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Abstract

Grids with blocked and unblocked cells are often used toesgnt terrain in robotics and video
games. However, paths formed by grid edges can be longetriashortest paths in the terrain
since their headings are artificially constrained. We presgo new correct and complete any-
angle path-planning algorithms that avoid this shortcgmiBasic Theta* and Angle-Propagation
Theta* are both variants of A* that propagate informatioonal grid edges without constraining
paths to grid edges. Basic Theta* is simple to understandnapl@ment, fast and finds short paths.
However, it is not guaranteed to find true shortest paths. IéARgopagation Theta* achieves a
better worst-case complexity per vertex expansion thaicBdweta* by propagating angle ranges
when it expands vertices, but is more complex, not as fastfiadd slightly longer paths. We
refer to Basic Theta* and Angle-Propagation Theta* colety as Theta*. Theta* has unique
properties, which we analyze in detail. We show experimnthat it finds shorter paths than
both A* with post-smoothed paths and Field D* (the only otkersion of A* we know of that
propagates information along grid edges without constrgipaths to grid edges) with a runtime
comparable to that of A* on grids. Finally, we extend Thetagtids that contain unblocked cells
with non-uniform traversal costs and introduce variantStedta* which provide different tradeoffs
between path length and runtime.

1. Introduction

In this article, we study path planning for robotics and video games (Chogwath, Hutchinson,
Kantor, Burgard, Kavraki, & Thrun, 2005; Deloura, 2000; PateQ@Murphy, 2000; Rabin, 2002),
where a two-dimensional continuous terrain is discretized into a grid with étbekd unblocked
cells. Our objective is to find a short unblocked path from a given seatéx to a given goal vertex
(both at the corners of cells). A*finds grid paths (that is, paths canstldo grid edges) quickly, but
grid paths are often not true shortest paths (that is, shortest pathstarrthia) since their potential
headings are artificially constrained to multiples of 45 degrees, as shovguireR.(a) (Yap, 2002).
This shortcoming led to the introduction of what we call any-angle path plgniNash, Daniel,
Koenig, & Felner, 2007; Ferguson & Stentz, 2006). Any-angle p&h#png algorithms find paths
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Figure 1: Grid path versus true shortest path

without constraining the headings of the paths, as shown in Figure 1(l&).préséent two new
correct and complete any-angle path-planning algorithms. Basic ThethAagle-Propagation
Theta* are both variants of A* that propagate information along grid edigeachieve a short
runtime) without constraining paths to grid edges (to find any-angle patinsike A* on visibility
graphs, they are not guaranteed to find true shortest paths. Thslasténeir names thus does not
denote their optimality but rather their similarity to A*. Basic Theta* is simple to uridadsand
implement, fast and finds short paths. Angle-Propagation Theta* ashéewerst-case complexity
per vertex expansion that is constant rather than linear in the numbelofliie that of Basic
Theta*) by propagating angle ranges when it expands vertices, but &coorplex, is not as fast
and finds slightly longer paths. We refer to Basic Theta* and Angle-Bjatjpen Theta* collectively
as Theta*. Theta* has unique properties, which we analyze in detail. Wve skperimentally that
it finds shorter paths than both A* with post-smoothed paths and Field D* (ilyeother version
of A* we know of that propagates information along grid edges withoustraiming paths to grid
edges) with a runtime comparable to that of A* on grids. Finally, we extendafhe grids that
contain unblocked cells with non-uniform traversal costs and introdadants of Theta* which
provide different tradeoffs between path length and runtime.

2. Path-Planning Problem and Notation

In this section, we describe the path-planning problem that we study in tidlkeanamely path
planning on eight-neighbor grids with blocked and unblocked cells of tmiize. Cells are labeled
as either blocked (grey) or unblocked (white). We use the cornemlisf(cather than their centers)
as verticesS is the set of all vertices. The path-planning problem is to find an unblockéfpm

a given start vertexsiart to a given goal vertexgoa.

A path is unblocked iff each vertex on the path has line-of-sight to its ssoc®n the path. Vertex
s has line-of-sight to vertex’, written asLineOfSights, '), iff the straight line from vertex to
vertexs’ neither passes through the interior of blocked cells nor passes betoerdcells that
share an edge. Pseudocode for implementing the line-of-sight functiorersig Appendix A. For
simplicity, we allow a straight line to pass between diagonally touching blocked ce

c(s, s') is the length of the straight line from vertexo vertexs’. nghbrs,;s(s) is the set of visible
neighbors of vertex in the eight compass directions, that is those neighbors of vertieat have
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line-of-sight to vertexs. Figure 1 shows an example where the visible neighbors of vertex B4 are
vertices A3, A4, A5, B3, B5, C3 and C4.

3. Existing Terrain Discretizations

Continuous terrain needs to be discretized for path planning. In this seatgooompare grids to
other existing terrain discretizations. We use grids to discretize terraintsiegare widely used in
robotics and video games (Deloura, 2000; Murphy, 2000; Rabin,)28@d have several desirable
properties:

e Grids are simple data structures and allow for simple path-planning algorithms.

e Terrain can easily be discretized into a grid by laying the grid over the tearaihabeling all
cells that are partially or completely obstructed as blocked.

e Grids provide a comprehensive picture of all the traversable suriiates continuous terrain.
This is essential when the path planning algorithm is used in a dynamic envinbrame
must interact with a navigation planner. For example if a robot or video gdramcter
encounters a temporary blockage to its path, it can easily determine whethdreit to
divert left (unblocked) or right (blocked) (Tozour, 2004).

e Cells can store information in addition to their traversability, such as the amdwguld
hidden in the region of the terrain that corresponds to the cell or a riegdefr the region
when displaying the terrain.

e The information stored in cells can be accessed quickly since grids atemaaccess data
structures.

e The precision of path and navigation planning can be improved by simplyaisicig the grid
resolution.

We now list some alternative terrain discretizations, assuming for simplicity thatttacles in the
terrain are polygonal.

e Voronoi graphs (Aurenhammer, 1991) discretize the terrain by biasatigspaway from
blocked polygons. The resulting paths can thus be much longer than btiestipaths.

e The discretization in (Mitchell & Papadimitriou, 1991) partitions the terrain inghores with
linear and hyperbolic edges, which allows one to find true shortest pathsnve and space
complexityO(m°/3), wherem is the number of corners of blocked polygons. Thus, the run-
time of path planning can grow superlinearly in the number of corners okétbpolygons.

e Framed Quadtrees (Yahja, Stentz, Singh, & Brumitt, 1998) recursivel§igde terrain into
four equally sized cells until all cells are completely obstructed, completelpsinated or
of sufficiently small size. The resulting paths can have unnecessattingezhanges (that is,
heading changes that occur in free space rather than the cornéoskdd polygons).
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1 Main()
2 g(sstart) == 0;
3 paren(sstart) := Sstart;
4 open:= ();
5 openinsert(sstart, g(sstart) + h(sstart));
6 closed:= 0;
7 while open## () do
8 s := openPop();
9 if s = sgoa|then
10 | return “path found”;
11 closed:= closedJ {s};
12 /+ The following line is executed only by AP Theta*. */;
13 [UpdateBoundss)];
14 foreach s’ € nghbrs,s(s) do
15 if s ¢ closedthen
16 if s’ ¢ openthen
17 g(s') := oo;
18 L paren(s’) :== NULL;
19 UpdateVertexs, s');
20 return “no path found”;
21 end
22 UpdateVertex(s,s’)
23 if g(s) + c(s,s’) < g(s’) then
24 9(s') = gls) + (s, 8");
25 paren(s’) := s;
26 if s’ € openthen
27 | openRemovés’);
28 openinsert(s’, g(s’) + h(s"));
29 end

Algorithm 1: A*

e Probabilistic roadmaps (Kavraki, Svestka, Latombe, & Overmars, 199&pally-exploring
random trees (LaValle & Kuffner, 2001) place vertices randomly (intamdto the start and
goal vertex). Two vertices are connected via a straight line iff they hageof-sight. The
random placement of vertices needs to be tuned carefully since it inflesg¢he runtime of
path planning, the likelihood of finding a path and the length of the path.

e Visibility graphs (Lee, 1978; Lozanoé&Pez & Wesley, 1979) use the corners of each blocked
polygon as vertices (in addition to the start and goal vertex). Two vertigesonnected via
a straight line iff they have line-of-sight, which allows one to find true slsoppaths. The
runtime of path planning can grow superlinearly in the number of verticee sirecnumber
of edges can grow quadratically in the number of vertices.

4. Existing Path-Planning Algorithms

In this section, we describe some existing path-planning algorithms, all ohvaingcvariants of A*
(Hart, Nilsson, & Raphael, 1968). A* is a popular path-planning algorithmobotics and video
games. Algorithm 1 shows the pseudocode of A*. Line 13 is to be ignoredmahtains three
values for every vertex:



e The g-valueg(s) is the length of the shortest path from the start vertex to vertiexind so
far and thus is an estimate of the start distance of vertex

e The user-provided h-valuk(s) is an estimate of the goal distance of vertexA* uses the
h-value to calculate an f-value to focus the A* search. The f-vglue = g(s) + h(s) is an
estimate of the length of a shortest path from the start vertex via vettethe goal vertex.

e The parenparents) is used to extract a path from the start vertex to the goal vertex after A*
terminates.

A* also maintains two global data structures:

e The open list is a priority queue that contains the vertices that A* consideexpansion.
In the pseudocod®peninsert s, x) inserts vertex with key z into the priority queu®pen
openRemoveés) removes vertex from the priority queuspen andopenPop() removes a
vertex with the smallest key from the priority quenygenand returns it.

e The closed list is a set that contains the vertices that A* has alreadydegbalt ensures that
A* expands every vertex at most once.

A* sets the g-value of every vertex to infinity and the parent of everyexeto NULL when it
encounters the vertex for the first time [Lines 17-18]. It sets the g-wafitiee start vertex to zero
and the parent of the start vertex to the start vertex itself [Lines 2-3etk the open and closed
lists to the empty list and then inserts the start vertex into the open list with thed-aalits key
[4-6]. A* then repeatedly executes the following procedure: If thendjst is empty, then it reports
that there is no path [Line 20]. Otherwise, it identifies a verexith the smallest f-value in the
open list [Line 8]. If this vertex is the goal vertex, then A* reports thasis found a path [Line 10].
Path extraction [not shown in the pseudocode] follows the parents fregdal vertex to the start
vertex to retrieve a path from the start vertex to the goal vertex in reveterwise, A* removes
the vertex from the open list [Line 8] and expands it by inserting the vémtexhe closed list [Line
11] and then generating each of its unexpanded visible neighborslj@ssfoA* checks whether
the g-value of vertex plus the length of the straight line from vertexo vertexs’ is smaller than
the g-value of vertex’ [Line 23]. If so, then it sets the g-value of vertexto the g-value of vertex
s plus the length of the straight line from vertexo vertexs’, sets the parent of vertex to vertex

s and finally inserts vertex’ into the open list with the f-value as its key or, if it was already in the
open list, sets its key to the f-value [Lines 24-28]. It then repeats thisptoe.

To summarize, when A* updates the g-value and parent of an unexpargible neighbors’ of
vertexs in procedure UpdateVertex, it considers the path from the start vertertexs [= g(s)]
and from vertexs to vertexs’ in a straight line [=(s, s')], resulting in a length of(s) + ¢(s, s)
[Line 23]. A* updates the g-value and parent of vertéxf the considered path is shorter than the
shortest path from the start vertex to vertéfound so far [=g(s')].

We now describe several existing path-planning algorithms that are nersfoA* and how they
trade off between two conflicting criteria, namely runtime and path length, @snsim Figure 2.
We introduce them in order of decreasing path lengths.
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30 PostSmoothPath[so, ..., sxn])

31 k:=0;

32 tr == so;

33 foreachi:=1...n — 1do

34 if NOT LineOfSightt, s;+1) then
35 k:=k+1,

36 L tr = S84

37 k:=k+1;

38 tr == Sn;

39 return [to, ..., tx];

40 end

Algorithm 2 : Post-smoothing

4.1 A*on Grids

One can run A* on grids, that is, on the graphs given by the grid verindsdges. The resulting
paths are artificially constrained to be formed by the edges of the grid, whitbhe seen in Figure
1(a). As a result the paths found by A* on grids are not equivalentedrtie shortest paths and
are unrealistic looking since they either deviate substantially from the trugeshpaths or have
many more heading changes, which provides the motivation for smoothing WWemse the octile
distances, which can be computed using Algorithm 5, as h-values in theraepés.
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Figure 3: A* PS path versus true shortest path

4.2 A* with Post-Smoothed Paths (A* PS)

One can run A* with post-smoothed paths (A* PS) (Thorpe, 1984). A*l$ A* on grids and
then smoothes the resulting path in a post-processing step, which ofté@nshibat an increase in
runtime. Algorithm 2 shows the pseudocode of the simple smoothing algorithrAtHa8 uses

in our experiments (Botea, WMler, & Schaeffer, 2004), which provides a good tradeoff between
runtime and path length. Assume that A* on grids finds the pathsy, ..., s,] with so = sstart
ands,, = sgoal. A* PS uses the first vertex on the path as the current vertex. It treckshwhether
the current vertex, has line-of-sight to the successar of its successor on the path. If so, A*
PS removes the intermediate vertgxfrom the path, thus shortening it. A* PS then repeats this
procedure by checking again whether the current vesgexas line-of-sight to the successgrof

its successor on the path, and so on. As soon as the current verteratdeave line-of-sight to the
successor of its successor on the path, A* PS advances the cuerent and repeats this procedure
until it reaches the end of the path. We use the straight-line dist@risgs= c(s, sgoal) as h-values

in the experiments.

A* PS typically finds shorter paths than A* on grids, but is not guarante&dd true shortest paths.
Figure 3 shows an example. Assume that A* PS finds the dotted blue pathh islioe of many
shortest grid paths. It then smoothes this path to the solid blue path, which astne shortest
path. The dashed red path, which moves above (rather than belowgdloek B2-B3-C3-C2 is a
true shortest path. A* PS is not guaranteed to find true shortest pathsdeeit only considers grid
paths during the A* search and thus cannot make informed decisiongliregather paths during
the A* search, which motivates interleaving searching and smoothingcinTheta* is similar to
A* PS except that it interleaves searching and smoothing.

4.3 Field D* (FD¥)

One can run Field D* (Ferguson & Stentz, 2006) (FD*). FD* propagatéormation along grid
edges without constraining the paths to grid edges. FD* was designee 0*uste (Koenig &
Likhachev, 2002) for fast replanning (by reusing information fromphevious A* search to speed
up the next one) and searches from the goal vertex to the start védiaxversion of FD* uses
A* and searches from the start vertex to the goal vertex, like all othirplanning algorithms in
this article, which allows us to compare them fairly, except for their replanahbilities. (Theta* is
currently in the process of being extended for fast replanning (N&mdmig, & Likhachev, 2009).)
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Figure 5: Screenshot of FD* path versus true shortest path

When FD* updates the g-value and parent of an unexpanded visiblabugig of vertexs, it
considers all paths from the start vertex to any pdininot necessarily a vertex) on the perimeter of
vertexs’ [= g(X)] that has line-of-sight to vertex, where the perimeter is formed by connecting
all the neighbors of vertex, and from pointX to vertexs’ in a straight line [=¢(X, s')], resulting

in a length ofg(X) + ¢(X, s’). FD* updates the g-value and parent of vertex the considered
path is shorter than the shortest path from the start vertex to vérewnd so far [=¢(s’)]. We use
the straight-line distanceésg(s) = c(s, sgoal) @s h-values in the experiments.

Figure 4 shows an example. The perimeter of vestex: B4 is formed by connecting all of the
neighbors of vertex B4, as shown in bold. Consider paintn the perimeter. FD* does not know
the g-value of point X since it only stores g-values for vertices. It dates the g-value using
linear interpolation between the g-values of the two vertices on the perimetaréhadjacent to
the point X. Thus, it linearly interpolates betwegfB3) = 2.41 andg(C3) = 2.00, resulting in
g(X) = 0.55 x 2.41 + 0.45 x 2.00 = 2.23 since 0.55 and 0.45 are the distances from p4irib
vertices B3 and C3, respectively. The calculated g-value of pbirg different from its true start
distance [= 2.55] even though the g-values of vertices B3 and C3 areshati to their true start
distances. The reason for this mistake is simple. There exist true shatlestfiom the start vertex
through either vertex C3 or vertex B3 to the goal vertex. Thus, the lingampiolation assumption
predicts that there must also exist a short path from the start vertexgthiany point along the
edge that connects vertices B3 and C3 to the goal vertex. However, tiostise case since these
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paths need to circumnavigate blocked cell B2-B3-C3-C2, which makesltregar than expected.
As a result of miscalculating the g-value of poikit FD* sets the parent of verte®4 to point X,
resulting in a path that has an unnecessary heading change at\paindl is longer than even a
shortest grid path.

The authors of FD* recognize that the paths found by FD* frequentie hanecessary heading
changes and suggest to use a one-step look-ahead algorithm duttingxpaction (Ferguson &
Stentz, 2006), which FD* uses in our experiments. This one-step loe&ebaigorithm allows FD*
to avoid some of the unnecessary heading changes, like the one in Fjduurtedées not eliminate
all of them. Figure 5 shows an example of an FD* path in red and the comdspg true shortest
path in blue. The FD* path still has many unnecessary heading changes.

4.4 A*on Visibility Graphs

One can run A* on visibility graphs. The visibility graph of a grid with blockewainblocked
cells contains the start vertex, the goal vertex and the corners of aldalazlls (Lozano-&rez &
Wesley, 1979). We use the straight-line distanc@s = c(s, sgoal) @s h-values in the experiments.
A* on visibility graphs finds true shortest paths, as shown in Figure Gfaje shortest paths have
heading changes only at the corners of blocked cells, while the pathd fpuA* on grids, A* PS
and FD* can have unnecessary heading changes. On the otheamyisibility graphs can be
slow. It propagates information along visibility graph edges, whose nun#regrow quadratically
in the number of cells, while A* on grids, A* PS and FD* propagate informatitamg grid edges,
whose number grows only linearly in the number of cells. If one construbedisibility graphs
before the A* search, one would need to perform a line-of-sightlchecevery pair of corners of
blocked cells to determine whether or not there should be a visibility grapé leetgveen them,
which requires at least 2,556 line-of-sight checks for the room in Eig(p) (Tozour, 2004). The
number of line-of-sight checks performed by A* on visibility graphs camdrluced by constructing
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41 UpdateVertex(s,s’)

42 if LineOfSigh(parents), s’) then

43 [+ Path 2 */

44 if g(parens)) + c(parents), s’) < g(s’) then
45 g(s’) := g(paren(s)) + c(paren{(s), s);
46 paren{(s’) := paren{s);

47 if s’ € openthen

48 | openRemovés’);

49 openinsert(s’, g(s’) + h(s"));

50 else

51 [+ Path 1 =/

52 if g(s) + c(s, s') < g(s') then

53 g9(s") = g(s) + c(s,s');

54 paren{s’) := s;

55 if s’ € openthen

56 | openRemovés’);

57 openinsert(s’, g(s’) + h(s"));

58 end

Algorithm 3: Basic Theta*

the visibility graphs during the A* search. When it expands a vertex, ibpass line-of-sight checks
between the expanded vertex and the corners of all blocked cells (angb#i vertex). While

this can significantly reduce the number of line-of-sight checks perfdimsome environments,
such as simple outdoor terrain, it fails to do so in others, such as clutteredritetrain. More

complex optimizations, such as reduced visibility graphs can further redlacaumber of line-of-

sight checks, but do not sufficiently speed up A* on visibility graphs @i@rimoto, 1992).

5. Basic Theta*

In this section, we introduce Theta* (Nash et al., 2007), our version*ofoA any-angle path
planning that propagates information along grid edges without constrahméngaths to grid edges.
It combines the ideas behind A* on visibility graphs (where heading clsangeur only at the
corners of blocked cells) and A* on grids (where the number of edgessggonly linearly in the
number of cells). Its paths are only slightly longer than true shortest pagh®(nd by A* on
visibility graphs), yet is only slightly slower than A* on grids, as shown in Fgd. The key
difference between Theta* and A* on grids is that the parent of a vedexbe any vertex when
using Theta*, while the parent of a vertex has to be a neighbor of thexwstten using A*. We
first introduce Basic Theta*, a simple version of Theta*.

Algorithm 3 shows the pseudocode of Basic Theta*. Procedure Main isigaé to that of A* in
Algorithm 1 and thus is not shown. Line 13 is to be ignored. We use the stimghdistances
h(s) = c(s, sgoal) @s h-values in the experiments.

5.1 Operation of Basic Theta*

Basic Theta* is simple. It is identical to A* except that, when it updates thalgevand parent of
an unexpanded visible neighbgrof vertex s in procedure UpdateVertex, it considers two paths
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Figure 7: Paths 1 and 2 considered by Basic Theta*

instead of only the one path considered by A*. Figure 7(a) shows ampmga Basic Theta* is
expanding vertex B3 with parent A4 and needs to update the g-valueaaadtf unexpanded
visible neighbor C3. Basic Theta* considers two paths:

e Path 1: Basic Theta* considers the path from the start vertex to verfexg(s)] and from
vertexs to vertexs’ in a straight line [=(s, s’)], resulting in a length of(s) + ¢(s, ) [Line
52]. Path 1 is the path considered by A*. It corresponds to the dasidgoiath [A4, B3, C3]
in Figure 7(a)).

e Path 2: Basic Theta* also considers the path from the start vertex to the pareetteks [=
g(parents))] and from the parent of vertexto vertexs’ in a straight line [=(paren{s), s')],
resulting in a length ofj(paren{s)) + c(paren{s), s’) [Line 44]. Path 2 is not considered
by A* and allows Basic Theta* to construct any-angle paths. It comedp to the solid blue
path [A4, C3] in Figure 7(a).

Path 2 is no longer than Path 1 due to the triangle inequality. The triangle inegetaliés that
the length of any side of a triangle is no longer than the sum of the lengths oftteetwo sides.
It applies here since Path 1 consists of the path from the start vertex tauthiet pf vertexs, the
straight line from the parent of vertexto vertexs (Line A) and the straight line from vertexto
vertexs’ (Line B), Path 2 consists of the same path from the start vertex to the mresitex s
and the straight line from the parent of verteto vertexs’ (Line C) and Lines A, B and C form a
triangle. Path 1 is guaranteed to be unblocked but Path 2 is not. Thus, Besga* chooses Path
2 over Path 1 if vertex’ has line-of-sight to the parent of vertexand Path 2 is thus unblocked.
Figure 7(a) shows an example. Otherwise, Basic Theta* chooses Paér Path 2. Figure 7(b)
shows an example. Basic Theta* updates the g-value and parent of veiftthe chosen path is
shorter than the shortest path from the start vertex to veftéound so far [=¢(s’)]. We use the
straight-line distancek(s) = c(s, sgoal) as h-values in the experiments.
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Figure 8: Example trace of Basic Theta*

5.2 Example Trace of Basic Theta*

Figure 8 shows an example trace of Basic Theta*. The vertices are labighetheir g-values and
parents. The arrows point to their parents. Red circles indicate vertateasrehbeing expanded, and
blue arrows indicate vertices that are generated during the curreansrp. First, Basic Theta*
expands start vertex A4 with parent A4, as shown in Figure 8(a)tdtle parent of the unexpanded
visible neighbors of vertex A4 to vertex A4, just like A* would do. SecoBdsic Theta* expands
vertex B3 with parent A4, as shown in Figure 8(b). Vertex B2 is an uaespd visible neighbor of
vertex B3 that does not have line-of-sight to vertex A4. Basic Thetag thpdates it according to
Path 1 and sets its parent to vertex B3. On the other hand, vertices CAd@3aare unexpanded
visible neighbors of vertex B3 that have line-of-sight to vertex A4. Baikieta* thus updates them
according to Path 2 and sets their parents to vertex A4. (The g-valuepaaedts of the other
unexpanded visible neighbors of vertex B3 are not updated.) Thirsic Bdeta* expands vertex
B2 with parent B3, as shown in Figure 8(c). Vertices Al and A2 are pauected visible neighbors
of vertex B2 that do not have line-of-sight to vertex B3. Basic Thetas tijndates them according
to Path 1 and sets their parents to vertex B2. On the other hand, verticesl Bllare unexpanded
visible neighbors of vertex B2 that do have line-of-sight to vertex B3siB@&heta* thus updates
them according to Path 2 and sets their parents to vertex B3. Fourth, Bastig*expands goal
vertex C1 with parent B3 and terminates, as shown in Figure 8(d). Patttatr then follows the
parents from goal vertex C1 to start vertex A4 to retrieve the true sh@ads [A4, B3, C1] from
the start vertex to the goal vertex in reverse.
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5.3 Properties of Basic Theta*

We now discuss the properties of Basic Theta*.

5.3.1 (ORRECTNESS ANDCOMPLETENESS

Basic Theta* is correct (that is, finds only unblocked paths from thé &taiex to the goal vertex)
and complete (that is, finds a path from the start vertex to the goal vertar iéxists). We use the
following lemmata in the proof.

Lemma 1. If there exists an unblocked path between two vertices then there alsceexisiblocked
grid path between the same two vertices.

Proof. An unblocked path between two vertices exists iff an unblocked any-aagiteso, . . . , s,
exists between the same two vertices. Consider any path segmgnt of this any-angle path. If
the path segment is horizontal or vertical, then consider the unblockegajhidrom vertexs; to
vertex sy that coincides with the path segment. Otherwise, consider the seqlgnce , b,,,)

of unblocked cells whose interior the path segment passes through. Angamsecutive cells
b; andb;,1 share at least one verteg+1 since the cells either share an edge or are diagonally
touching. (If they share more than one vertex, pick one arbitrarily.) idenshe grid paths;, =
Sky STy -5 Sms Stg1 = Sk+1]- This grid path from vertex;, to vertexs,. is unblocked since any
two consecutive vertices on it are corners of the same unblocked dedrarthus visible neighbors.
Repeat this procedure for every path segment of the any-angle phitoanatenate the resulting
grid paths to an unblocked grid path from vertgxo vertexs,,. (If several consecutive vertices on
the grid path are identical, then all of them but one can be removed.) O

Lemma 2. At any point during the execution of Basic Theta*, following the parents foynvertex
in the open or closed lists to the start vertex retrieves an unblocked pathtimetart vertex to this
vertex in reverse.

Proof. We prove by induction that the lemma holds and that the parent of any verteg imion
of the open or closed lists itself is in the union of the open or closed lists. Therstat holds
initially because the start vertex is the only vertex in the union of the open sedliists and it is
its own parent. We now show that the statement continues to hold whenexder ehanges either
its parent or its membership in the union of the open or closed lists. Once & iszaenember of
the union of the open or closed lists, it continues to be a member. A vertexecamie a member
in the union of the open or closed lists only when Basic Theta* expands serexy and updates
the g-value and parent of an unexpanded visible neigkfbafrvertexs in procedure UpdateVertex.
Vertex s is thus in the closed list, and its parent is in the union of the open or closed lstslaw
to the induction assumption. Thus, following the parents from vettéor its parent) to the start
vertex retrieves an unblocked path from the start vertex to ver{ex its parent, respectively) in
reverse according to the induction assumption. If Basic Theta* updateExgeaccording to Path
1, then the statement continues to hold since verticasd s’ are visible neighbors and the path
segment from vertex to vertexs’ is thus unblocked. If Basic Theta* updates vert€according
to Path 2, then the statement continues to hold since Basic Theta* explicitlysctietkthe path
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segment from the parent of vertexo vertexs’ is unblocked. There are no other ways in which the
parent of a vertex can change. O

Theorem 1. Basic Theta* terminates and path extraction retrieves an unblocked patttfre start
vertex to the goal vertex if such a path exists. Otherwise, Basic Thetainhtes and reports that
no unblocked path exists.

Proof. The following properties together prove the theorem. Their proofs utilizétti¢hat Basic
Theta* terminates iff the open is empty or it expands the goal vertex. Thevstéex is initially in

the open list. Any other vertex is initially neither in the open nor closed lists. fexereither in the
open nor closed lists can be inserted into the open list. A vertex in the opearibeaemoved from
the open list and be inserted into the closed list. A vertex in the closed list remaimesclosed list.

e Property 1: Basic Theta* terminates. It expands one vertex in the opedulistg each
iteration. In the process, it removes the vertex from the open list and eam#ver insert it
into the open list again. Since the number of vertices is finite, the open lisualigrbecomes
empty and Basic Theta* has to terminate if it has not terminated earlier already.

e Property 2: If Basic Theta* terminates because its open list is empty, thes dioes not
exist an unblocked path from the start vertex to the goal vertex. Wesgih@vcontrapositive.
Assume that there exists an unblocked path from the start vertex to theegted. We prove
by contradiction that Basic Theta* then does not terminate because its opendiapty.
Thus, assume also that Basic Theta* terminates because its open list is emmgiy.tAere
exists an unblocked grid pathy = Sstart; - - -, Sn = Sgoal] from the start vertex to the goal
vertex according to Lemma 1. Choose vertgxo be the first vertex on the grid path that is
not in the closed list when Basic Theta* terminates. The goal vertex is nogicldised list
when Basic Theta* terminates since Basic Theta* would otherwise have téechiwaen it
expanded the goal vertex. Thus, verteexists. Vertex; is not the start vertex since the start
vertex would otherwise be in the open list and Basic Theta* could not hawinated because
its open list is empty. Thus, vertex has a predecessor on the grid path. This predecessor is
in the closed list when Basic Theta* terminates since vestas the first vertex on the grid
path that is not in the closed list when Basic Theta* terminates. When Badia*Téanded
the predecessor, it added vertgxo the open list. Thus, vertex is still in the open list when
Basic Theta* terminates. But then Basic Theta* could not have terminatedibeds open
listis empty, which is a contradiction.

e Property 3: If Basic Theta* terminates because it expands the goat vitree path extraction
retrieves an unblocked path from the start vertex to the goal vertexusedallowing the
parents from the goal vertex to the start vertex retrieves an unblockibdffom the start
vertex to the goal vertex in reverse according to Lemma 2.

14
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Figure 9: Basic Theta* paths versus true shortest paths

5.3.2 OPTIMALITY

Basic Theta* is not optimal (that is, it is not guaranteed to find true shqoebs) because the
parent of a vertex has to be either a visible neighbor of the vertex or teatpa a visible neighbor,
which is not always the case for true shortest paths. Figure 9(asshaxample where the dashed
red path [E1, B9] is a true shortest path from start vertex E1 to vertesii@® vertex E1 has line-
of-sight to vertex B9. However, vertex E1 is neither a visible neighbortm® parent of a visible
neighbor of vertex B9 since vertex E1 does not have line-of-sight &ethiertices (highlighted in
red). Thus, Basic Theta* cannot set the parent of vertex B9 to v&rteand does not find a true
shortest path from vertex E1 to vertex B9. Similarly, Figure 9(b) showsxample where the
dashed red path [E1, D8, C10] is a true shortest path from vertex EtExvC10. However, vertex
D8 is neither a visible neighbor nor the parent of a visible neighbor of ¥€1® since start vertex
E1 either has line-of-sight to them or Basic Theta* found paths fromxé&ieto them that do not
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Figure 10: Heading changes of Basic Theta*

contain vertex D8. In fact, the truly shortest paths from vertex E1 to ableimieighbors of vertex
C10 that vertex E1 does not have line-of-sight to move above (rathebilaw) blocked cell C7-
C8-D8-D7. Thus, Basic Theta* cannot set the parent of vertex C¢6rtex D8 and thus does not
find a true shortest path from vertex E1 to vertex C10. The solid blue pathvertex E1 to vertex
B9 in Figure 9(a) and the solid blue path from vertex E1 to vertex C10 in Eig(ly) are less than
a factor of 1.002 longer than the true shortest paths.

5.3.3 HEADING CHANGES

Basic Theta* takes advantage of the fact that true shortest paths badind changes only at
the corners of blocked cells. However, the paths found by Basic Theta*occasionally have
unnecessary heading changes. Figure 10 shows an example whkard Beata* finds the solid blue
path [Al, D5, D6] from vertex Al to vertex D6. The reason for this mistekeimple. Assume
that the open list contains both vertices C5 and D5. The f-value of veigg G C5) = g(C5) +
h(C5) = 4.61 + 1.41 = 6.02 and its parent is vertex C4. The f-value of vertex D¥{95) =
5.00 + 1.00 = 6.00 and its parent is vertex Al. Thus Basic Theta* expands vertex D5 defor
vertex C5 (since its f-value is smaller). When Basic Theta* expands vB%ewith parent Al,

it generates vertex D6. Vertex D6 is an unexpanded visible neighboertdx D5 that does not
have line-of-sight to vertex Al. Basic Theta* thus updates it accordifath 1, sets its f-value to
f(D6) = 6.00 4+ 0.00 = 6.00, sets its parent to vertex D5 and inserts it into the open list. Thus
Basic Theta* expands goal vertex D6 before vertex C5 (since its £valamaller) and terminates.
Path extraction then follows the parents from goal vertex D6 to start vAdedxr retrieve the solid
blue path [Al, D5, D6]. Thus, Basic Theta* never expands vertexa®&h would have resulted in

it setting the parent of vertex D6 to vertex C4 according to Path 2 and pitsan retrieving the
dashed red path [A1, C4, D6] which is the true shortest path. The sokdpaith from vertex Al to
vertex D6 in Figure 10 is less than a factor of 1.027 longer than true shpets
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59 UpdateVertex(s,s’)

60 if s # sstart ANDID(s) < ©(s, parents), s’) < ub(s) then

61 [+ Path 2 */

62 if g(parenfs)) + c(parents), s’) < g(s’) then

63 g(s’) := g(paren(s)) + c(paren{(s), s);

64 paren{(s’) := paren{s);

65 if s/ € openthen

66 | openRemovés’);

67 openinsert(s’, g(s’) + h(s"));

68 else

69 [+ Path 1 */

70 if g(s) +c(s,s’) < g(s’) then

71 g9(s") = g(s) + c(s,s');

72 paren{s’) := s;

73 if s’ € openthen

74 | openRemovés’);

75 openinsert(s’, g(s’) + h(s"));

76 end

77 UpdateBounds(s)

78 Ib(s) := —o0; ub(s) := oo;

79 if s # sstart then

80 foreach blocked celb adjacent tas do

81 if Vs’ € corners(b) : parents) = s’ ORO(s, parents), s’) < 0 OR

82 (©(s, parents), s’) = 0 AND c(parents), s’) < c(parents), s)) then

83 | ib(s) = 0;

84 if Vs’ € corners(b) : parenfs) = s’ ORO(s, parents), s’) > 0 OR

85 (©(s, parents), s’) = 0 AND c(parenfs), s’) < c(parenfs), s)) then

86 L ub(s) = 0;

87 foreach s’ € nghbrs,;s(s) do

88 if s’ € closedAND parents) = parents’) AND s’ # sstart then

89 if Ib(s’) + ©(s, parents), s’) < 0 then

90 | 1b(s) := max(lb(s), Ib(s") + O(s, paren{s), s));

91 if ub(s’) 4+ O(s, parents), s’) > 0 then

92 L ub(s) := min(ub(s), ub(s’) + O (s, paren{s), s’));

93 if c(parents), s’) < c(parents), s) ANDparent(s) # s’ AND (s’ ¢ closedORparents) # paren{s’))
then

94 if ©(s, parents), s’) < 0then

95 L Ib(s) := max(Ib(s), O(s, paren(s), s'));

96 if ©(s, parents),s’) > 0then

97 | ub(s) := min(ub(s), ©(s, paren(s), s’));

98 end

Algorithm 4: AP Theta*

6. Angle-Propagation Theta* (AP Theta*)

The runtime of Basic Theta* per vertex expansion (that is, the runtime owtsauring the gen-
eration of the unexpanded visible neighbors when expanding a veemxX)eclinear in the number
of cells since the runtime of each line-of-sight check can be linear in the ewailzells. In this

section, we introduce Angle-Propagation Theta* (AP Theta*), whichiced the runtime of Basic
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Figure 11: Region of points with line-of-sight to vertex

Theta* per vertex expansion from linear to constaiithe key difference between AP Theta* and
Basic Theta* is that AP Theta* propagates angle ranges and uses theteimithe whether or not
two vertices have line-of-sight.

If there is a light source at a vertex and light cannot pass through ddiocélls, then cells in the
shadows do not have line-of-sight to the vertex while all other cells hageolirsight to the vertex.
Each contiguous region of points that have line-of-sight to the vertexoearharacterized by two
rays emanating from the vertex and thus by an angle range defined byhnglzounds. Figure
11 shows an example where all points within the red angle range defineeé bydhangle bounds

#, and @, have line-of-sight to vertex. AP Theta* calculates the angle range of a vertex when
it expands the vertex and then propagates it along grid edges, resultngoinstant runtime per
vertex expansion since the angle ranges can be propagated in caimstaand the line-of-sight
checks can be performed in constant time as well.

Algorithm 4 shows the pseudocode of AP Theta*. Procedure Main is idgntcthat of A* in
Algorithm 1 and thus is not shown. Line 13 is to be executed. We use thehdtliamig distances
h(s) = c(s, sgoal) @s h-values in the experiments.

6.1 Definition of Angle Ranges

We now discuss the key concept of an angle range. AP Theta* maintairedtittonal values for
every vertexs, namely a lower angle bourlti(s) of vertexs and an upper angle boundb(s) of
vertexs, that together form the angle rangie(s), ub(s)] of vertexs. The angle bounds correspond
to headings of rays (measured in degrees) that originate at the parentex s. The heading of
the ray from the parent of vertexto vertexs is zero degrees. A visible neighbor of vertexs
guaranteed to have line-of-sight to the parent of vestéxXbut not necessarily only if) the heading
of the ray from the parent of vertexto the visible neighbor of vertex is contained in the angle

1. While AP Theta* provides a significant improvement in the worst caseptexity over Basic Theta*, our experi-
mental results in Section 7 show that it is slower and finds slightly longer paahsBasic Theta*.

18



A Py
7| Sstart
B | /
18/
27
c PSS ‘\ﬁb
Soal g

Figure 12: Angle range of AP Theta*

range of vertexs. Figure 12 shows an example where vertex C3 with parent A4 has anmgje ra
[—18,27]. Thus, all visible neighbors of vertex C3 in the red region are guardrniteleave line-of-
sight to the parent of vertex C3. For example, vertex C4 is guaranteea#oline-of-sight to the
parent of vertex C3 but vertex B2 is not. AP Theta* therefore assunatsehiex B2 does not have
line-of-sight to the parent of vertex C3.

We now define the concept of an angle range more formélly, p, ') € [—90, 90], which gives
AP Theta* its name, is the angle (measured in degrees) between the rayeiexy to vertexs and
the ray from vertey to vertexs’. It is positive if the ray from vertex to vertexs is clockwise from
the ray from vertey to vertexs’, zero if the ray from vertex to vertexs has the same heading as the
ray from vertexp to vertexs’, and negative if the ray from vertexto vertexs is counterclockwise
from the ray from vertexy to vertexs’. Figure 12 shows an example whédéC3, A4, C4) = 27
andO(C3, A4, B3) = —18. A visible neighbors’ of vertexs is guaranteed to have line-of-sight to
the parent of vertex if (but not necessarily only iffo(s) < ©(s, parents), s’) < ub(s) (Visibility
Property).

6.2 Update of Angle Ranges

We now discuss how AP Theta* calculates the angle range of a vertexitygmands the vertex.
This calculation is complicated by the fact that AP Theta* is not guaranteedve $ufficient
information to determine the angle range exactly since the order of vertaxisixms depends on a
variety of factors, such as the h-values. In this case, AP Theta* gastrain the angle range more
than necessary to guarantee that the Visibility Property holds and thatdtfiridocked paths.

When AP Theta* expands vertexit sets the angle range of vertexnitially to [—oo, co], meaning
that all visible neighbors of the vertex are guaranteed to have line-bfisithe parent of the vertex.
It then constrains the angle range more and more if vertexot the start vertex.

AP Theta* constrains the angle range of vertedased on each blocked célthat is adjacent to
vertexs (that is, that vertex is a corner ob, written ass € corners(b)) provided that at least one
of two conditions is satisfied:

e Case 1:If every corners’ of blocked cellb satisfies at least one of the following conditions:
— parent(s) = s' or
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— O(s,parents),s’) < 0or
— O(s,parents), s’) = 0 andc(parents), s’) < c(parents), s),

then AP Theta* assumes that a vert&xdoes not have line-of-sight to the parent of veréex
if the ray from the parent of vertexto vertexs is counterclockwise from the ray from the
parent of vertex to vertexs”, that is, ifO(s, parents), s”) < 0. AP Theta* therefore sets
the lower angle bound of vertexto © (s, paren(s), s) = 0 [Line 83].

e Case 2:If every corners’ of blocked cellb satisfies at least one of the following conditions:

— parent(s) = s' or
— O(s,paren(s),s’) > 0or
— O(s,parents), s’) = 0 andc(parents), s') < ¢(paren{s), s),

then AP Theta* assumes that a vert&xdoes not have line-of-sight to the parent of vertex

if the ray from the parent of vertexto vertexs is clockwise from the ray from the parent of
vertexs to vertexs”, that is, if©(s, paren{s), s”) > 0. AP Theta* therefore sets the upper
angle bound of vertex to O(s, paren{s), s) = 0 [Line 86].

AP Theta* also constrains the angle range of vestéased on each visible neighbdrof vertexs
provided that at least one of two conditions is satisfied:

e Case 3:If vertex s’ satisfies all of the following conditions:

— s’ € closedand
— paren{s) = paren{s’) and

/
- S 75 Sstart

then AP Theta* constrains the angle range of vestby intersecting it with the angle range
of vertex s’ [Lines 90 and 92]. To do that, it first shifts the angle range of vestely

O (s, parenis), s') degrees to take into account that the angle range of vefiexcalibrated

so that the heading of the ray from the joint parent of verticesd s’ to vertexs’ is zero
degrees, while the angle range of vertas calibrated so that the heading of the ray from the
joint parent of vertices ands’ to vertexs is zero degrees. Lines 89 and 91 ensure that the
lower angle bound always remains non-positive and the upper angtel ladways remains
non-negative, respectively. The fact that lower angle boundsldHhi®inon-positive (and
upper angle bounds non-negative) is intuitive in that if a vestexassigned parent vertex
then the angle of the ray from vertgxto vertexs should be included in the angle range of
vertexs.

e Case 4:If vertex s’ satisfies all of the following conditions:

— c(parents), s’) < c(parents), s) and
— parent(s) # s’ and
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— s’ ¢ closedor parents) # paren{s’),

then AP Theta* has insufficient information about vertéx AP Theta* therefore cannot
determine the angle range of vertexexactly and makes the conservative assumption that
vertexs’ barely has line-of-sight to the parent of verteft.ines 95 and 97].

The Visibility Property holds after AP Theta* has updated the angle rangertéxs in procedure
UpdateBounds. Thus, when AP Theta* checks whether or not a vistigloors’ of vertexs has
line-of-sight to the parent of vertex it now checks whether or ndlh(s) < O(s, paren(s), s’) <
ub(s) [Line 60] is true instead of whether or nbineOfSighfparents), s') [Line 42] is true . These
are the only differences between AP Theta* and Basic Theta*.

Figure 13(a) shows an example where AP Theta* calculates the angke oangrtex A4. It sets
the angle range tp-oo, oo]. Figure 13(b) shows an example where AP Theta* calculates the angle
range of vertex B3. It sets the angle range initially-tao, co]. It then sets the lower angle bound
to O degrees according to Case 1 based on the blocked cell A2-A32H8i8e 83]. It sets the
upper angle bound to 45 degrees according to Case 4 based on wrigkiBh is unexpanded and
thus not in the closed list [Line 97]. Figure 13(c) shows an example whBr&heta* calculates
the angle range of vertex B2. It sets the angle range initially-tso, co]. It then sets the lower
angle bound to 0 degrees according to Case 1 based on the blocke@-@&8-B3-B2 [Line 83].
Assume that vertex C1 is not the goal vertex. Figure 13(d) then shoassaample where AP Theta*
calculates the angle range of vertex C1. It sets the angle range initiathsto oc]. It then sets the
lower angle bound to -27 degrees according to Case 3 based on v@rfeinB 90] and the upper
angle bound to 18 degrees according to Case 4 based on vertex CR,isvhiexpanded and thus
not in the closed list [Line 97].

6.3 Example Trace of AP Theta*

Figure 13 shows an example trace of AP Theta* using the path-plannifdeprdrom Figure 8.
The labels of the vertices now include the angle ranges.

6.4 Properties of AP Theta*

We now discuss the properties of AP Theta*. AP Theta* operates in thewagnas Basic Theta*
and thus has similar properties as Basic Theta*. For example, AP Thetatéstand complete. It
is not guaranteed to find true shortest paths, and its paths can octlgdiama unnecessary heading
changes.

AP Theta* sometimes constrains the angle ranges more than necessaryaotegiahat it finds
unblocked paths, which means that its line-of-sight checks sometimes faitéetly in which case
it has to update vertices according to Path 1 rather than Path 2. AP Thetdl*dsraplete since
it finds an unblocked grid path if all line-of-sight checks fail, and théweags exists an unblocked
grid path if there exists an unblocked any-angle path. However, thefoaitind by AP Theta* can be
longer than those found by Basic Theta*. Figure 14 shows an examplen WHR Theta* expands
vertex C4 with parent B1 and calculates the angle range of vertex Géxve8 is unexpanded and
thus not in the closed list. This means that AP Theta* has insufficient informatout vertex
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Figure 13: Example trace of AP Theta*
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Figure 14: Basic Theta* path versus AP Theta* path

C3 because, for example, it does not know whether or not cell CBEB?2 is unblocked. AP
Theta* therefore cannot determine the angle range of vertex C4 exadtinakes the conservative
assumption that vertex C3 barely has line-of-sight to vertex B1 and setewtiee angle bound
of vertex C4 according to Case 4 based on vertex C3. It then usesdhléing angle range to
determine that the unexpanded visible neighbor D4 of vertex C4 is nctugiesd to have line-of-
sight to vertex B1. However, vertex D4 does have line-of-sight to xdéBteif cell C2-C3-D3-D2
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Figure 15: Map of Baldur’'s Gate Il

is unblocked. AP Theta* eventually finds the solid blue path [B1, C3, Dgthfstart vertex B1 to
vertex D4, while Basic Theta* finds the dashed red path [B1, D4], whitieidrue shortest path.

The correctness and completeness proof of Basic Theta* needs twgeed slightly for AP Theta*
since AP Theta* performs its line-of-sight checks differently.

Theorem 2. AP Theta* terminates and path extraction retrieves an unblocked path frerstént
vertex to the goal vertex if such a path exists. Otherwise, AP Theta* tetesiaad reports that no
unblocked path exists.

Proof. The proof is similar to the proof of Theorem 1 since AP Theta* uses the aagtges only
to determine whether or not Path 2 is blocked but not to determine whethet Bath 1 is blocked.
The only property that needs to be proved differently is that two vertiaeseith have line-of-sight
if (but not necessarily only if) the line-of-sight check of AP Theta*serds, see Appendix B.[J

7. Experimental Results

In this section, we compare Basic Theta* and AP Theta* to A* on grids, A*H3 and A* on
visibility graphs with respect to their path length, number of vertex expassiantime (measured
in seconds) and number of heading changes.

We compare these path-planning algorithms 06t x 100 and500 x 500 grids with different per-
centages of randomly blocked cells (random grids) and scaled mapsttioneal-time strategy
game Baldur’s Gate Il (game maps). Figure 15 (Bulitko, Sturtevant, & Kazek, 2005) shows an
example of a game map. The start and goal vertices are the south-westsoofrcells. For random
grids, the start vertex is in the south-west cell. The goal vertex is in aamadlamly chosen from
the column of cells furthest east. Cells are blocked randomly but a ond&andier of unblocked
cells guarantees that there is path from the start vertex to the goal vEdegame maps, the start
and goal vertices are randomly chosen from the corners of unblaekisd We average over 500
random100 x 100 grids, 500 random00 x 500 grids and 118 game maps.
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FD* |Basic Theta* | AP Theta* | A* on Visibility Graphs |A* on Grids [ A* PS
(true shortest path)
Game Maps 40.04 39.98 40.05 39.96 41.77 40.02
o |Random Grids 0% |114.49 114.33 114.33 114.33 120.31 [114.33
S [rRandom Grids 5% [114.15 113.94 113.94 113.83 119.76  [114.71
é Random Grids 10%]|114.74 11451 114.51 114.32 119.99 [115.46
— |Random Grids 20%| 115.20 114.93 114.95 114.69 120.31 [116.16
Random Grids 30%| 115.45 115.22 115.25 114.96 120.41 116.69
Game Maps 223.64 223.30 224.40 N/A 233.66 |223.70
o |Random Grids 0% |576.19 575.41 575.41 N/A 604.80 |575.41
B |Random Grids 5% |568.63 567.30 567.34 N/A 596.45 |573.46
é Random Grids 10%]| 576.23 574.57 574.63 N/A 603.51 |581.03
¥ |Random Grids 20%| 580.19 578.41 578.51 N/A 604.93 |585.62
Random Grids 30%)]581.73 580.18 580.35 N/A 606.38 |588.98
Table 1: Path length
FD* [Basic Theta* [AP Theta* [ A* on Visibility Graphs |A* on Grids | A* PS
(true shortest path)
Game Maps 0.0111 0.0060 0.0084 0.4792 0.0048 ]0.0052
o |Random Grids 0% |0.0229 0.0073 0.0068 0.0061 0.0053 ]0.0208
S [rRandom Grids 5% [0.0275 0.0090 0.0111 0.0766 0.0040 ]0.0206
é Random Grids 10%)] 0.0305 0.0111 0.0145 0.3427 0.0048 ]0.0204
' |Random Grids 20%| 0.0367 0.0150 0.0208 1.7136 0.0084 ]0.0222
Random Grids 30%)] 0.0429 0.0183 0.0263 3.7622 0.0119 ]0.0240
Game Maps 0.1925 0.1166 0.1628 N/A 0.0767 ]0.1252
o |Random Grids 0% |0.3628 0.1000 0.0234 N/A 0.0122 ]0.6270
% Random Grids 5% |0.4514 0.1680 0.1962 N/A 0.0176 |0.6394
g |Random Grids 10%| 0.5608 0.2669 0.3334 N/A 0.0573 ]0.6717
' |Random Grids 20%| 0.6992 0.3724 0.5350 N/A 0.1543 ]0.6852
Random Grids 30%)] 0.8562 0.5079 0.7291 N/A 0.3238 ]0.7355
Table 2: Runtime
FD* Basic Theta* |AP Theta* | A* on Visibility Graphs |A*on Grids | A*PS
(true shortest path)
Game Maps 247.07 228.45 226.42 68.23 197.19 315.08
o |Random Grids 0% | 592.74 240.42 139.53 1.00 99.00 1997.29
% Random Grids 5% | 760.17 430.06 361.17 35.35 111.96 1974.27
8 Random Grids 10%| 880.21 591.31 520.91 106.23 169.98 1936.56
— |[Random Grids 20%| 1175.42 851.79 813.14 357.33 386.41 2040.10
Random Grids 30%| 1443.44 1113.40 1089.96 659.36 620.18 2153.28
Game Maps 6846.62 6176.37 6220.58 N/A 5580.32 9673.88
o |Random Grids 0% |11468.11 2603.40 663.34 N/A 499.00 49686.47
% Random Grids 5% |15804.81 7450.85 5917.25 N/A 755.66 49355.41
8 [Random Grids 10%)| 19874.62| 11886.95 10405.34 N/A 2203.83 |50924.01
" [Random Grids 20%|26640.83| 18621.61 17698.75 N/A 6777.15 |50358.66
Random Grids 30%| 34313.28| 25744.57 25224.92 N/A 14641.36 |53732.82

Table 3: Number of vertex expansions

All path-planning algorithms are implemented in C# and executed on a 3.7 Glé2Tauo with 2
GByte of RAM. Our implementations are not optimized and can possibly be imgrove

24



FD* [Basic Theta* | AP Theta* | A* on Visibility Graphs [A* on Grids |A* PS
(true shortest paths)

Game Maps 34.25 3.08 3.64 2.92 5.21 2.83

o |Random Grids 0% |123.40 0.00 0.00 0.00 0.99 0.00
S |Random Grids 5% |113.14 5.14 6.03 5.06 6.00 4.53
é Random Grids 10%| 106.66 8.96 9.87 8.84 10.85 8.48
— |Random Grids 20%| 98.76 15.21 15.96 14.74 19.42 14.45
Random Grids 30%| 96.27 19.96 20.62 19.44 26.06 18.35
Game Maps 219.70 4.18 7.58 N/A 10.19 3.84

o |Random Grids 0% |667.00 0.00 0.00 N/A 1.00 0.00
B |Random Grids 5% [592.65 21.91 27.99 N/A 24.68 22.27
é Random Grids 10%| 559.69 41.60 47.40 N/A 49.73 43.16
¥ [Random Grids 20%] 506.10 72.49 76.79 N/A 91.40 69.44
Random Grids 30%| 481.16 97.21 100.31 N/A 123.81 [89.43

Path Length

Vertex Expansions

Table 4: Number of heading changes
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Figure 16: Randomi00 x 500 grids
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99 h(s)
100 Ay = sz — (sgoa|).;v|;
101 Ay = 5.y — (sgoal)-¥l;

102 largest := maz(Ag, Ay);

103 smallest := min(Az, Ay);

104 return /2 - smallest + (largest — smallest);
105 end

Algorithm 5 Calculation of octile distances

A* on grids, A* PS, FD* and A* on visibility graphs break ties among vertiegth the same f-
value in the open list in favor of vertices with larger g-values (when thejddewhich vertex to
expand next) since this tie-breaking scheme typically results in fewer vexfgansions and thus
shorter runtimes for A*. Care must thus be taken when calculating the gssduvalues and f-
values precisely. The numerical precision of these floating point nuncharbe improved for A*
on grids by representing them in the form+ /2n for integersm andn. Basic Theta* and AP
Theta* break ties in favor of vertices with smaller g-values for the reasgpiained in Section 9.

We use all path-planning algorithms with consistent h-values since condisteiues result in
short paths for A*. Consistent h-values satisfy the triangle inequality,ishahe h-value of the
goal vertex is zero and the h-value of any potential non-goal pafemtyovertex is no greater than
the distance from the potential non-goal parent of the vertex to the veliexhe h-value of the
vertex (Hart et al., 1968; Pearl, 1984). Consistent h-values are lowwends on the corresponding
goal distances of vertices. Increasing consistent h-values typicaligalges the number of vertex
expansions for A* and thus also the runtime of A*. We thus use all pathapigralgorithms with
the largest consistent h-values that are easy to calculate. For Bas&*,TAB Theta*, FD* and
A* on visibility graphs, the goal distances of vertices can be equal to tleegmal distances, that
is, the goal distances on grids if the paths are not constrained to grig.edje therefore use
these path planning algorithms with the straight-line distan¢ep= c(s, sqoal) s h-values in our
experiments. The straight-line distances are the goal distances on gridsititbcked cells if the
paths are not constrained to grid edges. For A* on grids and A* PS,aakdistances of vertices
are equal to the goal distances on grids if the paths are constrained éalged. We could therefore
use them with the larger octile distances as h-values in our experimentscfileelistances are the
goal distances on grids without blocked cells if the paths are constrairgatitedges. Algorithm

5 shows how to calculate the octile distance of a given vetiexheres.x ands.y are the x and y
coordinates of vertex, respectively. We indeed use A* on grids with the octile distances but A*
PS with the straight-line distances since smoothing is then typically able to shoeteesthting
paths much more at an increase in the number of vertex expansions angiritmne. Grids without
blocked cells provide an example. With the octile distances as h-values, gfigmfinds paths in
which all diagonal movements (whose lengths & precede all horizontal or vertical movements
(whose lengths aré) because the paths with the largest number of diagonal movements are the
longest ones among all paths with the same number of movements due to thekiedpszheme
used. On the other hand, with the straight-line distances as h-values, g¢idmfinds paths that
interleave the diagonal movements with the horizontal and vertical movememith(means that

it is likely that there are lots of opportunities to smooth the paths even for gitissame blocked
cells) and that are closer to the straight line between the start and gteésdwhich means that
it is likely that the paths are closer to true shortest paths even for grids etk blocked cells),
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Figure 17: True shortest paths found by FD* (left), A* PS (middle) aagiB Theta* (right)

because the h-values of vertices closer to the straight line are typically sthaltethe h-values of
vertices farther away from the straight line.

Tables 1-4 report our experimental results. The runtime of A* on visibilityplgsa(which finds
true shortest paths) is too long 600 x 500 grids and thus is omitted. Figure 16 visualizes the
experimental results on randdifi0 x 500 grids. The path length of A* on grids is much larger than
the path lengths of the other path-planning algorithms and thus is omitted.

We make the following observations about the path lengths:

e The path-planning algorithms in order of increasing path lengths tend to*ben Risibility
graphs (which finds true shortest paths), Basic Theta*, AP Theta*, RDPS and A* on
grids. On randon®00 x 500 grids with 20 percent blocked cells, Basic Theta* finds shorter
paths than AP Theta* 70 percent of the time, shorter paths than FD* 9@rgetthe time,
shorter paths than A* PS 94 percent of the time and shorter paths thandyids09 percent
of the time.

e The paths found by Basic Theta* and AP Theta* are almost as shoreashioutest paths even
though AP Theta* sometimes constrains the angle ranges more than ngcessaxample,
they are on average less than a factor of 1.003 longer than true stpatieston100 x 100
grids.

e Basic Theta* finds true shortest paths more often than FD* and A* PSrd-itjlishows an
example where the light green vertex in the center is the start vertex anedhgreen and
blue vertices represent goal vertices to which FD*, A* PS and BasitaFtied true shortest
paths, respectively.

We make the following observations about the runtimes. The path-planniogthigs in order of
increasing runtimes tend to be: A* on grids, Basic Theta*, AP Theta*, A* FI3* and A* on
visibility graphs.

We make the following observations about the numbers of vertex expansidre path-planning
algorithms in order of increasing numbers of vertex expansions tend #*mn visibility graphs,
A* on grids, AP Theta*, Basic Theta*, FD* and A* PS. (The number ofteg expansions of A*
on grids and A* PS are different because we use them with differeatues.)
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FD* Basic Theta* | AP Theta* A*PS
Runtime 5.21 3.65 5.70 3.06
Runtime per Vertex Expansion 0.000021 0.000015 0.000023 | 0.000012

Table 5: Path-planning algorithms without post-processing steps onmeb@ibx 500 grids with
20 percent blocked cells

Finally, we make the following observations about the number of headinggelsa The path-
planning algorithms in order of increasing numbers of heading changasddie: A* PS, A* on
visibility graphs, Basic Theta*, AP Theta*, A* on grids and FD*.

There are some exceptions to the trends reported above. We thereftmerppaired t-tests. They
show with confidence level = 0.01 that Basic Theta* indeed finds shorter paths than AP Theta*,
A* PS and FD* and that Basic Theta* indeed has a shorter runtime than ARThA* PS and
FD*.

To summarize, A* on visibility graphs finds true shortest paths but is slowth®mwther hand, A*
on grids finds long paths but is fast. Any-angle path planning lies betwesse tiivo extremes.
Basic Theta* dominates AP Theta*, A* PS and FD* in terms of the tradeoff detwuntime and
path length. It finds paths that are almost as short as true shortestapaths almost as fast as
A* on grids. Itis also simpler to implement than AP Theta*. Therefore, we kanldBasic Theta*
for the remainder of this article, although we report some experimentdtgdeu AP Theta* as
well. However, AP Theta* reduces the runtime of Basic Theta* per verparsion from linear to
constant. It is currently unknown whether or not constant time line-dftsigecks can be devised
that make AP Theta* faster than Basic Theta*. This is an interesting areauséfresearch since
AP Theta* is potentially a first step toward significantly reducing the runtimengfamgle path
planning via more sophisticated line-of-sight checks.

8. Extensions of Theta*

In this section, we extend Basic Theta* to find paths from a given stakwéw all other vertices
and to find paths on grids that contain unblocked cells with non-uniforrersavcosts.

8.1 Single Source Paths

So far, Basic Theta* has found paths from a given start vertex tcemgjoal vertex. We now discuss
a version of Basic Theta* that finds single source paths (that is, pattmsefigiven start vertex to all
other vertices) by terminating only when the open list is empty instead of whear &iidr open list
is empty or it expands the goal vertex.

Finding single source paths requires all path-planning algorithms to expanshme number of
vertices, which minimizes the influence of the h-values on the runtime and thuiésrén a clean
comparison since the h-values sometimes are chosen to trade off betweererand path length.

The runtimes of A* PS and FD* are effected more than those of Basic Ttatd*AP Theta*
when finding single source paths since they require post-smoothing eex@#ttion steps for each
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Figure 18: Basic Theta* on grids that contain unblocked cells with noretmitraversal costs

(a) Small contiguous regions of uniform traversal cos{®) Large contiguous regions of uniform traversal costs
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Basic Theta* path with Non-Uniform Traversal Costs

A* on Grids FD* Basic Theta* A* on Grids FD* Basic Theta*
Path Cost| 4773.59 4719.26 4730.96 Path Cost| 1251.88 1208.89 1207.06
Runtime 11.28 14.98 19.02 Runtime 3.42 5.31 5.90

Table 6: Path-planning algorithms on rand®@®0 x 1000 grids with non-uniform traversal costs

path, and thus need to post-process many paths. Table 5 reports the suttiine path-planning
algorithms without these post-processing steps. The runtime of Basic Tpatartex expansion
is similar to that of A* PS and shorter than that of either AP Theta* and FD&abse the later two
algorithms require more floating point operations.

8.2 Non-Uniform Traversal Costs

So far, Basic Theta* has found paths on grids that contain unblockisdwgéh uniform traversal
costs. In this case, true shortest paths have heading changes orlgatribrs of blocked cells and
the triangle inequality holds, which means that Path 2 is no longer than Path howvdiscuss
a version of Basic Theta* that finds paths on grids that contain unblomddsiwith non-uniform
traversal costs by computing and comparing path lengths (which are nibwqsts) appropriately.
In this case, true shortest paths can also have heading changesaintdaies between unblocked
cells with different traversal costs and the triangle inequality is no longaragieed to hold, which
means that Path 2 can be more costly than Path 1. Thus, Basic Theta* no Umegeaditionally
chooses Path 2 over Path 1 if Path 2 is unblocked [Line 42] but choosgsth with the smaller
cost. It uses the standard Cohen-Sutherland clipping algorithm fromwtengraphics (Foley, van
Dam, Feiner, & Hughes, 1992) to calculate the cost of Path 2 during theflisigtht check. Figure
18 shows an example for the path segm@hi6 from vertex C1 to vertex A6. This straight line is
split into line segments at the points where it intersects with cell boundariescdst of the path
segment is the sum of the costs of its line segméits |, and the cost of each line segment is the
product of its length and the traversal cost of the corresponding cidxiocell.

We found that changing the test on Line 52 in Algorithm 3 from “strictly lesg'tha “less than or

equal to” slightly reduces the runtime of Basic Theta*. This is a result ofabethat it is faster to
compute the cost of a path segment that corresponds to Path 1 than Paté 2 tgnds to consist
of fewer line segments.
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Figure 19: Non-monotonicity of f-values of Basic Theta*

We compare Basic Theta* to A* on grids and FD* with respect to their path @od runtime
(measured in seconds) since A* can easily be adapted to grids that contdgctked cells with
non-uniform traversal costs and FD* was designed for this case.owpare these path-planning
algorithms on1000 x 1000 grids, where each cell is assigned an integer traversal cost from 1 to
15 (corresponding to an unblocked cell) and infinity (correspondinglitoeked cell), similar to
(Ferguson & Stentz, 2006). If a path lies on the boundary between tigondth different traversal
costs, then we use the smaller traversal cost of the two cells. The stagoahdertices are the
south-west corners of cells. The start vertex is in the south-west dedl.gbal vertex is in a cell
randomly chosen from the column of cells furthest east. We average 60aandom grids. Table
6 (a) reports our results if every traversal cost is chosen with unifsobability, resulting in small
contiguous regions of uniform traversal costs. The path cost anthiof FD* are both smaller
than those of Basic Theta*. The path cost of A* on grids is only aboutrdegme larger than that of
FD* although its runtime is much smaller than that of FD*. Thus, any-angle pigrdoes not have
a large advantage over A* on grids. Table 6(b) reports our resultvéitsal cost one is chosen with
probability 50 percent and all other traversal costs are chosen witbromfrobability, resulting in
large contiguous regions of uniform traversal costs. The path cdasit Theta* is now smaller
than that of FD* and its runtime is about the same as that of FD*. The paths toyFD* tend to
have many more unnecessary heading changes in regions with the sagngalregsts than those
of Basic Theta*, which outweighs the paths found by Basic Theta* nanbavecessary heading
changes on the boundary between two cells with different traverstl. cbse path cost of A* on
grids is more than 3 percent larger than that of Basic Theta*. Thusaagle planning now has a
larger advantage over A* on grids.

9. Trading Off Runtime and Path Length: Exploiting h-Values

There are strategies for trading off runtime and path length that A* on grid88asic Theta* share.
However, their behavior can be very different even though the tworitthges have very similar
pseudocode. In this section, we develop versions of Basic Theta* that begable to find shorter
paths at an increase in runtime, including versions that use weightedéswaiiin weights less than
one, that break ties among vertices with the same f-value in the open list indavertices with
smaller g-values (when they decide which vertex to expand next) anceteapand vertices whose
f-values have decreased.
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We use all path-planning algorithms with consistent h-values. A* on grids s the following
properties (Pearl, 1984): The f-value of any expanded vertex isrgerl¢ghan the f-value of any of
its unexpanded visible neighbors after updating them according to Pathidh unplies that the
f-value of any vertex that is expanded before some other vertex is ger ldran the f-value of this
other vertex. Consequently, at any point in time during a search oncgex Vs been expanded,
following the parents from the expanded vertex to the start vertex redrig\whortest path from
the start vertex to the expanded vertex in reverse, which implies that Afotdimd shorter paths
by expanding vertices more than once. Basic Theta* has differenegireg The f-value of an
expanded vertex can be larger than the f-value of one or more of itpandgd visible neighbors
after updating them according to Path 2, which implies that the f-value oftexvéirat is expanded
before some other vertex can be larger than the f-value of this othexvé&tmsequently, at any
point in time during a search once a vertex has been expanded, followengatients from the
expanded vertex to the start vertex is not guaranteed to retrieve asthuatie from the start vertex
to the vertex in reverse, which implies that Basic Theta* might find shorteisgatrexpanding
vertices more than once. Figure 19 shows an example. When Basic Thptatds start vertex C1
with parent C1, it generates vertex B2. Vertex B2 is an unexpanded vigigébor of vertex C1
that has line-of-sight to vertex C1. Basic Theta* thus updates it acaptdiath 2 (which is the
same as Path 1 in this case), sets its f-valug(#82) = 1.41 + 3.16 = 4.57, sets its parent to vertex
C1l and inserts it into the open list (Figure 19(a)). When Basic Theta* |aparels vertex B2 with
parent C1, it generates vertex B3. Vertex B3 is an unexpanded visidbbor of vertex B2 that
has line-of-sight to vertex C1. Basic Theta* thus updates it accordingtto B sets its f-value to
f(B3) = 2.24 + 2.24 = 4.48, sets its parent to vertex C1 and inserts it into the open list (Figure
19(b)). Thus, the f-value of expanded vertex B2 is indeed largerttiefivalue of its unexpanded
visible neighbor B3 after updating it according to Path 2 because the s&cireg-value from vertex
B2 to vertex B3 [= 0.83] is less than the decrease in h-value from vertar B@rtex B3 [= 0.92].
When Basic Theta* later expands vertex B3, the f-value of vertex B2.%¥]4hat is expanded
before vertex B3 is indeed larger than the f-value of vertex B3 [= 4.48].

These properties suggest that Basic Theta* might be able to find shattes @t an increase in
runtime by re-expanding vertices or expanding additional vertices xEnmple by using weighted
h-values with weights less than one) while A* cannot. At the same time, stangéndizations of
A* that decrease its runtime might also be able to decrease the runtime of Beter* Tsuch as
breaking ties among vertices with the same f-value in the open list in favortfes with larger
g-values). In this section we investigate these tradeoffs.

9.1 Weighted h-Values

So far, Basic Theta* has used consistent h-vali{es. A* with consistent h-values finds paths of the
same length no matter how small or large the h-values are. Decreasingeoiisisalues typically
increases the number of vertex expansions for A*. We therefore mesusk a version of Basic
Theta* that might be able to find shorter paths at an increase in runtime lyywsighted h-values
with weights less than one. This version of Basic Theta* uses the h-vialugs= w X (s, Sgoal)

for a given weighD < w < 1 and thus is similar to Weighted A* (Pohl, 1973), except that Weighted
A* typically uses weights greater than one. Figure 20(a) shows an exarhfile resulting effect
on the number of vertex expansions and path length. The green vertexnioithn-east is the start
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Figure 20: Weighted h-values

vertex, and the red vertex in the south-west is the goal vertex. Basta*Twiéh weight 1.00 (as
used so far) expands the orange vertices and finds the red path. TB&s&* with weight 0.75
expands the blue vertices and finds the blue path. Thus, Basic Thetaridsxmore vertices with
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Smaller g-Values Larger g-Values

Basic Theta* | AP Theta* | Basic Theta* | AP Theta*
Path Length 578.41 578.51 578.44 578.55
Number of Vertex Expansions  18621.61 17698.75 18668.03 17744.94
Runtime 0.3724 0.5350 0.3829 0.5389

Table 7: Random00 x 500 grids with 20 percent blocked cells

weight 0.75 than with weight 1.00 and the resulting path is shorter since gp#a®ugh vertices
that are expanded with weight 0.75 but not with weight 1.00.

Figure 20(b) reports the effect of different weights on the path lengthramber of vertex expan-
sions of Basic Theta* and AP Theta* on rand@00 x 500 grids with 20 percent blocked cells.
(The graphs of the number of vertex expansions of Basic Theta* an@ihkia* nearly coincide.)
Decreasing the weight decreases the path length at an increase in ther mfivmdrtex expansions
and thus the runtime. The path length decreases more for AP Theta* thenTBata* since AP
Theta* can constrain the angle ranges more than necessary and tefissbenwo ways from ex-
panding more vertices. However, neither Basic Theta* nor AP Thetatjaaeanteed to find true
shortest paths even if their weights are zero.

9.2 Tie Breaking

So far, Basic Theta* has broken ties among vertices in the open list with ithe fsaalue in favor

of vertices with larger g-values (when it decides which vertex to expamt).nA* with consistent

h-values finds paths of the same length no matter which tie-breaking scheses.itRBreaking ties
in favor of vertices with smaller g-values typically increases the numberrtéxexpansions and
thus the runtime. We therefore discuss a version of Basic Theta* that negitilb to find shorter
paths at an increase in runtime by breaking ties in favor of vertices with srgaliglues. Figure 21
shows an example of the resulting effect on path length. Vertices C4 ahd\B4the same f-value
but vertex B4 has a larger g-value sinig’'4) = 3.83+1.41 = 5.24 andf(B4) = 4.24+1 = 5.24.

If Basic Theta* breaks ties in favor of vertices with larger g-values, therpands vertex B4 with
parent E1 before vertex C4 with parent C3 and eventually expandotie/grtex with parent B4
and terminates. Path extraction then follows the parents from goal vertéx &8rt vertex E1 to

retrieve the dashed red path [E1, B4, B5]. However, if Basic Thete&hs ties in favor of vertices
with smaller g-values, then it expands vertex C4 with parent C3 befotexvBd with parent E1

and eventually expands the goal vertex with parent C3 and terminatesex®attion then follows

the parents from goal vertex B5 to start vertex E1 to retrieve the shatidridue path [E1, C3,

B5].

Table 7 reports the effect of the tie-breaking scheme on the path lengthanwf vertex expansions
and runtime of Basic Theta* and AP Theta* on randddd x 500 grids with 20 percent blocked
cells. Breaking ties in favor of vertices with smaller g-values neither chatige path length,
number of vertex expansions nor runtime significantly. The effect of thbréaking scheme is
small since fewer vertices have the same f-value for Basic Theta* andn&BaTthan for A* on
grids because the number of possible g-values and h-values is largeryfangle path planning.
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Figure 21: Basic Theta* paths for different tie-breaking schemes

Basic Theta* without Vertex Re-Expansions| Basic Theta* with Vertex Re-Expansions
Path Length 578.41 577.60
Number of Vertex Expansions 18621.61 22836.37
Runtime 0.3724 0.5519

Table 8: Random00 x 500 grids with 20 percent blocked cells

There is also a second method in which breaking ties can effect path |€3gtiar, Basic Theta*
has chosen Path 2 over Path 1 if an unexpanded visible neighbor ofex Yxas line-of-sight to
the parent of the vertex. However, it can choose Path 1 over Path thiplaths are equally long,
which increases the runtime due to the additional comparison. Figure 25 stioexample of the
resulting effect on path length. Assume that Basic Theta* expands \R4ftéefore vertex C4. If
Basic Theta* chooses Path 2 over Path 1 then it expands vertex B4 wéhtzt and eventually
expands the goal vertex B5 with parent B4 and terminates. Path extraaiofolfows the parents
from goal vertex B5 to start vertex E1 to retrieve the dashed red pathB&1B5]. However, if

Basic Theta* chooses Path 1 over Path 2 then it expands vertex B4 wiht 28 and eventually
expands goal vertex B5 with parent C3 and terminates. Path extractioriolfems the parents
from goal vertex B5 to start vertex E1 to retrieve the shorter solid blue[gAthC3, B5].

9.3 Re-Expanding Vertices

So far, Basic Theta* has used a closed list to ensure that it expandyedex at most once. A*
with consistent h-values does not re-expand vertices whether or needt a closed list since it
cannot find a shorter path from the start vertex to a vertex after expatitht vertex. On the other
hand, Basic Theta* can re-expand vertices if it does not use a clossthlig it can find a shorter
path from the start vertex to a vertex after expanding the vertex. It #némserts the vertex into
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Figure 22: Basic Theta* paths with and without vertex re-expansions

the open list and eventually re-expand$ iEigure 22 shows an example of the effect of vertex
re-expansions on path length. Basic Theta* without vertex re-expansientually expands vertex
C8 with parent D4. Vertex C9 is an unexpanded visible neighbor of v€that has line-of-sight
to vertex D4. Basic Theta* without vertex re-expansions thus updatesdtding to Path 2 and
sets its parent to vertex D4. After termination, path extraction follows thenpafem goal vertex
B9 to start vertex E1 to retrieve the dashed red path [E1, D4, C9, B9jeker, Basic Theta* with
vertex re-expansions eventually expands vertex C8 with parent Dfatarde-expands vertex C8
with parent E1. Vertex C9 is a visible neighbor of vertex C8 that has lirgghtt to vertex E1.
Basic Theta* with vertex re-expansions thus updates it according to Pathkl 2ets its parent to
vertex E1. After termination, path extraction follows the parents from gexéx B9 to start vertex
E1 to retrieve the shorter solid blue path [E1, C9, B9].

Theorem 3. Basic Theta* with vertex re-expansions terminates and path extractiomsefin
unblocked path from the start vertex to the goal vertex if such a path ex@tfserwise, Basic
Theta* with vertex re-expansions terminates and reports that no urddigu#th exists.

Proof. The proof is similar to the proof of Theorem 1. The only property that ag¢ede proved

differently is that Basic Theta* with vertex re-expansions terminates sincad longer true that it

can never insert a vertex into the open list again once it has removedrtbe frem the open list.

However, since the number of vertices is finite, there are only a finite nuoflaeyclic paths from

the start vertex to each vertex. Therefore, the number of possiblkigsva finite. Therefore, Basic
Theta* with vertex re-expansions can reduce the g-value of eachx\aga finite number of times
and thus inserts each vertex into the open list a finite number of times. Thugpdhdist eventually

becomes empty and Basic Theta* has to terminate if it has not terminated eadahalr O

2. Basic Theta* with vertex re-expansions could also delay the expaosiba goal vertex (for example, by increasing
its f-value artificially) so that it can re-expand more vertices beforentitgates but our version of Basic Theta* with
vertex re-expansions does not do that.
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Table 8 reports the effect of vertex re-expansions on the path lengtter of vertex expansions
and runtime of Basic Theta* on randof0 x 500 grids with 20 percent blocked cells. Vertex
re-expansions decrease the path length slightly at an increase in thermfrvbetex expansions

and thus the runtime.

10. Trading Off Runtime and Path Length: Other Approaches

There are additional strategies for trading off runtime and path length tbagpecific to Basic
Theta*. In this section, we develop versions of Basic Theta* that mightble ta find shorter
paths at an increase in runtime by examining more paths, including versiarchéuk for line-of-
sight to the parent of a parent, that use key vertices to identify promisiemisaand that increase
the number of visible neighbors and thus the number of potential parents wguating vertices
according to Path 1.

10.1 Three Paths

So far, Basic Theta* has considered two paths (namely Paths 1 and B)itvbhpdates the g-
value and parent of an unexpanded visible neightyasf vertexs. We now discuss a version
of Basic Theta* that considers a third path, namely the path from the stdexvi® the parent
of the parent of vertex [= g(paren{paren{s)))] and from it to vertexs’ in a straight line [=
c(paren{paren{s)), s')], resulting in a length ofy(paren{parentis))) + c¢(paren{parents)), s’).
This version of Basic Theta* might be able to find shorter paths at an seiaauntime since the
third path is no longer than Path 2 due to the triangle inequality. Howeverxperiemental results
(not reported here) show that the third path does not decrease thiepatth significantly because
the original version of Basic Theta* already determines that the paréim glarent of vertex does
not have line-of-sight to some vertex that shares its parent with vert@&kus, it is very unlikely
that the parent of the parent of vertexas line-of-sight to vertex’ and thus that the third path is
unblocked.

10.2 Key Vertices

So far, Basic Theta* has considered two paths (namely Paths 1 and @)iwhmlates the g-value
and parent of an unexpanded visible neighidanf vertexs. The parent of a vertex then is either
a visible neighbor of the vertex or the parent of a visible neighbor, whictoisalways the case
for true shortest paths. We now discuss a version of Basic Theta* dhatders additional paths,
namely the paths from the start vertex to cached key vertices and frontohesrtexs’ in a straight
line. This version of Basic Theta* might be able to find shorter paths at apdse in runtime
due to the fact that the parent of a vertex can now also be one of theckisgges. However, our
experimental results (not reported here) show that key verticesadectiee path length only slightly
at a larger increase in runtime due to the overhead of having to selectkisyeg, maintain them
and consider a larger number of paths.
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(a) Branching factor 4 (b) Branching factor 8 (c) Branching factor 16

Figure 23: Grids with different branching factors
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Figure 24: Basic Theta* on randoB00 x 500 grids with 20 percent blocked cells

10.3 Larger Branching Factors

So far, Basic Theta* has operated on eight-neighbor grids. We nowsdiscversion of Basic Theta*
that operates on grids with different numbers of neighbors and thueretiff branching factors.
Figure 23 shows the neighbors of the center vertex for branchingréa¢t@® and 16 respectively.
This version of Basic Theta* might be able to find shorter paths at an sern@aruntime since
larger branching factors increase the number of visible neighborgtide® and thus their number
of potential parents when updating them according to Path 1. Figure 8dsdpe effect of larger
branching factors on the path length and runtime of Basic Theta* on rahom 500 grids with
20 percent blocked cells. Larger branching factors indeed dexteapath length at an increase in
runtime.
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11. Conclusions

Any-angle path-planning algorithms find paths without artificially constraitfegheadings of the

paths. We presented two new correct and complete any-angle pathirglaigorithms. Basic

Theta* and Angle-Propagation Theta* (AP Theta*) are both variants*ahat propagate informa-

tion along grid edges (to achieve a short runtime) without constraining patrsd edges (to find

any-angle paths). Basic Theta* is simple to understand and implement, thBhds short paths.

However, it is not guaranteed to find true shortest paths. AP Thet&\axsha worst-case complex-
ity per vertex expansion that is constant (like that of A* on grids) rathen tmear in the number

of cells (like that of Basic Theta*) by propagating angle ranges wherp#rmas vertices. However,
AP Theta* is more complex than Basic Theta*, is not as fast and finds slightieiqraths.

We proved the correctness and completeness of Basic Theta* and A#&* Enel then compared
them against three existing any-angle path-planning algorithms, namely A*peigtismoothed
paths (A* PS), A* on visibility graphs and Field D* (FD*), the only other si&em of A* we know

of that propagates information along grid edges without constraining the pagrid edges. Basic
Theta* and AP Theta* (unlike A* PS) consider paths not constrained itbegfges during their
search and thus can make informed decisions regarding these pathstbargearch. Basic Theta*
and AP Theta* (unlike FD*) take advantage of the fact that true shqrtglhs have heading changes
only at the corners of blocked cells.

A* on visibility graphs finds true shortest paths but is slow. On the othed ha&hon grids finds
long paths but is fast. Any-angle path planning lies between these two estreBasic Theta*
dominates AP Theta*, A* PS and FD* in terms of their tradeoffs between rurdimdepath length.
It finds paths that are almost as short as true shortest paths and is atnfiast as A* on grids.

We extended Basic Theta* to find paths from a given start vertex to alt tréices and to find
paths on grids that contain cells with non-uniform traversal costs. Takie of an expanded vertex
of Basic Theta* (unlike A* on grids) with consistent h-values can be latigen the f-value of one
or more of its unexpanded visible neighbors, which means that Basic Timégt be able to find
shorter paths at an increase in runtime by re-expanding vertices andirgaadditional vertices.
We thus developed versions of Basic Theta* that use weighted h-valtieg/gights less than one,
that break ties among vertices with the same f-value in the open list in favertides with smaller
g-values (when they decide which vertex to expand next), that rendxpartices whose f-values
have decreased, that check for line-of-sight to the parent of apanat use key vertices to identify
promising parents and that increase the number of visible neighbors.

In the future, we intend to develop a worst-case bound on the path lengBasiof Theta* and AP
Theta*, to better understand their properties and to investigate fastéongeisf AP Theta* that
perform line-of-sight checks in constant time.
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Appendix A. Checking Line-of-Sight

In this appendix, we explain how to perform line-of-sight checks fasir dimplicity, we allow
straight lines to pass between diagonally touching blocked cells. Perfoaming-of-sight check
is similar to determining which points to plot on a raster display when drawing igistiane be-
tween two points. The plotted points correspond to the cells that the straighd#ses through.
Thus, two vertices have line-of-sight iff none of the plotted points cpoed to blocked cells. This
allows Basic Theta* to perform its line-of-sight checks with the standaegs@&rham line-drawing
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106 LineOfSight(s, s’)

107 T = S.T;

108 Yo = S.Y;

109 z1 = s’ .x;

110 y1 = s".y;

111 dy = y1 — Yo,

112 dy == x1 — T0;

113 fi=0;

114 if dy < 0then

115 dy = —dy;

116 sy 1= —1;

117 else

118 L sy = 1;

119 if dp < Othen

120 dz = _dz;

121 sz 1= —1;

122 else

123 | se:=1

124 if de > dy then

125 while zg # 1 do

126 f=f+dy

127 if f> dsthen

128 if grid(zo + ((s« —1)/2),y0 + ((sy —1)/2)) then
129 | return false

130 Yo := Yo + Sy;

131 f=f—ds

132 if f#0AND grid(zo + ((sz —1)/2),y0 + ((sy — 1)/2)) then
133 | return false

134 if dy =0AND grid(zo + ((s« —1)/2),y0) AND grid(zo + ((s« —1)/2),yo — 1) then
135 | return falsg

136 | 2o =z0+ Sa;

137 else

138 while yo # y; do

139 f=f+ds

140 if f> dythen

141 if grid(zo + ((se —1)/2),y0 + ((sy — 1)/2)) then
142 | retumn false

143 xo = x0 + Sx;

144 fi=f—dy

145 if f#0AND grid(zo + ((sz — 1)/2),y0 + ((sy — 1)/2)) then
146 | return false

147 if dz =0 AND grid(zo,yo + ((sy —1)/2)) AND grid(zo — 1,y0 + ((sy — 1)/2)) then
148 | return false

149 | Yo :=yo+ Sy;

150 return true;

151 end

Algorithm 6: Line-of-sight algorithm

algorithm from computer graphics (Bresenham, 1965), that uses atlip@cal and integer opera-
tions rather than floating-point operations. Algorithm 6 shows the resultieeplirsight algorithm,
wheres.z ands.y are the x and y coordinates of vertexespectivelygrid represents the grid and
grid(x,y) is true iff the corresponding cell is blocked.
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Appendix B. AP Theta* Returns Unblocked Paths

In this appendix, we prove that AP Theta* never returns a blocked path.

Theorem 4. AP Theta* never returns a blocked path.

Proof. We define a path to be blocked iff at least one vertex on the path doeavetihe-of-sight
to its successor on the path. Thus, a path is blocked iff at least one oftliis@gments passes
through the interior of a blocked cell or passes between two blocked callshihre an edge.

We first prove that AP Theta* never returns a path with a path segmenpaisaes through the
interior of a blocked cell. We prove by contradiction that AP Theta* camsstgn some parept

to some vertex such that the path segment from paremb vertexs passes through the interior of
some blocked cell. Assume otherwise. To simplify the proof, we translate and rotate the giid suc
that blocked celb is immediately south-west of the origg of the grid and parent is in quadrant

I, as shown in Figure 25. We define the quadrant of a vertexfollows, where.x ands.y are the

x and y coordinates of vertex respectively:

e Quadrant | is the north-east quadrant (excluding the x-axis) giyemb> 0 ands.y > 0.

e Quadrant Il is the north-west quadrant (excluding the y-axis) gwenxz < 0 ands.y > 0.
e Quadrant Ill is the south-west quadrant (excluding the x-axis)gbyes.z < 0 ands.y < 0.
e Quadrant IV is the south-east quadrant (excluding the y-axis buidimguhe originby) given

by s.x > 0ands.y < 0ors.x =0ands.y = 0.

We refer to the neighbors of vertexaseast(s), northeast(s), north(s), northwest(s), west(s),
southwest(s), south(s), southeast(s), as shown in Figure 26.
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Assume that there is a light source at vergeand that light cannot pass through blocked éell
which creates a shadow. A vertexs in the shadow iff the straight line from paremto vertex

s passes through the interior of blocked dellWe distinguish two parts of the perimeter of this
shadow, namely the upper and lower boundary, as shown in Figure@8efivie a boundary vertex
to be any vertex not in the shadow that has at least one neighbor (dithotgecessarily a visible
neighbor) in the shadow. The origtg is not in the shadow but its neighbssuth(by) is in the
shadow. Thus, the origity is a boundary vertex. We consider only the upper boundary without
loss of generality. Then, a boundary vertex (to be precise: an uppedary vertex) is any vertex

s with O(s, p, by) < 0 (thatis, on or above the upper boundary and thus outside of the shtdw
has at least one neighbgrwith ©(s’, p, by) > 0 (that is, below the upper boundary and thus inside
of the shadow). It is easy to see that all boundary vertices are in auialdf and form an infinite
boundary pathby, b1, . . .] that starts at the origity and repeatedly moves either south or east, that
is, bi-‘,—l = south(bi) or bi-i—l = east(bi).

We define a vertex to be sufficiently constrained if®(s, p,bg) < lb(s) for its parentp. Once
vertex s is sufficiently constrained, it remains sufficiently constrained since noatipa of AP
Theta* can decrease its lower angle boubd). We prove in the following that every boundary
vertex is sufficiently constrained at the time it is expanded if it is expandedpainty. Consider
any vertexs below the upper boundary (that ®(s, p,by) > 0 and thusO(by, p, s) < 0) thatis a
visible neighbor of some boundary vertgx Vertexs cannot have been updated according to Path 1
and been assigned parerdt the time its parent was expanded since the straight line from pagent
to vertexs passes through the interior of a blocked cell and they are therefoxésitde neighbors.

It cannot have been updated according to Path 2 and been assigaatpp the time boundary
vertexb; was expanded with pareptbecause boundary vertéxis sufficiently constrained at that
time and thug (b;, p, by) < 1b(b;), which implies tha®(b;, p, s) = ©(b;, p,bo) + O(bg, p, s) <
©(bi,p,bo) < Ib(b;) and the condition on Line 60 remains unsatisfied. Consequently, no vertex in
the shadow can have parent

We now prove by induction on the order of the vertex expansions thay ®andary vertex is
sufficiently constrained at the time it is expanded if it is expanded with paremissume that
boundary vertex, is expanded with parent. Then, the condition on Line 81 is satisfied and
Line 83 is executed for blocked céllat the time boundary vertey is expanded with parent
Boundary vertexy is sufficiently constrained afterwards since its lower angle bound is set®o z
Now assume that boundary vertgxvith : > 0 is expanded with parept Then, boundary vertex
cannot be identical to parep{since they are in different quadrants) nor to the start vertex (since the
start vertex does not have pargit Boundary vertex; cannot have been updated according to Path

43



1 and been assigned parerdt the time its parent was expanded singez < 0 and(b;).z > 0 and
they are thus not neighbors. Consequently, boundary vértewust have been updated according
to Path 2 and been assigned paneat the time one of its visible neighbotswas expanded with
parentp. Vertexz must be on or above the upper boundary (thabis;, p, by) < 0) and cannot be
identical to parenp (since they are in different quadrants). We distinguish two cases:

e Assume that vertex is a boundary vertex. It is sufficiently constrained at the time it is ex-
panded with parent according to the induction assumption (that@z, p, by) < 1b(x))
since it is expanded before boundary vertex Boundary vertex; was updated according
to Path 2 at the time vertex was expanded with parept Thus, the condition on Line
60 is satisfied at that time (that i#)(z) < ©O(z,p,b;)) and thuslb(z) + O(b;,p,x) =
Ib(x) — ©(z,p,b;) < 0. Then, the conditions on Lines 88 and 89 are satisfied and
Line 90 is executed with’ = x at the time boundary vertel is expanded with parent
p. Boundary vertex; is sufficiently constrained afterwards since its lower angle bound
is set tomax(lb(b;),lb(x) + O(b;, p,x)) and ©(b;, p,by) = O(bs, p,x) + O(x,p,by) <
Ib(x) 4+ O(b;, p, z) < max(lb(b;),lb(x) + O(b;, p, z)).

e Assume that vertex is not a boundary vertex.

Lemma 3. Assume that a vertexand a boundary vertel; are visible neighbors;(p, b;) <
c(p, s) andO(s, p, b;) < 0. Assume that boundary vertgxis sufficiently constrained at the
time vertexs is expanded with parentif boundary vertex; has been expanded with parent
p at that time. Then, vertex is sufficiently constrained at the time it is expanded if it is
expanded with parent.

Proof. Assume that vertex is expanded with parent Then,O(s,p,by) = O(s,p,b;) +
O(b;, p,bp) < 0sinceO(s,p,b;) < 0andO(b;, p,by) < 0. We distinguish two cases:

— Assume that boundary vertéx is not expanded before vertexor is expanded with
a parent other than parept Then, the conditions on Lines 93 and 94 are satisfied
and Line 95 is executed with = b; at the time vertexs is expanded with parent
p. Vertexs is sufficiently constrained afterwards since its lower angle bound is set to
max(lb(s),O(s,p,b;)) andO(s,p,by) = O(s,p,b;) + O(bi,p,bo) < O(s,p,b;) <
max(lb(s),O(s,p, b;)).

— Assume that boundary vertéxis expanded with parentbefore vertex is expanded
with parentp. Boundary verte»; is sufficiently constrained at the time vertexs
expanded with parent according to the premise (that ®,b;,p,by) < Ib(b;)). Fur-
thermore/b(b;) < 0 (since no operation of AP Theta* can make the lower angle bound
positive) and thusgb(b;) + O(s,p,b;) < 0. Then, the conditions on Lines 88 and 89
are satisfied and Line 90 is executed with= b; at the time vertex is expanded with
parentp. Vertexs is sufficiently constrained afterwards since its lower angle bound is
set tomax(lb(s), lb(b;) + O(s,p,b;)) andO(s,p,by) = O(s,p,b;) + O(bs, p,by) <
Ib(b;) + O(s,p, b;) < max(lb(s),lb(b;) + O(s,p, b;)).

O]
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Boundary vertex; is either immediately south or east of boundary verigx since the
boundary path moves only south or east. We distinguish three subcases:

— Assume that parenp is on the x-axis in quadrant Il. Then, the boundary path is
along the x-axis. Verticesest(b;) andeast(b;) are boundary vertices, and vertices
southwest(b;), south(b;), and southeast(b;) are below the upper boundary. Thus,
vertexx is identical to one of verticesorthwest(b;), north(b;) or northeast(b;). In
all cases, there is a boundary vertgximmediately south of vertex. If verticesx
andb; were not visible neighbors, then there would be blocked cells immediately-south
west and south-east of vertexand vertices: andb; could thus not be visible neighbors.
Thus, verticese andb; are visible neighbors. Furthermore, boundary vebieis im-
mediately south of vertex and thusc(p, b;) < c(p,x) and©(z,p,b;) < 0. Finally,
boundary vertex; is sufficiently constrained according to the induction assumption at
the time boundary vertel; is expanded with parentif boundary vertex; has been
expanded with pareptat that time. Thus, vertexis sufficiently constrained at the time
it is expanded with paremtaccording to Lemma 3 (that i€)(x, p, by) < Ib(z)). Conse-
quently, the conditions on Lines 88 and 89 are satisfied (for the reagem lggfore) and
Line 90 is executed with’ = z at the time boundary verteh is expanded with parent
p. Boundary vertex; is sufficiently constrained afterwards since its lower angle bound
is set tomax(1b(b;), lb(z) + O(b;, p, x)) andO(b;, p, by) = O(b;, p, z) + O(z, p, by) <
Ib(x) 4+ O(b;, p, z) < max(lb(b;),lb(x) + O(b;, p, )).

— Assume that parent is not on the x-axis in quadrant Il and that boundary vertex
b; is immediately east of boundary vertéx ; and thusc(p,b;—1) < ¢(p,b;) and
©(b;,p,bi—1) < 0. Furthermore, boundary vertéx_; is sufficiently constrained ac-
cording to the induction assumption at the time boundary vertes expanded with
parentp if boundary vertex; 1 has been expanded with parerdt that time. If bound-
ary verticesb;,_; andb; are visible neighbors, then boundary vertgxs sufficiently
constrained at the time it is expanded with pageatcording to Lemma 3. If boundary
verticesb;_; andb; are not visible neighbors, then there must be blocked cells imme-
diately north-west and south-west of boundary vettexThen, Line 81 is satisfied and
Line 83 is executed for the blocked cell immediately south-west of bounaeitgxb; at
the time boundary verte is expanded with parept Boundary vertex,; is sufficiently
constrained afterwards since its lower angle bound is set to zero.

— Assume that parent is not on the x-axis in quadrant Il and that boundary vebteis
immediately south of boundary vertéx ;.

Lemma 4. Assume that a vertexin quadrant IV is on or above the upper boundary.
Then, vertex is a boundary vertex iff the vertex immediately south-west of veriex
below the upper boundary.

Proof. If the vertexs’ immediately south-west of vertexis below the upper boundary,
then vertexs is a boundary vertex by definition. On the other hand, if veeis on
or above the upper boundary (that®(s’, p, by) < 0), then vertexs is not a boundary
vertex because every neighbor of it is on or above the upper bountiae neighbors
of vertexs are
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east(s),northeast(s), north(s), northwest(s),
west(s), southwest(s), south(s) andsoutheast(s).

or, equivalently,

east(east(north(s"))), east(east(north(north(s')))), east(north(north(s"))),
north(north(s'")), north(s’), s, east(s’) andeast(east(s')).

Thus, every neighbas” of vertexs can be reached from vertek by repeatedly mov-
ing either north or east and th@(s”,p,s’) < 0. Consequently©(s”,p,by) =
O(s",p,s")+O(s',p,by) < 0and thus every neighbaf’ of vertexs is on or above the
upper boundary. Ol

We distinguish two subcases:

x Assume that boundary vertek,; is immediately east of boundary vertex
b;. Verticesnorth(b;) and east(b;) are boundary vertices. Verticasest(b;),
southwest(b;) andsouth(b;) are south-west of boundary vertidgs;, b; andb; 1,
respectively, and thus below the upper boundary according to Lemmarticas
northwest(b;) and southeast(b;) are either boundary vertices or south-west of
boundary vertice$;_, andb, o, respectively, and then below the upper boundary
according to Lemma 4. Thus, vertexs identical to vertexorthwest(b;).

x Assume that boundary verte),; is immediately south of boundary vertéx
Verticesnorth(b;) and south(b;) are boundary vertices. Verticesest(b;) and
southwest(b;) are south-west of boundary vertices; andb;, respectively, and
thus below the upper boundary according to Lemma 4. Veitexhwest(b;) is
either a boundary vertex or south-west of boundary vdrtexand then below the
upper boundary according to Lemma 4. Thus, vertexidentical to one of vertices
northeast(b;), east(b;) or southeast(b;).

In all cases, vertex is immediately east of some boundary verigand thus:(p, b;) <
c(p,xz) andO(z, p,b;) < 0. If verticesz andb; were not visible neighbors, then there
would be blocked cells immediately north-west and south-west of vertad vertices

x andb; could not be visible neighbors. Thus, verticeandb; are visible neighbors.
Furthermore, boundary verteéx is sufficiently constrained according to the induction
assumption at the time boundary vertgxs expanded with parentif boundary ver-
tex b; has been expanded with pargntt that time. Thus, vertex is sufficiently
constrained at the time it is expanded with paregraccording to Lemma 3 (that is,
O(z,p, by) < Ib(x)). Consequently, the conditions on Lines 88 and 89 are satisfied (for
the reason given before) and Line 90 is executed wiith = at the time boundary vertex
b; is expanded with parept Boundary verte®; is sufficiently constrained afterwards
since its lower angle bound is setiex(1b(b;), lb(z) + ©(b;, p, z)) andO(b;, p, by) =
O(bi,p,x) + O(x,p,by) < 1b(x) + O(b;, p,x) < max(lb(b;),lb(xz) + O(b;, p, x)).

This concludes the proof that every boundary vertex is sufficienthstcaimed at the time it is
expanded if it is expanded with pargnénd thus also the proof that AP Theta* never returns a path
with a path segment that passes through the interior of a blocked cell.
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We now prove that AP Theta* never returns a path with a path segmentabs¢pbetween two
blocked cells that share an edge. We prove by contradiction that AP*T¢etaot assign some
parentp to some vertex such that the path segment from pargmb vertexs passes between two
blocked cells that share an edge. Assume otherwise and consider thienr&\P Theta* assigns
some parent to some vertex such that the path segment from pargi vertexs passes between
two blocked cells that share an edge. The path segment must be eithentedrar vertical. Vertex

s cannot have been updated according to Path 1 and been assignag zdriie time its parent
was expanded since then the straight line from pgraatvertexs passes through the interior of a
blocked cell and they are therefore not visible neighbors. It carae been updated according to
Path 2 and been assigned paneat the time some visible neighbsrwas expanded with parent
since then either a) neighbgirwould not be colinear with verticgsands and the straight line from
parentp to vertexs’ would thus pass through the interior of a blocked cell or b) neighbaould
be colinear with verticeg ands and the straight line from parepto vertexs’ would pass between
two blocked cells that share an edge, which is a contradiction of the assamptiis concludes
the proof that AP Theta* never returns a path with a path segment thatsaasetsveen two blocked
cells that share an edge.

Thus, AP Theta* never returns a blocked path. Ol
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