier.

Tree-AA*-Back typically spends more time searching than Tree-AA* before the agent starts to move, but its subsequent searches are much faster than those of Tree-AA*. Thus, Tree-AA*-Back should be used instead of Tree-AA* if the first search can be run offline. More details can be found in [10].

8 Conclusions

In this article, we introduced two new incremental heuristic search algorithms, called Path-AA* and Tree-AA*, for path planning with the freespace assumption. So far, there were two classes of incremental heuristic search algorithms: Incremental search algorithms of the first class (such as AA^*) made the *h*-values of the current A^{*} search more informed, while incremental search algorithms of the second class (such as D* Lite) changed the search tree of the current A* search to the search tree of the next A^{*} search. Path-AA^{*} reuses the suffix of the costminimal path of the current forward A^* search (= reusable path) to terminate its next forward A* search before it is about to expand the goal state. Tree-AA* generalizes Path-AA* by reusing suffixes of the cost-minimal paths of the current and all previous forward A^* searches (= reusable tree) to terminate the next forward A* search even earlier. Overall, Tree-AA* is the first incremental heuristic search algorithm to combine the principles of both classes of incremental heuristic search algorithms. We demonstrated experimentally that both Path-AA* and Tree-AA* can be faster than AA* and D* Lite, the state-of-the-art incremental heuristic search algorithms for path planning with the freespace assumption.

As future work, we consider extending the applicability of Tree-AA^{*}. One possibility is to integrate Tree-AA^{*} with Generalized Adaptive A^{*} to deal with decreasing arc costs. This would enable Tree-AA^{*} to work in dynamic terrain, in which already observed blocked cells may actually disappear. We also consider applying ideas from Tree-AA^{*} to create incremental versions of sampling based methods, such as RRT^{*} and LQR-RRT^{*}, that work in partially known terrains.

Acknowledgments

This material is based upon work supported by NSF (while Sven Koenig was serving at NSF). It is also based upon work supported by Fondecyt-Chile under contract/grant number 11080063, NSF under contract/grant number 115-1319966, ARL/ARO under contract/grant number W911NF-08-1-0468, ONR in form of a MURI under contract/grant number N00014-09-1-1031, DOT under contract/grant number DTFH61-11-C-00010 and the Spanish Ministry of Science and Innovation under grant number TIN2009-13591-C02-02. The views and conclusions contained in this document are those of the authors and should not be interpreted as representing the official policies, either expressed or implied, of the sponsoring organizations, agencies, companies or the U.S. government. We thank Nathan Sturtevant for making his maps available at *movingai.com*.

Appendix

					R	untime	per Bin				
	1	2	3	4	5	6	7	8	9	10	Total
A*	0.011	0.029	0.079	0.288	0.944	2.514	6.016	14.342	42.253	662.198	72.867
AA*	0.011	0.033	0.098	0.402	1.186	3.182	6.661	14.514	36.652	229.741	29.248
D* Lite	0.042	0.160	0.737	1.453	2.646	4.987	8.781	16.413	32.854	82.347	15.042
PATH-AA*	0.011	0.030	0.076	0.248	0.633	1.624	3.104	6.648	17.711	155.010	18.509
TREE-AA*	0.011	0.030	0.076	0.246	0.619	1.570	2.952	6.257	16.690	152.388	18.084
					Solu	tion Cos	st per B	in			
	1	2	3	4	5	6	7	8	9	10	Total
A*	17.9	49.6	110.9	158.7	240.9	367.1	548.7	846.1	1,414.8	2,882.6	663.7
AA*	18.0	49.9	111.8	162.4	247.6	377.2	557.2	855.2	1,432.9	2,878.5	669.1
D* Lite	18.6	53.4	127.7	192.7	291.1	433.1	615.1	918.3	1,439.4	2,660.9	675.0
PATH-AA*	18.0	49.9	111.8	162.4	247.6	377.2	557.3	855.1	1,432.3	2,879.6	669.1
TREE-AA*	18.0	49.9	111.8	162.5	248.0	378.2	559.7	861.0	1,447.4	2,909.0	674.6
				N	umber	of Expa	nsions p	er Bin			
	1	2	3	4	5	6	7	8	9	10	Total
A*	23	89	338	1,695	5,852	15,829	38,431	92,859	283,670	4,099,019	453,780
AA*	24	116	459	2,418	7,205	19,063	39,495	84,818	215,142	1,323,466	169,221
D* Lite	99	579	3,100	5,632	9,567	17,140	28,404	47,879	80,703	151,010	34,411
PATH-AA*	21	91	316	1,431	3,815	9,775	18,783	40,206	112,394	948,102	113,493
TREE-AA*	21	91	313	1,406	3,702	9,457	17,971	38,124	106,943	929,146	110,717
				Nu	imber o	of Perco	lations p	er Bin			
	1	2	3	4	5	6	7	8	9	10	Total
A*	200	933	3,929	20,661	77,739	220,609	543,275	1,311,032	3,777,619	43,667,232	4,962,323
AA*	207	1,282	5,458	30,477	98,146	276,880	598,133	1,333,471	3,410,011	20,594,032	2,634,810
D* Lite	451	3,369	21,846	46,816	89,449	171,191	303,741	551,791	1,010,013	2,193,905	439,257
PATH-AA*	186	1,021	3,738	16,989	47,888	130,484	255,684	559,483	1,533,617	13,461,263	1,601,035
TREE-AA*	186	1,018	3,707	16,673	46,307	125,691	242,659	523,825	1,435,266	13,109,310	1,550,464

 Table 1
 4-Connected Game Maps

					Rı	untime p	er Bin				
	1	2	3	4	5	6	7	8	9	10	Total
A*	0.011	0.031	0.077	0.237	0.775	2.057	4.926	12.042	36.208	724.301	78.066
AA*	0.012	0.031	0.077	0.239	0.776	2.047	4.758	11.665	30.135	256.492	30.623
D* Lite	0.037	0.108	0.419	0.957	1.717	3.554	7.087	14.152	30.456	81.656	14.014
PATH-AA*	0.011	0.029	0.067	0.152	0.413	1.045	2.393	6.177	16.001	178.855	20.514
TREE-AA*	0.012	0.030	0.067	0.152	0.404	1.005	2.263	5.804	14.861	172.278	19.688
					Solut	tion Cos	t per Bi	n			
	1	2	3	4	5	6	7	8	9	10	Total
A*	14.4	39.9	94.9	138.5	188.5	285.5	425.5	657.9	1,103.7	2,330.1	527.9
AA*	14.4	39.9	94.9	138.5	188.5	285.5	425.4	659.5	1,106.1	2,340.6	529.3
D* Lite	14.4	40.0	95.5	141.1	195.6	297.8	444.4	684.9	1,125.8	2,267.5	530.7
PATH-AA*	14.4	39.9	94.9	138.5	188.5	285.5	425.5	659.5	1,106.1	2,342.3	529.5
TREE-AA*	14.4	39.9	94.9	138.5	188.8	286.2	427.0	662.5	1,112.8	2,356.6	532.2
				Nu	imber e	of Expan	isions p	er Bin			
	1	2	3	4	5	6	7	8	9	10	Total
A*	16	57	187	895	3,376	9,235	22,533	56,650	174,111	3,028,684	329,574
AA*	16	56	184	864	3,205	8,640	20,154	49,455	126,531	1,050,524	125,963
D* Lite	50	265	1,486	3,146	4,671	8,705	15,620	28,053	54,731	121,504	23,823
PATH-AA*	14	44	123	409	1,363	3,686	8,732	23,924	65,734	764,551	86,858
TREE-AA*	14	44	122	400	1,309	3,492	8,174	22,487	61,525	737,390	83,496
				Nu	mber o	of Percol	ations p	er Bin			
	1	2	3	4	5	6	7	8	9	10	Total
A*	176	715	2,583	12,078	47,688	136,318	337,866	820,768	2,366,352	30,190,719	3,391,526
AA*	177	714	2,577	12,063	47,537	136,072	330,990	823,379	2,131,698	16,619,241	2,010,445
D* Lite	283	1,590	9,777	26,028	51,889	113,629	232,638	467,230	989,540	2,535,303	442,790
PATH-AA*	163	589	1,853	5,881	20,137	57,527	139,475	372,919	995,163	11,093,042	1,268,675
TREE-AA*	163	587	1.840	5.752	19.252	54.036	128.728	343.810	903.858	10.561.640	1.201.967

 ${\bf Table \ 2} \ {\rm 8-Connected \ Game \ Maps}$

Carlos Hernández et al.

					Rur	ntime per	Bin				
	1	2	3	4	5	6	7	8	9	10	Total
A*	0.601	1.915	3.493	5.603	8.073	10.935	14.667	19.719	28.317	79.023	17.235
AA*	0.677	1.978	3.695	5.818	8.576	11.535	15.319	20.350	28.900	61.958	15.880
D* Lite	1.322	3.304	4.886	7.304	10.191	12.581	15.942	20.057	26.690	36.642	13.892
PATH-AA*	0.340	0.905	1.733	2.719	3.877	4.857	6.531	8.757	12.344	33.517	7.558
TREE-AA*	0.305	0.757	1.340	2.023	2.885	3.705	4.964	6.676	9.833	30.731	6.322
					Solutio	on Cost p	er Bin				
	1	2	3	4	5	6	7	8	9	10	Total
A*	179.2	335.8	457.7	575.3	684.5	793.8	900.8	1,034.4	1,207.1	1,622.6	779.1
AA*	184.1	337.2	459.9	575.6	692.7	799.7	904.9	1,034.0	1,209.0	1,594.4	779.1
D* Lite	231.9	416.0	538.6	674.8	806.8	904.5	1,012.7	1,143.5	1,312.7	1,613.8	865.5
PATH-AA*	184.1	337.3	460.0	575.7	692.8	800.0	905.1	1,034.2	1,208.8	1,595.2	779.3
TREE-AA*	184.8	339.5	463.9	581.3	699.3	806.6	913.5	1,043.8	1,217.8	1,601.0	785.1
				Nu	mber of	Expansio	ns per Bi	n			
	1	2	3	4	5	6	7	8	9	10	Total
A*	3,855	12,300	22,207	35,005	49,702	66,866	89,150	120,312	172,765	528,678	110,084
AA*	4,232	12,132	22,369	34,465	50,245	66,994	88,336	117,301	165,809	380,796	94,268
D* Lite	3,830	9,738	14,361	21,549	29,773	37,332	47,869	60,559	80,615	104,438	41,006
PATH-AA*	2,072	5,530	10,555	16,203	23,049	29,086	38,878	52,765	75,188	224,741	47,807
TREE-AA*	1,831	4,622	8,244	12,259	17,582	22,765	30,456	41,658	62,137	209,391	41,094
			•	Nu	mber of	Percolatio	ons per B	in		•	
	1	2	3	4	5	6	7	8	9	10	Total
A*	45,317	163,532	316,032	528,957	777,464	1,061,984	1,436,051	1,949,635	2,783,090	6,815,935	1,587,800
AA*	51,827	165,880	327,522	534,989	801,860	1,089,854	1,462,386	1,967,873	2,792,935	5,907,432	1,510,256
D* Lite	47,087	123,596	184,984	280,032	394,414	485,909	617,694	783,207	1,049,973	1,469,790	543,669
PATH-AA*	22,201	67,250	140,041	231,225	335, 136	423,840	581,014	796,812	1,122,178	3,038,103	675,780
TREE-AA*	19,061	53,906	103,152	164,309	239,717	311,990	427,390	589,999	876,149	2,749,724	553,540

 Table 3
 4-Connected Office Maps

	Runtime per Bin												
	1	2	3	4	5	6	7	8	9	10	Total		
A*	0.635	2.002	3.627	5.716	8.093	10.852	14.456	19.230	27.495	110.858	20.297		
AA*	0.635	2.027	3.666	5.786	8.229	10.973	15.072	19.367	28.009	78.251	17.202		
D* Lite	1.299	3.029	5.105	7.383	9.975	12.545	16.286	20.244	27.291	43.115	14.627		
PATH-AA*	0.352	1.085	1.849	2.833	4.100	5.635	8.052	10.533	17.058	55.353	10.685		
TREE-AA*	0.326	0.933	1.540	2.248	3.106	4.264	6.061	7.727	12.573	50.404	8.918		
					Solutio	n Cost p	per Bin						
	1	2	3	4	5	6	7	8	9	10	Total		
A*	151.8	290.9	395.6	502.1	592.2	681.2	789.2	909.5	1,062.6	1,489.8	686.5		
AA*	151.3	291.3	395.0	501.9	592.1	680.5	790.0	909.7	1,063.9	1,495.3	687.1		
D* Lite	167.3	301.5	411.2	516.1	608.2	686.0	795.3	899.5	1,046.8	1,389.2	682.1		
PATH-AA*	151.3	291.3	395.1	502.0	592.2	680.6	790.1	909.7	1,064.2	1,495.7	687.2		
TREE-AA*	152.3	295.2	400.4	510.0	602.6	692.8	804.0	925.5	1,081.4	1,504.0	696.8		
	Number of Expansions per Bin												
	1	2	3	4	5	6	7	8	9	10	Total		
A*	2,917	9,478	17,439	27,250	38,071	50,763	67,783	89,838	127,416	530,584	96,154		
AA*	2,718	8,974	16,477	25,854	36,469	48,195	66,315	84,399	120,396	354,802	76,460		
D* Lite	2,569	5,855	9,461	13,550	17,806	22,562	28,329	34,872	44,099	64,405	24,351		
PATH-AA*	1,293	4,262	7,422	11,304	16,332	22,473	32,557	42,208	69,038	253,875	46,076		
TREE-AA*	1,152	3,544	6,031	8,799	12,222	16,877	24,678	31,425	52,448	235,739	39,292		
				Num	ber of I	Percolati	ions per E	lin					
	1	2	3	4	5	6	7	8	9	10	Total		
A*	36,105	129,476	251,611	413,836	605,292	813,679	1,102,416	1,465,886	2,074,241	6,025,821	1,291,836		
AA*	36,792	132,957	257,835	422,949	620,546	832,589	1,159,079	1,500,740	2,161,982	5,572,596	1,269,806		
D* Lite	41,570	102,909	177,753	257,528	350,383	438,445	569,351	714,171	956, 365	1,489,043	509,752		
PATH-AA*	16,380	60,167	110,439	178,057	271,672	380,832	554,161	734,595	1,209,150	3,695,285	721,074		
TREE-AA*	14,133	47,471	84,218	128,304	186,324	262,367	382,327	493,488	826,599	3,281,577	570,681		

 ${\bf Table \ 4} \ {\rm 8-Connected \ Office \ Maps}$

					Run	time per	Bin							
	1	2	3	4	5	6	7	8	9	10	Total			
A*	0.763	2.643	5.162	8.651	13.889	22.033	37.020	76.973	326.628	10,249.313	1,074.307			
AA*	0.790	2.729	5.409	8.903	14.283	22.621	37.428	80.693	274.249	2,035.345	248.245			
D* Lite	2.063	6.660	12.503	18.833	26.877	36.085	50.369	71.521	125.714	312.085	66.271			
PATH-AA*	0.433	1.436	2.816	4.435	6.932	10.064	15.599	27.210	87.493	664.685	82.110			
TREE-AA*	0.324	0.984	1.904	2.845	4.387	5.995	8.994	15.202	54.260	533.014	62.791			
	Solution Cost per Bin													
	1	2	3	4	5	6	7	8	9	10	Total			
A*	250.2	491.2	680.4	859.0	1,056.3	1,312.2	1,709.2	2,797.5	9,133.0	25,096.3	4,338.5			
AA*	250.5	491.3	683.6	859.3	1,057.3	1,323.4	1,717.7	2,879.8	9,551.5	25,010.0	4,382.4			
D* Lite	255.6	509.5	705.8	885.4	1,104.2	1,354.2	1,797.9	3,042.8	9,924.1	24,431.7	4,401.1			
PATH-AA*	250.5	491.3	683.6	859.4	1,057.3	1,323.4	1,718.6	2,872.8	9,559.3	25,029.2	4,384.5			
TREE-AA*	253.9	500.5	698.9	879.9	1,085.8	1,364.4	1,771.2	2,973.4	9,911.6	25,838.8	4,527.8			
	Number of Expansions per Bin													
	1	2	3	4	5	6	7	8	9	10	Total			
A*	3,935	13,451	25,853	41,992	64,936	98,232	159,731	329,521	1,858,786	52,859,768	5,545,621			
AA*	3,940	13,415	26,264	41,656	64,301	97,077	153,326	321,261	1,301,320	9,595,401	1,161,796			
D* Lite	9,255	29,867	55,106	81,628	113,957	148,559	198,621	249,332	269,047	541,372	169,674			
PATH-AA*	1,997	6,651	13,075	20,068	30,372	43,458	66,460	116,955	469,098	3,641,298	440,943			
TREE-AA*	1,459	4,531	8,845	12,955	19,548	26,290	39,248	69,236	310,720	2,957,763	345,059			
				Nu	mber of	Percolat	ons per	Bin						
	1	2	3	4	5	6	7	8	9	10	Total			
A*	63494	243485	493291	831869	1309026	1997499	3202061	5993388	25235537	252429668	29179932			
AA*	63801	244195	500997	832959	1310986	2004093	3184321	6320118	23286942	134450131	17219854			
D* Lite	62399	218043	424828	655991	948423	1291682	1826646	2603700	4654730	11325565	2401201			
PATH-AA*	31177	118737	245671	397082	614610	883599	1356217	2186347	7214688	54116856	6716498			
TREE-AA*	22351	79728	164674	253158	391514	522122	779746	1207103	4021852	41374837	4881709			

 Table 5
 4-Connected Maps with Randomly Blocked Cells

					Runt	ime per	Bin							
	1	2	3	4	5	6	7	8	9	10	Total			
A*	0.410	1.291	2.369	3.702	5.387	7.532	10.515	14.700	21.905	42.814	11.063			
AA*	0.425	1.344	2.463	3.861	5.604	7.840	10.936	15.254	22.774	44.105	11.460			
D* Lite	1.068	3.376	5.896	8.906	12.445	16.170	19.350	23.662	30.309	41.804	16.299			
PATH-AA*	0.226	0.631	1.064	1.599	2.276	3.026	4.349	5.750	8.779	15.840	4.354			
TREE-AA*	0.196	0.512	0.819	1.200	1.627	2.103	2.856	3.639	5.153	8.254	2.636			
	Solution Cost per Bin													
	1	2	3	4	5	6	7	8	9	10	Total			
A*	159.7	305.6	411.2	504.2	594.2	680.2	756.0	840.2	964.1	1,178.2	639.4			
AA*	159.7	305.6	411.2	504.2	594.2	680.1	756.0	840.2	964.1	1,178.1	639.3			
D* Lite	159.9	306.0	411.5	504.8	594.9	680.8	756.8	841.5	965.9	1,180.2	640.2			
PATH-AA*	159.7	305.6	411.2	504.2	594.2	680.1	756.0	840.2	964.1	1,178.1	639.3			
TREE-AA*	161.4	309.9	418.0	513.5	606.5	695.5	777.5	867.5	1,002.6	1,235.9	658.8			
	Number of Expansions per Bin													
	1	2	3	4	5	6	7	8	9	10	Total			
A*	1,543	5,141	9,531	14,875	21,510	29,906	40,469	55,864	80,648	135,318	39,480			
AA*	1,542	5,139	9,527	14,869	21,502	29,897	40,456	55,845	80,621	135,269	39,467			
D* Lite	3,677	11,657	19,892	29,849	40,818	52,204	61,092	72,761	89,824	114,104	49,588			
PATH-AA*	587	1,820	3,153	4,796	6,860	9,101	13,102	17,348	26,372	46,452	12,959			
TREE-AA*	458	1,337	2,200	3,282	4,462	5,779	7,852	10,005	14,132	22,035	7,154			
				Num	iber of F	Percolati	ons per	Bin						
	1	2	3	4	5	6	7	8	9	10	Total			
A*	25,956	95,862	188,468	305,219	454,021	646,036	892,232	1,244,779	1,844,273	3,226,926	892,377			
AA*	25,954	95,855	188,449	305,193	453,962	645,946	892, 139	1,244,676	1,844,042	3,226,541	892,276			
D* Lite	28,239	95,190	170,380	262,584	370,778	485,790	586,993	725,316	933,219	1,282,699	494,119			
PATH-AA*	10,712	37,414	68,701	108,596	160,198	218,209	321,149	429,553	670,959	1,228,713	325,420			
TREE-AA*	8,289	27,339	47,562	74,004	103,575	137,599	190,749	245,410	355,240	574,056	176,382			

 Table 6
 8-Connected Maps with Randomly Blocked Cells

Carlos Hernández et al.

					н	untime	per Bin							
	1	2	3	4	5	6	7		9	10	Total			
A*	0.012	0.040	0.126	0.390	1.098	2.914	7.657	21.072	68.613	671.087	77.301			
AA*	0.013	0.040	0.125	0.376	1.000	2.496	5.834	14.173	38.865	238.809	30.173			
D* Lite	0.037	0.101	0.276	0.761	1.776	3.527	6.283	10.816	20.449	61.191	10.522			
PATH-AA*	0.012	0.031	0.078	0.193	0.431	0.921	1.909	4.207	10.581	55.630	7.399			
TREE-AA*	0.012	0.031	0.075	0.178	0.396	0.852	1.776	3.934	9.850	51.434	6.854			
	Solution Cost per Bin													
	1 2 3 4 5 6 7 8 9 10													
A*	17.7	47.1	93.0	161.8	252.5	374.5	541.1	797.9	1,257.9	2,601.4	614.5			
AA*	17.7	47.1	93.1	162.0	253.0	376.4	544.8	802.9	1,264.7	2,605.9	616.8			
D* Lite	17.7	47.3	94.9	168.3	266.6	397.9	570.4	828.1	1,262.7	2,539.1	619.3			
PATH-AA*	17.7	47.1	93.1	162.1	253.2	376.9	545.9	804.6	1,267.9	2,615.2	618.4			
TREE-AA*	17.7	47.2	93.6	163.0	254.7	378.6	547.7	807.1	1,269.9	2,620.7	620.0			
	Number of Expansions per Bin													
	1	2	3	4	5	6	7	8	9	10	Total			
A*	35	182	709	2,425	7,266	20,186	54,287	147,984	452,588	3,601,122	428,678			
AA*	35	178	666	2,168	6,034	15,561	37,024	89,531	236,174	1,264,755	165,213			
D* Lite	74	373	1,308	3,822	8,742	16,450	27,275	43,370	74,380	174,169	34,996			
PATH-AA*	27	113	358	989	2,362	5,376	11,702	26,412	65,571	315,382	42,829			
TREE-AA*	27	107	324	877	2,121	4,884	10,716	24,356	60,565	292,232	39,621			
				N	umber	of Perco	lations	per Bin						
	1	2	3	4	5	6	7	8	9	10	Total			
A*	240	1,623	7,440	27,807	85,724	238,790	643,081	1,778,727	5,580,359	48,052,104	5,641,589			
AA*	240	1,617	7,297	26,612	78,384	208,268	508,490	1,270,601	3,502,277	20,554,408	2,615,819			
D* Lite	331	1,924	7,578	24,876	63,462	131,778	237,607	407,306	748,726	1,972,875	359,646			
PATH-AA*	183	957	3,568	10,822	26,335	59,048	127,878	295,619	767,108	4,174,390	546,591			
TREE-AA*	179	900	3,167	9,305	22,946	52,113	114,082	266,454	693, 684	3,801,342	496,417			

 Table 7
 4-Connected Populated Game Maps

	Runtime per Bin													
	1	2	3	4	5	6	7	8	9	10	Total			
A*	0.013	0.039	0.116	0.343	1.057	3.427	10.470	31.566	105.953	966.963	111.995			
AA*	0.013	0.039	0.112	0.312	0.840	2.168	5.367	13.276	36.455	242.394	30.098			
D* Lite	0.036	0.089	0.225	0.553	1.247	2.385	4.625	9.272	19.655	68.855	10.694			
PATH-AA*	0.012	0.032	0.077	0.188	0.480	1.221	2.916	6.634	16.344	80.995	10.890			
TREE-AA*	0.013	0.033	0.077	0.182	0.458	1.169	2.792	6.358	15.732	78.058	10.487			
	0.020	0.000	0.011	0.000	Soli	tion Co	st per B	lin						
	1	2	3	4	5	6	7	8	9	10	Total			
A*	13.8	36.6	74.3	126.1	182.9	238.8	328.4	476.8	750.3	1,643.8	387.2			
AA*	13.8	36.6	74.3	126.2	183.3	239.5	329.5	479.2	752.3	1,646.9	388.1			
D* Lite	13.8	36.6	74.4	126.4	183.7	240.3	330.2	481.4	755.6	1,650.5	389.3			
PATH-AA*	13.8	36.6	74.4	126.3	183.4	239.8	330.1	480.2	754.2	1,651.5	389.0			
TREE-AA*	13.8	36.6	74.5	126.6	183.8	240.2	330.6	481.0	755.7	1,654.0	389.7			
	Number of Expansions per Bin													
	1	2	3	4	5	6	7	8	9	10	Total			
A*	21	106	422	1,493	5,216	18,111	54,359	150,228	448,846	3,354,444	403,325			
AA*	21	102	386	1,243	3,657	10,058	25,098	60,638	157,517	909,790	116,851			
D* Lite	44	210	755	2,077	4,632	8,354	15,220	28,430	55,294	160,042	27,506			
PATH-AA*	17	64	204	616	1,842	5,174	12,631	28,221	67,309	306,196	42,227			
TREE-AA*	17	63	195	576	1,726	4,900	11,968	26,794	64,150	292,713	40,310			
				N	umber	of Perco	lations	per Bin						
	1	2	3	4	5	6	7	8	9	10	Total			
A*	193	1,094	4,846	17,771	58,732	189,011	564,543	1,610,761	4,952,935	40,216,891	4,761,678			
AA*	193	1,083	4,695	16,436	48,571	128,783	326,170	823,617	2,240,914	14,553,767	1,814,423			
D* Lite	253	1,308	4,997	14,892	36,152	70,976	138,579	277,128	575,635	1,888,728	300,865			
PATH-AA*	153	661	2,306	7,252	20,765	55,150	136,535	317,018	784,670	3,992,633	531,714			
TREE-AA*	152	645	2.175	6.609	18.924	51.321	127.536	296,930	738.360	3.777.095	501.975			

 ${\bf Table \ 8} \ {\rm 8-Connected \ Populated \ Game \ Maps}$

					Run	time per	Bin						
	1	2	3	4	5	6	7	8	9	10	Total		
A*	0.910	6.375	18.430	40.707	76.009	132.862	227.003	382.376	666.798	1,841.137	339.261		
AA*	0.669	3.861	10.133	19.864	32.775	52.092	80.555	127.567	196.855	472.805	99.717		
D* Lite	0.838	3.119	6.278	9.758	13.866	18.923	24.991	33.059	43.968	71.327	22.613		
PATH-AA*	0.344	1.580	3.519	6.179	9.764	14.131	21.080	30.019	45.395	92.104	22.412		
TREE-AA*	0.339	1.542	3.416	6.041	9.302	13.374	19.878	27.979	42.215	87.056	21.114		
	Solution Cost per Bin												
	1	2	3	4	5	6	7	8	9	10	Total		
A*	168.5	437.6	713.9	1,000.1	1,296.6	1,626.9	2,096.0	2,584.6	3,428.4	5,248.8	1,860.1		
AA*	169.9	442.3	726.5	1,014.0	1,316.8	1,648.7	2,113.3	2,617.9	3,434.2	5,261.2	1,874.5		
D* Lite	174.9	450.2	746.1	1,023.1	1,330.7	1,681.2	2,138.1	2,628.7	3,431.1	5,216.6	1,882.1		
PATH-AA*	169.7	442.0	726.5	1,009.3	1,311.1	1,639.1	2,114.2	2,606.6	3,446.3	5,250.2	1,871.5		
TREE-AA*	169.7	442.7	727.5	1,013.5	1,314.1	1,642.0	2,120.8	2,607.9	3,442.9	5,250.3	1,873.2		
	Number of Expansions per Bin												
	1	2	3	4	5	6	7	8	9	10	Total		
A*	6948	50037	139986	294988	525307	872560	1422853	2308672	3886558	10203502	1971141		
AA*	4362	26232	67900	130315	212584	329831	499591	773028	1171521	2693512	590888		
D* Lite	3947	14232	26999	40500	55567	74267	95403	123134	159170	250181	84340		
PATH-AA*	2134	10488	23231	40214	62588	88882	130182	182915	272986	543895	135751		
TREE-AA*	2050	10027	22121	38630	58692	83017	121200	169058	251813	506972	126358		
				Nui	nber of	Percolati	ons per E	Bin					
	1	2	3	4	5	6	7	8	9	10	Total		
A*	59252	460168	1353105	2973497	5412802	9352671	15556845	25747174	43805972	113963825	21868531		
AA*	44886	298391	828918	1664567	2780466	4464045	6892518	10934273	16798521	40137634	8484422		
D* Lite	28546	119280	249755	395538	566742	782676	1043685	1382456	1847771	3009417	942587		
PATH-AA*	17372	93085	218880	396975	640087	943774	1418545	2041357	3096637	6390377	1525709		
TREE-AA*	16533	87797	205297	376421	588639	863719	1293736	1846028	2795626	5850865	1392466		

 Table 9
 4-Connected Populated Office Maps

		Runtime per Bin												
	1	2	3	4	5	6	7	8	9	10	Total			
A*	1.129	5.789	14.462	28.573	49.128	78.728	118.907	183.631	295.741	779.278	155.537			
AA*	0.732	3.060	6.812	11.819	19.116	28.949	42.287	60.885	94.630	210.878	47.917			
D* Lite	0.650	2.088	3.719	5.720	7.828	10.349	13.310	17.746	23.503	41.322	12.624			
PATH-AA*	0.473	1.630	3.068	4.873	7.048	9.630	12.909	17.329	24.135	45.090	12.618			
TREE-AA*	0.465	1.598	3.008	4.773	6.891	9.392	12.578	16.897	23.503	43.984	12.309			
		Solution Cost per Bin												
	1	2	3	4	5	6	7	8	9	10	Total			
A*	113.3	221.2	300.3	368.8	434.0	502.8	571.2	653.1	752.4	998.2	491.5			
AA*	113.8	222.0	301.4	371.1	435.3	505.7	573.7	655.3	755.6	1,002.9	493.7			
D* Lite	113.9	222.7	302.6	371.5	436.6	506.1	574.9	656.2	757.4	1,002.9	494.5			
PATH-AA*	113.6	221.9	301.2	370.9	435.0	505.3	573.2	655.0	755.1	1,003.1	493.4			
TREE-AA*	113.7	222.0	301.3	371.0	435.3	505.6	573.5	655.4	755.8	1,004.7	493.8			
	Number of Expansions per Bin													
	1	2	3	4	5	6	7	8	9	10	Total			
A*	5886	30461	71454	130732	209856	321133	468922	698695	1090918	2807657	583572			
AA*	3252	14152	31375	53548	84080	124355	176950	248348	375721	829393	194117			
D* Lite	2265	7185	12324	18567	24964	32129	40614	52572	67877	113923	37242			
PATH-AA*	1868	6618	12203	18958	26777	35920	47487	62455	85684	161090	45906			
TREE-AA*	1843	6538	12050	18673	26375	35243	46580	61285	83895	158069	45055			
				Num	ber of P	ercolatio	ons per E	Bin						
	1	2	3	4	5	6	7	8	9	10	Total			
A*	48547	266528	656069	1236903	2043644	3208795	4753293	7223663	11394722	28603024	5943519			
AA*	33541	162668	390096	696462	1138495	1741384	2549732	3671635	5710136	13043263	2913741			
D* Lite	17539	62182	112969	174287	240845	317575	407272	537404	703976	1184851	375890			
PATH-AA*	15709	60295	118361	191524	280816	389720	528173	712176	997210	1882891	517688			
TREE-AA*	15435	59379	116490	187948	275510	380701	515690	695773	971104	1837782	505581			

 ${\bf Table \ 10} \ \ {\rm 8-Connected \ Populated \ Office \ Maps}$

References

- Bjornsson, Y., Enzenberger, M., Holte, R., Schaeffer, J., Yap, P.: Comparison of different grid abstractions for pathfinding on maps. In: Proceedings of the International Joint Conference on Artificial Intelligence, pp. 1511–1512 (2003)
- Bulitko, V., Bjornsson, Y., Lustrek, M., Schaeffer, J., Sigmundarson, S.: Dynamic control in path-planning with real-time heuristic search. In: Proceedings of the International Conference on Automated Planning and Scheduling, pp. 49–56 (2007)
- 3. Choset, H., Thrun, S., Kavraki, L., Burgard, W., Lynch, K.: Principles of Robot Motion: Theory, Algorithms, and Implementations. MIT Press (2005)
- 4. Edelkamp, S., Schrödl, S.: Heuristic Search Theory and Applications. Academic Press (2012)
- 5. Ferguson, D., Stentz, A.: Using interpolation to improve path planning: The Field D* algorithm. Journal of Field Robotics **23**(2), 79–101 (2006)
- Hart, P., Nilsson, N., Raphael, B.: A formal basis for the heuristic determination of minimum cost paths. IEEE Trans. on Systems Sci. and Cybernetics 2, 100–107 (1968)
- Hernandez, C., Baier, J., Uras, T., Koenig, S.: Position Paper: Incremental Search Algorithms Considered Poorly Understood. In: Proceedings of the Symposium on Combinatorial Search, pp. 159–161 (2012)
- 8. Hernández, C., Baier, J.A.: Avoiding and escaping depressions in real-time heuristic search. Journal of Artificial Intelligence Research 43, 523–570 (2012)
- Hernández, C., Meseguer, P., Sun, X., Koenig, S.: Path-Adaptive A* for incremental heuristic search in unknown terrain [short paper]. In: Proceedings of the International Conference on Automated Planning and Scheduling, pp. 358–361 (2009)
- Hernandez, C., Sun, X., Koenig, S., Meseguer, P.: Tree Adaptive A*. In: Proceedings of the International Joint Conference on Autonomous Agents and Multiagent Systems, pp. 123–130 (2011)
- 11. Holte, R., M.Perez, Zimmer, R., MacDonald, A.: Hierarchical A*: Searching abstraction hierarchies efficiently. In: Proc. of AAAI, pp. 530–535 (1996)
- Koenig, S., Furcy, D., Bauer, C.: Heuristic search-based replanning. In: Proceedings of the International Conference on Artificial Intelligence Planning Systems, pp. 294–301 (2002)
- Koenig, S., Likhachev, M.: Adaptive A*. In: Proceedings of the International Joint Conference on Autonomous Agents and Multiagent Systems, pp. 1311–1312 (2005)
- Koenig, S., Likhachev, M.: Fast replanning for navigation in unknown terrain. Transactions on Robotics 21, 354–363 (2005)
- Koenig, S., Likhachev, M.: A new principle for incremental heuristic search: Theoretical results. In: Proceedings of the International Conference on Autonomous Planning and Scheduling, pp. 410–413 (2006)
- Koenig, S., Likhachev, M., Liu, Y., Furcy, D.: Incremental heuristic search in artificial intelligence. Artificial Intelligence Magazine 25(2), 99–112 (2004)
- Koenig, S., Tovey, C., Smirnov, Y.: Performance bounds for planning in unknown terrain. Artificial Intelligence 147(1-2), 253–279 (2003)
- Likhachev, M., Ferguson, D., Gordon, G., Stentz, A., Thrun, S.: Anytime Dynamic A*: An anytime, replanning algorithm. In: Proceedings of the International Conference on Automated Planning and Scheduling, pp. 262–271 (2005)
- Likhachev, M., Ferguson, D., Gordon, G., Stentz, A., Thrun, S.: Anytime search in dynamic graphs. Artificial Intelligence 172(14), 1613–1643 (2008)
- Likhachev, M., Koenig, S.: Incremental heuristic search in games: The quest for speed. In: Proceedings of the AAAI Conference on Artificial Intelligence and Interactive Digital Entertainment, pp. 118–120 (2006)
- Matsuta, K., Kobayashi, H., Shinohara, A.: Multi-target Adaptive A*. In: Proc. of the Int'l Conference on Autonomous Agents and Multiagent Systems, pp. 1065–1072 (2010)
- 22. Pearl, J.: Heuristics: Intelligent Search Strategies for Computer Problem Solving. Addison-Wesley (1984)
- Stentz, A.: The Focussed D* algorithm for real-time replanning. In: Proc. of Int'l Joint Conference in Artificial Intelligence, pp. 1652–1659 (1995)
- Sturtevant, N.: Benchmarks for grid-based pathfinding. Transactions on Computational Intelligence and AI in Games 4(2), 144–148 (2012)
- Sun, X., Koenig, S., Yeoh, W.: Generalized Adaptive A*. In: Proc. of the Int'l Joint Conference on Autonomous Agents and Multiagent Systems, pp. 469–476 (2008)

Sun, X., Yeoh, W., Koenig, S.: Efficient incremental search for moving target search. In: Proc. of the Int'l Joint Conference on Artificial Intelligence, pp. 615–620 (2009)
 Yap, P.K.Y., Burch, N., Holte, R.C., Schaeffer, J.: Any-Angle Path Planning for Computer

Yap, P.K.Y., Burch, N., Holte, R.C., Schaeffer, J.: Any-Angle Path Planning for Computer Games. In: Proceedings of the AAAI Conference on Artificial Intelligence and Interactive Digital Entertainment, pp. 201–207 (2011)